KIT | KIT-Bibliothek | Impressum | Datenschutz

Covalent Adaptable Microstructures via Combining Two‐Photon Laser Printing and Alkoxyamine Chemistry: Toward Living 3D Microstructures

Jia, Yixuan ORCID iD icon 1; Spiegel, Christoph A.; Welle, Alexander ORCID iD icon 1; Heißler, Stefan 1; Sedghamiz, Elaheh 2; Liu, Modan 1; Wenzel, Wolfgang 3; Hackner, Maximilian; Spatz, Joachim P.; Tsotsalas, Manuel ORCID iD icon 1; Blasco, Eva
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Manufacturing programmable materials, whose mechanical properties can be adapted on demand, is highly desired for their application in areas ranging from robotics, to biomedicine, or microfluidics. Herein, the inclusion of dynamic and living bonds, such as alkoxyamines, in a printable formulation suitable for two-photon 3D laser printing is exploited. On one hand, taking advantage of the dynamic covalent character of alkoxyamines, the nitroxide exchange reaction is investigated. As a consequence, a reduction of the Young´s Modulus by 50%, is measured by nanoindentation. On the other hand, due to its “living” characteristic, the chain extension becomes possible via nitroxide mediated polymerization. In particular, living nitroxide mediated polymerization of styrene results not only in a dramatic increase of the volume (≈8 times) of the 3D printed microstructure but also an increase of the Young's Modulus by two orders of magnitude (from 14 MPa to 2.7 GPa), while maintaining the shape including fine structural details. Thus, the approach introduces a new dimension by enabling to create microstructures with dynamically tunable size and mechanical properties.


Verlagsausgabe §
DOI: 10.5445/IR/1000155524
Veröffentlicht am 01.02.2023
Originalveröffentlichung
DOI: 10.1002/adfm.202207826
Scopus
Zitationen: 14
Web of Science
Zitationen: 23
Dimensions
Zitationen: 25
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1616-301X, 1616-3028
KITopen-ID: 1000155524
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Band 33
Heft 39
Seiten Art.-Nr.: 2207826
Vorab online veröffentlicht am 22.09.2022
Nachgewiesen in Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page