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Abstract—Cyber threat intelligence on past attacks may help with attack reconstruction and the prediction of the course of an ongoing 
attack by providing deeper understanding of the tools and attack patterns used by attackers. Therefore, cyber security analysts employ 
threat intelligence, alert correlations, machine learning, and advanced visualizations in order to produce sound attack hypotheses. In 
this article, we present AttackDB, a multi-level threat knowledge base that combines data from multiple threat intelligence sources to 
associate high-level ATT&CK techniques with low-level telemetry found in behavioral malware reports. We also present the Attack 
Hypothesis Generator which relies on knowledge graph traversal algorithms and a variety of link prediction methods to automatically 
infer ATT&CK techniques from a set of observable artifacts. Results of experiments performed with 53K VirusTotal reports indicate that 
the proposed algorithms employed by the Attack Hypothesis Generator are able to produce accurate adversarial technique hypotheses 
with a mean average precision greater than 0.5 and area under the receiver operating characteristic curve of over 0.8 when it is 
implemented on the basis of AttackDB. The presented toolkit will help analysts to improve the accuracy of attack hypotheses and to 
automate the attack hypothesis generation process.

Index Terms—Attack hypotheses, cyber threat intelligence, data fusion, link prediction

1 INTRODUCTION

IN the last years, the perpetrators of cyber attacks have
been playing a dynamic cat and mouse game with those

trying to stop them. In order to stay ahead of their oppo-
nents, cyber security analysts search for techniques that can

assist them in threat hunting and intrusion detection, as
well as in the forensic investigation of attacks, as they try to
infer the attackers’ objectives, trace back the attack vector
used for initial penetration, and reconstruct the intermedi-
ate attack steps. The general workflow of these investiga-
tions starts with sensors that send monitored data to an
organization’s security information and event management
system (SIEM). The SIEM aggregates and correlates the data
from the sensors and generates alerts when a suspicious
event is detected. On the basis of these alerts, security ana-
lysts derive hypotheses on the state of the system and draw
conclusions about the attacker’s goals, the methods he/she
uses to achieve these goals, and further plans which is criti-
cal to providing a quick response to an attack and may thus
result in reduced damage from an attack. Despite the great
importance of these tasks, security analysts have little time
to devote to them due to a shortage of experienced security
analysts. Currently, even the best security operation centers
are not fully automated and human analysts have primary
responsibility for understanding, prioritizing, investigating,
and responding to the alerts raised by the SIEM. Accumu-
lated cyber threat intelligence (CTI) can help analysts to
understand the goals and methods of relevant attack
actors [1], [2].

Besides attack hypothesis generation, the automated use
of CTI, such as indicators of compromise (IoCs), is preva-
lent throughout endpoint detection and response (EDR),
extends beyond EDR as well as security orchestration auto-
mation and response solutions. Although there are many
tools that utilize CTI (e.g., EDR), most of them concentrate
on low-level constructs such as IoCs. Some automation
employs cyber analytics, e.g., the MITRE Cyber Analytic
Repository, to detect specific techniques. These tools
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operate in a top-down fashion as they hunt for the techni-
ques supposedly employed by the adversary. The methods
presented in this work differ from the state of the art by (1)
focusing on the high-level indicators of attack (IoAs), i.e.,
collections of techniques, and (2) operating in a bottom-up
manner, inferring collections of techniques from observable
artifacts (not necessarily IoCs). This is an important step
towards improving the cyber security of systems, as deriv-
ing high-level CTI from low-level CTI may help analysts
with their tasks and contribute to increased efficiency
among security analysts. However, deriving these high-
level insights is challenging. Currently, except for cyber
analytics, there is a lack of analysis tools and algorithms
that utilize both high- and low-level CTI.

In this article, we build and extend AttackDB [3], a multi-
level threat knowledge base that fuses data from the MITRE
ATT&CK Enterprise knowledge base, the AlienVault Open
Threat Exchange (OTX), the IBM X-Force Exchange (X-
Force), and VirusTotal. We also introduce the Attack

Hypothesis Generator (AHG), a toolkit that (1) infers adver-

sarial techniques from low-level telemetry data using multi-

ple techniques for information retrieval; and (2) refines a

given hypothesis using various link prediction techniques.
The main contributions of this paper are as follows:

i) We contribute a comprehensive multi-level threat
knowledge base that fuses multiple open-source
threat intelligence sources [4].

ii) We utilize the proposed multi-level threat intelli-
gence knowledge base to generate and attack tech-
nique hypotheses using graph analytics.

iii) We provide a heuristic, based on the expected num-
ber of techniques, which suggests when hypothesis
refinement from our previous work [3] should be
applied.

iv) Finally we compare the proposed techniques to a
supervised machine learning learning approach.

All experiments are performed under the assumption
that AHG is used to generate attack hypotheses when attack
indicators are not known (e.g., a novel malware family uti-
lizing a zero-day exploit).

AHG’s ability to infer and refine the set of adversarial
techniques used by an attacker is a critical step toward
increasing the automation level of threat hunting and foren-
sic investigations, both of which will contribute to organ-
izations’ cyber defense and enable them to gain insight
regarding the state of their system (system monitoring).
AHG can improve an analyst’s perception of an attack
under investigation and result in actionable insights perti-
nent to an attack. Furthermore, AHG addresses the ”lack of
published or accessible methodologies” [5] for threat hunt-
ing based on high-level attack patterns.

The rest of the paper is structured as follows. Relevant
background and related work are described in Section 2.
Section 3 presents the schema, insight into the construction
process, and statistics regarding AttackDB. In Section 4, we
present the proposed algorithms, both for hypothesis infer-
ence and hypothesis refinement; the various algorithms are
evaluated in Section 5. Section 6 contains a summary, our
conclusions, and plans for future research. Table 1 lists the
notations and abbreviations used in this paper.

2 BACKGROUND AND RELATED WORK

2.1 Cyber Threat Intelligence

CTI is structured, actionable information for identifying
adversaries and their motives, goals, capabilities, resources,
and tactics. It includes evidence-based knowledge in the
form of measurable events and the context for the events’
interpretation. This information can be clustered into four
categories: (i) technical, (ii) tactical, (iii) operational, and (iv)
strategic CTI [6]. Information extracted from CTI improves
an analyst’s ability to recognize relevant threats and
respond to them in a timely manner [7], [8]. This is, methods
for CTI analysis can provide analysts with a list of related
information, supporting their decision-making as they han-
dle cyber incidents [9]. Hence, CTI is a powerful means of
increasing the efficiency of various security solutions, such
as intrusion detection, incident response, real-time analyt-
ics, forensic investigation, and threat hunting. The practical
use is validated within a survey of various cyber security
and information technology management professionals pre-
sented by Shackleford [10]. According to the study, 48% of
the respondents said their use of CTI has reduced incidents
through early prevention, and 51% said they are able to
respond more quickly to incidents.

CTI can be acquired by a victim organization that records
attack investigation artifacts (such as IoCs), e.g., through
anomaly detection systems respectively through intrusion
detection systems. However, differentiating a benign anom-
aly (e.g., caused by irregular user behavior or the implementa-
tion of a new device) from an attack is oftentimes challenging
leading to high false positive rates (fpr) and false negative
rates (fnr) [11]. Therefore, assessing the relevance of observ-
ables (i.e., IoCs) is crucial for effective attack hypothesis gen-
eration. Capturing CTI is also critical and has been the subject
of much research. Wheelus et al. [12] proposed a tiered Big
Data architecture for the automated capturing and handling
of network traffic; this enables the generation of features and
artifacts for machine learning algorithms and anomaly detec-
tors. Samtani et al. [13] suggested collecting CTI proactively
from large international underground hacker communities
without waiting for attacks to happen. They developed a
framework for storing and analyzing malicious assets, such
as crypters, keyloggers, and web and database exploits col-
lected from the dark web. Landauer et al. [11] presented a
methodology for automatically or semi-automatically trans-
forming raw log data to actionable CTI. By doing so, they
identified relevant information for threat hunting based on a
continuous flow of raw log data using a parser tree and anom-
aly detection algorithms.

Furthermore, these low-level attack artefacts (technical CTI)
are quickly actionable; however, very likely to become obsolete
in a short time. Therefore, the value of low-level CTI (e.g., IoCs)
for crafting attack hypotheses is debatable [11]. Hence, it is nec-
essary to combine the benefits of more abstract and thus more
robust (in terms of obsolescence) tactics and techniques (high-
level CTI)with actionable IoCs (low-level CTI).

Since no organization possesses complete understanding of
the threat landscape from recording attack artefacts, the impor-
tance of CTI lies in its ability be to shared among partners in a
machine-to-machine manner. By sharing the who, what,
where, how, and when of malicious activities, organizations



obtain a holistic view of the threat landscape thus increasing
their cyber security readiness [7]. However sharing CTI intro-
duces novel risks for the trustworthiness of CTI. Thus, assess-
ing the correctness and reliability of CTI is essential, as there
may be untrusted data sources. Furthermore, amajor challenge
in sharing CTI is that it is shared in various different formats
from a variety of sources. Therefore, information sharing needs
to be streamlined and structured [14]. In an effort to formalize a
standard language for sharing CTI, the US Department of
Homeland Security’s Office of Cybersecurity and Communica-
tions provided funding to MITRE to develop the Structured
Threat Information eXpression (STIX) language. STIX covers
the entire range of cyber security concepts, including observ-
ables, IoCs, attack patterns, tools, malware, threat actors,
courses of action, and more. A STIX element is denoted as a
STIX Domain Object (SDO). An IoC is an artifact or pattern
which, if found, indicates that malicious activity is being per-
formed. SDOs, such as observables and IoCs, are considered
low-level CTI, while SDOs, such as attack patterns, tools, and
threat actors, are considered high-level CTI. In the literature the
term IoA is defined as the entirety of CTI available on an attack,
including high-level descriptions of tactics, techniques, and
procedures (TTP) [15].

Additional CTI languages include OpenIOC, Trusted
Automated eXchange of Indicator Information, and the Inci-
dent Object Description Exchange Format, as well as propri-
etary languages and ontologies developed, e.g., Global
Threat Intelligence by McAfee [16] or IntelGraph by Accen-
ture [17]. Yet, according to a study provided by Sauerwein
et al. [18], STIX is the de facto standard language for shar-
ing CTI. Zhao et al. [19] presented an unified cyber threat
ontology integrating heterogeneous CTI languages. An
ontology can thereby be considered a meta-model of the
knowledge graph which presents general domain concepts
(Iqbal & Anwar [20]. There are many different sharing
platforms with practical relevance, including the Malware
Information Sharing Platform, OpenCTI, the Collective
Intelligence Framework, Anomali STAXX, and the
hrefhttps://otx.alienvault.com/OTX platform. De Melo e
Silva et al. [21] compared and investigated a large variety
of CTI languages and platforms and evaluated their
strengths and weaknesses. For a review on the various lan-
guages we refer to their work.

While existing CTI ontologies, languages, and reposito-
ries are integral to the approach presented in this study,
they are not sufficient for the effective generation of attack
hypotheses. Mavroeidis and Bromander [2] reviewed exist-
ing ontologies and concluded that there is ”not any (...)
ontology readily available for use” [2]. According to their
study, existing ontologies need to be criticized for their
”lack of expressiveness” and missing holistic view. Moti-
vated by their study, we partially bridge this gap using the
proposed AttackDB in Section 3. AttackDB facilitates a
holistic view of the different techniques used by a variety of
malware, effectively connecting them with low-level CTI.

2.2 Threat Hunting

In this subsection, we provide background on threat hunting.
Cyber security experts are divided regarding the exact stages
of the threat hunting cycle and its reactive or proactive nature.
On the one hand, some experts define threat hunting as proac-
tively looking for early indications of presumably ongoing
attacks without waiting for alerts to indicate suspicious activ-
ity [22]. On the other hand, threat hunting may refer to an
investigative process initiated in response to an alert. This
process may include advanced analytics, forensic investiga-
tions, targeted data collection, or policy updating [23], [24].
The main difference between proactive and reactive threat
hunting is the trigger for the investigation. Proactive threat
hunting relies on CTI to actively search for potentially mali-
cious behavior. Reactive threat hunting involves forensic
investigation and attack hypothesis testing in response to
alerts indicating such behavior.

A significant amount of effort has been invested in the
seamless integration of machines and human analysts within
the threat hunting cycle [8], [24], [25], [26]. A noteworthy
product that provides human-machine teaming capabilities is
the McAfee Investigator [25]. This product can be considered
a reactive threat hunting product, because it startswith choos-
ing an incident for detailed investigation. Advanced machine
learning algorithms choose the most relevant insights for the
human analysts who can then determine the risk and urgency
of the incident. After the analyst has chosen an incident for
detailed investigation, the machinery uses human input to
gather relevant information and provides a summary to the
analyst.

TABLE 1
Summary of Notations and Abbreviations
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Mavroeidis and Jøsang [27] presented an ontological
approach for automating threat hunting using system moni-
toring logs. The authors discussed the potential benefits of
CTI in investigating attack events and anticipating the next
attack steps. However in contrast to our approach, they did
not present hypothesis generation at the level of adversarial
techniques.

Homayoun et al. [28] used sequential pattern mining tech-
niques to identify features (i.e., activity logs) that are used for
classification relying on J48, random forest, bagging, and
multi-layer perceptron to detect and hunt ransomware. The
authors showed that different types of ransomware can be
identified by their frequent patterns and that this differentia-
tion can be used to build CTI from log data. However, their
work mainly focused on the classification task and does not
consider the possibility of crafting high-level CTI.

Ranveer and Hiray [29] presented an overview of meth-
ods that can be used in different stages of malware detec-
tion. They focused on the phase of feature extraction and
performed a comparative analysis of feature extraction
methods for malware detection.

While most prior research on threat hunting has focused
on automated detection and response, the current work
focuses on the hypothesis generation phase of the threat
hunting process.

2.3 Hypothesis Generation

2.3.1 Reasoning With Operational and Strategic CTI

Attack reconstruction, which is often the output of a suc-
cessful threat hunting procedure, refers to describing a
threat by presenting the different steps the attacker success-
fully executed. The security analyst should be able to
explain how each step was achieved by pointing to the rele-
vant events based on the evidence collected and its
analysis [30].

Causal attack graphs. Polatidis et al. [31] proposed an
approach for cyber attack (path) prediction using visualized
attack graphs and recommender systems, They used naive
Bayesian and random forest classifiers for attack prediction
and reasoning with CTI. The victim organization structure
and situational awareness are out of the scope of this paper.
However, we employ Bayesian inference for the analysis of
the CTI knowledge graph.

Milajerdi et al. [32] employed causal provenance graphs
to model the organization structure and processes alongside
the attacker activities. Their objective was to infer the high-
level TTPs from system logs. The inference of the causal
relationships for the construction of the provenance graph
from logs requires extensive threat emulation within the tar-
get environment. Such information is usually not provided
by major CTI sources. In contrast, the TTP inference pro-
posed in this article relies on readily available general-pur-
pose CTI published by a variety of sources.

Attack detection. AlEroud et al. [33] used domain
knowledge to improve initial predictions and create an
accurate attack profile. Attacks were represented as nodes
on semantic link networks. First, the authors ranked predic-
tions according to the networks, and then, with domain

knowledge and a taxonomy, they adjusted their predictions
according to the predictions’ correlation to the taxonomy.
Fard et al. [34] presented a multi-view ensemble threat
hunting model. For threat hunting they relied on weighted
majority voting using sparse representation-based classi-
fiers. Thereby, each classifier detects malware, using one
feature set as a single modality of available CTI. In an exper-
imental setting using three different data sets (e.g., extracted
from the VirusTotal Threat Intelligence platform), they
showed that the proposed approach delivers high accuracy
with little computational burden. Bhatt et al. [35] also sug-
gested a threat detection model. The proposed model is
used to improve hypothesizing on ongoing attacks given
correlated events, and knowledge on the Cyber Kill Chain1

(CKC) [36]. In contrast to works in this category, AHG is not
intended for attack detection. Rather, we aim to infer the
most probable attack techniques given a set of suspicious
artifacts under the assumption that an organization is
already under attack.

Inferring TTPs/CKC phases from artifacts. Wafula and
Wang [37] suggested a threat hunting hypothesis development
methodology for identifying the threat actor, target assets, rele-
vant vulnerabilities, and artifacts. They suggested using
exploratory data analysis of CTI for both the generation of an
initial hypothesis and validation of the hypothesis. Giura et al.
[38] proposed an attack pyramid that aims to capture the
movements of an attacker through CKC phases (represented
by the levels of the pyramid) and the organization’s environ-
ments (represented by the planes of the pyramid), e.g., physi-
cal, network, user, and application. The attacker’s goal is
located at the top of the pyramid, and it is reachable by step-
ping from one event to another. The pyramid enables the
detection of the attack path and the attacker’s goal. Iqbal et al.
[20] built a unified graph representation for CKC and Pyramid
of Pain models by extracting entities from textual reports.
They compared two variants of the same attack and showed
that they couldmap TTPs for each stage of the attack using the
graphwhichwould allowanalysts relying on themethods pre-
sented by the authors to derive and predict missing TTPs from
the graph. However, the approach presented does not provide
automation and demonstrated the predictive power for only
two malwares. Rubinshtein et al. [39] built an attack ontology
from logs and reconstructed attack steps based on this ontol-
ogy. In addition to generating actionable CTI from logs, Lan-
dauer et al. [11], processed the CTI generated using advanced
unsupervised machine learning methods to transform the
anomalies detected into hypotheses about abstract attack
patterns.

Taken together, these pioneering works form the founda-
tion upon which we build our hypothesis generation
approach. Most prior state-of-the-art methods demonstrate
inference of TTPs using expert based rules on just a few
attacks that exhibit a similar attack flow. We build AttackDB
– a comprehensive knowledge graph constructed top down,
relying on major CTI sources (MITRE ATT&CK, AlienVault,
X-Force Exchange, and VirusTotal). AttackDB enables to

1. CKC was developed by Martin Lockheed to model the diverse
threat landscape. The CKC describes seven steps that an attacker must
perform in order to accomplish the goal of an attack.



streamline the process of TTP inference by relying on net-
work based inference instead of manually defined sets of
rules. In addition, as proposed by Rubinstein et al. [39], we
add similarity scores and hypothesis generation algorithms
to increase the attack reconstruction and threat hunting
capabilities. In this paper we investigate a wider set of
approaches for crafting robust hypotheses.

2.3.2 Reasoning Using CTI Knowledge Graphs

In the field of cyber security, the use of knowledge graphs,
which are systematics representing CTI with the help of
directed labeled graphs, is in its early stages and is mainly
used for visualization and less for prediction. One of the first
studies on the use of knowledge graphs for analysis was per-
formed by Lee et al. [40] who built a knowledge graph from
open-source intelligence. Based on established graph algo-
rithms, they improved the identification of malicious nodes
and attack infrastructures, as well as the relationship among
attack groups and their similarity. In particular, they used
page rank and betweennessmetrics to detect relevant informa-
tion in the graph. Gao et al. [41] presented a trust evaluation
mechanism to assesswhich information is relevant (malicious)
and which is not. They trained supervised classification algo-
rithms based on a random forest classifier to distinguish
between trusted and untrusted information. They found that
graph-based features increase the accuracy of the trainedmod-
els. Link prediction techniques have shown to provide valu-
able insights from CTI-based knowledge graphs [42], [43].
Inspired by these works, we employ supervised machine
learning and link predictionmethods for the inference of TTPs
from artifacts through knowledge graph analysis.

Najafi et al. [44] proposed a novel graph-based inference
algorithm to evaluate the maliciousness of IoCs. The pro-
posed algorithm outperformed established prior state-of-
the-art algorithms, such as belief propagation and SimRank,
and showed that the proposed algorithm was particularly
effective in identifying previously unknown IoCs. Milajerdi
et al. [45] modeled threat hunting as an inexact graph pat-
tern matching problem based on kernel audits, with rela-
tionships between CTI used as reliable artifacts. However,
the query graphs are manually constructed by the research-
ers for each instance of the attack.

Qamar et al. [46] and Riesco and Villagr�a [47] proposed
data-driven analytics based on the STIX ontology. They
used logic-based deductive inference rules (defined in
Semantic Web Rule Language [48]) and defined queries for
evaluating threat likelihood and managing cyber threat
response activities. Although logic rules may detect com-
plex patterns in CTI, a domain expert is required to define
the rules, which is the main drawback of this method.

Ulicny et al. [49] highlighted the need for inferences to
be automated to cope with the high dynamic developments
in the field of cyber security and motivate the automation of
threat hunting relying on CTI. The authors showed the
possibility of automated threat detection based on Web
Ontology Language [50]. They thereby introduced an
approach which mimics the work of a human analyst.

Elitzur et al. [3]present algorithms for refining IoAs
crafted by a human analyst. These algorithms can be used
within a decision support system but hardly automate the

investigation process. We aim at contributing to both the
automated inference of IoAs and the refinement of IoAs
inferred by a human analyst. In contrast, to graph alignment
and logical rules mentioned above, the methods proposed
in this paper allow full automation of TTP inference. We
rely on CTI sources that include many attack variants and
are readily available to security teams. The threat intelli-
gence knowledge base, AttackDB, that we present [4] in this
paper is unique comprising all malware families from
MITRE ATT&CK and connecting high-level TTPs with low-
level observable artifacts.

3 MULTI-LEVEL THREAT KNOWLEDGE BASE

3.1 Schema

In this section we describe AttackDB - a multi-level threat
knowledge base. AttackDB contains SDOs at all levels of the
Pyramid of Pain [51], from abstract concepts, such as tactics
and top-level techniques, down to IoCs and specific observ-
ables, such as hashes, Internet protocol (IP) addresses, and
domain names.

Fig. 1 depicts AttackDB’s schematic structure. We utilize
the definition of SDOs and relationships between them with
a few exceptions; for example, we do not take advantage of
all SDOs defined in STIX (e.g., location). We also use a single
concept of attack instead of the intrusion set, campaign, and
malware defined in STIX.

The top-level SDOs in AttackDB are attack patterns (a.k.
a. tactics and techniques). Tactics are the most abstract rep-
resentations of attacks in AttackDB and represent tactical
goals of attackers. Techniques denote the actions attackers
take to achieve the tactical goal. SDOs include the malicious
activities exhibited by malware, campaigns, or intrusion
sets. Malware is software that exhibits a set of malicious
activities. Malware can be a part of multiple campaigns. A
campaign is a set of malicious activities performed for a spe-
cific period of time against specific targets. Campaigns that
are believed to be orchestrated by the same threat actor may
be grouped into intrusion sets. Despite the semantic differ-
ences between them, malware, campaign, and intrusion set
SDOs can be used to represent an abstract attack that is

Fig. 1. AttackDB schema with detection difficulties according to the Pyra-
mid of Pain.

KAISER ETAL.: ATTACK HYPOTHESES GENERATION BASED ON THREAT INTELLIGENCE KNOWLEDGE GRAPH



being hunted. A tool is software which can be used by an
adversary.

AttackDB also contains observed data SDOs associated
with an attack on the one hand and with a CTI report on
the other. Report SDOs are included in AttackDB to trace
back the CTI to its source (see Section 3.3) but are not used
for hypothesis generation. Observed data SDOs may aggre-
gate hashes, IP addresses, domains, network, and host arti-
facts (i.e., telemetry), such as process names, services,
registry keys, and other artifacts. Artifacts may be grouped
together in a pattern and tagged as an IoC. IoCs can be
used to identify attacks observed in the past but are usu-
ally easily modified by the attacker. All of the observed
data stored in AttackDB is processed and used to create
attack hypotheses, rank the hypotheses according to their
probability, and generate workflows for proper response to
(and in this sense defending against) the hypothesized
attack.

3.2 Data Fusion

In the current implementation, the AttackDB knowledge
graph is stored in a Neo4j2 database, however any graph
database may be used for this purpose. With AttackDB, we
constructed a rich knowledge base that consists of CTI from
the MITRE ATT&CK Enterprise knowledge base, the OTX,
the X-Force, and VirusTotal. Relationships between differ-
ent objects are included to build the knowledge graph, as
they are described in malware analysis reports extracted
from the different CTI sources. Details regarding the data
extraction process and data fusion are provided below. The
process of constructing AttackDB is presented in Fig. 2.

MITRE’s ATT&CK is an open CTI knowledge base that
contains information on adversarial techniques and tactics,
threat actors, mitigation, malware, and tools [30]. First, we
populate AttackDB with malware and techniques and the
relationships between them, extracted from MITRE
ATT&CK.

OTX provides CTI in the form of pulses, which contain
one or more IoCs, such as file hashes, Uniform Resource
Locators (URLs), and IPs. Pulses can be tagged with mal-
ware names, threat actors, and additional information. In
the second step, we search for pulses, using malware names
from MITRE ATT&CK, via the OTX Application Program-
ming Interface and link malware nodes in AttackDB to IoCs

from the respective pulses. However, AlienVault allows
anyone to post a set of IoCs as a pulse, which may lead to
unreliable data. Therefore, we only use pulses posted by the
top 20 publishers with the most subscriptions who posted
pulses related to the malware searched for: AlienVault, Mal-
warePatrol, jnazario, niddel, Metadefender, cyberprotect,
popularmalware, Malwaremustdie, Cyber_Hat, burberry,
bartblaze, ESET-Spain, julsec, zer0daydan, rpsanch, erik,
milind, BLUELIV, techhelplist, BotnetExposer, and
nightingale.

IBM X-Force provides malware reports, which contain
IoCs of various types, such as URLs, domain names, file-
names, and processes. As with AlienVault, we search for
reports using malware names and link malware nodes in
AttackDB to IoCs from the respective reports. We use file
hashes retrieved from AlienVault and X-Force to fuse the
pulses with VirusTotal reports.

In the third step, we enrich AttackDB with malware
telemetry, such as network and host artifacts. For this pur-
pose, we retrieve behavioral analysis data from VirusTotal
for all hashes obtained from OTX and X-Force. The behav-
ioral data retrieved from VirusTotal includes file names
(opened, created, searched, etc.), URLs, domains, IPs, pro-
cess names, registry keys, mutual exclusions (mutexes),
emails, and more. Note that during the population of
AttackDB, IoCs with identical patterns should be repre-
sented by the same node, as well as observables with identi-
cal values.

Fig. 3 provides an illustration of AttackDB’s structure con-
taining two attack nodes (A1 and A2) and all of the relevant
connections. At the top, we see malware and associated tech-
niques extracted fromMITRE ATT&CK. The three respective
IoCs (two hash values and one URL) are extracted from OTX
and X-Force. Following the STIX format, the relevant
observed data nodes are connected with IoCs connected with
the relevant attack (i.e., malware). Finally, the behavioral data
extracted from VirusTotal is displayed at the bottom of the
figure. This observed data is not connected with IoC nodes,
because it is not necessarily a strong indication of the attack
but is merely a collection of artifacts generated by the mal-
ware during dynamic analysis.

Note that a behavioral artifact may be connected to mal-
ware through multiple paths. This happens when there are
multiple instances of the same malware analyzed by

Fig. 2. Flow chart of AttackDB’s construction.

Fig. 3. An illustration of AttackDB’s structure.2. https://neo4j.com/

https://neo4j.com/


VirusTotal. Also note that observables are indirectly con-
nected to techniques through the respective malware. We
use this connection to build attack hypotheses, as described
in Section 4.3.

3.3 Duplicate Data and Malware Aliases

In the resulting AttackDB there are hash nodes that are con-
nected to two or more malware nodes. Since hash nodes
represent specific malware instances, ambiguous connec-
tions to malware nodes require additional clarification. The
possible reasons for this phenomenon are described below.

We analyze all occurrences of hash nodes shared by attack
nodes. For each shared hash we analyze the relevant mal-
ware analysis reports in order to categorize the relationships
between the attack nodes sharing the same hashes. The
nature of these relationships is diverse: ambiguous naming
(aliases), shared actor, shared campaign, belonging to the
same malware family, shared infection mechanism, errors in
the reports’ parsing process (i.e., extraction error), etc.

Roughly, we divide reports into two types: (1) reports
that describe some factor, such as actors, campaigns, fami-
lies, infection mechanisms, or IoCs overlaps, common to
multiple malware instances; and (2) reports that describe a
single specific malware. Reports of the first type often con-
tain references to multiple malware binaries. In such cases,
an attack node is connected not only to its representative
hash but to all the hashes provided in malware analysis
reports. Reports of the second type describe a single mal-
ware containing a single representative hash, however there
may be different reports describing the same malware with
different names. In such cases a single hash is connected to
all the malware aliases that appeared in the reports.

Ambiguous connections whose origin is in both types of
reports provide meaningful information, and therefore, we
include them in AttackDB. Connections caused by errors in
the process of extracting data from the malware analysis
reports have been removed.

We analyze the reports connected to hash nodes with
ambiguous connections, searching for connections errone-
ously omitted and connections caused by extraction errors.
This manual analysis resulted in the connection of 74
reports to 93 malwares and disconnecting 54 reports from
35 malwares. Connecting a report to a malware means con-
necting the malware to all observables, including IoCs, that
appear in the report, while disconnecting a report from a
malware means disconnecting the malware from all IoCs
that appear in the report.

Example 1 (Adding connections). The XTunnel malware
appears in a pulse in OTX and therefore is connected to
the corresponding report in the graph. There are also
IoCs from the CORESHELL and USBStealer malwares in
the same report, because XTunnel, CORESHELL, and
USBStealer belong to the APT28 group. However, during
the data fusion process, when searching for CORESHELL
and USBStealer, the report did not come up, resulting in
missed connections.

Example 2 (Removing connection). We removed connec-
tions between the RTM malware and reports that contain
the word “department.”.

3.4 Knowledge Base Summary

The resulting AttackDB fuses data from 1,675 AlienVault
pulses, 281 IBM X-Force reports, and 53,005 VirusTotal
reports. It contains 253 malware nodes associated with
144,216 IoCs. Around 60,000 of the IoCs are file hashes, and
the rest are domain names, IPs, etc. In total there are over
half a million observables in AttackDB. All of the techniques
in the graph (190) are connected to some malware. The aver-
age number of techniques per malware is 10.3. We only
include techniques that are associated with a malware by
MITRE within this study.

4 ATTACK HYPOTHESIS GENERATION

4.1 High-Level Overview

Assume that suspicious events are taking place in an organi-
zation. The goal of AHG is to propose an hypothesis on the
course of the possible attack. Fig. 4 provides an overview of
the hypothesis generation process. The resulting hypothesis
consists of a set of MITRE ATT&CK techniques that are
closely related to: (1) the observed data, and (2) each other.

A hypothesis that consists of ATT&CK techniques that
are closely related to the observed data can be obtained by
an analyst who investigates the suspicious events and for-
mulates an initial hypothesis based on alerts and various
artifacts recorded by the organization’s SIEM (see Fig. 4(1)).
In addition, an initial hypothesis can be inferred by ranking
adversarial techniques based on currently observed data
(COD) stored in the system (see Fig. 4(2)). In Section 4.3, we
describe two approaches for inferring an initial hypothesis:
inferring techniques related to IoCs in AttackDB and infer-
ring techniques related to telemetries in AttackDB. These
two approaches are implemented by using three methods
(initial hypothesis generation (ih) algorithms) that produce
a relationship that maps the observed data to techniques: A
method inspired by term frequency inverse-document-fre-
quency (TFIDF ) (see Section 4.3.1) a multi-nomial naı̈ve
Bayesian classifiers (NB-C) (see Section 4.3.2), and a multi-
nomial multi-layer naı̈ve Bayesian classifiers (MLNB-C)
(see Section 4.3.3).

A hypothesis that consists of ATT&CK techniques that
are closely related to each other can be crafted by refining
the set of techniques (relying on hypothesis refinement (rh)
algorithms) comprising the initial hypothesis using a recom-
mender system-based technique (see Fig. 4(3)). Section 4.4
describes five recommender system techniques for refining
the initial hypothesis: the projected technique (ProjT, Sec-
tion 4.4.1), link prediction on projected technique (LPProjT,
Section 4.4.2), link prediction on projected attack (LPProjA,

Fig. 4. Overview of the hypothesis generation process.
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Section 4.4.3), projected hypothesis (ProjAT, Section 4.4.4),
and supervised link prediction (SupLP, Section 4.4.5).

To make it easier for the analyst, all methods used to
produce the initial and refined hypotheses aim to accu-
rately rank the ATT&CK techniques so that the most
probable techniques appear first. In Section 4.5, we pro-
pose a method for estimating the number of related tech-
niques. The refinement mechanism selected is applied
based on the results of the method for estimating the
number of related techniques.

4.2 Problem Definition

Assume a knowledge graph as described in Section 3.2.
Malware SDOs that are used to represent an attack are
grouped in a super-set denoted as A. An attack descriptive
SDO contains information about an element that has been
used or targeted by the attack. SDOs that can be used to
describe an attack, specifically techniques (a.k.a. attack pat-
terns), IoCs, observed data and specific observables, are
grouped in a super-set denoted as D.

Definition 1 (Cyber security knowledge graph). A cyber
security knowledge graph KG ¼ A;D; Rh i is a graph where
A contains the nodes representing past attacks, and D con-
tains the description nodes (specifically, techniques, IoCs,
observed data, and observables). R is the set of directed
links connecting related SDOs according the schema
depicted in Fig. 1.

Definition 2 (Attack descriptions). Given an attack repre-
sentation a 2 A, we refer to the set of v 2 D that are at most
five hops away from a as the attack description ADa ¼
fvjdistða; vÞ � 5g � D. We refer to all v 2 ADa, where v is a
technique, as the attack techniques ATa ¼ fvjv 2 ADa

^typeðvÞ ¼ Techniqueg.
Assume an unknown ongoing attack anew currently being

investigated by the analyst. If an analyst constructs the ini-
tial hypothesis, then he/she adds anew to the KG and begins
a preliminary investigation by concentrating on the recent
alerts and related telemetry.

Problem 1 (Initial hypothesis generation problem).
Given a knowledge graph KG and COD in the SIEM, generate
an initial hypothesis of an attack, denoted as ATinit

anew
, consisting

of techniques closely related to COD.

According to a preliminary investigation, the analyst
connects anew to technique SDOs, denoted as ATinit

anew
. ATinit

anew
may also be referred to as an attack hypothesis consisting of
a set of techniques.

The initial hypothesis can also be inferred automatically
by ranking techniques based on COD, as will be elaborated
on in Section 4.3.

AHG consists of a module that refines ATinit
anew

by recom-
mending more relevant techniques and ignoring or omitting
techniques that are not relevant.

Problem 2 (Hypothesis refinement problem). Given an
initial hypothesis ATinit

anew
and a knowledge graph KG, generate

a new hypothesis, denoted as ATref
anew

, that is more accurate than
ATinit

anew
with respect to the correct description of the real attack

AT �anew .

4.3 Initial Hypothesis Generation

ATinit
anew

is constructed by selecting the techniques most rele-
vant to COD. For this purpose we employ different methods
that produce relationships mapping COD to techniques.
The initial hypothesis generation is either based on a simu-
lated human analyst (a strategy denoted as H) or auto-
mated, relying on one of the ih algorithms presented below.
Note that COD may be either IoCs or telemetries, depend-
ing on the inferring technique approach employed.

Algorithm 1. CountPaths

Input: observables; AttackDB; ihstrategy

Output: num techs per obs, related techs
1: num techs per obs fg
2: related techs Setð½�Þ
3: for obs 2 observables do
4: num techs per obs½obs�  fg
5: if ihstrategy ¼¼ IoC then
6: techsobs  GetTechsConnectedToIoCðobsÞ
7: else
8: techsobs  GetTechsConnectedToTelðobsÞ
9: for tech 2 techsobs do
10: add tech to related techs
11: num techs per obs½obs�½tech�  CountPathsðobs; techÞ
12: return num techs per obs, related techs

4.3.1 Term Frequency-Inverse Document Frequency

We propose the use of a technique scoring mechanism
based on TFIDF common in information retrieval. In this
case, techniques are analogous to documents, and observ-
ables are analogous to search terms for the purpose of
TFIDF computation. A technique t is relevant to an observ-
able obs if obs appears in a report on attack a that uses t. An
observable may appear in several reports and be connected
to a technique through multiple attacks.

Definition 3 (Connected observables to a technique).
TF ðobs; tÞ is the number of paths from obs to t in the knowl-
edge base.

In the discussions that follow, we use x : Y notation to
indicate typeðxÞ ¼ X, and we use dot x : X � y : Y to indi-
cate that x and y are connected in KG. When a technique’s
scoring is based on IoCs (obs is an IoC), then the set of paths
between obs and t is defined as follows:

TF ðobs; tÞ ¼ fobs� ðod : ODÞ � ði : IoCÞ � ða : AÞ � tgj j;
When a technique’s scoring is based on telemetries (obs is a
telemetry, typeðobsÞ ¼ OD ^ typeðobsÞ 6¼ IoC), then the set
of paths between obs and t is defined as follows:

TF ðobs; tÞ ¼jfobs� ðod : ODÞ � ðh : hashÞ
� ðod : ODÞ � ði : IoCÞ � ða : AÞ � tÞgj:

Note that the hash is a subset of IoC (hash � IoC �
OD � D). For example, in Fig. 3 there are three 6-hop paths
connecting the gdi32.dll observable at the bottom of the
figure (in the middle) with the technique T2.

There are several different versions of inverse document
fequency (IDF ) assessment available in the literature. We
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use the simplest one which is the logarithm of the total
number of techniques divided by the number of relevant
techniques in AttackDB.

Definition 4 (Term frequency-inverse document fre-
quency of techniques). Let T ¼ ftg be the set of techniques
in AttackDB. Let be T a subset of T denoting the relevant t
given obs; then IDF can be defined as the following

IDF ðobs; tÞ ¼ Loge
jTj
jT j

� �
: (1)

The score of t is the sum of the TFIDF ðobs; tÞ values for all
COD.

TFIDF ðobs; tÞ ¼ TF ðobs; tÞ � IDF ðobs; tÞ (2)

TFIDF ðtÞ ¼
X

obs2COD

TFIDF ðobs; tÞ: (3)

4.3.2 Naı̈ve Bayesian Inference

We implement a multi-nomial NB-C. Multi-nomial NB-Cs
can be based on word vector counts as well as on
TFIDF [52]. Here, we present a NB-C based on vector
counts. Therefore, the prior probabilities are extracted from
the KG referring to the number of relevant observables.
Hence, a priori probabilities represent prior knowledge that
can be extracted from theKG.

Definition 5 (Prior probabilities). We assume the prior
probability of the utilization of a technique P ðtÞ to be a priori
equal for each t. Consequently, P ðtÞ can be defined as follows:

P ðtÞ ¼ 1

jTj : (4)

We furthermore assume, P ðaÞ the prior probability of the
utilization of an attack to be equal for each a.

P ðaÞ ¼ 1

jAj : (5)

We assume the occurrence of an obs to be deterministic in
the occurrence of the related attack. Let A denote all relevant
(related to the specific obs) attacks. Then, the prior probability
of the observation of a specific observable P ðobsÞ can be defined
as follows:

P ðobsÞ ¼
X
a2A

P ðaÞ: (6)

Based on these prior probabilities, the posterior probabil-
ity that attack technique t is relevant given COD is defined
by Equation (7)

P ðtjCODÞ ¼ P ðtÞ �Qobs2COD P ðobsjtÞ
P ðCODÞ (7)

P ðobsjtÞ ¼ TF ðobs; tÞ þ aP
t2T TF ðobs; tÞ þ a

(8)

P ðCODÞ ¼
Y

obs2COD

P ðobsÞ; (9)

where a is a smoothing prior. This smoothing prior can be
used for Laplace smoothing (a ¼ 1) or Lidstone smoothing

(a < 1). With the smoothing prior it is possible to account
for obs and connections that are not present in AttackDB
(e.g., unknown). Furthermore, it prevents probabilities of
zero. Therefore, the use of this additive smoothing parame-
ter may hence increase the accuracy of classification.

4.3.3 Multi-Layer Naı̈ve Bayesian Inference

Leveraging on the ontology of the KG, we use MLNB-C.
This inference algorithm allows to use causal relationships
presented in AttackDB and therefore step-wise reduces the
assumption of conditional independence of NB-C. The pro-
posed method consists of two tiers (see Fig. 5): (I) NB-C for
technique inference from malware; (II) NB-C for malware
inference from COD.

According to the law of total probability, the probability
of a technique t given COD can be defined as described in
Equation (10).

Definition 6 (Connected attacks to a technique). TF ða; tÞ
is the number of paths from a to t in KG. Equivalently,
TF ðobs; aÞ describes the number of paths from obs to a in KG,
where TF ða; tÞ and TF ðobs; aÞ are calculated symmetrically to
TF ðobs; tÞ

P ðtjCODÞ ¼
X
a2A

P ðtÞ � P ðajtÞ � P ðajCODÞ
P ðaÞ (10)

P ðajtÞ ¼ TF ða; tÞ þ aP
t2T TF ða; tÞ þ a

(11)

P ðajCODÞ ¼ P ðaÞ �Qobs2COD P ðobsjaÞ
P ðCODÞ (12)

P ðobsjaÞ ¼ TF ðobs; aÞ þ aP
a2A TF ðobs; aÞ þ a

: (13)

4.4 Hypothesis Refinement

Next, we refine ATinit
anew

, relying on rh algorithms. This stage
accounts for interdependence between techniques by
increasing the score of techniques which are often used
together in the same attacks.

For hypothesis refinement, we rely on a set of link
prediction (LP) techniques and similarity metrics, namely
Jaccard’s/Tanimoto coefficient [53], [54], Adamic Adar [55],
Friends measure/ Katz measure [56], and Preferential
Attachment [57]. Here we define these algorithms, applying
them to a, although the algorithms can analogously be used
for AT and t.

Definition 7 (Jaccard’s/Tanimoto coefficient). The
Jaccard’s/Tanimoto coefficient JA is a similarity metric

Fig. 5. Framework of multi-layer naı̈ve Bayesian inference of initial
hypotheses within AttackDB.
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describing the probability that ai and aj share the same AT for
an AT that either ai or aj has. It is defined as follows.

JAðai; ajÞ ¼
ATai \ATaj

��� ���
ATai [ATaj

��� ��� : (14)

Definition 8 (Adamic Adar). Adamic Adar AAA describes a
frequency-weighted metric formalizing the notion that rarely
observed techniques of a are more informative than frequently
observed techniques. AAA is defined as follows.

AAAðai; ajÞ ¼
X

t2ATai\ATaj

1

log AT ðtÞj j: (15)

Definition 9 (Katz measure). Katz measure KA is a heuristic
defined by the sum of the path length of connections. It is assumed
that the shorter the paths connecting ai and aj are and the more
paths that exist, the more similar the attacks. Therefore, it can be
described as a variant of the shortest-pathmeasure

KAðai; ajÞ ¼
X
l

bl � TFlðai; ajÞ; (16)

where b is a scaling parameter, and TF lðai; ajÞ is the number
of paths from ai to aj of length l.

For the undirected KG, the Katz measure is equal to the
Friends measure, where b ¼ 1 and lmax ¼ 2.

Definition 10 (Preferential Attachment). Preferential Attach-
ment PAA calculates the similarity without relying on relational
information. PAA can be computed as follows.

PAAðai; ajÞ ¼ ATai

�� �� � ATaj

��� ���: (17)

Given a snapshot of KG, LP techniques identify missing
relationships within the knowledge graph that are likely to
occur. LP techniques can also be used to identify relation-
ships that are likely to be incorrect within theKG. We apply
five techniques to predict the relationships between the
SDO representing the new attack anew and the relevant tech-
nique SDOs. We rank each technique t and select the top N
to serve as ATref

anew
.

As described in previous sections, KG is a graph linking
attacks to relevant techniques. Following the common prac-
tice in recommender systems [58], in some of the following
approaches we rely on the one-mode projection of theKG on
either the set of attacks (A) or the set of techniques (T � D).

Definition 11 (Attack similarity graph KGA). KGA ¼
A; EA; JAh i is a unipartite weighted graph, where ðai; ajÞ 2
EA if ATai \ATaj 6¼ ;, and the edge weight JAðai; ajÞ is the
Jaccard coefficient of the respective attack descriptions.

We define the weighted techniques similarity graph
(KGT ¼ T; ET; JTh i) symmetrically as the one-mode projec-
tion ofKG on T.

4.4.1 Projected Techniques

We begin with the simplest approach that aggregates the
link weights between the hypothesis provided by the

analyst or the initial hypothesis generation and each of the
techniques t 2 T. The relevance score ProjT of the techni-
ques is calculated as follows:

ProjT ðanew; tÞ ¼
X

t02ATinit
anew

JTðt;0 tÞ: (18)

4.4.2 Link Prediction on Projected Techniques

Although ProjT takes into account the similarity between
techniques in terms of the attacks associated with them, the
topology of KGT is not considered. We utilize several com-
mon link prediction measures to improve ProjT by taking
the neighborhoods of the techniques suggested by the ana-
lyst into account. Given KGT, we apply known LP meas-
ures such as JA; AAA; KA, and PAA [59] on KGT. The
likelihood of each technique t 2 T is calculated as follows:

LPProjT ðanew; tÞ ¼
X

t02ATinit
anew

lpKGT ðt;0 tÞ: (19)

4.4.3 Link Prediction on Projected Attack (LPProjA)

Equation (20) is used to rank each attack a 2 A and select
the top k attacks, denoted asAtop.

scorea ¼ lpKGAðai; anewÞ: (20)

Similar to Equation (19), we use a range of LP measures
to find the attack’s most similar anew. The score of each tech-
nique t 2 T is calculated as

LPProjAðanew; tÞ ¼
X

a2Atop:a 6¼anew^t2ATa
scorea: (21)

In Section 5.2, we present the results obtained with the JA
as the LP measure, since in preliminary experiments this
method obtained the best results. Let Ga ¼ fa0 : ða; a0Þ 2
EAg denote the neighbors of an attack a in the attack simi-
larity graphKGA. The hypothesis based on JA is

LPProjAðanew; tÞ ¼
X

a2Atop:a 6¼anew^t2ATa

jGanew \ Gaj
jGanew [ Gaj : (22)

4.4.4 Projected Attack Techniques (ProjAT)

Intuitively, the more an arbitrary attack a is similar to anew,
the higher the chance that anew uses the same AT as a. In
this approach, we rank the techniques t 2 T according to JA
between ATinit

anew
and all ATa that include t (fATaja 2 A^

t 2 ATag). Equation (23) is used to calculate the likelihood
score for each technique t 2 T

ProjAT ðanew; tÞ ¼
X

a2Atop:a 6¼anew^t2ATa
JAðATa;ATanewÞ; (23)

where a 2 Atop are the top k attacks that obtain the highest
score when applying JAða; anewÞ.

4.4.5 Supervised Link Prediction (SupLP)

Here, we describe how to formulate LP as a supervised
learning problem and apply a random forest classifier to



predict the probability of a link in KG. First, we build a
training set that consists of pairs of nodes fðu; vÞju 2 A ^ v 2
Tg. Then, we extract a variety of features for each pair fol-
lowing the methodology presented by Fire et al. [59]:

i) the nodes’ topological attributes (e.g., degree, page
rank, hubs, and authorities),

ii) neighborhood-based metrics (e.g., JA, PAA), and
iii) distance-based measures (e.g., shortest path length,

number of shortest paths).
Next, given the initial hypothesis ATinit

anew
we want to esti-

mate the likelihood of a link existing between anew and tj 2
T (1 � j � jTj) in KG. As in the model’s training phase, we
(1) extract the topological attributes and distance-based
metrics of anew and tj from KG, and (2) use the projections
KGA and KGT to obtain neighborhood-based metrics for
anew and tj, respectively. Finally, we feed the extracted fea-
tures for all (anew; tj) tuples (1 � j � jTj) to the trained
model. The probability of the positive class (link exists) is
used to rank the techniques.

On the one hand, building the SupLP model requires a
large number of examples in the learning phase, while on
the other hand, SupLP makes it possible to combine several
features and be aware of wider contexts than the other four
algorithms, which only take into account one feature.

4.5 The Expected Number of Techniques
and Adaptive Hypothesis Refinement

Preliminary experiments on the initial inference of attack
hypotheses and their refinement show that in cases
where the real attack uses a large number of techniques
the refinement may reduce the quality of ATinit (Figs. 8
and 10). We therefore introduce an adaptive refinement
procedure. A dynamic threshold which states when to
refine and when to rely on the ATinit is established
based on the expected number of techniques related to
the investigated attack.

Similar to the ih algorithms, we estimate the probability
of each attack being the investigated attack. For NB-C and
MLNB-C the probability of an attack is given by P ðajCODÞ,
as specified in Equation (12). Given P ðajCODÞ and the num-
ber of techniques related to a specific attack AT ðaÞ, the num-
ber of expected techniques related to the investigated attack
(denoted as jAT 0j) can be calculated for the naive Bayesian
methods as follows:

jAT 0NB-C j ¼ jAT 0MLNB-C j ¼
X
a2A

P ðajCODÞ � jAT ðaÞj: (24)

The decision on the refinement of TFIDF based ATinit is
based on TFIDF ðaÞ, which is similar to TFIDF ðtÞ and is
defined as follows:

Definition 12 (Term frequency inverse document fre-
quency of attacks). Let A be the set of attacks in AttackDB;
let A � A be the subset of relevant attacks having a path to a
given obs; and let a 2 A be some relevant attack. Then IDF
can be defined as follows:

IDF ðobs; aÞ ¼ Loge
jAj
jAj

� �
: (25)

The score of a is the sum of the TFIDF ðobs; aÞ values for all
COD.

TFIDF ðobs; aÞ ¼ TF ðobs; aÞ � IDF ðobs; aÞ (26)

TFIDF ðaÞ ¼
X

obs2COD

TFIDF ðobs; aÞ; (27)

where TF ðobs; aÞ is as in Definition 6.

jAT 0j can then be calculated for the TFIDF method as the
product of the probability for a and the number of related
techniques AT ðaÞ

jAT 0TFIDF j ¼
X
a2A

TFIDF ðaÞP
a2A TFIDF ðaÞ � jAT ðaÞj: (28)

The decision whether to refine an initial hypothesis or not
depends on the expected number of techniques jAT 0j and a
configurable adaptive refinement threshold (arth). The
refinement is only performed when AT 0 	 arth.

4.6 Machine Learning Based Hypothesis
Generation

We conclude the attack hypotheses generation methods
with a description of a supervised machine learning
(ML) approach. We consider a multi-label learning
where CODs are instances and techniques are the labels.
Every COD is a bag of observables. We used one-hot
encoding to extract features as follows: Domain names:
every generic top level domain (.com,. cn, etc.) is a
binary feature. Email addresses: the email domains (gmail.
com, yahoo.es etc.) were used. IPv4: we used class A
(/8) subnets as features. Ports, mutexes, and files were
used as-is for the one-hot encoding. Every COD is repre-
sented with 1,677 binary features. In this research we
used two state-of-the-art ML algorithms XGBoost and
Random Forest (RF).

5 EVALUATION

5.1 Experimental Setup

For every attack a 2 A, we use ATinit, ATref , and AT � to
respectively denote the initial hypothesis, the refined
hypothesis, and the ground truth of the utilized
techniques.

We consider three strategies for constructing an initial
hypothesis: (1) by a simulated human analyst H, (2) by
automatic inference from IoCs, and (3) by automatic infer-
ence from telemetry data Tel. The initial hypotheses con-
structed according to these strategies are denoted as ATinit

H ,
ATinit

IoC , and ATinit
Tel respectively.

For H based ATinit, we assume an analyst attempting
to make the right decisions regarding the investigated
attack. However, there may be errors in the analyst’s
hypothesis regarding the attack due to a lack of knowl-
edge or insufficient forensic evidence. To challenge the
robustness of the hypotheses refinement algorithms we
simulate two types of errors: false positives – selection
of unrelated techniques (ATinit

H nAT �) and false negatives
– omission of related techniques (AT � nATinit

H ). The
errors are captured by two configurable parameters false
positive rate (fprH) and false negative rate (fnrH).

KAISER ETAL.: ATTACK HYPOTHESES GENERATION BASED ON THREAT INTELLIGENCE KNOWLEDGE GRAPH



fprH ¼
ATinit

H nAT �
�� ��

T nAT �j j fnrH ¼
AT � nATinit

H

�� ��
AT �j j : (29)

For IoC and Tel based inferences of ATinit, we rely on the
ih algorithms presented in Section 4.3. ML algorithms
(XGBoost and RF) were used with their default configura-
tions. Similar to fprH and fnrH used to challenge the
hypotheses refinement algorithms we challenge the whole
hypothesis generation pipeline based on IoCs and Tel by
introducing errors into the currently observed log data
(COD). We generate various input data samples using vari-
ous false positive (fprCOD) and false negative rates (fnrCOD):
Let COD� denote the optimal set of observations. Let OBS

denote all obs in AttackDB. fpr is the fraction of erroneous
SDOs associated with the attack out of the total number of
irrelevant SDOs

fprCOD ¼ COD n COD�j j
OBS n COD�j j ; (30)

fnrCOD is the fraction of SDOs used by the attacker, which
were not observed.

fnrCOD ¼ COD n COD�j j
COD�j j : (31)

We run the evaluation for a wide range of error rates

fprH; fprCOD 2 f0:0; 0:01; 0:03; 0:05; 0:07; 0:1; 0:2; 0:5g
fnrH; fnrCOD 2f0:0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0g:

In the rest of the paper, we will omit the subscripts of
fpr; fnrwhen their use is apparent from the context.

5.1.1 Evaluation Metrics

In the evaluation, for each a 2 A, we measure the gap
between the actual techniques in AT � and the initial
hypothesis ATinit, examine whether the hypothesis
refinement algorithms were able to decrease the gap and
specify the extent to which they were able to do so, and
improve ATinit.

Note that the proposed approaches described in Sec-
tion 4.4 rank all d 2 D according to their likelihood to
be associated with the attack, similar to search results
in a typical recommender system. Therefore, we use
average precision (AP ) to evaluate the TTP inference
approaches.

Given the actual techniques in AT �, the initial hypothesis
ATinit, and the refined hypothesis ATref , we compute the
AP score for ATref and ATinit by comparing each of the
hypotheses to AT �. Next, we evaluate the improvement of
the refined hypothesis in comparison to the analyst’s
hypothesis by calculating the difference between the AP
score of ATinit and the AP score of ATref , i.e., we compute
AP ðAT �; ATrefÞ �AP ðAT �; AT initÞ.

5.1.2 Outline of the Experiment

In order to evaluate the hypothesis generation methods,
we perform a leave-one-out cross-validation procedure

(LOOCV). In every iteration of LOOCV we choose one
attack from AttackDB as the test set and rely on the remain-
ing AttackDB content to reconstruct the attack’s technique
set.

For each attack a 2 A, we evaluate each combination
of initial hypothesis inference strategy, hypothesis refine-
ment algorithm, and fpr and fnr values. The hypothesis
inference strategy is determined by two parameters:
ih approach 2 fH; IoC; Telg and ih impl 2 fTFIDF;NB-C;
MLNB-Cg. The hypothesis refinement algorithm proce-
dure is likewise controlled by two parameters:
rh approach 2 farh; rhg and ih impl 2 fProjT; ProjAT;
LPProjT; LPProjA; SupLPg.

For each attack, we also investigate whether to apply the
refinement or not (ahr). In doing so, we determine a thresh-
old (arth) for each anew. arth thereby maximizes the AP for
AHG for a 2 Aja 6¼ anew.

Algorithm 2 delineates one iteration of the LOOCV and
its evaluation. Each iteration of the LOOCV begins, in line 1,
with sampling the AttackDB according to AT � , fpr and
fnr. The type of relevant SDOs is determined by
ih approach.

Algorithm 2. Evaluation Procedure

Input: fpr; fnr; ih approach; ih impl; rh approach; rh impl; a
Output: DAP

1: input sampleðCOD�; 1� fnrÞ [ sampleðOBS n COD�; fprÞ
2: RemoveAttackðaÞ
3: ATinit GenInitHypðinput; ih approach; ih implÞ
4: ATref GenRefHypðATinit; rh approach; rh implÞ
5: RestoreAttackðaÞ
6: APref AP ðAT �; ATrefÞ
7: APinit AP ðAT �; AT initÞ
8: DAP APref �APinit

9: return DAP

Next, in line 2, the investigated attack a is removed
from AttackDB. We remove the attack family, all IoCs
connected to it, and all related behavioral reports. This
step allows the evaluation procedure to assess the per-
formance of AHG as if was facing zero-day exploits. In
line 3, the GenInitHyp 3 procedure is called to generate
ATinit according to the given sample of SDOs and the
initial hypothesis generation approach. For approach H
(i.e., simulated analyst), the input is a sample of techni-
ques that simulates ATinit

H , thus it is returned by GenIni-
tHyp as is (see lines 1-2 in Algorithm 3). For IoC and
Tel based approaches, the input is either a set of IoCs or
Tel, respectively.

In line 4, one of the rh algorithms from Section 4.4 is
used to improve ATinit and return ATref . If the threshold
is not reached, the adaptive refinement mechanism pre-
vents the use of refinement algorithms so that ATref ¼
ATinit. Finally, we restore a to AttackDB (line 5) and
evaluate the performance of the ih and rh algorithms
(lines 6-8).

The experiment is performed for each strategy (H, IoC,
and Tel), combination of ih and rh algorithm, and for each
combination of fpr and fnr.



Algorithm 3. GenInitHyp

Input: input; AttackDB; ih approach; ih impl
Output: ih implðpaths count; techsÞ

1: if ih approach ¼¼ H then
2: return input
3: else
4: paths count; techs CountPathsðinput;
AttackDB; ih approachÞ

5: return ih implðpaths count; techsÞ

Algorithm 4. GenRefHyp

Input: ATinit; AttackDB; rh approach; rh impl
Output: rh implðpaths count; techsÞ

1: if rh approach ¼¼ arh then
2: if jAT 0j � arth then
3: ATref  rhðAttackDB;ATinitÞ
4: else
5: ATref ¼ ATinit

6: return arhðpaths count; techsÞ
7: else
8: ATref  rhðAttackDB;ATinitÞ
9: return rh implðpaths count; techsÞ

5.2 Results

5.2.1 Initial Hypothesis Generation Problem Results

Fig. 6 shows the performance of the initial hypotheses genera-
tion from IoCs as a function of the noise in the observeddata.As
expected the performance is the highest in absence of additional
noise fprCOD ¼ fnrCOD ¼ 0. Yet ih algorithms retain reasonable
performance even for relatively high error rates in the observed

data. In the following results we compare the performance of
the algorithmsaveragedover thevarious error regimes.

Fig. 7 presents the mean AP for each ih algorithm (from left
to right: simulated human analyst (H) based inference, auto-
mated inference of ih based on IoCs, automated inference of
initial attack hypothesesATinit based on telemetry and ih gen-
eration based onmachine learning (ML)). For automated infer-
ence of hypotheses, the results for each algorithm described in
Section 4.3 are provided.We also present a box-whisker plot to
provide an overview of the behavior of the algorithms,
highlighting the performance of the ih algorithms. As Fig. 7
presents the mean AP of refined attack hypotheses ATref , we
use the identity function to represent the plain vanilla initial
hypotheses (ATinit) and include their meanAP in the figure to
show the effects of refinement.

The black line indicates the mean AP of random attack
hypotheses. The expected AP for a baseline extracting 10
random techniques out of 190 is 0.077 (calculated according
to Bestgen [60]). A mean AP of 0.08 was measured empiri-
cally. The MLNB-C outperforms the other ih algorithms
(NB-C and TFIDF ), providing ATinit with the highest AP
of the ih algorithms.

Fig. 8 shows the dependence of the precision of the ATinit

inference on the number of related techniques. In the upper
part a histogram on the number of attacks is given; in the mid-
dle part of the figure, the meanAP is presented; while the bot-
tom part presents the receiver operating characteristics area
under the curve (ROC�AUC). As can be seen, the precision of
attack hypotheses increases with an increasing number of
related techniques, and the variance decreaseswith the number
of related techniques. These effects can be seen for bothAP and
ROC �AUC. MLNB� C shows superiority for attacks that
are linked to a large number of techniques, although it is not as
effective for generation of ATinit on attacks that are linked to a
small number of techniques (compared to ML, TFIDF and
NB� C). The precision ofATinit does neither increase with an
increasing number of related telemetries nor related IoCs.
These results show that the number of IoCs and telemetries
does not significantly influence the performance of AHG.
Rather the specificity ofCOD ismore important.

5.2.2 Hypothesis Refinement Problem Results

Fig. 9 presents the mean AP for H based ATinit (left) and
ATref for each rh algorithm (top) and the improvements

Fig. 6. Initial hypotheses from IoCs. (left) AP as a function of fprCOD

when fnrCOD ¼ 0. (right) AP as a function of fnrCOD when fprCOD ¼ 0.

KAISER ETAL.: ATTACK HYPOTHESES GENERATION BASED ON THREAT INTELLIGENCE KNOWLEDGE GRAPH

Fig. 7. Mean AP of analyst based (left,) automatic inference of attack hypotheses based on IoCs (middle-left) and Tel (middle-right), and ML based
inference of attack hypotheses (right). Black line represents the AP of a random baseline.



that can be reached through improving the analysts’
hypotheses when employing AHG based refinement (bot-
tom). Improvements of ATinit are highlighted in green,
while deterioration is indicated in red. As can be seen, each
rh algorithm has the potential for improving the ATinit for
specific combinations of fnr and fpr. However, especially
for combinations of both, low fnr and low fpr, where the
simulated human analyst (H) is able to generate very pre-
cise ATinit, there may be a deterioration of the precision of
attack hypotheses. The extent of the deterioration of ATinit’
precision is highly dependent on the rh algorithm
employed. SupLP decreases the precision of ATinit the low-
est for combinations of low fnr and low fpr (ATinit that is
close to AT �), while LPProjT performs the poorest under
these circumstances. Furthermore, SupLP achieves the best
results for refining H based inferences of ATinit for reason-
able combinations of fnr and fpr. However, it is shown to
work worse for combinations of high fnr and high fpr than
LPProjA and ProjAT .

Fig. 7 presents the results for automatic hypothesis gen-
eration for each rh algorithm (Section 4.4) applied to ATinit

crafted relying on ih algorithms, based on IoCs (left) and
Tel (right). We highlight the identity function (as a plain
vanilla initial hypothesis (ATinit) without refinement) to dis-
entangle the evaluation of the of hypothesis refinement.

Both ML algorithms achieved similar performance mean
AP (std) of 0.386 (0.2) and 0.384 (0.2) for XGBoost and RF
respectively. Hence we show only one box-plot in Fig. 7.
The std. of AP of the ML models is two times higher than
the std. of AP of the other approaches (TFIDF:0.09, MLNB-
C: 0.11, NB-C:0.09). We attribute this behavior to the ability
of ML algorithms to focus on indicative observables when
they are available. In contrast, in the NB based approaches,
the contribution of the most indicative observables may be
diluted by the Laplace smoothing.

When the attack hypotheses are refined (if ATinit gets
refined), TFIDF and NB� C can lead to comparable pre-
cise hypotheses than MLNB� C. What stands out is that
when applying Tel based inference of attack hypotheses, the
precision of MLNB� C increases, while a slight deteriora-
tion (compared to IoC based inference of attack hypotheses)
can be seen for both TFIDF and NB� C. Furthermore,
ProjAT is shown to be the most efficient for refining auto-
matically generated ATinit. Regarding the behavior of rh
algorithms, it can be seen that SupLP is ineffective for auto-
matically generated ATinit (relying on ih algorithms) and
obtains the worst precision of ATref .

Fig. 10 shows the efficiency of rh algorithms depending on
the quality (precision) ofATinit. This figure presents the behav-
ior for each rh algorithm. While it can be seen that the rh algo-
rithms react differently to the precision ofATinit, rh algorithms
prove to be most useful when the accuracy of ATinit is low.

Fig. 8. The number of attacks (top), mean AP (middle) and ROC-AUC
(bottom) of ih algs. as a function of the number of related techniques.

Fig. 9. Mean AP for initial hypothesis generation and refinement for analyst based initial inferences.

Fig. 10. Mean AP and ROC AUC of refined hypotheses depending on
the precision of the initial hypotheses.



However, for anAP ofATinit of around 0.5 andhigher, rh algo-
rithms aremore likely to deteriorate the accuracy ofATinit. This
is consistent with the results obtained for analyst crafted
hypotheses (see Fig. 9). It is also shown that, the behavior of
LPProjA andLPProjT is comparable.

5.2.3 Adaptive Refinement

Finally, we address the limitations of link prediction in
cases of accurate ATinit using the adaptive refinement
method (arh algorithm) described in Section 4.5. Fig. 11
shows that the arh algorithm improves the precision of
ATinit in the vast majority of cases. Moreover, arh based
refinement does not lead to a deterioration of the mean AP
for either combination of ih and rh algorithms). For each ih
algorithm, the optimal adaptive refinement threshold (arth)
is calculated on the basis of the remaining data (according
to the LOOCV procedure), leading to a refinement in 40% of
the cases for MLNB� C and approximately 84% for
TFIDF . In the case of the NB� C, the precision of ATref is
always better than the ATinit; thus, the arh procedure acti-
vates the rh algorithm in every case.

5.3 Discussion

We evaluated AHG based on a LOOCV procedure. There-
fore, we consider AHG to be applicable for the analysis of
novel (yet unobserved) attacks (e.g., zero-day exploits).

For analyst (H) based initial hypotheses (ATinit
anew

), hypothesis
refinement is able to increase the precision of attack hypotheses
for a wide range of combinations of fnr and fpr. Experimental
results show the superiority of ProjAT and SupLP for refining
H basedATinit. The supremacy ofProjAT for refiningH based
ATinit over the other rh algorithms indicates that (1) relying on
similar attacks is a good approach for hypothesizing about new
attacks, and (2) the Jaccard’s/ Tanimoto coefficient between
attack descriptions is a good measure for identifying similar
attacks. Furthermore, SupLP based hypothesis refinement can
be integrated to the process of attack hypothesis generation
within the threat hunting cycle forH generated ATinit without
the risk of a significant deterioration of the precision of attack
hypotheses. Evaluations of the results obtained for H based
attack hypotheses need to consider that the real performance of
H can differ from analyst to analyst. Furthermore, we simu-
lated the accuracy of ATinit crafted by H rather than assessing

the accuracy of H based attack hypotheses empirically. Also,
we considered an analystwith infinite computational resources
who produces a reasonableATinit given a set of observables. If
there are multiple reasonable ATinit, we assume that the ana-
lyst randomly selects one of those. In this study we did not
account for the possibility that the structure of the database
(AttackDB) could cause difficulties for a human analyst (e.g.,
due to the large volume of obs). Consequently, it is likely that
we systematically overestimated the precision of H based
ATinit when relying on the simulation approach.

For hypothesis refinement, our results show that LPProjA
provides mean AP of around 0.5, even for high fpr and high
fnr. Since some of the attack patterns are very common,
LPProjA’s performance (measured in terms of AP and
ROC �AUC) is reasonably high. Thus, recommendingpopular
techniques can have significant value, especiallywhen there is a
lot of uncertainty, i.e., when there is no context to the attack or
observations (COD) are weak. Furthermore, ProjAT and
SupLP show the best results for reasonable combinations of fnr
and fpr, highlighting their potential use for refining hypotheses.

Additionally, the results raise some interesting insights
for establishing fully automated hypothesis generation that
combines the use of ih and rh algorithms. Since the ih algo-
rithms seem to be robust, even for combinations of high fnr
and high fpr, the effectiveness of using some rh algorithms
seems to be questionable. For most observed cases, the use
of LPProjT and LPProjA resulted in a deterioration of the
precision of ATinit. This indicates that there is a need for an
effective combination of rh and ih algorithms to craft attack
hypotheses with high precision.

6 CONCLUSION AND FUTURE WORK

In thisworkwe proposed a comprehensivemulti-level threat
knowledge base derived from multiple open-source threat
intelligence sources called AttackDB. AttackDB can be used
to generate attack hypotheses which include high-level
descriptions of the investigated attack. We focus on the auto-
mated inference of adversarial techniques from observable
artifacts found within the attacked systems relying on multi-
ple initial attack hypothesis generation algorithms. The infer-
ence is demonstrated using a large collection of VirusTotal
behavioral reports. Further, we employ a variety of techni-
ques inspired by recommender systems to refine initial
attack hypotheses suggested by one of the algorithms or an
analyst. We show that such refinement works best when the
number of techniques used in the attack is sufficiently large.
Based on this insight we developed an heuristic to decide
whether to refine an initial hypothesis or not. Automated
attack hypothesis generation relying on this adaptive
hypothesis refinement procedure based on the expected
number of techniques works the best, achieving a mean AP
greater than 0.5 and aROC �AUC above 0.8.

Future research on evaluating the performance of the
presented algorithms empirically against professional secu-
rity analysts or against rule-based TTP inference such as
HOLMES [32] would highlight the pros and cons of auto-
mated CTI driven TTP inference. The former will assess the
usefulness of the AHG algorithms in real security opera-
tions center settings with human in the loop. The latter will
be possible once rule base for TTP inference will be

Fig. 11. Improvements of mean AP when applying the arh-procedure.
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expanded to cover a large fraction of ATT&CK techniques
and allow inference based on VirusTotal behavioral reports.

MITRE ATT&CK does not include information about the
order of adversarial techniques employed by malware. The
same is true for VirusTotal behavioral reports. As a result,
AttackDB does not include information about the sequences
of attack steps. Once this limitation is removed by the major
CTI sources, AHG can be augmented to consider the order
of techniques in an IoA, similar to what has taken place in
the area of expert based TTP inference.

While the high-level attack hypotheses provided in form
of a collection of adversarial techniques are useful for analy-
sis and reporting, future development is required to close
the loop with data collection based on these hypotheses [61].
Such automation is possible using analytics such as those
provided in the MITRE Cyber Analytic Repository.3
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