KIT | KIT-Bibliothek | Impressum | Datenschutz

Split Additive Manufacturing for Printed Neuromorphic Circuits

Zhao, Haibin ORCID iD icon 1,2; Hefenbrock, Michael; Beigl, Michael ORCID iD icon 1; Tahoori, Mehdi B. 3
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)
2 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)
3 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Printed and flexible electronics promises smart devices for application domains, such as smart fast moving consumer goods and medical wearables, which are generally untouchable by conventional rigid silicon technologies. This is due to their remarkable properties such as flexibility, non-toxic materials, and having low-cost per area. Combined with neuromorphic computing, printed neuromorphic circuits pose an attractive solution for these application domains. Particularly, the additive printing technologies can reduce large amount of fabrication complexities and costs. On the one hand, high-throughput additive printing processes, such as roll-to-roll printing, can reduce the per-device fabrication time and cost. On the other hand, jet-printing can provide point-of-use customization at the expense of lower fabrication throughput. In this work, we propose a machine learning based design framework, that respects the objective and physical constraints of split additive manufacturing for printed neuromorphic circuits. With the proposed framework, multiple printed neural networks are trained jointly with the aim to sensibly combine multiple fabrication techniques (e.g., roll-to-roll and jet-printing). ... mehr


Preprint §
DOI: 10.5445/IR/1000155533/pre
Veröffentlicht am 03.02.2023
Originalveröffentlichung
DOI: 10.23919/DATE56975.2023.10136891
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 19.04.2023
Sprache Englisch
Identifikator ISBN: 979-8-3503-9624-9
ISSN: 1530-1591
KITopen-ID: 1000155533
Erschienen in 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 17-19 April 2023
Veranstaltung Design, Automation & Test in Europe Conference & Exhibition (DATE 2023), Antwerpen, Belgien, 17.04.2023 – 19.04.2023
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Serie Proceedings - Design, Automation, and Test in Europe Conference and Exhibition
Nachgewiesen in Scopus
Dimensions
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page