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Abstract: When investigating the mechanical behavior of fiber-reinforced polymers, fiber 

orientation plays a decisive role concerning anisotropy. Fiber orientation distributions are 

typically measured in the form of fiber orientation tensors. In order to measure orientation 

tensors, computed tomography scans and consecutive image processing methods have become 

one of the leading non-destructive testing methods. The conflict between scan resolution and 

sample size limits the volume that can be scanned. To obtain the fiber orientation behavior across 

an entire plate, a direct interpolation of orientation tensors computed from CT scans of smaller 

volumes at selected coordinates of the plate is implemented. Rather than a component-based 

interpolation, the authors chose a decomposition and reassembly method interpolating shape 

and orientation of the tensors separately. While this approach has been implemented and used 

for e.g. diffusion tensors in medical imaging, the authors consider the application to sparse but 

measured CT-based data to be a novelty. 

Keywords: tensor mapping; tensor algebra; quaternions; non-destructive testing; image 

processing  

 

1. Introduction and state of the art 

Fiber orientation distributions (FOD) are one of the various characteristic quantities evolved 

over time in order to quantify the microstructure of long- and short-fiber-reinforced polymers 

(FRP). Fiber orientation specifically has a high impact on anisotropy as the fiber orientation is 

typically a function of the position since orientation is defined by process (compression molding) 

induced material flow. FOD are described in scalar distribution functions. However, in the use 

cases of process or structural simulations the most common and compact form of 

representation are fiber orientation tensors (FOT) [1]. FOT can be determined from µCT images 

via structure tensor approach [2]. While fiber volume contents (FVC) and fiber length 

distributions (FLD) can also be determined experimentally by eliminating the matrix material [3], 

validating FOT determined via image processing depicts a challenge. Furthermore, the conflict 
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between image resolution and sample size in CT images limits the volume that can be scanned 

in order to still detect carbon fibers (diameter of 5 µm - 7 µm) massively. These small volumes 

often do not represent the microstructure sufficiently well and additionally, the coverage of a 

full plate is resource-intensive. However, full-field information on FOT is of elevated interest 

when analyzing and trying to improve the preceding manufacturing process and corresponding 

process simulation. The alternative to a high amount of scans and orientation analyses, i.e. 

considering less measured tensors and ascertaining predicted values in between, constitutes a 

classical interpolation problem. While interpolation for scalar values is well-known and various 

approaches exist, interpolation of tensors represents a more challenging, less well-explored 

field. The fact that orientation tensors are received via closure approximations of the orientation 

distribution function (ODF) might be considered as an advantage. A scalar interpolation for 

discrete directions is thereby possible (e.g. in contrast to strain or stress tensors). The easiest 

way of interpolating fiber orientations would then be a Euclidean interpolation of the scalar 

valued function 𝜙𝜙� . The result is a weighted arithmetic averaging of the tensor components. 

Interpolating the tensor components lead to a kind of "shape shift" instead of sufficient rotation 

of the interpolated tensors in former studies, particularly showing an "artificial" isotropy [4-6]. 

There are further "global" interpolation methods, which could be applied to symmetric positive-

definite (SPD) tensors. The Riemannian Interpolation has been used e.g. in [7]. However, as soon 

as more than two input arguments are used, the underlying computations can only be solved 

implicitly, necessitating an iterative and computationally expensive method, which is why this 

method is not pursued any further in this work. As another logarithmic, yet explicitly solvable 

approach, Arsigny et al. [4] introduced the Log-Euclidean tensor interpolation method. As a 

completely different kind of concept, decomposition-based methods have been made use of. 

These approaches are grounded on the idea of the generally acknowledged spectral 

decomposition of tensors (cf. Eq. (3)). This is followed by a separate interpolation of shape (e.g. 

invariants like Eigenvalues) and of orientation (e.g. Eigenvectors or quaternions) and a 

subsequent reassembly to a then interpolated tensor. This method particularly provides the 

possibility of a smoother behavior in-between two differently oriented tensors and has been 

used successfully for diffusion tensors in medical imaging [5]. However, the specific interpolation 

of shape and orientation can be realized in multiple, different ways. The chosen methods for the 

implementation of the decomposition method in this work are explained in detail in the 

"Methods" chapter. Sabiston et al. [8] have explored the use of artificial intelligence (AI) for FOT 

interpolation. The authors used ground truth fiber orientation data from µCT measurements - 

as also used in this work. They then trained an artificial neural network with this data, which was 

subsequently able to predict tensor components within ranges smaller than the variability of the 

orientation of neighboring microstructural units.  

This work focuses on determining a full-field distribution of fiber orientation tensors across an 

entire carbon long-fiber-reinforced polyamide 6 plate by interpolating orientation tensors 

determined from small samples at specific positions. Therefore, nine samples were scanned in 

the CT and the orientation tensor was determined for each scanned volume. Following, the nine 

computed tensors of second order were interpolated via a decomposition-based interpolation 

method and the results were discussed both visually and quantitatively with the help of the 

Frobenius norm. 
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2. Notation 

Symbolic tensor notation is preferred in this work. Scalar values are denoted by standard Latin 

and Greek letters, e.g. 𝑐𝑐, 𝜆𝜆. Tensors of first order are represented by bold lowercase letters, e.g. 𝒙𝒙,𝒑𝒑 and bold uppercase letters are used for tensors of second order such as 𝑹𝑹,𝑺𝑺. Fourth-order 

tensors are denoted by double-struck letters like ℂ,𝕊𝕊. 

Sets, i.e., collections of quantities, are denoted by calligraphic symbols, e.g. 𝒜𝒜  and are 

constructed by curly braces. In them, the elements typically are given explicitly or expressed by 

conditions to be fulfilled by each element contained in the set. The special orthogonal group 𝑆𝑆𝑆𝑆(3) represents all 3D rotations. Four-dimensional quaternions are represented by an arrow-

head above the Latin letter, such as in 𝑞⃗𝑞. 

The terms 𝑒𝑒𝑟𝑟() and 𝑑𝑑𝑒𝑒𝑒𝑒() are the trace and determinant operators respectively, |𝑫𝑫| represents 

the Frobenius norm of the tensor 𝑫𝑫 defined by |𝑫𝑫| =  �𝑒𝑒𝑟𝑟(𝑫𝑫𝑫𝑫𝑇𝑇). The rotation of a tensor is 

denoted by the Rayleigh Product ★. 

 

3. Methods 

4.1 General 

The interpolation method was mainly implemented in Python 3.8. SPD tensors can be visualized 

as tensor glyphs [9]. This method was used in this work as it constitutes a descriptive and 

interpretable way of assessing the success of the implemented interpolation method. The 

authors implemented the visualization in Matlab R2020b with the help of the “plotDTI” function 

of the fanDTasia ToolBox by Barmpoutis et al. [10].  

4.2 Scan acquisition and determination of fiber orientation tensors 

The authors used the YXLON-CT precision µCT system with a flat panel PerkinElmer Y.XRD1620 

detector with 2048 px x 2048 px. 1950 projections were made per scan and an accelerating 

voltage of 150 kV and a current of 0.25 mA were chosen with an integration time of 500 ms and 

a frame binning of two. The resulting volumetric images are reconstructed applying the 

Feldkamp cone-beam algorithm [11]. The scans had a voxel size of 0.00857123 mm/voxel. 

In this study, carbon fiber-reinforced polyamide 6 is investigated. This material is manufactured 

in the so-called "long-fiber thermoplastic direct process" (LFT-D) introduced by Krause et. al [12]. 

This is a compression molding process in which a so-called plastificate, an elongated, cross-

sectionally oval mix of C-fibers and polymer blend, comes out of the extruder and is placed 

sideways in a press, which then closes in and produces CF-PA6 plates. Out of one of these 

manufactured plates, which have dimensions of 400 mm x 400 mm x 4 mm, nine samples of 10 

mm x 10 mm x 4 mm were cut via waterjet cutting and scanned with the described parameters.  

Subsequently, the reconstructed scans were processed in VG Studio Max 3.4.2. If necessary, 

brightness and contrast were adjusted in the ImageJ (FIJI) software. In addition, the individual 

gray value threshold was determined for each scan. To determine the FOT from the scan data, 

the method introduced by Pinter et al. [13] was used. The algorithm (implemented in C++ with 

the help of the ITK library) makes use of the structure tensor (cf. Eq. (1)): 
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𝑺𝑺 =  

⎣⎢⎢
⎢⎢⎡�𝛿𝛿𝐼𝐼𝛿𝛿𝑒𝑒�

2 𝛿𝛿𝐼𝐼𝛿𝛿𝑒𝑒 𝛿𝛿𝐼𝐼𝛿𝛿𝛿𝛿 𝛿𝛿𝐼𝐼𝛿𝛿𝑒𝑒 𝛿𝛿𝐼𝐼𝛿𝛿𝛿𝛿𝛿𝛿𝐼𝐼𝛿𝛿𝛿𝛿 𝛿𝛿𝐼𝐼𝛿𝛿𝑒𝑒 �𝛿𝛿𝐼𝐼𝛿𝛿𝛿𝛿�2 𝛿𝛿𝐼𝐼𝛿𝛿𝛿𝛿 𝛿𝛿𝐼𝐼𝛿𝛿𝛿𝛿𝛿𝛿𝐼𝐼𝛿𝛿𝛿𝛿 𝛿𝛿𝐼𝐼𝛿𝛿𝑒𝑒 𝛿𝛿𝐼𝐼𝛿𝛿𝛿𝛿 𝛿𝛿𝐼𝐼𝛿𝛿𝛿𝛿 �𝛿𝛿𝐼𝐼𝛿𝛿𝛿𝛿�2⎦⎥⎥
⎥⎥⎤              (1) 

The structure tensor calculation is combined with a Gaussian blur of a width of 𝜎𝜎 = 0.2 and a 

mask size of 2. The FOT calculated with this algorithm constitute the foundation or ground truth 

that is fed into the interpolation method. They are henceforth called "measured values", 

implicitly including that these FOT are subject to a certain error as well. 

4.3 Decomposition-based interpolation method 

Determining values between a set of measured values, here the set 𝒯𝒯𝑚𝑚 =

{𝑼𝑼𝑼𝑼,𝑼𝑼𝑼𝑼,𝑼𝑼𝑹𝑹,𝑼𝑼𝑼𝑼,𝑼𝑼𝑼𝑼,𝑼𝑼𝑹𝑹,𝑼𝑼𝑼𝑼,𝑼𝑼𝑼𝑼,𝑼𝑼𝑹𝑹}  (respectively denoting “Upper Left, Upper Middle, 

Upper Right, Middle Left, …, Lower Left, etc.”) of measured FOT computationally, based on the 

set of measured values, describes the interpolation problem at hand. An interpolation scheme 𝜙𝜙�  is defined as a mapping f, which connects its arguments, on the one hand a set of 𝑁𝑁 ≥ 1 

discrete values 𝜙𝜙𝑖𝑖 and on the other hand their associated weights 𝑤𝑤𝑖𝑖  ∈  [0; 1]: 𝜙𝜙� = 𝑓𝑓(𝜙𝜙𝑖𝑖,𝑤𝑤𝑖𝑖). 

For the chosen decomposition approach, the shape and orientation of the tensors are to be 

interpolated separately. Therefore, the well-known spectral decomposition resulting from the 

Eigenvalue problem is used: 𝑨𝑨 = 𝑹𝑹𝚲𝚲𝑹𝑹𝑇𝑇 = 𝑹𝑹 ★ 𝚲𝚲.           (2) 𝚲𝚲 denotes the tensor containing the Eigenvalues on the principal diagonal and 𝑹𝑹 is defined as 

the orthogonal rotation matrix consisting of the normalized Eigenvectors. 

4.3.1 Orientation 

The rotation matrix 𝑹𝑹 can be interpreted as a rotation around a rotation axis and therefore be 

transformed into a quaternion: 

      𝑞𝑞 =  cos
𝜃𝜃2 + �𝑢𝑢𝑒𝑒 𝒊𝒊+  𝑢𝑢𝛿𝛿 𝒋𝒋+  𝑢𝑢𝛿𝛿 𝒌𝒌� sin

𝜃𝜃2 with  rotation axis 𝒖𝒖 =  (𝑢𝑢𝑒𝑒, 𝑢𝑢𝛿𝛿, 𝑢𝑢𝛿𝛿)𝑇𝑇          

and     rotation angle 𝜃𝜃.           (3) 

Following, the quaternion is calculated from the given rotation matrix 𝑹𝑹 via: 𝑒𝑒 = 𝑒𝑒𝑟𝑟(𝑹𝑹), 𝑟𝑟 =  √1 + 𝑒𝑒   and 𝐺𝐺 =  
𝑟𝑟2  with 𝑏𝑏 = 𝑠𝑠𝑘𝑘𝑛𝑛(𝑅𝑅𝛿𝛿𝛿𝛿 − 𝑅𝑅𝛿𝛿𝛿𝛿) �12  �1 +  𝑅𝑅𝑒𝑒𝑒𝑒 − 𝑅𝑅𝛿𝛿𝛿𝛿 − 𝑅𝑅𝛿𝛿𝛿𝛿�, 𝑐𝑐 = 𝑠𝑠𝑘𝑘𝑛𝑛(𝑅𝑅𝑒𝑒𝛿𝛿 − 𝑅𝑅𝛿𝛿𝑒𝑒) �12  �1−  𝑅𝑅𝑒𝑒𝑒𝑒 + 𝑅𝑅𝛿𝛿𝛿𝛿 − 𝑅𝑅𝛿𝛿𝛿𝛿� and 𝑑𝑑 = 𝑠𝑠𝑘𝑘𝑛𝑛(𝑅𝑅𝛿𝛿𝑒𝑒 − 𝑅𝑅𝑒𝑒𝛿𝛿) �12  �1−  𝑅𝑅𝑒𝑒𝑒𝑒 − 𝑅𝑅𝛿𝛿𝛿𝛿 + 𝑅𝑅𝛿𝛿𝛿𝛿�.           (4) 

This is followed by the actual interpolation: 𝑞𝑞𝑔𝑔𝑒𝑒𝑔𝑔 =  ∑ 𝑤𝑤𝑖𝑖 𝑞𝑞𝑖𝑖𝑖𝑖  with weights yielding   ∑ 𝑤𝑤𝑖𝑖 = 1𝑖𝑖 .          (5) 
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The retransformation of the resulting quaternion in the rotation matrix 𝑹𝑹 is realized with 

𝑹𝑹 = �𝐺𝐺2 + 𝑏𝑏2 − 𝑐𝑐2 − 𝑑𝑑2 2(𝑏𝑏𝑐𝑐 − 𝐺𝐺𝑑𝑑) 2(𝑏𝑏𝑑𝑑 + 𝐺𝐺𝑐𝑐)

2(𝑏𝑏𝑐𝑐 + 𝐺𝐺𝑑𝑑) 𝐺𝐺2 − 𝑏𝑏2 + 𝑐𝑐2 − 𝑑𝑑2 2(𝑐𝑐𝑑𝑑 − 𝐺𝐺𝑏𝑏)

2(𝑏𝑏𝑑𝑑 − 𝐺𝐺𝑐𝑐) 2(𝑐𝑐𝑑𝑑 + 𝐺𝐺𝑏𝑏) 𝐺𝐺2 − 𝑏𝑏2 − 𝑐𝑐2 + 𝑑𝑑2�.          (6) 

4.3.2 Shape 

For the interpolation of the shape, three linear independent invariants are formed of each 

tensor and interpolated separately. Of the orthogonal K- and R-invariants introduced by Ennis 

et al. [6] 𝐵𝐵1,𝑅𝑅2 and 𝑅𝑅3 will be used (based on the approach of Gahm et al. [5]) as they 

apparently work well for physical problems, instead of working on the Eigenvalues or 𝚲𝚲 

respectively, with 𝑨𝑨′ denoting the deviatoric (anisotropic) part of 𝑨𝑨: 𝐵𝐵1 = 𝑒𝑒𝑟𝑟(𝑨𝑨), 𝑅𝑅2 =  �32 |𝑨𝑨´|

|𝑨𝑨|
  and 𝑅𝑅3 = 3√6 det � 𝑨𝑨´

|𝑨𝑨´|
�.           (7) 

The invariants are then interpolated individually: 𝐵𝐵1,𝑔𝑔𝑒𝑒𝑔𝑔 =  ∑ 𝑤𝑤𝑖𝑖𝐵𝐵1,𝑖𝑖𝑖𝑖 ,  𝑅𝑅2,𝑔𝑔𝑒𝑒𝑔𝑔 =  ∑ 𝑤𝑤𝑖𝑖𝑅𝑅2,𝑖𝑖𝑖𝑖  and 𝑅𝑅3,𝑔𝑔𝑒𝑒𝑔𝑔 =  ∑ 𝑤𝑤𝑖𝑖𝑅𝑅3,𝑖𝑖𝑖𝑖 .              (8) 

The authors used the following formula to calculate the associated eigenvalues from the 

interpolated invariants (cf. [5]): 

For 𝑖𝑖 = 1, 2, 3 holds: 𝜆𝜆𝑖𝑖 =  
13𝐵𝐵1 +  

2𝐾𝐾1𝑅𝑅23�3−2𝑅𝑅22  

cos�cos−1(𝑅𝑅3)+𝑃𝑃𝑚𝑚3 � with 𝐺𝐺𝑖𝑖 = 0, 2𝜋𝜋,−2𝜋𝜋         (9) 

With these Eigenvalues, Λ can then be created again. Shepard's inverse distance weighting 

method is used as weight function in all cases with 𝑒𝑒 = 2: 𝑤𝑤𝑖𝑖 =
1

|𝒙𝒙𝑚𝑚−𝒙𝒙|𝑝𝑝 1∑ |𝒙𝒙𝑗𝑗−𝒙𝒙|−𝑝𝑝𝑗𝑗 . 

 

4. Results 

The set of "measured" orientation tensors via CT scan and subsequent calculation via structure 

tensor 𝒯𝒯𝑚𝑚 is represented by the blue tensor glyphs in Figure 1, the set of interpolated tensors 𝒯𝒯𝑖𝑖 = {𝑻𝑻𝑒𝑒𝛿𝛿 ∀ 𝑒𝑒 ∈ 1, … ,13 ∩ 𝑦𝑦 ∈ 1, … ,13} by the orange tensor glyphs. The origin of the global 

coordinate system is located in the lower left corner of the plate. The original LFT charge covered 

almost the entire left side of the 400 mm x 400 mm mold with a width of about x = 90 mm (to 

the right), a length of about y = 350 mm (up) and a height of about z = 60 mm. Thus, when the 

press closes, one would expect a quasi 1D flow to the right. However, in the picture at the top 

of Figure 1, a clear curve can be seen in the fiber orientation. Instead of a distinct preferred 

direction in the positive x-direction, the fibers align in a curve to the upper right after clear 

preferred direction in the left region resulting from the plastificate, i.e. from the last extrusion 

step in the LFT-D process. As for the interpolation method as such, the visual results are for the 

most part very appealing. Interpolation between the individual measured FOT is good and the 

transition between two adjacent tensors also appears reasonable. The anisotropy is not basically 

lost between two differently oriented tensors by "rounding the tensor". The rotation of two 

adjacent tensors occurs with small angles and therefore smoothly. The only exception to this 

can be seen at the upper right edge: The interpolated tensor 𝑻𝑻10,13 in the middle of 𝑼𝑼𝑼𝑼 and 
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50 mm 

𝑼𝑼𝑹𝑹 behaves somewhat strangely as far as the behavior of the row is concerned. Instead of 

closing the estimated angle of 20° between the measured tensors to its left and right by a 10° 

change, this one rotates around the larger 170°. However, the tensor 𝑼𝑼𝑼𝑼 is also taken into 

account for the calculation of this tensor, even if weighted less strongly than 𝑼𝑼𝑼𝑼 and 𝑼𝑼𝑹𝑹. 

Furthermore, the behavior in this column looks much better than could be expected if the tensor 

had rotated in the other direction. In order to be able to approach quantitative error analyses 

and to better assess the interpolation behavior, one measured tensor of 𝒯𝒯𝑚𝑚 was omitted in each 

case and also determined with the interpolation method. The visualization results are shown in 

the nine lower pictures in Figure 1. There are definite changes in the orientation course. For 

example, the behavior of 𝑻𝑻10,13 changes significantly when 𝑼𝑼𝑼𝑼 or 𝑼𝑼𝑹𝑹 are omitted.  

 

Without 𝑼𝑼𝑼𝑼  
 

 

 

 

 

Without 𝑼𝑼𝑼𝑼  
 

 

 

 

 

Without 𝑼𝑼𝑹𝑹  

Without 𝑼𝑼𝑼𝑼  
Without 𝑼𝑼𝑼𝑼  

 

 

 

 

 

 

 

Without 𝑼𝑼𝑹𝑹  

Without 𝑼𝑼𝑼𝑼  
Without  𝑼𝑼𝑼𝑼  

Without 𝑼𝑼𝑹𝑹  

Figure 1. Picture at the top: Visualization of interpolated (orange) and measured (blue) tensors 

when using the decomposition-based interpolation method described in this paper. Lower nine 

pictures: Result when leaving one measured tensor out of the calculation and interpolating it 

instead respectively. 

 

To obtain a quantitative error value, the Frobenius norm of the measured tensors and their 

respective interpolated substitutes was formed. The result can be seen in Figure 2. The rather 

y 

z x 
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poorer interpolation at the left and upper edges and the relatively good performance in the 

middle of the plate (and lower right) are noticeable. 

 

Figure 2. Visualization of the discontinuous (left image) and continuous (right image) error 

across the plate of the interpolated tensor in comparison to the measured one when leaving 

this specific tensor out of the computation. Value determined via Frobenius norm. 

 

5. Discussion 

Uneven height or dimensions of the plastificate and uneven temperatures in the tool could 

explain the curve in the orientation tensor field. The authors distinctively measured variations 

in both temperature and geometry, presumably causing the flow front to start prematurely in 

one edge. Furthermore, the plastificate is inserted in the mold manually, resulting in 

skewed/angular position of the plastificate when the press closes. 

The interpolation behavior at the top right could be artificially prevented by restricting the 

possible angle. This could be implemented via comparing the results of the scalar products of 

the specific quaternions involved and taking the one providing the maximum scalar product. 

However, the authors tried to implement as little artificial restrictions as possible. Furthermore, 

as described before, the visual smoothness of rotation highly depends on whether one considers 

the row or the column course of rotation. In addition, the use of projectors instead of invariants 

might simplify the shape interpolation due to its uniqueness for a given tensor. 

 

6. Conclusion 

The implemented method provides for good macroscopic interpolation results for fiber 

orientation tensor fields interpolating measured FOT determined from microscopic X-ray 

computed tomography scans. Especially the observed isotropy behavior is satisfying. The 

quantitative error is higher towards the edges of the plate. Further research approaches should 

consist of testing this method with more sampling points (or with less of them being at the 

borders of the plate) and with plates that show different orientation behavior, as well as 

implementing a sensible angle restriction or using projectors. The use of a convolutional neural 

network instead of an algebraic solution could prevent the necessity of incorporating physical 

phenomena. 
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