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Abstract 

Many state-of-the-art approaches in autonomous driving make use of highly precise maps. 
Among other annotations, these maps must contain information regarding traffic regulations.  

In this thesis an offline approach aiming at the inference of traffic regulations at German 
intersections on a sub-lane level is suggested. The representation and likelihood-based inference 
of regulations is realized using Hidden Markov Models. These are parametrized and evaluated on 
an artificially created set of trajectories crossing several intersections. In a real-world context, the 
trajectories could be opportunistically collected from a sensor-equipped fleet of vehicles over an 
extended period of time. In a series of experiments, a suitable trajectory representation is 
determined and the approach is tested and improved. Classification performance is evaluated in a 
cross-validation manner. Mean test F1 scores associated to the best classification results range 
between 0.809 and 0.832. High performance is achieved in the context of the traffic regulations 
priority, stop and traffic-light. However, regarding the yield and yield-to-right
regulation, challenges remain. As initial results are promising, the approach is worth being 
developed and improved further. 

 

  





Kurzfassung

Zahlreiche moderne Lösungen im Bereich Autonomes Fahren greifen auf hochpräzises 
Kartenmaterial zurück. Neben anderen Informationen muss das Kartenmaterial solche über 
Verkehrsregeln enthalten.

In dieser Arbeit wird eine Offline-Lösung für die Inferenz von Verkehrsregeln an Deutschen 
Kreuzungen entwickelt. Mithilfe dieser Lösung werden für jeden Fahrstreifen einer Kreuzung 
Klassifikationsentscheidungen für jede mögliche Zielrichtung, welche von diesem Fahrstreifen 
aus erreichbar ist, getroffen. Verkehrsregeln werden mithilfe von Hidden-Markov-Models 
repräsentiert und, basierend auf errechneten Likelihood-Werten, bestimmt. Die Modelle werden 
mithilfe künstlich erzeugter Trajektorien von Kreuzungsüberquerungen parametrisiert und 
evaluiert. Unter realen Umständen würden solche Daten opportunistisch und sensorgestützt von 
einer Fahrzeugflotte über einen längeren Zeitraum hinweg gesammelt werden. In einer Reihe von 
Experimenten wird eine geeignete Trajektorienrepräsentation festgelegt und der 
Klassifikationsansatz getestet und verfeinert. Die Klassifikationsperformanz des Ansatzes wird 
mithilfe eines Kreuzvalidierungsverfahren bestimmt. Mittlere F1-Scores zur Quantifizierung der 
besten Ergebnisse unter den erzielten Testergebnissen variieren zwischen 0.809 und 0.832. 
Bezüglich der Verkehrsregeln, welche mithilfe von Vorfahrts- und Stoppschildern, sowie 
Lichtsignalanlagen kommuniziert werden, werden hohe Klassifikationsleistungen erreicht. 
Allerdings bestehen Schwierigkeiten bei der Klassifikation im Zusammenhang mit den 
Verkehrsregeln Vorfahrt achten und Rechts vor Links. Da die initial erzielten Ergebnisse 
vielversprechend sind, wird empfohlen diesen Ansatz in zukünftigen Arbeiten 
weiterzuentwickeln und zu verbessern. 
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1. Introduction 

The last two decades brought immense progress with respect to autonomous driving and advanced 
driver assistance systems. Safely following intersection-free roads without human intervention 
has become a straightforward task for modern autonomous systems. However, severe difficulties 
remain in situations involving more complex traffic scenarios. Among others, these include the 
robust and safe navigation through intersections. Without exact knowledge of the applicable 
traffic regulation, deducing vehicle behavior for autonomously crossing an intersection is 
unfeasible. With the aid of optical sensorics, perception-based approaches to detect signaling 
devices, traffic signs or the absence of any regulator can be employed. However, unsuitable 
lighting or obstructions may pose issues regarding the detection of such objects. This is one of 
the reasons, many approaches fall back on map resources annotated with information on traffic 
regulations. Furthermore, with map information as ground truth, the accuracy of perceived traffic 
regulations can be validated [1, 2].  

A provider for maps annotated this way is Open Street Maps (OSM). This community-driven 
project is aiming at providing freely available map resources. However, it relies on volunteers 
manually uploading road-infrastructure-related data. This data is often gathered using ordinary 
measurement equipment. Thus, in terms of accuracy, it is inferior when compared to data 
collected with state of the art equipment. Also, intersections have to be manually annotated with 
information regarding their regulation [3]. The suggested approach could, for instance, contribute 
to a reduction of manual effort. Traffic regulations could be inferred from trajectory data and used 
for annotating arbitrary maps. In case data can be regularly collected, changes in traffic 
regulations could be detected and included in order to keep maps up to date. 

1.1. Traffic Regulations 
In the context of this thesis, traffic regulations or regulation classes are the set of lawful traffic 
rules controlling the behavior of traffic participants when entering and crossing intersections. The 
following traffic regulations are of interest in this work. Those communicated by means of traffic 
signs are priority, stop and yield. Traffic lights control traffic flows by means of signaling 
devices. The absence of any traffic signs or signaling devices at an intersection requires vehicles 
to obey the yield-to-right rule while crossing. An overview of these traffic regulations, 
categorized by the way these are communicated, is provided in Figure 1.1. Details of 
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aforementioned traffic regulations can be found in the German road traffic act 
Straßenverkehrsordnung. 

 
Figure 1.1: Categorization of German traffic regulations. The bottom row of boxes lists the traffic 
regulations that shall, in this thesis, be classified based on trajectory data. Terms in boxes above 

categorize regulations by the way these are communicated to traffic participants. 

1.2. Intersections and their Representation 
Intersections are structures used at places where two or more roads cross. In the context of this 
thesis, each road segment adjacent to an intersection can also be termed intersection arm. Each 
arm can have multiple lanes leading into or out of the intersection. In this thesis, intersections are 
decomposed into and represented by a set of paths that enable to describe their topology on a sub-
lane level. The reason for this is illustrated as follows: A traffic participant reaches an intersection 
using a lane that enables her to either execute a turn or to continue straight. Independently from 
where she chooses to head, the traffic regulation, for instance priority, might uniformly apply 
for all directions. The crossing behavior, however, might vary with the chosen target lane. For 
instance, turning left might require her to give way to other traffic participants, whereas driving 
straight does not. In certain other cases, even different traffic regulations might apply for the 
different possible target directions of a single lane. For example, on the one hand, a traffic 
light might regulate crossing an intersection straight. On the other hand, turning right from the 
same lane might be regulated exclusively by a yield sign. Hence, elements describing all possible 
directions of all of an intersection’s incoming lanes shall be employed to represent that 
intersection. These elements are termed intersection paths. The idea of employing intersection 
paths is inspired by a similar concept, used in Ruhhammer [4].  

1.3. Goal 
The goal of this thesis is to evaluate whether an approach based on Hidden Markov Models 
(HMM) can be applied to the problem of classifying intersection paths into different regulation 
classes. For this, HMMs shall develop representations of regulation-class-specific information. 
Furthermore, a trajectory representation which is suitable for supporting HMMs in developing 
stated representations shall be suggested. This is done by experimentally testing a variety of 
parameter values and design choices that specify certain aspects of the trajectory representation 
and the way HMMs are applied. The parameter values and design choices that lead to the best 
classification performance shall then be identified. For this, the classification performance shall 
be critically analyzed and evaluated using suitable measures. 
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1.4. Stopping Positions at Intersections 
Several traffic regulations require vehicles to come to a halt or to slow down when approaching 
an intersection. The locations where such actions occur are termed stopping positions. Initially, 
stopping positions could be analyzed regarding their spatial distribution in proximity of 
intersections. For instance, it can be analyzed where stopping positions typically accumulate. 
From this information, it could be attempted to draw conclusions. For instance, lengths of vehicle 
queues or locations of stop bars could possibly be estimated. Also, lanes not having stop bars 
might be identifiable this way. Ultimately, it could then be examined whether drawn conclusions 
have the potential to benefit approaches to infer traffic regulations.  

However, it is found that information on stopping positions is implicitly contained within 
trajectories. In the context of the type of trajectory representation employed in this thesis, 
trajectory points can be annotated with samples of associated speed or acceleration profiles. 
Hence, trajectory points with relatively low speed values can be interpreted as occurring during a 
slow-down. Such with speed values and acceleration magnitudes close to 0 can be interpreted as 
occurring during a standstill. For this reason, it is decided to refrain from analyzing stopping 
positions in this thesis. 

1.5. Thesis Structure 
The structure of this thesis is as follows. Section 2 provides an overview of the state of the art in 
trajectory-based traffic regulation inference. Theoretical concepts that form the basis for the 
suggested approach and conducted experiments can be obtained from section 3. Section 4 expands 
on topics related to the data basis of this thesis. In this section, assumptions and exclusions with 
respect to traffic situations represented in the data shall be outlined. Also, in order to support the 
reproducibility of this thesis, it shall be illustrated how trajectories are artificially generated using 
traffic simulation software. Furthermore, a characterization of the data and a detailed explanation 
of intersection paths shall be provided. In section 5, details of the suggested approach design are 
presented. The design and results of experiments conducted in order to scrutinize the proposed 
approach are shown and discussed in section 6. Section 7 provides a conclusion and 
recommendations for future work.  

 

 



 



2. Related Work 

There are a plethora of works aiming at inferring traffic regulations at intersections. Several of 
these suggest approaches based on trajectory data. From these, the works deemed most relevant 
are selected and reviewed in detail. In the following paragraphs, these works are summarized and 
compared to each other. 

With regard to the representation of vehicle behavior, all considered works [4–9] make use of 
motion-related data, such as samples from speed and acceleration signals. Signals could for 
instance be read from onboard sensors of vehicles. From this data, characteristics of stopping or 
slow-down events, such as duration, location or count of such occurrences, can be derived. In [4, 
6, 7], a combination of motion and stopping or slow-down-related data is used. In all three 
approaches, statistical measures, such as extrema, means or standard deviations, are computed 
from stated data. These statistical measures serve as features for a classifying system. Also, in all 
three works, the Random Forest is found to perform best among compared algorithms. 
Ruhhammer [4] represents intersections by structures that are termed mean intersection paths. 
Mean intersection paths represent the set of all pairs of intersection entries and exits that are 
connected by a direct and feasible path through the intersection. An entry or exit can consist of 
one or multiple lanes that belong to a specific intersection arm and lead into or out of an 
intersection. Thus, for an intersection arm, mean intersection paths distinguish between different 
target directions that are reachable by either turning or driving straight. As traffic regulations can 
vary among target directions of an arm, the author aims at classifying mean intersection paths 
separately. For this, Statistical measures of speed and acceleration are calculated and used as 
features. These are augmented by statistical measures of the distance to the associated intersection 
center point, duration and number of stopping events occurring on mean intersection paths. 
Additionally, radar-obtained information on the number of vehicles in front of a vehicle is 
included as another feature. In a binary distinction between traffic-light and not-traffic-
light-regulated mean intersection paths, a relatively good classification performance is achieved. 
By also considering priority, stop, yield and yield-to-right-regulated mean intersection 
paths, the classification problem is transformed into a multi-class one. The resulting performance 
is reported to be lower, but no detailed analysis of associated results is made. Hu et al. [6] classify 
intersection arms. They also calculate statistical measures of speed and acceleration data and use 
these as features. Statistical measures of the distance to the respective intersection center and the 
number of stopping events are also part of the feature set. However, trajectories describing turn 
maneuvers are excluded from further consideration. In order to reduce data labelling effort, an 
active learning approach is implemented. Active learning is based on the idea of letting a 
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classifying system, which is initially trained on a pool of labeled data, request manual labeling 
decisions from e.g. a human reviser for specific data. More details of the concept of active learning 
can be obtained from [10]. In this work, intersection arms that are classified with a confidence 
below a specific threshold are presented for manual labeling. Besides traffic-light and stop-
regulated arms, also unregulated1 arms are classified by their approach. Saremi et al. [7] also 
classify intersection arms. They make use of statistical measures of speed data and of the number 
and duration of stopping events. However, a set of static features is additionally included. The 
static features are various road-length and distance-related features, as well as categorial ones, 
such as the road type (residential, motorway, etc.). The motivation for using aforementioned static 
features is that these should reflect the influence of US standards and guidelines applying on the 
positioning of regulator signs and lights at intersections. In this context, the authors raise concern 
that the set of static features might not generalize well to other countries. The authors reason that 
positioning guidelines might vary across countries. The combined use of all features outperforms 
using either static or dynamic features. In this approach, the traffic regulations traffic light, 
stop and unregulated are distinguished.

The authors of [5] and [9] employ features solely based on statistical measures of stopping or 
slow-down-related data. For instance, Pribe and Rogers [5] apply Deep Learning in combination 
with a set of heuristic rules. Classified are traffic-light, stop and unregulated intersection 
arms. The heuristic rules eliminate classification outcomes that represent unfeasible traffic 
regulation combinations determined for the set of arms of an intersection. For instance, if the 
classifier labels several arms of an intersection as traffic-light-regulated but at least one arm 
of the same intersection as stop or unregulated, the outcome is considered unfeasible. In that 
case, all of the affected intersection’s arms are rejected without impacting the reported 
classification performance. Furthermore, only trajectories that do not show turning maneuvers are 
considered for classifier development and testing. The authors report a high classification 
accuracy when applying the Neural Network classifier alone. The combined use of the classifier 
and the heuristic rules leads to the correct classification of all considered intersection arms. Carisi 
et al. [9] apply threshold-based rules in order to distinguish between traffic-light and stop-
regulated intersection arms. The thresholds are varied until a configuration yielding an optimal 
classification outcome is achieved.  

In contrast, Zourlidou et al. [8] represent trajectories as series of measurements. This way, each 
trajectory point can be annotated with a sample from a speed signal and the distance to the 
respective intersection center. The trajectories are either temporally or spatially resampled. For 
temporal or spatial resampling, each of the resulting trajectories starts and ends at points having 
the same temporal or spatial distance to the associated intersection center. Using this 
representation approach, a relatively high number of object instances are available for classifier 
development. When calculating motion and stopping or slow-down-related features for e.g. arms 
of the same number of intersections, considerably less object instances are available. The authors 
show an approach that aims at distinguishing two types of intersections. Such uniformly regulated 
by traffic lights and such where prioritized and yield-regulated roads meet. As 
classification algorithm, the Decision Tree is employed. The classification of an intersection is 
based on the classification of all associated trajectories. More precisely, the traffic regulation that 

1 In areas of low traffic volume in the USA, intersections that are neither controlled by traffic signs, nor 
light signals can be found [11]. These are referred to as unregulated ones. 
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is assigned to the majority of trajectories is also assigned to the intersection. The authors report 
that, in most of the cases, traffic-light-regulated intersections are correctly detected, although 
at the cost of false positives from priority/yield-regulated intersections. Based on achieved 
results, the authors recommend to not aim at classifying intersections but at classifying elements 
on a higher level of granularity. This way, differences in speed profiles recorded at a certain 
intersection would be better accounted for. All other reviewed works include this approach in 
their strategy by classifying intersection arms or mean intersection paths. 

Validation of results and classification performance is commonly done by developing and testing 
classifiers on non-overlapping subsets of the available data. The associated subsets are referred 
to as development and test data, respectively. In order to evaluate a classifier’s performance on 
more than just one specific test subset of the available data, different test subsets are formed in a 
cross-validation manner. Readers interested in learning more about cross-validation are referred 
to [12]. In this context, the work of Saremi and Abdelzaher [7] stands out. Generalization 
performance is evaluated by developing the classifier on data associated to intersections of one 
set of cities, whereas testing is solely conducted on data associated to intersections of another set 
of cities. The different datasets never overlap. Other reviewed works [4–6, 8, 9] do not mention 
taking into account city or intersection association in the context of their validation strategies. 

In the majority of the considered works [4–8], the used trajectory data is proprietary. Data is, for 
instance, self-collected using probe vehicles or access to datasets, which are not publicly 
available, is granted. Only Carisi et al. [9] initially use publicly available data from OSM. 
However, intersections for which enough crossings exist are found to be scarce. For this reason, 
the authors also resort to collecting data themselves. Therefore, none of the works completely 
relies on publicly available data alone.  

The approach suggested in this thesis aims at holistically distinguishing the German traffic 
regulations priority, stop, traffic light, yield and yield to right. Similarly to the 
approach in [4], each intersection is represented by a set of intersection paths. For these paths, 
traffic regulations are inferred. Trajectories are represented as time series of samples from motion-
related data signals, which is comparable to what is done in [8]. HMMs are used as classification 
method which, in this context, is novel. Furthermore, it shall be illustrated how trajectories 
crossing intersections can artificially be generated using traffic simulation software.  

 

 





3. Theoretical Background 

This section introduces several concepts and basics that are applied or serve as a relevant basis 
for the approach suggested in this thesis. Theoretical basics and algorithms associated to HMMs 
are introduced in section 3.1. Methods for measuring performance in the context of classification 
problems are presented in section 3.2. 

3.1. Hidden Markov Models 
Probabilistic methods can be used to describe and model a great variety of phenomena. For 
instance, many real-world processes manifest themselves in sequences of events. If the cause for 
certain observable event patterns is not directly visible, HMMs are a suitable means of modeling 
these processes. In this context, causes are represented as hidden states. Observable events can be 
represented as sequences of discrete symbols or continuous signals. Furthermore, an HMM can 
also be used as generator of observation sequences emitted by hidden state sequences it is intended 
to model [13, 14]. 

Parameters of HMMs and how HMMs can be formalized is presented in section 3.1.1. From the 
three fundamental problems that arise in the context of HMMs [13], two are relevant in this thesis. 
Firstly, with an observation sequence or signal and a parametrized HMM being given, one aims 
at computing the probability of the former. This problem can be efficiently solved using the 
Forward Algorithm, which is outlined in section 3.1.2. Secondly, one aims at parametrizing an 
HMM with the goal of achieving a maximal probability for a given observation sequence. This 
problem can be solved using the Baum-Welch Algorithm, which is described in section 3.1.3. The 
third problem lies in identifying a sequence of hidden states that provides an optimal explanation 
for a specific observation sequence, given a parametrized HMM. As this problem is not 
represented in this thesis, approaches to solve it are not shown. 

3.1.1. Hidden Markov Model Foundations 

An HMM can be formally defined as a tuple = ( , , , ) with = { , , … , } being the 
set of individual hidden states that can underlie the modeled process [13]. Based on the 
concept of Markov Chains, which can be employed to model sequences of states that are directly 
observable, the Markov assumption also holds for HMMs. This assumption basically states the 
following: The probability of a state being present at a certain position in a sequence of states 
depends exclusively on the preceding state [14]. Generally, a state being present at a point in time 
 is denoted by . = { }, where 1 , , is the state transition probability matrix. An 
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entry  of  denotes the probability of transitioning from state to state , which is happening 
during the step from time  to + 1. This can be formalized as = ( = | = ). For 
an ergodic HMM topology, in which any state can be reached from any other state, > 0 holds 
for all pairs , . Other HMM topologies allow  for specific ,  to take on the value of 0. The 
observation model is a set = { ( )}, where  is the continuous probability density function 
in state modeling the emission of observation signals. Observation signals can be described in 
terms of one or more features. Hence, observation samples are generalized to vectors with 
feature values as components. These can be emitted at times , with 1 . The notation , 
without subscript, is used as placeholder for an arbitrary observation vector sample. A set of 
observation vectors with length is termed observation sequence . As an observation 
probability density can be a mixture of  component densities, it can be formalized as ( ) =( , , ), with 1 . The coefficient , for which  = 1 has 
to hold, determines the weight of the th component of the mixture in hidden state .  denotes 
a probability density function with mixture-component-specific mean vector and covariance 
matrix . Readers interested in general requirements that a probability density function  
needs to fulfill are referred to [13]. The vector = { } with 1  describes the initial 
state distribution. Hence, = ( = ) denotes the probability that state is the first state in
a sequence of states [13]. Figure 3.1 shows an HMM with three hidden states. The states are 
denoted as circles that are labeled , with 1 3 corresponding to the respective state index. 

Figure 3.1: Schematic depiction of an exemplary Hidden Markov Model with three hidden states. The 
mark probabilities of states transitioning to other states , with 1 , 3. The  represent the 
observation probability distributions in the hidden states. The probability of a state being first in a 

sequence is described by the . 

In the center of the figure, the initial state distribution is illustrated as an auxiliary state that is 
connected to the hidden states of the HMM by three arrows labeled . However, the auxiliary 
state and connections from it shall only be interpreted as representational elements and do not 
correspond to an actual state or state transitions, respectively. The entries of the state transition 
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probability matrix  are represented as labels on the arrows interconnecting the . Worth noting 
is how each state has an arrow connecting it to itself. This specific arrow is labeled , which
denotes the probability for a state not transitioning to another state but staying in the current state 
until the next step. Furthermore, each state has an arrow pointing to the observation probability 
distributions . This shall only depict the fact that each hidden state is associated one distribution. 

3.1.2. Forward Algorithm

The likelihood ( | ) is the probability of an observation sequence being emitted, given a 
parametrized HMM . It is irrelevant, whether the observation sequence consists of discrete 
symbols or samples from a continuous signal [15]. The calculation of this likelihood corresponds 
to one of the three problems commonly arising in the context of HMM-based approaches. It can 
be solved in an exact and efficient manner using the Forward Algorithm [13].  

The forward variable ( ) specifies the probability that the process, modeled by the HMM ,
reaches state  when observation is emitted, subsequent to a preceding series of observations. 
It can be formalized as ( ) = ( , , … , , = | ) . The computation is done by 
following a procedure consisting of an initialization, an induction and a termination step [13]. The 
initialization of the forward variable for each state  is defined as ( ) = ( ) with 1 . (3.1a) 

In the induction step, ( ) is recursively computed using the formula ( ) = ( ) ( ) with 1 < ,  1 . (3.1b) 

The algorithm terminates with the calculation of above-stated likelihood which is defined as ( | ) = ( ). (3.1c) 

3.1.3. Baum-Welch Algorithm 

Parametrizing an HMM “by hand” can be a cumbersome task. Given a set of states , one wishes 
to find values to the parameters ,  and  that render an HMM  capable of explaining a given 
observation sequence  well. In other words, one wishes to maximize the observation sequence’s 
likelihood ( | ). The Baum-Welch Algorithm is a popularly employed solution to this problem. 
Basically, it is an implementation of the Expectation-Maximization concept. It starts out with an 
initialization of the HMM parameters which can, for instance, be defined at random. The 
algorithm then iteratively reestimates the parameters which results in gradual improvements of ( | ) until an HMM is determined that locally maximizes it. Thus, in contrast to the previously 
outlined algorithm, the Baum-Welch Algorithm is not an analytical approach to solve the stated 
problem [13, 14].  

In addition to the above-presented forward variable , the backward variable needs to be 
introduced. Both variables are necessary for the reestimation of transition probabilities , initial 
state probabilities  and parameters of the observation probability density function ( ). The 
backward variable ( ) represents the probability of an observation sequence, which is starting 
in + 1 and ending with its final observation in time , being emitted, given that the process, 
which is modeled by HMM , is in hidden state  at a point in time . Thus, the probability can 
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be formalized as ( ) = , , … , = , . The procedure for computing ( ) 
consists of an initialization and an induction step. The initialization is done by setting ( ) = 1 with 1 . (3.2a) 

Induction is done as follows: ( ) = ( ) ( ) with = 1, 2, … , 1, 1 (3.2b) 

Additionally, the probability ( , ) = ( = , = | , ) needs to be calculated. It can 
be interpreted as the probability of transitioning from state , being present at a point in time , 
to state , being present at + 1, with observation sequence  and HMM  being given. Based 
on the definitions of forward and backward variable, computed in (3.1a-c) and (3.2a,b) 
respectively, the calculation is as follows: ( , ) = ( , , | ) ( | ) .  = ( ) ( ) ( ) ( ) ( ) ( ) (3.3) 

The variable ( ) represents the probability that a process is in state  at a point in time , with 
observation sequence  and HMM  being given. Hence, a feasible formalization of this 
probability is ( = | , ). This variable is used in further calculations and helps writing down 
formulas more straightforwardly. It is calculated from , given by (3.3), as ( ) = ( , ). (3.4) 

The reestimates of  are calculated by dividing the expected number of times state transitions 
to state by the expected number of times  transitions to arbitrary other states. These are 
denoted by . All , with 1 , , form the reestimated state transition probability 
matrix . Including ( , ) from (3.3) and ( ) from (3.4), the associated formula is = ( , )( ) . 

(3.5)

The reestimates of parameters of the observation probability density mixture ( ), namely , 
 and , are denoted by , and , respectively. The reestimated observation 

model is denoted as . The formulas for calculating these parameters are given as follows: = ( , )( , ). (3.6) = ( , )( , ) .
(3.7) = ( , )( )( )( , ) .
(3.8) 

Modified from (3.4), the variable ( , ) represents the probability of the process being in state 
 at a point in time , given observation sequence  and HMM , while considering solely the 
th component of the mixture in state . For simple probability density mixtures or discrete 
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probability density functions, the variable ( )  from (3.4) is used instead of the modified ( , ). Readers interested in the formalization and calculation of the latter, are referred to [13]. 
The parameter is computed by dividing the expected number of cases in which the process is 
in state  by the expected total number of cases in which the process is in state , with the th 
mixture component being considered. The reestimated mean vector is computed by 
multiplying the modified variable with the sampled observation vector for each time and 
forming the sum over the resulting products. This sum is then divided by the expected number of 
cases in which the process is in state , when considering the th mixture component. The 
parameter is computed in a similar way. In the associated formula (3.8), the prime marks the 
use of a vector’s transpose [13]. 

Using ( ) from (3.4), the formula for the reestimation of the probabilities of the initial state 
distribution vector  is = ( ). (3.9) 

Equation (3.9) shows that the  are the expected number of cases in which a sequence is started 
out with state . This corresponds to the result of evaluating the variable ( ) at time = 1 for 
each state [13]. 

With all reestimates brought together, a reestimated HMM = ( , , , )  is determined. 
Generally, with  instead of , a higher likelihood of  is achieved. Thus, in the context of the 
Expectation-Maximization concept, the reestimations can be interpreted as the Maximization 
step. The calculation of the  and form the Expectation step [13, 14]. 

3.2. Performance Measures 
Several approaches to quantify the performance of classifiers can be applied. By means of a 
tabular layout, a confusion matrix, shows both classification errors and successes. Using a generic 
example, the concept is presented in section 3.2.1. In contrast, the F1 score is employed to quantify 
performance using a single value. Its calculation is shown in section 3.2.2. 

3.2.1. Confusion Matrix 

In many classification problems, classes are imbalanced, hence represented by strongly varying 
sample counts. For problems of this kind, performance evaluation of classifiers solely based on 
achieved accuracy might not always be the best solution. Accuracy is computed by dividing the 
number of correctly classified samples by the total number of samples. Therefore, classifier 
performance regarding highly represented classes has a greater impact on accuracy than 
performance regarding classes being represented by much fewer samples. Analyzing confusion 
matrices is often better suited for evaluating the performance of a classifier on imbalanced classes.  

In order to explain the concept of the confusion matrix, an abstract binary classification problem 
shall be considered. In this problem, samples shall be assigned to the classes positive and negative. 
A classifier can correctly assign a positive sample to the positive class. This outcome is referred 
to as a true positive. Analogously, the outcome of a negative sample being correctly classified as 
negative is referred to as a true negative. However, a positive sample can also be falsely classified 
as negative. Such an outcome is referred to as a false negative. The outcome of a negative sample 
being classified as positive is a false positive [16]. These four possible outcomes are arranged in 
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Table 3.1. In this table, rows indicate the actual classes, hence ground truth information. Columns 
adopt a classifiers perspective, hence the classes as predicted by a classifier. 

Predicted class

Positive Negative 

True class 
Positive True positives False negatives

Negative False positives True negatives

Table 3.1: Possible outcomes for a binary classification problem in which samples shall be assigned to the 
classes positive and negative. Rows indicate the actual classes, whereas columns indicate the classes as 

predicted by a classifier. (adapted from [16]) 

A confusion matrix is employed to describe how a specific number of classifications is distributed 
over the above-explained possible outcomes. Using the same row and column structure as 
depicted in Table 3.1, the number of occurrences of each of the four outcomes among all 
classifications can be arranged in the corresponding cells. This way, the confusion matrix 
associated to the binary classification problem is assembled. It is visualized in Table 3.2. As an
example, the information that positive samples are falsely classified as negative can be taken 
from the upper right cell of the confusion matrix. Relatively high values on the main diagonal are 
the result of a classifier that assigns a high number of samples to the correct classes. Hence, this 
can indicate a high performance of the classifier. In contrast, comparatively high values on off-
diagonal matrix positions indicate that a classifier labels a high number of samples falsely. 
Therefore, classifier performance can be visualized on a higher level of granularity. For 
classification problems with more than two classes, the confusion matrix can be employed 
analogously [17]. 

Predicted class 

Positive Negative 

True class 
Positive  

Negative  

Table 3.2: Confusion matrix for a binary classification problem in which samples shall be assigned to the 
classes positive and negative. Rows indicate the actual classes, whereas columns indicate the classes as 

predicted by a classifier. (adapted from [17]) 

3.2.2. F1 Score 

In order to define the F1 score, two other class-specific measures need to be introduced. Firstly, 
Recall is a measure describing the fraction of the samples that are correctly assigned to a specific 
class among all samples truly belonging to this class [17]. This measure is also often referred to 
as True Positive Rate or Sensitivity [18]. The formula for this measure is =    .

(3.10) 

Secondly, Precision describes the fraction of the samples that are correctly assigned to a specific 
class among all samples that are assigned to this class by a classifier [17]. Another popular term 
for this measure is Positive Predictive Value [18]. It can be formalized as follows: =   .

(3.11) 
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The F1 score is also a class-specific score and based on a combination of both above-introduced 
scores. It is calculated as the harmonic mean of Recall and Precision, which is formalized as  = .

(3.12) 

In equation (3.12), Precision and Recall are weighted equally. However, the F1 score can also be 
computed using different weightings of both measures [17]. Values of Recall, Precision and F1

score range between 0 and 1 [18]. 

In order to quantify the performance of a classifier with regard to an entire set of classes instead 
of just a single class, one can use a multiclass variant of the F1 score. For classifier evaluation in 
multiclass problems with class imbalances, the macro F1 score is often employed. It is computed 
as the average of all class-individual F1 scores [19]. Readers interested in other variants are 
referred to [19]. 

 

 





4. Data Basis 

The data basis for this thesis is created artificially, using version 1.3.0 of the traffic simulation 
software Simulation of Urban Mobility (SUMO) [20]. Among other features, this software 
supports the microscopic modeling of vehicle interactions, provides various implementations of 
car following models and generates intersection behavior for traffic participants [21]. The use of 
artificial data for this thesis is primarily motivated by the low availability of publicly available 
datasets, which is mentioned in section 2. For reasons of simulation reproducibility, all 
information, configuration files etc. that are necessary for replicating the data with the aid of 
SUMO are provided in section B of this thesis. 

In SUMO, traffic scenarios are represented as networks of directed linear edges interconnecting 
nodes. Edges represent roads. Roads can have an arbitrary number of lanes with a default width 
of 3.20 m. In nodes, multiple edges can intersect with each other. Thus, nodes are employed to 
represent intersections. Section 4.1 expands on the origin and design of SUMO networks 
representing intersection areas. These serve as infrastructure basis for trajectory simulation. 
Traffic participants, such as vehicles, motorcycles and pedestrians, are introduced by demand. 
Demand specifies and schedules routes that traffic participants follow through a road network. 
Routes can be created in a randomized manner using the SUMO tools RandomTrips and 
Duarouter. More details on how SUMO is employed to simulate intersection crossings at a high 
degree of realism are provided in section 4.2. Trajectory data can be created by tracking simulated 
vehicles that follow routes specified by demands. The trajectory data and the types of features 
used to describe it are shown in section 4.3. How trajectory data is used for developing and 
validating the traffic regulation inference method presented later in this thesis is outlined in 
section 4.4. 

4.1. Intersection Scenarios 
Initially, a set of 16 intersection scenario networks is made available for simulating intersection 
crossings. These are created using real-world intersections as reference. There are four 
intersection scenarios regulated exclusively by traffic lights and four by the yield-to-right
rule. In four intersection scenarios, priority and yield intersection paths meet and in another 
four, priority and stop intersection paths meet. In a later stage of this thesis, it is decided to 
additionally create four more intersection scenarios. In order to conform to the thesis time frame, 
these are designed in a simplified way by varying characteristics of selected existing networks. 
For this, the number of lanes, speed limits and regulation of the selected ones are altered. In these 
four additional scenarios, solely priority and yield intersection paths meet.  
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In subsection 4.1.1, the process of designing a SUMO network from its real-world reference is 
described. Subsequently, an approach to calculate intersection center points is introduced in 
subsection 4.1.2. 

4.1.1. Representing a Real-World Intersection 

The geometrical and topological structure of real-world intersections is obtained from OSM [22]. 
The SUMO tool osmWebWizard enables the user to select a rectangular region from OSM that 
can be exported to a SUMO network representation. Apart from the respective intersection node
of interest and associated incoming and outgoing roads, the output of osmWebWizard contains 
several artifacts. These are for instance polygons representing buildings or green spaces, edges 
not approaching the node of interest directly and nodes representing other contiguous 
intersections. In order to reduce complexity and restrict each scenario to one specific intersection, 
the infrastructure-relevant artifacts are removed using the SUMO tool Netedit. Netedit allows the 
modification of existing networks or their construction from scratch [23]. Additionally, several 
manual steps have to be taken in order to prepare networks for the simulation of intersection 
crossings at a degree of realism that is as high as possible. With the real intersection as reference, 
all edges are checked for the correctness of speed limits and number of lanes. It is also made sure 
that the intersection-internal crossing lanes establish all of the actual links from lanes approaching 
the intersection to outgoing ones. In other words, simulated and real-world vehicles shall be able 
to drive on the same combinations of incoming and outgoing lanes through the SUMO-
represented and the real-world intersection, respectively. Furthermore, the network is checked for 
the correctness of present traffic regulations. In cases of doubt, Google Street View [24], is 
employed to manually determine the relevant information. This is required especially for OSM 
extraction results that indicate a node’s regulation as “unknown”. This occurs for intersections 
that lack traffic regulation information in the map database. Finally, it is ensured that the network 
has incoming and outgoing edges start and end, respectively, in points 160-200 m from the 
intersection center point. The maximum distance of trajectory points that are used as input for the 
proposed method is considerably lower. The surplus of road length shall carefully account for and 
avoid possible but unknown effects regarding vehicles driving shortly after or before the point of 
their insertion or leaving, respectively. More details on the maximum distance of trajectory points 
are provided later in this thesis. 

The above-outlined editing process is costly in terms of manual rework and offers no hint for 
simple automation. However, the process facilitates a straightforward subsequent simulation of 
vehicles crossing intersections. For instance, as a result, demand definition can be restricted to 
routes along intersection-incoming and outgoing edges. This helps to avoid error-raising problems 
caused by artifacts from OSM extraction. For example, vehicles can no longer enter dead ends, 
which causes errors, via edges that are removed during the process.  

An exemplary depiction of the result of extracting an intersection in Berlin, by means of 
osmWebWizard, is shown in Figure 4.1. The map cutout in the upper half of the figure shows the 
intersection, at which the prioritized Residenzstraße is approached by Friedrich-Wilhelm-
Straße from the east and Deutsche Straße from the west. A yield sign obliges both approaching 
roads to give way. In the lower half of the figure, one can see the white, green and pink polygons 
representing various building and green-space artifacts. Several edges representing streets not 
directly approaching the stated intersection are also visible on the right side of the lower half of 
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the figure. Figure 4.2 shows the network representation of the same scenario, after editing it in 
above-outlined process. 

 
Figure 4.1: Extraction of an Open Street Maps excerpt (above) of the intersection Residenzstraße with 

Friedrich-Wilhelm-Straße and Deutsche Straße in Berlin by means of osmWebWizard [22]. The 
unprocessed result of the extraction is visualized via Netedit (below). 

4.1.2. Determining the Center Point of an Intersection 

Due to the often rotund shape of intersections, several attributes can be used to geometrically 
describe them. For instance, center points can be defined for intersections. A three or four-arm 
intersection might be the result of two straight roads crossing each other. In such a case, an 
intersection center location could simply be defined as the point in which centerlines of these two 
roads intersect. In this context, a road centerline could be defined as the line that has the same 
lateral distance to both road boundary lines. However, there are intersections for which center 
points cannot be defined that straightforwardly. For instance, the four-arm intersection depicted 
in Figure 4.2 is the result of three roads crossing each other. One road runs nearly vertically 
through the figure and constitutes two of the four arms. Two other roads approach at different 
angles from left and right and each correspond to one arm. From viewing the figure, one can see 
that road centerlines of these two roads intersect each other outside the intersection. Thus, for 
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intersections like this one and also in general, SUMO calculates intersection center points as 
follows: Initially, an intersection node is created from the set of the intersection-facing endpoints 
of all edges representing roads leading into and out of the intersection. The endpoints of edges 
can be defined either manually by the user or automatically by osmWebWizard. The location of 
the intersection node, hence the intersection center point, is then calculated as the mean of all 
endpoints it is created from. This point can be obtained from the associated SUMO network 
definition. More details can be found in [23]. When evaluated visually for all designed 
intersections, points calculated this way are well-suited as intersection center locations. Thus, they 
are used throughout this thesis. 

 
Figure 4.2: Edited SUMO intersection scenario network representing the intersection Residenzstraße with 

Friedrich-Wilhelm-Straße and Deutsche Straße in Berlin. Visualized via Netedit. 

4.2. Simulation of Vehicles Crossing Intersections Using the Software 
Simulation of Urban Mobility 

With intersection scenario networks as basis, vehicles crossing these can be simulated. In this 
context, several simplifying assumptions regarding the environment of intersections and 
processes occurring at such are made. This is outlined in subsection 4.2.1. Subsequently, details 
on how simulation is conducted are presented in subsection 4.2.2. 

4.2.1. Reduction of Simulation Complexity

In order to reasonably limit the scope of this thesis, several simplifying assumptions and 
exclusions with regard to traffic simulation shall be made. By reducing the detail and variety of 
processes taking place at intersections, the focus can be set on the most relevant ones.  

Traffic participants: In this thesis, exclusively passenger cars cross intersections. Larger 
vehicles, as for instance busses or semi-trucks, and emergency vehicles, such as ambulances or 
fire engines are excluded. Apart from that, no intersection crossings of two-wheeled vehicles, 
such as motorcycles or bicycles are simulated. Pedestrians are also not included in simulations. 

Traffic-regulation-related specifics: In Germany, traffic lights can be found, that allow 
turning right on red. This is commonly marked by a sign showing a green arrow pointing to the 
right. This type of regulation is not represented in the data. 
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Approaching a stop sign demands briefly coming to a halt, often at a dedicated line. In case one 
does not have full sight of all other intersection arms at this point, a subsequent standstill closer 
to the intersection might be necessary in order to give way to other traffic participants. In the 
context of this thesis, it is assumed that every stop line is placed at a location where traffic 
participants have full sight of other intersection arms. Thus, traffic participants stop only once at 
stop signs.

Intersection types: Basis for simulation are intersections with at least three arms. The roundabout
can also be classified as a type of intersection. However, roundabouts are excluded.  
As already mentioned, pedestrians are excluded from further consideration. Consequently, cross-
walks are also not included in simulation scenarios. 
Mostly on roads in residential areas, vehicles can be required to adapt their speed to walking 
speed. Roads of this type are not considered. In this thesis, the lowest speed limit on intersection 
arms is 30 ( 8.33 ).

Specific situations and maneuvers: In simulations of this thesis, no unforeseen events are 
occurring at intersections. For instance, no congestions on lanes leading out of intersections are 
represented in the data. Needless to say, this does not apply for intersection-incoming lanes on 
which vehicles might line up due to, for instance, red traffic lights. Also, no violations of 
traffic regulations occur. Thus, traffic participants, for instance, never run red lights and always 
yield to others who have the right of way. Furthermore, no accidents occur during simulations. 
A U-turn is a maneuver performed by traffic participants at intersections for the purpose of turning 
around. However, in this thesis, traffic participants are always targeting other intersection arms 
than the one they are coming from. Also, once an intersection approach is initiated, the 
intersection is crossed without interruptions, except for such required in the context of traffic 
regulations. Thus, no traffic participant is reversing or parking in the proximity of an intersection.  

4.2.2. Parametrization of the Simulation

The simulation software SUMO provides a vast number of possibilities to control the way vehicle 
crossings are simulated. With regard to several parameters, deviations from SUMO default 
settings are made in order to improve the simulation quality and achieve a high degree of realism. 
For reasons of simulation reproducibility, all modifications of parameter values are explained in 
this section. Modifications of globally relevant simulation parameters values are presented in 
subsection 4.2.2.1. Parameter values individually defined for each intersection scenario are shown 
in subsection 4.2.2.2.  

4.2.2.1. Globally Relevant Simulation Parameters 

Parameter values which affect all simulations in this thesis, are shown in the following. Table 4.1 
additionally provides a joint summary of these parameters. From this table, the context, the 
SUMO tool involved and the chosen value can be obtained. In order to simplify the reproduction 
of data generation, the column parameter name provides SUMO-internal keywords and setting 
paths. 

4.2.2.1.1. Network-Related Parameters 

The SUMO tool Netedit allows to specify the resolution of intersection-internal lanes, which serve 
as crossing paths for vehicles. The resolution depends on the number of support points that define 
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the piecewise linear segments of stated crossing paths [23]. In order to achieve smooth crossing 
motions, the resolution is increased from 5 to 10 support points. 

4.2.2.1.2. Car-Following and Vehicle-Type-Related Parameters 

In terms of similarity to real-world vehicle trajectories, the Intelligent Driver Model (IDM) is 
found to outperform other car following models such as those by Krauss or Wiedemann [25, 26]. 
For this reason, IDM is chosen instead of the default Krauss model for mathematically modeling 
longitudinal interactions of vehicles. It takes desired values of acceleration, deceleration, temporal 
headway to vehicles driving ahead and minimum gap distance to vehicles standing ahead as input. 
Additionally, a parameter delta serves as acceleration exponent [27].  

In this context, the authors of [28] criticize that models generating driving behavior are often not 
calibrated and used with default parameters. However, with respect to car following model 
parameters, conducting a calibration based on real trajectory data is far beyond the scope of this 
thesis. For this reason, several works [25, 29, 30] using SUMO for similar purposes as the one 
pursued by this thesis are reviewed. From these, reasonable indications for setting car following 
parameters shall be gathered. The authors of [25] analyze IDM parametrizations and the realism 
of associated simulation outcomes. They conclude that several car following model parameters 
should be distributed instead of being set to fixed values. This way, realistic driving behavior 
manifesting in various driving styles can be simulated. Similarly, [29, 30] show approaches which 
make use of the IDM to describe and model real-world vehicle behavior and discuss suitable 
parametrizations.  

For this, the SUMO tool CreateVehTypeDistribution is employed. This tool samples a specific 
number of parameter configurations from value ranges or distribution functions. A parameter 
configuration defines the characteristics of a simulated vehicle [23]. This way, as mentioned 
above, car following model parameters are varied among inserted vehicles for the purpose of 
modeling different driving styles. Based on the reviewed literature, normal distributions of car 
following parameters are defined. Acceleration, deceleration, temporal headway and minimum 
gap are distributed with means 1.60 , 2.00 , 0.86 s, and 2.00 m, respectively. The value for the 
standard deviations of all distributions is 0.20. By choosing these means and standard deviations 
it is attempted to parametrize distributions from which car following parameters, which fall into 
the ranges the literature suggests, can be drawn. As done in the reviewed works [25, 29, 30], the 
delta parameter is kept constant. For this thesis, a value of 4.00 is chosen.  

Another parameter, which does not belong to the set of car following model parameters, is also 
varied by means of CreateVehTypeDistribution. Vehicle lengths shall be sampled uniformly from 
the interval between 3.90 and 4.90 m, whereas default characteristics such as vehicle width, height 
and maximum speed capability etc. are kept at default values of the vehicle class “passenger” 
[31].  

Consequently, from a vehicle type distribution of all above-described parameters, a pool of 500 
parameter configurations is sampled. In the context of this thesis, the definitions of all vehicles 
simulated in all scenarios are drawn with replacement from this pool. 

4.2.2.1.3. Lane-Change-Related Parameters 

In several instances, unrealistic lane change maneuvers are observed during simulation. For 
example, vehicles are fount to occasionally change lanes back and forth for no obvious reason. 
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Also, lane changes are observed to occur from standstill, accomplished by purely lateral 
movement. For this reason, lane changes are suppressed in simulations. This is achieved by 
adapting the values of two vehicle type parameters that are relevant for lane change decisions. 
The parameter lcKeepRight controls how strongly drivers feel obliged to drive in the rightmost 
lane of a road. The parameter lcSpeedGain controls how strongly drivers are motivated to change 
into lanes that allow driving at higher speeds. With both parameters being set to 0, no lane changes 
occur [23]. 

4.2.2.1.4. Vehicle-Insertion-Related Parameters 

To further control the way vehicles are inserted on the verge of intersection scenario networks, 
parameters passed to RandomTrips and Duarouter are modified. In this thesis, the number of 
inserted vehicles is binomially distributed [23]. The repetition parameter of the binomial 
distribution, commonly denoted by n, is globally set to 100. The distribution’s probability 
parameter is individually chosen for each intersection scenario, which is described in 4.2.2.2.1 
below. 

Of all edges of an intersection scenario, an edge has to be selected on which the vehicle is inserted. 
This is controlled by a setting that varies across intersection scenarios. Section 4.2.2.2.2 expands 
on this. The selection of an edge’s lane for vehicle insertion is controlled by Duarouter. Specifying 
the option “best” selects lanes that generally require no further lane changes for vehicles on their 
intersection approach. It also accounts for current lane utilization by other vehicles. This way, the 
driver’s preference for a lane that has the shortest queue and permits to reach the desired target 
intersection arm is modeled. Concerning the insertion speed, the option “max” avoids vehicles 
having to start off from standstill where flowing traffic would be expected. Instead, vehicles are 
inserted at a speed that is adjusted to the edge’s speed limit. This complies with the fact that 
intersection scenario networks are just cutouts of greater traffic networks [23]. 

4.2.2.1.5. Time-Step-Related Parameters and Numerical Integration Scheme 

The frequency at which data is collected is 10.00 Hz. This is modeled by specifying the 
simulation’s time step length, hence the reciprocal of the frequency, as 0.10 s. Another parameter 
is the action step length. It is the time that passes between two successive decisions made by a 
driver. The action step length is recommended to be set to values greater than the time step length 
if the latter is set to a value lower than 1.00 s. This way, the time a driver needs to react on 
changing situations can be modeled more realistically [23, 27]. The value of 0.50 s is set. 

As numerical integration scheme, the ballistic method is selected. The authors of [32] find that it 
is better suited than SUMO’s default Euler method for the integration of car following models in 
terms of robustness and approximation error. Instead of keeping vehicle speed constant with the 
Euler method, the ballistic integration method causes the acceleration to be kept constant during 
a simulation timestep [23]. 

4.2.2.1.6. Parameters controlling Imperfection and Inaccuracy 

Additionally, in order to integrate imperfection in driving, vehicles can be equipped with a driver 
state model. This way, perception errors are modeled in SUMO. Those manifest in, for instance, 
deviations of distances kept between vehicles and actually driven speeds from target distances 
and speeds, respectively [23]. For every intersection scenario, 40 % of all inserted vehicles, which 



24  4. Data Basis 

 

are randomly selected, are equipped with a driver state model. The parameters associated to the 
driver state model are kept at default values. 

Per default, SUMO calculates vehicle locations exactly. In order to model sensor noise, 
localization inaccuracy is introduced. It is modeled as additive white Gaussian noise. For this, a 
standard deviation of 0.20 m is passed to TraceExporter [23]. 

Description of setting SUMO tool Parameter name Value [unit]
Resolution of 
intersection-internal paths 

Netedit junctions / internal-
link-detail

10

Car following model CreateVehTypeDistribution carFollowModel “IDM”
Acceleration value CreateVehTypeDistribution accel normal(1.60, 0.20) [ ]
Deceleration value CreateVehTypeDistribution decel normal(2.00, 0.20) [ ]
Temporal headway value CreateVehTypeDistribution tau normal(0.86, 0.20) [s]
Minimum vehicle gap CreateVehTypeDistribution minGap normal(2.00, 0.20) [m]
Delta parameter CreateVehTypeDistribution delta 4
Vehicle class CreateVehTypeDistribution vClass “passenger” 
Car length CreateVehTypeDistribution length uniform(3.90, 4.90) [m]
Eagerness to use right 
lane

CreateVehTypeDistribution lcKeepRight 0

Eagerness to use lanes 
enabling to drive faster

CreateVehTypeDistribution lcSpeedGain 0

Binomially distributed 
vehicle insertion 

RandomTrips --binomial 100

Lane for vehicle insertion Duarouter defaults / departlane “best” 
Speed of inserted vehicles  Duarouter defaults / 

departspeed
“max”

Simulation time step 
length

core time / step-length 0.10 [s]

Simulation action step 
length 

core processing / 
default.action-step-
length 

0.50 [s]

Enabling ballistic 
numerical integration 
scheme

core processing / step-
method.ballistic 

true

Enabling human 
imperfection in terms of 
car following 

core driver_state_device 
/ 
device.driverstate.p
robability

0.40 

Localization Noise TraceExporter --gps-blur 0.20 [m]
Table 4.1: Parametrization of the SUMO simulation. Each row describes the context, the SUMO tool 
involved, the SUMO-internal name or path and the chosen value of each parameter. A “/” separates 

different steps in a path leading to a parameter. “--” indicates that a parameter is passed as command line 
argument in the context of a function invocation. 

4.2.2.2. Parameters Specific to Intersection Scenarios 

Parameter values that are varied across scenarios are outlined in the following. These are 
additionally summarized in Table 4.2. In this table, a short description, the SUMO tool involved 
and SUMO-internal keywords and setting paths are provided for each parameter. 

4.2.2.2.1. Parameters Controlling the Frequency of Vehicle Insertion 

Per default, by specifying the period parameter, the user can control the frequency at which 
vehicles are inserted into a network. However, as mentioned in section 4.2.2.1.4, it is decided to 
randomize the number of inserted vehicles by means of binomial distributions with constant 
repetition parameter set to 100. In this context, the reciprocal period serves as the probability 
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parameter for a scenario’s binomial distribution. In order to yield no probability value greater 
than 100 %, only period values equal or greater than 1 are passed to RandomTrips. Increasing the 
period value results in lower probability values and, thus, in a decrease in insertions [23]. In other 
words, a certain period value causes a certain traffic volume within a simulation. In this thesis, a 
period value is determined by visually evaluating the resulting traffic volume. For each 
intersection scenario, a traffic volume that seems appropriate in the context of the respective 
regulation is targeted. Each scenario is assigned one period value. Details on traffic volumes that 
are deemed appropriate and period values that create these are presented in the following 
paragraph. 

When simulating traffic-light-regulated scenarios, moderate vehicle queue lengths of 
frequently more than ten vehicles at red lights and an overall high traffic volume shall be 
produced. This is achieved by setting rather low period values ranging between 2.20 and 6.00 for 
the various intersection scenarios. In contrast, traffic volume in yield-to-right-regulated 
scenarios is, on the one hand, attempted to be relatively low. On the other hand, it shall be high 
enough to occasionally show situations in which vehicles are forced to interact. Situations of this 
type are occurring if vehicles that approach from different intersection arms reach the intersection 
at similar points in time. Vehicle queue lengths shall not exceed four vehicles for most of the 
simulation’s runtime. Suitable period values are found to range between 6.00 and 6.60. In the 
context of scenarios where priority-regulated intersection paths meet stop or yield-regulated 
ones, traffic volumes that cause a high number of situations with vehicle interactions are targeted. 
Those are situations in which vehicles following stop or yield-regulated intersection paths are 
obliged to give way to vehicles approaching from prioritized ones. Consequently, vehicle 
queue lengths shall be kept below ten vehicles for most of the simulation’s runtime. Described 
traffic volumes are observed for a relative wide range of period values between 3.00 and 8.00. 

4.2.2.2.2. Parameters Controlling the Place of Vehicle Insertion 

How inserted vehicles are distributed over the edges adjacent to the intersection node of a scenario 
is defined by source weights. In comparison to edges with lower source weight values, such with 
higher values are target of insertion more frequently. In contrast, destination weights control 
which edges are chosen by vehicles for leaving a traffic network. Analogously, edges with higher 
destination weights are used as exit at a higher frequency than such with lower weights [23].  

The yield-to-right-regulated intersection scenarios of this thesis have source and destination 
weights that are balanced across edges. This renders all edges similarly probable to serve as 
insertion target or as edge vehicles use for leaving the network. However, traffic-light-
regulated scenarios and such where priority-regulated intersection paths meet stop or yield-
regulated ones are often designed to have specific routes being followed by the majority of 
simulated vehicles. Like in real-world intersection scenarios, such routes serve the purpose of 
efficiently channeling through-traffic in urban environments. These can, for instance, be termed 
main roads. For intersections of this thesis, they are represented by combinations of incoming and 
outgoing edges that are assigned higher source and destination weights than other edges. 
Therefore, traffic-light-regulated scenarios of this thesis often have a higher number of lanes 
on edges representing main roads than on other edges. For traffic-sign-regulated intersections, 
these edges in some cases also have more lanes than others and are always priority-regulated. 
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4.2.2.2.3. Parameter Controlling the Simulation Duration 

The user needs to define the total duration of the simulation of each scenario [23]. Consequently, 
this controls the number of simulated crossings. The longer the simulation of a scenario, the more 
trajectories can be gathered from it. 

Description of setting SUMO Tool Parameter name
Rate of vehicle insertion RandomTrips --period 
Vehicle insertion and destination 
distribution over edges 

RandomTrips --weights-prefix 

Simulation duration core time / end
Table 4.2: Simulation parameters that vary across created intersection scenarios. Each row describes the 

context, the SUMO tool involved and the SUMO-internal name or path of each parameter. A “/” separates 
different steps in a path leading to a parameter. “--” indicates that the parameter is passed as command 

line argument in the context of a function invocation. 

4.3. Trajectory Data
During the simulation of intersection crossings, information on the state of each vehicle present 
in a network can be sampled at constant time intervals. In the context of this thesis, the vehicle 
state is defined by a two-dimensional position , speed  and acceleration magnitude . Each 
sampled state is additionally annotated with a timestamp . Vehicles can be uniquely identified 
via a descriptor attribute. The  and  data is exported via the Floating Car Data2 interface. By 
additionally exporting sampled information to the Amitran standard3,  data is gathered. The 
SUMO tool TraceExporter can subsequently be used to group data by vehicle association [23].  

Trajectories annotated with motion-related information are, as adapted from [4], formalized in the 
following way. In the context of this thesis, a trajectory  of length , with [1, ] and 

 being the set of all  simulated trajectories, is represented by a series of measurement tuples ( ) = ( ), ( ), ( ) , with ( ) = ( ( ), ( )) and ( ) [1, ]. Each tuple has associated a 

specific point in time beginning at simulation start. Measurement tuples are also referred to as 
trajectory points. Scalars and are orthogonal coordinates defining . A series of , or 

that is associated to a trajectory is also termed as trajectory feature. 

With the parameters described in section 4.2, SUMO is used to initially simulate 47583 crossings 
on 16 intersection scenarios. With four additionally created scenarios, another 16867 trajectories 
are simulated. On the one hand, for each of the uniformly regulated scenarios, namely traffic-
light and yield-to-right-regulated ones, a simulation output of around 1800-2000 trajectories 
is targeted. On the other hand, for traffic-sign-regulated scenarios, an output of around 3800-
4000 trajectories is targeted. This higher number of trajectories is chosen in order to sufficiently 
represent stop and yield-regulated intersection paths in the data. As explained in section 
4.2.2.2.2, vehicles driving on intersection paths belonging to these regulations are often inserted 
on edges with rather low source weights. Vehicles following priority-regulated intersection 

2 Floating Car Data can be defined as data obtainable from localization-based tracking approaches [33]. 
3 The Amitran standard describes vehicular state data and originates from initiatives aiming at analyzing 
traffic-induced emissions topics. Amitran is an abbreviation for “Assessment Methodologies for 
Information and Communication Technology in Multimodal Transport from User Behavior to CO2 
Reduction” [34]. 
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paths are, however, often inserted on edges with relatively high source weights. Therefore, the 
former vehicles are much lower in quantity. 

Intersections of the initially created set of 16 intersection scenarios can be described by 178 
intersection paths. By adding four more scenarios, 230 intersection paths are available in total. 
More details are provided in Table 4.3. In this table, one can see how the number of intersection 
paths is distributed over the regulation classes. The first column refers to the set of 16 initially 
created intersection scenarios and the second column to the augmented set of 20 intersection 
scenarios. Furthermore, when analyzing all 230 intersection paths, it is found that none is followed 
by less than 17 or more than 1133 vehicles. On average, an intersection path is followed by 
approx. 267 vehicles. 

Number of intersection paths 

Traffic regulation 
Dataset comprising 16 intersection 
scenarios 

Dataset comprising 20 intersection 
scenarios

Priority 46 74 (+28) 
Stop 20 =
Traffic light 50 = 
Yield 20 44 (+24) 
Yield to right 42 =
Total 178 230 (+52) 
Table 4.3: Quantity of intersection paths in the dataset. The numbers indicate how many paths belong to 

which traffic regulation. The columns provide a comparison between the dataset comprising the 16 
initially created intersection scenarios and the augmented dataset comprising all 20 intersection scenarios. 
The “=” points out that a certain number of intersection paths in the augmented dataset is the same as in 

the initial dataset. 

Details of the data obtained from simulation are shown in the following subsections. Firstly, 
motion-related data from the simulation output is focused on in subsection 4.3.1. Secondly, 
concepts and features for putting this information into an intersection context are introduced in 
subsection 4.3.2. 

4.3.1. Motion-Related Trajectory Features

From simulations, , and data of vehicles crossing intersections is collected. In this thesis, 
and  series are employed as motion-related trajectory features. Subfigures (a) and (b) of Figure 
4.3 show  and  data, respectively, describing 25 trajectories. The data is plotted against a 
temporal axis that reflects the individually normalized duration of each trajectory. The trajectories 
follow various stop-regulated intersection paths. These are all limited to a segment that starts
70 m before and ends 70 m after the point closest to the corresponding intersection center. Dark 
yellow lines describe vehicles going straight, whereas blue lines describe such that execute 
turning maneuvers. From Figure 4.3 (a), one can see that  data curves are smooth. Vehicles start 
braking from the beginning which manifests in decreasing . Approximately after the first fifth 
of the normalized duration, vehicles brake increasingly harder. This increase in deceleration 
magnitude can also be seen in Figure 4.3 (b) where the associated  data is shown. The braking 
continues until, halfway through the depicted range, a brief halt can often be observed. It 
manifests itself in  values close to 0.00 . Subsequently,  increases for all trajectories and 
frequently exhibits knees at the point of transition into constant relatively high values. In contrast 
to ,  series have a stepped shape. More precisely, small steps separate constant-value segments 
of short but equal length. A possible explanation might be that these steps are artifacts from 
employing the ballistic integration scheme. As mentioned in section 4.2.2.1.5, using this scheme 
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results in vehicle acceleration being kept constant during simulation time steps. Apart from that, 
in a few instances, large steps in  value can be observed. Trajectories containing  values that 
fall outside the interval between - 4.00 and 4.00 are, however, rarely found. These trajectories
are completely excluded from further consideration. This is done as  values that fall out of the 
aforementioned range can be considered unrealistic in the context of urban driving [28, 35].  

(a) Speed profiles 

(b) Acceleration profiles 

Figure 4.3: Speed and acceleration profiles of 25 vehicles crossing intersections via stop-regulated 
intersection paths. The profiles are plotted against the individually normalized crossing duration of 

trajectories that are described by depicted profiles. Speed data is shown in subfigure (a), acceleration data 
in subfigure (b). Dark yellow lines indicate vehicles driving straight, whereas blue lines indicate such that 

execute turning maneuvers. 

In a real-world context, the data would be collected by means of sensors. Thus, in order to 
introduce inaccuracies that one would expect from sensor-based  and  measurements, white 
Gaussian noise is added to the data. This reduces above-described smoothness of  series. The 
standard deviation of the density function creating noise for  data is globally set to the value 
0.28 . For the  data, a standard deviation of 0.18 is chosen. Subsequently, a moving average 
filter with window size 5 is applied to both  and  measurements of each trajectory. This only 
slightly reduces the noise of this data. However, the course of the latter measurements does no 
longer show small steps in value, while greater steps can still be observed. Visualizations of 
further processed data can be found later in section 5.1. 

4.3.2. Intersection Paths and Progress-Related Trajectory Features

Progress-related trajectory features provide a spatial or temporal context for trajectory points. 
Features of this category are calculated based on intersection paths. A more detailed introduction 



29  4. Data Basis 

 

to intersection paths and information on how these are defined within this thesis is provided in 
subsection 4.3.2.1. Subsequently, a progress-related feature specifying the distance of trajectory 
points to the center point of the intersection the trajectory crosses is introduced in subsection 
4.3.2.2. Another progress-related feature describing the temporal difference of trajectory points 
with respect to such located near the center of the intersection the trajectory crosses is outlined 
thereafter in subsection 4.3.2.3. As is shown in these subsections, the topology of an intersection, 
such as its number of arms or lanes, has no influence on the calculation of these two features. This 
way, they establish a quantified intersection context for trajectories, while simultaneously 
abstracting from topological intersection characteristics. This enables to compare trajectories 
independently of which intersection they cross. 

4.3.2.1. Intersection Paths 

In this thesis, intersections are represented by a set of intersection paths. These also serve as 
elements that are classified according to the traffic regulation that applies for them. A lane of an 
intersection arm approaching an intersection often permits to choose between going straight or 
turning in order to reach certain target arms. Intersection paths individually represent each of the 
possible paths that can be followed in this context and always start on intersection-incoming lanes. 
This way, multiple intersection paths coincide on the course of an incoming lane until splitting 
up in order to describe multiple different paths available to cross and leave the intersection.  

An intersection path is represented by a sequence of points spatially describing its course. The 
coordinates of these points are taken from the SUMO network definition of the associated 
intersection scenario. The available coordinates are linearly interpolated to consistently represent 
intersection paths by 250 equally spaced points. The number of intersection paths per scenario 
spans between six and 14 for the scenarios designed in this thesis. For instance, an intersection 
with three arms shall be considered. Each arm has one lane per direction. From each incoming 
lane two outgoing target lanes can be reached. Consequently, this intersection is represented by 
six intersection paths. Depicted in Figure 4.4, an instance of an intersection that is represented by 
14 intersection paths is provided. In this figure, intersection paths are visualized as blue lines 
running through their points. They overlay the SUMO network extracted from the intersection 
Residenzstraße with Friedrich-Wilhelm-Straße and Deutsche Straße in Berlin. 

By means of intersection paths, trajectories crossing an intersection can be grouped. A trajectory 
is assigned to the intersection path that best describes the spatial course of it. It is determined as 
follows: For each point of a trajectory occurring before reaching the point closest to the 
intersection center, the closest point of the first candidate intersection path is determined. Thus, 
pairs that each contain a trajectory and an intersection path point are obtained. For each of these 
two-point pairs, the Euclidean distance between the two contained points is calculated. 
Subsequently, all resulting distances are summed up. This process is repeated for all candidate 
intersection paths. The trajectory is then assigned to the intersection path for which the sum of 
distances is minimal. 

4.3.2.2. Intersection Path Distance 

The progress-related intersection path distance feature  provides a spatial context for 
trajectories. It is introduced in this section. Initially, a coordinate system along each intersection 
path needs to be defined. The point of the intersection path that lies closest to the intersection 
center point marks the origin of its coordinate system. An intersection path point’s distance value 
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is calculated by accumulating the point-to-point distances of the sequence of intersection path 
points starting at the origin point and ending at the point the value is calculated for. Thus, the 
magnitude of these distance values increases in and against driving direction from the origin along 
the intersection path. Subsequently, distance values of intersection path points located, in driving 
direction, before the origin are assigned a negative sign. Distance values of intersection path 
points located after the origin have a positive sign. Therefore, this one-dimensional intersection 
path coordinate system describes an axis of continuously increasing distance values. 

 
Figure 4.4: A SUMO network representation of an intersection overlaid with the associated set of 

intersection paths. The network represents the intersection Residenzstraße with Friedrich-Wilhelm-Straße 
and Deutsche Straße in Berlin. Intersection paths are visualized as blue lines. 

All trajectories assigned to the same intersection path share its above-described coordinate 
system. Before calculating the feature for each individual trajectory, trajectory  data is 
processed. All two-dimensional positions of a trajectory together form a series. This series can 
be divided into separate series of and coordinates. Initially, both coordinate series of each 
trajectory are individually smoothed using a moving average filter with window size 5. Then, in 
order to calculate the feature, each trajectory point is projected onto the intersection path it 
is assigned to. More precisely, as intersection paths are sequences of piecewise linear segments, 
each trajectory point is orthogonally projected onto the intersection path’s line segment it lies 
closest to. The respective  value being assigned to the projected trajectory point is then 
determined via linear interpolation of the distance values of the two intersection path points 
defining this line segment. Figure 4.5 shows  values of a trajectory segment that starts 70 m 
before and ends 70 m after the point closest to the center of the intersection the trajectory crosses. 
The depicted trajectory runs from the top of the depiction and exhibits a right turn at the 
intersection. The color gradient from blue to red of depicted circles marks increasing 
values. The point annotated with the lowest absolute  value is marked by a gray circle. The 
center point of the associated intersection is marked by a black cross. Both shapes are found close 
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to the bottom right corner of the figure. The axes describe the geographical coordinates  and  
of the represented intersection scenario excerpt. 

 
Figure 4.5: Depiction of the intersection path distance feature of a trajectory coming from the top of the 
figure and exhibiting a right turn at an intersection. Bluish points mark negative pre-intersection-center 
distance values, whereas points of increasingly red color mark post-intersection-center distance values. 
The color bar displayed on the right brings the colors into a numerical context. The axes of the figure 
describe geographical coordinates  and . The black cross and the grey circle denote the intersection 
center point and the trajectory point with the lowest absolute intersection path distance, respectively. 

4.3.2.3. Intersection-Relative Time Feature

Additionally, trajectory points can be annotated with temporal information with reference to the 
center of the intersection the trajectory crosses. For this purpose, the progress-related intersection-
relative time feature is calculated. The trajectory point lying closest to the origin of the 
intersection path coordinate system serves as the origin of this feature. Hence, this is a trajectory 
point with value close to 0. For each trajectory, the feature is calculated by subtracting
the timestamp of the trajectory point closest to the origin of the intersection path coordinate 
system from the timestamps of all trajectory points. Consequently, negative values describe 
how long a measurement occurred before the trajectory point closest to the origin of the 
intersection path coordinate system is reached during a crossing. Measurements gathered after 
this point are annotated with positive  values. Similar to the intersection path coordinate 
system, values are increasing in driving direction. 
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4.4. Validation Strategy 
In this thesis, simulated data is employed to develop and test classifiers that infer traffic 
regulations. In order to evaluate the generalization ability of these approaches, development and 
testing is performed in a cross-intersection manner. This modification of cross-validation is 
described in the following and additionally depicted in Figure 4.6. 

 
Figure 4.6: Flow chart of the cross-intersection validation strategy employed in this thesis. Trajectory 

data, associated to the intersection scenarios designed for this thesis, is divided into four batches. In doing 
so, each intersection scenario’s data is entirely contained in solely one batch, hence not distributed over 

multiple ones. After splitting the four batches into three training and one test batch, a classifying model is 
developed using the training batches. Its performance is evaluated using the test batch. This process is 

repeated four times with different test data being used during each round. The average test score is 
computed by averaging the four individually achieved test performance scores. Differently colored boxes 
with a slot for each regulation class represent the batches. Regulation classes are abbreviated and appear 

in the order priority, stop, traffic light, yield and yield to right. Rectangular boxes and 
parallelograms denote actions and models, respectively. Scores are represented as boxes with a curved 

line as bottom boundary. 

Validating approaches in a cross-intersection manner means that classifiers are developed on data 
associated to a specific portion of intersections represented in the data. Data for testing, however, 
is consistently taken from intersections not comprised in the portion used for classifier 
development. The latter can also be termed training portion. Furthermore, development and 
testing data shall be rotated in a way that data from each intersection serves as test data once. For 
this purpose, the data associated to the 16 initially created intersection scenarios is divided into 
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four batches of four scenarios each. Each batch then contains one scenario regulated by traffic 
lights and one by yield-to-right rule. Also contained in each batch is one scenario in which 
priority and stop intersection paths meet and one scenario in which priority and yield
intersection paths meet. Hence, the five regulation classes are represented in each batch. These 
batches are maintained throughout this thesis. Classifier development is conducted using three of 
the four batches, whereas the remaining batch serves for testing and performance evaluation. Data 
associated to the four additionally created intersection scenarios is consistently added to each 
development portion. This process can be performed four times with the test batch being a 
different one each time. In other words, a set of these four processes cross-validates a classifier’s 
performance [12]. A score summarizing the individual performances that the classifier achieved 
on all test sets can be obtained by averaging the four individually calculated test measures.  





5. Inference of Traffic Regulations at Intersections 

HMMs can be used to effectively model processes that produce visible or measurable output 
signals [13]. In the context of this thesis, intentions of drivers are interpreted as causes underlying 
observable signals. A driver might, for instance, find herself in a situation in which she is able to 
drive without having to give way to other traffic participants or follow slow-moving traffic. In 
other situations, she might decide to brake and come to a halt or execute a turning maneuver.
Motion-related signals, such as  and  profiles, are produced by her behavior. Thus, sequences 
of trajectory points constitute observable information of Hidden-Markov-modeled traffic 
processes. 

There is a plethora of works in which HMMs are employed to model traffic-related processes. 
Among these, the works [36–38] are instances of such focusing on processes occurring in the 
proximity of intersections. In [37] and [38], the authors aim at predicting the direction drivers 
choose to follow when reaching intersections. They distinguish between turning left, turning right 
and continuing straight. In [37], it is additionally attempted to predict cases in which drivers intend 
to stop at an intersection before continuing to cross it. A different goal is pursued in [36]. In this 
work, drivers approaching intersections shall be categorized according to whether they comply 
with traffic regulations or not. When sifting through these and more works, a set of frequently 
recurring design characteristics emerges: Each class that shall be distinguished from others is 
represented by one HMM. Each of these models is trained using trajectory data that is associated 
to the class it represents. Also, inference is done by returning the class represented by the HMM 
that best describes the evidence associated to the trajectory or object to be classified.  

In this thesis, an HMM-based approach is applied to the problem of traffic regulation inference. 
The groundwork of this approach is inspired by above-outlined works [36–38], especially in terms 
of the above-mentioned recurring design characteristics. An introduction to the theoretical basics 
of the HMM concept and employed algorithms is provided in section 3.1. The representation of 
trajectories has to serve as a suitable basis HMMs are parametrized on. The different feasible 
parametric design choices specifying this representation are outlined in subsection 5.1. The design 
of the suggested approach, which is developed in this thesis, is described in subsection 5.2.  
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5.1. Trajectory Data Preprocessing 
In this thesis, trajectories are represented as sequences of trajectory points. The following 
subsections outline preprocessing steps that are employed to specify details and characteristics of 
this representation. Clipping of trajectories is explained in subsection 5.1.1. The selection and 
normalization of trajectory features is outlined in subsection 5.1.2. How trajectory segmentation 
and resampling is done is shown in subsections 5.1.3 and 5.1.4, respectively. 

At the end of this section, Figure 5.1 and Figure 5.2 show the normalized  and  feature, 
respectively, of trajectories following differently regulated intersection paths. Each subplot shows 
150 trajectories. Displayed are intersection-incoming segments, plotted against the normalized 

feature and resampled to a length of 71 points. Dark yellow lines indicate vehicles going 
straight and blue lines indicate such executing turning maneuvers. Depictions of trajectories 
resampled to distance-based representations can be found in Figure A.1.1 and Figure A.1.2 in 
section A.1 of the Appendix. Additionally, Table 5.1 provides a summary of the preprocessing 
steps described in this section.  

5.1.1. Trajectory Clipping 

As mentioned in section 4.1.1, intersection scenarios are designed to represent excerpts of real-
world intersections. However, simulated trajectories are not used in full length but are 
symmetrically clipped before being target of further processing steps. More precisely, points of 
the intersection-incoming and outgoing segment of each trajectory having absolute  values 
greater than a specified distance threshold are discarded. The clipping distance value of 70.00 m 
is applied in every experiment of this thesis. 

5.1.2. Feature Selection and Normalization

The features employed to describe trajectories in terms of motion are  and . Those that indicate 
intersection-relative temporal and spatial progress of trajectories are and , respectively. 
Trajectories can be represented using either a non-empty subset of these features or all of them. 

All trajectory features are normalized for the use in experiments. These are denoted by a tilde. 
For example,  is the symbol for the normalized  feature, is the symbol for the normalized 

feature etc. This is done in order to initially force the traffic regulation inference method to 
not focus on or get influenced by absolute values. The following example shall illustrate how this 
is found to occur: In the dataset, all arms of yield-to-right-regulated intersection scenarios 
have a common speed limit of 30  (  8.33 ). In early stages of this thesis, developed classifiers 
are found to misuse absolute  data resulting from this speed limit as a characteristic for yield-
to-right-regulated intersection paths. As a result, many yield-regulated intersection paths that 
also have a 30  speed limit are falsely classified as yield-to-right-regulated ones.  

The  feature of trajectories is normalized depending on their intersection path assignment. From 
all trajectories assigned to a specific intersection path, the maximum  value is being determined. 
The  series of all these trajectories are then scaled by dividing all values by the intersection-
path-wide maximum  value. Negative  values, which can be caused by measurement noise, are 
replaced by the value 0. Thus,  values range between 0 and 1. 
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As already mentioned in section 4.3.1, trajectories with  values falling outside the range between 
- 4.00 and 4.00 are excluded. The feature of all remaining trajectories is scaled by dividing 
all values by 4.00 . This way, the baseline = 0.00 , hence the absence of acceleration and 
deceleration, is not shifted and the sign of all  values is preserved. Consequently,  values range 
between - 1 and 1. 

After clipping, as described in section 5.1.1, no trajectory point with a value greater than 
the clipping distance remains. For all trajectories, the  feature is scaled by dividing all values 
by the clipping distance. This results in values that range between - 1 and 1, as well. 

The feature is normalized by dividing all values by the value assigned to the first point 
of the clipped trajectory. This way, the scaled values range between - 1 and a varying upper 
bound. As explained in section 4.3.2.3, the value assigned to the first point of the clipped 
trajectory can be interpreted as the duration of its intersection-incoming segment, hence the 
duration until the point closest to the intersection center point is reached. Thus, for outgoing 
trajectory segments having lower durations than their corresponding incoming ones, upper bounds 
take on values lower than 1. Conversely, for outgoing segments having greater durations than 
their corresponding incoming ones, upper bounds take on values greater than 1. 

5.1.3. Trajectory Segmentation 

Trajectories can be split into intersection-incoming and outgoing segments. Therefore, it is 
possible to choose between using entire trajectories or only segments for further processing. The 
incoming segment is obtained by discarding trajectory points that have values greater than 
0. Discarding only trajectory points having values lower than 0 yields the outgoing 
segment. Besides, the splitting can be analogously done for intersection paths. However, instead 
of  values, distance values of intersection path coordinate systems are used. Both incoming 
and outgoing segments of intersection paths retain the point associated to the coordinate system’s 
origin. 

When evaluating trajectories following differently regulated intersection paths, it is found that 
outgoing trajectory segments often show patterns that are similar among themselves regarding the 

 and  feature. After possibly giving way to other traffic participants, drivers often accelerate to 
a specific speed and leave the intersection. This emerges as  values that mostly increase up to a 
certain point and stay constant from there on. Associated  values increase and fall back to values 
close to 0. Thus, it is decided to focus on incoming segments for further use.  

In this context, an issue with respect to feature normalization shall not be neglected. Different 
speed limits may apply for the incoming and outgoing segment of a single intersection path. As 
illustration, a yield-regulated intersection path shall be considered. On its incoming segment, a 
speed limit of 30  applies. Its outgoing segment coincides with a prioritized intersection path. 
On this segment, a speed limit of 50 (  13.89 ) applies. After normalization,  feature values 
of trajectories following this intersection path unhindered, hence without giving way or stopping, 
exhibit a characteristic pattern. The  values of trajectory points on the incoming segment 
generally are considerably lower than corresponding ones on the outgoing segment. As solely 
incoming trajectory segments are used in subsequent steps, an alternative normalization of the  
feature can be done. It is based and applied solely on incoming segments instead of entire 
trajectories. Consequently, the search for the maximum  value used for scaling considers only 
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values of points on incoming trajectory segments. Remaining steps, in the context of  feature 
normalization, are analogously executed as outlined in section 5.1.2. 

5.1.4. Trajectory Resampling

Points of trajectories are annotated with measurements that are sampled at a constant frequency 
of 10 Hz. Thus, the number of points in a trajectory covering an intersection-incoming segment 
having a specific length varies depending on the driving speed of the associated vehicle. The 
difference between values of successive points of this trajectory has a constant value of 0.1 s. 
In the context of this thesis, a trajectory having a  feature with equally spaced values is 
referred to as being represented with reference to a time-based axis. Self-evidently, differences 
between values of successive trajectory points are also varying depending on driving speed.
Transforming trajectories to a representation in which successive trajectory points have a constant 
difference between their values, creates a distance-based view instead of a time-based one. 
Consequently, trajectories transformed this way are referred to as being represented with 
reference to a distance-based axis. Both a specific number of points and different representation
axes can be realized by means of trajectory resampling. Whenever incoming trajectory segments 
are resampled for use in experiments of this thesis, the resampled trajectories constantly have a 
length of 71 points.  

5.1.4.1. Resampling to a Time-Based Representation 

In the context of this thesis, trajectories are represented with reference to a time-based axis per 
default. This reference axis type can be preserved, while altering the number of trajectory points 
by means of resampling. For this, the feature serves as reference axis. A function mapping 
arbitrary values of the feature to values of each of the features ,  and  is required. As 
trajectory points are consistently annotated with values of all four mentioned features, the function 
can be approximated by means of linear interpolation. This way, for a desired number of values 
equally spaced along the  feature range of each clipped trajectory or trajectory segment, 
values of the features ,  and are sampled from the approximated function.

5.1.4.2. Resampling to a Distance-Based Representation 

With no moving backwards occurring, values of the feature consistently increase between 
each trajectory point and its successor. However, localization noise inevitably causes 
omnidirectional dispersion of trajectory point positions . Thus, not only increases but also 
decreases between  values of successive trajectory points are possible while an associated 
vehicle drives slowly or is in standstill. For this reason, considering measurement noise, a 
standstill is assumed for trajectory points that have  values equal to or lower than 1.00  on a 
contiguous interval with a duration of at least 0.50 s. In order to simplify resampling to a distance-
based representation, the following is done: Separately for each of the features ,  and , all 
values sampled on a standstill interval are replaced by their mean. 

Transforming trajectories to a distance-based representation is done also by means of resampling, 
which is outlined in the previous section. Instead of , the  feature serves as reference 
axis. Thus, for a desired number of values equally spaced along the range of this feature of each 
clipped trajectory or trajectory segment, values of the features ,  and are sampled from the 
function that is analogously approximated.  
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Figure 5.1: Normalized speed of incoming trajectory segments following differently regulated 

intersection paths, plotted against the normalized intersection-relative time feature. Depicted trajectories 
are resampled to a time-based representation and have a length of 71 points. Dark yellow lines indicate 
vehicles going straight, blue lines indicate such executing turning maneuvers. Each subplot shows 150 

intersection-incoming trajectory segments. 
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Figure 5.2: Normalized acceleration of incoming trajectory segments following differently regulated 

intersection paths, plotted against the normalized intersection-relative time feature. Depicted trajectories 
are resampled to a time-based representation and have a length of 71 points. Dark yellow lines indicate 
vehicles going straight, blue lines indicate such executing turning maneuvers. Each subplot shows 150 

intersection-incoming trajectory segments. 
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Parameter Value / value range 
Clipping distance 70.00 m
Feature selection One or more of { , , , } 
Feature normalization With
Trajectory segment Incoming 
Resampling One of {with, without} 
Reference axis One of {time-based, distance-based}
Number of points in resampled and segmented trajectory 71
Standstill interval conditions 1.00 ,

interval duration 0.50 s
Table 5.1: Parameters and design choices specifying the series-based trajectory representation employed 

in this thesis. Each row of the table corresponds to a preprocessing step and the associated parameter 
value or range that is considered in this thesis. 

5.2. Approach Design 
The approach designed in this thesis employs HMMs to represent regulation-class-specific 
information gathered from trajectories. How HMMs are parametrized and which parameters have 
to be set in this context, is explained in subsection 5.2.1. Subsection 5.2.2 expands on the 
suggested design of an HMM-based classification of intersection paths. 

5.2.1. Parametrizing Hidden Markov Models

HMMs are parametrized on trajectories. In this context, several parameters have to be set. These 
are explained in the following. Table 5.2 additionally provides an overview of these. 

Topology: The topology of HMMs is chosen to be ergodic. Thus, transitions shall initially be 
possible between all possible pairs of hidden states [13].  

Number of hidden states: HMMs are parametrized based on trajectory data. For each 
parametrization procedure, the number of hidden states has to be set to a fixed value. In 
experiments of this thesis, this number takes on values ranging between 2 and 10. 

Parameter estimation procedure: HMM parametrization is performed using the Baum-Welch 
Algorithm, which is introduced in section 3.1.3. In order to provide an initialization of HMM 
parameters for this algorithm, the software employed for experiments uses the K-means++ 
clustering algorithm. Readers interested in details of this algorithm are referred to [39]. More 
details of the employed software are provided later in section 6. In the subsequent step, all 
trajectories that shall be considered as basis for parametrizing HMMs are grouped by the 
regulation class of the intersection paths they are assigned to. The initialized Baum-Welch 
Algorithm is then separately applied to all groupings. Consequently, this yields one individual 
HMM for each class. In order to measure how well an HMM describes trajectories of a certain 
regulation class, the natural logarithm of the likelihood, commonly referred to as log-likelihood, 
is used. The maximum number of iterations of the Baum-Welch Algorithm is set to 1.00 108. 
However, the algorithm terminates as soon as convergence is observed. This is the case if the 
increase in log-likelihood between two iterations is lower than 1.00 10-9 or in case of a decrease. 
Convergence is observed for all parametrizations performed in the context of experiments in this 
thesis. Thus, the maximum number of iterations is never exhausted. 

Observation probability density functions: As observation probability densities of HMMs, 
Gaussian distributions are use throughout this thesis. HMMs. During the parameter estimation 
procedure, the mean vector and covariance matrix, which define a Gaussian distribution, are 
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estimated from trajectory data. Each state of an HMM is assigned one Gaussian. The use of 
mixture distributions is not examined in this thesis.  

Impact of trajectory feature selection: In the context of trajectory representations, one or more 
trajectory features are selected for describing trajectories. Details are provided in section 5.1.2. 
This feature choice also has an impact on characteristics of employed observation models. As 
mentioned above, these are represented by Gaussian distributions. In case one feature is selected, 
univariate distributions are employed. If more than one feature is selected, the distributions need 
to be multivariate. Also, each component of a Gaussian distribution’s estimated mean vector can 
be related to one of the selected features. This becomes apparent when considering that trajectory 
points, hence vectors, randomly drawn from such a Gaussian frequently have low Euclidean 
distances to the Gaussian’s mean vector. From its estimated covariance matrix, the standard 
deviations can be computed. Analogously, each standard deviation can be related to one of the 
selected trajectory features [40]. Thus, in this thesis, features are referred to as being associated 
to mean vector components and standard deviations. Apart from that, if the  feature is part of 
the feature choice, the order of hidden states in a parametrized HMM is determined by each 
Gaussian’s mean vector component associated to this feature. More precisely, the first hidden 
state is the one with the estimated Gaussian distribution having the smallest mean vector 
component that is associated to this feature. The second one has the second-smallest value and so 
forth. In case, the feature is not part of the feature choice, the  feature is used instead. 
The hidden-state order is then analogously determined. With none of the progress-related 
trajectory features being part of the feature choice, hidden states are randomly sorted. After that, 
this order is conserved. 

Parameter  Value / value range 
Topology Ergodic
Number of hidden states {2, 3, …, 10} 
Initialization for parameter estimation procedure K-means++
Parameter estimation procedure Baum-Welch Algorithm 
Observation probability density functions Gaussian (univariate or multivariate, 

depending on trajectory feature selection)
Maximum number of iterations 1.00 108

Convergence threshold 1.00 10-9

Table 5.2: Parameters and design choices relevant in the context of parametrizing Hidden Markov 
Models. Each row of the table corresponds to one characteristic and the associated parameter value or 

range that is considered in this thesis. 

5.2.2. Hidden-Markov-Model-Based Inference

Classification of traffic regulations is done for intersection paths. More precisely, inference is 
conducted on all trajectories assigned to a specific intersection path. For this, the Forward 
Algorithm is used. It is introduced in section 3.1.2. Figure 5.3 is provided to additionally illustrate 
the design of the classification procedure. 

Firstly, the Forward Algorithm returns a likelihood value for each trajectory, assigned to a specific 
intersection path, given a parametrized HMM. For further processing, the associated log-
likelihood is calculated. Secondly, the determined log-likelihood values are summed up. The 
result can be interpreted as a log-likelihood measure of the intersection path. Outlined steps are 
repeated on the same set of trajectories with a different HMM being given each time. Thus, each 
log-likelihood value calculated for this intersection path refers to the class represented by the 
associated HMM. For the remainder of this thesis, these values are termed class log-likelihood 
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values. The classification decision is then made by identifying the regulation class that is related 
to the greatest class log-likelihood value. In principle, explained inference design resembles a 
majority-vote-based system. A purely majority-vote-based one would, for instance, assign a 
regulation class to each trajectory. The most common class would then determine the class of the 
intersection path. However, in this case, the intersection path’s class is determined by comparing 
sums over trajectory-individually calculated log-likelihoods. 

 
Figure 5.3: Schematic depiction of intersection path classification using multiple Hidden Markov Models. 

Trajectories are depicted as blue crosses, intersection paths as dashed boxes. Each model , with 
, represents one traffic regulation class. The Hidden Markov Model that assigns the 

highest log-likelihood to an intersection path is the one determining the predicted class. Terms starting 
with , depicted in the middle of the figure, denote the log-likelihoods. On the right side of the figure, the 

step of selecting the highest log-likelihood is visualized as a diamond-shaped box, with log-likelihoods 
incoming from the left and a maximum log-likelihood label being outputted. (Adapted from [37]) 

In order to compare inference results across different intersection paths, normalization of class 
log-likelihood values is done. For this, it is decided to only consider class log-likelihoods with 
positive values for normalization. Normalized values are then calculated by dividing each positive 
class log-likelihood value by the sum of positive values. For the case in which all log-likelihood 
values are negative, the reciprocals of all values, multiplied by -1, are used. However, this case is 
not observed in the context of this thesis. 

 

 





6. Experimental Evaluation of the Suggested 
Approach 

In experiments, the suitability of the suggested HMM-based approach for the purpose of traffic 
regulation inference is analyzed. This is done by comparing the classification performance of 
HMMs that are parametrized in different ways on trajectories having differently specified 
trajectory representations. For this, various performance measures are employed. The macro F1

score is used to express classification performance as a single value while accounting for class 
imbalances. It is introduced in section 3.2.2. However, more detailed result analyses require more 
insight into performance on the different traffic regulation classes. For this task, confusion 
matrices are employed. From these, weaknesses of the approach in classifying intersection paths 
belonging to certain classes can be identified. This information can help to overcome such 
weaknesses in further experiments. A theoretical introduction to the concept of confusion matrices 
is provided in section 3.2.1. In this thesis, all presented confusion matrices are normalized. This 
is done by dividing each entry by the sum of all values belonging to the row associated to it. Apart 
from that, it is important to mention that classification results and, therefore, also the assessed 
performance can vary within small ranges. This is primarily owed to the fact that the associated 
algorithm starts from a random initialization, which is outlined in section 5.2.1.  

Also, observation densities and transition probabilities of differently parametrized HMMs are 
analyzed in every experiment. As HMMs are parametrized and tested in a cross-validation 
manner, not just one but multiple sets of HMMs are parametrized based on the same parameters. 
However, each of these sets is parametrized on a different development data portion. Just as test 
data portions, these development data portions are maintained throughout all experiments. Details 
of the designed cross-validation strategy are provided in section 4.4. No approach to merge 
multiple sets of HMMs into one that would represent all sets is designed. Thus, for reasons of 
consistency, all HMMs that are presented and analyzed in the context of experiments are always 
parametrized on a particular development portion, unless explicitly indicated otherwise. For the 
remainder of this thesis, this particular development portion is referred to as analysis development 
data portion. 

Approaches and experiments are implemented using version 3.6 of the Python programming 
language [41]. Program codes can be obtained from section B of the Appendix. The Python 
package pomegranate [42] implements HMMs. With the aid of an application programming 
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interface that is designed to be intuitive and similar to the one used by scikit-learn [43], it enables 
fast prototyping. Furthermore, multi-threading and graphics-processing-unit-based means for 
accelerating computations are already implemented. Apart from HMMs, pomegranate provides 
implementations of various probability distributions and a wide range of probabilistic modeling 
methods, as for instance Markov Chains and Bayesian Networks. Mathematical and vector or 
matrix-related operations are performed with the aid of the packages NumPy [44] and Pandas 
[45]. As tool for managing and evaluating the great numbers of experiments in this thesis, Sacred 
[46] is employed. 

In order to maintain a reasonable scope of this thesis, only a selection of conducted experiments 
is presented in the following. This selection contains those experiments that contribute the most 
important insights regarding the scientific questions this thesis addresses. In an extensive grid 
search experiment, various parameters specifying trajectory representations and HMM training 
characteristics are scrutinized regarding their impact on classification performance. Design and 
results of this experiment are shown in subsection 6.1. Subsequent experiments examine ways to 
improve the classification result achieved in the grid search experiment. In order to achieve this, 
the impact of using more trajectory data gathered from more intersection scenarios for HMM 
development is examined. The corresponding experiment is presented in subsection 6.2. A 
different approach is shown in subsection 6.3. In this experiment, the number of HMMs that 
represent the set of traffic regulations is increased. Results of aforementioned experiments are 
discussed in section 6.4. 

6.1. Grid Search 
In addition to initially gathering valuable insights into the applicability of HMMs, results of this 
experiment form the basis and inspiration for further experiments. Subsection 6.1.1 presents the 
varied parameters and the experiment approach. Results are shown in subsection 6.1.2.  

6.1.1. Experiment Design

Table 5.1 and Table 5.2 provide overviews of parameters that specify the representation of 
trajectories and characteristics of HMM parametrization, respectively. Some parameters are not 
varied in this thesis, whereas others can take on different values within provided ranges. Variation 
of the latter and comparing their impact on classification performance is target of this experiment. 
For clarity, these are listed in Table 6.1 together with their feasible ranges. Concerning the 
trajectory feature selection, four different tuples containing different combinations of trajectory 
features are chosen. A parameter combination is then sampled by choosing exactly one value for 
each parameter. Hence, these parameters represent the dimensions of the grid the search for 
suitable parameter combinations is performed on. However, one parameter combination that can 
be sampled as described above is infeasible. Namely, without resampling, trajectories cannot be 
represented with reference to a distance-based axis. The reason for this is that resampling is the 
necessary method to achieve this type of representation axis for trajectories. Details of trajectory 
resampling can be found in section 5.1.4. Consequently, all feasible parameter combinations 
amount to 108. 

In what is referred to as an experiment run, one certain parameter combination is examined. Thus, 
during one run, one set of HMMs, representing the different traffic regulations, is parametrized 
on trajectories that are represented in a certain way. Both the trajectory representation and the 
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HMM parametrization are done as specified by this parameter combination. In this experiment, 
each of the five traffic regulations is represented by one HMM. Making use of the cross-validation 
strategy, which is introduced in section 4.4, each feasible parameter combination defines four 
separate runs. In each of these runs, one F1 score describing the performance of the HMMs on the 
intersection paths of the test dataset is calculated. These are also referred to as test F1 scores or, 
as presented scores describe test results per default, as F1 scores. The performance associated to 
a specific parameter combination is then characterized by calculating the mean and standard 
deviation of these four F1 scores. 

 Consequently, 432 individual runs are executed in this experiment. The 16 initially designed 
intersection scenarios provide the data that is used in the context of this experiment. 

Parameter Considered value range
Trajectory-representation-related
Resampling {with, without}
Reference axis {time-based, distance-based}
Feature selection {( ), ( , ), ( , ), ( , , )}
Hidden-Markov-Model-parametrization-related 
Number of hidden states {2, 3, …, 10}
Table 6.1: Parameters varied in the context of the grid search experiment. These parameters specify the 
representation of trajectories and characteristics of Hidden-Markov-Model parametrization. Each row 
corresponds to a parameter and the associated feasible range of the values it can take on. Each feasible 

parameter combination is examined in one experiment run. 

The  feature is not included in above-presented grid search. This is motivated by the 
intention to keep the computation time, which is depending on the number of runs, within 
reasonable limits regarding the thesis time frame. Instead, this feature is examined solely within 
the context of the parameter combination that is found to yield the best classification result of the 
grid search experiment. Stated parameter combination is presented later. In this combination, the 

feature is substituted for the  feature. However, this yields classification results that are 
inferior to results achieved by well-performing grid search experiment runs. Thus, it is refrained 
from showing associated results. 

6.1.2. Experiment Results 

Achieved classification results are presented in subsection 6.1.2.1. A detailed analysis of 
parametrized HMMs achieving the best results is provided in subsection 6.1.2.2. 

6.1.2.1. Evaluation of Varied Parameters 

In subsections 6.1.2.1.1 and 6.1.2.1.2, the impact of varying parameters listed in Table 6.1 on 
achieved performance scores is shown. A detailed overview of all performance score means and 
standard deviations is provided in Table A.2.1 and Table A.2.2 in section A.2.1 of the Appendix. 
Subsection 6.1.2.1.3 expands on certain parameter combinations that yield the best performance 
scores among all examined ones.  

6.1.2.1.1. Comparing Results with Regard to Trajectory Resampling 

Initially, the 36 parameter combinations determining that trajectories are not resampled shall be 
considered. With four runs cross-validating each parameter combination, there are 144 runs. In 
the following, these are compared to parameter combinations determining that trajectories are 
resampled to a time-based representation. For this, Figure 6.1 provides an overview of test F1  
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(a) ( , , )

(b) ( , ) 

(c) ( , )

(d) ( ) 

Figure 6.1: Performances associated to parameter combinations determining the use of trajectories 
resampled to a time-based representation and not resampled trajectories. The performance of each 

parameter combination is described by averaging the set of F1 scores determined via cross-validation. 
Each subplot refers to one feature tuple being employed to describe trajectories in associated experiment 
runs. Subplot (a) refers to the tuple ( , , ), (b) to ( , ), (c) to ( , ) and (d) to ( ). Blue curves 
denote test F1 score means associated to the use of resampled trajectories. Analogously, the use of not 

resampled trajectories is denoted by orange curves. The scores are plotted over hidden-state counts 
ranging between 2 and 10. 
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score means associated to parameter combinations of both compared types. Score means 
associated to parameter combinations determining resampling to a time-based representation are 
depicted as blue curves. Orange curves mark score means associated to parameter combinations 
determining that no resampling occurs. These are plotted against the range of examined hidden-
state counts. Each of the subfigures (a)-(d) refers to one of the different feature tuples employed 
to describe trajectories. When viewing subfigures (a)-(c), it is obvious that parameter 
combinations determining the use of trajectories resampled to a time-based representation are 
associated greater F1 score means than those determining the use of not resampled trajectories. 
Stated subfigures, refer to the feature tuples ( , , ), ( , ) and ( , ), respectively, to be 
employed for describing trajectories. F1 score means associated to parameter combinations 
determining the use of the feature tuple ( ) are depicted in subfigure (d). In the context of this 
feature tuple, for all but one hidden-state count, the use of trajectories resampled to a time-based 
representation is associated to higher F1 score means than the use of not resampled trajectories. 
Stated exception is found for a hidden-state count of four. For this hidden-state count, a test F1

score mean of approx. 0.731 is associated to the use of not resampled trajectories. The use of 
trajectories resampled to a time-based representation is associated to a test F1 score mean of 
approx. 0.631.  

However, as outlined above, a higher F1 score mean is associated to a parameter combination 
determining the use of not resampled trajectories only once. Therefore, it is refrained from further 
analyzing runs using not resampled trajectories in detail. Instead, the main focus of analyses in 
this thesis is put on parameter combinations determining the use of resampled trajectories. 

6.1.2.1.2. Comparing Results with Regard to Representation Axis Type of Trajectories, 
Trajectory Feature Selection and Hidden-State Count of Hidden Markov Models 

The 72 parameter combinations determining the use of resampled trajectories are cross-validated 
in 288 experiment runs. An overview of test F1 score means associated to these parameter 
combinations is provided in Figure 6.2. As in Figure 6.1, each of the subfigures (a)-(d) refers to 
one of the different feature tuples employed to describe trajectories. The test F1 score means are 
plotted against the number of hidden states set for each HMM parametrization. The color of the 
depicted curves denotes the trajectory representation axis type. Blue marks time and orange marks 
distance-based representation. When viewing this figure, what stands out is that one of the two 
trajectory representation axis types is mostly associated to higher performance scores when 
compared to the other type. In the context of using the feature tuples ( , , ) and ( , ), 
resampling trajectories to a time-based representation yields greater F1 score means than 
resampling to a distance-based representation. This applies independently of which hidden-state 
count is set. Parameter combinations determining the use of these feature tuples are depicted in 
subfigure (a) and (b) of Figure 6.2. Concerning parameter combinations that determine the use of 
the feature tuple ( , )  to describe trajectories, resampling trajectories to a time-based 
representation does not yield higher performance scores in all cases. This is only the case for 
seven out of nine hidden-state counts. For hidden-state counts of five and six, parameter 
combinations determining resampling to a distance-based representation produce higher test F1

score means. Their values are approx. 0.697 and 0.705, respectively. The two parameter 
combinations determining resampling to a time-based representation and the hidden state count 
to be set to five and six achieve test F1 score means of only approx. 0.688 and 0.690, respectively. 
Parameter combinations determining the use of this feature tuple are depicted in subfigure (c). 
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(a) ( , , )

(b) ( , ) 

(c) ( , )

(d) ( ) 

Figure 6.2: Performance associated to parameter combinations determining the use of resampled 
trajectories. The performance of each parameter combination is described by averaging the set of F1

scores determined via cross-validation. Each subplot refers to one feature tuple being employed to 
describe trajectories in associated experiment runs. Subplot (a) refers to the tuple ( , , ), (b) to ( , ), 
(c) to ( , ) and (d) to ( ). Blue and orange curves denote test F1 score means associated to parameter 
combinations determining the use of trajectories resampled to a time and a distance-based representation, 

respectively. The scores are plotted over hidden-state counts ranging between 2 and 10. 
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Concerning parameter combinations that determine the use of trajectories described by the feature 
tuple ( ), the performance-score-based dominance of using trajectories resampled to a time-based 
representation is no longer observed. Parameter combinations determining the use of this 
trajectory feature are depicted in subfigure (d) of the figure. Only for four out of nine hidden-state 
counts, the resampling of trajectories to a time-based representation yields higher test F1 score 
means. However, for the hidden state counts three, four, eight, nine and ten, parameter 
combinations determining resampling to a distance-based representation yield better inference 
performances. The associated test F1 score means are approx. 0.647, 0.675, 0.665, 0.647 and 
0.664, respectively. Resampling to a time-based representation is associated to test F1 score means 
of only approx. 0.603, 0.631. 0.638, 0.603 and 0.451, respectively. 

In summary, 36 comparisons between parameter combinations determining resampling to time 
and distance-based representations, respectively, are made above. Out of these, 29, hence roughly 
81 %, reveal that the former trajectory representation axis type is associated to higher test F1 score 
means. Only in seven comparisons, resampling to a distance-based representation yields higher 
F1 score means. As outlined above, these seven comparisons are made in the context of the 
trajectory feature tuples ( , ) and ( ) being used to describe trajectories. Independently of 
trajectory representation axis type, no parameter combination determining the use of these two 
feature tuples yields a F1 score mean greater than approx. 0.744. In contrast, in the context of a 
great number of parameter combinations determining the use of the feature tuples ( , , ) and ( , ), distinctly greater F1 score means are observed. This can be seen when comparing the 
subfigures of Figure 6.2. Furthermore, as also already mentioned above, resampling to a time-
based representation yields consistently greater F1 score means than resampling to a distance-
based representation in the context of these two feature tuples. Thus, for presented reasons, and 
in order to further reduce the dimensionality the search grid, the experiment-parameter-related 
focus is narrowed down once more. Only parameter combinations determining the use of 
trajectories resampled to a time-based representation and the use of the feature tuples ( , , ) 
and ( , ) are considered in further result analyses. 

6.1.2.1.3. Parameter Combinations Yielding the Highest Score Results 

Finally, among the considered parameter combinations, the three that are associated to the highest 
test F1 score means shall be highlighted. Moreover, these score means also constitute the highest 
of all score means associated to parameter combinations of this experiment. An overview of these 
parameter combinations and associated test F1 score means is provided in Table 6.2. The third 
and second highest test F1 score mean are associated to two parameter combinations determining 
the use of the feature tuple ( , , )  and hidden-state count to be set to four and eight, 
respectively. The highest test F1 score mean is associated to the parameter combination 
determining the use of trajectories described by the feature tuple ( , ) and hidden-state count to 
be set to ten. Standard deviations of scores associated to these parameter combinations can also 
be obtained from stated table. 

In order to further analyze the classification result achieved when conducting inference using a 
set of HMMs, confusion matrices are used. Each parameter combination is cross-validated in four 
separate experiment runs. Consequently, four confusion matrices are assembled for the purpose 
of describing the classification results achieved by the four sets of parametrized HMMs. As 
performance scores are described by means and standard deviations, also confusion matrices shall 
be aggregated. Put differently, all classification results associated to a certain parameter 
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combination shall be described by one instead of four matrices. This is done by forming the 
elementwise sum of the four individual confusion matrices. The resulting matrix is referred to as 
a joint confusion matrix. Normalization is done as outlined in the beginning of section 6. 

Rank Test F1 
score mean 

Test F1 score 
standard deviation Resampling Representation Feature 

selection 

Hidden-
state 
count

1st 0.845 0.052 With Time-based ( , ) 10
2nd 0.841 0.071 With Time-based ( , , ) 8
3rd 0.832 0.057 With Time-based ( , , ) 4 

Table 6.2: The three highest test F1 score means, achieved in the grid search experiment, arranged in 
descending order. Also presented are associated score standard deviations. The columns Resampling, 
Representation, Feature selection and Hidden-state count together specify the parameter combinations 

associated to these test scores. Mean and standard deviation are calculated from individual test F1 scores 
achieved during the cross-validation of each parameter combination. 

The normalized joint confusion matrix describing the classification result of the parameter 
combination associated to the third-highest test F1 score mean is provided on the left side of Figure 
6.3. The one depicted on the right side of this figure describes the classification result of the 
parameter combination associated to the second-highest test F1 score mean. As apparent from the
associated normalized joint confusion matrix, approx. 100 % of both the traffic-light and 
stop-regulated test intersection paths are correctly classified by four-hidden-state HMMs. 
Approx. 89 % of priority-regulated intersection paths are classified correctly, whereas 
remaining ones are falsely classified as stop, yield or yield-to-right-regulated ones. Correctly 
classified yield and yield-to-right-regulated test intersection paths amount to approx. 60 % 
and 74 %, respectively. Apart from stated two classes being confused with each other, yield-
regulated intersection paths are also falsely classified as traffic-light-regulated ones. Eight- 

 
Figure 6.3: Normalized joint confusion matrix describing the classification result associated to two 
different parameter combinations. One determines the use of trajectories resampled to a time-based 

representation and the trajectory feature tuple ( , , ) for the parametrization of four-state Hidden 
Markov Models (left). The other one determines the use of the same trajectory representation axis type 

and feature tuple but aims at parametrizing eight-state Hidden Markov Models (right). A joint confusion 
matrix is computed by forming the elementwise sum of the individual confusion matrices describing the 

classification results of experiment runs cross-validating a certain parameter combination. Traffic 
regulation classes are abbreviated and appear in the order priority, stop, traffic light, yield and 

yield to right on rows and columns. 
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hidden-state models perform slightly better with regard to priority, yield and yield-to-right-
regulated test intersection paths. Performance on traffic-light-regulated test intersection paths 
is slightly inferior, whereas both four and eight-hidden-state models classify approx. 100 % of 
stop-regulated ones correctly.

The normalized joint confusion matrix describing classification results related to the parameter 
combination associated to the highest of all test F1 score means and the one depicted on the right 
side of Figure 6.3 share several similarities. However, it is refrained from depicting it here. The 
reason for this is as follows: Comparing the resulting sets of HMMs shall not solely be based on 
test performance. Additionally, details of observation-density-related parameters and transition 
probabilities of HMMs shall be analyzed. This is done in section 6.1.2.2 below. In that section, 
reasons why the parameter combinations associated to the two highest test F1 score means are 
deemed not suitable for efficiently and generically representing traffic regulations are shown. 
Also, it is explained why the parameter combination associated to the third-highest test F1 score 
mean is regarded as the one producing the best-suited HMMs for traffic regulation inference. 

Additionally, more information on inference performance of HMM sets parametrized as 
determined by the two parameter combinations ranked third and second in terms of test F1 score 
mean shall be provided. In particular, inference performance on intersection paths of test and 
development data sets shall be contrasted. Therefore, Figure 6.4 visualizes F1 score means 
associated to using trajectories that are resampled to a time-based representation and described 
by the feature tuple ( , , ). The score means are plotted against hidden-state counts ranging 
between two and ten. The blue curve denotes test F1 score means, whereas the orange curve 
denotes training F1 score means. The latter lies strictly above the former. The pale blue and pale 
orange band around the respective curves denote the standard deviation of the individual F1 scores 
calculated from cross-validating experiment runs. More precisely, the vertical distance between 
an F1 score mean point and the local upper or lower bound of the associated band is one standard 
deviation. Said two parameter combinations are, as already presented above, represented by F1  

 
Figure 6.4: Performance associated to specific parameter combinations determining the use of trajectories 

that are resampled to a time-based representation and described by the feature tuple ( , , ). The 
performance of each parameter combination is described by averaging the set of F1 scores determined via 

cross-validation. The blue and the orange curve denote F1 score means achieved when conducting 
inference on the test and the training data portions, respectively, used during cross-validation. 

Analogously colored bands around the curves denote corresponding score standard deviations. The scores 
are plotted over hidden-state counts ranging between 2 and 10. 
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score points plotted at hidden-state counts four and eight, respectively. Interestingly, at four 
hidden states, the test F1 score mean curve exhibits a local maximum. In contrast, the curve 
depicting training F1 score means increases rather steadily up to a hidden-state count of nine.

6.1.2.2. Analysis of Parametrized Hidden Markov Models 

In this section, observation-density-related parameters and transition probabilities of parametrized 
HMMs are analyzed. In subsection 6.1.2.2.1, the analysis of the four-hidden-state HMMs 
parametrized as determined by the parameter combination ranked third in terms of test F1 score 
mean is shown in detail. Furthermore, in order to facilitate the explainability of observation 
probability densities, a visualization approach is designed for this thesis. With the aid of this 
approach, multivariate densities can be visualized in order to achieve a better understanding of 
what kind of observation signals are modeled by these. Besides, it is used throughout experiments 
in order to visually compare observation probability densities of HMMs. In the context of an 
example, it is introduced in stated subsection. This visualization approach is inspired by [47] and 
[48]. Among other goals, the authors of these works also aim at visualizing observation 
probability densities in the context of biological sequence analysis and speech processing, 
respectively.  

Subsequently, comparisons to other sets of HMMs shall be made. As mentioned at the beginning 
of section 6, multiple sets of HMMs are parametrized based on one parameter combination in the 
context of cross-validation. In the context of the above-mentioned four-hidden-state HMMs, 
different model sets are briefly contrasted in subsection 6.1.2.2.2. In subsection 6.1.2.2.3, also 
HMMs parametrized as determined by the parameter combinations ranked second and first in 
terms of test F1 score means are considered.  

6.1.2.2.1. Four-State Hidden Markov Models 

In this section, HMMs resulting from examining the parameter combination ranked third in terms 
of test F1 score means are considered. The parameter combination can be obtained from the third 
row of Table 6.2.  

Firstly, the set of four-hidden-state HMMs that are parametrized on the analysis development data 
portion is analyzed regarding associated observation densities. As mentioned above, an approach 
to visualize the observation probability densities of parametrized HMMs is designed. Gaussians 
employed as observation densities shall be visualized using combinations of one and two-
dimensional figures. As illustration, Figure 6.5 visualizes the observation densities in each of the 
hidden states of the HMM representing the priority regulation. The order of the columns of the 
plots corresponds to the hidden-state numbering. Hence, the observation density in the first hidden 
state is visualized in plots of the first column, the second in the second column etc. The dark red 
points and vertical lines denote the parametrized mean vector components of the Gaussians. In 
subplots of the upper row, the mean vector components, associated to motion-related features, are 
visualized. How trajectory features and observation density parameters can be brought into 
context is explained in section 5.2.1. The component value associated to the  trajectory feature 
is always provided on the horizontal axis, whereas the vertical axis provides the component value 
associated to the  feature. One-dimensional subplots of the bottom row visualize the mean 
component associated to a progress-related trajectory feature. If none of these are included in in 
the trajectory feature selection this row would be omitted. For the observation densities depicted 
in Figure 6.5, each bottom row subplot visualizes the mean vector component associated to the 
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feature. The pale red regions around the dark red points or vertical lines represent the two-
standard-deviation regions around the means. The size of this region is chosen, based on the 68–
95–99.7 rule [49]. According to this rule, around 95 % of multi-dimensional observations, drawn 
from such an observation density, lie in the pale red region. The covariances of Gaussian densities 
are not reflected by the visualization.  

 
Figure 6.5: Visualization of learned observation densities of a four-hidden-state Hidden Markov Model 

representing the priority class. Each column of plots visualizes a Gaussian in one hidden state. Dark red 
points and lines denote mean component values and pale red regions denote two-standard-deviation 

regions around the means. In plots of the upper row, speed and acceleration-feature-related mean 
component values are always provided on the horizontal and vertical axes, respectively. The horizontal 

axes of plots of the bottom row provide the mean component values associated to the intersection-relative 
time feature. The column order reflects the hidden-state numbering of the model. The model is 

parametrized during the cross-validation of a parameter combination determining the use of trajectories 
resampled to a time-based representation and described by the feature tuple ( , , ). 

The observation density in the first hidden state is depicted in the first column of subplots in 
Figure 6.5. Its mean component value associated to the  feature is approx. 0.747. The learned 
standard deviation is approx. 0.077. Consequently, the two-standard-deviation range for this 
feature starts at around 0.593 and ends at around 0.901. The mean component value associated to 
the  feature is approx. - 0.002 and the standard deviation is approx. 0.022. Hence, the majority 
of drawn observations have  values rather close to 0. Thus, the state frequently emits 
observations interpretable as driving at a fairly constant speed. In other words, such a state is 
interpreted as a free-driving4 state. The observation density in the third hidden state of this HMM 
has very similar parameter values. It is depicted in the third column of subplots. Both clearly 
differ in terms of the feature. The first hidden state’s observation density has a mean 
component value of around - 0.796 associated to the  feature. The corresponding standard 
deviation is approx. 0.127. Thus, the density in the first hidden state models free-driving 
observations occurring rather early on the approach to the intersection center. In contrast, the 
density in the third one models the same kind of observations occurring relatively close to the 

4 In the context of this thesis, the term free-driving is used to describe driving at a relatively constant speed. 
It makes no statement about the presence or absence of other vehicles in front of the ego vehicle. 
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point in time when the intersection center is reached. The latter has a mean component value 
of approx. - 0.286. The associated standard deviation is approx. 0.166 which is slightly greater 
than the one of the former. The second hidden state frequently emits observations that can be 
interpreted as braking from a rather high speed, with  and -related mean component values of 
approx. 0.691 and - 0.260, respectively. The standard deviations have values of around 0.102 and 
0.190, respectively. With a -related mean component value of approx. - 0.576 and standard 
deviation of approx. 0.186, observations of this type commonly occur roughly at the end of the 
first half of the intersection approach’s duration. The observation density in the fourth hidden 
state has a -related mean component of around 0.443 and an -related one of approx. - 0.162. 
The associated standard deviations have rather high values of approx. 0.148 and 0.312, 
respectively. Therefore, this state emits observations of soft and also hard braking and 
accelerating from medium speeds. With a -related mean component value of approx. - 0.155 
and standard deviation of approx. 0.103, observations of this type frequently occur close to the 
point in time when the intersection center is reached. With a difference of approx. 0.131, the 
mean component values of the observation densities in the third and fourth hidden state are 
comparatively close to each other. Furthermore, both associated two-standard-deviation 
regions exhibit an overlap. This renders the range of the band associated to the fourth hidden state 
an almost proper subset of the other. An overview of all parameter values of the depicted 
observation densities can be obtained from Table A.2.3 in section A.2.2 of the Appendix. 

In this paragraph, the learned initial state and state transition probabilities of the same HMM are 
analyzed. A visualization of these is shown in Figure 6.6. The probabilities depicted on arrows 
illustrate the direction of transitions. Generally, all probabilities of transitions originating in a 
certain state have to sum up to 1. Due to rounding differences, this is not necessarily the case for 
the depicted values. Transitions with probabilities rounded to 0.000 are omitted in the figure. The 
only initial state probabilities greater than 0.000 have values of approx. 0.900 and 0.100 and are 
assigned to the first and second hidden state, respectively. The two highest state transition 
probabilities with values of around 0.996 and 0.998 are assigned to the self-loops of state 3 and 
4, respectively. The remaining outgoing transition probabilities from these two states are 
relatively low and do not exceed 0.003. The greatest inter-state transition probability has a value 
of approx. 0.031. This transition originates in the second state and targets the fourth. The transition 
connecting the first hidden state to the third has the second-greatest probability with a value of 
approx. 0.024. Besides, worth noting is that transitions between the first and the second state each 
occur with a probability of approx. 0.000. Hence, transitions between these two states are, in 
comparison to other inter-state transitions, improbable. 

Learned observation densities and initial state and state transition probabilities of the models 
representing the yield and the yield-to-right class are depicted in Figure 6.7 and Figure 6.8, 
respectively. All parameter values of the observation densities depicted in subfigure (a) of both 
of these figures are provided in Table A.2.4 and Table A.2.5, respectively, in section A.2.2 of the 
Appendix. The same visualizations for HMMs representing the regulation classes stop and 
traffic light are shown in Figure A.2.1 and Figure A.2.2, respectively, in the same section of 
the Appendix. In contrast to the priority model, both the yield and yield-to-right model’ 
first hidden state is the initial state with a probability of approx. 1.000. This can be seen in 
subfigure (b) of both figures. As visible in the first plot column of subfigure (a) of both associated 
figures, in both models, this state frequently emits observations of free-driving. Also, transitioning 
back into the first hidden state from any other hidden state has a probability of approx. 0.000 in 
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both models. In the context of the yield model, transitioning into the second hidden state occurs 
with rather low probabilities having rounded values of maximally 0.006. In contrast, transitions 
into the third and fourth hidden state from the first and the second, respectively, occur more likely. 

 
Figure 6.6: Visualization of the learned initial state and state transition probabilities of a four-state Hidden 

Markov Model representing the priority class. Values are rounded, hence all of a state’s outgoing 
transition probabilities do not necessarily sum up to 1. The probabilities are printed on arrows illustrating 

the direction of transitions. The model is parametrized during the cross-validation of a parameter 
combination determining the use of trajectories resampled to a time-based representation and described 
by the feature tuple ( , , ). The circles labeled , with 1 4, mark the model’s hidden states. 

Probability values of these transitions are as high as approx. 0.029 and 0.036, respectively. The 
third hidden state frequently emits observations of braking from higher or medium speeds. 
Observations emitted by the fourth hidden state frequently show accelerating from medium 
speeds. The yield-to-right model has states with observation densities being similar to those 
in the states of the yield model. In both models, the first and fourth hidden state frequently emit 
observations of driving freely at high speed and accelerating from medium speed, respectively. 
Observations of braking from medium or high speeds are frequently emitted by the third hidden 
state of the yield and by the second hidden state of the yield-to-right model. The densities in 
the yield model’s second and the yield-to-right model’s third hidden state are visualized in 
the second and third plot column of subfigure (a) of Figure 6.7 and Figure 6.8, respectively. These 
densities model observations of braking and accelerating from low or medium speeds by covering 
slightly similar two-standard-deviation regions regarding the  and  feature. As rather small 
positive  values can be drawn from the density in second hidden state of the yield model, rather 
gentle accelerating can be observed. In contrast, the third hidden state of the yield-to-right
model also emits observations of hard accelerating. Also, the point defined by both  and  
having the value of approx. 0.000 is comprised in the two-standard-deviation region of both 
densities. Thus, occasionally even standstill events are emitted by the yield model’s second and 
the yield-to-right model’s third hidden state. What is also worth noting is depicted in subfigure 
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(b) of  Figure 6.8. The three greatest inter-state transition probabilities of the yield-to-right
model are found on a directed path passing through each of the four states. It starts in the first 
state and ends in the last one. These probabilities have rounded values greater or equal to 0.123. 

 
(a) Visualization of learned observation densities. 

 
(b) Visualization of learned initial state and state transition probabilities. 

Figure 6.7: Visualization of learned observation densities (a) and initial state and state transition 
probabilities (b) of a four-hidden-state Hidden Markov Model representing the yield class. Each column 

of plots in (a) visualizes the observation density in one hidden state. The column order reflects the 
hidden-state numbering of the model. The model is parametrized during the cross-validation of a 

parameter combination determining the use of trajectories resampled to a time-based representation and 
described by the feature tuple ( , , ). Values in (b) are rounded, hence all of a state’s outgoing 

transition probabilities do not necessarily sum up to 1. The values are printed on arrows illustrating the 
direction of transitions. The circles labeled  with 1 4 mark the model’s hidden states. 
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(a) Visualization of learned observation densities.

(b) Visualization of learned initial state and state transition probabilities. 

Figure 6.8: Visualization of learned observation densities (a) and initial state and state transition 
probabilities (b) of a four-hidden-state Hidden Markov Model representing the yield-to-right class. 
Each column of plots in (a) visualizes the observation density in one hidden state. The column order 

reflects the hidden-state numbering of the model. The model is parametrized during the cross-validation 
of a parameter combination determining the use of trajectories resampled to a time-based representation 
and described by the feature tuple ( , , ). Values in (b) are rounded, hence all of a state’s outgoing 
transition probabilities do not necessarily sum up to 1. The values are printed on arrows illustrating the 

direction of transitions. The circles labeled  with 1 4 mark the model’s hidden states. 
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6.1.2.2.2. Comparing Sets of Hidden Markov Models Parametrized as Determined by a 
Common Parameter Combination on Different Development Datasets 

Between HMMs parametrized in different cross-validation runs examining the parameter 
combination ranked third in terms of test F1 score means, a comparison shall be made. For each 
traffic regulation class, associated models are briefly visually compared using the approach 
visualizing learned observation densities. In doing so, only mean component values and standard 
deviations associated to motion-related trajectory features are considered. 

On the one hand, in terms of observation densities, the models representing the regulation classes 
priority and stop and are parametrized highly similar. The models representing the traffic 
light and yield-to-right class exhibit only very slight differences in observation density 
parameters. Thus, these differences shall not be analyzed in detail. On the other hand, the models 
representing the yield class are not parametrized as uniformly as it is the case for above-stated
regulation classes. Three of the four cross-validation runs actually produce similar yield models. 
The one analyzed in subsection 6.1.2.2.1 is one of these. Its observation densities are visualized 
in Figure 6.7 (a). The observation densities of the model parametrized in the remaining cross-
validation run exhibit deviations. The visualization of observation densities for this deviating 
model is shown in Figure 6.9. All parameter values of these densities are provided in Table A.2.8 
in section A.2.2 of the Appendix. The differences between this model’s observation densities and 
those of the above-analyzed yield model are pointed out in the following. The latter model shall 
therefore serve as representative of the three similarly parametrized yield models. The first 
hidden state of both compared yield models frequently emits free-driving observations. The 
state’s observation densities are relatively similar and are depicted in the first column of Figure 
6.7 (a) and Figure 6.9. The third hidden state of both models also clearly emit observations of 
braking. It is shown in both figure’s third column. More precisely, the third hidden state of the 
representative model emits observations of braking from medium or high speeds. The 
corresponding hidden state of the deviating model, however, emits observations of braking more 
often from medium than from high speeds. The density’s mean component value associated to 
the  feature are approx. 0.595 and 0.493, respectively. The associated standard deviations have 
values that are similar among each other. Besides, the representative model’s state frequently 
emits observations of both gentle braking, characterized by negative  values close to 0.000, and 
relatively hard braking, characterized by negative values with higher magnitudes. In contrast, the 
state of the deviating model frequently emits such of relatively hard braking but mostly not such 
of gentle braking. The -related mean component values of both model’s densities are approx. 
- 0.223 and - 0.311, respectively. The second hidden state of the deviating model is depicted in 
the second column of Figure 6.9. Its two-standard-deviation region almost exclusively covers 
negative  values with relatively small magnitudes. Therefore, the state frequently emits 
observations of rather gentle braking from higher speeds. In contrast, the second hidden state of 
the representative model frequently emits observations with  values in a range representing 
everything between hard braking and gentle accelerating. This mostly occurs from low up to 
medium speeds. This observation density is visualized in the second column of Figure 6.7 (a). 
The fourth hidden state of both models, each visualized in the last column of the respective density 
visualization, frequently emit observations of accelerating. In the case of the representative model, 
the accelerating is mostly quantified by relatively high  values and occurs from mostly medium 
speeds. The corresponding hidden state of the deviating model also mostly emits observations of 
accelerating. Additionally, when viewing the comparatively large two-standard-deviation region 
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of the deviating model’s density in this hidden state, observations of accelerating from lower 
speeds and gentle braking from low up to medium speeds can also be emitted.  

 
Figure 6.9: Visualization of learned observation densities of a four-hidden-state Hidden Markov Model 

representing the yield class. Each column of plots visualizes a Gaussian in one hidden state. The column 
order reflects the hidden-state numbering of the model. The model is parametrized during the cross-
validation of a parameter combination determining the use of trajectories resampled to a time-based 

representation and described by the feature tuple ( , , ). However, the trajectory data portion used for 
developing this model is a different one than the one used to develop models presented above. 

6.1.2.2.3. Hidden Markov Models Parametrized Based on Other Parameter Combinations 

In this section, the parameter combinations ranked first and second in terms of test F1 score means, 
shall once again be considered. Also, it shall be explained why the HMMs produced by the 
parameter combination ranked third are regarded as being best suited for classifying traffic 
regulations. The three parameter combinations can be gathered from Table 6.2. 

Parameter combinations ranked first and second in terms of test F1 score means determine the 
parametrization of ten and eight-hidden-state models, respectively. HMMs that result from 
experiment runs using the analysis development data portion are also analyzed. These states of 
said models also frequently emit observations of, for instance, free-driving, braking, accelerating 
or standstill. However, in order to maintain a reasonable scope, details of this analysis are not 
shown. What heavily distinguishes these models from four-hidden-state models that are produced 
by the parameter combination ranked third in terms of test F1 score means is the degree of 
redundancy regarding observation densities. Among four-hidden-state HMMs, only such 
representing the priority class each exhibit this kind of redundancy. More precisely, each of 
these models has two hidden states that are highly similar in terms of observation density 
parameters and that frequently emit free-driving observations. In contrast, the considered eight-
hidden-state HMMs are found to have frequently more than two states with highly similar 
observation densities. As an example, five of eight observation densities associated to one of the 
models representing the priority class are visualized in Figure 6.10. These are visualizations of 
the observation densities in the first, second, fourth, sixth and eighth hidden state of the HMM. 
The set of all parameter values defining this model’s observation densities are provided in Table 
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A.2.9 in section A.2.2 of the Appendix. One can directly see how mean component values and 
standard deviations, associated to the features  and , are highly similar across the five 
individual densities. The -feature-related mean component values associated to these densities 
are spread almost evenly over the feature’s value range. The corresponding standard deviations 
have relatively low values. All of these hidden states frequently emit observations of free-driving.

 
Figure 6.10: Visualization of learned observation densities in, from left to right, the first, second, fourth, 
sixth and eighth hidden state’s observation density of an eight-state Hidden Markov Model representing 

the priority class. Each column of plots visualizes a Gaussian in one hidden state. The model is 
parametrized during one of the runs validating the use of trajectories resampled to a time-based 

representation and described by the feature tuple ( , , ). 

In the case of ten-hidden-state HMMs, redundancies are found to occur even more severely. 
Additionally, in contrast to the four and eight-hidden-state models, these models are parametrized 
using trajectories that are only described by the feature tuple ( , ). Thus, hidden state densities 
cannot diversify in terms of mean component values associated to a progress-related feature. One 
might argue that this renders the observation densities in hidden states of such models even more 
similar. For reasons of brevity, it is refrained from showing associated visualizations. 

In summary, the considered eight and ten-hidden-state HMMs exhibit far greater redundancies 
regarding observation densities than four-hidden-state ones. Also, it shall be pointed out that he 
difference between the highest and the third-highest test F1 score mean is only approx. 0.013. 
Thus, in consideration of explained redundancies and negligible F1 score differences, the 
parameter combination ranked third in terms of test F1 score means is favored over competing 
parameter combinations. For the remainder of this thesis, HMMs parametrized as determined by 
stated parameter combination are referred to as the best-performing HMMs of this experiment. 
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6.2. Increasing Trajectory Data Volume 
The result evaluation of the grid search experiment, shown in section 6.1.2.1, reveals that several 
misclassifications occur when conducting test inference while using the experiment’s best-
performing HMMs. Among other error cases, approx. 11 % of priority-regulated test 
intersection paths and approx. 40 % of yield-regulated ones are falsely classified by these 
HMMs. This information can be obtained from the normalized joint confusion matrix depicted 
on the left side of Figure 6.3. Approx. 7 % of priority-regulated test intersection paths are falsely 
classified as yield-to-right, approx. 2 % as stop and also roughly 2 % as yield-regulated ones.
Of all yield-regulated test intersection paths, approx. 10 % are confused with traffic-light-
regulated ones. Roughly 30 % are falsely classified as being yield-to-right-regulated.  

In the experiment presented in this section, it shall be examined whether parametrizing HMMs 
on more development data reduces the number of stated misclassifications. For this reason, as 
mentioned in section 4.1, four intersection scenarios are additionally designed. Details of this 
experiment’s design are outlined in subsection 6.2.1. Results are presented in 6.2.2. 

6.2.1. Experiment Design

In order to counter above-stated misclassifications, all additionally designed intersection 
scenarios are such where priority and yield-regulated intersection paths meet. It is decided to 
increase the data volume specifically for these two classes in order to keep the data generation 
effort within reasonable limits. In the right column of Table 4.3, one can see the number of 
priority and yield intersection paths comprised in the augmented dataset. Using this dataset, 
HMMs representing said two classes are parametrized again. For this, the parameter combination 
yielding the best-performing HMMs of the grid search experiment is used. This parameter 
combination determines the use of trajectories that are resampled to a time-based representation 
and described by the feature tuple ( , , ) for the parametrization of two new four-hidden-
state HMMs. The remaining models representing the classes stop, traffic light and yield to 
right are taken from the best-performing ones of the grid search experiment without 
modifications. Thus, also in this experiment, each traffic regulation is represented by one HMM. 
The performance of this approach is cross-validated as explained in section 4.4. However, all 
intersection paths gathered from additionally designed intersection scenarios are added to each 
development data portion. None of these intersection paths are added to test data portions.  

6.2.2. Experiment Results 

The results of using an increased number of priority and yield-regulated intersection paths for 
developing HMMs is presented in this section. Achieved scores are presented in subsection 
6.2.2.1 and resulting models in subsection 6.2.2.2. 

6.2.2.1. Evaluation of the Classification Result

The classification result achieved in this experiment can be obtained from the normalized joint 
confusion matrix depicted in Figure 6.11. This result is compared to the one achieved by the best-
performing HMMs of the grid search experiment, which is described by the normalized joint 
confusion matrix depicted on the left side of Figure 6.3.  
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On the one hand, misclassifications of priority-regulated test intersection paths slightly increase 
by approx. 6 percentage points. Approx. 9, 4 and 4 % of these intersection paths are confused 
with stop, yield and yield-to-right-regulated ones, respectively. Still, none are falsely 
classified as being traffic-light-regulated. Also, a fraction of approx. 29 %, of yield-to-
right-regulated intersection paths are now falsely classified as being yield-regulated. This 
corresponds to an increase of roughly 3 percentage points. On the other hand, slightly less yield-
regulated intersection paths are misclassified. Now, only approx. 5 % are confused with traffic-
light-regulated intersection paths. The confusion with yield-to-right-regulated ones remains 
unchanged. Thus, the number of correctly classified yield-regulated intersection paths increased 
by approx. 5 percentage points. The models achieve a mean test F1 score of approx. 0.817. It is 
slightly lower than the corresponding one achieved by the best-performing HMMs in the setting 
of the grid search experiment. The difference between the scores is approx. 0.015. However, a 
lower variation of the test F1 scores is achieved. The associated test F1 score standard deviation 
has a value of only approx. 0.035. The associated difference is approx. 0.022. 

 
Figure 6.11: Normalized joint confusion matrix describing the classification result achieved in the 
experiment using an augmented dataset for Hidden Markov Model parametrization. Trajectories 

resampled to a time-based representation and described by the feature tuple ( , , ) are used for the 
parametrization of four-state Hidden Markov Models. A joint confusion matrix is computed by forming 

the elementwise sum of the individual confusion matrices describing the classification results of 
experiment runs cross-validating a certain parameter combination. Traffic regulation classes are 

abbreviated and appear in the order priority, stop, traffic light, yield and yield to right on rows 
and columns.  

6.2.2.2. Analysis of Parametrized Hidden Markov Models 

HMMs representing the classes priority and yield are reparametrized in this experiment. In the 
following, the observation densities associated to the models that are reparametrized on the 
analysis development data portion are shown.  

Subfigure (a) of Figure 6.12 shows a visualization of the observation densities associated to the 
priority HMM. When comparing it to the visualization of the corresponding best-performing 
HMM of the grid search experiment, almost no differences can be found. The visualization of the  
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(a) Visualization of learned observation densities of a Hidden Markov Model representing the 

priority class. 

(b) Visualization of learned observation densities of a Hidden Markov Model representing the yield
class. 

Figure 6.12: Visualization of learned observation densities of two four-hidden-state Hidden Markov 
Models. The densities in subfigure (a) are associated to a model representing the priority class. 

Subfigure (b) visualizes densities that are associated to a model representing the yield class. In both 
subfigures, each column of plots visualizes a Gaussian in one hidden state. The column order reflects the 
hidden-state numbering of the models. Both Hidden Markov Models are parametrized using trajectories 

that are resampled to a time-based representation and described by the feature tuple ( , , ).  
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observation densities of the compared HMM can be found in Figure 6.5. Also, a strong similarity 
is found between the observation densities associated to the reparametrized HMM representing 
the yield class and those associated to the corresponding best-performing model of the grid
search experiment. Associated visualizations are depicted in subfigure (b) of Figure 6.12 and in 
subfigure (a) of Figure 6.7, respectively. All parameter values of the depicted observation 
densities associated to the reparametrized priority and yield model are provided in Table A.3.1
and Table A.3.2, respectively, in section A.3 of the Appendix. Detailed descriptions of 
observation densities are omitted at this point. Those for the corresponding models in section 
6.1.2.2.1 can be seen as almost equally suitable for the observation density visualizations 
associated to the HMMs parametrized in this experiment. Visualizations of transition probabilities 
associated to the two reparametrized HMMs are depicted in Figure A.3.1 and Figure A.3.2, 
respectively, of the Appendix. 

As described in section 6.1.2.2.2 of the grid search experiment, one of the four best-performing 
yield HMMs is found to deviate in terms of learned observation densities. The densities of the 
deviating model are visualized in Figure 6.9. However, among the four reparametrized yield
HMMs, none deviates strongly. For this, Figure 6.13 visualizes the learned observation densities 
of another reparametrized yield HMM. Table A.3.3 of the Appendix provides all parameter 
values of the observation densities visualized in this figure. Above-stated deviating yield HMM 
that is analyzed in the context of the grid search experiment is produced using a particular portion 
of the development data. The HMM of which densities are visualized in Figure 6.13 is 
reparametrized on basically the same but augmented data portion. Put differently, the former 
portion is a subset of the latter. By visually comparing observation densities visualized in 
subfigure (b) of Figure 6.12 and Figure 6.13, one can see that these are parametrized highly  

 
Figure 6.13: Visualization of learned observation densities of a four-hidden-state Hidden Markov Model 
representing the yield class. Each column of plots visualizes a Gaussian in one hidden state. The column 

order reflects the hidden-state numbering of the model. The model is parametrized during the cross-
validation of a parameter combination determining the use of trajectories resampled to a time-based 

representation and described by the feature tuple ( , , ). However, the trajectory data portion used for 
developing this model is a different one than the one used to develop models presented above. 
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similar. Observation densities of the two remaining yield HMMs are also highly similar to those 
depicted here. However, in order to keep the length of this section within reasonable limits, those 
are not visualized.  

6.3. Counteracting False Classifications of Priority Intersection Paths 
The experiment presented in section 6.2 aims at reducing the number of misclassifications of 
priority and yield-regulated intersection paths. The measure taken to achieve this is employing 
an augmented set of intersection paths and associated trajectory data regulated by stated two 
classes. While this experiment achieves a reduction of falsely classified yield-regulated 
intersection paths, no improvement regarding prioritized ones can be shown. Therefore, several 
experiments are conducted in order to identify possible solutions to this problem. Approaches of 
these experiments are based on a thorough problem analysis, which is outlined in subsection 6.3.1. 
Subsection 6.3.2 expands on the design of stated experiments. Results are presented in subsection 
6.3.3. 

6.3.1. Problem Analysis

Under the priority class, diverse vehicle behavior is aggregated. Vehicles approaching 
intersections on prioritized intersection paths generally have the right of way over vehicles that 
approach on differently regulated ones. For instance, such approaching from yield or stop-
regulated intersection paths have to give way. However, vehicles approaching from prioritized
intersection paths that cross oncoming intersection paths which are also prioritized, might have 
to give way, too. Such situations commonly occur for left-turn maneuvers or for going straight at 
intersections for which the prioritized road is bent. Regarding the latter case, going straight 
only leads to the crossing of oncoming prioritized intersection paths, if following the 
prioritized road demands making a right turn. In contrast, vehicles turning left in order to stay 
on the bent prioritized road do so without crossing other prioritized intersection paths. For 
this reason, those prioritized intersection paths that involve giving way to other prioritized
ones shall be termed as yielding priority intersection paths for the remainder of this thesis. 
Interestingly, it is found that intersection paths that allow passing through or describe right turns 
at intersections without having to give way are classified correctly in all cases. In previously 
shown experiments, exclusively yielding priority intersection paths are getting misclassified.  

Before presenting a suggested solution approach, the most important findings of a thorough 
analysis of described misclassification problem are outlined in the following. Firstly, trajectories 
following intersection paths regulated by various traffic regulations are analyzed in subsection 
6.3.1.1. Also, the viewpoint of inferencing HMMs representing the priority class is considered. 
Subsection 6.3.1.2 expands on this. Among other means, plots visualizing state sequences that are 
most probable given trajectories are also analyzed. However, these are found to not provide 
helpful insights and, therefore, are omitted in the following.  

6.3.1.1. Trajectory-Data-Based Analysis 

The trajectory  data, depicted as blue curves in Figure 6.14 and Figure 6.15, is associated to 
different priority-regulated intersection paths. Instances of those intersection paths that are 
followed by vehicles not having to yield to other vehicles are depicted in Figure 6.14. In subfigure 
(a) of Figure 6.14,  data of 100 trajectories following an intersection path passing straight 
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through an intersection is shown. The data is plotted over the feature. In subfigure (b), data 
of another 100 trajectories following an intersection path describing a right turn is shown. 
Concerning the former, the great majority of trajectories exhibit no decreases in . Almost all 
values are spread over the range between approx. 0.600 and 1.000. However, concerning the 
latter, almost all trajectories initially also show roughly constant  values that are spread over the 
same range and, subsequently, exhibit almost linear decreases. Decreases begin at  values of 
around - 0.800. Subsequently, associated vehicles continue to drive at almost constant  values 
primarily spread over the range between 0.250 and 0.400 until reaching the point closest to the 
intersection center. 

 
(a) Trajectories of vehicles passing straight through an intersection. 

(b) Trajectories of vehicles turning right at an intersection. 

Figure 6.14: Normalized speed data of randomly sampled trajectories associated to two different 
priority-regulated intersection paths, plotted over the intersection-relative time feature. Each blue curve 

denotes data of one trajectory. In subfigure (a), 100 trajectories associated to an intersection path, 
followed by vehicles passing straight through the intersection without having to yield to other vehicles, 
are shown. Subfigure (b) shows 100 trajectories associated to an intersection path, followed by vehicles 

executing a right turn.  

In Figure 6.15, yielding-priority-regulated intersection paths and associated trajectory  data is 
shown. Hence, in order to follow these intersection paths, crossing of other prioritized ones is 
necessary. As mentioned above, several yielding priority intersection paths are misclassified. 
In the context of this thesis, a speed-level-based distinction of these intersection paths is made. 
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Trajectories depicted in the two subfigures of Figure 6.15 differ in terms of initial  value levels 
corresponding vehicles drive at when approaching intersections. Firstly, there are intersection 
paths that are followed by vehicles that, when driving freely, drive at comparatively high speeds 
on associated intersection-incoming segments. No other speed limits than 50  (  13.89 ) and 
30 (  8.33 ) are represented in intersection scenarios considered in this thesis. Stated vehicles 
mostly comprise those that adapt their driving speed to the 50 limit. For reasons of brevity, 
described intersection paths are referred to as yielding priority intersection paths of type I for 
the remainder of this thesis. Secondly, other intersection paths are followed by vehicles free-
driving at comparatively low speeds on associated intersection-incoming segments. These 
vehicles commonly adapt their driving speed to the 30 limit and frequently drive at speeds 
close to this limit during intersection approaches. For the remainder of this thesis, associated 
intersection paths are referred to as yielding priority intersection paths of type II. 

(a) Trajectories of vehicles approaching at higher speeds. 

(b) Trajectories of vehicles approaching at lower speeds. 

Figure 6.15: Normalized speed data of randomly sampled trajectories associated to two different 
priority-regulated intersection paths describing left turns, plotted over the intersection-relative time 

feature. Each blue curve denotes data of one trajectory. In subfigure (a), 100 trajectories associated to an 
intersection path, followed by vehicles approaching an intersection at comparatively high speeds are 
shown. Subfigure (b) shows 100 trajectories associated to an intersection path followed by vehicles 

approaching at comparatively low speeds. All those vehicles potentially have to give way to vehicles 
following other prioritized intersection paths. 
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In subfigure (a) of Figure 6.15, data of trajectories assigned to yielding priority intersection 
paths of type I are shown. Subfigure (b) depicts  data of trajectories assigned to yielding 
priority intersection paths of type II. In both cases, values are initially spread over the range 
between 0.600 and 1.000 as is the case for trajectories in Figure 6.14. Most of the trajectories 
depicted in both subfigures of Figure 6.15 show braking behavior already from the left side of the 
plot, hence at  values around - 1.000. In subfigure (a), values decrease strongly from the 
beginning. In subfigure (b), however, values decrease relatively slowly in the beginning. From 

values around - 0.6 onwards, values decrease progressively. Most trajectories of both 
figures have their  minima at  feature values around - 0.150. The values of these minima are 
spread over the range between 0.200 and 0.350 and between 0.300 and 0.450 in subfigure (a) and 
(b), respectively. This is followed by accelerating until the point closest to the intersection center, 
hence at values around 0.000, is reached. Apart from that, a fraction of trajectories depicted 
in both subfigures show braking behavior earlier than other trajectories. These have  minima 
around 0.000. In several cases, episodes of waiting in standstill can be interpreted from trajectory 
points exhibiting  values of approx. 0.000 for extended ranges along the feature. This is 
followed by accelerating behavior until the point closest to the intersection center is reached. 

The difference between trajectories depicted in both subfigures of Figure 6.15 and those depicted 
in Figure 6.14 (a) is obvious. Almost no trajectories depicted in the latter exhibit speed reductions, 
whereas such are clearly visible in both subfigures of the former. Trajectories depicted in Figure 
6.14 (b) are similar to such depicted in both subfigures of Figure 6.15 solely regarding decreases 
in  values. However, no minima followed by increases of  values can be found in the former. 
This way, a clear distinction can be made between trajectories assigned to priority-regulated 
intersection paths followed by vehicles not having to give way to others and yielding priority
ones.  

In contrast, more obvious similarities can be determined when comparing trajectories assigned to 
yielding priority intersection paths to such that are assigned to yield, yield-to-right and 
stop-regulated intersection paths. This might be one of the reasons why many of the former 
intersection paths are often confused with such of the three latter ones.  

Figure 6.16 and Figure 6.17 show  data of trajectories assigned to a yield and a yield-to-
right-regulated intersection path, respectively. Analogously to previous figures, data is plotted 
over the feature also in these two figures. Trajectories depicted in both figures exhibit  curve 
shapes that are highly similar among themselves. Initial  values are spread over a common range 
between approx. 0.600 and 1.000. After that, values decrease progressively. These characteristics 
can also be found for trajectories assigned to both types of yielding priority intersection paths. 
However, trajectories assigned to yield and yield-to-right-regulated intersection paths exhibit 

curve minima comparatively early at values of around - 0.200. These minima take on  
values between approx. 0.300 and 0.450 which is more similar to trajectories assigned to yielding 
priority intersection paths of type II than to trajectories assigned to such of type I. Some 
trajectories assigned to yield and yield-to-right-regulated intersection paths not only show 
standstills but also episodes of stop-and-go driving. The latter manifest in slight increases of  
values followed by decreases, which are occasionally repeated several times. As observed for 
trajectories assigned to both types of yielding priority intersection paths, steep  value increases 
follow after minima or standstills episodes until the point closest to the intersection center is 
reached. 
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Figure 6.16: Normalized speed data of 100 randomly sampled trajectories associated to a yield-regulated 
intersection path, plotted over the intersection-relative time feature. Each purple curve denotes data of one 

trajectory. Vehicles following this intersection path execute a left turn. 

Figure 6.17: Normalized speed data of 100 randomly sampled trajectories associated to a yield-to-
right-regulated intersection path, plotted over the intersection-relative time feature. Each dark yellow 

curve denotes data of one trajectory. Vehicles following this intersection path execute a left turn. 

Apart from that, also trajectories assigned to a stop-regulated intersection path share similarities 
with trajectories assigned to yielding-priority-regulated ones. In Figure 6.18,  data of such 
trajectories is depicted. Analogously, the data is plotted over the feature. Initial  values are 
also spread over the range between 0.600 and 1.000. What follows are steady  decreases until 
minima are reached. In contrast to trajectories associated to yielding priority intersection paths, 
most trajectories exhibit one  minimum at values around 0.000. From this depiction, one can 
also see that some trajectories exhibit episodes of stop-and-go driving. Finally, all trajectories 
show accelerating until the point closest to the intersection center is reached. 

Conditions of standstill events are defined in section 5.1.4.2. When comparing estimates of the 
frequency of such with regard to trajectories depicted above, the following is noted. Of 100 
randomly selected trajectories assigned to each of both a yielding priority intersection path of 
type I and one of type II, 11 and 15, respectively, exhibit at least one standstill. In the context of 
yield, yield-to-right and stop-regulated intersection paths, however, 24, 13 and 99, 
respectively, of 100 trajectories exhibit at least one standstill. Thus, only trajectories assigned to 
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stop-regulated intersection paths are distinctly different to yielding priority ones concerning 
this characteristic. 

 
Figure 6.18: Normalized speed data of 100 randomly sampled trajectories associated to a stop-regulated 
intersection path, plotted over the intersection-relative time feature. Each green curve denotes data of one 

trajectory. Vehicles following this intersection path cross the associated intersection straight. 

In this section, trajectory  data is shown for trajectories assigned to only some specific 
intersection paths. However, obtained insights can also be confirmed in the context of other 
intersection paths. Also, the target direction described by yield, yield-to-right and stop-
regulated intersection paths, hence turning left, right or going straight, is found to have no impact 
on this. While insights are shown with respect to the  feature, similar ones can also be gathered 
when viewing plots of  data. In order to reasonably limit the scope of this analysis, more plots 
are not shown. Apart from that, important to mention is that all intersection-incoming segments 
of stop, yield and yield-to-right-regulated intersection paths considered in this thesis are 
subject to 30 speed limits only. Thus, those are mostly followed by vehicles approaching 
intersections at comparatively low speeds. 

6.3.1.2. Analysis of Likelihood-Based Inference Results

Additionally, the view of HMMs on intersection paths shall be considered. More precisely, the 
normalized class log-likelihoods of prioritized intersection paths, for which trajectory data is 
depicted above, are analyzed. These log-likelihoods are gathered from the experiment using the 
dataset which is augmented by data gathered from four additionally designed intersection 
scenarios. It is presented in section 6.2. The calculation of class log-likelihoods and how these are 
normalized is explained in section 5.2.2.  

Figure 6.19 shows normalized class log-likelihoods that are obtained when conducting inference 
on two priority-regulated intersection paths that are followed by vehicles not having to give 
way to others. These are classified correctly. In each subplot, the normalized class log-likelihoods 
are depicted as blue bars, labeled with the respective value. The classes normalized log-
likelihoods are associated to are abbreviated. The classes appear in the order priority, stop, 
traffic light, yield and yield to right on the horizontal axis below the bars. The two 
intersection paths depicted on the left and the right side of the figure describe going straight 
through and turning right at an intersection, respectively. Associated trajectory data is depicted in 
the subfigures (a) and (b) of Figure 6.14, respectively. In the case of the intersection path that 
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describes going straight through an intersection, the normalized class log-likelihoods are approx. 
0.566 and 0.434 in favor of the priority and the traffic light class, respectively. The 
difference between these values is approx. 0.132. Concerning the intersection path that describes 
a right turn at an intersection, normalized class log-likelihoods are distributed over 4 of the 5 
traffic regulation classes. The highest two values among these are approx. 0.444 and 0.214 also 
in favor of the priority and the traffic light class, respectively. Their difference amounts to 
approx. 0.230. Thus, the classification of this intersection path is made more distinctly than the 
one of the previously described intersection path.  

 
Figure 6.19: Normalized class log-likelihoods associated to two priority-regulated intersection paths. 
Magnitudes of these are visualized as blue bars. Those depicted in the left subplot are associated to an 

intersection path that describes passing straight through an intersection. Those depicted in the right 
subplot are associated to an intersection path that describes a right turn at an intersection. The regulation 
classes values are associated to are abbreviated and appear in the order priority, stop, traffic light, 

yield and yield to right below the respective bars.

Normalized class log-likelihoods for the two yielding priority intersection paths are depicted in 
Figure 6.20. As both are misclassified, values associated to other classes than the priority class 
are the highest among all intersection-path-associated values. The normalized class log-
likelihoods depicted in the left subplot are associated to the yielding priority intersection path 
of type I. Figure 6.15 (a) shows  data of trajectories assigned to this intersection path. The value 
of approx. 0.176 marks the normalized class log-likelihood in favor of the priority class and is 
only the third-highest. The highest and second-highest values are approx. 0.475 and 0.324. These 
are associated to the stop and traffic light class, respectively. The difference between the 
normalized log-likelihood in favor of the priority class and the highest one is approx. 0.299. 
The right subplot of Figure 6.20 shows the normalized class log-likelihoods associated to the 
yielding priority intersection path of type II. Figure 6.15 (b) shows  data of trajectories 
assigned to this intersection path. The normalized class log-likelihood in favor of the priority
class has a value of approx. 0.194 and is also only the third-highest one. The two highest values 
of approx. 0.280 and 0.277 are associated to the classes yield and yield to right, respectively. 
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The highest normalized class log-likelihood and the one associated to the priority class have a 
difference of approx. 0.086. 

 
Figure 6.20: Normalized class log-likelihoods associated to two falsely classified prioritized 

intersection paths describing left turns. Magnitudes of these are visualized as blue bars. Those depicted in 
the left subplot are associated to an intersection path that is followed by vehicles approaching an 
intersection at comparatively high speeds. Those depicted in the right subplot are associated to an 

intersection path that is followed by vehicles approaching at comparatively low speeds. All of those 
vehicles potentially have to give way to vehicles following other prioritized intersection paths. The 

regulation classes values are associated to are abbreviated and appear in the order priority, stop, 
traffic light, yield and yield to right below the respective bars. 

Above-presented test inference results provide insights into the classification of several 
priority-regulated intersection paths. Similar results are observed for intersection paths other 
than the shown priority-regulated ones that are followed by vehicles not having to give way to 
other vehicles and yielding-priority-regulated ones. However, in order to maintain a reasonable 
scope for this section, these are not analyzed. 

6.3.2. Experiment Design

Insights gained from the problem analysis which is briefly outlined in the preceding section shall 
help comprehending why misclassifications of priority-regulated intersection paths occur. 
Based on this, a solution for stated misclassifications shall be developed. It shall account for the 
different behavior characteristics, assumed to be aggregated under the priority class. Before 
explaining the experimental setting of a suggested problem solution in detail in subsection 6.3.2.2, 
the design of several unsuccessful attempts are briefly outlined in subsection 6.3.2.1. 

6.3.2.1. Unsuccessful Problem Approaches 

Initially, all experiments conducted up to this point are scoured for already existing priority
HMMs that potentially provide better performance regarding the misclassification of priority
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intersection paths. Results of the grid search experiment comprise a great number of HMMs with 
different numbers of hidden states, using different representations of trajectories etc. This 
experiment is presented in section 6.1. For each set of runs validating a certain parameter 
combination, the test F1 score mean is calculated for the binary classification problem comprising
the priority class as one class and the remaining classes combined as a second class. However, 
the parameter combination producing the best-performing HMMs of the grid search experiment 
turns out to also provide the best solution for the stated binary classification problem. 

In another solution approach, it is tried to substitute the priority class with two new ones.
Technically, these should be referred to as auxiliary classes. However, for reasons of brevity and 
the fact that an intersection path which is assigned to either one of these auxiliary classes still gets 
labeled as prioritized, these are also referred to as classes. The main reason for creating these
classes is deduced from the preceding problem analysis. Namely, two classes are employed in 
order to better account for the variety detected for trajectories following different priority-
regulated intersection paths. One of these classes represents all yielding-priority-regulated 
intersection paths. The other class comprises solely the prioritized intersection paths that are 
followed by vehicles not having to give way to others. The remaining four classes remain 
unaltered. The dataset used for this approach is the augmented dataset that is also used in the 
experiment presented in section 6.2. All yielding-priority intersection paths are manually 
assigned to the corresponding new class. The remaining ones are assigned to the other new class. 
Subsequently, two HMMs representing the new classes, are parametrized on the corresponding 
data. The HMMs representing the remaining four classes, are the same ones that are parametrized 
in above-mentioned experiment which is conducted on an augmented trajectory dataset. During 
test inference, results are also validated using the strategy introduced in section 4.4. However, 
when examining the averaged results, the described modification does not lead to considerable 
improvements regarding mispredictions of priority-regulated intersection paths. Thus, it is not 
expanded on this six-class approach.  

6.3.2.2. Design of the Suggested Solution 

In the following, it is shown which further modifications of the six-class approach are performed 
in order to provide a more successful solution. Analogously to this approach, four of the models 
that are parametrized in the course of the experiment conducted on an augmented trajectory 
dataset are employed. These models represent the classes yield, stop, traffic light and yield 
to right. However, instead of substituting the priority class with two classes, three classes are 
created to represent this traffic regulation. Hence, the suggested approach is a seven-class 
approach. Each of the three new classes is represented by one HMM. As in the six-class approach, 
one of the three new classes represents prioritized intersection paths which are followed by 
vehicles not having to give way to others. The other two classes represent yielding-priority-
regulated intersection paths. For this, the manually made distinction between the former class of 
intersection paths and the latter two, which is mentioned in section 6.3.2.1, is reused. The two 
classes representing yielding-priority-regulated intersection paths differentiate these based on 
the speed-level-based distinction which is introduced in section 6.3.1.1 of the problem analysis. 
Therefore, one of these two classes represents yielding-priority intersection paths of type I, 
whereas the other class represents those of type II. In this experiment, the speed-level-based 
distinction of intersection paths is implemented as follows: For each intersection path, the 
maximum  value of all points, of trajectories assigned to this intersection path, located on its 
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incoming segment is determined. In the case of this maximum being equal to or greater than a 
specific threshold, the associated intersection path is assigned to the class representing yielding-
priority intersection paths of type I. In the complementary case, hence for value maxima 
below stated threshold, the intersection path is assigned to the class representing those of type II. 
In this context, this simple implementation is used as it achieves the desired speed-level-based 
distinction well with the value of 12.50 being set for the stated threshold. However, for 
trajectory datasets in which  value outliers might be present, it is recommended to determine the 
intersection-path-representative  value that is compared to the threshold differently. This could, 
for instance, be done by also gathering the  maximum from each trajectory which is assigned to 
a specific intersection path. Instead of determining the greatest maximum value, an average could 
then be computed from these maxima. Also, the suitability of stated threshold value would need 
to be reexamined. 

The three new HMMs are parametrized as determined by the parameter combination that produces 
the best-performing models of the grid search experiment. Thus, trajectories that are resampled 
to a time-based representation and described by the feature tuple ( , , )  are used to 
parametrize four-hidden-state HMMs. Again, the dataset used for this approach is the augmented 
dataset that is also used in the experiment presented in section 6.2. As in other experiments, the 
validation strategy introduced in section 4.4 is applied.  

6.3.3. Experiment Results 

In the following, results of this experiment are shown. The classification result is presented and 
evaluated in subsection 6.3.3.1. Parametrized models representing the priority class are 
analyzed in subsection 6.3.3.2. 

6.3.3.1. Evaluation of the Classification Result 

By viewing the normalized joint confusion matrix depicted in Figure 6.21, one can see that all 
prioritized intersection paths are correctly assigned to their respective classes. However, two 
additional error cases emerge. Firstly, approx. 5 % of the yield intersection paths are falsely 
classified as yielding-priority-regulated ones of type II. Secondly, this label is falsely assigned
also to approx. 10 % of the yield-to-right-regulated intersection paths. Calculated from the test 
F1 scores of all four cross-validating experiment runs, the mean test F1 score is approx. 0.809. The 
associated standard deviation is approx. 0.053.  

Additionally, class log-likelihoods shall be presented. For this, the normalized class log-
likelihoods of those prioritized intersection paths that are also analyzed in section 6.3.1 of the 
problem analysis are considered. Normalized class log-likelihoods of prioritized intersection 
paths followed by vehicles not having to give way to others and yielding-priority-regulated ones 
are shown in Figure 6.22 and Figure 6.23, respectively.  

The prioritized intersection path that allows passing straight through the associated intersection 
has its associated normalized class log-likelihoods depicted in the left subplot of Figure 6.22. It 
is correctly classified with an associated normalized log-likelihood of approx. 0.566. The only 
other normalized log-likelihood greater 0.000 is associated to the traffic light class. The difference 
between both values is approx. 0.132. In the right subplot of the figure, one can see that the 
prioritized intersection path describing a right turn at the associated intersection is also 
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correctly classified. The associated normalized log-likelihood is approx. 0.325. The second-
highest value is associated to the class representing yielding-priority intersection paths of type 
I. The value difference of both normalized log-likelihoods is approx. 0.126. 

 
Figure 6.21: Normalized joint confusion matrix describing the classification result achieved in the context 

of a seven-class approach. Each class is represented by one Hidden Markov Model. Trajectories 
resampled to a time-based representation and described by the feature tuple ( , , ) are used for the 

parametrization of these seven four-state Hidden Markov Models. A joint confusion matrix is computed 
by forming the elementwise sum of the individual confusion matrices describing the classification results 

of experiment runs cross-validating a certain parameter combination. Traffic regulation classes are 
abbreviated and appear on rows and columns. The first three abbreviations stand for classes jointly 

representing the priority class. The first covers prioritized intersection paths that are followed by 
vehicles which are not obliged to give way to others. The latter two classes cover prioritized 

intersection paths followed by vehicles that potentially have to give way to vehicles following other 
prioritized ones. On intersection paths of these two classes, vehicles approach intersections at 

comparatively high and low speeds, respectively. The remaining abbreviations stand for the classes stop, 
traffic light, yield and yield to right.  

The yielding-priority-regulated intersection path of type I is now also correctly classified. The 
associated normalized log-likelihood is approx. 0.690. This is shown in the left subplot of Figure 
6.23. The difference to the second-highest normalized log-likelihood, which is associated to the 
stop class, is approx. 0.512. The magnitude of this difference stands out among evaluated ones. 
Thus, the classification of this intersection path can be interpreted as a highly distinct one. The 
majority of other yielding-priority intersection paths of type I are also classified similarly 
distinctly. Normalized class log-likelihoods of the intersection path of type II are depicted in the 
right subplot of the same figure. This intersection path is also classified correctly with a 
normalized log-likelihood of approx. 0.238. In contrast to the previous intersection path, the 
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difference between stated normalized log-likelihood and the second-highest one is only approx. 
0.006. In other words, the normalized log-likelihood associated to the correct class is only 
marginally above the one associated to the yield class. Similar results are also observed for other 
yielding priority intersection paths of type II.  

 
Figure 6.22: Normalized class log-likelihoods associated to two prioritized intersection paths. 

Magnitudes of these are visualized as blue bars. Those depicted in the left subplot are associated to an 
intersection path that describes passing straight through an intersection. Those depicted in the right 

subplot are associated to an intersection path that describes a right turn at an intersection. The regulation 
classes log-likelihoods are associated to are abbreviated and appear below the respective bars. The first 

four appear in the order stop, yield, traffic light, and yield to right. The last three abbreviations 
stand for classes jointly representing the priority class. The first covers prioritized intersection paths

that are followed by vehicles which are not obliged to give way to others. The latter two classes cover 
prioritized intersection paths followed by vehicles that potentially have to give way to vehicles 
following other prioritized ones. On intersection paths of these two classes, vehicles approach 

intersections at comparatively low and high speeds, respectively. 

With regard to the two additional error cases mentioned above, an associated finding is outlined 
in this paragraph. Certain yield and yield-to-right intersection paths are falsely classified as 
yielding-priority-regulated ones of type II. However, a common property shared by these 
intersection paths is that all describe right turns at intersections. In the context of intersections in 
Germany, it can be assumed that right-turning prioritized intersection paths generally do not 
cross other prioritized ones. Thus, assigning these intersection paths to classes representing 
any yielding-priority-regulated ones goes against the definition of these classes. 
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Figure 6.23: Normalized class log-likelihoods associated to two prioritized intersection paths 

describing left turns. Magnitudes of these are visualized as blue bars. Those depicted in the left subplot 
are associated to an intersection path that is followed by vehicles approaching an intersection at 

comparatively high speeds. Those depicted in the right subplot are associated to an intersection path that 
is followed by vehicles approaching at comparatively low speeds. All of those vehicles potentially have to 

give way to vehicles following other prioritized ones. The regulation classes log-likelihoods are 
associated to are abbreviated and appear below the respective bars. The first four appear in the order 

stop, yield, traffic light, and yield to right. The last three abbreviations stand for classes jointly 
representing the priority class. The first covers prioritized intersection paths that are followed by 

vehicles which are not obliged to give way to others. The latter two classes cover prioritized 
intersection paths followed by vehicles that potentially have to give way to vehicles following other 
prioritized ones. On intersection paths of these two classes, vehicles approach intersections at 

comparatively low and high speeds, respectively. 

6.3.3.2. Analysis of Parametrized Hidden Markov Models

In the following, the observation densities of the three new HMMs jointly representing the 
priority class shall be visualized. The visualization approach designed for this purpose is 
introduced in section 6.1.2.2.1. All analyzed HMMs are parametrized on the analysis 
development data portion. 

Figure 6.24 visualizes observation densities of the HMM representing the class which covers 
prioritized intersection paths that are followed by vehicles not having to give way to others. 
All parameter values of depicted observation densities can be gathered from Table A.4.1 in 
section A.4 of the Appendix. A depiction of transition probabilities associated to this model is 
found in Figure A.4.1 in the same section in the Appendix. The model shares similarities with 
priority HMMs parametrized in other experiments. With regard to the mean component values 
and two-standard-deviation regions associated to the features  and , the first and second hidden 
state frequently emit observations of free-driving. This can be seen in the first and second subplot, 
respectively, of the upper row of plots in Figure 6.24. The third hidden state frequently emits 
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observations of braking from medium or high speed and rarely also of gentle accelerating. 
However, the model does not have a state that frequently emits observations of soft as well as 
hard braking and accelerating from medium speeds. Instead, the fourth state of this HMM is one 
of three states that frequently emit observations of free-driving.  

 
Figure 6.24: Visualization of learned observation densities of a four-hidden-state Hidden Markov Model 
representing the priority class for intersection paths followed by vehicles that are not obliged to yield to 

others. Each column of plots visualizes a Gaussian in one hidden state. The column order reflects the 
hidden-state numbering of the model. The model is parametrized using trajectories that are resampled to a 

time-based representation and described by the feature tuple ( , , ).  

The observation densities visualized in Figure 6.25 (a) and (b) are associated to the models 
representing the classes that cover yielding-priority intersection paths of type I and II, 
respectively. All parameter values of depicted densities are found in Table A.4.2 and Table A.4.3, 
respectively in section A.4 of the Appendix. Visualizations of transition probabilities are depicted 
in Figure A.4.2 and Figure A.4.3 in the same section of the Appendix. At first glance, the 
observation densities of both models seem similar. The first three hidden states of the model 
representing the classes that cover yielding-priority intersection paths of type I frequently emit 
observations of braking. The individual mean component values associated to the  feature 
decreases over these three states. Hence, observations of increasingly hard braking are frequently 
emitted. The densities in the first two hidden states model braking from high speeds and the third 
from medium speed. The model representing the classes that cover yielding-priority intersection 
paths of type II also has multiple hidden states frequently emitting observations of breaking from 
high or medium speeds. More precisely, the second and third hidden state have observation 
densities with negative mean component values associated to the  feature. Again, these values 
decreases from the second to the third state. The observation density in the fourth hidden state is 
similar for both HMMs. Observations of accelerating or soft braking from low or medium speed 
are frequently emitted by these states. However, both models differ in the observation density in 
the first hidden state. Instead of solely emitting observations of braking, the density in the first 
hidden state of the model depicted in subfigure (b) frequently emits observations of very gentle 
braking and also free-driving. 
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(a) Densities of a model representing the class covering intersection paths followed by vehicles that 

approach intersections at comparatively high speeds. 

(b) Densities of a model representing the class covering intersection paths followed by vehicles that 
approach intersections at comparatively low speeds. 

Figure 6.25: Visualization of learned observation densities of two four-hidden-state Hidden Markov 
Models representing the priority classes for intersection paths followed by vehicles that potentially have 

to give way to vehicles following other prioritized ones. These vehicles approach intersections at 
comparatively high (a) and low speeds (b), respectively. In both subfigures, each column of plots 

visualizes a Gaussian in one hidden state. The column order reflects the hidden-state numbering of the 
models. The models are parametrized using trajectories resampled to a time-based representation and 

described by the feature tuple ( , , ). 
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6.4. Discussion of Results 
In the following, several findings of the conducted experiments are revisited and critically 
discussed or brought into context. Subsection 6.4.1 expands on gained insights into observation 
densities and transition probabilities. Characteristics of the trajectory data basis are discussed in 
subsection 6.4.2. 

6.4.1. Insights into Hidden Markov Model Characteristics in the Context of Traffic 
Regulation Inference  

In a series of different experiments, HMMs are parametrized with the purpose of representing 
traffic regulations. Resulting observation probability densities are discussed in subsection 6.4.1.1, 
transition probabilities in subsection 6.4.1.2.

6.4.1.1. Hidden States and Observation Densities 

The HMMs that are termed the best-performing ones of the grid search experiment are produced 
by a parameter combination determining the hidden-state count to be set to four. This experiment 
is presented in section 6.1. As shown in section 6.1.2.1.3, other parameter combinations determine 
this parameter to be set to higher values which yields higher test F1 score means. Based on this 
finding, one might argue that higher hidden-state counts are more suitable to model and describe 
trajectories of differently regulated intersection paths, given that other parameters are set to 
suitable values. However, as outlined in section 6.1.2.2.3, analyzed models with higher hidden-
state counts and test scores are found to exhibit high redundancies regarding learned observation 
densities in different hidden states. Almost no redundancies are detected with respect to the best-
performing HMMs. Additionally, in the context of certain values of other parameters, evidence 
is found that overfitting might occur when choosing higher hidden-state counts. In Figure 6.4, one 
can see how training F1 score means steadily increase up to a hidden-state count of nine. In 
contrast, test F1 score means have a local maximum at the hidden-state count of four. After that, 
test F1 score means decrease. A test F1 score mean higher than stated local maximum is not 
achieved for state counts lower than eight. This phenomenon of increasing training and decreasing 
test score can be a sign of overfitting [12]. Furthermore, one of the competing HMM sets with a 
hidden-state count of eight achieve test F1 scores with a standard deviation of approx. 0.071. In 
contrast, the standard deviation associated to the best-performing model set is approx. 0.057, 
hence lower. Put differently, test F1 scores associated to the competing HMM set vary stronger, 
which indicates good performance on specific test data portions and comparatively poor 
performance on other portions. For described reasons, it is decided to focus on above-mentioned 
four-hidden-state HMMs. 

HMMs developed within the experiment aiming at counteracting false priority classifications 
shall also be critically evaluated. This experiment is presented in section 6.3. One of these is 
parametrized on priority intersection paths that allow passing straight through or turning right 
at an intersection and are followed by vehicles that are not obliged to yield to others. Associated 
observation densities are visualized in Figure 6.24. In this figure, one can see how observation 
densities in three of the four hidden states seem redundant with respect to mean vector 
components associated to the  and  feature. These frequently emit free-driving observations 
and diversify in terms of components associated to the  feature. Basically, this is what is 
expected. Vehicles following such intersection paths generally do not stop during intersection 
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crossings which produces comparatively invariable observation signals. Thus, considering that 
four-hidden-state HMMs are suitable to model more complex observation signals exhibiting e.g. 
braking or standstills, aforementioned signals are relatively simple to model by such HMMs. It 
can be reasoned that two of these three hidden states could be merged into one in order to model 
observations in a less redundant way. Another instance of this finding might be the model that is 
parametrized on intersection paths belonging to the yielding priority class of type I in the 
context of the same experiment. From the observation densities in four hidden states, three model 
observations of braking. These are visualized in the first three plot columns of Figure 6.25 (a). 
Based on the same reasoning, one might try to merge some of these states. 

In the context of the same experiment’s analysis another remark regarding yielding-priority-
regulated intersection paths shall be made. As outlined in section 6.3.3.2, the two models 
representing the class covering yielding priority intersection paths of type I and II, respectively, 
differ regarding learned observation density in the first hidden state. The densities associated to 
the model representing the class of stated intersection paths of type I are visualized in Figure 6.25 
(a). Figure 6.25 (b) visualizes the densities associated to the model which represents the class of 
yielding-priority-regulated intersection paths of type II. As one can see, the first hidden state of 
the former model frequently emits observations of gentle braking. The corresponding state of the 
latter model, however, frequently emits observations of very gentle braking and also free-driving. 
This difference goes well with what is observed regarding trajectory data in section 6.3.1.1 of the 
problem analysis of that experiment. The  data of trajectories associated to yielding-priority
intersection paths is depicted in Figure 6.15. On the one hand, trajectories assigned to yielding-
priority intersection paths of type I show noticeably decreasing  values which can be seen on 
the left side of subfigure (a) of Figure 6.15. On the other hand, trajectories assigned to yielding-
priority intersection paths of type II show only slightly decreasing or almost constant  values 
at the beginning of intersection approaches. These are depicted in subfigure (b) of this figure. 
Thus, one might interpret the first hidden state of both aforementioned HMMs as being one 
element that enables the distinction of both types of yielding-priority-regulated intersection 
paths. 

6.4.1.2. Transition Probabilities 

HMMs are suitable to model alternative sequences of frequently emitted observations. This can, 
for instance, be shown for the best-performing priority model of the grid search experiment. 
Associated visualizations of observation densities and transition probabilities are depicted in 
Figure 6.5 and Figure 6.6, respectively. The densities in the first and the third hidden state model 
observations of free-driving close to the beginning and the end of drives along intersection-
incoming segments. Observations of braking are frequently emitted by the second hidden state. 
As visible in the latter figure, transitioning from the first into the third hidden state has a 
probability of approx. 0.024, whereas transitioning in the second one has a probability of approx. 
0.012. The former transition models observations gathered from vehicles that approach and leave 
intersections without braking. In a probable sequence of hidden states underlying such 
observations, states that frequently emit observations of braking might be dispensable. Instead, 
the latter transition models observations gathered from vehicles that brake during their approach. 
In this case, a probable sequence would most likely include hidden states that frequently emit 
observations of braking. In other words, two different ways of crossing intersections are modeled 
by this HMM. Apart from that, the former transition is more probable than the latter. As HMMs 
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are learned from trajectories, a reasonable explanation for this might be that specific intersection 
paths are followed by more vehicles than others.  

As mentioned in section 5.2.1, initially, the topology for all HMMs is ergodic. In several 
parametrized models, characteristics of the ergodic topology are retained during the 
parametrization procedure. For instance, pairs of transitions with opposite directions that 
interconnect hidden-state pairs are noted. However, the topology of, for instance, the parametrized 
HMM representing the class of yielding-priority intersection paths of type I can be described 
as a left-to-right one [13]. It is parametrized in the experiment aiming at counteracting false 
priority classifications. The learned transition probabilities are visualized in Figure A.4.2. In 
this figure, one can see how the entirety of all transition probabilities rounded to values greater 
than 0.000 form a directed path through the four hidden states.  

6.4.2. Trajectory-Data-Related Remarks

The experiment conducted on an augmented dataset aims at improving classification performance 
with regard to intersection paths belonging to the priority and yield class. This experiment is 
presented in section 6.2. The additionally created data increases the number of exactly these 
intersection paths. Yet, testing is done exclusively on the initial dataset, following the strategy 
which is introduced in section 4.4. With HMMs being parametrized on trajectories assigned to 
more different intersection paths, an improved inference performance regarding the priority and 
yield class is expected. Instead, results show only marginal improvements in terms of false 
classifications of yield intersection paths and a slight deterioration in terms of the classification 
of priority intersection paths. The normalized joint confusion matrices depicted on the left side 
of Figure 6.3 and in Figure 6.11 show the classification performance when parametrizing HMMs 
on the initial and on the augmented dataset, respectively. As outlined in section 6.2.2.1, the 
fraction of correctly classified yield intersection paths increases by roughly 5 percentage points 
when using the augmented dataset. The fraction of the correctly classified priority intersection 
paths decreases by roughly 6 percentage points. However, the test F1 score mean achieved in this 
experiment is, with a value of around 0.817, only approx. 2 % lower than the one achieved by the 
best-performing HMMs of the grid search experiment. Considering that results can vary within 
small ranges which is mentioned at the beginning of section 6, it could be argued that a score 
difference that low can be neglected. In contrast, using an augmented dataset yields to a decrease 
in test F1 score standard deviation by approx. 39 % to a value of approx. 0.035. Thus, test scores 
achieved by the different experiment runs cross-validating the approach in this experiment vary 
considerably less. This goes well with the finding presented in section 6.2.2.2. Regarding yield
models parametrized in different cross-validation runs on different development portions of the 
augmented dataset, almost no deviation can be determined when visually comparing associated 
learned observation densities. Two instances of these yield models are depicted in subfigure (b) 
of Figure 6.12 and in Figure 6.13, respectively. In contrast, as mentioned in section 6.1.2.2.2 of 
the grid search experiment, best-performing yield models parametrized on the initially created 
dataset do exhibit noticeable deviations. Thus, one might argue that parametrizing yield models 
on trajectories assigned to more different intersection paths reduces deviations regarding the 
observation densities of produced models. 

However, the volume and the variety of trajectory data still seem to limit a further analysis of the 
results. Especially with respect to the experiment aiming at counteracting false priority
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classifications, this poses a problem. As explained in section 6.3.2.2, three classes instead of one 
are used to represent different types of priority intersection paths. Consequently, available 
priority-regulated development intersection paths are divided into three sets in order to 
parametrize three models that represent the new classes. Analogously, intersection paths 
belonging to the test set are also divided into three sets in order to conduct test inference. This 
way, these sets end up containing even less priority-regulated intersection paths. Thus, it can 
be argued that the computed test F1 score mean is not representative of the performance of this 
approach. Additionally, the following has to be viewed critically. In several cases, the log-
likelihoods of correctly classified yielding-priority intersection paths of type II suggest that 
correct classifications are only slightly achieved. For instance, a yielding-priority-regulated 
intersection path of type II has a difference of approx. only 0.006 between the log-likelihoods 
associated to the correct and a false class. This can be seen in the right subplot of Figure 6.23. It 
would have to be tested whether developing HMMs on even more data mitigates issues like this. 

Nevertheless, also evidence supporting the suitability of above-described approach can be 
identified. The associated normalized joint confusion matrix is depicted in Figure 6.21. In this 
matrix, one can see that no priority-regulated intersection path is falsely classified. Instead, 
approx. 5 and 10 % of yield and yield-to-right-regulated intersection paths, respectively, are 
falsely classified as yielding-priority-regulated intersection paths of type II. As mentioned in 
section 6.3.3.1, all of these falsely classified intersection paths describe right turns at intersections. 
Yielding-priority-regulated intersection paths, however, are such that describe left turns at or 
going straight through intersections and are followed by vehicles that potentially have to give way 
to vehicles following other priority-regulated intersection paths. But at German intersections, 
vehicles following prioritized intersection paths that describe right turns generally do not have 
to give way to other vehicles. Thus, using this kind of context knowledge could postprocess 
classification results and possibly avoid false classifications. Certainly, if cyclists or pedestrians 
would be involved, this finding has to be reevaluated. 





7. Conclusion and Outlook 

In the following, this thesis shall be concluded. A summary of the suggested method and the most 
important results are given in subsection 7.1. Several directions for future work are provided in 
subsection 7.2.

7.1. Conclusion 
The scientific interest of this thesis is the development of an approach based on Hidden Markov 
Models (HMM) to the inference of traffic regulations. The design of the suggested approach is as 
follows: HMMs are randomly initialized with an ergodic topology. Multivariate Gaussians are 
employed as observation probability density functions in the hidden states. Each individual traffic 
regulation is represented by one or more HMMs. These are parametrized using class-stereotypical 
trajectory data. Based on likelihood, each intersection path is assigned to a regulation class. In all 
experiments, approaches are cross-validated and achieved performance scores are averaged. This 
is done in a cross-intersection manner. Thus, trajectory data gathered from a specific intersection 
is always found in either the portion used for classifier development or in the portion employed 
for testing. It is never found in both portions simultaneously. In essence, the representation of 
trajectories on which HMMs are parametrized is based on series of sampled measurements of 
speed and acceleration. On the one hand, in a grid search experiment a variety of possible 
parameter and design choices further specifying this representation are evaluated. From this 
experiment, the combination leading to the best classification results is selected and determines 
how trajectories are represented throughout the remaining experiments. The result is the 
following: Trajectories are resampled and described using the features speed, acceleration and 
intersection-relative time. The latter of these three features indicates the duration between each 
trajectory point and the respective intersection center. In the same experiment, four-hidden-state 
HMMs are highlighted as providing a good trade-off between high classification performance and 
the risk of overfitting the data. On the other hand, several trajectory-representation-related 
parameters are not varied in experiments. Trajectories always begin at the point where the 
associated vehicle has a driving distance of 70 m to the intersection center ahead. Features are 
consistently normalized in all presented experiments. Of each trajectory, only the segment 
describing the intersection approach until the point closest to the intersection center is reached is 
employed as parametrization basis and inference target of HMMs. Resampled trajectory segments 
always have a length of 71 trajectory points.  
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Several performance scores achieved by above described method are presented in the following. 
On the initially created dataset, the HMMs, parametrized as described, achieve a mean test F1

score of approx. 0.832. All stop and traffic-light-regulated intersection paths are correctly 
classified. Approx. 11 and 40 % of priority and yield-regulated intersection paths, respectively, 
are falsely classified. Also, a strong confusion between the classes yield and yield-to-right is 
noted.  

In a subsequent experiment, the impact of developing models on an augmented dataset is 
examined. As a result, classification performance regarding the yield class is found to improve. 
False classifications of yield-regulated intersection paths are reduced by around 5 percentage 
points. However, regarding the priority class, a slight decrease in terms of classification 
performance is noted. Approx. 17 % of priority-regulated intersection paths are misclassified 
which corresponds to an increase of around 6 percentage points. 

Based on an analysis of false classifications of priority-regulated intersection paths, the way 
these are represented is modified in another experiment. Instead of having one priority class, 
three classes are used to represent this traffic regulation. These shall account for the diversity of 
behavior characteristics that can be identified when analyzing associated trajectories. One of those 
three classes covers priority-regulated intersection paths that allow passing an intersection 
without having to give way to other traffic participants. Intersection paths belonging to the other 
two classes are followed by vehicles that potentially do have to give way to vehicles following 
other prioritized intersection paths. Furthermore, these two classes distinguish intersection 
paths based on the speed level vehicles initially drive at when approaching intersections. With the 
aid of this seven-class-approach, no priority-regulated intersection path is misclassified. 
However, approx. 5 % of yield and 10 % of yield-to-right-regulated intersection paths are 
falsely assigned to one of the three classes representing the priority regulation. Besides, deeper 
analyses show that several correctly classified priority-regulated intersection paths are close to 
being falsely recognized. In other words, a high risk of false classifications is assumed. 

In conclusion, the results achieved by the suggested method are promising. Parametrizing HMMs 
using trajectory data is a suitable approach to infer traffic regulations at intersections. Based on 
refinements of this approach, all available intersection paths belonging to the traffic regulation 
classes priority, stop and traffic light are classified correctly. However, with respect to 
yield and yield-to-right-regulated intersection paths, problems persist. Showing potential 
solutions for solving these would go beyond the scope of this thesis. Apart from that, other 
weaknesses in the context of data volume and variety are identified. A repertoire of yet more 
intersection paths extracted from different intersections is considered necessary in order to 
improve and also better validate achieved results. Specifically, it is vital that the variety of data is 
increased. This especially refers to the variety of speed limits applying for yield and stop-
regulated intersection paths. This is motivated by the fact that intersection-incoming segments of 
these intersection paths only appear in combination with 30 speed limits in the data. 
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7.2. Outlook 
In this section, several possibilities to build on the initial success of this method are provided. In 
the context of the trajectory representation, unexplored combinations of parameters and choices 
remain. For instance, the intersection path distance feature is only tested with other parameters 
and design choices being set to fixed values and decisions, respectively. This feature specifies the 
distance between trajectory points and the center point of the respective intersection. Alongside 
other trajectory features, it could be varied in a more extensive grid search. One would then need 
to examine whether this yields well or even better-performing models. Additionally, a feature 
indicating the Euclidean distance between each trajectory point and the respective intersection 
center point could be introduced. It could be scaled based on the radius of the respective 
intersection in order to enable a more generalized comparison between differently sized 
intersections. The usefulness of such a feature is illustrated as follows: There are priority-
regulated intersection paths that are followed by vehicles that potentially have to give way to 
other traffic participants. Often, such intersection paths describe left turns at intersections. On 
these, slowing down or stopping in order to give way generally occurs close to the intersection 
center point, hence often inside of intersections. In contrast, vehicles following yield, stop or 
yield-to-right-regulated intersection paths typically slow down or stop in order to give way 
before entering the intersection, hence generally outside of it. Thus, in the context of intersection 
paths being regulated according to these traffic regulations, often comparatively high distance 
values would be assigned to trajectory points at which stopping or slowing down occurs. The 
corresponding points occurring along prioritized intersection paths, however, would often be 
assigned comparatively low distance values. With described characteristics, this feature could be 
suitable to provide an alternative solution to the problem of falsely classified priority-regulated 
intersection paths.  

In the context of HMM-related design choices, the way observation signals are modeled could be 
modified. Certain well-performing models turn out to develop observation densities in different 
hidden states that are redundant. The development process could be repeated with lower hidden-
state counts exclusively for such HMMs. One would then need to examine whether original 
performances can be maintained. Alternatively, the use of mixture models as observation 
probability density functions could be evaluated. More precisely, it could be examined whether 
multiple hidden states with partially redundant observation densities can effectively be substituted 
by a lower number of hidden states with mixture models. This is motivated by the ability of 
mixture models to model complex and versatile phenomena [50]. What should also be mentioned 
is that, depending on the actual design of an approach employing these, mixture models are 
generally defined by a higher number of parameters than multivariate Gaussians employed to 
model the same data. Thus, this could result in greatly increased development durations. In both 
described solution approaches, HMM sets can, in contrast to those applied in this thesis, comprise 
HMMs with different hidden-state counts. For this reason, one needs to examine whether this 
inference design still yields classification performances as high as before. If this is not the case, 
normalization of log-likelihoods could be a suitable modification. How well an HMM describes 
a set of trajectories is quantified by calculating the log-likelihood of these given the HMM. The 
normalization could be realized as a scaling based on value ranges of log-likelihoods observed 
for each individual model. Log-likelihood values achieved during inference that are close to the 
observed log-likelihood maximum are mapped to high values, whereas values closer to the 
observed minimum are mapped to lower values. 
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Several experiments are conducted in order to find solution approaches to the confusion between 
yield and yield-to-right-regulated intersection paths. As no solution solely using HMMs is 
found, the thesis focuses on other experiments for reasons of consistency. However, a possible 
approach including a mixture of methods could be designed as follows: As specified by the 
inference design suggested in this thesis, each intersection path is assigned a vector of log-
likelihoods. Each of these log-likelihoods is calculated based on one model of the set of HMMs 
used for inference. Thus, the log-likelihoods calculated based on the yield and yield-to-right
model could, for instance, augment feature vectors designed in related works [4–7]. In these 
works, feature vectors serve as input for discriminative classifiers, as, for instance, Neural 
Networks, Support Vector Classifiers or Random Trees. One would then need to evaluate whether 
combinations of existing features and log-likelihoods are suitable to improve classification 
performances.  
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A.1. Distance-based Trajectory Representation 

Figure A.1.1: Normalized speed of incoming trajectory segments following differently regulated 
intersection paths, plotted against the normalized intersection path distance feature. Depicted trajectory 
segments are resampled to a distance-based representation and have a length of 71 points. Dark yellow 

lines indicate vehicles going straight, blue lines indicate such executing turning maneuvers. Each subplot 
shows 150 trajectory segments. 
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Figure A.1.2: Normalized acceleration of 150 incoming trajectory segments following differently 

regulated intersection paths, plotted against the normalized intersection path distance feature. Depicted 
trajectory segments are resampled to a distance-based representation and have a length of 71 points. Dark 
yellow lines indicate vehicles going straight, blue lines indicate such executing turning maneuvers. Each 

subplot shows 150 trajectory segments. 
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A.2. Additional Results of Grid Search Experiment of Hidden-Markov-
Model-Based Inference Approach 

A.2.1. Score Results

Number 
of hidden 

states 

Distance-based Time-based 
Training score Test score Training score Test score 

Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation Mean Standard 

Deviation 
Normalized speed, normalized acceleration, normalized intersection-relative time

2 0.839 0.031 0.740 0.104 0.805 0.018 0.738 0.066
3 0.858 0.033 0.752 0.094 0.854 0.017 0.805 0.055
4 0.869 0.034 0.795 0.070 0.878 0.037 0.832 0.057
5 0.860 0.050 0.759 0.044 0.889 0.025 0.777 0.080
6 0.860 0.036 0.743 0.102 0.875 0.062 0.813 0.105
7 0.864 0.038 0.786 0.069 0.896 0.018 0.795 0.077
8 0.862 0.027 0.750 0.045 0.905 0.018 0.841 0.071
9 0.858 0.057 0.763 0.027 0.907 0.009 0.829 0.082

10 0.850 0.031 0.761 0.132 0.898 0.025 0.828 0.066
Normalized speed, normalized acceleration 

2 0.620 0.188 0.526 0.171 0.692 0.091 0.709 0.153
3 0.794 0.059 0.703 0.140 0.786 0.037 0.755 0.079
4 0.798 0.043 0.699 0.167 0.867 0.027 0.805 0.060
5 0.805 0.052 0.702 0.144 0.851 0.064 0.771 0.025
6 0.803 0.063 0.739 0.101 0.810 0.098 0.741 0.079
7 0.817 0.052 0.754 0.109 0.865 0.037 0.784 0.049
8 0.811 0.029 0.759 0.115 0.818 0.073 0.801 0.122
9 0.752 0.026 0.652 0.149 0.858 0.011 0.822 0.123

10 0.781 0.048 0.706 0.121 0.859 0.026 0.845 0.052
Normalized speed, normalized intersection-relative time 

2 0.741 0.027 0.650 0.081 0.772 0.019 0.730 0.045
3 0.753 0.020 0.679 0.062 0.736 0.055 0.711 0.048
4 0.714 0.059 0.687 0.045 0.763 0.024 0.703 0.040
5 0.764 0.051 0.697 0.077 0.760 0.011 0.688 0.085
6 0.744 0.076 0.705 0.077 0.791 0.042 0.690 0.066
7 0.747 0.043 0.674 0.066 0.789 0.034 0.729 0.078
8 0.752 0.026 0.686 0.061 0.803 0.049 0.720 0.041
9 0.741 0.024 0.674 0.064 0.800 0.032 0.736 0.055

10 0.773 0.020 0.699 0.047 0.812 0.031 0.730 0.109
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Number 
of hidden 

states 

Distance-based Time-based 
Training score Test score Training score Test score 

Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation Mean Standard 

Deviation 
Normalized speed 

2 0.694 0.046 0.583 0.143 0.739 0.020 0.744 0.047
3 0.717 0.045 0.647 0.128 0.645 0.061 0.603 0.064
4 0.714 0.034 0.675 0.124 0.692 0.014 0.631 0.040
5 0.724 0.046 0.656 0.086 0.736 0.036 0.671 0.025
6 0.722 0.033 0.658 0.118 0.746 0.038 0.680 0.113
7 0.720 0.038 0.658 0.120 0.768 0.043 0.691 0.105
8 0.723 0.033 0.665 0.103 0.697 0.120 0.638 0.161
9 0.714 0.033 0.647 0.120 0.722 0.114 0.603 0.122

10 0.718 0.042 0.664 0.114 0.535 0.074 0.451 0.112
Table A.2.1: Mean and standard deviation of F1 scores achieved in the context of the grid search 

experiment. In this experiment, several parameter combinations specifying trajectory representation and 
Hidden Markov Model training characteristics are examined. Cross-validation is performed on each 

examined parameter combination. Therefore, mean and standard deviation are calculated from individual 
F1 scores achieved by a set of experiment runs cross-validating the same parameter combination. In all 

instances, resampled trajectory data is used. Inference is conducted on both training and test intersection 
paths using parametrized Hidden Markov Models. Thus, scores are organized in the columns named 

training score and test score, respectively. Each row of the table represents scores achieved in the context 
of two different types reference axes being used. The left half of each row refers to experiment runs in 
which trajectories are resampled to a distance-based representation. The right half refers to experiment 
runs in which trajectories are resampled to a time-based representation. The subheadings indicate the 
features used to describe trajectories in experiment runs. The leftmost column provides the number of 

states set for Hidden-Markov-Model parametrization. 

Number 
of hidden 

states 

Training score Test score

Mean Standard 
Deviation Mean Standard 

Deviation
Normalized speed, normalized acceleration, normalized 

intersection-relative time 
2 0.466 0.136 0.421 0.090
3 0.219 0.172 0.240 0.152
4 0.307 0.345 0.309 0.315
5 0.371 0.330 0.418 0.353
6 0.531 0.280 0.500 0.254
7 0.492 0.349 0.456 0.249
8 0.384 0.229 0.341 0.193
9 0.288 0.339 0.222 0.195

10 0.185 0.184 0.120 0.118
Normalized speed, normalized acceleration

2 0.745 0.114 0.593 0.143
3 0.786 0.047 0.660 0.073
4 0.656 0.134 0.584 0.114
5 0.752 0.082 0.708 0.084
6 0.691 0.064 0.630 0.179
7 0.670 0.081 0.567 0.084
8 0.679 0.094 0.527 0.143
9 0.643 0.198 0.506 0.177

10 0.461 0.073 0.366 0.044
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Number 
of hidden 

states 

Training score Test score

Mean Standard 
Deviation Mean Standard 

Deviation
Normalized speed, normalized intersection-relative time

2 0.711 0.057 0.611 0.197
3 0.706 0.180 0.617 0.196
4 0.680 0.045 0.590 0.108
5 0.603 0.221 0.445 0.152
6 0.571 0.256 0.544 0.223
7 0.554 0.173 0.447 0.117
8 0.586 0.084 0.518 0.063
9 0.594 0.025 0.474 0.118

10 0.592 0.040 0.446 0.155
Normalized speed

2 0.737 0.068 0.626 0.104
3 0.702 0.039 0.591 0.148
4 0.816 0.051 0.731 0.092
5 0.538 0.034 0.456 0.108
6 0.529 0.053 0.474 0.148
7 0.502 0.063 0.408 0.056
8 0.471 0.060 0.430 0.050
9 0.473 0.034 0.414 0.166

10 0.422 0.014 0.403 0.055
Table A.2.2: Mean and standard deviation of F1 scores achieved in the context of the grid search 

experiment. In this experiment, several parameter combinations specifying trajectory representation and 
Hidden Markov Model training characteristics are examined. Cross-validation is performed on each 

examined parameter combination. Therefore, mean and standard deviation are calculated from individual 
F1 scores achieved by a set of experiment runs cross-validating the same parameter combination. In all 

instances, trajectory data is used without being resampled. This way, all trajectories are represented with 
reference to a time-based axis. Inference is conducted on both training and test intersection paths using 
parametrized Hidden Markov Models. Thus, scores are organized in the columns named training score 

and test score, respectively. Each row of the table represents scores achieved from examining one 
parameter combination. The subheadings indicate the features used to describe trajectories in experiment 
runs. The leftmost column provides the number of states set for Hidden-Markov-Model parametrization. 
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A.2.2. Parametrized Hidden Markov Models

State 
number

Mean 
vector Covariance Matrix

1
0.7470 0.0058 -0.0001 -0.0007

-0.0024 -0.0001 0.0005 0.0000
-0.7956 -0.0007 0.0000 0.0162

2 
0.6907 0.0103 0.0068 -0.0116

-0.2605 0.0068 0.0360 -0.0149
-0.5759 -0.0116 -0.0149 0.0345

3
0.7470 0.0057 0.0000 0.0001
0.0015 0.0000 0.0004 0.0000

-0.2858 0.0001 0.0000 0.0274

4 
0.4432 0.0219 -0.0055 0.0009

-0.1617 -0.0055 0.0976 0.0209
-0.1551 0.0009 0.0209 0.0105

Table A.2.3: Parameter values of the observation densities depicted in Figure 6.5. Each row of the table 
provides the mean vector and the covariance matrix of the observation density in a certain state of the 

corresponding Hidden Markov Model. 

State 
number

Mean 
vector Covariance Matrix 

1 
0.7624 0.0056 -0.0002 -0.0035

-0.0371 -0.0002 0.0009 -0.0020
-0.7951 -0.0035 -0.0020 0.0164

2 
0.2583 0.0577 -0.0187 -0.0278

-0.1966 -0.0187 0.0314 0.0085
-0.4211 -0.0278 0.0085 0.0290

3 
0.5954 0.0143 0.0093 -0.0127

-0.2225 0.0093 0.0119 -0.0097
-0.3875 -0.0127 -0.0097 0.0137

4 
0.4498 0.0223 0.0010 0.0048
0.3152 0.0010 0.0168 0.0015

-0.0928 0.0048 0.0015 0.0037
Table A.2.4: Parameter values of the observation densities depicted in subfigure (a) of Figure 6.7. Each 

row of the table provides the mean vector and the covariance matrix of the observation density in a 
certain state of the corresponding Hidden Markov Model. 



108  A. Appendix 

 

State 
number

Mean 
vector Covariance Matrix

1
0.7741 0.0053 -0.0002 -0.0036

-0.0382 -0.0002 0.0009 -0.0021
-0.7944 -0.0036 -0.0021 0.0161

2 
0.6003 0.0145 0.0103 -0.0125

-0.2327 0.0103 0.0124 -0.0102
-0.3999 -0.0125 -0.0102 0.0129

3
0.2876 0.0355 -0.0125 -0.0098

-0.0813 -0.0125 0.0569 0.0241
-0.3168 -0.0098 0.0241 0.0325

4 
0.5127 0.0104 -0.0004 0.0043
0.3545 -0.0004 0.0058 -0.0008

-0.0862 0.0043 -0.0008 0.0032
Table A.2.5: Parameter values of the observation densities depicted in subfigure (a) of Figure 6.8. Each 

row of the table provides the mean vector and the covariance matrix of the observation density in a 
certain state of the corresponding Hidden Markov Model. 
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(a) Visualization of learned observation densities.  

(b) Visualization of learned initial state and state transition probabilities. 

Figure A.2.1:. Visualization of learned observation densities (a) and initial state and state transition 
probabilities (b) of a four-hidden-state Hidden Markov Model representing the stop class. Each column 

of plots in (a) visualizes a Gaussian in one hidden state. The column order reflects the hidden-state 
numbering of the model. The model is parametrized during the cross-validation of a parameter 

combination determining the use of trajectories resampled to a time-based representation and described 
by the feature tuple ( , , ). Values in (b) are rounded, hence all of a state’s outgoing transition 

probabilities do not necessarily sum up to 1. The values are printed on arrows illustrating the direction of 
transitions. The circles labeled with 1 4 mark the model’s hidden states. 
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State 
number

Mean 
vector Covariance Matrix

1
0.7542 0.0055 -0.0001 -0.0035

-0.0395 -0.0001 0.0010 -0.0019
-0.8323 -0.0035 -0.0019 0.0118

2 
0.5328 0.0223 0.0146 -0.0138

-0.2766 0.0146 0.0148 -0.0094
-0.5214 -0.0138 -0.0094 0.0141

3
0.0836 0.0069 -0.0084 -0.0038

-0.1536 -0.0084 0.0336 0.0043
-0.3143 -0.0038 0.0043 0.0163

4 
0.2354 0.0157 0.0017 0.0059
0.3866 0.0017 0.0035 0.0006

-0.0811 0.0059 0.0006 0.0029
Table A.2.6: Parameter values of the observation densities depicted in subfigure (a) of Figure A.2.1. Each 

row of the table provides the mean vector and the covariance matrix of the observation density in a 
certain state of the corresponding Hidden Markov Model. 
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(a) Visualization of learned observation densities. 

(b) Visualization of learned initial state and state transition probabilities. 

Figure A.2.2: Visualization of learned observation densities (a) and initial state and state transition 
probabilities (b) of a four-hidden-state Hidden Markov Model representing the traffic light class. 
Each column of plots in (a) visualizes a Gaussian in one hidden state. The column order reflects the 

hidden-state numbering of the model. The model is parametrized during the cross-validation of a 
parameter combination determining the use of trajectories resampled to a time-based representation and 

described by the feature tuple ( , , ). Values in (b) are rounded, hence all of a state’s outgoing 
transition probabilities do not necessarily sum up to 1. The values are printed on arrows illustrating the 

direction of transitions. The circles labeled  with 1 4 mark the model’s hidden states. 
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State 
number

Mean 
vector Covariance Matrix

1
0.4748 0.0500 0.0117 -0.0065

-0.2488 0.0117 0.0336 -0.0048
-0.6771 -0.0065 -0.0048 0.0629

2 
0.7860 0.007 0.0001 0.0018

-0.0023 0.0001 0.0006 0.0014
-0.5574 0.0018 0.0014 0.0895

3
0.0036 0.0000 0.0000 0.0000

-0.0003 0.0000 0.0004 0.0003
-0.4391 0.0000 0.0003 0.0384

4 
0.3016 0.0374 -0.0054 0.0057
0.2457 -0.0054 0.0254 0.0056

-0.1243 0.0057 0.0056 0.0112
Table A.2.7: Parameter values of the observation densities depicted in subfigure (a) of Figure A.2.2. Each 

row of the table provides the mean vector and the covariance matrix of the observation density in a 
certain state of the corresponding Hidden Markov Model. 

State 
number

Mean 
vector Covariance Matrix 

1 
0.7684 0.0057 -0.0004 -0.0016

-0.0288 -0.0004 0.0007 -0.0006
-0.8725 -0.0016 -0.0006 0.0067

2 
0.7062 0.0061 0.0009 -0.0059

-0.0952 0.0009 0.0027 -0.0037
-0.5663 -0.0059 -0.0037 0.0123

3 
0.4933 0.0189 0.0079 -0.0071

-0.3109 0.0079 0.0084 -0.0054
-0.4171 -0.0071 -0.0054 0.0312

4 
0.3177 0.0556 0.0318 0.0295
0.1950 0.0318 0.0454 0.0244

-0.1974 0.0295 0.0244 0.0303
Table A.2.8: Parameter values of the observation densities depicted in Figure 6.9. Each row of the table 
provides the mean vector and the covariance matrix of the observation density in a certain state of the 

corresponding Hidden Markov Model. 
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State 
number

Mean 
vector Covariance Matrix

1
0.7468 0.0061 0.0000 0.0000

-0.0032 0.0000 0.0006 0.0000
-0.9271 0.0000 0.0000 0.0022

2 
0.7411 0.0056 -0.0001 -0.0001

-0.0025 -0.0001 0.0005 0.0000
-0.7585 -0.0001 0.0000 0.0029

3
0.7135 0.0091 0.0013 -0.0104

-0.1510 0.0013 0.0175 -0.0006
-0.6404 -0.0104 -0.0006 0.0349

4 
0.7361 0.0060 0.0000 0.0001

-0.0001 0.0000 0.0004 -0.0001
-0.5659 0.0001 -0.0001 0.0039

5
0.5584 0.0173 0.0002 -0.0112

-0.4764 0.0002 0.0039 -0.0014
-0.3783 -0.0112 -0.0014 0.0174

6 
0.7402 0.0059 0.0000 -0.0001
0.0015 0.0000 0.0004 -0.0001

-0.3459 -0.0001 -0.0001 0.0046

7 
0.4324 0.0267 -0.0072 0.0024

-0.0204 -0.0072 0.0784 0.0098
-0.1140 0.0024 0.0098 0.0070

8 
0.7405 0.0056 0.0000 0.0000
0.0018 0.0000 0.0004 0.0000

-0.1131 0.0000 0.0000 0.0050
Table A.2.9: Parameter values of the observation densities depicted in Figure 6.10. Each row of the table 

provides the mean vector and the covariance matrix of the observation density in a certain state of the 
corresponding Hidden Markov Model. 
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A.3. Additional Results of Experiment using an Increased Trajectory Data 
Volume 

State 
number

Mean 
vector Covariance Matrix 

1 
0.7467 0.0059 0.0000 -0.0007

-0.0025 0.0000 0.0005 0.0000
-0.7912 -0.0007 0.0000 0.0168

2
0.6918 0.0106 0.0071 -0.0118

-0.2440 0.0071 0.0355 -0.0144
-0.5856 -0.0118 -0.0144 0.0348

3 
0.7475 0.0057 0.0000 -0.0001
0.0015 0.0000 0.0004 -0.0001

-0.2800 -0.0001 -0.0001 0.0267

4
0.4326 0.0255 -0.0064 0.0010

-0.1583 -0.0064 0.1016 0.0220
-0.1589 0.0010 0.0220 0.0110

Table A.3.1: Parameter values of the observation densities depicted in subfigure (a) of Figure 6.12. Each 
row of the table provides the mean vector and the covariance matrix of the observation density in a 

certain state of the corresponding Hidden Markov Model. 

State 
number

Mean 
vector Covariance Matrix 

1 
0.7603 0.0054 -0.0002 -0.0033

-0.0374 -0.0002 0.0009 -0.0018
-0.8045 -0.0033 -0.0018 0.0151

2 
0.2513 0.0493 -0.0177 -0.0195

-0.1718 -0.0177 0.0335 0.0116
-0.4010 -0.0195 0.0116 0.0320

3 
0.6002 0.0137 0.0099 -0.0125

-0.2202 0.0099 0.0125 -0.0105
-0.3936 -0.0125 -0.0105 0.0142

4 
0.4478 0.0230 -0.0004 0.0049
0.3417 -0.0004 0.0092 -0.0006

-0.0889 0.0049 -0.0006 0.0035
Table A.3.2: Parameter values of the observation densities depicted in subfigure (b) of Figure 6.12. Each 

row of the table provides the mean vector and the covariance matrix of the observation density in a 
certain state of the corresponding Hidden Markov Model. 
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Figure A.3.1: Visualization of the learned initial state and state transition probabilities of a four-state 

Hidden Markov Model representing the priority class. Values are rounded, hence all of a state’s 
outgoing transition probabilities do not necessarily sum up to 1. The probabilities are printed on arrows 

illustrating the direction of transitions. The model is parametrized during the cross-validation of a 
parameter combination determining the use of trajectories resampled to a time-based representation and 

described by the feature tuple ( , , ). The circles labeled , with 1 4, mark the model’s hidden 
states. 
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Figure A.3.2: Visualization of the learned initial state and state transition probabilities of a four-state 

Hidden Markov Model representing the yield class. Values are rounded, hence all of a state’s outgoing 
transition probabilities do not necessarily sum up to 1. The probabilities are printed on arrows illustrating 

the direction of transitions. The model is parametrized during the cross-validation of a parameter 
combination determining the use of trajectories resampled to a time-based representation and described 
by the feature tuple ( , , ). The circles labeled , with 1 4, mark the model’s hidden states. 

State 
number 

Mean 
vector Covariance Matrix 

1 
0.7601 0.0054 -0.0002 -0.0032

-0.0379 -0.0002 0.0009 -0.0018
-0.8077 -0.0032 -0.0018 0.0149

2
0.2291 0.0536 -0.0210 -0.0239

-0.1734 -0.0210 0.0328 0.0093
-0.4481 -0.0239 0.0093 0.0328

3
0.5943 0.0148 0.0095 -0.0132

-0.2201 0.0095 0.0124 -0.0100
-0.4025 -0.0132 -0.0100 0.0149

4 
0.4401 0.0255 0.0016 0.0060
0.3261 0.0016 0.0137 0.0008

-0.0975 0.0060 0.0008 0.0043
Table A.3.3: Parameter values of the observation densities depicted in Figure 6.13. Each row of the table 

provides the mean vector and the covariance matrix of the observation density in a certain state of the 
corresponding Hidden Markov Model. 
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A.4. Additional Results of Experiment Counteracting False Classifications 
of Priority Intersection Paths 

State 
number

Mean 
vector Covariance Matrix 

1 
0.7465 0.0059 0.0001 0.0000

-0.0019 0.0001 0.0006 0.0000
-0.8649 0.0000 0.0000 0.0070

2
0.7410 0.0057 0.0000 0.0003
0.0002 0.0000 0.0005 0.0001

-0.5568 0.0003 0.0001 0.0100

3 
0.5963 0.0202 -0.0033 -0.0218

-0.2654 -0.0033 0.0574 0.0076
-0.3668 -0.0218 0.0076 0.0570

4
0.7426 0.0058 0.0000 -0.0003
0.0014 0.0000 0.0004 0.0000

-0.1887 -0.0003 0.0000 0.0130
Table A.4.1: Parameter values of the observation densities depicted in Figure 6.24. Each row of the table 

provides the mean vector and the covariance matrix of the observation density in a certain state of the 
corresponding Hidden Markov Model. 

Figure A.4.1: Visualization of the learned initial state and state transition probabilities of a four-state 
Hidden Markov Model representing the class which covers prioritized intersection paths that are 

followed by vehicles not having to give way to others. Values are rounded, hence all of a state’s outgoing 
transition probabilities do not necessarily sum up to 1. The probabilities are printed on arrows illustrating 

the direction of transitions. The model is parametrized during the cross-validation of a parameter 
combination determining the use of trajectories resampled to a time-based representation and described 
by the feature tuple ( , , ). The circles labeled , with 1 4, mark the model’s hidden states.  
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State 
number

Mean 
vector Covariance Matrix

1
0.8070 0.0042 -0.0012 -0.0026
-0.1336 -0.0012 0.0025 -0.0018
-0.8724 -0.0026 -0.0018 0.0066

2 
0.6713 0.0063 0.0028 -0.0073
-0.2996 0.0028 0.0068 -0.0054
-0.5858 -0.0073 -0.0054 0.0110

3
0.4046 0.0104 0.0013 -0.0092
-0.4874 0.0013 0.0034 -0.0023
-0.3263 -0.0092 -0.0023 0.0147

4 
0.2397 0.0131 0.0174 0.0065
0.1926 0.0174 0.0764 0.0215
-0.1128 0.0065 0.0215 0.0105

Table A.4.2: Parameter values of the observation densities depicted in subfigure (a) of Figure 6.25. Each 
row of the table provides the mean vector and the covariance matrix of the observation density in a 

certain state of the corresponding Hidden Markov Model. 

State 
number

Mean 
vector Covariance Matrix 

1 
0.7808 0.0054 -0.0004 -0.0018

-0.0220 -0.0004 0.0005 -0.0006
-0.8522 -0.0018 -0.0006 0.0084

2 
0.7279 0.0054 0.0003 -0.0052

-0.0795 0.0003 0.0019 -0.0026
-0.5414 -0.0052 -0.0026 0.0112

3 
0.5266 0.0133 0.0073 -0.0078

-0.2997 0.0073 0.0083 -0.0052
-0.2877 -0.0078 -0.0052 0.0121

4 
0.3395 0.0284 0.0251 0.0098
0.2252 0.0251 0.0604 0.0164

-0.0934 0.0098 0.0164 0.0074
Table A.4.3: Parameter values of the observation densities depicted in subfigure (b) of Figure 6.25. Each 

row of the table provides the mean vector and the covariance matrix of the observation density in a 
certain state of the corresponding Hidden Markov Model. 
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Figure A.4.2: Visualization of the learned initial state and state transition probabilities of a four-state 

Hidden Markov Model representing a class covering intersection paths followed by vehicles that 
potentially have to give way to vehicles following other prioritized ones. These vehicles approach 

intersections at comparatively high speeds. Values are rounded, hence all of a state’s outgoing transition 
probabilities do not necessarily sum up to 1. The probabilities are printed on arrows illustrating the 

direction of transitions. The model is parametrized during the cross-validation of a parameter combination 
determining the use of trajectories resampled to a time-based representation and described by the feature 

tuple ( , , ). The circles labeled , with 1 4, mark the model’s hidden states.  
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Figure A.4.3: Visualization of the learned initial state and state transition probabilities of a four-state 

Hidden Markov Model representing a class covering intersection paths followed by vehicles that 
potentially have to give way to vehicles following other prioritized ones. These vehicles approach 

intersections at comparatively low speeds. Values are rounded, hence all of a state’s outgoing transition 
probabilities do not necessarily sum up to 1. The probabilities are printed on arrows illustrating the 

direction of transitions. The model is parametrized during the cross-validation of a parameter combination 
determining the use of trajectories resampled to a time-based representation and described by the feature 

tuple ( , , ). The circles labeled , with 1 4, mark the model’s hidden states. 
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