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LapSeg3D: Weakly Supervised Semantic Segmentation of Point Clouds
Representing Laparoscopic Scenes
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Abstract— The semantic segmentation of surgical scenes is a
prerequisite for task automation in robot assisted interventions.
We propose LapSeg3D, a novel DNN-based approach for the
voxel-wise annotation of point clouds representing surgical
scenes. As the manual annotation of training data is highly time
consuming, we introduce a semi-autonomous clustering-based
pipeline for the annotation of the gallbladder, which is used
to generate segmented labels for the DNN. When evaluated
against manually annotated data, LapSeg3D achieves an F1
score of 0.94 for gallbladder segmentation on various datasets
of ex-vivo porcine livers. We show LapSeg3D to generalize
accurately across different gallbladders and datasets recorded
with different RGB-D camera systems.

I. INTRODUCTION

The understanding of the surgical scene is a crucial
requirement of active robotic assistance and task automation
in robot assisted surgery (RAS). An important step in this
pipeline is the semantic segmentation of the laparoscopic
image frame, where every pixel or voxel is assigned a class
label of the structure it belongs to, e.g. the gallbladder. In
the standard of care, mono laparoscopes are used and the
surgical scene is visualized to the surgeon on a monitor. In
recent years, the use of stereo laparoscopes has increased,
as they have become the state of the art in robotic tele-
manipulators, such as the da Vinci (Intuitive Surgical Inc.,
USA), improving the surgeon’s spatial understanding of the
surgical scene. However, their potential is not fully utilized.
In particular and towards autonomous robotic assistance
in surgery, stereo laparoscopes offer several advantages to
automated systems and navigation systems (with augmented
reality or otherwise), as it is possible to reconstruct the
three-dimensional surgical scene from the left and right
image streams. This provides a better basis for surgical
planning and the automated robotic execution of a task, e.g.
grasping and tissue manipulation. To make specific use of
the 3D-reconstructed surgical scene for surgical navigation,
the individual points need to be semantically segmented,
i.e. assigned to their corresponding tissue type (e.g. “liver”
or “gallbladder”). This is especially challenging due to the
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Fig. 1. Setup of the ex-vivo experiments and the resulting segmented point
cloud of the surgical scene.

circumstances in RAS, such as the necessity for small sensors
(which fit in the laparoscope), wet surfaces, blood and smoke
in the scene, and oftentimes similar textures and colors of
organs.

In current research, semantic segmentation of the surgical
scene has primarily been focused on the recognition and
pose estimation of surgical instruments in two-dimensional
laparoscopic image frames [1], [2], which is an essential step
for skill automation [3]. Presented approaches mainly utilize
random forests [4], [S] or convolutional neural networks
(CNNs) [6], [7], [8], [9].

Few presented methods address the semantic segmentation
of the full surgical scene. Scheikl et al. [10] investigated the
performance of different deep learning architectures (e.g. U-
Net, TernausNet, FCN, LinkNet, SegNet) for the pixel-wise
semantic segmentation of the complete surgical scene. Five
classes were segmented (instruments, liver, gallbladder, fat
and other). The structures were segmented with an Intersec-
tion over Union (IoU) of 0.79. Magbool et al. [11] propose a
method for pixel-wise semantic segmentation of the surgical
scene by using a CNN Encoder-Decoder architecture. Addi-
tional works have been introduced as results of the MICCAI
2021 Endoscopic Vision ‘HeiSurf-Subchallenge’ for surgical
workflow analysis and full scene segmentation [12].
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While these methods address the semantic segmentation
of two-dimensional image frames of mono laparoscopes, few
works exist that present approaches to perform a voxel-wise
classification on three-dimensional point clouds. Haouchine
and Cotin [13] segment point clouds of laparoscopic scenes
based on curvatures and normals to approximate connected
surfaces of organs, e.g. the liver. However, the organs’
textures are not taken into account.

In other non-surgical domains several works for 3D image
segmentation have been proposed. Qi et al. introduce a
deep neural network (DNN) to process point clouds for
various 3D recognition tasks, such as image segmentation
[14], [15]. Other works deal with object recognition and
shape completion in point clouds, e.g. 3D Shape Nets [16]
and voxel-based methods [16], [17]. Tchapmi et al. propose
SegCloud, an end-to-end 3D segmentation framework for
point clouds [18]. The LapSeg3D architecture proposed in
this work is comparable to 3D-UNet proposed by Cicek
et al. [19], where it is utilized for kidney segmentation in
volumetric confocal microscopic data.

In this work, we focus on cholecystectomy, i.e. the removal
of the gallbladder from the liver. We introduce LapSeg3D,
a novel approach for semantic segmentation of point clouds
to identify the 3D-surface of a gallbladder. Our core con-
tribution is a weakly supervised clustering-based pipeline
capable of bootstrapping a large, diverse dataset of labelled
training examples (cf. Fig. 2). This dataset is then used to
train a DNN to perform the segmentation task. By generating
its training data using weak supervision, LapSeg3D benefits
from the fast inference and good generalization capabilities
of DNNs while avoiding the need for manually labelled
training data. We evaluate our approach on a diverse set of
ex-vivo gallbladders. LapSeg3D is highly accurate, achieving
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Overview of the proposed pipeline for the segmentation of point clouds representing laparoscopic scenes.
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F1 scores of 0.94, and generalizes well across different
gallbladders. During run-time, the complete segmentation
from raw point cloud to upsampled segmentation results is
performed in 162 ms (0=3 ms) on a NVIDIA GeForce 3080
Ti GPU, with the DNN itself performing inference in 17 ms
(o=1 ms). This enables intraoperative online usage, such as
for navigation or visual servoing of robotic manipulators.

II. METHODS

A. DNN for RGB-D gallbladder segmentation

To segment the gallbladder in RGB-D images of surgical
scenes, we propose a DNN based on 3D-UNet [19]. 3D-UNet
is a 3D extension of UNet, a state-of-the-art architecture
for 2D biomedical image segmentation [20]. Our 3D-UNet
implementation takes a 80x80x80 voxel grid X of the
surgical scene as input, where each voxel has three channels
corresponding to the RGB color of the scene at this voxel.
The network outputs a 80x80x80 voxel grid Y of the surgical
scene, where each voxel has one binary channel indicating
whether it is part of the gallbladder. The network architecture
is shown in Fig.[3] There are several deviations from the orig-
inal 3D-UNet architecture. Most notably, our network has
much fewer parameters (746,365 compared to 19,069,955),
due to the smaller dimensions of the input voxel grid as well
as smaller feature maps at each layer. The smaller number
of parameters reduces the hardware requirements at runtime:
LapSeg3D has a memory footprint of 2700 MB, enabling our
network to perform inference on CPUs and consumer-grade
GPUs. We use instance normalization before each Rectified
Linear Unit (ReLU) activation, as we empirically found it
to outperform batch normalization for our application. The
weighted Softmax output activation function in [19] was
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replaced by a Sigmoid activation, as the DNN learns a voxel-
wise binary classification task and labels are available for
every voxel.

Given a training dataset
{(X0,Y0),...,(Xn,Yn)} containing N input-label pairs,
we use the Adam optimizer [21] to minimize the binary
crossentropy (BCE) between the output voxel grids Y and
their corresponding ground-truth voxel grids Y:

Dtrain =

Y|

—ﬁ ) [Yi 1og(f/")+(1—yi)1og(1—fﬂ')],
- ()

where Y and Y denote the i entries in voxel grids Y and
Y. This corresponds to a supervised training regime, as the
labelled voxel grids Y are used during training.

In real-world surgical applications, any solution for seg-
menting surgical scenes must generalize to new gallbladders
not present in the training dataset, as it is difficult to collect
new patient-specific training data and re-train the network
before surgery. We leverage data augmentation to improve
the generalization capacity of the DNN. Random rotation
around the coordinate axes (rz,ry,rz € [—30°,30°]), uni-
form scaling (factor s € [0.8, 1.2]) and elastic transformation
(factor f € [0,0.3]) are applied with the probability p =
0.5 to each input-label tuple per epoch. Random gamma
correction (y € [0.7,1.5]), contrast (o« € [0.7,1.3]), and
brightness (8 € [—0.3,0.3]) are always applied.

BCE(Y,Y) =

B. Weakly supervised gallbladder segmentation

The proposed segmentation DNN is trained on labelled
input-label pairs via a supervised learning regime. To ensure
the applicability of the approach in real-world surgical set-
tings and minimize human involvement during training, we
propose to convert it into a weakly-supervised regime by gen-
erating high-quality labelled training data using a clustering-
based pipeline. To bootstrap a large training dataset for the
segmentation DNN, we contribute the multi-stage weakly

supervised data processing pipeline outlined in Fig. 2] (2).
Its objective is to generate high-quality labelled training
examples for the DNN by segmenting the gallbladder from
a large number of raw RGB-D images of surgical scenes,
while requiring a minimal amount of human intervention.

The proposed pipeline is composed of three distinct stages
(cf. Fig. |Z| (2)), which are described below. Human involve-
ment is only required for the very first training example
- all other RGB-D images in the dataset are processed
autonomously.

1) Alignment: To ensure robustness against changes in
the relative position of the camera with respect to the scene,
the raw RGB-D point cloud is first aligned to a refer-
ence scene Py via a homogeneous transformation 1y;g,.
Our approach assumes a static camera pose per dataset,
but allows for changing camera poses between datasets.
Aligning all datasets to the same reference scene permits
the network to be trained across many different surgical
scenes covering multiple patients and camera perspectives.
For surgical practice, this implies that the pose of the stereo
laparoscope must not change during surgery, or that the
current laparoscope pose must be known (i.e. tracked) at all
times. For our experiments, T};4, is computed via least-
squares regression over point correspondences between the
current and reference point clouds. For the first point cloud
P; of a dataset, a human is asked to identify at least four
point correspondences between P; and P,..;. In practice, we
found that identifying points at the tip (fundus) as well as at
the neck (infundibulum, collum) of the gallbladder in both
Py and P,y produced sufficient alignment. The computed
Thtign 1s used for the remainder of the dataset.

2) Cropping: The aligned point cloud is cropped to
contain only the surgical scene. This is particularly important
for cameras or stereo laparoscopes with a field of view much
larger than the scene. Again, a human is asked to select a
bounding box for P;, which is then applied to the remainder
of the dataset.

3) Clustering-based gallbladder segmentation: Gallblad-
der segmentation is performed by an algorithm, which com-
bines clustering with heuristics specific to the domain of
organ segmentation. In a first step, color-based 3D region
growing [22] is leveraged to split the raw point clouds
into clusters of similar color. Similar to the alignment and
cropping stages, a human expert provides a set of gallblad-
der colors by picking points in P;. Clusters with colors
sufficiently different from any picked gallbladder colors are
rejected outright. The remaining clusters are merged into the
final gallbladder cluster Cp via the following algorithm:

1) Cgp is initialized with the largest cluster.

2) All clusters adjacent to Cgp are added to Cgp. Two
clusters are adjacent if the smallest distance between
any two points in the clusters is below a given thresh-
old.

3) The process is iterated until C'op ceases to grow.

The generated training dataset then consists of the aligned
and cropped RGB-D images of the surgical scene as well as



the corresponding segmentation results. Both input and label
images are downsampled to an 80x80x80 voxel grid.

III. EXPERIMENTAL VALIDATION

We conduct a series of experiments on ex-vivo porcine
models to assess the validity of our approach.

A. Experimental setup

The experimental setup is illustrated in Fig. [l An oper-
ating table is equipped with a URS industrial manipulator
(Universal Robots A/S, Odense, Denmark). The robot’s end
effector is a standard laparoscopic gripper (KARL STORZ
SE & Co KG, Tuttlingen, Germany), which is connected
to the robot via a customized mechatronic interface. The
segmentation of the instrument is not within the scope of
this work. State-of-the-art algorithms achieve high F1 scores
(approx. 0.88) for the semantic segmentation of the complete
instrument [1]. To easily track the instrument, we apply green
markers to the gripper fingers. The surgical procedures are
performed on ex-vivo porcine livers by a human surgeon.
Two RGB-D cameras acquire data for the experiments:
A Zivid One industrial RGB-D camera (Zivid AS, Oslo,
Norway), operating via structured light and providing point
clouds with high dynamic range at a resolution of 1920 x
1200 and a frame rate of up to 10 Hz; as well as a ZED Mini
RGB-D camera (Stereolabs Inc., San Francisco, U.S.A), with
lower dynamic range, but higher frame rate of 15 Hz at a
resolution of 4416x1242 (left and right image side by side).

B. Data collection

We collected a total of 15 datasets, each containing be-
tween 10 and 483 raw point clouds of the surgical site, from
a total of nine ex-vivo porcine models. The datasets cover
different stages of the operation from three different camera
angles. Six datasets were recorded using the Zivid camera,
while the Stereolabs camera was used for the remaining nine.
Each dataset was collected using the following protocol:

1) The liver is positioned upside-down compared to the
in-vivo anatomy, i.e. with the gallbladder and the hilum
of the liver facing upwards. Thus, the gallbladder is
always visible. This results in a view similar to the
intraoperative view when gallbladder and liver are
elevated by a grasper at the gallbladder fundus.

2) Blunt or electrocautery dissection of Calot’s triangle;
clipping and cutting of cystic duct and cystic artery.
No RGB-D data is collected during this step.

3) Teleoperated grasping of the gallbladder by the robot.
The grasp point is dependent on the state of the
operation. Initially, the gallbladder is grasped at the
infundibulum. At later stages, the grasp point advances
along the body toward the fundus to remain close
to the respective dissection plane between liver and
gallbladder.

4) Execution of random teleoperated end-effector motions
for 2-3 minutes. The teleoperator mimics the range
and type of gripper motions (i.e., lateral, upward, and

Original Region Growing LapSeg3D

Fig. 4.
recorded by sensor, annotation derived through region growing (magenta),
annotation predicted through our proposed LapSeg3D (red), compared to
manual annotations of the medical experts (blue).

Segmentation results (from left to right): original point cloud

backward) commonly performed by the surgeon. RGB-
D point clouds of the surgical site are continuously
recorded during teleoperation.

5) Teleoperated release of the gallbladder and continua-
tion of gallbladder removal by the surgeon.

6) Steps 2-4 are repeated respectively after the removal
of the first, second and third fifths of the gallbladder.

In the first experiments (Stereloabs 1-5, Zivid) the liver and
gallbladder were positioned in a white box, which caused
reflections of the gallbladder visible in the RGB-D images.
Thus, for the last four datasets (Stereolabs 6-9), a matte black
box was used.

C. Experiments

1) Comparison with expert labels: In a first series
of experiments, we compare the segmentation results of
LapSeg3D with a total of 67 RGB-D scenes manually
segmented by surgeons using CloudCompare [23]. Three
models were trained on three different training datasets: allrg
containing a total of 2,311 RGB-D images of surgical scenes
from both cameras; slrg, containing 1,921 images from the
Stereolabs camera; and zivgg, containing 390 images from
the Zivid camera. Training times for the networks varied with
the size of the dataset. For the largest dataset (allgg), training
took approximately 8 hours on a NVIDIA 3090 GPU. All
training data was generated using the region growing-based
weakly supervised processing pipeline (RG). To assess the
data generation pipeline, its outputs are also included in the
analysis.

2) 4-fold crossvalidation: In a second series of exper-
iments, we perform 4-fold crossvalidation to assess the
capacity of LapSeg3D to generalize to scenes and gall-
bladders beyond the training dataset. Four networks were



TABLE I
PERFORMANCE OF LAPSEG3D COMPARED TO HUMAN EXPERT LABELS.

Model Dt’rain Dtest P R F1 ToU
LapSeg3D allgg ally 094 095 094 089
LapSeg3D allgg sly 095 095 095 0.90
LapSeg3D allgg zivyg 091 096 093 088
LapSeg3D slrg ally 095 082 086 0.79
LapSeg3D slrg sly 097 091 094 0.89
LapSeg3D slrG zivy 092 067 072 0.61
LapSeg3D ZiVRG ally 093 084 087 078
LapSeg3D ZIVRG sly 091 0.80 0.84 0.73
LapSeg3D ZIVRG zivy 096 091 093 0.88
Region Growing - ally 096 092 094 0.89
Region Growing - sly 096 092 094 0.88
Region Growing - zivy 095 093 094 0.89

P: Precision, R: Recall, F1: F1 Score, IoU: Intersection over Union.
RG: Labels generated by weakly supervised region growing.
H: Labels annotated by a human surgeon.
sl: Stereolabs camera, ziv: Zivid One camera.

trained, each on a subset of the datasets collected with the
Stereolabs camera: sl678gg, s1689rg, s1789rg and sl679gg,
combinations of data from the 6%, 7, 8" and 9" gallbladder.
The networks are evaluated on the labels of the respective
missing gallbladder provided by a human surgeon.

IV. RESULTS

The results of experiment 1 (see Section [[II-C.1) are sum-
marized in Table |} Trained on a dataset comprising all nine
gallbladders, LapSeg3D achieves an F1 score of 0.94 and an
IoU score of 0.89 when compared against labels provided
by a medical expert. Echoing the results in [12], training on
data from one camera (e.g. Zivid in zivgg) and evaluating
on data from another (e.g. Stereolabs in sly) lowers F1 and
IoU scores. Given the large differences in the dynamic range
and resolution between the two cameras, however, the scores
(F1 = 0.84, IoU = 0.73) are highly competitive, particularly
given that the training set zivgg contained only 390 images
of three gallbladders. Segmentation of raw point clouds with
LapSeg3D took a mean of 162 ms (0=3 ms) per point cloud,
with the DNN itself requiring 17 ms (0=1 ms) on an NVIDIA
3080 Ti GPU. The weakly supervised labelling pipeline also
achieves F1 scores of 0.94 and IoU scores above 0.88 on all
datasets, demonstrating its capacity to bootstrap high-quality
labels with little human involvement.

Qualitative analysis of the segmented point clouds con-
firms the results. Fig. 4] (top) shows a raw RGB-D point cloud
from the Stereolabs camera (left), human-provided ground
truth labels (blue) and the segmentation results of region
growing (magenta) and LapSeg3D (red) in the downsampled
voxel space, which both provide very good segmentation.
The middle and bottom rows show segmentation results
for Zivid data. In both cases, LapSeg3D provides accurate
segmentation. The bottom row illustrates our observation that
LapSeg3D segments even strongly deformed gallbladders
well, including parts of the collum (marked in Fig. 4| with a
white arrow), which region growing failed to segment.

Fig. 5. Results of different segmentations upsampled to their original size.

TABLE 11
PERFORMANCE OF LAPSEG3D UNDER 4-FOLD CROSSVALIDATION.

Model Dirain  Diest 3 R Fl IoU
LapSeg3D  sl678rg  sl9 1.0 075 086 0.75
LapSeg3D  sl679yg sl8y  0.83 096 089 0.81
LapSeg3D  sl689g sl7g 093 085 0.89 0.83
LapSeg3D  sl789%kg sl6y  0.69 081 073 058

Fig. 5] shows examples from the test data in allgg, illus-
trating the capacity of LapSeg3D to segment gallbladders in
different deformation states, during different phases of the
operation, and grasped at different points. Unlike Fig. []
Fig. 5] shows the segmentation results upsampled to the
original sensor resolution.

Table [ summarizes results of 4-fold crossvalidation.
LapSeg3D achieves an average F1 score of 0.84 and an
average IoU of 0.74, indicating that it generalizes well to
new scenes. The results are evidence that training data from
three gallbladders suffice for LapSeg3D to learn sufficiently
meaningful features to segment unseen gallbladders. Given
that individual gallbladders vary greatly from patient to
patient and gathering patient-specific data is costly, they
indicate that LapSeg3D and its weakly supervised training
scheme are well suited to real-world surgical applications.

V. DISCUSSION
A. Weakly-supervised training pipeline

We propose a pipeline for weakly-supervised generation
of training data. While not fully unsupervised, human in-
volvement during training is reduced to selecting points
and bounding boxes on one image per dataset. Quality of
the input depends on the user’s experience and can lead
to sub-optimal results, when non-representative points of
the gallbladder are chosen. The weakly-supervised training
pipeline achieves an F1 score of 0.94. Methods to sort out
remaining bad training data are the subject of future work.

B. LapSeg3D

Other works have shown that it is challenging for a
trained neural network to be used on image data from
unknown sensor systems. When LapSeg3D is trained on
the Stereolabs dataset, it still achieves a good F1 score of
0.72 when evaluated on Zivid point clouds. This rate can
be further increased when the training dataset is enhanced
with Zivid data. Future work will investigate how results



on unknown camera systems can be further improved, e.g.
through additional data augmentation.

An additional challenge in biomedical image segmentation
is the great variance in patients’ anatomies and pathologies,
which can lead to different colouring, texture, and dynamic
behaviour of the gallbladder. LapSeg3D copes well with
these variations, achieving a highly competitive average F1
score of 0.84 on a 4-fold crossvalidation task.

Our approach is most challenged by different lighting
conditions and noise in the point clouds. This can lead
to errors segmenting the borders of the gallbladder and
the transition to the liver, but only small areas around the
gallbladder are affected.

We have shown that LapSeg3D is able to learn to segment
structures that are not present in the training data, such
as the infundibulum, which is grasped by a laparoscopic
gripper, as depicted in Fig. 4| (white arrow). In future work,
we will consider the detailed semantic segmentation of the
gallbladder into its anatomical components, with dedicated
labels for e.g. cystic duct, infundibulum and fundus.

The definition of whether voxels are part of the gallbladder
may not be always clear and depend on the annotator. This
mainly concerns structures such as the infundibulum, the
collum and Calot’s triangle. Here, we define the gallbladder
starting at the collum, but even for a medical expert this can
vary in the manually annotated datasets.

With an overall F1 score of 0.94, our approach outper-
forms the state of the art for segmenting 2D images. This
could be an indication that the 3D structure of an organ is
also taken into account during segmentation.

C. Limitations

The acquired point clouds were recorded using two exter-
nal camera systems. It can be assumed that the ZED mini
camera is comparable to state-of-the-art stereo laparoscopes,
as they provide a similar resolution. 3D reconstruction was
not considered in this work. Both camera systems provide
methods to automatically reconstruct the 3D scene from
image data. Therefore, our approach needs to be transferred
to laparoscopic sensors, such as stereo laparoscopes. The
ex-vivo livers were recorded at a distance of approximately
35 cm and were always visible at the center of the point
clouds. When recording data inside the human body, the field
of view may be limited. We have shown that our approach
was able to learn the segmentation of difficult deformation
states of the gallbladder. Future work will transfer LapSeg3D
to laparoscopic image data with a limited field of view.

VI. CONCLUSION

This work presents a method for fast and reliable gall-
bladder segmentation in point clouds of surgical scenes as
a basis for automated robotic gallbladder removal. The pre-
sented neural network LapSeg3D was trained using a weakly
supervised method for automated generation of training data
utilizing a region growing approach, and was shown to be
able to perform voxel-wise segmentation of laparoscopic
scenes with an F1 score of 0.94 in 17 ms.
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