
Karlsruhe Institute of Technology

Proactive Adaptation in
Self-Organizing Task-based Runtime

Systems for Different Computing
Classes

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Thomas Becker
aus Karlsruhe

Tag der mündlichen Prüfung: 25. Mai 2022

Erster Gutachter: Prof. Dr. rer. nat. Wolfgang Karl

Zweiter Gutachter: Prof. Dr. rer. nat. Martin Schulz

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Abstract
Modern computing systems offer a high degree of parallelism and heterogeneity to users
and application developers. However, efficiently utilizing these systems requires deep
knowledge, e.g., of the underlying hardware platform and different programming mod-
els, and extensive work from a developer. In this thesis, efficient usage is related to
application makespan, the system’s energy consumption, the maximum temperature of
processing units, and system reliability. Next to multiple optimization goals, an applica-
tion developer has to consider the system’s specific constraints like application dead-
lines or safety guarantees that come with certain fields of application. This complexity
of heterogeneous systems makes it impossible to predict all potential system states and
environmental effects that could occur at runtime. Therefore, the system and application
developers are not able to determine at design time how the system and applications
should react in all potential situations. For this reason, systems have to be dynamically
adapted at runtime to optimize their behavior according to the current situation. E.g., in
embedded systems with limited cooling capacities, load balancing, frequency reduction,
or switching off processing units to reduce heat is necessary when a certain temperature
threshold is reached.

But just reacting to a disadvantageous system state is usually not enough. The ob-
jective should be to proactively avoid disadvantageous or faulty system states altogether
to lessen the necessity to call emergency functionality and improve the user experience.
For example instead of reducing heat by rebalancing tasks, proactive mechanisms could
avoid critical temperatures beforehand by delaying certain uncritical tasks or reducing
their accuracy or quality of service (QoS). Thereby, the system load gets reduced before
a critical point is reached.

Solutions offered by the literature like uniform programming languages or runtime
systems address some of the aforementioned challenges, however no approach exists
that is able to dynamically and, in particular, proactively balance multiple contradicting
optimization goals. A concept that unburdens the developer from this complexity and
provides a way to dynamically and proactively adapt to changes is self-organization.
However, self-organization is defined as a process without external control or guidance.
In the context of system optimization this can easily lead to undesired results. An ap-
proach that combines self-organization with a control mechanism that aims for robust-
ness and resilience against outside disturbances is organic computing. The defining
characteristic of organic computing is an observer/controller architecture. The concept
of this architecture is monitoring the current state of the system and the environment, an-
alyzing this data, and making decisions about the future system behavior based on this
analysis. I.e., organic computing enables to proactively select and trigger mechanisms
that optimize the system and avoid undesired states based on past and current states.

To transfer the benefits of organic computing to modern heterogeneous systems, I
combine the organic computing approach with a runtime system. Runtime systems are
a promising candidate to implement the organic computing approach as they already

monitor and control the execution of applications. In particular, I work on the following re-
search topics in this thesis by combining the concepts of organic computing and runtime
systems:

• Capturing the current system state by monitoring sensors and performance coun-
ters

• Predicting future system states by analyzing past behavior

• Utilizing state information to proactively adapt the system

I provide extensions to the topic of system state capturing in two ways. First, I introduce
a novel heuristic metric for a processing unit’s reliability based on symptom-based fault
detection. Symptom based fault detection is a light-weight method to dynamically detect
soft hardware errors by monitoring execution behavior with performance counters. Dy-
namically detecting faults then allows to compute a heuristic fault rate for a processing
unit in a specific time window. The fault rate is employed to compute the number of re-
quired executions of a task to guarantee a given result reliability. An important aspect
of system state capturing is minimizing the emerging overhead. I reduce the number of
necessary profiling runs for OpenMP tasks via thread interpolation and scaling checks.
Additionally, I study predicting OpenCL task execution times without executing them. The
prediction models are trained with different machine learning algorithms. Profiles of the
kernels created by static code analysis are thereby used as input.

To forecast future system states, I focus on predicting upcoming tasks/applications
that will arrive in the system in the near future. Combined with the monitoring database,
this enables to estimate the upcoming costs that the system has to handle. This thesis
creates two task prediction mechanisms, one targeting independent tasks that repeat-
edly create new task instances and one targeting dependent applications that form exe-
cution patterns. Both mechanisms deploy a prediction table based on Markov predictors
and pattern matching.

In this thesis, the knowledge that is acquired through system monitoring and task
prediction is used to proactively balance the system’s optimization goals. This is done
through a set of rules that maps a system state description, consisting of the current
state, predictions, and system constraints, onto a set of weights. To learn these rules,
an extended classifier system XCS is employed. The XCS is embedded in a hierarchi-
cal architecture designed by organic computing principles. Hereby, an important design
decision is outsourcing the creation of new rules to an offline algorithm that utilizes simu-
lation and runs in parallel to the normal tasks of the system. So, no untested rules whose
effects are not yet known are added to the live system. The resulting weights are then
used to build an evaluation function for list scheduling algorithms.

This thesis adds to the research field task scheduling algorithms by providing two
extensions to dynamic scheduling algorithms. The first extension focuses on non-safety-
critical systems that utilize priorities to express differing application importance. As static

priorities may lead to starvation in highly utilized systems, I created a dynamic aging
mechanism that is able to adapt task priorities according to the current utilization and
task waiting times. Thereby, the mechanism reduces the total makespan over all tasks
and the waiting time for lower priority tasks.

As of yet, a great number of applications is not ready to capitalize on the high degree
of parallelism offered by modern computing systems. A concept that tries to solve this
problem by scheduling several different processes on the same computing node is co-
scheduling. In this thesis, I introduce a novel co-scheduling mechanism that is able
to optimize the task schedules of several runtime system instances executing on the
same computing node. To share the necessary information between the runtime system
instances, the mechanism stores the data in shared memory. When a runtime system
inserts new tasks into the system, the mechanism checks if computing a new schedule
is sensible. If the decision to create a new schedule is made, the mechanism employs
simulated annealing to schedule all tasks which have not yet started their execution.

To summarize, this thesis offers novel mechanisms and algorithms, and extensions
to several research fields in order to implement a proactive self-organizing system that
is able to adapt to new and unknown situations. Thereby, complexity for users and ap-
plication developers is reduced by outsourcing decision making into the system itself.
Simultaneously, this approach maintains the efficient usage of the system’s resources.
In total, this thesis makes the following contributions:

• Introducing a novel heuristic metric to measure reliability of processing units. The
metric is based on the light-weight fault detection method symptom-based fault
detection. Symptom-based fault detection is able to reliably detect several injected
fault classes and interferences simulating soft hardware errors on both a CPU and
a GPU. Furthermore, it confirms these results statistically in Welch’s t-test.

• Proposing an OpenCL kernel execution time prediction model based on static code
analysis. The model is able to select the fastest processing unit out of a set of pro-
cessing units with an accuracy of 69 % in the worst case compared to a baseline
accuracy of 25 % that always predicts the processor that dominates the highest
amount of kernels. In the best case, the model achieves an accuracy of up to
83 %.

• Providing two prediction mechanisms for upcoming tasks, one targeting indepen-
dent tasks that constantly create new task instances and one targeting dependent
applications that form execution patterns. The first mechanism obtains an maxi-
mum sMAPE value of 4.33 % for sporadic and 0.002 % for periodic tasks while
predicting the time period between two consecutive task instances. Additionally,
it reliably detects tasks that posses an aperiodic execution scheme. The second
predictor achieves an accuracy of 77.6 % forecasting the next upcoming task and
its starting time.

• Introducing an implementation of a hierarchical organic computing framework in-
cluding a modified XCS in the context of task scheduling. To implement the frame-
work, a novel reward mechanism utilizing a specifically implemented task execu-
tion cost simulator is proposed. The XCS maps system state descriptions onto
weights to balance the system’s optimization objectives. Integrated as an evalu-
ation function for a list scheduling algorithm, this concepts on average decreases
the makespan by 10.4 % or 26.7 s, the energy consumption by 4.7 % or 2061.1 J ,
and the maximum temperature of the GPU by 3.6 % or 2.7K while only increasing
the maximum CPU core temperature by 6 % or 2.3K in an evaluation scenario
consisting of an application pattern that is repeated five times.

• Proposing two extensions that improve dynamic task scheduling for a single and
multiple processes, e.g., multiple runtime system instances. The first mechanism,
an aging algorithm, targets non-safety critical systems that utilize task priorities to
represent differing application importance. To avoid starvation in such scenarios, it
dynamically adapts task priorities according to the current utilization and task wait-
ing times. Overall, this mechanism achieves an average speed up of 3.75 % and
3.16 % in two evaluation scenarios while reducing the flow time of lower priority
tasks by up to 25, 67 %. The second mechanism enables the schedule optimiza-
tion of several runtime system instances executing on the same computing node
in parallel. This co-scheduling approach employs shared memory to share infor-
mation between the processes and simulated annealing to compute new sched-
ules. In two evaluation scenarios the mechanism achieves average speed ups of
19.74 % and 20.91 % or about 2.7 s and 3 s, respectively.

Zusammenfassung
Moderne Computersysteme bieten Anwendern und Anwendungsentwicklern ein hohes
Maß an Parallelität und Heterogenität. Die effiziente Nutzung dieser Systeme erfordert
jedoch tiefgreifende Kenntnisse, z.B. der darunterliegenden Hardware-Plattform und den
notwendigen Programmiermodellen, und umfangreiche Arbeit des Entwicklers. In dieser
Thesis bezieht sich die effiziente Nutzung auf die Gesamtausführungszeit der Anwen-
dungen, den Energieverbrauch des Systems, die maximale Temperatur der Verarbei-
tungseinheiten und die Zuverlässigkeit des Systems. Neben den verschiedenen Optimie-
rungszielen muss ein Anwendungsentwickler auch die spezifischen Einschränkungen
und Randbedingungen des Systems berücksichtigen, wie z. B. Deadlines oder Sicher-
heitsgarantien, die mit bestimmten Anwendungsbereichen einhergehen. Diese Komple-
xität heterogener Systeme macht es unmöglich, alle potenziellen Systemzustände und
Umwelteinflüsse, die zur Laufzeit auftreten können, vorherzusagen. Die System- und An-
wendungsentwickler sind somit nicht in der Lage, zur Entwurfszeit festzulegen, wie das
System und die Anwendungen in allen möglichen Situationen reagieren sollen. Daher
ist es notwendig, die Systeme zur Laufzeit der aktuellen Situation anzupassen, um ihr
Verhalten entsprechend zu optimieren. In eingebetteten Systemen mit begrenzten Kühl-
kapazitäten muss z.B. bei Erreichen einer bestimmten Temperaturschwelle eine Lastver-
teilung vorgenommen, die Frequenz verringert oder Verarbeitungseinheiten abgeschaltet
werden, um die Wärmeentwicklung zu reduzieren.

Normalerweise reicht es aber nicht aus, einfach nur auf einen ungünstigen System-
zustand zu reagieren. Das Ziel sollte darin bestehen, ungünstige oder fehlerhafte Sys-
temzustände vor dem Auftreten zu vermeiden, um die Notwendigkeit des Aufrufs von
Notfallfunktionen zu verringern und die Benutzerfreundlichkeit zu verbessern. Anstatt
beispielsweise die Wärmeentwicklung durch eine Neuverteilung der Anwendungen zu
reduzieren, könnten proaktive Mechanismen kritische Temperaturen bereits im Vorfeld
vermeiden, indem sie bestimmte unkritische Aufgaben verzögern oder deren Genau-
igkeit oder QoS verringern. Auf diese Weise wird die Systemlast reduziert, bevor ein
kritischer Punkt erreicht wird.

Lösungen des aktuellen Stands der Technik wie einheitliche Programmiersprachen
oder Laufzeitsysteme adressieren einige der oben genannten Herausforderungen, je-
doch existiert kein Ansatz, der in der Lage ist, eine Optimierung mehrerer sich wider-
sprechender Zielfunktionen dynamisch und vor allem proaktiv durchzuführen. Ein Kon-
zept, das diese komplexe Aufgabe für den Entwickler übernimmt und eine Möglichkeit
zur dynamischen und proaktiven Anpassung an Veränderungen bietet, ist die Selbstor-
ganisation. Selbstorganisation ist jedoch definiert als ein Prozess ohne externe Kontrolle
oder Steuerung. Im Kontext der Systemoptimierung kann dies leicht zu unerwünschten
Ergebnissen führen. Ein Ansatz, der Selbstorganisation mit einem Kontrollmechanismus

kombiniert, welcher auf Robustheit und Widerstandsfähigkeit gegenüber äußeren Stö-
rungen abzielt, ist Organic Computing. Das bestimmende Merkmal von Organic Compu-
ting ist eine Observer/Controller-Architektur. Das Konzept dieser Architektur besteht dar-
in, den aktuellen Zustand des Systems und der Umgebung zu überwachen, diese Daten
zu analysieren und auf der Grundlage dieser Analyse Entscheidungen über das zukünfti-
ge Systemverhalten zu treffen. Organic Computing ermöglicht es also auf der Grundlage
der vergangenen und des aktuellen Zustands proaktiv Mechanismen auszuwählen und
auszulösen, die das System optimieren und unerwünschte Zustände vermeiden.

Um die Vorteile des Organic Computings auf moderne heterogene Systeme zu über-
tragen, kombiniere ich den Organic Computing-Ansatz mit einem Laufzeitsystem. Lauf-
zeitsysteme sind ein vielversprechender Kandidat für die Umsetzung des Organic Com-
puting-Ansatzes, da sie bereits die Ausführung von Anwendungen überwachen und steu-
ern. Insbesondere betrachte und bearbeite ich in dieser Dissertation die folgenden For-
schungsthemen, indem ich die Konzepte des Organic Computings und der Laufzeitsys-
teme kombiniere:

• Erfassen des aktuellen Systemzustands durch Überwachung von Sensoren und
Performance Countern

• Vorhersage zukünftiger Systemzustände durch Analyse des vergangenen Verhal-
tens

• Nutzung von Zustandsinformationen zur proaktiven Anpassung des Systems

Ich erweitere das Thema der Erfassung von Systemzuständen auf zwei Arten. Zunächst
führe ich eine neuartige heuristische Metrik zur Berechnung der Zuverlässigkeit einer
Verarbeitungseinheit ein, die auf symptombasierter Fehlererkennung basiert. Symptom-
basierte Fehlererkennung ist eine leichtgewichtige Methode zur dynamischen Erkennung
von soften Hardware-Fehlern durch Überwachung des Ausführungsverhaltens mit Per-
formance Countern. Die dynamische Erkennung von Fehlern ermöglicht dann die Be-
rechnung einer heuristischen Fehlerrate einer Verarbeitungseinheit in einem bestimmten
Zeitfenster. Die Fehlerrate wird verwendet, um die Anzahl der erforderlichen Ausführun-
gen einer Anwendung zu berechnen, um eine bestimmte Ergebniszuverlässigkeit, also
eine Mindestwahrscheinlichkeit für ein korrektes Ergebnis, zu gewährleisten. Ein wich-
tiger Aspekt der Zustandserfassung ist die Minimierung des entstehenden Overheads.
Ich verringere die Anzahl der für OpenMP-Tasks notwendigen Profiling-Durchläufe durch
Thread-Interpolation und Überprüfungen des Skalierungsverhaltens. Zusätzlich untersu-
che ich die Vorhersage von OpenCL Task-Ausführungszeiten. Die Prädiktoren der Aus-
führungszeiten werden mit verschiedenen maschinellen Lernalgorithmen trainiert. Als
Input werden Profile der Kernel verwendet, die durch statische Codeanalyse erstellt wur-
den.

Um in dieser Dissertation zukünftige Systemzustände vorherzusagen, sollen Anwen-
dungen vorausgesagt werden, die in naher Zukunft im System vorkommen werden. In

Kombination mit der Ausführungsdatenbank ermöglicht dies die Schätzung der anste-
henden Kosten, die das System zu bewältigen hat. In dieser Arbeit werden zwei Mecha-
nismen zur Vorhersage von Anwendungen/Tasks entwickelt. Der erste Prädiktor zielt dar-
auf ab, neue Instanzen unabhängiger Tasks vorherzusagen. Der zweite Mechanismus
betrachtet Ausführungsmuster abhängiger Anwendungen und sagt auf dieser Grund-
lage zukünftig auftretende Anwendungen vorher. Beide Mechanismen verwenden eine
Vorhersagetabelle, die auf Markov-Prädiktoren und dem Abgleich von Mustern basiert.

In dieser Arbeit wird das Wissen, das durch die Systemüberwachung und die Vor-
hersage zukünftiger Anwendungen gewonnen wird, verwendet, um die Optimierungs-
ziele des Systems proaktiv in Einklang zu bringen und zu gewichten. Dies geschieht
durch eine Reihe von Regeln, die eine Systemzustandsbeschreibung, bestehend aus
dem aktuellen Zustand, Vorhersagen und Randbedingungen bzw. Beschränkungen, auf
einen Vektor aus Gewichten abbilden. Zum Erlernen der Regelmenge wird ein Extended
Classifer System (XCS) eingesetzt. Das XCS ist in eine hierarchische Architektur einge-
bettet, die nach den Prinzipien des Organic Computing entworfen wurde. Eine wichtige
Designentscheidung ist dabei die Auslagerung der Erstellung neuer Regeln an einen
Offline-Algorithmus, der einen Simulator nutzt und parallel zum normalen Systemablauf
ausgeführt wird. Dadurch wird sichergestellt, dass keine ungetesteten Regeln, deren
Auswirkungen noch nicht bekannt sind, dem laufenden System hinzugefügt werden. Die
sich daraus ergebenden Gewichte werden schließlich verwendet, um eine Bewertungs-
funktion für List Scheduling-Algorithmen zu erstellen.

Diese Dissertation erweitert das Forschungsgebiet der Scheduling-Algorithmen durch
zwei Mechanismen für dynamisches Scheduling. Die erste Erweiterung konzentriert sich
auf nicht sicherheitskritische Systeme, die Prioritäten verwenden, um die unterschied-
liche Wichtigkeit von Tasks auszudrücken. Da statische Prioritäten in stark ausgelas-
teten Systemen zu Starvation führen können, habe ich einen dynamischen Ageing-
Mechanismus entwickelt, der dazu in der Lage ist, die Prioritäten der Tasks entspre-
chend der aktuellen Auslastung und ihrer Wartezeiten anzupassen. Dadurch reduziert
der Mechanismus die Gesamtlaufzeit über alle Tasks und die Wartezeit für Tasks mit
niedrigerer Priorität.

Noch ist eine große Anzahl von Anwendungen nicht dazu bereit, den hohen Grad an
Parallelität zu nutzen, den moderne Computersysteme bieten. Ein Konzept, das versucht
dieses Problem zu lösen, indem es mehrere verschiedene Prozesse auf demselben Re-
chenknoten zur Ausführung bringt, ist das Co-Scheduling. In dieser Dissertation stel-
le ich einen neuartigen Co-Scheduling-Mechanismus vor, welcher die Task-Schedules
mehrerer Laufzeitsysteminstanzen optimiert, die auf demselben Rechenknoten ausge-
führt werden. Um die notwendigen Informationen zwischen den Laufzeitsysteminstanzen
zu teilen, speichert der Mechanismus die Daten in Shared Memory. Sobald ein Laufzeit-
system neue Tasks in das System einfügt, prüft der Mechanismus, ob die Berechnung
eines neuen Schedules sinnvoll ist. Wird die Entscheidung getroffen, einen neuen Sche-

dule zu berechnen, setzt der Mechanismus Simulated Annealing ein, um alle Tasks, die
bisher noch nicht mit ihrer Ausführung begonnen haben, neu auf Ausführungseinheiten
abzubilden.

Zusammenfassend lässt sich sagen, dass diese Arbeit neuartige Mechanismen und
Algorithmen sowie Erweiterungen zu verschiedenen Forschungsgebieten anbietet, um
ein proaktives selbst-organisierendes System zu implementieren, das sich an neue und
unbekannte Situationen anpassen kann. Dabei wird die Komplexität für Benutzer und
Anwendungsentwickler reduziert, indem die Entscheidungsfindung in das System selbst
ausgelagert wird. Gleichzeitig sorgt dieser Ansatz für eine effiziente Nutzung der Res-
sourcen des Systems. Insgesamt leistet diese Arbeit die folgenden Beiträge zur Erwei-
terung des Stands der Forschung:

• Einführung einer neuartigen heuristischen Metrik zur Messung der Zuverlässig-
keit von Verarbeitungseinheiten. Die Metrik basiert auf einer leichtgewichtigen Me-
thode zur Fehlererkennung, genannt symptombasierte Fehlererkennung. Mit der
symptombasierten Fehlererkennung ist es möglich, mehrere injizierte Fehlerklas-
sen und Interferenzen, die Soft-Hardware-Fehler simulieren, sowohl auf einer CPU
als auch auf einer GPU zuverlässig zu erkennen. Darüber hinaus werden diese Er-
gebnisse durch Welch’s t-Test statistisch bestätigt.

• Vorschlag eines Vorhersagemodells für die Ausführungszeit von OpenCL Kerneln,
das auf statischer Code-Analyse basiert. Das Modell ist in der Lage, die schnellste
Verarbeitungseinheit aus einer Menge von Verarbeitungseinheiten mit einer Ge-
nauigkeit von im schlechtesten Fall 69 % auszuwählen. Zum Vergleich: eine Re-
ferenzvariante, welche immer den Prozessor vorhersagt, der die meisten Kernel
am schnellsten ausführt, erzielt eine Genauigkeit von 25 %. Im besten Fall erreicht
das Modell eine Genauigkeit von bis zu 83 %.

• Bereitstellung von zwei Prädiktoren für kommende Tasks/Anwendungen. Der erste
Mechanismus betrachtet unabhängige Tasks, die ständig neue Task-Instanzen er-
stellen, der zweite abhängige Anwendungen, die Ausführungsmuster bilden. Dabei
erzielt der erste Mechanismus bei der Vorhersage der Zeitspanne zwischen zwei
aufeinanderfolgenden Task-Instanzen einen maximalen
sMAPE-Wert von 4, 33 % für sporadische und 0, 002 % für periodische Tasks.
Darüber hinaus werden Tasks mit einem aperiodischen Ausführungsschema zu-
verlässig erkannt. Der zweite Mechanismus erreicht eine Genauigkeit von 77, 6 %
für die Vorhersage der nächsten anstehenden Anwendung und deren Startzeit.

• Einführung einer Umsetzung eines hierarchischen Organic Computing Frameworks
mit dem Anwendungsgebiet Task-Scheduling. Dieses Framework enthält u.a. ein
modifiziertes XCS, für dessen Design und Implementierung ein neuartiger Reward-
Mechanismus entwickelt wird. Der Mechanismus bedient sich dabei eines speziell

für diesen Zweck entwickelten Simulators zur Berechnung von Task-Ausführungs-
kosten. Das XCS bildet Beschreibungen des Systemzustands auf Gewichte zur
Balancierung der Optimierungsziele des Systems ab. Diese Gewichte werden in
einer Bewertungsfunktion für List Scheduling-Algorithmen verwendet. Damit wird
in einem Evaluationsszenario, welches aus einem fünfmal wiederholten Muster
aus Anwendungen besteht, eine Reduzierung der Gesamtlaufzeit um 10, 4 % bzw.
26, 7 s, des Energieverbrauchs um 4, 7 % bzw. 2061, 1 J und der maximalen Tem-
peratur der GPU um 3, 6 % bzw. 2, 7K erzielt. Lediglich die maximale Temperatur
über alle CPU-Kerne erhöht sich um 6 % bzw. 2, 3K.

• Entwicklung von zwei Erweiterungen zur Verbesserung des dynamischen Task-
Schedulings für einzelne und mehrere Prozesse, z.B. mehrere Laufzeitsystemin-
stanzen. Der erste Mechanismus, ein Ageing-Algorithmus, betrachtet nicht sicher-
heitskritische Systeme, welche Task-Prioritäten verwenden, um die unterschied-
liche Bedeutung von Anwendungen darzustellen. Da es in solchen Anwendungs-
szenarien in Kombination mit hoher Systemauslastung zu Starvation kommen kann,
passt der Mechanismus die Task-Prioritäten dynamisch an die aktuelle Auslastung
und die Task-Wartezeiten an. Insgesamt erreicht dieser Mechanismus in zwei Be-
wertungsszenarien eine durchschnittliche Laufzeitverbesserung von 3, 75 % und
3, 16 % bei gleichzeitiger Reduzierung der Durchlaufzeit von Tasks mit niedrigerer
Priorität um bis zu 25, 67 %. Der zweite Mechanismus ermöglicht die Optimierung
von Schedules mehrerer Laufzeitsysteminstanzen, die parallel auf demselben Re-
chenknoten ausgeführt werden. Dieser Co-Scheduling-Ansatz verwendet Shared
Memory zum Austausch von Informationen zwischen den Prozessen und Simu-
lated Annealing zur Berechnung neuer Task-Schedules. In zwei Evaluierungs-
szenarien erzielt der Mechanismus durchschnittliche Laufzeitverbesserungen von
19, 74 % und 20, 91 % bzw. etwa 2, 7 s und 3 s.

Acknowledgments
Writing a PhD thesis is a long and hard journey of many ups and downs. Successfully
completing it requires a great amount of support on the way and I owe my deepest and
heartfelt gratitude to these people.

First and foremost, I am extremely grateful to my Ph.D. adviser, Prof. Dr. Wolfgang
Karl., for always offering support and feedback when needed. Not only did he provide
guidance in finding an appropriate research topic for my work, he also taught me how
to properly structure my thesis and present my results to the reader. Furthermore, Prof.
Dr. Karl creates an enjoyable working experience with a great balance of freedom and
structure that nurtures the creative freedom necessary to tackle years of research.

I would also like to offer my sincere thanks to my co-referee Prof. Dr. Martin Schulz.
Without hesitation, he agreed to review my thesis and offered his time in an extremely
tight work schedule. Before being my co-referee, I already had the pleasure to work with
Prof. Dr. Martin Schulz in a research project. His valuable insights and expertise helped
to make our project a success and thereby also very positively influenced my thesis.

Furthermore, I would like to express my gratitude to my current and former colleagues
(in alphabetical order): Dr. Michael Bromberger, Markus Hoffmann, Manuel Kalmbach,
Dr. Mario Kicherer, Roman Lehmann, Oliver Mattes, and Dr. Anas Toma. Over the years,
they offered valuable help, feedback, great discussions and conversations far beyond the
scope of our research. It was always a pleasure working with you. An additional special
thanks to Dr. Mario Kicherer who designed and developed the runtime system HALadapt
in its original form and therefore built the basis for this work. I would also like to thank
my colleagues from the other chairs of our department, namely the Chair of Embedded
Systems, the Chair of Dependable Nano Computing, and the Operating Systems Group.
Additionally, I am thankful to the current and former staff of our department for their
assistance over the years.

All of the projects that I had the pleasure to work in during the course of my thesis
influenced and are a part of this work. Hence, I would like to express my gratitude
to my project partners from JGU Mainz, RWTH Aachen, Siemens, and TU München
for the flawless cooperation and the fruitful meetings and discussions. A thesis is not
possible without students who contribute through writing theses or their effort as student
assistants. Therefore, I would like to extend my sincere thanks to all the students I
supervised.

Most importantly, I am extremely and eternally grateful to my mother Luzia who always
supported me and was there whenever I needed her. This goes far beyond what can be
expected of a parent and I could not have done my studies or this thesis without her help.
I would also like to sincerely thank my two sisters Melissa and Claudia and my father Karl
for their continuous support and love.

Special thanks to Kevin Huttinger, Roman Lehmann, and German Pustovojtovskij who
offered their help and spent their free time reviewing this thesis. Without feedback a
thesis is not possible and for that I am deeply grateful. Last, but not least I would like

to heartily thank all my friends without whom life would be empty and certainly way less
fun. Countless hours of time doing all kinds of activities together have made the years
spent writing this thesis much easier and way more enjoyable. Without your diversions, I
most certainly would not have stayed sane.

Contents

Page

I Motivation and Approach 1

1. Introduction 3
1.1 Thesis Organization . 6
1.2 Collaborations . 7
1.3 Previously Published Content . 8

2. Problem Statement 9

3. Background and Related Work 15
3.1 Proactivity & Proactive Adaptation . 15
3.2 Self-Organization & Organic Computing 18

3.2.1 Observer/Controller Architecture 19
3.2.2 Relationship to Other Research Fields 21

3.3 HALadapt . 22
3.3.1 Cost Awareness Based on Past Behavior 24
3.3.2 Memory Management . 25
3.3.3 Online Simulation of Task Schedules 26

3.4 Embedded Multicore Building Blocks (EMB2) 27
3.5 Related Work . 27

4. An Aproach for Proactive Adaptation in Self-Organizing Task-based Run-
time Systems 33
4.1 Contributions . 33
4.2 Bringing It All Together - The Holistic Approach 35

II The System State 39

5. Requirements, Constraints & Optimization Goals 41

I

5.1 Task-based Runtime Systems in Different Heterogeneous Systems . . . 41
5.2 Summary and Conclusion . 43

6. Capturing the System State 45
6.1 Introduction & Related Work . 46
6.2 Monitoring System Behavior . 48
6.3 A Heuristic Reliability Metric . 49

6.3.1 Symptom-based Fault Detection 49
6.3.2 Related Work for Symptom-based Fault Detection 51
6.3.3 Evaluation of Symptom-based Fault Detection 52

6.4 Reducing Profiling Overhead . 75
6.4.1 Interpolation & Scaling Checks 76
6.4.2 Predicting Task Execution Times 77

6.5 Summary and Conclusion . 89

7. Predicting Future System States 91
7.1 Introduction & Related Work . 92
7.2 Theoretical Background . 95

7.2.1 Markov Chains . 95
7.2.2 Markov Predictors . 96

7.3 Prediction Mechanisms . 97
7.3.1 Predicting Independent Tasks 97
7.3.2 Predicting Dependent Applications 99

7.4 Evaluation . 102
7.4.1 Predicting Independent Tasks 102
7.4.2 Predicting Dependent Applications 104

7.5 Summary and Conclusion . 106

III Affecting Future System Behavior 109

8. Dynamically Balancing Contradicting Optimization Goals 111
8.1 Introduction . 112
8.2 Theoretical Background . 113

8.2.1 Multi-objective Optimization . 113
8.2.2 Markov Decision Process . 114
8.2.3 Reinforcement Learning . 115
8.2.4 Learning Classifier System . 117

8.3 Problem Statement . 122
8.4 Related Work . 123
8.5 Approach and Implementation . 126

II

8.5.1 Implementation of the Modified XCS 127
8.5.2 Reward Function . 130

8.6 Evaluation . 133
8.6.1 Applications . 135
8.6.2 Results . 137

8.7 Summary and Conclusion . 139

9. Task-Scheduling in Task-based Runtime Systems 141
9.1 The Scheduling Problem . 142
9.2 Task Scheduling with Priorities . 143

9.2.1 Related Work . 144
9.2.2 Extensions to EMBB . 145
9.2.3 Dynamic Scheduling Algorithms 147
9.2.4 Evaluation . 148
9.2.5 Result Discussion . 153

9.3 Scheduling Multiple Processes . 154
9.3.1 Related Work . 155
9.3.2 Scheduling Algorithms Background 156
9.3.3 Shared Memory Data Structures 159
9.3.4 Co-Scheduling Mechanism . 160
9.3.5 Evaluation . 162
9.3.6 Result Discussion . 171

9.4 Summary and Conclusion . 171

IV Summary and Outlook 175

10. Conclusion and Outlook 177
10.1 Summary & Conclusion . 177
10.2 Outlook & Future Work . 180

Bibliography 183

III

List of Own Relevant Publications

[10] Thomas Becker, Wolfgang Karl, and Tobias Schüle. “Evaluating Dynamic Task
Scheduling in a Task-Based Runtime System for Heterogeneous Architectures”.
In: Architecture of Computing Systems – ARCS 2019. Ed. by Martin Schoe-
berl, Christian Hochberger, et al. Cham: Springer International Publishing, 2019,
pp. 142–155. ISBN: 978-3-030-18656-2.

[11] Thomas Becker, Pablo Busse, and Tobias Schuele. “Evaluation of Dynamic Task
Scheduling Algorithms in a Runtime System for Heterogeneous Architectures”.
In: PARS-Mitteilungen 35.1 (2018).

[12] Thomas Becker and Tobias Schüle. “Evaluating Dynamic Task Scheduling with
Priorities and Adaptive Aging in a Task-Based Runtime System”. In: Architecture
of Computing Systems – ARCS 2020. Ed. by André Brinkmann, Wolfgang Karl,
et al. Cham: Springer International Publishing, 2020, pp. 17–31. ISBN: 978-3-030-
52794-5.

[13] Thomas Becker, Nico Rudolf, et al. “Symptom-based Fault Detection in Modern
Computer Systems”. In: PARS-Mitteilungen 36.1 (2019).

[14] Markus Helwig and Thomas Becker. “Predicting Efficient Execution with Source
Code Analysis in a Heterogeneous Environment”. In: PARS-Mitteilungen 34.1
(2017).

[15] Thomas Becker. “Integrating Organic Computing Mechanisms into a Task-based
Runtime System for Heterogeneous Systems”. In: INFORMATIK 2019: 50 Jahre
Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge). Ed.
by Claude Draude, Martin Lange, and Bernhard Sick. Bonn: Gesellschaft für In-
formatik e.V., 2019, pp. 531–544.

[16] Thomas Becker, Dai Yang, et al. “Co-Scheduling in a Task-Based Programming
Model”. In: Proceedings of the 3rd Workshop on Co-Scheduling of HPC Applica-
tions (COSH 2018). Ed. by Carsten Trinitis and Josef Weidendorfer. Manchester,
United Kingdom, Jan. 2018, pp. 9–14.

IV

List of Figures

3.1 Abstract OC system architecture with a control mechanism and a pro-
ductive system [9] . 20

3.2 General OC observer/controller design pattern [9] 21
3.3 Overview of HALadapt [62, 61] . 23
3.4 Plugin interface for different hardware devices [60] 24
3.5 Example of a call stack for a single task [60] 25
3.6 Example of a container hierarchy [60] 26
3.7 High-level architecture of EMB2 [63] . 28
3.8 System architecture of TANGO [75] . 29

4.1 View of the holistic approach of this thesis 36

6.1 The general concept of symptom-based fault detection used in this thesis 50
6.2 Error injection handlers for different modes [119]. 55
6.3 Summary of different error injection modes, instruction groups, and bit-

flip models (BFM) that SASSIFI provides [119]. 55
6.4 The general concept of the symptom-based fault detection evaluation

process on the CPU. 60
6.5 The accuracy for the trained models with different settings of the code

analysis (s. 6.4.2), selecting the optimal processor of a set. 84
6.6 sMAPE results for prediction of the kernel execution times on the NVIDIA

GTX 980 Ti with different settings of the code analysis (s. 6.4.2) 85
6.7 sMAPE results for prediction of the kernel execution times on the Intel

i7-6700k CPU with different settings of the code analysis (s. 6.4.2) . . . 86
6.8 sMAPE results for prediction of the kernel execution times on the AMD

Radeon RX 470 with different settings of the code analysis (s. 6.4.2) . . 87
6.9 Percental error of the predictions by knn and rf for the execution times

on NVIDIA’s GTX 980 Ti . 88
6.10 Percental error of the predictions by knn and rf for the execution times

on Intel’s i7-6700k CPU . 88

7.1 The implementation concept of the run length encoding Markov predictor
by Sherwood et al. [169] . 96

V

7.2 The general table concept used to predict upcoming instances of inde-
pendent tasks . 98

7.3 The mechanism concept to predict tasks or applications based on de-
pendency structures . 100

7.4 Computation of all possible entry tags with a given history of size three . 101
7.5 Accuracy of the prediction mechanism based on dependency patterns . 106

8.1 The interaction cycle between an agent and its environment in a Markov
decision process [192, 131] . 115

8.2 The fundamental flow diagram of a LCS with RL [199] 119
8.3 The abstract multi-level observer/controller (MLOC) framework by Müller-

Schloer and Tomforde [9] . 127
8.4 Computational sequence of receiveInput() 129
8.5 Abstract thermal model for the processing units’ temperatures [217] . . . 132
8.6 Task graph one of the evaluation pattern containing matrix multiplications

with width and length three and problem sizes 2000 to 3000 136

9.1 General overview of the control flow of the co-scheduling mechanism . . 161
9.2 Average execution times of the hotspot3D kernel 163
9.3 Average execution times of the normalizeWeights and likelihoodSum

kernels . 164
9.4 Average execution times of the findIndex kernel 165
9.5 Average execution times of the critical section kernel 166
9.6 The schedule of hotspot3D and the critical section kernel created by the

co-scheduling mechanism . 168
9.7 The schedule of particle filter and the critical section kernel created by

the co-scheduling mechanism . 170

VI

List of Tables

6.1 Results of the combination of mMult and the manipulation of the loop index 61
6.2 Results of the iteration number reduction for the matrix multiplication

benchmark . 61
6.3 Results of the combination of SRAD and copy 62
6.4 Results of the combination of the mMult and copy 62
6.5 Results of the combination of SRAD and leak 62
6.6 Results of the combination of Hotspot3D and leak 63
6.7 Results of the combination of SRAD and memeater 63
6.8 Results of the combination of SRAD and dial 64
6.9 Results of the combination of mMult and dial 64
6.10 Results of the combination of SRAD and ddot 64
6.11 Results of the combination of Hotspot3D and ddot 65
6.12 The result of the combination of SRAD and Double-bit-flip (GPR) 65
6.13 The result of the combination of NN and Double-bit-flip (GPR) 66
6.14 The result of the combination of SRAD and Random Value (GPR) 66
6.15 The result of the combination of NN and Random Value (GPR) 67
6.16 The result of the combination of NN and Zero Value (GPR) 67
6.17 The result of the combination of Hotspot and Zero Value (GPR) 67
6.18 The result of the combination of SRAD and Double-bit-flip (FADD-FMUL-

OP) . 68
6.19 The result of the combination of NN and Double-bit-flip (FADD-FMUL-OP) 68
6.20 The result of the combination of Hotspot and Double-bit-flip (FADD-FMUL-

OP) . 68
6.21 The result of the combination of SRAD and Random Value (FADD-FMUL-

OP) . 69
6.22 The result of the combination of NN and Random Value (FADD-FMUL-OP) 69
6.23 The result of the combination of Hotspot and Random Value (FADD-

FMUL-OP) . 69
6.24 The result of the combination of SRAD and Zero Value (FADD-FMUL-OP) 70
6.25 The result of the combination of NN and Zero Value (FADD-FMUL-OP) . 70
6.26 The result of the combination of Hotspot and Zero Value (FADD-FMUL-OP) 70
6.27 The result of the combination of SRAD and Double-bit-flip (LDS-OP) . . 71

VII

6.28 The result of the combination of Hotspot and Double-bit-flip (LDS-OP) . . 71
6.29 The result of the combination of SRAD and Random Value (LDS-OP) . . 71
6.30 The result of the combination of Hotspot and Random Value (LDS-OP) . 72
6.31 The result of the combination of SRAD and Zero Value (LDS-OP) 72
6.32 The result of the combination of Hotspot and Zero Value (LDS-OP) . . . 72
6.33 Welch’s t-test results for the combination of SRAD and dial 73
6.34 Welch’s t-test results for the combination of Hotspot3D and leak 73
6.35 Welch’s t-test results for the combination of mMult and copy 73
6.36 Welch’s t-test results for the combination of SRAD, the instruction group

GPR, and the fault model Zero Value 74
6.37 Welch’s t-test results for the combination of NN, the instruction group

FADD-FMUL-OP, and the fault model Random Value 74
6.38 Welch’s t-test results for the combination of Hotspot, the instruction group

LDS-OP, and the fault model Zero Value 74
6.39 The extracted source code metrics utilized to create the prediction models 78
6.40 The most important features for the experiments with sets of processors. 85

7.1 Parameter values of the task set used to evaluate the prediction mecha-
nism for independent tasks . 103

7.2 Results of the prediction mechanism for independent tasks 104
7.3 Parameter values of the execution patterns used to compute pause lengths 105
7.4 Detailed prediction results for the dependency patterns experiment . . . 107

8.1 Parameter values of the XCS . 133
8.2 Results of the evaluation scenario for the combination of XCS and HEFT

and balanced HEFT . 138

9.1 Makespan results of the independent heterogeneous jobs experiment . . 150
9.2 Flow time results of the independent heterogeneous jobs experiment . . 151
9.3 Makespan results of the Rodinia benchmarks experiment 152
9.4 Flow time results of the Rodinia benchmarks experiment 153
9.5 Total makespans of the hotspot3D and critical section scenario 167
9.6 Total makespans of the particle filter and critical section scenario 169
9.7 Total makespans of the mandelbrot scenario 169

VIII

Part I

Motivation and Approach

1

CHAPTER

ONE

INTRODUCTION

Modern computer architectures feature a high degree of parallelism and heterogeneity.
Efficiently using a heterogeneous parallel architecture demands parallelizing applica-
tions. Additionally, the inclusion of different accelerators results in the need of using
different programming models and deep platform knowledge for an application devel-
oper. The goal should be to hide this complexity, but still enable the efficient usage
of resources concerning makespan, energy consumption, heat dissipation, and system
reliability. Additionally, the computing class’ constraints have to be considered. For ex-
ample, reaching deadlines, minimizing energy consumption and heat dissipation, and
safety constraints, e.g., guaranteeing operational safety in the presence of faults in au-
tomobiles, are of great importance in embedded systems, whereas in high-performance
computing (HPC) and desktop computing the focus lies on maximizing throughput or
minimizing the total makespan.

The complexity of heterogeneous systems makes it impossible to predict all potential
system states and environmental effects that could occur at runtime. Therefore, the sys-
tem and application developers are not able to determine at design time how the system
and applications should react in all potential situations. So, besides adapting optimiza-
tion goals to the computing class’ constraints, it is also necessary to dynamically adapt
them to the current and prospectively possible system states, application requirements,
and environmental effects. E.g., in embedded systems with limited cooling capacities,
load balancing, frequency reduction, or switching off processing units to reduce heat is
necessary when a certain temperature threshold is reached. However, the applications
running in the system and their most reasonable distribution at this point in time are not
known at design time. Next to the load, the temperature could also be influenced by the
temperature of the system surroundings. Thus, a simple correlation between the appli-
cations ready-to-execute and the resulting system temperature would not be possible.
For HPC server systems, users constantly send new and unknown jobs that have to be
executed while potentially sharing the system’s computing resources with other jobs.

3

Chapter 1 - Introduction

Another important aspect is proactively avoiding disadvantageous or faulty system
states to lessen the necessity to call emergency functionality and improve the user expe-
rience, especially in embedded systems. Instead of reducing heat by rebalancing tasks,
proactive mechanisms could avoid critical temperatures beforehand by delaying certain
uncritical tasks or reducing their accuracy or quality of service. Thereby, the system load
gets reduced before a critical point is reached.

In the literature, approaches to hide the complexity of heterogeneous systems exist.
Open Computing Language (OpenCL) [1] offers a uniform programming model, but still
needs detailed hardware knowledge and is not able to dynamically adapt to new situ-
ations. This is also true for programming concepts like OpenMP [2] and MPI [3], that
support heterogeneous accelerators in their latest versions. SYCL [4] is a higher-level
programming model inspired by OpenCL and developed by the Khronos Group to simplify
the programming of heterogeneous architectures. The uniform programming language
is based on C++ and offers unified shared memory and a wide range of C++ features
that can be used by the developer to create a heterogeneous application. However, the
developer has to manually decide on which device a kernel should be executed and
support for dynamic adaptation is not provided.

A different solution is offered by task-based runtime systems like HALadapt [5] and
StarPU [6]. They abstract application development from the underlying hardware via a
library-based approach. Here, a user is able to define a specific functionality, e.g., a
matrix multiplication, and provide different implementation versions. At runtime, these
systems are then able to select a fitting pair of processing unit and implementation.
However, the current state of the art mainly focuses on makespan minimization or only
statically balances makespan and energy consumption.

A solution that combines a unified programming model with a runtime system ap-
proach that is supported by a hardware concept is provided by the Heterogeneous Sys-
tem Architecture (HSA) [7]. HSA offers queues for the computing devices of a system
and allows work stealing between the queues to balance load. Though, HSA has to be
supported by the underlying hardware but as of yet only a limited amount of AMD or
ARM architectures offer HSA support and features. Additionally, simple work stealing
scheduling is not able to dynamically adapt to changing and new situations where differ-
ent optimization goals become important. There also has been no further updates to the
HSA specification, new press releases or publications since 2018.

To overcome the challenges created by the deployment of heterogeneous systems in
different situations, application scenarios, and computing classes, it is necessary to dy-
namically compromise between contradictory optimization goals and proactively optimize
the system. Self-organization (SO) is a way to provide a solution to these challenges.

4

It is defined by Camazine et al. [8] as follows:
“SO is a process in which pattern at the global level of a system emerges solely from
numerous interaction among the lower-level components of the system. Moreover, the
rules specifying interactions among the system’s components are executed using only
local information, without reference to the global pattern”.

However, a missing control mechanism can easily lead to undesired results. A con-
cept that aims for controlled SO is Organic Computing (OC) [9]. Next to self-organisation,
an important feature of OC is robustness, the ability of a system to become more resilient
against disturbances and attacks from the outside [9]. To achieve these features, OC
systems deploy an observer/controller architecture. The concept of this architecture is
monitoring the current state of the system and the environment, analyzing this data, and
making decisions about the future system behavior based on this analysis. In the context
of the aforementioned challenges, monitoring and analyzing the current and past states
enables to draw conclusions about possible future system states. This is the basis to
proactively select and trigger mechanisms that optimize the system and avoid undesired
states. In summary, OC enables the efficient usage of systems in different, dynamic com-
puting classes like automotives or HPC servers because adapting to unknown system
states gets possible.

Runtime systems already provide possibilities to capture system states by monitor-
ing because they control task execution. Additionally, runtime systems enable dynamic
adaptations of the system. Thus, integrating the concept of organic computing into ex-
isting runtime systems is a logical solution to the aforementioned challenges. A com-
bination of runtime systems and organic computing concepts offers many interesting
research directions and poses several questions that have yet to be explored. In total,
this dissertation answers the following research challenges and provides several contri-
butions and solutions:

• Analysis of task-based runtime systems in different use cases and computing
classes of heterogeneous systems to find occurring requirements and optimiza-
tion goals. Thereby, it is possible to derive sensible restrictions and configurations
for a system to be created. The analysis shows the necessity for proactive, dy-
namic adaptation and therefore motivates the remainder of this thesis.

• A thorough investigation and analysis of methods and tools to capture and evalu-
ate the system state by collecting monitoring data. Although much information has
to be collected and processed, creating as little overhead as possible is of great
importance. Thereby, a heuristic reliability metric based on the light-weight con-
cept symptom-based fault detection is created to extend the profiling possibilities
available in the state of the art. This enables the consideration of reliability as an
additional system optimization objective in a single and elegant way. To reduce
the overall profiling overhead, a task execution time prediction mechanism utilizing
machine learning and static code analysis is introduced.

5

Chapter 1 - Introduction

• The exploration of the prediction of prospective system states, by among others
analyzing past behavior, to enable proactively optimizing the system state. Hereby,
past behavior is represented by information captured from the monitoring data.
In this thesis particularly, two task prediction mechanisms, inspired by run-length
Markov predictors, are developed. These mechanisms analyze past executions to
detect task patterns and so, predict upcoming tasks.

• The study of methods to dynamically balance contradicting optimization goals
based on both user inputs and alterations of the system state. Here, a hierarchical
organic computing framework inlcuding an extended classifier system XCS and an
offline rule generator is introduced. The framework is adapted to the needs of the
mechanism employed in this thesis to influence the underlying system’s behavior,
task scheduling. In particular, a reward function based on a task cost simulator is
provided.

• Investigating and developing new mechanisms to determine future system behav-
ior by scheduling tasks ready-to-execute. This includes a mechanism to dynami-
cally co-schedule multiple processes on the same computing node. The mecha-
nism shares information via shared memory and pontentially reschedules waiting
tasks after the arrival of new tasks in the system.

Ultimately, a core of functionalities and mechanisms, which realizes organic computing
in a task-based runtime system and thereby enables a dynamic and proactive adaptation
of the system, is studied and provided. This core is integrated and implemented in an
existing runtime system and then evaluated extensively.

1.1 Thesis Organization

The structure of this thesis is organized as four parts. Part I includes the introduction and
motivation of this thesis (s. Ch. 1) and gives a detailed problem statement (s. Ch. 2).
Chapter 3 presents the necessary background and related work. Detailed explanations
and definitions of proactivity, proactive adaptation, self-organization, and organic com-
puting belong to the thesis’ background. Furthermore, the runtime systems used in this
thesis, HALadapt and EMB2 are introduced. Chapter 4 finalizes Part I by elucidating the
thesis’ holistic approach and details its contributions to the state-of-art.

The theme of Part II is the system state, and mechanisms and methods that allow
capturing and predicting system state descriptions. First, Chapter 5 presents some re-
search projects that feature runtime systems for different heterogeneous systems and
analyzes the projects’ optimization goals, characteristics, requirements, and constraints
for the runtime systems and heterogeneous platforms. Thereby, it sets the foundation
for and motivates the remainder of this thesis. Chapter 6 introduces mechanisms to

6

1.2 - Collaborations

monitor system behavior and, in particular, introduces a novel mechanism to heuristi-
cally measure system reliability. Finally, Chapter 7 introduces mechanisms to predict
future system states, particularly upcoming tasks. So, this chapter builds the basis for
the proactive behavior of the thesis’ approach.

Part III focuses on methods to affect the future behavior of an underlying system.
Chapter 8 thereby builds the heart of this thesis as the introduced learning mechanism
utilizes the knowledge of the previous chapters to learn rules. These rules dynamically
balance multiple optimization goals by associating weights to the optimization goals.
The learning mechanism is based on principles of Organic Computing and utilizes a
multi-level observer/controller framework. The resulting weights are then used to form
an evaluation function for list task scheduling mechanisms. Task scheduling is discussed
and new scheduling mechanisms for dynamic systems are introduced in Chapter 9.

The thesis concludes with Part IV that summarizes the thesis and discusses its con-
tributions. Additionally, an outlook into future work and ideas for extensions to this thesis
are given.

1.2 Collaborations

The results of three collaboration projects are part of this thesis. In particular, these are
the following projects:
As part of the BMBF (Bundesministerium für Bildung und Forschung) funded Software
Campus a project called Task-Scheduling für heterogene, parallele Systeme in Echtzei-
tumgebung (TahpSE) was carried out in cooperation with Siemens. The focus of the
project was studying and integrating task scheduling algorithms for heterogeneous sys-
tems in the runtime system Embedded Multicore Building Blocks (EMB2, see Sec. 3.4).
Results were published [10, 11, 12].

A second BMBF funded project called “ENVELOPE – Effizienz und Zuverlässigkeit:
Selbstorganisation in HPC Systemen” was conducted within the scope of the funding
program “IKT 2020 - Forschung für Innovationen” in cooperation with JGU Mainz, RWTH
Aachen, and TU Munich. The project goal was to provide proactive and lightweight
mechanisms to improve system reliability in HPC systems while simultaneously providing
efficiency in terms of energy and execution time and reducing complexity for application
developers. Publications of several results exist [10, 13].

The third project focused on a runtime system for future automotive systems.

7

Chapter 1 - Introduction

1.3 Previously Published Content

This thesis contains previously published papers:

Chapter 6: [14], [13]

Chapter 8: [15]

Chapter 9: [10], [16], [11], [12]

8

CHAPTER

TWO

PROBLEM STATEMENT

This chapter gives a detailed explanation and discusses the general problem that this
thesis solves. In particular, it takes a closer look at historic developments and elaborates
why the solutions presented in this thesis are needed.

Historically, new processing chips satisfied the ever growing need for more compu-
tational power mainly by increasing their operating frequency and the instruction-level
parallelism (ILP). The main factor for this was constantly shrinking the design of a single
Complementary Metal-Oxide-Semiconductor (CMOS) transistor. This trend was sum-
marized by Gordon Moore into his famous statement, called Moore’s Law [17], which
says that the number of transistors on a single chip doubles every 12 months. In 1975
[18], Moore revised his original statement, increasing the duration of a doubling cycle
to two years. Shrinking the transistor size simultaneously lead to a decrease in power
consumption as stated by Dennard scaling [19]. This fact allowed processor designers
to increase the operating frequency without increasing power consumption.

However, in the last 15 years the point was reached where Dennard scaling broke
down. Increasingly smaller transistor sizes lead to rising power leakage, thereby gen-
erating additional heat. In combination with the Memory Wall [20], the widening gap in
performance between processors and memory, and the instruction-level parallelism (ILP)
Wall [21], the challenge to further extract parallelism form a sequential stream, the cost
for increasing single thread performance was too high to stay economically viable.

Processor manufacturers then switched to increasing parallelism in the form of multi-
core processors to satisfy performance needs. Instead of a single, complex processing
core, multi-core processors consist of multiple copies of existing core designs. However,
not all applications are able to benefit from constantly growing parallelism. This fact is
best expressed by Amdahl’s Law [22] (see Eq. (2.1)). Amdahl’s Law gives a theoretical
speed up limit for a single task t with execution time T , where T = (1 − p) · T + p · T
with p being the part of the task that would benefit from additional parallelism and (1−p)
being the sequential part of the task that would not benefit from parallelism. Hence, the

9

Chapter 2 - Problem Statement

parallel execution time T (n) of task t on n processing units is T (n) = (1−p) ·T +p · T
n

.
This leads to the following speed up limit:

S(n) =
T

T (n)
=

1

(1− p) + p
n

n→∞−−−−→
1

1− p
, (2.1)

where n is the number of computing resources used to parallelize the task.
Therefore, additional architecture design ideas were necessary to further satisfy the

need for increasing performance. Such a new concept is heterogeneous computing,
where different processing cores are integrated into a single system or chip. Hence, mod-
ern computer architectures include specific accelerators that are optimized for certain ap-
plication characteristics. A prominent example are graphic processing units (GPUs) [23]
that are used for computations traditionally performed by central processing units (CPUs)
like matrix and vector operations. In general, GPUs with their massive number of simple
processing cores and floating-point units are well suited for big and data-independent
workloads that have a low amount of control flow instructions. The deployment of GPUs
for general workloads is called general purpose computing on graphics processing units
(GPGPU). Field-programmable gate arrays (FPGAs) [24] are another example that can
be employed to accelerate specific algorithms, tasks or a set of instructions. FPGAs con-
tain an array of programmable logic blocks that allow a designer to create configurations
that can perform complex operations. Due to their parallel nature and energy-efficiency,
FPGAs are optimal for certain applications like sliding-window applications.

However, heterogeneous architectures bring a whole new set of challenges with them.
Using several different processors with varying architectural designs and instruction set
architectures requires the usage of differing programming models by an application de-
veloper. NVIDIA introduced CUDA [25] as a programming language for their GPUs,
which is based on the single-instruction-multiple-data (SIMD) concept. The SIMD con-
cept is usually not deployed in the standard CPU programming languages. Similarly,
FPGAs are also programmed differently compared to GPUs and CPUs. Hardware de-
scription languages like SystemVerilog [26] or Very High Speed Integrated Circuit De-
scription Language (VHDL) [27] are employed to describe logic circuits. Hence, an appli-
cation developer generally needs knowledge of several dissimilar programming models
to utilize all processing units in a heterogeneous system. This, though, is not enough
as a program has to be severely adapted to the underlying hardware architecture to be
as efficient as possible. Efficient in the scope of this thesis can mean, e.g., minimum
application execution time (makespan), minimum energy consumption, minimum heat
dissipation, or maximum task throughput. So, deep platform knowledge is an additional
necessity for an application developer.

A solution is offered by uniform programming models that provide a programming lan-
guage for several different processing units. OpenCL [1] is an application programming
interface (API) standard for this purpose. It provides programming languages, OpenCL
C and Open CL C++, to write kernels that can then be dynamically compiled for different

10

processing devices. SYCL [4] is a higher-level programming model inspired by OpenCL
and developed by the Khronos Group to simplify the programming of heterogeneous
architectures. The uniform programming language is based on C++ and offers unified
shared memory and a wide range of C++ features that can be used by the developer to
create a heterogeneous application. Another example is Open Accelerators (OpenACC)
[28], a programming standard for parallel computing on heterogeneous architectures.
Similar to OpenMP [2], OpenACC provides pragmas to offload tasks to accelerators. Ad-
ditionally, classic programming models OpenMP [2] and MPI [3] have been extended to
include accelerator support in their latest versions.

However, writing applications for heterogeneous systems with a uniform programming
model includes further complexity. Accelerators often posses dedicated memory, there-
fore an application developer has to manually handle data management, i.e., determining
which data has to be transferred to which device at which point in time.

The aforementioned OpenCL and SYCL also solve this challenge by providing a uni-
fied virtual memory space, called Shared Virtual Memory (SVM) or Unified Shared Mem-
ory (USM). In OpenCL’s 2.0 version, SVM allows the programmer to create buffers that
can be both used by the host and other devices freeing the programmer from manu-
ally transferring data. USM in the newest SYCL 2020 version allows the programmer to
naturally utilize pointers without buffers or accessors over multiple devices.

Nevertheless, none of these approaches is able to answer the question, when should
a task or workload be loaded off to an accelerator instead of executed on the host CPU.
For dynamic systems where the set of applications may change over time, and starting
points and periods of tasks may be unknown, this question usually can not be answered
at design time. Modern embedded systems allow the addition and removal of functional-
ity in the form of apps, thereby regularly changing the set of applications to be executed.
Similarly, users constantly send new jobs to HPC servers. In conclusion, new decisions
have to be made dynamically. Furthermore, scheduling decisions are affected by the
problem sizes of tasks and the current state of the system, e.g., the utilization and avail-
ability of processing units, which usually are also not known at design time and may
change over the system’s life cycle.

Runtime systems like HALadapt [5], StarPU [6], and the Tango framework [29] use
scheduling algorithms to make scheduling decisions at runtime and therefore are able
to include the aforementioned factors into their decisions. In general, these runtime sys-
tems are utilized to abstract an application from its implementations and the underlying
hardware architecture. They implement a library-based approach that allows application
developers to specify an abstract functionality, e.g., a matrix multiplication, and then pro-
vide several different implementation variations (kernels) for said functionality targeting
different processing units and instruction sets. On the one hand this enables a modular
application development process, where an application domain expert is allowed to focus
on the application structure whereas hardware experts can optimize kernel implemen-

11

Chapter 2 - Problem Statement

tations targeting different hardware. The runtime system, on the other hand, is able to
select an optimized kernel concerning the aforementioned factors at runtime.

A solution that combines a unified programming model with a runtime system ap-
proach that is supported by a hardware concept is provided by the Heterogeneous Sys-
tem Architecture (HSA) [7]. HSA offers queues for the computing devices of a system
and allows work stealing between the queues to balance load. Though, HSA has to be
supported by the underlying hardware but as of yet only a limited amount of AMD or
ARM architectures offer HSA support and features. Additionally, simple work stealing
scheduling is not able to dynamically adapt to changing and new situations where differ-
ent optimization goals become important. There also has been no further updates to the
HSA specification, new press releases or publications since 2018.

The state of the art in runtime systems focuses mainly on optimizing makespan, and
in the form of TANGO and StarPU also on minimizing energy consumption. Modern
computing systems, however, are affected by a distinctly larger set of optimization goals
and constraints. In addition, the set of optimization goals depends on the field of appli-
cation in which a system is used (see Chap. 5 for an analysis of three research projects
where heterogeneous architectures are deployed in different computing classes). HPC
systems with their ever increasing complexity and number of components create the
necessity to consider system reliability and availability as optimization goals because in-
creasing the complexity and number of components leads to the rise of the failure rate
of a single component. Heterogeneous architectures are integrated into modern embed-
ded systems in the form of multiprocessor systems-on-chip (MPSoCs). Examples are
the Xilinx Zynq Ultrascale+ [30], which comprises a quad-core ARM Cortex-A53 CPU, a
dual-core ARM Cortex-R5 real-time processing unit, an ARM Mali-400 MP2 GPU, and
a video codec unit, and the upcoming NVIDIA Parker [31] MPSoC, which consists of a
NVIDIA Pascal GPU, 2 Denver 2.0 cores, 4 ARM Cortex A57 cores, and a video codec
unit. Most embedded systems are subjected to the same constraints. They usually have
to operate with limited resources. Typical limitations are the amount of available mem-
ory, which affects design decisions and the amount of memory that can, e.g., be used
to create checkpoints to increase system reliability, and the amount of stored energy by
accumulators, creating a necessity to consider energy consumption. Additionally, em-
bedded systems are usually strictly limited in space like mobile phones or automotives.
This leads to a restricted cooling capacity of the overall system, thereby generating a
requirement to strictly reduce heat dissipation and in association energy consumption.
A subset of embedded systems comes with safety constraints. Automotives and planes
are examples where a failure may lead to catastrophic results. Therefore, specific tasks
have to be executed within a set time span that has to be formally guaranteed by the sys-
tem. Automotives in particular have to fulfill the Automated Safety Integrity Level (ASIL)
standard, which includes four levels from ASIL A to ASIL D with increasing safety levels.
Safety guarantees imply shielding the specific tasks and system parts from side effects.

12

The importance or weight of different, and often contradicting, optimization goals,
though, is not set at design time and may change over the course of a system’s lifespan.
A big influence are environmental situations. For example a switched-off car is limited to
its accumulator as an energy source, hence creating a strict energy budget. This has to
be reflected by the optimization goals of the system. Environmental factors could also
lead to the overheating of the system, generating a system-wide need to reduce load
and possibly switch off resources. Ideally, such problems should never arise in a system.
Especially embedded systems have to keep the user experience as flawless as possible
and guarantee certain quality of service (QoS) standards during the system’s whole life
span. Avoiding faulty or disadvantageous states requires proactive mechanisms that
avoid these system states before they occur. Proactive mechanisms have the potential
to lessen the usage of emergency functionality that is called to prevent unsafe system
states. A proactive mechanism could, e.g., delay the execution of uncritical tasks or lower
their accuracy or QoS to avoid reaching a critical system temperature, if there is a high
probability that executing all tasks ready-to-execute with the full computing power of the
system may lead to a critical temperature threshold.

In summary, application developers need tools or frameworks that reduce the com-
plexity of using heterogeneous architectures and enable an efficient usage concerning
different and contradicting optimization goals while simultaneously being able to dynam-
ically and proactively adapt the system, improve the system state, and avoid disadvan-
tageous and faulty states.

The next chapter gives an overview over several approaches that have been used
to tackle problems mentioned in this chapter. Chapter 4 then elucidates the approach
and the contributions of this thesis in detail. Particularly, the relations and interactions
between the different components implemented for this thesis to achieve proactive adap-
tation and self-organization are presented and explained in Section 4.2.

13

Chapter 2 - Problem Statement

14

CHAPTER

THREE

BACKGROUND AND RELATED WORK

In this chapter, the necessary background for this dissertation and related approaches to
hide the complexity of heterogeneous architectures and achieve adaptability and proac-
tivity are presented and explained. Proactivity and proactive adaptation are defined
and elucidated in Section 3.1. The second Section 3.2 introduces the concepts of self-
organization and organic computing. In this thesis, these concepts are used as a basis to
proactively adapt the underlying system. Section 3.3 and Section 3.4 describe the run-
time systems used in this thesis. The mechanisms presented in this thesis are integrated
into and evaluated with one of these runtime systems. Additionally, state-of-the-art solu-
tions for hiding the complexity of heterogeneous architectures, and achieving adaptability
and proactivity are discussed in Section 3.5.

3.1 Proactivity & Proactive Adaptation

The following section elucidates proactivity and proactive behavior by giving definitions
and discussing existing work that implements proactivity in different fields of operation. In
this thesis, system proactivity and proactive adaptation of the system are the overarching
goals that shall be achieved by implementing concepts of Organic Computing. Organic
Computing is discussed in Section 3.2.

Proactivity or proactive behavior is defined as acting before the relative need of
the action arises [32]. So, proactivity is opposed to reactive behavior where an action is
only taken after the causing event has occurred. The Merriam-Webster online dictionary1

defines proactive as follows:
"Acting in anticipation of future problems, needs, or changes." The definition of proactivity
implies the necessity of a prediction mechanism, that is able to predict future events, in

1https://www.merriam-webster.com/dictionary/proactive (last visit 03/30/22)

15

https://www.merriam-webster.com/dictionary/proactive

Chapter 3 - Background and Related Work

order to implement proactive behavior. In the literature, several works have implemented
proactivity in different contexts and fields of operation.

Klös et al. [33] present a profile-based approach to extend cyber-physical systems,
in particular a hay fever medicine production system, with proactive adaptation using a
MAPE-Knowledge feedback loop. Here, MAPE stands for monitor, analyze, plan, and
evaluate. The approach monitors system and environment behavior and stores the pa-
rameter values in profiles. The profiles are then used to predict future behavior by com-
paring current observations with past profiles and selecting those that include the current
values and an additional window of values that followed the observed values. If several
profiles are selected, statistical metrics like the average, maximum, or a weighted av-
erage can be computed. The predictions and current observations are used to trigger
specific rules that proactively adapt the system.

A Bayesian Network (BN) is used to model the relationship between context and adap-
tation costs in [34] in the context of a Observe, Orient, Decide, Act (OODA) model. Con-
text is defined as "any information that can characterize the situation of an entity" by
Abowd et al. [35], i.e., data and information that is usually provided by monitoring and
observation. The BN provides probabilities for different cost functions considering the
current context, which enables the calculation of cost risk functions. The cost risk func-
tions are used in the decision making process that selects an appropriate action for the
current context. The actual costs of the selected action is later monitored and provided
to the BN as feedback. This approach was applied in a manufacturing scenario of the oil
and gas industry.

In [36] proactivity in the context of program optimization is achieved by creating pre-
diction models that correlate inputs with future program behavior. To create the models,
Tian et al. use decision trees. This approach enables to dynamically optimize a program
according to the prediction depending on the program input. For example, the approach
is used to dynamically select an appropriate function version generated by the compiler
at runtime.

Grosinger et al. [37] provide proactivity for agents by deploying an equilibrium main-
tenance algorithm based on fuzzy logic. This approach is utilized to make robots in a
human-robot-interaction proactive. The algorithm forms a control loop that, first, esti-
mates the current state and computes the equilibrium of this state. If the system is not in
equilibrium, possible actions with favorable future benefit are computed. Future benefit is
determined by states with fuzzy desirability. Out of the possible actions, one is selected
and executed.

A framework for proactive fault tolerance was developed by Vallée et al. [38]. The
framework consists of three components, a fault predictor, a policy daemon, and a fault
tolerance daemon. The fault predictor analyzes system logs for disk errors and hardware
sensor values for aberrant system temperatures. The policy daemon is activated when a
fault is predicted and triggers the appropriate fault tolerance policy. The triggered policy

16

3.1 - Proactivity & Proactive Adaptation

is then executed by the fault tolerance daemon. In the current state, virtual machine or
process migration and pause/unpause is supported.

Kramer et al. [39] implement proactive, self-optimizing system behavior within an
adaptive, heterogeneous architecture. Therefore, a system state is defined by clustering
evaluated monitoring data. Hereby, an individual state is represented by a cluster. To
predict future system states, a run-length encoding Markov predictor is deployed. Self-
optimizing behavior is realized by learning optimization rules via a learning classifier
system (LCS). The rules map a system state to an optimization action. Combining the
prediction method with the LCS enables the system to proactively self-optimize.

In their work, Engel et al. [40] present a conceptual architecture for proactive event-
driven computing. The architecture includes the two modules predict and act. Predict
processes incoming event streams of current and past events and derives new and po-
tentially future events. Act is initialized with an offline-generated world model that is
adapted over time according to the event predictions. The world model is used to de-
cide how to act based on the predicted events. Event processing agents are employed
to implement the predict module. Engel et al. state three possibilities for a processing
agent:

• Rule-based predictive agents: match a specific event pattern to derived events
and potentially a time interval and occurrence probability.

• Bayesian agents: use a Bayesian network to predict future events.

• Classifying agents: use classifiers, e.g., decision trees or random forests, to derive
events.

The act module is implemented by a proactive agent using a Markov decision process
that gets derived events as input and based on this information decides which actions
should be taken.

A framework for the support of proactive adaptation in pervasive systems is presented
in VanSyckel’s PhD thesis [41]. This thesis states three requirements that are neces-
sary to support proactivity. First, the entity needs to be aware of its current context and
possible future changes. Second, based on this information a decision about neces-
sary adaptations that lead to a viable configuration instantiation has to be made. Third,
these adaptations have to be enforced. The presented framework consists of a context
management component that interacts with sensors and actuators and provides context
prediction, an application configuration model, and an adaptation coordination compo-
nent that coordinates the adaptations of multiple applications. Prediction is done by five
different models, in particular alignment approach, linear regression, Markov model, self-
organizing map, and state predictor. A model is chosen based on the parameters of the
prediction task These parameters are data type, dimension, prediction horizon, quality
of the data set, and quality of service. The application configuration model allows the

17

Chapter 3 - Background and Related Work

specification of applications’ context dependencies, which enables the computation of
adaptation alternatives, and a metric to rate application configurations, which is used to
optimize adaptation decisions. The adaptation alternatives are searched via a depth-first
search-based algorithm. All alternatives are then rated, whereby the best adaptations
are determined and provided to the application.

In summary, the literature provides several concepts and methods to implement proac-
tivity in different fields of operation. These can serve as inspiration for this thesis, espe-
cially regarding state prediction methods. However, the use case of this thesis, dynami-
cally and proactively balancing contradicting optimization goals and adapting the system
via task scheduling, is not solved explicitly in the state of the art. This thesis employs
concepts of Organic Computing (s. Sec 3.2) to achieve proactivity in this context.

3.2 Self-Organization & Organic Computing

This section discusses self-organization and Organic Computing. The discussion gives
definitions for both concepts and presents a general approach to implement Organic
Computing with an observer/controller architecture. The concepts of self-organization
and especially Organic Computing are used to achieve proactive adaptability of the un-
derlying system. Section 4.2 later elaborates the thesis’ holistic approach that uses
Organic Computing concepts and is based on a more sophisticated observer/controller
architecture.

Self-organization (SO) is defined by Camazine et al. [8] as follows:
"SO is a process in which pattern at the global level of a system emerges solely from
numerous interaction among the lower-level components of the system. Moreover, the
rules specifying interactions among the system’s components are executed using only
local information, without reference to the global pattern". In particular, there is no ex-
ternal ruling element that dictates the self-organizing process that creates a global order
[42, 43, 44, 45, 46, 47].

Emergence is a concept tightly associated with SO. It is a characteristic of a whole
system where the parts of the system form a pattern or behavior that cannot be reduced
to the sum of its parts and is not existent on the element-level. There exists the famous
quote by Aristotle “the whole is more than the sum of its parts”. Emergence is therefore
not only defined by the elements of the system, but by their interaction. In principal,
emergence is a self-organized process, which leads from a state of lower to a state of
higher order [9, 43, 47, 48]. Thereby, being self-organized is not a necessary character-
istic in all available definitions [45].

However, order is not always a desired result [9]. Famous examples of undesired or-
der are buildings getting destroyed by resonance vibrations [49]. Systems usually should
have well-defined behavior according to a given specification and for the system to be
predictable to at least a certain degree. Nevertheless, the necessity for a system to be

18

3.2 - Self-Organization & Organic Computing

adaptable and dynamic still exists. The solution is so-called “controlled emergence” or
“controlled self-organization”, where SO is applied to adapt a system to a specific re-
quirement or goal [50, 48]. To achieve this, an incentive is needed that guides behavior
towards this goal [43, 46]. As it is not predictable, which micro-level goals will eventually
lead to which macro behavior, it is necessary to allow goal and objective modifications
by an external authority if the system behavior is not acceptable. The system’s ability to
correct its behavior itself against disturbances from outside or inside the system is called
“robustness”. A system is robust if it can recover to (active) or remain in (passive) a state
of acceptable behavior in the presence of disturbances [9].

Organic Computing (OC) is a concept to handle complexity in modern computing sys-
tems based on “live-like” properties [51, 9]. The term “Organic Computing” was cre-
ated in the context of a workshop on future topics in computer engineering in 2002 by
the special interest group “Computer Architecture” (ARCS - Architektur von Computer-
Systemen) within the German Computer Science Society (Gesellschaft für Informatik,
GI) [52]. OC systems apply self-* features like self-organization, self-adaptation, self-
healing, self-configuration, self-optimization etc. to autonomously and dynamically adapt
to current conditions of and changes to their perceived environment. Additionally, OC al-
lows for explicit external interference in case of undesired system behavior in the form
of goal adjustment [49, 9]. In total, the goal of OC is to guarantee the survival of the
system in the presence of internal and external disturbances, basically accomplishing
robustness.

To achieve these features, OC moves from a centralized system to a decentralized
one, containing multiple interacting sub-systems. Interactions and control in dynamic
systems require behavior monitoring and assessment. For this purpose OC provides a
general observer/controller architecture [9, 49, 53].

3.2.1 Observer/Controller Architecture

OC first partitions the system into an internal control mechanism (CM) and the system
part that is responsible for actually executing the intended task [9]. This part is called
the productive logic of the system. The CM allows for external user intervention in the
form of goal adjustment. Everything outside of these system boundaries is called envi-
ronment and can be observed and influenced by sensors and actuators. The CM uses
the environment observations and additional observations of the productive system (see
the green lines in Fig. 3.1) to directly influence the productive system (red lines). This
means that the system itself decides how to act in which situations. The user indirectly
influences the behavior of the productive system by providing and adjusting goals. The
CM then transforms these abstract user goals into concrete decisions. These decisions
may theoretically be directly altered by the user (dotted red line). The system consisting

19

Chapter 3 - Background and Related Work

Figure 3.1: Abstract OC system architecture with a control mechanism and a productive
system [9]

of the CM and the productive logic is exposed to unpredicted internal and external dis-
turbances. This affects the system’s capability to reach its goals. The CM has then to
identify the best possible adaptation on its own.

By observing the environment and the system and determining the behavior of the
productive system, the CM constitutes a control loop. As the CM also observes the
resulting action of its decisions and their effects on performance, the control loop is
closed. This general idea of a feedback-based control loop has been transferred to an
observer/controller design pattern (see Fig. 3.2). The system is partitioned into three
parts:

• The System under Observation and Control (SuOC) is the productive system
part and remains functional even if the observer and controller are not working. It
can consist of multiple independent entities or agents.

• The observer monitors the SuOC’s and the environmental state based on a de-
scription provided by the controller, i.e., the controller decides what, in which fre-
quency etc. should be monitored. This data is analyzed and then combined with,
e.g., predictions into a description of the current situation. The situation is finally
passed to the controller. Additionally, monitoring the environment provides a feed-
back of the actions selected by the observer.

• The controller evaluates the situation and based on this information selects ac-
tions to modify the SuOC in respect to the goals provided by the user. As the

20

3.2 - Self-Organization & Organic Computing

Figure 3.2: General OC observer/controller design pattern [9]

controller has to react to unknown and unexpected situations, its logic has to in-
clude trial-and-error concepts with techniques for generalization while simultane-
ously considering safety and quality of service constraints.

3.2.2 Relationship to Other Research Fields

Concepts very similar but with distinguished differences to OC have been frequently
deployed in other research fields. This section presents some of the prominent relatives
of OC.

In principal, the OC’s observer/controller architecture can be mapped to a generic
closed loop feedback control system [54] that is used in control engineering. In such
a system, a reference value is compared to a current measurement, which is provided
by a sensor, to compute the measurement’s deviation from the intended value. This
deviation is then used as input for a controller that computes new input for the controlled
system. The resulting system behavior is then again monitored by the sensor. A common
example for such a system is a PD controller. In OC, the observer is usually implemented
by one or several sensors.

A prominent concept is Autonomic Computing [55, 56] and its MAPE loop where
MAPE stands for monitor, analyze, plan and evaluate. This can be mapped to the
observer/controller architecture of OC. The observer monitors and analyzes, and the
controller plans and evaluates.

Another similar concept is the Sense-Plan-Act (SPA) paradigm in robotics [57]. SPA
defines a simple control loop with three phases: gathering information from sensors

21

Chapter 3 - Background and Related Work

(sense), building a model and deciding the next move (plan), and executing the decided
action (act).

In mechanical engineering the Operator-Controller Module (OCM) [58] is utilized to
implement self-optimizing systems. OCM consists of three layers. The lowest level pro-
cesses the productive system in hardware (similar to the SuOC). The middle layer con-
tains a reflective operator that can adapt the operational layer based on given policies.
This represents a closed control loop and can be mapped to the basic observer/controller
loop of OC. Finally, the highest layer implements a cognitive operator that monitors the
layer below and gathers information about itself and the environment. This information
is used for learning mechanisms in order to self-improve the behavior employed by the
middle layer.

Multi-Agent Systems (MAS) [59], consisting of several interacting, intelligent entities
called agents, are used to heuristically solve complex problems by manifesting self-
organization. Each agent has to be autonomous and only possesses a local view. Addi-
tionally, no central control entity may exist. Compared to OC, MAS is more of a meta-term
that covers a variety of computational or socio-technical systems, but is not concerned
with the transfer of design-time decisions to runtime, which is a major focus of OC [9].

3.3 HALadapt

This section elucidates the runtime system mainly used in this thesis. It was developed
at Karlsruhe Institute of Technology at the Chair of Computer Architecture and Parallel
Processing by Mario Kicherer and is called HALadapt.

HALadapt [60, 5, 61] is a task-based runtime system that operates on the user-level.
It utilizes a library-based approach to separate an application from its implementation
and abstract the underlying hardware architecture. An overview of this functionality can
be found in Fig. 3.3. The user simply defines his or her kernels representing a specific
functionality, e.g., a task like a matrix multiplication, and provides either one or multiple
implementation variants targeting different processing units and programming models.
HALadapt does not impose a particular limit in terms of granularity for these kernels,
leaving it to user preference.

Supporting several processing units and programming models increases the depen-
dencies an application has to fulfill in order to be executable. As this limits portability,
HALadapt uses a decoupled development concept that outsources implementations into
a specific repository consisting of separate libraries. This way, the application is freed of
its dependencies and only the repository libraries depend on hardware-specific libraries.
At runtime, HALadapt is then able to only load libraries that satisfy their dependencies
guaranteeing the executability of the application.

To still ensure independence of the underlying hardware architecture, the runtime sys-
tem offers a plugin API that abstracts the communication with processing units. The API

22

3.3 - HALadapt

Figure 3.3: Overview of HALadapt [62, 61]

includes functionality to, e.g., query the number and type of available devices or execute
data transfers (memory management is explained in Sec. 3.3.2 in detail). Again, these
plugins are only loaded if their dependencies are satisfied. An example architecture is
shown in Fig. 3.4.

At runtime, HALadapt then is able to select one of the available implementation vari-
ants for execution. This decision process can be made for a single task or a set of
tasks combined into a task graph. As sophisticated decisions need information about
the tasks to be executed, HALadapt uses a profiling mechanism that monitors past ex-
ecution behavior (see Sec. 3.3.1). The profiling mechanism uses a feature that allows
the execution of additional functionality, e.g., measuring the execution time of a task or
computing a task schedule. This feature is implemented as a so called call stack which
allows the dynamic registration of additional functionality to be executed before or after
the original kernel function. A function added to the call stack is called call stack entity
(CSE). Fig. 3.5 shows an example for the execution of a single task with HALadapt.
First, the application transfers control to the runtime system by calling an entry function.
HALadapt then executes all functionality added to the call stack. In this example, CSE A
executes code before and after the target kernel, and CSE B only executes code before
the actual execution. A special CSE, the target call CSE usually added last to the call
stack, executes the actual kernel.

The implementation selection is conducted by task scheduling algorithms. HAL-
adapt contains several scheduling algorithms, including the Heterogeneous Earliest Fin-
ish Time (HEFT) algorithm and a Simulated Annealing (SA) scheduling algorithm. Ad-
ditionally, a developer can add its own scheduling algorithm as a plugin similarly to the
hardware plugin mechanism mentioned before. Simple algorithms like HEFT schedule

23

Chapter 3 - Background and Related Work

Figure 3.4: Plugin interface for different hardware devices [60]

tasks one after the other, which allows the runtime system to gradually alter the global
system state without the need to reverse it. However, complex algorithms evaluate mul-
tiple task schedules and alter already made mapping decisions. To support such algo-
rithms, a container concept that allows the online simulation of several task schedules
has been integrated into HALadapt. This so-called container concept is explained in
detail in Sec. 3.3.3.

HALadapt additionally offers cost awareness over multiple runtime system instances.
For every processing unit in the system, a waiting queue is added to shared memory
where different instances are able to insert their tasks. So, an instance wanting to insert
new tasks is able to gather the availability of the processing units and include it in its
scheduling decisions.

3.3.1 Cost Awareness Based on Past Behavior

Sophisticated implementation selection decisions require knowledge about the potential
costs and benefits of the specific variants. To gain this knowledge, HALadapt uses online
training [62]. Each kernel execution is measured with a plugin-based sensor interface.
Different sensors, e.g., monitoring specific hardware, can be registered similar to the
hardware plugins mentioned above. Included in HALadapt is a sensor that measures ex-

24

3.3 - HALadapt

Figure 3.5: Example of a call stack for a single task [60]

ecution time by feeding the current wall clock time to the runtime system. Another sensor
uses Intel’s Running Average Power Limit (RAPL) interface to provide an estimation of
the current energy and power consumption of modern Intel CPUs and GPUs.

The resulting measurements are stored in so-called cost vectors. For every sensor
available on the executing processing unit a vector is created. A vector is associated
with the problem size that has to be provided by the developer. The problem size can
be, e.g., the dimensions of a matrix or the number of non-zero elements for a matrix
multiplication. Future use of these measurements is enabled by storing the vectors in a
database that combines all vectors of a processing unit group implementation pair. To
reduce the need for actual execution, HALadapt uses inter- and extrapolation between
known problem sizes to estimate costs for unknown problem sizes.

3.3.2 Memory Management

Accelerators in heterogeneous systems usually posses their own dedicated memory
separate from the main memory. Therefore, data transfers between main and device
memory are necessary to make the data needed for execution available on devices. As
data transfers create additional overhead, this overhead has to be considered when im-
plementation variants are selected. For a single kernel execution on a device, the data
has to be transferred to the device before the execution and back to the main mem-
ory afterwards. However, if multiple kernels are executed in sequence on a device, this
scheme results in unnecessary transfers and thereby overhead.

To solve this problem, HALadapt allows the developer to register the application data
via a specific API call. For each data block, the runtime system allocates a management
structure that contains information like the start address or the size of the data in host
RAM. Additionally, a version counter is associated with each data block. The counter is

25

Chapter 3 - Background and Related Work

increased by write accesses, thereby enabling HALadapt to find the most recent copy of
specific data. Thus, the runtime system is aware of the data and can track its location
and possibly existing copies in the system. So, it is possible for HALadapt to detect when
a data transfer is required and HALadapt then can initiate the transfer.

3.3.3 Online Simulation of Task Schedules

Simulating several task schedules and altering already made decisions requires either
constantly altering the global state, which can lead to complex operations and severe
overhead, or working with a copy. HALadapt chose working with copies by using a so-
called container concept. Containers are organized hierarchically with a root container,
that represents the global state, at the top. An example can be seen in Figure 3.6. Every

Figure 3.6: Example of a container hierarchy [60]

container can have an arbitrary number of sub-containers. A sub-container may contain
new, removed, or modified objects of its parent. Each container for itself represents a
copy of the global state, which means every alteration made in the context of this con-
tainer affects the global state but is only visible for this container and its sub-containers.
So, it is possible that a scheduling algorithm modifies several sub-containers simultane-
ously and afterwards compares the resulting system states. The best result can then be
merged into the parent container, making the changes visible globally.

26

3.4 - Embedded Multicore Building Blocks (EMB2)

3.4 Embedded Multicore Building Blocks (EMB2)

Here, the runtime system Embedded Multicore Building Blocks (EMB2) is shortly pre-
sented. The dynamic scheduling algorithms presented in Section 9.2 are integrated into
EMB2.

EMB2 [63] is a C/C++ library and runtime system for parallel programming of em-
bedded systems.2 One of the challenges EMB2 aims to solve is to abstract from the
complexity of the underlying hardware by hiding platform-specific details and making the
development of applications portable. For this, EMB2 provides fundamental functionality
for creating and synchronizing threads and memory management. These functions are
implemented as wrappers that wrap features specific to the underlying system. The run-
time system also provides atomic operations that are directly mapped to the instruction
set of the target processor.

Additionally, EMB2 builds on MTAPI [64], which like HALadapt defines a task model
that allows several implementation variants for a given task. A user just defines a specific
functionality, e.g., a matrix multiplication, and provides one or multiple implementations
for this task targeting different processing units and programming models. MTAPI al-
lows a developer to start tasks and to synchronize on their completion, where the actual
execution is controlled by the runtime system.

To be able to benefit of possible heterogeneous implementation variants, EMB2 offers
the task management and scheduling support defined in MTAPI. The runtime scheduling
implementation of EMB2 distributes the task instances between heterogeneous process-
ing units based on the number of already scheduled instances of the same task. For
homogeneous multicore CPUs, an additional work stealing scheduler [65, 66] is used to
balance the load.

Furthermore, EMB2 offers building blocks for typical parallelization tasks like loops
and templates for stream-based applications. These algorithm and dataflow building
blocks create tasks that are then guided to and executed by the MTAPI task scheduler.
EMB2 also provides lock-/wait-free concurrent containers to guarantee progress for real-
time systems. The high-level architecture of EMB2 can be seen in Figure 3.7.

3.5 Related Work

In the literature, a variety of programming models that support heterogeneous architec-
tures exists. The most well-known are OpenMP [2], OpenCL [1] and MPI [3]. However,
none of these supports the programmer in his decision where to execute a task.

The research community also developed new programming models for heteroge-
neous architectures. OmpSs [67, 68] and OmpSs-2 [69] are programming models based

2 https://embb.io/ (last visit 03/30/22)

27

https://embb.io/

Chapter 3 - Background and Related Work

Figure 3.7: High-level architecture of EMB2 [63]

on the source-to-source compiler Mercurium and the runtime libraries Nanos++ [70] and
Nanos6 [71], respectively. They combine OpenMP and StarSs [72], whereby the execu-
tion model of StarSs, a thread-pool rather than OpenMP’s fork-join parallelism, is used.
OmpSs offers pragmas to parallelize sequential code and to define and offload tasks to
accelerators. Again, the application developer is allowed to provide several implementa-
tion variants for a defined task. The runtime system is then able to select the task version
that minimizes its finish time for known data sizes [73]. Additionally, OmpSs uses a dif-
ferent memory model compared to OpenMP. It assumes that multiple address spaces
may exist and therefore shared data may reside in locations that are only accessible by
a subset of the devices in the system. OmpSs provides a possibility to explicitly mark
shared data and then manages necessary data transfers and coherency. Compared to
the approach of this dissertation, OmpSs only focuses on execution time.

TANGO (transparent heterogeneous architecture deployment for energy gain in op-
eration) [29, 74] is a research project focused on providing tools and technologies to
facilitate the adoption of new heterogeneous hardware. Djemame et al. propose a sys-
tem architecture (see Fig. 3.8) consisting of three layers spanning from remote to local
processing capabilities. The goal of layer one is to facilitate the modeling, design and
construction of applications and is partitioned into the following three components:

• Requirements and Design Modeling: Helps the developer to better understand
deployment alternatives in particular situations targeting Quality of Service, Quality
of Protection, cost of operation and power consumption behavior. This is done by
rapid prototyping on actual hardware or emulators.

28

3.5 - Related Work

Figure 3.8: System architecture of TANGO [75]

• Programming model (PM): The PM used is a combination of the task-based mod-
els OmpSs and COMPSs [76]. COMPSs is a framework for parallelizing appli-
cations written in Java, C/C++ and Python and distributing tasks to nodes in a
cluster, clouds, or grids. The combination allows for coarser and finer grain tasks
and different implementation versions for a specific task. The programming model
is complemented with a runtime for distributing coarse- and scheduling fine-grain
tasks.

• Code optimizer: Helps the developer understand the energy foot print of the written
Java code by static analysis and profiling.

The second layer provides components that handle the placement of applications con-
sidering energy models on target heterogeneous parallel architectures:

• Application Lifecycle Deployment Engine (ALDE): Uses containers to simplify all
HPC development steps from compilation, packetization, deployment to actually
running applications. After compilation and packetization, the user can upload

29

Chapter 3 - Background and Related Work

the application to any testbed managed by ALDE and define different execution
configurations similar to Cloud computing. In combination with the Self-Adaptation
Manager, the execution can be adapted and made more efficient.

• Self-Adaptation Manager: The Self-Adaptation Manager [77] sits at the heart of
TANGO’s runtime framework. It is event-driven collecting information from several
other components and decides for each event what adaptation to apply. Events
such as an idle host, a host failure or boundary conditions trigger responses such
as starting/stopping applications, redeploying applications or adapting wall time.

• Monitor Infrastructure: Monitors the devices and provides current and past execu-
tion status metrics for applications.

The last layer provides an extension to SLURM, an open-source cluster resource-man-
agement and job scheduling system, called Device Supervisor, and a Device Emulator,
an implementation of a new scheduling method that combines simulation to generate
execution costs with the actual scheduling process. Compared to this work, TANGO
mainly focuses on energy and execution time. The adaptation approach of TANGO also
differs from this thesis by directly redeploying applications instead of creating a new
balancing of multiple optimization goals and computing a new schedule based on the
new weights.

A well-known task-based runtime system for heterogeneous multicore architectures is
StarPU [6]. StarPU abstracts the underlying hardware by offering offloadable tasks called
codelets. For a codelet, the programmer can provide several different implementation
versions. At runtime, StarPU selects the best performing version for each input size. The
decision relies on performance models that are created dynamically based on previous
executions [78]. The performance models are associated with a hash value computed
with the layout and size of the data of the executed kernel to distinguish between dif-
ferent kernel instances. Furthermore, StarPU manages necessary data transfers with
a directory-based MSI protocol [79]. Additionally, filters are used to hierarchically par-
tition data as devices usually only work on a subset of the input data. In contrast to
this work, StarPU only considers energy consumption as an additional optimization goal.
Furthermore, the energy consumption can only be optimized if the application developer
provides an energy model to StarPU and the balancing of the optimization goals is not
dynamically adapted to new situations.

HPX [80] is a runtime system for parallel and distributed applications and implements
the execution model ParallelX. HPX consists of five components: a thread manager, an
active global address space (AGAS), parcel, and global and local performance counters
used for monitoring. The thread manager schedules light-weight user-level threads on
the CPU and is able to choose from several algorithms including work stealing. AGAS
hides explicit message passing and parcel is a mechanism to support active messages,

30

3.5 - Related Work

i.e., remote thread invocation. HPX also supports offloading computations to CUDA
GPUs [81]. However, offloading has to be done explicitly by the programmer.

Legion [82] is a runtime system based on a data-centric programming model. It em-
ploys tasks as an abstraction of a unit of parallel execution and logical regions to support
a relational model for data. The data regions posses an index space and fields. These
are referred to as rows and columns. The regions can either be partitioned based on
their index space or spliced on their field space. A legion program executes a tree of
tasks that are created recursively, thereby creating parallelism. Each task works on a
specific logical region. Legion also allows offloading, but the decision where to execute
a task has to be made by the programmer.

31

Chapter 3 - Background and Related Work

32

CHAPTER

FOUR

AN APROACH FOR PROACTIVE ADAPTATION IN
SELF-ORGANIZING TASK-BASED RUNTIME

SYSTEMS

This chapter presents the general approach and contributions of this thesis that close a
gap in the current state of the art in the literature. It states the individual goals that are
achieved within this work.

4.1 Contributions

The main goal of this thesis is to study OC mechanisms that enable a dynamic and
proactive system adaptation and to integrate them into an existing runtime system for
heterogeneous systems. Thereby, a runtime system is created that adapts to new and
unexpected situations while simultaneously reducing system complexity and maintaining
efficiency concerning multiple optimization goals like energy, temperature, and system
reliability. To achieve this, the following research objectives and respective solutions to
these problems are included in this thesis:

I. Analysis of task-based runtime systems in different use cases and computing
classes of heterogeneous systems.

Here, the goal is to find and identify the specific optimization goals, constraints, and
requirements of the individual use cases and computing classes. Hence, conclu-
sions can be drawn about restrictions, configurations, parameters, and objectives
of future systems to be created. Additionally, this analysis motivates the necessity
of this thesis by providing examples of dynamic systems with multiple optimization
goals that require proactive adaptation at runtime.

33

Chapter 4 - An Aproach for Proactive Adaptation in Self-Organizing Task-based
Runtime Systems

II. A thorough study of methods and tools to capture the system state by monitoring
the execution behavior and the system environment, and the introduction of new
possibilities to evaluate the system and reduce profiling overhead.

A meaningful and sufficiently descriptive system state capturing may require much
data and information. So, a goal of this research point is to find ways to reduce the
overhead created by collecting this data, in order to alter the execution behavior
as little as possible. To extend the profiling possibilities available in the state of the
art, a heuristic reliability metric based on the light-weight concept symptom-based
fault detection is created. Thereby, this thesis is able to consider reliability as an
additional system optimization objective in a simple and elegant way. A method to
reduce the overall profiling overhead is introduced in the form of an execution time
prediction mechanism based on machine learning and static code analysis.

III. The exploration of ways to augment the system state description by the prediction
of prospective system sates.

System state prediction allows the system to act proactively and take measures
to avoid disadvantageous states before they manifest themselves. In this thesis,
the prediction is done by the analysis of past behavior. Hereby, past behavior is
represented by information gained from the monitoring data. Particularly, this the-
sis provides two prediction mechanisms, inspired by run-length Markov predictors,
that predict upcoming tasks. The mechanisms scan past task executions for pat-
terns and on this basis predict upcoming tasks. Additionally, the profiling database
is deployed to inter- and extrapolate costs for unknown thread numbers and prob-
lem sizes of tasks already profiled.

IV. The research of methods to dynamically balance contradicting optimization goals
based on both user inputs and alterations of the system state.

A hierarchical OC framework that includes an extended classifier system XCS is
utilized to learn rules that map a system state description to a weighting of the sys-
tem’s optimization objectives. The resulting weights for the different optimization
goals are then used to form an evaluation function. This evaluation function can
be deployed to, e.g., evaluate task schedules or other mechanisms that influence
system behavior.

V. Studying ways to influence future system behavior via task scheduling.

Here, different scheduling scenarios are looked at. Tasks belonging to one sin-
gle process and tasks belonging to multiple different processes in dynamic sys-
tems are the focus of this thesis. For the single process scenario, a mechanism

34

4.2 - Bringing It All Together - The Holistic Approach

that dynamically adapts task priorities according to the current system utilization
to avoid starvation and improve the overall makespan is introduced. To coordi-
nate multiple processes, a co-scheduling mechanism employing communication
via shared memory is created. This enables the processes to share the necessary
information to re-schedule and improve scheduling decisions after the arrival of
new processes and tasks.

These research objectives are all steps that combine into an OC system able to dy-
namically adapt and optimize its behavior. The following section elucidates how these
parts are combined and interact with each other to create such a system.

4.2 Bringing It All Together - The Holistic Approach

The holistic approach of this thesis is displayed in Figure 4.1. The approach is based on
the Multi-Level Observer/Controller framework by Müller-Schloer et al. [9]. It consists of
a monitoring and data analysis module, a controller and offline rule generation module,
a task scheduling module that is able to simulate task schedules as a reward computa-
tion, and the rest of the system that is observed and influenced by the aforementioned
modules.

The monitoring and data analysis module (s. the green components in Fig. 4.1) is built
with three individual components. A monitoring component (called "Monitor" in Fig. 4.1)
observes the underlying system and the environment of the system to create a snapshot
of the current system state. Such a snapshot can include various execution metrics, e.g.,
processing unit utilizations, system temperatures, energy consumptions, task execution
times, and a description of the environmental situation. An environmental situation can,
e.g., be the operating phase of the system. If the engine of an automobile is turned
off, its energy capacity is strictly limited by its battery. A similar environmental factor is
the current loading capacity of the accumulator of a portable system. The monitoring
information that can be associated with an executed task and the belonging processing
units is stored in a database and associated with the specific task and its execution
parameters. Execution parameters are, e.g., the problem size of the input parameters or
the number of threads used for execution. The details of the monitoring component and
the database are outlined in Chapter 6.

The stored information can later be utilized by the analysis and prediction component
(called "Data Analysis & Prediction" in Fig. 4.1) to predict possible future states, and to
augment the current system state. Predicting future system states can be done by the
analysis and prediction component by, e.g., detecting patterns in past behavior. These
predictions are added to the system state snapshot allowing the controller to proactively
react to future events. In particular, two mechanisms that predict upcoming tasks and
additional methods to predict task costs are developed. The prediction of system states

35

Chapter 4 - An Aproach for Proactive Adaptation in Self-Organizing Task-based
Runtime Systems

Monitor

Data Analysis
 & Prediction

Database

Controller

 Rule
Generation Task Scheduling

System under Observation and Control

Influences

Aggregated Situation

New
Rules

Balancing Weights w

No Suitable
 Rule

Environment

Simulation

Reward

Feedback for last
 Decision

Figure 4.1: View of the holistic approach of this thesis

36

4.2 - Bringing It All Together - The Holistic Approach

is elucidated in Chapter 7. The analysis component is also deployed to create feedback,
i.e., a reward signal, for the previous controller decision. This is done by evaluating the
current system state snapshot that has been affected by the decision of the controller and
then providing this evaluation to the controller. The reward computation in combination
with the controller is discussed in Chapter 8.

The task of the controller is to generate a balancing of the multiple contradicting opti-
mization goals of the system out of the provided and augmented system state snapshot.
Thus, the controller associates a weight with each optimization goal, which allows to
compare improvements and deteriorations in one optimization goal to improvements and
deteriorations in others when an action affecting the system is evaluated, e.g., a task
schedule. To match a system state to a weighting, a set of rules is used. If no rule is
available for a specific system state snapshot, the offline rule generation is triggered.
The rule generation component utilizes the ability of the runtime system HALadapt to
simulate the execution of task schedules and its effects on the system (see Sec. 3.3.3)
to evaluate the new candidates. Therefore, it is possible to create new rules for the con-
troller without executing rule candidates in the real system and risking possible safety
and system constraint violations. The specifics of rule generation are explained in detail
in Chapter 8. The controller and the offline rule generation are depicted as blue com-
ponents in Fig. 4.1. Fig. 4.1 represents HALadapt’s task simulator with the orange
component "Simulation".

The optimization goal weights provided by the controller are finally used to create
an evaluation function for a task scheduling module (the yellow component in Fig 4.1) as
task scheduling is an effective way to dynamically influence and optimize the efficiency of
a computing system. This thesis focuses on two different dynamic scheduling scenarios.
In the first scenario, all tasks belong to a single process which means a single runtime
system instance possesses all information about which tasks are about to start. For this
scenario, this thesis provides a mechanism that improves task scheduling in the pres-
ence of task priorities. In order to avoid starvation and improve the overall makespan,
this mechanism dynamically adapts the priorities of task instances according to the cur-
rent system load. The second scenario considers the distribution of tasks over multiple
processes that are not started simultaneously. This means that there is no single run-
time system instance that possesses all information. Hence, additional communication
between the multiple instances is required. Details can be found in Chapter 9.

37

Chapter 4 - An Aproach for Proactive Adaptation in Self-Organizing Task-based
Runtime Systems

38

Part II

The System State

39

CHAPTER

FIVE

REQUIREMENTS, CONSTRAINTS & OPTIMIZATION
GOALS

This chapter presents three different research projects, in which a task-based runtime
system is deployed in a specific computing class using heterogeneous architectures for
their systems. The focus of the chapter is the analysis of the different computing classes
and their special environments. The chapter discusses the diverse constraints, require-
ments, and optimization goals particular to these computing classes that originated out
of this analysis. In doing so, this chapter provides motivation and needed information for
the remainder of this thesis. In particular, it provides information about which optimiza-
tion goals have to be considered and therefore which data should be collected by the
profiling mechanism presented in Chapter 6 to describe the system state.

The first section 5.1 reviews the usage of HALadapt (see Sec. 3.2) in the context
of HPC systems. Further, the deployment of EMB2 (see Sec. 3.3) in non-safety critical
embedded systems is discussed, and the section presents a project where a task-based
runtime system is developed for automotive systems. Section 5.2 summarizes the in-
sights gained in this chapter and outlines their impact for the remaining thesis.

5.1 Task-based Runtime Systems in Different Heteroge-
neous Systems

In a collaboration project called Envelope 1 funded by the Bundesministerium für Bildung
und Forschung (BMBF), the runtime system HALadapt is used in heterogeneous HPC
systems. The project consortium includes JGU Mainz, RWTH Aachen, and TU Munich
as partners.

1envelope.itec.kit.edu

41

Chapter 5 - Requirements, Constraints & Optimization Goals

Modern HPC systems satisfy the ever growing need for an increase in performance
with a constantly rising number of computing nodes. In combination with the steadily
progressing miniaturization of components, this leads to an increasing failure rate of a
single component. Classical methods that provide fault tolerance and increase system
reliability, like checkpoints in a parallel file system and redundancy, are not enough to
efficiently execute highly parallel applications [83]. Redundant components increase
acquisition and operation costs, whereas checkpoints in a parallel file system raise the
demands on the global memory system. This contradicts the goal to maximize system
efficiency. For modern HPC systems it is therefore necessary to be able to proactively
detect component failures and to use lightweight failure methods that increase system
reliability.

As the name suggests, a main focus of HPC systems is maximizing performance.
In this context, performance usually means maximizing job throughput or minimizing
application makespan. This can be achieved by globally optimizing where and when
jobs are executed.

The development of HPC systems is limited by its energy consumption and the cor-
related available cooling capacity and operational costs [84]. In the age of climate
change, minimizing energy consumption is a major concern due to environmental rea-
sons [85]. Energy consumption always leads to emissions thereby creating a global-
warming greenhouse footprint. Additionally, an increase in energy consumption leads to
more waste heat. This in turn then requires greater cooling capacity, which is limited by
space and operational budget. The operational budget is additionally consumed by en-
ergy costs as well. In summary, minimizing energy consumption and maximizing energy
efficiency is a major concern for HPC systems.

In a cooperation with Siemens, we used heterogeneous architectures and the runtime
system EMB2 [86] in the context of non-safety-critical embedded systems with soft real-
time constraints [10]. A critical constraint for these systems is given by their dynamic
nature. Tasks can be triggered by recursion, signals, or user interactions and therefore,
not all task information is readily available. Hence, the runtime system and especially its
scheduling mechanism have to be dynamic and adaptable. Another focus for Siemens
is to implement soft real-time capability within EMB2. This is achieved by allowing the
developer to associate priorities with their kernels, which have to be considered during
task scheduling.

Due to space restrictions in embedded systems, available resources in such systems
are often limited. Typically, memory is strictly limited compared to HPC or desktop sys-
tems, requiring awareness of the total memory consumption. Therefore, dynamic mem-
ory allocation should be avoided. Limited resources are also a major factor considering
energy consumption and heat dissipation. Embedded systems usually cannot provide
the cooling capacities of HPC or desktop systems, thus restricting the available com-
puting capacity and the amount of energy that can be consumned. Additionally, mobile

42

5.2 - Summary and Conclusion

systems often use accumulators that can only provide a certain amount of energy. This
creates the need to maximize system efficiency.

The third project uses heterogeneous architectures and a task-based runtime system
in the field of automotive systems. For a subset of the functionality, safety constraints in
the form of Automotive Safety Integrity Levels (ASIL) defined by the ISO 26262-1 2 have
to be guaranteed. ASIL contains four levels with ASIL A dictating the lowest and ASIL
D the highest safety requirements. Safety requirements also imply guaranteeing strict
deadlines for specific tasks. This means that certain functionality has to be shielded
from side effects potentially caused by, e.g., operating systems or other tasks.

Automotive systems belonging to the field of embedded systems also suffer from
space limitations and thereby face similar constraints for energy consumption and heat
dissipation as mentioned above. Additionally, future automotive systems are not static
and new situations and application updates can constantly occur. Therefore, dynamics
and system adaptability are significant aspects.

5.2 Summary and Conclusion

This chapter looked at three research projects that each use a runtime system for het-
erogeneous architectures in a specific computing class. The focus of the projects are
HPC systems, non-safety-critical embedded systems, and automotive systems, respec-
tively. Each of these computing classes is defined by particular characteristics. The
purpose of this chapter was the analysis of the optimization goals, requirements, and
constraints that are dictated by the deployment in these computing classes. In summary,
system efficiency concerning energy, heat dissipation, and performance is an important
optimization goal in all computing classes. Additionally, dynamics is an important factor
as new situations can occur at indeterminate points of time. However, there are also con-
straints and optimization goals unique to specific computing classes. Safety constraints
are an example of a constraint that is of no concern in HPC and non-safety-critical em-
bedded systems, but play a major role in automotive systems. So, runtime systems have
to be adaptable to be useable in different computing classes.

Generally, the detected optimization goals and constraints contradict each other. Im-
proving one goal or implementing a constraint usually leads to the deterioration of other
optimization goals. Therefore, a balance between the different goals has to be found.
The importance of optimization goals, however, depends on the current situation. Thus,
it is not possible to statically set a balance for the total system runtime. In conclusion, op-
timization goals and constraints need to be dynamically balanced to optimize the system
in different situations.

2https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en

43

Chapter 5 - Requirements, Constraints & Optimization Goals

44

CHAPTER

SIX

CAPTURING THE SYSTEM STATE

This chapter focuses on the components of my approach that are used to capture a
snapshot of the current system state. A snapshot may consist of several execution and
runtime metrics like the execution time, utilization, processing unit availability, energy
consumption, or system and component temperatures, and metrics describing the sys-
tem environment, e.g., GPS coordinates, or the room temperature. The actual metric
selection, hereby, is not fixed and is dependent on the field of application and use case.

These measurements are stored inside a database and so can be used later for anal-
ysis and to augment future snapshots. Additionally, monitoring the system state and
behavior enables the evaluation of actions taken to influence the system. The database
can also be utilized to predict the costs of upcoming tasks, either as measurements are
already stored in the database or by inter- and extrapolating known measurements. In
the holistic approach presented in Section 4.2 this chapter represents the green marked
components Monitor, Database, and Data Analysis & Prediction. The Prediction compo-
nent is further extended in Chapter 7.

A short motivation for system behavior capturing in the context of this thesis and a
presentation of related work is given in Section 6.1 of this chapter. The focus of the
second section, Sec. 6.2, are the different methods employed to capture the metrics.
Hereby, the extensions to the monitoring component of HALadapt (see Sec. 3.3.1 for the
detailed introduction of HALadapt’s monitoring component) that are made in the scope
of this thesis are presented.

As there is no single hardware or performance counter available that represents the
reliability of a system or its components in today’s computing systems, Section 6.3 intro-
duces an online heuristic metric to measure reliability created for this thesis. The heuris-
tic metric thereby deploys the concept of symptom-based fault detection to compute an
online fault rate.

The overhead of profiling mechanisms plays an important role in their evaluation of
usability in a system. Therefore, the fourth section 6.4 elucidates methods that are de-

45

Chapter 6 - Capturing the System State

signed and utilized in the scope of this thesis to reduce the profiling overhead. First,
scaling checks and inter- and extrapolation methods for OpenMP kernels developed for
this thesis are discussed. Additionally, a method to predict the execution time of unknown
OpenCL kernels based on static code analysis is designed and evaluated.

The chapter concludes with a summary and conclusion (s. Sec. 6.5), which analyzes
the results and places the chapter in the scope of this thesis. Previously published
content [14, 13] and contents of supervised bachelor‘s [87] and master‘s theses [88] are
used in this chapter.

6.1 Introduction & Related Work

The fundamental basis for a self-adapting and self-optimizing system is knowledge of the
system about itself [89, 55], called self-awareness. To gain this knowledge, a system has
to monitor its own behavior and state. As systems usually are not completely separated
and closed off from their surroundings, the system environment also has to be monitored.
Modern hardware platforms offer a variety of performance counters to profile the behavior
of a system.

Intel introduced performance monitoring since the Pentium processor with a set of
model-specific performance-monitoring counter registers, called model specific registers
(MSRs) [90]. These registers can be used to count several events. The special instruc-
tions rdmsr and wrmsr are utilized to read and write these registers. This can only be
done by the operating system. An example that employs MSRs is Intel’s Runnig Average
Power Limit (RAPL) interface that exposes energy counters to the user. AMD included
so called Performance Monitor Counters (PMCs) into their x-86 based processors [91].
PMCs are able to monitor various micro-architectural events in a CPU core and can be
either utilized in counting or sampling mode.

NVIDIA offers a C-based API for monitoring and managing various states of the
NVIDIA GPU devices called NVIDIA Management Library (NVML) [92]. NVML is part
of the NVIDIA display driver. It supports querying, for example, energy and power con-
sumption, and GPU utilization and temperature.

Different hardware platforms offer different performance counters with differing APIs
to access them. To reduce this complexity for the user, there exist several libraries
that offer a general abstraction for different hardware vendor APIs. With the inclusion
of perf_events in the Linux kernel since 2009, Linux offers an interface to access
hardware perfomance counters via the system call perf_event_open() [93]. Calling
perf_event_open() allocates file descriptors that are associated with an event to be
measured. The syscalls ioctl and prctl() are used to enable and disable events.

A well-known library that offers such an abstraction for Linux systems is lm-sensors
[94]. lm-sensors provide access to health monitors like fan speeds, system voltages, and
several temperatures.

46

6.1 - Introduction & Related Work

Another library that provides such an abstraction is the Performance Application Pro-
gramming Interface (PAPI). PAPI, developed by the University of Tennessee [95], is a
user-level library that grants easy access to performance counters for heterogeneous
systems. For example, CPU counters are accessed via the Linux kernel interface perf_-
events. Additionally, PAPI also offers abstractions for the lm-sensors library or NVIDIA’s
System Management Interface (nvidia-smi). PAPI provides developers two interfaces to
instrument their application. The high level interface is simple to use and allows fast
access to standard events that are present in most architectures, called preset events.
In contrast, the low level interface allows more detailed control and access to so-called
native events that are specific to the underlying architecture.

LIKWID [96] is a set of command line tools for Linux systems with x86 processors
that are designed to support performance optimization. Within this tool set is a tool,
called likwid-perfCtr, that grants access to and measures performace counter values
[97]. Similar to PAPI, likwid-perfCtr also allows the usage of predefined and additional
native events.

NVIDIA offers the CUDA Profiling Tools Interface (CUPTI) [98] to collect hardware
performance counter values on NVIDIA GPUs. CUPTI provides the following APIs: the
Activity API, the Callback API, the Event API, the Metric API, and the Profiler API. The
CUPTI Event API allows to simply query, configure, start, stop, and read event counters
on CUDA-enabled devices. Application metrics can be collected with the CUPTI Metric
API Different devices have their own compute capability. The metrics available for each
device are determined by the device’s compute capability and can be obtained via the
CUPTI Documentation [98].

In the literature, there are several other frameworks and runtime systems that use sys-
tem monitoring to gain knowledge. The aforementioned TANGO framework and StarPU
(s. Sec. 3.5) employ a monitoring component. TANGO utilizes its component to collect
information for its event-driven adaptation manager [74]. StarPU employs a monitoring
component to create performance models for task scheduling [78]. Both approaches
store this monitoring data in a history database.

Similar to StarPU, the elastic computing framework [99], the task-centric runtime sys-
tem by Podobas et al. [100], the scheduling framework by Jiménez et al. [101], and
the performance model driven runtime by Pienaar et al. [102] create a performance
database by monitoring task execution times. The performance database is then used
to optimize task scheduling.

In this thesis, monitoring is not restricted to task execution times and not only used
to optimize task scheduling. Rather, it is utilized to create a system state snapshot and
a potential snapshot of the system environment. Combined, this allows for a dynamic
and proactive adaptation of the system similar to the TANGO framework. However, the
adaptation mechanisms deployed in this thesis differ significantly from the mechanisms
used in the TANGO framework [77] (s. Sec. 3.4).

47

Chapter 6 - Capturing the System State

6.2 Monitoring System Behavior

This thesis utilizes the monitoring component of HALadapt introduced in Sec. 3.3.1. HA-
Ladapt already provides sensor plugins for the wall clock time to measure task execution
times, Intel’s RAPL interface to measure the energy and power consumption of mod-
ern Intel CPUs and GPUs, and the lm-sensors interface to measure the temperatures of
CPU cores. As desktop and HPC systems usually do not use Intel GPUs as accelera-
tors, an additional sensor plugin for NVIDIAs Management Library (NVML) [92] is added
in this thesis. This enables HALadapt to monitor the energy and power consumption,
and temperature of modern NVIDIA GPUs.

For multicore CPUs, HALadapt supports the OpenMP programming model. In its cur-
rent state, HALadapt always uses all available cores when executing an OpenMP task
by default. However, many existing applications are not ready for such an increased de-
gree of parallelism and are limited in their ability to scale with an increasing number of
processing cores. To detect the scaling ability of OpenMP tasks and find a fitting number
of cores to map the task to, I added a new mechanism to HALadapt [16]. The mecha-
nism, described in detail in Sec. 6.4, extends the history-based profiling mechanism to
also include the number of cores as part of the database key. This enables HALadapt to
associate stored characteristics with the number of cores used and hence predict exe-
cution times for varying core numbers. As the prediction mechanism employs inter- and
extrapolation, a reliable prediction is only possible, if the kernel behaves in a somewhat
regular pattern. A possible future extension for the profiling mechanism is to allow the
developer to define problem size functions that can be used to model more irregular
behavior patterns.

In the form of intel_pstate [103, 104], Intel provides a scaling driver for modern
Intel CPUs. It is part of the CPUFreq subsystem, which supports CPU scaling, of the
Linux kernel. The intel_pstate driver, for example, allows to set the maximum or
minimum frequency as percentage of the maximum available frequency a CPU is allowed
to use. By utilizing the functionality of this driver, HALadapt is able to dynamically scale
the cpu core frequencies, thereby adapting the energy consumption of the core and
extending the optimization potential of HALadapt. To consider frequency scaling in the
history-database, the scaling factor is added as an additional database key.

Chapter 1 and Chapter 5 single out reliability as an important optimization goal of
modern computing systems. However, there is no single hardware counter available that
can be read to derive the current reliability of the system or a system component. The
next section presents a solution in the form on an online heuristic reliability metric based
on symptom-based fault detection.

48

6.3 - A Heuristic Reliability Metric

6.3 A Heuristic Reliability Metric

Increasing system reliability and availability is a major concern for modern and future
computing systems as mentioned before (s. Chap. 1). However, there is no performance
counter that can just be accessed to derive the current reliability of the system or a
system component. In order to consider reliability in the adaptation process within this
thesis, a metric that reflects the reliability of a component is needed. Therefore, for
this thesis I created a heuristic measure of a computing unit’s reliability. The metric is
computed by an online heuristic fault rate that is comprised of counting faulty execution
runs and computing a ratio of faulty to correct runs in a limited window.

To create as little overhead as possible, a lightweight fault detection method is needed
to implement this mechanism. A method that satisfies this requirement is symptom-
based fault detection. In the following section, the faults, which shall be detected, are
defined and the general concept of symptom-based fault detection and its implementa-
tion in this thesis are explained in detail.

6.3.1 Symptom-based Fault Detection

To define faults, errors, and failures, I use the work of Salfner et al. [105]:

• A failure refers to misbehavior that can be observed by the user. This means there
may be something wrong inside the system, but as long as this does not result in
incorrect output there is no failure.

• An error is defined as the deviation of the system state from the correct state.
Hence, an error may lead to the service failure of a system, but also can stay
unnoticed.

• Faults are then the hypothesized cause of an error. This means that errors are
manifestations of faults.

There is a constant rising of the failure rate of today’s computing systems. Especially,
soft errors in hardware that are random and of temporary nature occur more often, as
they are caused by lowering the system voltage in the creation of energy-efficient prod-
ucts [106]. These faults are particularly hard to detect as they do not always lead to
wrong results and may not be reproducible. Symptom-based fault detection in this thesis
is used to detect such faults.

The general concept of symptom-based fault detection is based on the following hy-
pothesis: Systems exhibit steady-state performance behavior with few variations in the
non-faulty case. However, a fault manifests itself as increasingly unstable performance-
related behavior before escalating into a failure [107]. This means that a symptom for a
fault occurrence manifests itself as variation of performance-related behavior, e.g., the

49

Chapter 6 - Capturing the System State

number of executed instructions, cache access behavior and hit rates, or branch be-
havior. Performance-related behavior can easily be monitored by performance counters
present in modern architectures. To sum up, the basic concept is to monitor performance
counters and assume the occurrence of faults if their values vary significantly compared
to a baseline.

The first step to symptom-based fault detection in my approach, is the creation of a
database, which stores the performance behavior of correct executions. As the perfor-
mance behavior of an application is usually input-dependent, this has to be considered
while creating the database. This means that a database entry is only valid for a cer-
tain class of inputs or a specific input and significantly different inputs require multiple
database entries and profiling runs.

As a wide range of performance-related metrics are available, relevant metrics have
to be filtered out. In this thesis, a metric is defined as relevant, if its values do not
vary significantly during repeated runs without faults and show significant variance in
the presence of faults. Relevant metrics can be found via profiling runs. If the profiling
runs only include executions without faults, the set of possibly relevant metrics can be at
least reduced to metrics that are stable during repeated executions. Additionally, a lower
and an upper threshold for the values of the selected metrics have to be set. These
thresholds are utilized to detect anomalies later, i.e., if a monitored value lies outside of
these thresholds, the occurrence of a fault is suspected. The concept of symptom-based
fault detection in this thesis is illustrated in Fig. 6.1.

Database of correct
execution behavior

Metrics

Metric #1

...

Metric #N

E
xec ution

Value comparison

Statement about
execution behavior

Faulty or correct?

Monitoring

Figure 6.1: The general concept of symptom-based fault detection used in this thesis

50

6.3 - A Heuristic Reliability Metric

A drawback of considering a wide spectrum of different performance metrics is that
only a limited amount of hardware counters are available in today’s architectures and the
number of counters is dependent on the platform. Hence, multiple profiling runs may be
necessary to collect all relevant performance data.

6.3.2 Related Work for Symptom-based Fault Detection

Symptom-based fault detection has be done before in the literature. Arulaj et al. [108]
use performance counters as symptoms to detect concurrency bugs in production-run
systems. They access the performance counters via Linux perf.

Yilmaz et al. [109] combine software-level instrumentation with hardware performance
counters to associate the counters with specific function invocations and to measure ex-
ecution times. They use this method to distinguish failed executions caused by software
faults from successful ones.

In their work, Dimitrov et al. [110] use the detection of abnormal software behavior to
predict software bugs in an effort to find the root cause of an occurred software failure.
To predict bugs, they utilize software invariants learned during passing program runs,
store sets for memory accesses, and the monitoring of the number of loop iterations. In
contrast to the aforementioned papers, this work focuses on detecting hardware errors,
in particular soft errors that are random and temporary in nature.

Williams et al. [107] employ different performance counters to detect anomalous be-
havior that should form patterns leading up to failures. With an anomaly detector, they
create a time series that serves as input for a failure predictor. The predictor checks if
there is a pattern that indicates escalating instability, which then signals an impending
failure. This contrasts the approach of this thesis, as failures are not predicted but rather
detected after they have occurred.

Narayanasamy et al. [111] focus on the branch predictor, the store set predictor and
L2 cache accesses. They assume that a faulty execution leads to an increase in unde-
sirable outcomes, e.g., a misprediction by a branch predictor.

The ReStore architecture by Wang et al. [112] uses symptom-based fault detection
combined with a checkpointing mechanism. If the fault detection signals the occurrence
of a fault, the architectural state of an earlier checkpoint is restored. Exceptions, branch
mispredictions coupled with a confidence predictor for the branch and event logs that
store events, like control instruction outcomes, are utilized as symptoms.

mSWAT [113] is a fault detection and fault diagnosis framework for multicore archi-
tectures. The framework uses a fatal-traps detector, a hang detector checking branch
frequencies, a high-OS detector that monitors OS invocations, and a kernel panic detec-
tor as symptoms. If a symptom occurs, a diagnosis mechanism is invoked that decides
whether the fault is just a software bug or a hardware fault, whether it is a transient or
permanent fault, and which core is faulty. This is done by tracing and replaying execution.

51

Chapter 6 - Capturing the System State

The three aforementioned approaches focus on a specific set of symptoms to detect
failures. In this thesis, there is no limitation on the set of possible symptoms and sev-
eral different performance metrics are considered as potential candidates. Thereby, my
approach is more general and can detect a wider range of faults.

Fault detection has also be studied on GPUs. Ding et al. [114] give an online
method, which is extended from the traditional algorithm-based fault tolerance (ABFT).
This method can detect faults in matrix multiplications on GPUs, then locate and correct
them using row and column checksum vectors for failure detection.

Maruyama et al. [115] propose a new software framework that is able to detect Bit
flips in the GPU DRAM by using a parity-based error detection code. These faults can
then be recovered through checkpointing.

Carlo et al. [116] present an approach based on Software-Based-Self-Test method-
ology (SBST). Several parallel instances of the test kernel will be run on the GPU. The
related test results (TR) or test signatures (TS) of each instance will be calculated and
compared with a pre-computed Golden TR (GR)/Golden TS (GS). This approach allows
to detect and locate faults on the GPU.

RISE [117] is a technique for fault detection. RISE consists of full RISE and partial
RISE. Full RISE can use fully idled streaming processors in the GPU core to detect
soft errors during the pipeline stall time. Partial RISE employs partially idled streaming
processors to optimize reliability during branch divergence. During the idle time of the
streaming processor (SP), redundant threads are executed to detect errors and improve
the reliability of the SP.

Compared to these approaches, the symptom-based fault detection mechanism used
in this thesis is not application-dependent and not limited to specific faults. Rather, my
approach can be deployed independently of the executing application and targets the
wide range of soft errors in hardware.

6.3.3 Evaluation of Symptom-based Fault Detection

As this thesis targets heterogeneous systems, symptom-based fault detection was im-
plemented and evaluated for both CPUs [13] and GPUs [87]. Evaluating symptom-based
fault detection requires the presence of faults. Therefore, fault injection is used to create
faults in task executions. Fault injection is the deliberate triggering of faults with the ob-
jective to observe the resulting behavior and to test error handling code. It can be done
directly in hardware or by using specific software tools. In this work, software imple-
mented fault injection is deployed. As fault injection is an important technique in proving
the correctness and robustness of a system or software, many tools and libraries ex-
ist. For this work, FINJ [118], a fault injection tool for HPC systems, and SASSIFI [119,
120], a fault injection framework for NVIDIA GPUs, were chosen. FINJ is implemented
in Python and based upon tasks. Thereby, a task can represent a benchmark or a

52

6.3 - A Heuristic Reliability Metric

fault-triggering program. The execution of a workload of tasks is controlled by a specific
controller that schedules and starts the tasks on an engine. SASSIFI builds on top of
SASSI [121], which is a low-level assembly-language instrumentation tool that provides
the ability to instrument instructions in the low-level GPU assembly language (SASS).

For the evaluation, a selected number of benchmarks are executed and injected with
faults. For each run, only one specific fault is used. If there are monitored metrics whose
values lie outside of the chosen thresholds, the injected fault is assumed to be detected.
After all experiments are conducted, an analysis step follows. First, the injected faults
are classified. For example, all faults affecting memory are grouped together. Then, the
monitored results are checked if faults belonging to the same class show similar changes
in the runtime metrics. It is also checked, if faults belonging to different classes can be
differentiated by observing the monitored runtime behavior.

The next paragraph introduces the faults injected in the experiments. After that, the
benchmarks used for evaluation are presented. In the third paragraph, the experimental
setup is explained. Then, the results are presented and discussed.

Injected Faults

In this work, three types of faults are analyzed on the CPU: the alteration of loop index
variables to create random memory accesses, the reduction of loop iterations, and inter-
ferences created by the FINJ library. The interferences are used to mimic anomalies in
real-life systems by stressing single components, emulating interference or malfunction
in that component.

The alteration of loop index variables is done by overwriting the current value of the in-
dex variable in the pages of the process in main memory via opening /proc/$procid/mem/
and then jumping to the address of the variable. An example can be seen in Listing 6.1.

1 FILE *mem = fopen("/proc/$procid/mem/", "w");
2 fseek(mem, (uintptr_t) &i, SEEK_CUR);
3 fwrite(&manipulation, sizeof(i), 1, mem);
4 fclose(mem);

Listing 6.1: Altering an index variable

The process id and and the variable address can be obtained by calling popen("pid
of $processname", "r") and writing out the address to a file that can be read by
the alteration process, respectively. As I only want to create random accesses, I made
sure that the altered index value always lies within the given range and that the correct
number of iterations is executed. In the same way, the number of iterations can be
altered by overwriting the current iteration bound. From the FINJ library five interference
applications inspired by Tuncer et al. [122] are used:

• copy: Creates interferences on the hard disc drive (HDD) by constant file in- and
output

53

Chapter 6 - Capturing the System State

• ddot: Creates interferences on the arithmetic logic unit (ALU) by constantly exe-
cuting a floating-point matrix multiplication

• dial: Creates interferences on the ALU by constantly executing floating-point
math instructions

• leak: Creates a controlled memory leak by constantly allocating new arrays and
calling memcpy()

• memeater: Creates a controlled memory leak by constantly (re-)allocating an ar-
ray and executing integer additions

For faults on GPUs, SASSIFI provides an automated framework to perform error injec-
tion campaigns and can be used to perform many types of resilience evaluation studies.
It offers three fault injection modes.

• IOV (Instruction Output Value) mode: Using this mode, faults can be injected into
the destination register values.

• IOA (Instruction Output Address) mode: With this mode, faults can be injected into
destination register indices and store addresses.

• RF (Register File) mode: This mode allows the injection of faults in the Register
File.

SASSI, the instrumentation tool SASSIFI is built on, offers four compilation flags that can
be utilized for fault injection: –sassi-inst-before, –sassi-before-args, –sassi-inst-after,
and –sassi-after-args. These flags allow the insertion of operations necessary for fault
injection before or after the execution of selected instructions.

Fig. 6.2 shows the operations that need to be inserted for fault injection when deploy-
ing different modes. For example, if we select the IOV mode, all operations are inserted
after the instruction is executed.

54

6.3 - A Heuristic Reliability Metric

Figure 6.2: Error injection handlers for different modes [119].

In different modes different instruction groups can be selected for fault injection. Fig.
6.3 shows the instruction groups that can be selected for each mode and the faults that
can be injected.

Figure 6.3: Summary of different error injection modes, instruction groups, and bit-flip
models (BFM) that SASSIFI provides [119].

In total, the following instruction groups (IG) can be selected:

• Instructions that write to general purpose registers (GPR)

55

Chapter 6 - Capturing the System State

• Instructions that write to condition code (CC)

• Instructions that write to a predicate register (PR)

• Store instructions (ST)

• Integer add and multiply instructions (IADD-IMAD-OP)

• Single precision floating point add and multiply instructions (FADD-FMUL-OP)

• Double precision floating point add and multiply instructions (DFADD-DFMUL-OP)

• Integer fused multiply and add (MAD) instructions (MAD-OP)

• Single precision floating point fused multiply and add (FMA) instructions (FMA-OP)

• Double precision floating point fused multiply and add (DFMA) instructions (DFMA-
OP)

• Instructions that compare source registers and set a predicate register (SETP-OP)

• Loads from shared memory (LDS-OP)

• Load instructions, excluding LDS instructions (LD-OP)

Before performing the fault injection task, SASSIFI had to be modified as it included
randomization and the experiments had to be deterministic and repeatable. This can
be done in the file /sassifi/scripts/generate_injection_list.py. In this file, we can find the
following code:

1 def write_injection_list_file(app, inj_mode, igid, bfm,
num_injections, total_count, countList):

2 ...
3 ...
4 while num_injections > 0 and total_count != 0: # first two are

kname and kcount
5 num_injections -= 1
6 injection_num = random.randint(0, total_count) # randomly

select an injection index
7 if igid == "rf":
8 ...
9 else:

10 ...
11 inj_op_id_seed = random.random()
12 inj_bid_seed = random.random()
13 ...
14 ...

56

6.3 - A Heuristic Reliability Metric

Here, to determine the injection fault, three variables, injection_num, inj_op_id_seed,
and inj_bid_seed, have to be modified and their randomization removed.

Following experiments showed that fault injection with SASSIFI always causes an
increase in the number of executed instructions, and these additional instructions are
not caused by the injected fault, but are used to generate the fault. These additional
instructions also cause unavoidable deviations in other metrics. Therefore, it cannot
be distinguished whether the deviation of other metrics is caused by the injected fault
or these additional instructions. In order to solve this problem, the deviations caused
by these additional instructions need to be eliminated. The file /SASSI/instlibs/src/err_-
injector/injector.cu contains the code to perform fault injection. The code for fault injection
is as follows:

1 ...
2 print_dest_reg_values(cp, rp, "before");
3 // get the value in the register, and inject error
4 int32_t valueInReg = rp->GetRegValue(cp, regInfo).asInt;
5

6 ...
7 SASSIRegisterParams::GPRRegValue injectedVal;
8 injectedVal.asUint = 0;
9 uint32_t injBID = 0;

10 if (injBFM == FLIP_SINGLE_BIT || injBFM == WARP_FLIP_SINGLE_BIT)
{

11 injBID = get_int_inj_id(32, injBIDSeed);
12 injectedVal.asUint = valueInReg ^ (1<<injBID); // actual error

injection
13 } else if (injBFM == FLIP_TWO_BITS || injBFM ==

WARP_FLIP_TWO_BITS) {
14 injBID = get_int_inj_id(31, injBIDSeed);
15 injectedVal.asUint = valueInReg ^ (3<<injBID); // actual error

injection
16 } else if (injBFM == RANDOM_VALUE || injBFM == WARP_RANDOM_VALUE)

{
17 injectedVal.asUint = ((uint32_t)-1) * injBIDSeed;
18 } else if (injBFM == ZERO_VALUE || injBFM == WARP_ZERO_VALUE) {
19 injectedVal.asUint = 0;
20 }
21

22 ...
23 if (!DUMMY_INJECTION) {
24 rp->SetRegValue(cp, regInfo, injectedVal);
25 }
26

27 int32_t valueInRegAfter = rp->GetRegValue(cp, regInfo).asInt;
28 ...
29 print_dest_reg_values(cp, rp, "after");

57

Chapter 6 - Capturing the System State

The process of fault injection in IOV mode is as follows. First, get the original value in
the register and save it in valueInReg. Then, according to different fault models, the new
value to be written to the register will be obtained and set into injectedVal. If the single-bit-
flip model or the double-bits-flip model is selected, then a bitwise XOR will be performed
on valueInReg. If the random value model or zero value model is selected, then the new
value will be set directly. Finally, the new value saved in injectedVal is written into the
register by calling the function SetRegValue() to complete the fault injection.

If the value rewritten to the register during the fault injection is the original value in the
register, then it is equivalent to no fault being injected. The modified code is as follows:

1 ...
2 SASSIRegisterParams::GPRRegValue injectedVal;
3 injectedVal.asUint = 0;
4 uint32_t injBID = 0;
5 if (injBFM == FLIP_SINGLE_BIT || injBFM == WARP_FLIP_SINGLE_BIT)

{
6 injBID = get_int_inj_id(32, injBIDSeed);
7 injectedVal.asUint = valueInReg | (0<<injBID) ; // actual

error injection
8 } else if (injBFM == FLIP_TWO_BITS || injBFM ==

WARP_FLIP_TWO_BITS) {
9 injBID = get_int_inj_id(31, injBIDSeed);

10 injectedVal.asUint = valueInReg | (0<<injBID) ; // actual
error injection

11 } else if (injBFM == RANDOM_VALUE || injBFM == WARP_RANDOM_VALUE)
{

12 injectedVal.asUint = valueInReg ;
13 } else if (injBFM == ZERO_VALUE || injBFM == WARP_ZERO_VALUE) {
14 injectedVal.asUint = valueInReg ;
15 }

In order to reduce the impact of code changes on the results as much as possible, when
the single-bit-flip model or double-bits-flip model is selected, a bitwise OR with zero will
additionally be performed. This code is then utilized to run applications without faults
to fill the database. Thus, the application runs without faults also execute the additional
instructions necessary to inject faults. Since SASSI [121] is closed source, the specific
code of the function SetRegValue() and its effects are unkown. After experiments, it
was found that the alteration does not completely eliminate all additional instructions.
However, additional instructions could be minimized and useful baseline profiling runs
could be conducted.

For the actual fault injection, IOV mode was chosen as IOV supports eight bit-flip mod-
els. The following three models that are implemented in the current version of SASSIFI
were chosen for the evaluation: Double bit-flip, Random value, and Zero value:

58

6.3 - A Heuristic Reliability Metric

• Double bit-flip: bit-flips in two adjacent bits in one register in one thread

• Random value: random value in one register in one thread

• Zero value: zero out the value of one register in one thread

As instruction groups, we selected GPR, FADD-FMUL-OP, and LDS-OP.

Benchmarks

As a first benchmark, I implemented a floating-point matrix multiplication (mMult) with
300 × 300 and 500 × 500 matrices initialized with random floating-point numbers. The
other benchmarks used are taken from the Rodinia Benchmark Suite [123]:

Hotspot3D iteratively computes the heat distribution of a 3d chip represented by a
grid. In every iteration, a new temperature value depending on the last value, the sur-
rounding values, and a power value is computed for each element. For the CPU eval-
uation, I utilized a 512 × 512 × 8 grid with the start values for temperature and power
included in the benchmark suite, and a total of 1000 iterations.

Hotspot is the 2D variant of Hotspot3D. A 64 × 64 grid with a pyramid height 2 and
two iterations serves as evaluation data for the GPU experiment. Again, the input files
provided by the benchmark suite are used.

SRAD is a diffusion method for ultrasonic and radar imaging applications based on
partial differential equations used to remove noise without destroying important image
features. The benchmark consists of image extraction, continuous iterations over the
image, and image compression. As input, I used the 502 × 458 image provided by the
benchmark suite with 100 iterations and λ = 0.5.

Nearest Neighbor (NN) is used to finds the k-nearest neighbors from an unstruc-
tured data set. It first reads the record, then calculates the Euclidean distance from the
given target, and finally gets the k nearest neighbors. The default inputs of the Rodinia
Benchmark Suite are utilized and four nearest neighbors are outputted.

These benchmarks were selected because they represent typical workloads with var-
ious types of parallelism and data access patterns. They also specifically target hetero-
geneous architectures and therefore are available in the programming models OpenMP,
OpenCL, and CUDA.

Experimental Setup

For the experiments, PAPI or CUPTI instrumentation code was added to each bench-
mark described above in order to monitor selected performance counters, respectively.
All experiments are executed ten times with and without fault injection, respectively. Fig.
6.4 displays the experimental concept used for the CPU experiments. The results show
the average ∅ and the standard variation s of the specific metric measured over all ten

59

Chapter 6 - Capturing the System State

Faults
copy

ddot

dial

memeater

leak

Iteration reduction

Index manipulation

Fault Injection

Benchmarks
mMult

srad

hotspot3D

E
xe cuti o

n

Database of
correct execution
behavior

Metrics
L1 Data Cache
Misses

...

TLB Accesses

PAPI

Value comparison

Which metrics vary
significantly?

Figure 6.4: The general concept of the symptom-based fault detection evaluation pro-
cess on the CPU.

executions with and without the injected fault, respectively. Additionally, I compute an
occurrence ratio, that shows how often the value of the measured metric varied signifi-
cantly from the non-faulty case. This means if a value increases significantly in 6 out of
10 execution runs, the occurrence ratio would be 60 %.

The experiments are conducted on a server with two Intel Xeon E5-2650 v4 CPUs a
12 cores each, an NVIDIA Tesla K80, and 128 GB DDR4 SDRAM DIMM (PC4-19200).
The software environment includes Ubuntu 18.04.1, the Linux 4.15.0-43-generic kernel,
glibc 2.27, and CUDA 7.0, as SASSIFI does not work with newer CUDA versions.

Results

The next paragraphs present the CPU experiments that consist of the loop alteration,
instruction number reduction, and FINJ’s interference applications. The experiments are
sorted by the injected fault.

The alteration of the loop index variable creates random accesses into the used data
structure. This changes the data cache behavior of the benchmark increasing misses as
the random accesses violate the locality principle. The results of the mMult benchmark
(s. Table 6.1) show these changes. Misses in the data translation lookaside buffer (TLB
DM) and in the L2 data cache (L2 DCM), data prefetch misses (PRF DM), and L3 data
cache accesses (L3 DCA) increase significantly.

60

6.3 - A Heuristic Reliability Metric

Symptom mMult w/o faults mMult w faults

∅ s ∅ s occurrence ratio

PAPI TLB DM 27.8 13.8 1882 258.7 100%
PAPI PRF DM 88898.7 290.1 503561.3 794 100%
PAPI L2 DCM 15733227 1125.2 16188659.3 4214.8 100%
PAPI L3 DCA 15733439.3 312.3 16185326.6 1193.8 100%

Table 6.1: Results of the combination of mMult and the manipulation of the loop index

The reduction of the number of iterations effectively leads to a reduction of issued
and executed instructions. In general, the instruction performance counters are very
precise, e.g., the counters for the executed floating-point operations always match the
actually executed operations with a deviation of 0. Therefore, a reduction of the exe-
cuted instructions is easily recognizable using the provided instruction counters as can
be seen exemplary in the results of the mMult benchmark in Table 6.2. Here, the to-
tal floating-point operations, the floating-point additions, and floating-point multiplications
scale according to the number of executed loops. As these results are pretty straightfor-
ward, the results of the other two benchmarks are omitted.

Symptom mMult w/o faults mMult w faults

N = 300 N = 200 N = 100 N = 50

PAPI FP OPS 54 ·106 36 ·106 18 ·106 9 ·106
PAPI FML OPS 27 ·106 18 ·106 9 ·106 4.5 ·106
PAPI FADD OPS 27 ·106 18 ·106 9 ·106 4.5 ·106

Table 6.2: Results of the iteration number reduction for the matrix multiplication bench-
mark

Copy creates file I/O overhead and thereby simulates HDD interferences. Expected re-
sults are variations in the lower-level cache structures and the TLB. These expectations
are confirmed by the results of the SRAD benchmark shown in Table 6.3. In 9 out of 10
runs, large variations can be noted for the L3 total cache misses (L3 TCM) and TLB DM
counters. Additionally, the total number of stalls increases by about 3 % on average and
the number of L2 instruction cache misses (ICM) by about 150 % on average. However,
these two symptoms occur less often and in the case of the L2 ICMs vary significantly
between runs, which aggravates a detection. The results for mMult (s. Table 6.4) show
a similarity to the results of SRAD where the PRF DMs and total stalls increase, but the
biggest variations are seen in the instruction caches. Hotspot3D has similar results with

61

Chapter 6 - Capturing the System State

Symptom SRAD w/o faults SRAD w faults
∅ s ∅ s occurrence ratio

PAPI L3 TCM 1.8 1.87 44.44 54.81 90%
PAPI TLB DM 11899.7 1080.84 19816.7 3421.12 90%
STALLS TOTAL 79803752.8 155218.56 82099161.3 1197866.62 80%
PAPI L2 ICM 2088 154.6 3188.3 1366.39 60%

Table 6.3: Results of the combination of SRAD and copy

an increase in L2 and L3 cache accesses as well as symptoms such as an increase in
L3 data cache writes (DCW) and in cycles stalled waiting for memory writes (PAPI MEM
WCY).

Symptom mMult w/o faults mMult w faults
∅ s ∅ s occurrence ratio

PAPI L2 ICA 92.7 8.06 751.3 29.04 100%
PAPI L3 ICA 110.1 26.76 227 20.33 100%
PAPI PRF DM 258091.5 2350.31 270598.5 1349.06 100%
STALLS TOTAL 33806710.3 448643.96 35368628.1 1226479.31 80%

Table 6.4: Results of the combination of the mMult and copy

Leak leads to data cache and TLB misses via a controlled memory leak. The results
of SRAD in Table 6.5 show that the number of L3 TCMs and the number of total cycles
increase significantly throughout all test runs. Additional symptoms are TLB DMs and
L3 instruction caches accesses (L3 ICA), which are visible in 80 % of the conducted ex-
ecutions. Similar to the copy benchmark, variations for Hotspot3D are mostly visible in

Symptom SRAD w/o faults SRAD w faults

∅ s ∅ s occ. rat.

PAPI L3 TCM 1.8 1.87 11061.6 17445.73 100%
PAPI REF CYC 911683861 4293565.15 1042523457.8 18936885.44 100%
PAPI TLB DM 11899.7 1080.84 16347.5 4986.21 80%
PAPI L3 ICA 1950.6 101.63 2439.8 262.8 80%

Table 6.5: Results of the combination of SRAD and leak

the instruction caches (s. Table 6.6). In this case however, there is no single symptom
present in all test runs. mMult also only shows two symptoms in combination with leak:
increases in total stalls and TLB IMs, which are visible in 80 % of the test runs.

62

6.3 - A Heuristic Reliability Metric

Symptom Hotspot3D w/o faults Hotspot3D w faults
∅ s ∅ s occurrence ratio

PAPI L2 ICM 1360 269.32 1870.1 252.18 80%
PAPI L1 ICM 1641.3 251.18 2079.1 358.2 70%

Table 6.6: Results of the combination of Hotspot3D and leak

Memeater affects the system similarly to leak. Additionally, memeater creates misses in
the instruction caches. Table 6.7 presents the observed symptoms for SRAD. Mirroring
the results of leak, the number of total cache misses and the total cycle number increase
significantly in all test runs. TLB data misses are also significantly augmented again
and observable in eight executions. Furthermore, the additional instructions lead to an
increase in L2 ICMs. The results for the combination of Hotspot3D and memeater are

Symptom SRAD w/o faults SRAD w faults
∅ s ∅ s occurr. ratio

PAPI L3 TCM 1.8 1.87 82869 133062.97 100%
PAPI REF CYC 911683861 4293565.15 1052188361.2 19103730.87 100%
PAPI TLB DM 11899.7 1080.84 18344.5 6625.07 80%
PAPI L2 ICM 2088 154.6 2524.5 333.03 80%

Table 6.7: Results of the combination of SRAD and memeater

identical to the combination of Hotspot3D and leak with increases in L1 and L2 ICMs and
MEM WCYs. Even the occurrence ratio is identical for all three symptoms. For mMult,
the results resemble the results of the copy benchmark instead of leak, as the visible
symptoms are increases in L1 and L2 ICMs, total stalls, PRF DMs, and additionally an
increase in cycles with maximum instruction issue (FUL ICY).

Dial does not use much additional data, so mostly variations in the instruction caches are
expected. For SRAD, the results are displayed in Table 6.8. As expected, significant in-
creases in the L2 ICMs are measured. These correlate with the decrease in instructions
cache hits (ICH), and an increase in L3 instruction cache accesses (ICA) (and reads
(ICR)). All those symptoms are observable in 100 % of the execution runs. Contrary to
expectations an increase in TLB DMs and a decrease in L2 DCAs is visible. Symptoms
for mMult also manifest themselves in an increase in ICMs and correlating increases in
L2 and L3 ICAs. Furthermore, the number of prefetch data misses (PRF DM) decreases
in every run. Hotspot3D also showed significant increases (up to 400 %) in instruction
cache misses. Surprisingly, I measured a decrease in TLB DMs and MEM WCYs.

63

Chapter 6 - Capturing the System State

Symptom SRAD w/o faults SRAD w faults
∅ s ∅ s occurr. ratio

PAPI L2 ICM 2088 154.6 2915.9 162.82 100%
PAPI L2 ICH 20175.3 512.32 18633 169.35 100%
PAPI L3 ICA 1950.6 101.63 2956.6 92.42 100%
PAPI TLB DM 11899.7 1080.84 15885.1 2255.44 100%
PAPI L2 DCA 19876232.64 2957162.47 10991900.1 14624.57 90%

Table 6.8: Results of the combination of SRAD and dial

Symptom mMult w/o faults mMult w faults

∅ s ∅ s occurrence ratio

PAPI PRF DM 258091.5 2350.3 236171 15761.98 100%
PAPI L1 ICM 109.8 16.7 170.5 25.02 90%
PAPI L2 ICM 130.5 19.34 155.9 14.92 70%
PAPI L3 ICA 93.4 6.6 130.4 21.98 70%

Table 6.9: Results of the combination of mMult and dial

Ddot uses more additional data in the form of matrices compared to dial. The results
for SRAD (s. Table 6.10) show the effects of the additional instructions executed on the
instruction caches. Again, the ICMs on the L2 level increase, which correlates with the
increase of L3 ICAs (and ICRs) and decrease of L2 ICHs. The data usage is not really
visible in the monitored values, as the only visible variation was a decrease in L2 data
cache accesses, which is also visible for SRAD with dial. Similar to the results for dial,

Symptom SRAD w/o faults SRAD w faults
∅ s ∅ s occurrence ratio

PAPI L2 ICM 2088 154.6 2784.3 114.36 100%
PAPI L3 ICA 1950.6 101.63 2830.9 67.07 100%
PAPI L2 DCA 19517962.78 3226987.33 11026045.4 66239.26 90%
PAPI L2 ICH 20175.3 512.32 18740.4 445.68 90%

Table 6.10: Results of the combination of SRAD and ddot

significant increase in L1 and L2 ICMs for Hotspot3D is observed. Additionally, an in-
crease in misses in the instruction TLB (ITLB) is noticed. Again, the number of TLB data
misses decrease compared to the execution without interferences. The mMult bench-
mark also shows similar results to dial. Increases in ICMs, TLB DMs, and a decrease in
PRF DMs are again detected. Additionally, increases in ITLB misses and total stalls are
measured.

64

6.3 - A Heuristic Reliability Metric

Symptom Hotspot3D w/o faults Hotspot3D w faults
∅ s ∅ s occurrence ratio

PAPI L1 ICM 1277.4 208.14 5060.8 286.99 100%
PAPI L2 ICM 1416.9 249.7 5228.9 268.77 100%
PAPI TLB DM 513562.6 137417.52 213266.5 4514.72 90%
ITLB MISS 587.4 257.26 958.2 312.8 70%

Table 6.11: Results of the combination of Hotspot3D and ddot

The following paragraphs introduce the results obtained by the GPU experiments
using SASSIFI’s fault injection. For the GPU experiments, the experiments are sorted by
the instruction group faults were injected into.

GPR groups instructions that write to general purpose registers. Here, injecting faults
could potentially lead to changes in the cache access behavior, the number of bank con-
flicts, and the number of address divergences in load/store operations. As bank cache
misses, bank conflicts, and address divergences may potentially lead to instruction re-
plays, the act of issuing an instruction multiple times because it could not be completed,
an alteration in the number of instructions issued is also expected. The following two
tables show the results obtained when a double-bit-flip occurred. The results for SRAD
(s. Tab 6.12) show the effect of the double bits flip on the issued instructions with a
decrease of the number of control flow instructions issued (cf_issued and an increase in
stalls while fetching the next instruction (stall_inst_fetched).

Table 6.12: The result of the combination of SRAD and Double-bit-flip (GPR)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 361606.9 270.35 360419.6 304.42 100%
stall_inst_fetch 2.00% 0.03% 2.10% 0.03% 100%

Contrary to these results, a decrease in cf_issued, and increases in total instructions
issued (inst_issued) and accordingly in total issue slots used (issue_slots) can be ob-
served from the results for NN (Table 6.13). In addition, increases in total number of
global memory atomic transactions (atomic_transactions), load/store instructions issued
(ldst_issued), local load/store transactions (local_load_transactions, local_store_trans-
actions), and memory read transactions seen at the L2 cache (l2_read_transactions)
can also be observed. As only one symptom, similar to NN an increase in cf_issued,
was visible for Hotspot, the table is omitted.

The results for the random value fault model can be seen in Table 6.14 (SRAD) and
Table 6.15 (NN). Again, the table for Hotspot is omitted as the only symptom visible was

65

Chapter 6 - Capturing the System State

Table 6.13: The result of the combination of NN and Double-bit-flip (GPR)

Symptom w/o faults w faults
∅ s ∅ s occ. r

atomic_trans. 8017793.5 73551.37 8083246.1 38972.16 50%
cf_issued 443771.1 786.21 439837.6 547.17 100%
inst_issued 16183137.2 84432.61 16281498.5 73144.19 70%
issue_slots 15217601.7 84678.09 15317475.3 72717.37 70%
l2_read_trans. 2145784.3 2458.37 2148287.9 2349.15 70%
ldst_issued 13131635.7 47916.17 13313842.9 93257.62 90%
local_load_trans. 750554.9 7648.26 760566.9 5937.72 70%
local_store_trans. 3195316.8 14191.03 3224604.5 31197.69 60%

the increase in cf_issued.

Table 6.14: The result of the combination of SRAD and Random Value (GPR)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 361631.6 353.13 360408.8 251.32 100%
inst_issued 10375528.1 53667.4 10329675.6 28380.96 60%
issue_slots 9310575.8 53493.82 9265840.2 28176.83 60%
ldst_issued 7693273.9 50224.71 7641020.6 20940.56 70%
local_load_trans. 1836688.4 19479.34 1818154.8 14904.33 60%
local_store_trans. 4687735.6 34407.02 4658019.4 15046.69 60%
stall_inst_fetch 2.00% 0.02% 2.11% 0.03% 100%

Similar to the results for the double-bit-flip model, SRAD shows the decrease cf_-
issued and the rise of stall_inst_fetch. Further symtpoms are the decrease of inst_-
issued, issue_slots, ldst_issued, local_load_transactions, and local_store_transactions
that match the trend shown by the decrease of cf_issued. The results of NN are similar to
the results of the previous experiment. In Table 6.15, the increase of atomic_transactions
and the decrease of cf_issued can still be seen. Similarly, the increase in inst_issued,
ldst_issued and local_store_transactions have also been observed. In addition, an in-
crease in the device memory read transactions (dram_read_transactions) is observed
that matches the other increases.

The experiments with the zero value fault model result in similar symptoms. The re-
sults for Hotspot are the same as before, from Table 6.17 only the increase in cf_issued
can be seen. For SRAD, the results obtained are the same as with the double bit flip
model. The decrease in cf_issued and the rise in stall_inst_fetch are visible as symp-
toms (the table is omitted to increase visibility). The results for NN (Table 6.16) are still
similar to before. The decrease in cf_issued, the increase in atomic_transactions, inst_-
issued, issue_slots, ldst_issued and local_store_transactions are all observed.

66

6.3 - A Heuristic Reliability Metric

Table 6.15: The result of the combination of NN and Random Value (GPR)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

atomic_trans. 7984352.7 53209.19 8100949.3 50292.49 80%
cf_issued 444063 669.81 440123.5 341.81 100%
dram_read_transactions 432064.6 2021.90 434797.1 2342.21 60%
inst_issued 16130690.4 127652.67 16252896.2 114521.88 50%
ldst_issued 13085069.7 107864.52 13289426.5 50201.94 100%
local_store_trans. 3184418.8 26533.3 3230818.8 27115.91 80%
stall_not_selected 14.13% 0.18% 13.94% 0.16% 60%

FADD-FMUL-OP is the group term for single precision floating point add and multiply
instructions. Again, injecting faults in this instruction group should lead to alterations in
the instruction replay behavior of the benchmarks.

Table 6.16: The result of the combination of NN and Zero Value (GPR)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

atomic_trans. 8012331.3 82300.50 8142256 75547.25 80%
cf_issued 479149.9 680.4 475359.4 498.31 100%
inst_issued 16462281.6 117116.96 16628205.2 125970.92 70%
issue_slots 15498139.9 115728.42 15663119.3 124161.25 70%
ldst_issued 13202430.4 116908.54 13348558.9 141785.43 60%
local_store_trans. 3182047.9 22732.57 3232043 26385.39 80%

Table 6.17: The result of the combination of Hotspot and Zero Value (GPR)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 717639.5 857.74 718693.6 825.75 70%

The following three tables, Table 6.18 for SRAD, Table 6.19 for NN, and Table 6.20 for
Hotspot, show the symptoms that were visible when the double-bit-flip is injected as a
fault. Similar to the results for the GPR instruction group, the changes in cf_issued are
visible for all three benchmarks. The SRAD results also show the increase in stall_inst_-
fetch seen in the same experiment with GPR. The same trend is present in the results for
NN as the increase in inst_issued, issue_slots, ldst_issued, and local_store_transactions
are again observable.

67

Chapter 6 - Capturing the System State

Table 6.18: The result of the combination of SRAD and Double-bit-flip (FADD-FMUL-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 361511.4 320.63 360468.9 95.91 100%
stall_inst_fetch 2.01% 0.02% 2.10% 0.02% 100%

Table 6.19: The result of the combination of NN and Double-bit-flip (FADD-FMUL-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 798753.4 686.81 793718.5 781.04 100%
inst_issued 18414897.2 132823.42 18546503.7 92439.27 60%
issue_slots 17290058.3 133262.57 17421705.3 93746.96 60%
ldst_issued 14411021 153761.13 14579835.5 134927.8 60%
local_store_trans. 3089973.1 28823.64 3128223.1 18492.65 80%
stall_memory_dependency 11.81% 0.13% 11.66% 0.13% 60%

Additionally, a decrease in the total number of stalls produced because a memory
operation could not be performed (stall_memory_dependency) occurs. For Hotspot, ad-
ditional symptons in the increase in number of read requests at the L2 cache originating
from L1 (l2_l1_read_transactions) and an increase in atomic_transactions are observ-
able.

Both the increase in cf_issued and stall_inst_fetchd for SRAD can again be seen
when the random value model is used (s. Table 6.21). With an increase in l2_read_-
transactions, an additional symptom manifests itself. The results for Hotspot (s. Table
6.23) show that only cf_issued increased. The results for NN (s. Table 6.22) show
that the fault injection still caused more instruction replays and more cache and memory
accesses as inst_issued, issue_slots, atomic_transactions, local_load_transactions, and
l2_l1_write_transactions all increased. In addition, the change in cf_issued can still be
seen.

Table 6.20: The result of the combination of Hotspot and Double-bit-flip (FADD-FMUL-
OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

atomic_trans. 5542783.2 27655.33 5591960.4 39260.83 70%
cf_issued 1181101.9 499.63 1182599.9 562.46 100%
l2_l1_read_trans. 2852582.2 861.59 2853549.4 903.69 70%

68

6.3 - A Heuristic Reliability Metric

Table 6.21: The result of the combination of SRAD and Random Value (FADD-FMUL-
OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 361669.8 210.71 360229.9 411.76 %
l2_read_trans. 2596389.8 497.96 2597172 934.48 %
stall_inst_fetch 2.00% 0.03% 2.08% 0.02% %

Table 6.22: The result of the combination of NN and Random Value (FADD-FMUL-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

atomic_trans. 9072448.2 65945.8 9165003.4 54580.97 80%
cf_issued 798586.1 750.19 794446.1 649.88 100%
inst_issued 18389608.4 114717.89 18521390.3 123292.32 70%
issue_slots 17264485.4 114354.67 17395045.7 124025.01 70%
l2_l1_write_trans. 3459754.3 2446.75 3462802.8 3332.82 60%
local_load_trans. 734801.1 6418.04 745525.4 8203.62 80%

The results for the experiments using the zero value model can be viewed in Table
6.24 for SRAD, Table 6.26 for Hotspot, and Table 6.25 for NN. For SRAD, the changes of
cf_issued and stall_inst_fetch can still be observed. The Hotspot results show that the
fault increases dram_write_transactions and, again, cf_issued. From the results for NN
(Table 6.25), we can find that the decrease in cf_issued, the increase in atomic_transac-
tions, inst_issued, issue_slots, and local_store_transactions are also detected again.

LDS-OP represents loads from shared memory. Injecting faults in load instructions
should, again, lead to alterations in the instruction replay behavior. Additionally, the faults
should also be more directly visible in metrics related to memory access instructions like
load instructions issued etc. As the benchmark NN does not have instructions from the
instruction group LDS-OP, no results could be produced for this benchmark.

As in the last experiments, the changes in cf_issued are still visible for the two bench-
marks over all fault models for the instruction group LDS-OP. For SRAD (s. Table 6.27,

Table 6.23: The result of the combination of Hotspot and Random Value (FADD-FMUL-
OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 1181169.9 575.8786 1182212.6 361.79 90%

69

Chapter 6 - Capturing the System State

Table 6.24: The result of the combination of SRAD and Zero Value (FADD-FMUL-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 361551.6 282.14 360393.4 224.25 100%
stall_inst_fetch 2.00% 0.03% 2.10% 0.02% 100%

Table 6.25: The result of the combination of NN and Zero Value (FADD-FMUL-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

atomic_trans. 9054403.3 69633.94 9134497.7 69987.69 70%
cf_issued 837222.2 655.85 832885 768.72 100%
inst_issued 18589451.7 106404.19 18778406.2 106617.53 70%
issue_slots 17464653.3 107344.99 17654145.8 106476.13 70%
local_store_trans. 3097506 21596.99 3123829.9 17122.16 70%

we additionally can monitor an increase in stall_inst_fetch, ldst_issued, and local_store_-
transactions. In the results for Hotspot (s. Table 6.28) next to the increase in cf_issued,
increases in dram_write_transactions and l2_read_transactions, and the decrease in lo-
cal_load_transactions are detected.

The random value fault model experiment for SRAD (s. Table 6.29) results in an ad-
ditonal rise of stall_inst_fetch that has been visible in all past experiments. For Hotspot
(Table 6.30), we can observe a decrease in sysmem_write_transactions next to the in-
crease in cf_issued for the random value fault model.

The results for the zero value fault model experiments can be seen in Table 6.31 and
Table 6.32. For SRAD, changes in cf_issued and stall_inst_fetch are still observed,
and the increase in local_store_transactions is also found. The increases in cf_is-
sued, dram_write_transactions, and l2_l1_read_transactions that were observable in the
double-bit-flip fault model experiment with Hotspot can also be seen here.

Table 6.26: The result of the combination of Hotspot and Zero Value (FADD-FMUL-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 1237785.1 447.97 1238655.8 456.15 80%
dram_write_trans. 7728748.7 1564.2 7731094.7 2582.94 60%

70

6.3 - A Heuristic Reliability Metric

Table 6.27: The result of the combination of SRAD and Double-bit-flip (LDS-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 361614.8 198.83 360455 244.21 100%
ldst_issued 7664055.3 39923.27 7709413.5 33343.45 60%
local_store_trans. 4675417.3 24104.77 4699637.3 19344.95 70%
stall_inst_fetch 1.99% 0.02% 2.10% 0.01% 100%

Table 6.28: The result of the combination of Hotspot and Double-bit-flip (LDS-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 1181284.1 544.89 1182223.5 621.39 70%
dram_write_trans. 7714109.1 1969.06 7716996.7 1763.21 70%
l2_read_trans. 4514577.1 1021.33 4516698.7 1095.79 80%
local_load_trans. 1079206.8 3963.4 1074556.4 3690.92 70%

Statistical Analysis

To test the statistical significance of the obtained results, Welch’s t-test [124], a statistical
test that is used to test the hypothesis that two means belong to the same population, is
employed. If the hypothesis is accepted, the occurred symptom originates from correct
behavior and not a fault. However, if the hypthesis can be discarded with a high probabil-
ity, it is highly likely that the symptom does not originate from normal execution behavior.
Exemplary, the results of three tests for the CPU experiments are shown here. Tables
6.33, 6.34 and 6.35 show the results for the combination of SRAD and dial, Hotspot3D
and leak, and mMult and copy. For all symptoms registered in these benchmarks, the
deviation that occurred in the fault-injection runs has a probability to occur in normal
runs of less than 1 % and in most cases even less than 0.1 %. This means that it is
almost definite that the monitored symptoms do not result from the distribution observed
in the fault-free runs. Therefore, it is reasonable to say that the injected faults changed
the application behavior. For all conducted benchmarks, the maximum probability for a
symptom occurring in a fault-free run is 3.6 %. For 18 of 30 symptoms examined, the

Table 6.29: The result of the combination of SRAD and Random Value (LDS-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 361600.5 339.12 360667.3 182.96 100%
stall_inst_fetch 1.99% 0.02% 2.09% 0.02% 100%

71

Chapter 6 - Capturing the System State

Table 6.30: The result of the combination of Hotspot and Random Value (LDS-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 1180990.2 256.8 1182368.1 401.86 100%
sysmem_write_trans. 1650.4 135.79 1494.8 140.32 70%

Table 6.31: The result of the combination of SRAD and Zero Value (LDS-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 361709.6 210.05 360463 228.97 100%
local_store_trans. 4681202.5 37885.88 4713606.1 14350.27 70%
stall_inst_fetch 2.00% 0.02% 2.09% 0.02% 100%

test resulted in a probability of less than 0.1 %. So in summary, Welch’s t-tests show
the statistical significance of the monitored symptoms for all benchmarks in the CPU
experiments.

For the symtpoms observed during the GPU experiments, I again computed Welch’s t-
test using a feature of Microsoft Excel [125]. Excel’s t-test function returns the probability
that the means of the two input data sets belong to the same population. A value variation
of a metric was accepted as a symptom if the probability returned by the t-test function
was below 0.5 %. Exemplary, the results of three t-test computations are shown in this
work.

Table 6.36 shows the results for the t-test of the combination of SRAD with the in-
struction group GPR and the double-bit-flip fault model. The result heavily implies that
both changes in the observed mean are not the consequence of differing values from the
same population. So, it can be assumed that the symptoms reflect the occurrence of a
fault during execution.

The same is true for the results computed for NN and the injection of the Random
Value fault model into FADD-FMUL-OP instructions (s. Table 6.37). For all symptoms
observed, the probability that the mean of the fault-free runs and the mean of the runs

Table 6.32: The result of the combination of Hotspot and Zero Value (LDS-OP)

Symptom w/o faults w faults
∅ s ∅ s occ. r.

cf_issued 1237538.8 672.98 1238319.6 323.68 90%
dram_write_trans. 7713710.2 1680.25 7716905.1 2139.32 70%
l2_l1_read_trans. 2842370.4 873.18 2843818.8 1392.31 50%

72

6.3 - A Heuristic Reliability Metric

Symptom df t α tcrit p

PAPI L2 ICM 17.95 -11.66 0.001 -3.922 8.26 ·10−10

PAPI L2 ICH 10.94 9.04 0.001 4.437 2.09 ·10−6

PAPI L3 ICA 17.84 -23.16 0.001 -3.922 1 ·10−14

PAPI TLB DM 12.93 -5.04 0.001 -4.221 2.31 ·10−4

PAPI L2 DCA 9.00 9.50 0.001 4.781 5.47 ·10−6

Table 6.33: Welch’s t-test results for the combination of SRAD and dial

Symptom df t α tcrit p

PAPI L2 ICM 17.92 -4.37 0.001 -3.922 3.71 ·10−4

PAPI L2 ICM 16.13 -3.16 0.01 -2.898 0.006

Table 6.34: Welch’s t-test results for the combination of Hotspot3D and leak

with faults belong to the same population is at maximum 0.41 %.
The t-test function results 6.38 for the symptoms monitored during the zero value

fault-injection into the instruction group LDS-OP of Hotspot manifest the impression that
the faults result in symptoms during execution.

Results Discussion

In this section, I evaluated the concept of symptom-based fault detection both on CPUs
and GPUs. In particular, its capability to detect different faults and its utility to distinguish
faults is investigated. The evaluation was done with the background that symptom-based
fault detection shall be used in this thesis to compute an online fault rate as basis for a
heuristic reliability metric.

For the evaluation, software-based fault injection in the form of the fault injection tools
FINJ and SASSIFI, and intra-process communication to alter certain variables are used.

FINJ, the tool utilized for the CPU experiments, was used to create interferences that
are deployed to mimic anomalies in real-life systems by stressing single components,

Symptom df t α tcrit p

PAPI L2 ICA 10.38 -69.1 0.001 -4.437 0
PAPI L3 ICA 16.79 -11 0.001 -3.965 4.3 ·10−9

PAPI PRF DM 14.35 -14.59.16 0.001 -4.073 5.24 ·10−10

STALLS TOTAL 11.37 -3.78 0.01 -3.012 0.0029

Table 6.35: Welch’s t-test results for the combination of mMult and copy

73

Chapter 6 - Capturing the System State

Symptom p

cf_issued 7.49 ·10−8

stall_inst_fetch 9.62 ·10−7

Table 6.36: Welch’s t-test results for the combination of SRAD, the instruction group
GPR, and the fault model Zero Value

Symptom p

atomic_trans. 0.0047
cf_issued 3.31 ·10−3
inst_issued 0.031
issue_slots 0.032
l2_l1_write_trans. 0.041
local_load_trans. 0.0067

Table 6.37: Welch’s t-test results for the combination of NN, the instruction group FADD-
FMUL-OP, and the fault model Random Value

emulating interference or malfunction in that component. Additionally, a loop index al-
teration and iteration number reduction were conducted on the CPU via intra-process
communication. In general, minimally two symptoms were found for every benchmark
fault combination in the CPU experiments, which match the expected behavior change.
All symptoms were then confirmed with Welch’s t-test. In the worst case, there is at least
one symptom with an occurrence ratio of 80 % and for most cases at least one symptom
with a ratio of 100 %. So, it is fair to say that it was possible to detect all faults in every
benchmark on the CPU using symptom-based fault detection.

Faults that alter the number of executed instructions are easily detectable as these
counters are very precise and therefore identical symptoms for all considered bench-
marks altering loops were detected. A distinction from the other fault classes is also
easy, as they do not alter the number of instructions.

Considering each benchmark on their own, the different instances of the interference

Symptom p

cf_issued 0.0079
dram_write_trans. 0.0026
l2_l1_read_trans. 0.018

Table 6.38: Welch’s t-test results for the combination of Hotspot, the instruction group
LDS-OP, and the fault model Zero Value

74

6.4 - Reducing Profiling Overhead

classes (memory-bound and ALU-bound interferences) on the CPU had very similar be-
havior. E.g., SRAD showed significant variations in total L3 cache misses, the number of
cycles needed, and TLB DMs for all three memory bound benchmarks. However, there
was no single set of symptoms that was relevant for every instance of an interference
class over all benchmarks. Only significant variations of instruction cache accesses and
misses were visible for each instance of the interference classes over all benchmarks. A
possible distinction could be the degree to which the values increase. ALU-bound inter-
ferences create larger increases compared to memory-bound ones. Additionally, in most
cases, the memory-bound interferences created more variations in data related coun-
ters. Differentiating between the interferences and the loop index manipulation is hardly
possible as these fault classes mostly affect cache structures and therefore create very
similar symptoms. It is also noteworthy, that the probability of all symptoms occurring
simultaneously is quite low as not all symptoms could be observed in every iteration.

In conclusion, this means that symptom-based fault detection is very useful to detect
faulty application behavior and coarse-grained conclusions about the causing fault may
be possible, but finer distinctions need additional tool support.

For the GPU experiments, SASSIFI was used to inject different faults into registers
during execution by assembly-level instrumentation. In total, three fault models were
injected in three instruction groups of three Rodinia benchmarks. Symptoms could be
detected in every benchmark and the monitored symptoms again match the expectations
belonging to the injected faults. However, in contrast to the CPU experiments, only one
symptom was observable for Hotspot in combination with the instruction groups GPR and
FADD-FMUL-OP and the symptom was not observable in every iteration. Still, the results
confirm the overall impression that symptom-based fault detection is able do detect a
wide range of faults. Again, I confirmed my measurements using Welch’s t-test proving
their statistical significance.

Distinguishing faults, however, remains nearly impossible on the GPU as well. Several
symptoms are visible for multiple benchmarks over different instruction groups and fault
models and again, not all symptoms are observable in all iterations. As this severly
reduces the probability that all symptoms occur simultaneously, the ability to distinguish
faults by comparing symptoms decreases even more. A potential problem may be only
injecting faults into a single thread during execution as this limits the impact a fault can
cause. Further experiments with the injection of faults in multiple threads in future work
could lead to additional insights.

6.4 Reducing Profiling Overhead

The creation of a performance behavior database for task costs prediction and espe-
cially for scalability characterization requires a huge amount of profiling runs. Profiling
runs create additional overhead, particularly if non-optimal task mappings are profiled.

75

Chapter 6 - Capturing the System State

To reduce the amount of profiling runs needed, I introduced two different approaches.
The first approach employs scaling checks and interpolation to avoid unnecessary pro-
filing runs and to utilize already stored information to predict unknown problem sizes or
thread numbers. The objective of the second approach is to avoid profiling altogether by
deploying machine learning algorithms to predict task execution times.

6.4.1 Interpolation & Scaling Checks

To reduce the profiling overhead, scaling checks and interpolation have been added
to HALadapt’s monitoring component in this thesis. The scaling characterization of
OpenMP kernels requires profiling runs with varying numbers of CPU cores. A full ex-
haustion of a multicore CPU with n processing cores would demand n profiling runs.
The first mechanism decreases this number by skipping thread numbers and using inter-
and extrapolation to predict the execution time for the skipped profiling runs. Inter- or
extrapolation are only allowed if the distance between the measurement points, and in
case of extrapolation additionally the distance between the extrapolation candidate and
the measurement points, is smaller or equal than a selectable threshold. For candidate
thread numbers smaller or equal than ten, the distance threshold is set to four for inter-
polation and two for extrapolation. For greater thread numbers, I double the thresholds.
If appropriate measurements have been found, the actual inter- or extrapolation compu-
tation depends on the belonging sensor. The execution time is interpolated/extrapolated
by first computing the thread ratio efficiency of the measurements E(n) = S(n)

n
, where

n is the thread ratio and S(n) the speed up. Depending on if the closest measurement
is smaller or greater than the candidate’s thread count, the execution time is divided by
or multiplied with the product of E(n) and the thread ratio of the measurement and the
candidate. For the other sensors, we use linear inter- and extrapolation.

Additional runs can be avoided by stopping profiling runs iff the execution time scal-
ability threshold of an OpenMP task is reached. A scaling check determines if a kernel
is no longer scaling with additional threads, in this case no further measurements are
conducted. To perform the scaling check, the first step is searching two measurements
previously stored in the history database. Then, the thread ratio efficiencyE(n) for these
two measurements is computed. If the efficiency is below a definable threshold, the ker-
nel is determined to be not scaling with additional threads. In this case, the closest
available measurement is returned as prediction for the execution time sensor. For the
other sensors, a linear extrapolation is performed to calculate a prediction.

To further reduce the profiling overhead, creating task execution time prediction mod-
els based on static code analysis metrics [14, 88] is studied and evaluated. The next
section explains static code analysis and the methods that are used to create the predic-
tion models in detail.

76

6.4 - Reducing Profiling Overhead

6.4.2 Predicting Task Execution Times

In this thesis, a methodology based on a source code analysis using Clang and LLVM,
and machine learning techniques to predict the fastest processor for a given OpenCL
task by classification, and to predict task execution times is developed. The focus is set
on OpenCL tasks as they can be executed on a wide range of different processing units
and thereby are extremely well suited for today’s systems featuring heterogeneous ar-
chitectures. The following sections present the necessary fundamentals of source code
analysis and machine learning necessary for this methodology. Additionally, implementa-
tion methods and details for the creation of the prediction models are elucidated. Finally,
the evaluation of my prediction approach is presented.

Source Code Analysis

The methodology uses source code analysis to extract metrics from the source code of
OpenCL programs. Source code analysis can be fielded into static and dynamic tech-
niques. Dynamic methods try to extract characteristics of a given source code during
runtime by instrumenting the code, which can influence, prolong, and alter the actual ex-
ecution. Static code analysis on the other hand limits the observation to the source code
itself. The analysis can happen before or after the compilation of the program. Also, a
possible intermediate representation could be the target of the analysis. But since there
is no information about the actual execution of the program, the analysis can deliver,
especially for loops and branches, only an abstract view on the execution. Another dis-
advantage is, that optimizations by compilers cannot, or in case of the analysis of an
intermediate representation can only partially, be taken into account. Because the goal
is to reduce the necessary profiling overhead at the start of an execution cycle, only a
static code analysis is used, complemented by some dynamic metrics, which are known
before the actual execution through OpenCL’s dynamic compilation approach.

The source code analysis is implemented by using the Clang tooling from the LLVM
compiler suite [126]. With Clang tooling the built up abstract syntax tree can be traversed.
The different source code constructs can then be observed by visitor functions which get
called if a specific construct is found in the source code. In this way, metrics like binary
operations or memory accesses can be counted. The binary operations are counted for
each data type separately. If a construct occurs within a loop or a branch the metrics
are multiplied or divided by a factor which is a parameter of the analysis and can be set
before the analysis starts.

Beside these counted occurrences of different kinds of operations, two complexity
metrics are also extracted. The used complexity metrics are the NPath Complexity
from [127] and the Cyclomatic Complexity from [128]. The implementation calculating
these complexity metrics is taken from [129].

Since a static code analysis can only provide an abstract view, the analysis is im-

77

Chapter 6 - Capturing the System State

proved by a branch prediction and a loop detection. The prediction is based upon vari-
ables whose values are known by, e.g., visited defines, given kernel arguments, or being
the return value of functions returning a fixed value like work group functions. By cal-
culating the visited operations, which use known variables, estimations of the probability
if a branch is taken or not and the number of loop iterations can be made. With these
predictions, the multiplier for the metrics occurring within loops or branches is adjusted.

Because not every loop or branch condition depends on variables whose values are
fixed for all work items, the prediction is enhanced by the value range propagation from
[130]. With the value range propagation, for each variable a value range and a probability
is saved. Since there is no guarantee of being correct while calculating with these prob-
abilistic variables, the range distribution of the values is always considered as one. With
these probabilistic variables, predictions could be made for more loops and branches.

Following is an overview of the extracted metrics:

Number of binary operations
• char • short • int • long • half • float • double • bool

Memory accesses
• number of global read accesses • read amount from global memory • number of global write accesses
• written amount to global memory • number of local read accesses • read amount from local memory
• number of local write accesses • written amount to local memory
• proportion of global memory accesses to the number of total binary operations

Loops and branches
• number of loops • number of branches • average depth of nested loops
• average depth of nested branches • max. depth of nested loops • max. depth of nested branches
• number of nested loops • number of nested branches

Number of called OpenCL functions
• atomic and asynchronous • mathemtical • other

• number of kernel arguments • number of buffer kernel arguments • number of array accesses
• synchronization points • NPath Complexity • Cyclomatic Complexity
• declarations of variables • problem sizes

Table 6.39: The extracted source code metrics utilized to create the prediction models

Prediction Model Creation

To create the classification and prediction models, machine learning algorithms are em-
ployed. Machine learning can be split into supervised, unsupervised, and reinforcement
learning [131]. Supervised machine learning tries to infer a function from labeled training
data [132]. Algorithms generate this inferred function by analyzing the training data. This
function can then be used to map new examples. The training data consists of pairs of
feature vectors and a label. These pairs are also known as training examples. The label
is predicted by the inferred function for future examples and can be a category or a real
number. In the first case, the problem is called classification and in the latter regression.
The inferred function is called machine learning model.

To predict the fastest of a set of processors, a category is used as label. There-
fore, classification algorithms of supervised machine learning are utilized to solve this

78

6.4 - Reducing Profiling Overhead

problem. The task execution time prediction uses past measurements as labels. So,
for this problem regression algorithms of supervised machine learning are employed. In
summary, the following algorithms are used:

• k -Nearest Neighbor tries to find the k nearest points of an example to be pre-
dicted in the space of the feature vectors by computing the distance to all points
via a distance metric. The most frequently represented label among the k nearest
points is then predicted [133]. It can be utilized both for classification and regres-
sion.

• Decision Trees are machine learning models which make predictions by learning
simple decision rules inferred from the training data. Starting at the root of a tree,
in each step the training examples are split into two parts by a threshold of a
single feature. The leafs of the tree determine the prediction for a new training
example. Random Forests are a combination of multiple Decision Trees and
were first mentioned in [134]. To make a prediction, each Decision Tree predicts a
value. The value which gets predicted the most, is the prediction result.

• Support Vector Machines (SVMs) try to divide the training examples in the space
of the feature vectors by a hyperplane. The optimal hyperplane is determined by
maximizing the distance of a to be selected distance metric to the feature vectors
[133].

• Multilayer Perceptron is one of the simpler neural networks [135]. It consists of
an input, an output, and at least one hidden layer. These layers are composed
of artificial neurons, called perceptrons. Perceptrons map an input vector x to
an output f(x) by weighing each input vector element and then passing the sum
through a non-linear function [136]. Training of a multilayer perceptron is done by
backpropagation [137].

The machine learning parts are implemented with the Python programming language
making usage of the scikit-learn [138] library.

To train the machine learning models, training data has to be created. As training
data, the execution times of about 270 OpenCL kernels were measured and the ker-
nels afterwards analyzed. The OpenCL kernels were taken from the following software
development kits and benchmarks:

• AMD APP SDK [139] • Intel OpenCL Samples [140] • Hetero-Mark [141]
• Parboil Benchmark [142] • PolyBench/GPU [143, 144] • Rodinia Benchmark Suite [123]
• SHOC Benchmark Suite [145] • Hydro2de [146]

By using HALadapt’s OpenCL wrapper, the execution time of the OpenCL kernels can
be measured. The OpenCL wrapper acts as an OpenCL device and passes the OpenCL

79

Chapter 6 - Capturing the System State

function calls to a real OpenCL device. Thus, the wrapper has access to detailed in-
formation and parameters of the OpenCL kernel and besides measuring the execution
times, the values of committed kernel parameters, problem sizes, and build parameters
can also be logged. This only creates overhead for the host but does not influence the
execution on the device itself.

To generate the training examples, the OpenCL kernels were executed with varying
problem sizes on all of the ten processors. With each problem size, the kernel was
run at least ten times. After measuring the execution times, the source code of each
OpenCL kernel was analyzed by the developed code analysis (s. 6.4.2). The extracted
code metrics were then combined with the problem size to a feature vector. As label,
either the device number of the OpenCL device that executed the related kernel the
fastest or the measured kernel execution time was used. So, each feature vector contains
the collected code metrics of the associated OpenCL kernel and is labeled either with
the device number of the OpenCL device that executed the kernel the fastest in the
considered evaluation scenario or the measured kernel execution time. This means the
labels can change over different evaluation scenarios for the classification, e.g., the set
of considered processors changes, and the model has to predict the correct label for a
given OpenCL kernel.

To calculate an average over the multiple executions of each kernel, which results in
many slightly different code metric values, and also to minimize a bias towards a specific
kernel, vectors with similar code metric values are combined. Two vectors are defined
as being similar, if all features at most differ by five percent. Afterwards, the vectors are
normalized.

Out of the resulting vectors two sets are created. 75 percent are forming the training
set, the other 25 percent the validation set. The validation set is exclusively used to
evaluate the final machine learning models and is not employed to train the models, so
the evaluation can be done with apriori unknown data.

The training set is then utilized to train the machine learning models. To determine
the optimal parameters for the model generating algorithms, a grid search trains multiple
models. Cross Validation is employed to determine the performance because thereby it
is not necessary to use a subset of the training set exclusively for evaluation. In Cross
Validation, the training examples are split in several sets [147]. A model is generated
for each set, which is used as validation set. The remaining sets are used as training
examples to generate the model. To estimate the performance, each model predicts
values for the examples of the validation set. The prediction performance for the whole
set is then determined by taking the average. This allows to not further divide the training
set into a training set and an evaluation set that evaluates the parameters. The best
performing model is taken for further experiments and is then, as mentioned previously,
validated with the validation set.

80

6.4 - Reducing Profiling Overhead

The impact of the different features is determined by the ANOVA F-Test [148] (6.1),
which is defined as follows for a set of training vectors xk with n+ positive and n− nega-
tive instances:

F (i) =

(
x̄

(+)
i − x̄i

)2

+
(
x̄

(−)
i − x̄i

)2

1
n+−1

∑n+

k=1

(
x

(+)
k,i − x̄

(+)
i

)2

+ 1
n−−1

∑n−
k=1

(
x

(−)
k,i − x̄

(−)
i

)2 , (6.1)

where x̄i, x̄
(+)
i , x̄

(−)
i are the average of the i−th feature of the whole, positive and neg-

ative data sets, respectively; x(+)
k,i is the i−th feature of the k−th positive instance, and

x
(−)
k,i is the i-th feature of the k−th negative instance. The calculated impact is then val-

idated by training models with a reduced feature set. The number of utilized features is
halved until only one feature is used for training. Every time, the lower scored features
are removed.

Related Work for Execution Time Prediction

In [149] a machine learning model is used to predict the expectable speed up for the
portation of CPU code to a GPU and the best device for a given OpenCL kernel out of
a multi-core CPU und two GPUs. Baldini et al. collect dynamic code features by binary
instrumentation using Ping and use these and the speed up of a 12-threaded OpenMP
implementation as features for the prediction. Binary instrumentation usually alters the
application execution and the additional instructions create overhead during runtime. As
Baldini et al. state in their paper, the utilization of performance counters could be better
suited for runtime contexts like scheduling. This thesis evaluates bigger sets and with the
Xeon Phi an additional accelerator. Additionally, the prediction of task execution times is
also evaluated.

In [150] the goal is to support the scheduling of OpenCL kernels in a system consisting
of a CPU and a GPU. This is achieved by predicting speed up categories for OpenCL
source code to differentiate between an execution on a GPU or a CPU by classifying
a kernel to low or high speed up on the GPU. Beside some static code metrics, the
approach also uses the input and output sizes and thread numbers.

The goal of [151] is to automatically select the fastest OpenCL device for the usage
of Java’s parallel stream API. This is done by implementing a classification directly in the
Java JIT compiler. Contrary to this thesis, the predictors have to differentiate only two
processors making the prediction easier.

Wu et al. [152] employ machine learning to predict the performance of a GPU kernel
on different target architectures belonging to the training set. The prediction is based on
previous executions of the kernel on a base hardware configuration and collected per-
formance counter values. This is done by a classifier which maps the kernel to clusters
representing different scaling behaviors. In contrast to the work presented in this thesis,

81

Chapter 6 - Capturing the System State

Wu et al. are only focused on the performance of kernels on GPUs and additionally need
an execution of every kernel to predict its performance.

Amarís et al. [153] predict the execution time of applications using vector operations
on NVIDIA GPUs via different machine learning algorithms. The models utilize dynamic
code metrics and architecture characteristics like the number of cores and the maximum
GPU clock rate as features. As the work of Wu et al., Amarís et al. also only focus on
GPUs and do not consider CPUs or other accelerators. Additionally, they only consider
a very specific set of applications.

In [154], Hoste et al. proposed determining the similarity of a program to a known
benchmark database to predict the program’s performance speedups on different ma-
chines, specifically which machine provides the biggest speedup. Similarity is based on
a set of microarchitecture-independent characteristics like the instruction mix, instruction-
level parallelism, register characteristics, and branch behavior that are collected for the
database and the new program. The values of the database benchmarks are stored in
a matrix, which is then transformed by either normalization, principal component anal-
ysis, or genetic algorithm to a data transformation matrix that is used to compute the
performance prediction. The performance prediction is computed by taking a weighted
average over the performance numbers of the benchmarks in the neighborhood of the
program. The weights are proportional to the inverse of the euclidean distance between
the program and the benchmarks. This method requires similar benchmarks to be able
to make a prediction for a new program and compared to my approach only predicts
relative performance.

In the two following works, an optimal task partitioning for the simultaneous execution
of OpenCL on multiple processors is predicted. In both works, mainly static code met-
rics are used as features for the machine learning algorithms, complemented by some
runtime features like the number of threads or transfer sizes between host and device
memory. In [155], the prediction distinguishes between an execution on either the CPU
or the GPU or a mixed execution. The prediction of the optimal distribution on the mul-
tiple processors is then done in a second step. Kofler et al. [156] use Support Vector
Machines as well as Artificial Neural Networks to find the optimal task partitioning in a
single step.

Evaluation of the Prediction Models

The prediction model experiments include a variety of different processors on which the
kernels were executed. On the side of the CPUs there are the Intel I7-6700k, the Intel
i7-5820k, and a system with two Intel Xeon E5-2670v2 processors. NVIDIA GPUs are
covered by the NVIDIA GTX 980 Ti and the NVIDIA GTX 650 Ti Boost. AMD GPUs are
represented by the Radeon HD 7970, Radeon HD 7750, and the Radeon RX 470. Beside
these models the Intel Xeon Phi 7120 and the Intel HD Graphics 530 are included.

82

6.4 - Reducing Profiling Overhead

The OpenCL kernels were executed on an Arch Linux with the Linux Kernel in version
4.7. For the AMD devices the AMD Catalyst driver was used in version 15.9, for the
NVIDIA devices the GeForce 367.27 driver. The Intel devices were driven by three dif-
ferent drivers. The Intel CPUs were used with the Intel OpenCL Runtime 16.1.1 and the
Intel Xeon Phi accelerator with Version 14.2. On the Intel GPU, OpenCL was executed
with the Intel OpenCL driver 3.0.

As evaluation metric for the classification experiments accuracy (6.2) is used. Accu-
racy is defined as the ratio of correct to all predictions.

accuracy =
correct predictions

total number of predictions
(6.2)

The regression experiments are evaluated with the symmetric Mean-Absolute-Percentage-
Error (sMAPE) [157] (6.3). sMape is defined as follows:

sMAPE =
1

n

n∑
i=1

‖yi − fi‖
(‖yi‖+ ‖fi‖)/2

, (6.3)

where yi is the correct value and fi the prediction value.
The OpenCL source code was analyzed with eight different settings to enable the

evaluation of these optimization steps. At first, the branch prediction and loop detection
were disabled, and the problem size and values of kernel arguments not taken into ac-
count (step 1). All metric values in loops and branches were multiplied with one. In a
next step, the problem sizes were taken into account and metric values in branches were
divided by two (step 2). After this, the branch prediction was enabled without proba-
bilistic variables taken into account (step 3). In the following step, the values of kernel
arguments were considered (step 4) and afterwards the branch prediction was enabled
with probabilistic variables (s. Sec. 6.4.2) (step 5). In the two following steps, the mul-
tiplier in loops was set to two (step 6) and after this the loop detection was enabled
(step 7). In a last step, the multiplier in loops was set to 16 (step 8). It should be noted
that these optimization steps are independent of each other and can be used in various
different combinations and in any order.

The Fastest Processor of a Set In this experiment, the task is to select the fastest pro-
cessor out of a set of heterogeneous processors for a given, but to the machine learning
model unknown, OpenCL kernel. For this experiment, two sets were generated. The first
set consists of every available processor. For the second set, the three fastest and so
most dominating processors, the AMD HD 7970, the NVIDIA GTX 650 Ti Boost and the
NVIDIA GTX 980 Ti, were taken out to make the set more even and thereby the classifi-
cation harder. For both sets different machine learning models were trained. In Fig. 6.5a
and Fig. 6.5b, the prediction performance is shown for five different models generated by
random forests (rf), k -Nearest Neighbour (knn), and Support Vector Machines (SVMs).

83

Chapter 6 - Capturing the System State

1 2 3 4 5 6 7 8
0,6

0,65
0,7

0,75
0,8

0,85
0,9

0,95

knn
rf
svc_linear
svc_poly
svc_rbf
guess

code analysis optimization step

ac
cu

ra
cy

(a) Set 1, all processors.

1 2 3 4 5 6 7 8
0,2

0,3

0,4

0,5

0,6

0,7

knn
rf
svc_linear
svc_poly
svc_rbf
guess

code analysis optimization step

ac
cu

ra
cy

(b) Set 2, all processors except AMD HD 7970,
NVIDIA GTX 650 Ti and NVIDIA GTX 980 Ti.

Figure 6.5: The accuracy for the trained models with different settings of the code anal-
ysis (s. 6.4.2), selecting the optimal processor of a set.

Three different kernels are used for SVMs, namely a linear (svc_linear), a polynomial
(svc_poly), and a radial basis function (svc_rbf). These five models were trained for the
eight different settings of the code analysis (s. Sec. 6.4.2).

A guessed (guess) prediction acts as a baseline, which always predicts the processor,
which is the fastest in most cases as being the fastest for every OpenCL kernel. This
results in a much higher baseline for validation sets being dominated by one device than
a totally random guess. This means that the processor that executes most OpenCL
kernels the fastest is always chosen as prediction.

As the first set is strongly dominated by the NVIDIA GTX 980 Ti, the machine learning
models could hardly deliver a better prediction as a guessed result. This is especially
the case for the first settings of the code analysis, as can be seen in Fig. 6.5a. By
activating the branch prediction with probabilistic variables not only the executions are
represented better by the training examples, but the models also deliver better results.
The best predictions are made by the random forest model with the optimization step
seven. This model achieves an accuracy of 0.83 compared to 0.6 of the guessed result.

The second set is clearly more balanced (s. Fig. 6.5b), as one device is only the
fastest for about 25 percent of the kernels. Although multiple devices are represented
by a similar amount of training examples, the random forest models can deliver an ac-
curacy of up to 0.69 in contrast to a guessed result with an accuracy of 0.25. This was
accomplished by activating the branch prediction with probabilistic variables and the loop
detection.

For these experiments, the best results are achieved with the models being trained
with all extracted features. Despite this, adequate results could be delivered with a re-
duced number of features. With a fourth of the features the models are still able to
distinguish themselves from a guessed prediction. Especially for the second set, the
achieved accuracy of 0.62 was only slightly lower.

84

6.4 - Reducing Profiling Overhead

Set 1 Set 2

#1 array accesses global memory writes
#2 binary operations global written size
#3 binary operations (int) global memory reads
#4 global memory reads array accesses
#5 global read size binary operations
#6 number of loops binary operations (int)
#7 number of nested loops global read size
#8 binary operations (double) Cyclomatic Complexity
#9 binary operations (float) binary operations (float)

Table 6.40: The most important features for the experiments with sets of processors.

Table 6.40 shows the features that have the most impact. Among the most impor-
tant ones are numbers of binary operations, array accesses, and numbers describing
the global memory access. For the second set the Cyclomatic Complexity also has a
relatively high impact.

Predicting OpenCL Kernel Execution Times The goal of this experiment is predicting
the exact kernel execution time for a given, however unknown to the machine learning
model, OpenCL kernel on a specific, known processor. In this experiment, for each
processor a specific machine learning model was created with each algorithm. Next to
the five algorithms used in the classification experiment 6.4.2, a multilayer perceptron
with one hidden layer and 100 units was used to generate a prediction model. Again,
all models were trained for the eight settings of the code analysis (s. Sec. 6.4.2). A
guessed prediction (guess) that always predicts the average over all training examples
acts as a baseline.

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0.45

	0.5

1 2 3 4 5 6 7 8

sM
AP

E

Code	analysis	optimization	step

knn
guess
mlp
rf

svc_linear
svc_poly
svc_rbf

Figure 6.6: sMAPE results for prediction of the kernel execution times on the NVIDIA
GTX 980 Ti with different settings of the code analysis (s. 6.4.2)

85

Chapter 6 - Capturing the System State

Figures 6.6, 6.7, and 6.8 present the results for the prediction models for kernel ex-
ecutions on the NVIDIA GTX 980 Ti, Intel’s i7-6700k CPU, and AMD’s Radeon RX 470
GPU, respectively. The overall best results are achieved by the model generated by k -
Nearest Neighbor with the second best results stemming from the random forest models
over all three processing units.

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0.45

	0.5

1 2 3 4 5 6 7 8

sM
AP

E

Code	analysis	optimization	step

knn
guess
mlp
rf

svc_linear
svc_poly
svc_rbf

Figure 6.7: sMAPE results for prediction of the kernel execution times on the Intel i7-
6700k CPU with different settings of the code analysis (s. 6.4.2)

It is noteworthy, that there is almost no distinction between the different SVM kernel
functions and the SVM models could not benefit from the code analysis optimization
steps for all three processors. For almost all optimization steps, the models created by
the SVM algorithms and the multilayer perceptron models achieve distinctively worse re-
sults than the rf and knn models. In general, all models outperformed the guess baseline.

However, even the best average results still deviate quite heavily from a perfect predic-
tion. This is emphasized by taking a look at the individual predictions and their percental
deviation from the actual execution time. Figure 6.9 shows the percental errors for all
predictions made for NVIDIA’s GTX 980 Ti by the random forest and k -Nearest Neigh-
bor models with optimization step 8. A desirable outcome would be an accumulation of
predictions in the range [−0.1, 0.1], i.e. a prediction error of at most 10 %. The results,
though, comprise a large number of under- and overpredictions including predictions of
over 5000 % and under 10 % of the original execution time. Still, there are about 50
kernels for which the prediction falls in the desired range.

Similar patterns are visible for the individual predictions of the execution times on the
Intel i7-6700k CPU. The histogram of the percental errors for the k -Nearest Neighbor
and random forest models with optimization step 8 can be seen in Fig. 6.10. Here,
about 40 predictions fall in the desired range of [−0.1, 0.1] and again, there are a con-

86

6.4 - Reducing Profiling Overhead

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0.45

1 2 3 4 5 6 7 8

sM
AP

E

Code	analysis	optimization	step

knn
guess
mlp
rf

svc_linear
svc_poly
svc_rbf

Figure 6.8: sMAPE results for prediction of the kernel execution times on the AMD
Radeon RX 470 with different settings of the code analysis (s. 6.4.2)

siderable amount of heavy over- and underpredictions. In summary, the results show
that the generated prediction models are not able to reliably predict the execution time
of all kernels. However, the prediction in general returns useful results for quite a large
amount of OpenCL kernels. In future work, these kernels should be analyzed for similar
characteristics and potentially grouped into classes. In the best case, this allows to dif-
ferentiate the kernel whose execution time can be predicted by a model from the other
kernels. Thereby, it would be possible to create a test that beforehand decides if a kernel
execution can reliably be predicted.

Results Discussion The first part of the prediction model evaluation focused on se-
lecting the fastest processing unit within a set for different OpenCL kernels. For the
first experiment, all eleven processors were considered. As the GPUs AMD HD 7970,
NVIDIA GTX 650 Ti, and NVIDIA GTX 980 Ti dominated the set, i.e. they execute most
kernels the fastest, they were excluded from the second set. In total, five prediction
models were trained for each experiment and then compared to a guessed baseline that
always predicts the fastest processor of the set. Both experiments showed the best re-
sults were obtained by the models created by the Random Forest algorithm. Especially
for the harder set, the random forest model could still achieve an accuracy of around
70 % in contrast to the 25 % of the baseline. So, it is fair to say that in most cases it is
possible to reliably predict the fastest out of a set of processing units for an unknown
OpenCL kernel.

In the second experiment, the goal was not to select the fastest processor but to pre-
dict the actual execution time of an OpenCL kernel on a specific, known processing unit.

87

Chapter 6 - Capturing the System State

Figure 6.9: Percental error of the predictions by knn and rf for the execution times on
NVIDIA’s GTX 980 Ti

Figure 6.10: Percental error of the predictions by knn and rf for the execution times on
Intel’s i7-6700k CPU

A prediction model created by a multilayer perceptron was added for these experiments.
As a comparison baseline, a guess prediction that always guesses the average execu-
tion time over all training examples was used. The six prediction models were evaluated
by computing the sMAPE metric, which is defined as:

sMAPE =
1

n

n∑
i=1

‖yi − fi‖
(‖yi‖+ ‖fi‖)/2

, (6.4)

where yi is the actual execution time and fi the predicted time. The results showed
a great discrepancy in the capability of the specific models. Clearly, the best results
could be obtained using the k -Nearest Neighbor (knn) models with the random forest (rf)
coming in second.

88

6.5 - Summary and Conclusion

However, as the sMAPE values computed were not as close to zero as needed, I took
a closer look at the prediction histograms for both the knn and rf models. The histograms
showed that there are kernels for which the prediction works well resulting in predictions
with a maximum deviation of 10 %. However, they also showed that for a number of
kernels both models produced huge deviations, both too small and too big. In summary,
this means that the models are generally not able to reliably predict the execution time
of an OpenCL kernel on a known processor. Still, the results contain potential for future
work. If the kernels, whose execution time can be predicted reliably, possess similar
characteristics that allows to separate them from the other kernels it would be possible to
differentiate for which kernels a prediction is possible before doing the actual prediction.
In future work, it therefore is necessary to analyze the kernels for characteristics and
then confirm the classification with new examples and predictions.

6.5 Summary and Conclusion

The focus of this chapter is capturing the state of a system by monitoring its execution.
HALadapt offers a mechanism that takes on this task and uses a database to store
past measurements. In the course of this thesis, this mechanism is extended to support
OpenMP thread variation and throttling, and CPU frequency scaling. Hereby, the number
of cores used for the execution and the CPU frequency were added to the set of database
keys that characterize each database entry.

The analysis of several project requirements and goals in Chapter 5 shows that sys-
tem reliability becomes increasingly important. However, there is no hardware counter
available that can just determine the reliability of the system or a system component.
Though, in order to consider reliability in an adaptation process, some form of reliability
measure is needed. Therefore, a heurstic realibility metric was created for this thesis and
added to HALadapt’s monitoring component. For the reliability metric, the idea is to use a
lightweight fault detection mechanism and compute a fault rate based on past executions
and the ratio of faulty to correct execution runs. As lightweight mechanism, symptom-
based fault detection was chosen and its efficiency in detecting and distinguishing faults
evaluated on both CPUs and GPUs. Symptom-based fault detection is based on the
hypothesis that faults manifest themselves in behavioral changes during execution that
can be detected by monitoring performance metrics. The experiments confirmed that it
is possible to detect several distinctive faults using the concept of symptom-based fault
detection. This enables the concept for the proposed heuristic reliability metric using
symptom-based fault detection to create fault-histograms. However, it was not possible
to draw conclusions about the causing fault by just looking at the occurring symptoms. A
drawback of symptom-based fault detection and considering a wide spectrum of differ-
ent performance metrics as potential symptoms is that only a limited amount of hardware
counters are available in today’s architectures and the number of counters is dependent

89

Chapter 6 - Capturing the System State

on the platform. Hence, multiple profiling runs may be necessary to collect all relevant
performance data.

Creating an extensive database that stores the necessary information to make so-
phisticated decisions, e.g. in task-scheduling, requires a vast amount of profiling effort.
Particularly, improving the efficiency of the number of threads used for OpenMP kernels
requires a thorough exploration of the optimization space by profiling different execution
runs. In order to reduce this profiling effort, this thesis presented mechanisms that enable
HALadapt to skip profiling runs and predict necessary information. The first mechanism
employs linear extra- and interpolation to heuristically predict the execution costs, i.e. the
execution time or energy consumption, for unknown thread numbers. This allows to limit
the profiling to certain thread numbers and use the collected data to predict the missing
data. Additionally, a scaling check was added that recognizes if an OpenMP kernel does
not scale with additional threads and then stops additional profiling runs for higher thread
numbers. This approach, however, only works on the condition that the kernel exhibits
a somewhat regular execution behavior pattern that can be detected by linear inter- or
extrapolation.

To further reduce the necessary profiling executions, a prediction mechanism for the
execution time of unknown kernels was developed and added to HALadapt. This allows
HALadapt to gain information without the need for profiling runs. Hereby, OpenCL ker-
nels are focused as they can be executed on a wide range of different processing units
and by that specifically target heterogeneous systems. The mechanism uses static code
analysis to collect kernel characteristics that are then utilized to train prediction models
via machine learning algorithms. The results of the evaluation showed that the models
were in general not able to reliably predict the execution time. However, the results also
present potential for future work as further analysis showed that the prediction does work
for a certain amount of kernels and that the models can reliably predict the best process-
ing unit for an upcoming kernel. In order to verify if there exist certain characteristics that
enable or disable a reliable prediction further evaluations and analysis is needed.

In total, this chapter extends the existing profiling mechanism of HALadapt and pro-
vides efforts to reduce the needed profiling overhead while collecting the necessary in-
formation to make sophisticated decisions. Thereby, this chapter lays the groundwork
for the proactive mechanisms presented in the remainder of this thesis by providing the
needed knowledge about the system itself and its environment. However, to achieve
proactivity, additional knowledge about the future is needed. The following chapter intro-
duces and discusses methods to predict future behavior.

90

CHAPTER

SEVEN

PREDICTING FUTURE SYSTEM STATES

The ability of a system to act proactively requires at least partial knowledge about the
near future of the system and its environment. Therefore, the holistic approach of this
thesis presented in Figure 4.1 in Section 4.2 includes the component Data Analysis &
Prediction. The task of this component is to analyze the provided monitoring data and
utilize the created history database to make predictions.

As this thesis targets task scheduling in dynamic heterogeneous systems, useful in-
formation about the future include the next tasks that have to be executed, the costs of
the tasks to be executed, and changes in the system environment. The prediction of
tasks’ costs is extensively discussed in Section 6.4 in the context of profiling overhead
reduction. There, a mechanism to predict task execution times for unknown OpenCL
kernels based on static code analysis and machine learning is introduced. Addition-
ally, extra- and interpolation for costs of unknown problem sizes and thread numbers for
already profiled tasks is presented.

This chapter focuses on the prediction of future tasks to be executed that have not
arrived in or are known by the system yet and offers mechanisms to predict newly ar-
riving tasks and their starting point. The prediction is hereby based on the analysis of
past execution patterns. In combination with the aforementioned tasks’ costs prediction,
this allows the system to proactively plan and consider side effects of future executions,
and to avoid disadvantageous system states, e.g., overheating the system or a specific
processing unit, or draining the energy budget before all tasks are executed.

This chapter is organized as follows. An introduction into the topic of this chapter and
an overview of related work is presented in Section 7.1. Section 7.2 shortly introduces
the necessary theoretical background to implement the prediction mechanisms of this
chapter. Both prediction mechanisms are explained in Section 7.3. The results are
presented in Section 7.4 and the chapter is summarized and discussed in Section 7.5.

91

Chapter 7 - Predicting Future System States

7.1 Introduction & Related Work

A prerequisite for proactive behavior is some knowledge about the future as this allows
a reaction before this future occurs and manifests itself, and opens up possibilities for
a wide range of system optimizations. Therefore, existing implementations of proactive
systems in the literature usually include one or more prediction mechanisms and a great
variety of different mechanisms to predict the future in a wide area of fields of application
has been studied and developed.

VanSyckel [41] implemented a task-based selection mechanism that dynamically se-
lects a prediction method from a set of available methods based on a list of parameters
like the data type and the parameter dimension of the prediction problem. The pre-
diction set consists of an alignment approach, linear regression, a Markov model, a
self-organizing map (SOM), and a state predictor based on branch predictors [158].

Engel et Etzion [40] extend the conceptual event-driven architecture to be able to act
proactively. This includes prediction mechanisms, particularly several predictive agents.
The first approach are rule-based predictive agents that detect an input event pattern
and derive an output event with a belonging occurrence probability in a specific time in-
terval. They also list limitations of rule-based predictive agents. As an arrival of a certain
event usually changes the occurrence probability of other events, this also has to be ex-
pressed by rules. Additionally, input events can also be probabilistic, which increases
the complexity of the probability computation of the derived output event. A model that
can overcome these limitations is introduced in the form of Bayesian agents that consist
of a directed acyclic graph (DAG) that models the probabilistic dependencies between
the random variables of the underlying problem. To include temporal information in a
Bayesian network, Dynamic Bayesian Networks [159] or Continous Bayesian Networks
[160] are used. If there is not enough training data or explicit probability measures are not
available, classifiers like decision trees (s. Section 6.4.2) are a suitable option according
to Engel et Etzion.

A predicition of future GPS locations of a mobile device is implemented in [161].
Based on a trace of past locations, future locations are computed via interpolation.
Thereby, the three interpolation methods, Newton’s Divided Differences, Lagrange’s In-
terpolation, and Cubic Bezier Splines, were evaluated. The best results were provided by
Cubic Bezier Splines as the other two methods could not handle the increasing amount
of input data.

Klös et al. [33] provide a lightweight online-learning approach that calculates future
environment profiles based on past observations. The approach collects parameter val-
ues over several time steps and combines them into profiles. New observations are
compared with the saved profiles within a set lookback window. If profiles match the
current observation in this window, prediction profiles are created that contain the pa-
rameter values in a set lookahead window. In the case that several profiles match the
current observation, the predictions are combined, e.g., by a weighted average.

92

7.1 - Introduction & Related Work

State prediction also plays an important role in power management. Gao et al. [162]
predict future voltage measurements using an auto-regressive (AR) model and past mea-
surements.

An approach to predict future power system states based on Markov models (MM)
and the Viterbi algorithm (VA) is presented in [163]. The approach creates a grid of
feasible power system states based on historical data and then models the behavior of
the power system states with a MM, explicitly computing the state transition probabilities.
Then, VA is used to predict the most likely sequence of future states over a time period.

To forecast the future power demand of consumers, Hernandez et al. [164] deploy
artificial neural networks (ANN) with weather variables and load values serving as input
data. The input data is first classified using a SOM that clusters together demand pat-
terns with similar features. The second stage of the approach selects online to which
cluster new measurements belong. For each cluster, a specific ANN then predicts the
load of the next 22 hours.

The focus of this thesis is to guide the future behavior of dynamic heterogeneous
systems via task scheduling. Therefore, in constrast to the aforementioned publications,
the goal of this chapter is to predict future tasks to be executed, that have not arrived
in or are known by the system yet, by analyzing past execution patterns. Thereby, two
different prediction scenarios are considered. The first scenario regards the execution
pattern of the instances of a single task that is independent of other tasks in the system.
Especially in embedded system, certain tasks are executed periodically or in the least
with some frequencies and sporadically, i.e., with a minimum inter-arrival time between
new instances. In the second scenario, the focus lies on the prediction of task set pat-
terns or applications, i.e., tasks or task combinations that usually follow a specific task
or task combination and therefore are dependent on past tasks. These scenarios re-
quire approaches that are lightweight and do not warrant a large amount of training data
as they have to be performed online in dynamic systems and over a variety of different
system configurations.

A research field that is similar to the goals of this chapter, is the prediction of future
application phases. Most applications are comprised of sections of similar behavior,
which are defined as phases with significant changes in behavior being defined as a
phase change [165]. Several mechanisms have been studied and developed to predict
future application phases.

In [166, 167], a run length encoding (RLE) Markov predictor, based on the concept
Markov chains, is used to predict phases defined by clustering and the evaluation of
system states defined by monitoring values of performance counters. A RLE Markov
predictor is also utilized by Vandeputte et al. [168] and Sherwood et al. [169]. Van-
deputte et al. use the predictor in an evaluation study of phase predictors comparing it
to a Burst predictor and a Last Value predictor. Additionally, the predictor improvements
"Confidence", a threshold of prediction verifications before a prediction gets accepted,

93

Chapter 7 - Predicting Future System States

and "Conditional Update", a threshold of wrong predictions before the prediction table
gets updated, are introduced. Another phase predictor evaluation was done by Hock
et al. [170]. They implemented a Last Value predictor, a RLE Markov predictor, and a
perceptron predictor.

Shen et al. [171, 172] solely use the LRU-stack distance to determine phase behavior
in a program. The resulting phase hierarchy is expressed by using grammar compres-
sion. Thereby, phases are represented by regular expressions. In [171], a history-based
predictor predicts upcoming phases. The predictor monitors the program execution and
recognizes the current phase by matching the regular expression with a finite automaton.
Based on the hierarchy, the next phase is then predicted. A different approach is pre-
sented in [172]. Here, only the exponents of the regular expression change for different
inputs. An input component analysis is employed to predict the exponents.

Multi-level phase analysis and prediction is introduced in [173]. Fang et al. separate
programs in coarse- and fine-grained phases, where a coarse-grained phase is com-
posed of stably-distributed fine-grained intervals. The fact that coarse-grained phases
can be identified by a short interval of fine-grained phases at the beginning is then used
for the prediction mechanism. First, the fine-grained phases are predicted using a stan-
dard phase prediction mechanism. If enough fine-grained phases have been executed
to identify the coarse-grained phase, the coarse-grained phase information is utilized to
predict the remaining fine-grained phases.

Similarly to predicting the program phase behavior, Quan et al. [174] use a predic-
tion mechanism to predict the next task in a sequence of tasks in the context of HW/SW
partitioning. The mechanism detects periods in a task sequence sample and then uses
this period to predict future tasks. If no period can be detected, Markov transition prob-
abilities are heuristically determined and utilized to compute predictions. However, no
temporal information is used or predicted.

Although phase behavior prediction and predicting future tasks and task patterns in
this work share some similarities, there are some major differences. Per definition, there
is only one phase running at all times whereas several task instances of different tasks
may run in parallel in the fields of application in this thesis. Thus, interferences between
several task execution patterns are possible and have to be considered in the creation
of a prediction mechanism. Additionally, phases always directly succeed a predecessor
phase. Task instances, however, may have arbitrarily long delays between each other,
which further complicates the prediction process. This means a prediction mechanism for
the purpose of this thesis also has to include temporal information of the task executions
to correclty identify execution patterns.

In [175] workflows of HPC clusters are predicted as observations showed that the job
submissions of the users show periodic behavior. For the prediction mechanism, the
task sequence is interpreted as a time series. As the standard time series prediction
algorithms ARIMA [176], GMDH [177], and SSA [178] did not provide reliable results, a

94

7.2 - Theoretical Background

deep learning method was deployed. Therefore, the time series were first decomposed
by a hierarchical clustering approach deploying the Mahalanobis distance [179] to reveal
patterns of recurrent tasks. A neural network is then trained for each pattern with task
and pattern features as input data and used to answer the question "will a certain task
appear in a definite instant of time?".

In summary, approaches based on MMs and pattern matching extended with the
necessary temporal information seem to be the best choice for this thesis as they are
lightweight and do not need extensive training data, probability measures, or a long
training phase. Particularly, as probability measures are often hard to compute for large
systems, and extensive training data may not be available and long training phases not
possible in dynamic systems, these features are of great importance for the approach
of this thesis. However, if enough training data is present, the approach based on time
series and a neural network presented in [175] also seems promising. The following
section introduces some necessary background to implement an approach based on
MM and pattern matching.

7.2 Theoretical Background

This section elucidates the necessary theoretical background of the prediction mecha-
nism created in this chapter. First, Markov chains are introduced in Section 7.2.1. Markov
chains are an important theoretical concept as they are based on the observation that
a future state relies only on the current state. Predictors that are based on the Markov
chain concept, called Markov predictors, are introduced in Section 7.2.2. Additionally,
this section presents extensions to Markov predictors which include the aforementioned
pattern matching. Markov predictors and its extensions are then later used as the basis
of this chapter’s prediction mechanisms.

7.2.1 Markov Chains

According to Grinstead and Snell [180] time and state discrete Markov chains are de-
scribed by a set of states S = {s1, . . . , sn}, where one state functions as the starting
point of the process. In each time step, the process moves from one state si to another
state sj with the probability pi,j or stays in the same state si with probability pi.i. Thereby,
the probabilities pi,j or pi,i solely depend on the current state si and no previous states.
These probabilities are called transition probabilities and can potentially be zero. All tran-
sition probabilities are combined into the transition matrix P . If P remains the same after
each time step, the Markov chain is called time-homogeneous [181]. An extension to the
classic Markov chain is provided by the concept of memory or a Markov chain of order
m. There, a future state does not solely depend on the current state but rather on the

95

Chapter 7 - Predicting Future System States

past m states visited. However, it is possible to translate a Markov chain of order m into
a classic model, where a state si is defined as a ordered tuple of m states.

7.2.2 Markov Predictors

In general, predictors based on the Markov model are based on the idea that the next
state depends on the last states [169]. Markov predictors have been deployed success-
fully in several fields of application as an online prediction mechanism without extensive
training data like program phase behavior [169, 168, 170], memory prefetching [182],
and branch prediction [183].

In [169], Sherwood et al. extended the basic concept of Markov predictors by run
length encoding (RLE) because changes in program phase behavior usually occur after a
sequence of stable phase behavior and RLE allows to reduce this stable phase sequence
to a tuple of phase ID and occurrences in a row, i.e., the phase length. E.g., a stable
phase sequence with phase ID 3 of 3, 3, 3, 3 is compressed to the tuple (3, 4). With the
RLE concept, the phase history is compressed and the data that needs to be stored to
make predictions reduced. To implement a RLE Markov predictor a hash table is used.
The tag of the table is a hash value of tuples of phase ids and lengths. Next to this tag,
the table stores the phase ID as prediction value. Figure 7.1 shows the implementation
concept.

Figure 7.1: The implementation concept of the run length encoding Markov predictor by
Sherwood et al. [169]

Chen et al. [183] combined Markov predictors with prediction by partial matching
(PPM). The PPM algorithm of order m is comprised of (m+1) Markov predictors, where
a predictor of order j considers the last j states to make a prediction. If the Markov
predictor of orderm has no tag match for the sequence of the lastm states, the (m−1)-
th order predictor is checked and so on. Thereby, the 0-th order predictor just predicts
the last seen state.

96

7.3 - Prediction Mechanisms

7.3 Prediction Mechanisms

In this chapter’s introduction (s. Section 7.1) the two prediction scenarios that are con-
sidered in this chapter, independent tasks and dependent applications, are presented
and motivated. As these scenarios pose different challenges, two separate prediction
mechanisms are developed. Section 7.3.1 describes the mechanism used to predict
new instances of independent tasks. The mechanism uses a prediction table inspired by
the RLE Markov predictors by Sherwood et al. [169] (s. Sec. 7.2.2). In Section 7.3.2
the mechanism utilized to predict upcoming applications based on the recognition of de-
pendency structures is elucidated. Again, a prediction table based on the RLE Markov
predictor concept is employed. Similar to the work of Chen et al. [183], the prediction
table is combined with PPM to filter out interfering parallel processes.

7.3.1 Predicting Independent Tasks

To predict upcoming instances of a task, a mechanism needs to be able to monitor the
execution pattern of this specific task. In the context of runtime systems, tasks posses
a unique identifier, e.g., an index, a user-given name, or a combination of both, which
allows the mechanism to differentiate between tasks and to associate a pattern with
a specific task. The profiling mechanism introduced in Sections 3.3.1 and 6.2 already
monitors the execution time of a task instance by computing the difference between the
starting time point sti and finishing time point fti of the instance i. By additionally storing
both time points for a task instance, it is possible to compute the time period tpi,j between
to instances ti, tj of a task t. This information forms the basis to detect periodic behavior
in the execution pattern of a task t.

The prediction mechanism uses a table similar to the Markov predictors presented
in Section 7.2.2. The general structure of the table can be seen in Fig. 7.2. The table
utilizes a unique hash ID as a tag to identify a task t. Next to the tag, the table stores
the minimum tpmin, maximum tpmax, and average tpavg time periods tpi,j between two
instances ti, tj of this task t. Furthermore, the table also stores the number of instances
that have been executed so far. These values are initially learned by monitoring during
a training phase and then constantly updated during the remainder of the execution. A
training phase for a specific task t is used to create confidence and stabilize the mon-
itored values for this task, which increases the reliability of the mechanism’s decisions
and predictions. Only after the training phase for a task t is completed, predictions about
the arrival of the next task instance ti are made. This design decision is made to reduce
the probability of false predictions as they can easily lead to bad system adaptations. In
this work, the training phase for a specific task t is finished, when ten instances ti of this
task have been executed. Here, ten seems to be a good choice for the considered eval-
uation scenario as each task is repeated 500 times and ten repetitions therefore do not
prevent the algorithm from making enough valid predictions but still make an observed

97

Chapter 7 - Predicting Future System States

Figure 7.2: The general table concept used to predict upcoming instances of indepen-
dent tasks

pattern statistically relevant. However, this limit is dependent on the application scenario
and may vary in different scenarios.

Minimum and maximum time periods are used to differentiate between three execu-
tion patterns: periodic, sporadic, and aperiodic tasks. In this thesis, the assumption is
made that sporadic tasks posses a minimum interarrival time tpmin and a maximum in-
terarrival time tpmax = l · tpmin between two instances ti, tj of a task t, where l is a
user-defined factor. In the formal definition of sporadic tasks [184], there is no upper limit
for the interarrival time between two tasks. However, tasks that arrive arbitrarily cannot
be predicted. Therefore, a compromise between the formal definition and predictability
is made by limiting the maximum interarrival time. For this thesis, l = 2 is chosen. This
is a reasonable choice for the intended evaluation scenario, as it allows for variation in
the interarrival time of sporadic tasks to increase the difficulty of predicting their starting
time while simultaneously allowing to distinguish sporadic from aperiodic tasks that may
arrive randomly.

The variation between the minimum and maximum interarrival time is assumed to
stem from an exponential distribution as the time period between two events in a homo-
geneous poisson process is exponentially distributed and poisson processes are often
used to model the occurence of random events or tasks in a system, e.g., in queueing
theory [185].

98

7.3 - Prediction Mechanisms

If for the stored values of a task t tpmax > l · tpmin, where l = 2 in my evaluation
scenario, is true, no further predictions are made and t is assumed to be aperiodic.
A sporadic model is then assumed, if the difference tpmax − tpmin is greater than k ·
tpmax, where k is a user-defined factor ∈ (0, 1 − 1

l
) that is set to 0.1 in this thesis

as the interarrival time of periodic tasks does not vary greatly and therefore a small
threshold should be chosen. If both conditions are false, a periodic model is assumed.
The assumed task model then implies how a prediction is computed. For an assumed
periodic task, the stored average time period tpavg is used to predict the arrival of the
next task instance.

A sporadic task model, however, requires more complex computations. The stored
minimum time period tpmin is utilized as minimum interarrival time. To predict the addi-
tional jitter, a value for λ, the parameter of the assumed underlying exponential distribu-
tion, has to be estimated. In statistics, the maximum likelihood method is deployed to
estimate the parameters of a probability distribution. The maximum likelihood estimation
of the exponential distribution returns λest = n∑n

i=1 xi
. This is the inverse of the observa-

tion mean x̄, where x1, . . . , xn are samples of the distribution. The mechanism, however,
does not directly monitor samples of the exponential distribution, i.e., the random jitter,
but solely monitors the time period tp between two task instances. Therefore, the mean
has to be computed another way. Computing the difference tpavg − tpmin results in the
as of yet occurred average jitter jitavg. The mechanism makes the assumption that the
jitter is computed by multiplying an exponentially distributed variate with the minimum
interarrival time tpmin, i.e., jitavg = x̄ · tpmin. Therefore, 1

x̄
= λest can be computed as

follows:
1

x̄
=

tpmin
tpavg − tpmin

= λest (7.1)

With the estimate λest inverse transform sampling is used to create an exponentially
distributed variate yi. A prediction is then computed as follows:

min(2 · tpmin, tpmin + yi · tpmin) (7.2)

7.3.2 Predicting Dependent Applications

Predicting applications or task sets based on dependencies requires the detection of
these dependency patterns in past execution behavior. However, the focus of this thesis
lies on parallel systems, where potentially multiple processes may run several appli-
cations and tasks in parallel with overlapping and independent dependency structures.
Additionally, the runtime systems targeted here are located in user space and therefore
are bound to a single process, i.e., a runtime system instance does not possess infor-
mation about competing processes. Hence, there is no single instance with knowledge
about dependencies between different processes.

99

Chapter 7 - Predicting Future System States

In order to detect these dependency structures, a mechanism is required that ob-
serves the execution behavior and is able to detect repeating patterns while filtering out
unrelated application executions. Next to predicting upcoming applications, the mech-
anism also has to predict the starting point of these applications. Thereby, I make the
assumption that the time difference between dependent tasks remains constant.

To achieve these goals, a prediction mechanism based on Markov predictors and
PPM (s. Section 7.2.2) is developed. The concept of this mechanism is show in Fig.
7.3. The central component of the mechanism is a prediction table comprised of a tag to

Figure 7.3: The mechanism concept to predict tasks or applications based on depen-
dency structures

distinguish the table entries, a prediction value, and two status values. The tag consists
of a set of tuples. Each tuple contains an application id i and the time period ∆ tpi,j
between i and its successor application j in the tuple set, or just the application id in
case of the first tuple. The tuple set hereby represents the application sequence that
causes the execution of the predicted application that is stored as prediction value in the
table. Besides the application id apredict, the prediction value includes the time period
∆ tp between apredict and the latest application in the tuple set, i.e., the first tuple. The
two status values are counters. The confidence value counts the number of times the
pattern has been observed up until now. Misses counts the number of times this entry
mispredicted in a row. A correct prediction resets the miss counter.

In addition to the table, a shift register is used as an application history that stores the
ids and the starting points of the m last executed applications. The history is employed
to update the table and to determine the next prediction. Updating the table works as
follows:

1. The latest application executed in the system functions as the prediction value of
the potential table entries.

2. All potential table entry tags, i.e., the tuple sets, are computed by combining the

100

7.3 - Prediction Mechanisms

latest history entry with the power set of the remaining m − 1 history entries.
The power set of the remaining entries is used as several dependency structures
may overlap or independent applications may interfere with a pattern. An example
computation is shown in Fig. 7.4.

3. The potential entries are sorted by decreasing tuple set size, e.g., an entry with a
tag consisting of three tuples is listed before an entry with a tag of size two.

4. In this order, the created entries are compared to entries already included in the
table. If there is a match, the confidence counter of the table entry is increased,
the stored time difference ∆ tp in the prediction value is updated by computing
the new average, and the remaining potential entries are discarded. If there is no
match, a new table entry is created and the next entry in the list is compared with
the table.

The prediction table is updated each time an application execution finishes.

Figure 7.4: Computation of all possible entry tags with a given history of size three

After the execution of an application, a new prediction is computed as well. Again,
all potential tags are computed as shown in Fig. 7.4 and then sorted by decreasing
size. According to this sorting, the tags are compared with the table entries. If there
is a match, the confidence value of this entry is checked. Only if the value is greater
than a certain threshold, the prediction value of the table entry is used as prediction. To
compute the starting point of the predicted application, the stored time period ∆ tp is
added to the finishing time of the latest application. If no match or an entry with a great
enough confidence value exists, no prediction is made.

101

Chapter 7 - Predicting Future System States

7.4 Evaluation

This Section presents the evaluation of the two prediction mechanisms developed in
this chapter. Section 7.4.1 lists and discusses the results obtained for the mechanism
predicting new instances of independent tasks. The results of the second mechanism,
utilized to predict upcoming applications based on dependencies, are presented in Sec-
tion 7.4.2.

To evaluate the mechanisms, simulations of task/application execution scenarios were
used. Thereby, no real tasks/applications but rather a time series of task/application ids
simulating an execution scenario were executed. As applications and task instances may
run in parallel, a team of threads was deployed to start them at specific points in time.
All simulations are executed ten times with differing random seeds.

The evaluation of the mechanisms requires a quantification of the prediction results.
Therefore, an evaluation metric is needed. A metric that reflects the accuracy of regres-
sion experiments while trying to balance the influence of positive and negative mispre-
dictions is sMAPE (s. Eq. (6.3) in Sec. 6.4.2). However, in this section, I utilize a
percentage based sMAPE, that compared to the definition used in 6.4.2 multiplies the
computed value with 100 %. The definition is as follows:

sMAPE =
100%

n

n∑
i=1

‖yi − fi‖
(‖yi‖+ ‖fi‖)/2

, (7.3)

where yi is the correct value and fi the prediction value. sMAPE is applied to eval-
uate the prediction of future task instances as predicting the starting time of new task
instances is the important aspect in this experiment.

In the second experiment, it is assumed that the time period between dependent
tasks/applications remains stable. Therefore, the prediction evaluation can be reduced
to a classification problem where accuracy (s. Eq. (6.2) in Sec. 6.4.2) can be applied as
evaluation metric. However, compared to the evaluation problem in Section 6.4.2, here,
no prediction is also a viable choice for the mechanism. Hence, accuracy is defined as
follows:

accuracy =
TP + TN

TP + FP + TN + FN
, (7.4)

where TP and TN represent true positives and negatives, i.e., correct decisions of
the prediction mechanism, and FP and FN false positives and negatives, i.e., wrong
decisions.

7.4.1 Predicting Independent Tasks

The experiment conducted to evaluate the prediction mechanism for new instances of
independent tasks was a simulation of the execution of ten tasks. Each task was asso-
ciated with its own thread that started the instances of this task according to a specific

102

7.4 - Evaluation

execution model. In total, the simulation was comprised of 500 instances of each task.
The first ten instances of each task were used as a training phase for the prediction
mechanism.

The task set was comprised of two aperiodic, two periodic, and six sporadic tasks ac-
cording to the definition and assumptions made in Sec. 7.3.1. For the periodic tasks, the
time difference between two task instances was computed by an exponential distribution.
In general, the exponential distribution is defined by its probability density function f(x)
as follows:

f(x) = λ · e(−λx)x ≥ 0, (7.5)

where λ is the parameter of the distribution, often called rate parameter.
Table 7.1 shows the parameter values chosen for the evaluation task set. As aperi-

odic tasks do not posses a minimum interarrival time tpmin, and periodic tasks have no
additional random jitter, tpmin and λ, respectively, are not set for these tasks. Sporadic
tasks, however, need values for both tpmin and λ.

Table 7.1: Parameter values of the task set used to evaluate the prediction mechanism
for independent tasks

Task index tpmin/tp λ model

1 – 5 aperiodic
2 50 ms 10 sporadic
3 100 ms 15 sporadic
4 150 ms – periodic
5 200 ms 25 sporadic
6 250 ms 30 sporadic
7 300 ms 35 sporadic
8 – 40 aperiodic
9 400 ms – periodic
10 450 ms 50 sporadic

To create variates for the exponential distributions needed for the aperiodic and spo-
radic tasks, inverse transform sampling was utilized. Inverse transform sampling cre-
ates variates of a distribution with a cumulative distribution function F (x) by computing
F−1(u), where u is uniformally distributed. The uniform distribution is generated by the
64 bit version [186] of Matsumoto’s and Nishimura’s pseudorandom number generator
Mersenne Twister [187] with a random seed.

Next to sMAPE, the average estimated value λest to generate the random jitter
for the sporadic tasks was also monitored. The results are shown in Table 7.2. For
each sporadic task identified by the mechanism the obtained sMAPE and average λest
values, and for each periodic task identified only the sMAPE value, are listed. As the

103

Chapter 7 - Predicting Future System States

mechanism could detect both aperiodic tasks in all ten simulation runs and therefore did
not make predictions for them, these tasks are not listed in the result table. The results

Table 7.2: Results of the prediction mechanism for independent tasks

Task index sMAPE λest

2 4.33 % 10.45
3 3.01 % 15.4
4 0.002 % –
5 1.9 % 25.21
6 1.56 % 30.47
7 1.36 % 35.42
9 0.0004 % –
10 0.9 % 50.39

show that in this scenario, the mechanism can correctly classify all ten tasks to their
respective execution model, i.e., no predictions were made for the aperiodic tasks, and
no jitter was added to the periodic tasks. The experiment also demonstrated that the
mechanism can very reliably predict the period tp of periodic tasks. This is visible in the
sMAPE values 0.002 % and 0.0004 %. As the highest sMAPE value of the sporadic
tasks is 4.33 % and the average of all six tasks is 2.18 %, it is possible to claim that the
time difference between two sporadic task instances can also be reliably predicted. This
claim is additionally supported by the estimated λest values. At most, the average differs
by 0.45 % from the value used to compute the exponential distribution.

7.4.2 Predicting Dependent Applications

The evaluation of the prediction mechanism based on dependencies was also conducted
by simulating application executions. To simulate overlapping and interfering execution
patterns, a set of threads was utilized. Each thread was associated with a specific ex-
ecution pattern that is repeated 15 times. Between each pattern repetition, a pause of
random length was inserted. The length of the pauses was again computed by an expo-
nential distribution (s. Sec. 7.4.1). In total, the experiment was conducted ten times.

Four different patterns were used in this experiment. Between the dependent applica-
tions of an execution pattern, a constant pause tpconst was inserted. The first pattern is
comprised of three applications, where the third application is dependent on the second,
and the second application dependent on the first. The second pattern consists of two
applications, where the second application is dependent of the first. The third and fourth
pattern are comprised of a single application that is used to create interferences of the
two regular patterns. The parameters employed to compute the pause lengths for all four

104

7.4 - Evaluation

Table 7.3: Parameter values of the execution patterns used to compute pause lengths

Pattern index tpconst λ

1 300 ms 5
2 40 ms 0.75
3 – ms 4
4 – ms 0.25

patterns are listed in Table 7.3. For the first and third pattern, and the second and fourth,
the exponential variates were multiplied by 1 s and 0.5 s, respectively, to compute the
length of the random pause between two pattern executions. To the pause of the third
pattern an extra second was added.

In this experiment, a prediction was deemed to be correct if the predicted application
id matches with an executed application and the predicted starting point does not deviate
more than 0.5ms from the actual starting point of the application. The accuracy results
of the experiment are shown in Fig. 7.5. As all patterns were executed 15 times and there
are 2 + 1 = 3 dependent applications, in theory there could be a total of 14 · 3 = 42
correct predictions. It has to be noted that in this experiment a confidence value of
three was required, i.e., the mechanism had to observe a pattern three times, before
a prediction was allowed. Hence, atleast 2 · (2 + 1) = 6 possible correct predictions
cannot be made. Over all ten experiment runs, an accuracy of atleast 0.776 or 77.6 %
was achieved. On average, the achieved accuracy amounts to 82.1 % with the highest
accuracy being 86.7 %. This shows that the mechanism resulted in a constantly fairly
high accuracy despite the interferences and pattern overlaps.

To further dissect the results of the experiment, Table 7.4 additionally lists the total
number of TP , FP , TN , and FN . The detailed results of Table 7.4 show that the
mechanism does not predict applications that then do not arrive in the system. This is an
important accomplishment, as wrong predictions may lead to erroneous system adap-
tions that result in disadvantageous system states. However, on average only 58.1 % of
the possible predictions are made. In the worst case, only 47.6 % of the predictable appli-
cations are predicted correctly. As mentioned before, the mechanism requires repetitive
observation of a pattern before a prediction is allowed. In this experiment, this reduces
the number of possible correct predictions by six or 14.3 %. To summarize, the mecha-
nism minimizes the risk of mispredicting wile reducing the number of correct predictions.
The fact that wrong predictions may lead to disadvantageous adaptations favors predic-
tion mechanisms with such features.

105

Chapter 7 - Predicting Future System States

Figure 7.5: Accuracy of the prediction mechanism based on dependency patterns

7.5 Summary and Conclusion

Proactive behavior requires knowledge about the future. In the context of proactive sys-
tem adaptation the required knowledge is comprised of future system states and envi-
ronmental influences. Future system states in this thesis are influenced and determined
by prospective tasks/applications and their associated execution costs, i.e., execution
time, energy consumption, heat dissipation etc. Chapter 6 already discussed predicting
the cost of tasks. Hence, the focus of this chapter lies on predicting upcoming tasks/ap-
plications. This chapter introduces two light-weight online prediction mechanisms that
fulfill this task in the context of this thesis.

The first mechanism targets the prediction of future task instances and is based on
RLE Markov predictors by Sherwood et al. [169]. For this work, the Markov predictor
is extended with temporal information as there may be arbitrarily long pauses between
task instances. The developed mechanism is made up of a table that stores the minimum
tpmin, maximum tpmax, and average tpavg of the time period tpi,j between two instances
ti, tj of a task t as values, and a unique hash ID that uniquely identifies a task as the tag
of the table entry. Based on these stored values, the mechanism differentiates between
three possible task execution models: periodic, sporadic, and aperiodic tasks. In case
a task is classified as aperiodic, no future instances of this task are predicted. For a
periodic task, tpavg is used to predict the starting time of the next instance.

If the mechanism classifies a task as sporadic, the computation of a prediction is

106

7.5 - Summary and Conclusion

Table 7.4: Detailed prediction results for the dependency patterns experiment

Experiment index TP FP TN FN

1 22 0 56 20
2 29 0 56 13
3 26 0 56 16
4 20 0 56 22
5 22 0 56 20
6 26 0 56 16
7 27 0 56 15
8 26 0 56 16
9 22 0 56 20
10 24 0 56 18

more complex. Sporadic tasks have a minimum interarrival time tp that is extended by
a random jitter. Thereby, the mechanism assumes that the random jitter is based on
an exponential distribution. Via maximum likelihood estimation the parameter λ of the
assumed underlying exponential distribution is estimated. By combining the estimated
distribution with the monitored minimum interarrival time tpmin, the starting point of the
next task instance is computed.

To evaluate the mechanism, the execution of a task set comprised of two aperiodic,
two periodic, and six sporadic tasks was simulated. All tasks were executed a total of 500
times and the experiment was repeated ten times. The results show that the prediction
mechanism is able to correctly classify all tasks. In addition, the mechanism is able to
reliably predict the starting time of the upcoming task instances. For the periodic tasks, a
sMAPE value of 0.002 % respectively 0.0004 % was achieved. The average sMAPE
value obtained for the sporadic tasks was 2.18 %.

The target of the second mechanism are dependent applications distributed over mul-
tiple processes. The idea of this mechanism is to utilize these dependency structures
observed in past executions to predict upcoming applications. Again, a prediction table
was used to store the necessary values for a prediction. Here, a prediction is comprised
of an application id ipredict and the time period ∆ tp between ipredict and and its prede-
cessor application j. Besides the prediction value, two status values, a confidence and a
miss counter, are stored in the table. The tag to identify a table entry consists of a set of
tuples where each tuple contains an application id i and the time period ∆ tpi,j between
i and its successor j in the tuple set, or just the application id i in case of the first tuple.

To observe execution patterns, the mechanism also applies a shift register that func-
tions as an application history. As multiple processes may run in parallel, overlapping
dependency structures and interfering applications have to be considered. To filter out

107

Chapter 7 - Predicting Future System States

these interferences, the concept of PPM [183] is combined with the mechanism.
For the evaluation, again a simulation was utilized. A set of threads simulated over-

lapping and interfering execution patterns. Thereby, each thread was associated with
a specific execution pattern. In total, four patterns were simulated and each pattern
executed 15 times. The complete experiment was repeated ten times. Over all experi-
ments, the mechanism achieved an average prediction accuracy of 82.1 %. Particularly,
the mechanism did not make false positive predictions, i.e., it did not predict applications
that were not executed and it did not predict wrong starting times. This is an important
feature for this thesis as wrong predictions may lead to disadvantageous adaptations and
therefore disadvantageous system states. It is noteworthy, however, that minimizing the
risk of wrong predictions also reduces the number of correct predictions.

To summarize, this chapter provides two online and light-weight prediction methods
that enable the system to reliably predict upcoming tasks and applications. In combi-
nation with Chapter 6’s mechanisms to capture the current system state and predict
task costs, this creates the knowledge and builds the foundation necessary for proac-
tive behavior and, in particular, proactive adaptations. The following chapter uses this
knowledge to dynamically balance the contradicting optimization goals of the system.

108

Part III

Affecting Future System Behavior

109

CHAPTER

EIGHT

DYNAMICALLY BALANCING CONTRADICTING
OPTIMIZATION GOALS

Chapter 6 and Chapter 7 provide a knowledge base for the runtime system of this the-
sis by monitoring and predicting the system state and environmental influences. This
chapter utilizes this knowledge to proactively adapt the underlying system. In particular,
the objective of this chapter is to find a suitable compromise between the contradicting
optimization goals of the system. Thereby, each optimization goal is assigned a specific
weight. The weights are used to form an evaluation function. With this evaluation func-
tion, scheduling decisions are made in the remainder of this thesis. In the thesis’ holistic
approach this chapter is represented by the blue components Controller and Offline Rule
Generation.

The remainder of this chapter is organized as follows. The motivation for this chapter
is provided in Section 8.1. Section 8.2 introduces the necessary theoretical background
for the remainder of this chapter. This includes the formalization of multi-objective opti-
mization, the mathematical concept of Markov decision processes, reinforcement learn-
ing, and the approach that is utilized in this chapter, learning classifier systems. Section
8.3 defines the problem that is the basis of this chapter. Related work is discussed in
Section 8.4. Thereby, the focus lies on approaches that solve multi-objective scheduling
problems. The solution approach of this chapter and its implementation are discussed
in Section 8.5. For the solution mechanism, the multi-level observer/controller (MLOC)
framework introduced by Müller-Schloer and Tomforde [9] to form organic computing sys-
tems is utilized. This section also introduces a reward function based on an execution
cost simulator. Section 8.6 describes the experimental setup used to evaluate the MLOC
framework and presents the results of the conducted evaluation. The chapter concludes
with a summary and result discussion in Section 8.7.

111

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

8.1 Introduction

Today’s computing systems are affected by an increasingly large set of optimization goals
and constraints. Besides the optimization of applications’ execution time, system objec-
tives like the minimization of energy consumption, heat reduction, or system reliability
and availability play gradually more important roles. The importance of these system
objectives varies greatly depending on the system’s field of application. Embedded sys-
tems with their limited resources and cooling capabilities have to put a bigger emphasis
on energy and heat reduction in comparison to HPC or desktop systems. Additionally,
specific embedded systems like cars or airplanes have strict safety constraints. There-
fore, optimization objectives have to be adapted to the underlying system and its field of
application.

Modern computing systems that operate in the fields of embedded systems or HPC,
however, are highly dynamic in nature. Embedded systems allow users to install and
delete applications in order to customize their devices according to their needs. Simi-
larly, new and yet unknown jobs may constantly arrive in a high performance computing
system.

Another factor that dynamically affects the importance of system objectives are en-
vironmental situations. A switched-off car is limited to its accumulator as a source of
energy, hence creating a strict energy budget. An external heating source can lead to
the overheating of the system, generating a system-wide need to reduce load and possi-
bly switch off resources. Hence, computing systems cannot only be set up once at design
time but rather have to be dynamically adapted and adjusted at runtime. This chapter
provides a solution for this problem. It introduces a mechanism to dynamically balance
contradicting system objectives by computing weights wi that are utilized to form a sys-
tem evaluation function f(x) =

∑
iwi ·xi. Hereby, xi is the percental increase/decrease

of system objective i compared to the best solution found so far.
Especially in embedded systems a fast response time is an important factor for a high-

quality user experience, i.e., a proactive adaptation mechanism may not create extensive
overhead that significantly slows down the response time. This means that exhaustive
search algorithms may not be employed in these systems. Müller-Schloer and Tomforde
[9] introduced a multi-level observer/controller (MLOC) framework that guarantees a fast
response time while simultaneously exploring unknown situations and states offline, thus
keeping the running system in a safe state. The framework is utilized in this chapter to
create a proactive and dynamic adaptation mechanism designed for task scheduling.
Particularly, this chapter makes the following contributions:

• A proactive and dynamic mechanism to balance contradicting system objectives
based on Müller-Schloer’s and Tomforde’s MLOC framework is introduced. The
mechanism utilizes a modified XCS into which a novel task execution simulator
is integrated. This simulator is able to predict the total makespan, total energy

112

8.2 - Theoretical Background

consumption, and the maximum processing unit temperatures. Task simulation is
deployed to compute the necessary reward for the XCS.

• The mechanism is combined with a task scheduling algorithm to proactively deter-
mine new schedules according to upcoming situations.

• This approach reduces the makespan by 10.4 %, the energy consumption by
4.7 %, and the maximum temperature of the GPU by 3.6 % while only increasing
the maximum CPU core temperature by 6 % in an evaluation scenario consisting
of an application pattern that is repeated five times.

8.2 Theoretical Background

This section introduces the theoretical background necessary to understand the remain-
der of this chapter. First, finding a suitable compromise between contradicting system
objectives, called multi-objective optimization, is discussed and formalized. Thereby, the
definition of Pareto-optimality is presented. Section 8.2.2 elucidates the mathematical
concept Markov decision processes, an extension of Markov chains introduced in Sec-
tion 7.2.1. Markov decision processes are a formalization of sequential decision making
and the problem of learning to achieve a goal and therefore are an important fundamental
basis for machine learning concepts like reinforcement learning. Reinforcement learning
is then discussed in Section 8.2.3. Finally, Section 8.2.4 explains Learning Classfier Sys-
tems and its extension XCS, the concepts the approach of this chapter is based upon.
Learning Classifier Systems utilize a combination of genetic algorithm and reinforcement
learning to solve learning problems.

8.2.1 Multi-objective Optimization

In multi-objective optimization problems several different objectives have to be optimized
simultaneously [188]. This is in contrast to conventional optimization problems where
only a single objective has to be optimized. The objectives of multi-objective optimization
problems are usually contradicting, i.e., optimizing one objective worsens the other ob-
jectives, or else the problem could be reduced to a single-objective optimization problem.

Formally, the multi-objective optimization problem is defined as follows. The solution
space of the problem is defined as a set of decisions D. A single solution x in the
decision space Ω is a vector of n decision variables x = (x1, . . . , xn), called decision
vector [189, 190, 191]. The quality of a solution is defined by M objective functions
fi that map a solution vector to a scalar value and together form the M -dimensional
objective space Z. These functions have to be either minimized or maximized. Possibly,
additional constraints gj(x) = bj have to be fulfilled by solutions in order to be viable. All
solutions satisfying the constrains constitute the feasible solution space S.

113

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

As the optimization criteria in multi-objective problems are typically conflicting, there
usually does not exist a single optimal solution that minimizes/maximizes all M objective
functions. Rather there is a set of solutions that represent optimal trade-offs between
the different objectives, called Pareto-set. The objective function values of the Pareto-
optimal set are called Pareto-front. Each solution in the Pareto-set is Pareto-optimal, i.e.,
there exists no feasible solution y that Pareto-dominates a solution x in the Pareto-front.
Pareto-dominance is defined as follows [191, 189]:

A solution x ∈ S Pareto-dominates (or short: dominates) a solution y ∈ S(x ≺ y) if

f(x) 6= f(y) ∧ ∀i : fi(xi) ≤i fi(yi)
(8.1)

A solution x ∈ S is non-Pareto-dominated (or short: non-dominated) by y ∈ S if

y ⊀ x
(8.2)

8.2.2 Markov Decision Process

Markov Decision Processes (MDPs) are an extension of Markov chains introduced in
Sec. 7.2.1. The following definitions and explanations are taken from "Reinforcement
Learning: An Introduction" by Sutton and Barto [192]. The concept of MDPs is a for-
malization of sequential decision making and the problem of learning to achieve a goal.
Thereby, an action does not only affect the immediate reward, but additionally influences
subsequent situations or states, respectively and thus future rewards. A MDP consists
of a learner, called agent, and its surrounding, called environment. Formally, a MDP is
defined by the 4-tupel (S,A, pa, R), where S is the set of potential states, A is the set
of available actions, pa(s′|s, a) is the state-transition probability, where executing action
a in state s at time t leads to state s′ at time t+ 1, and R the set of potential immediate
rewards [193]. If S, A, and R have a finite number of elements such a process is called
a finite MDP.

In a sequence of discrete time steps 1, 2, 3, . . . the agent and the environment interact
with each other. Fig. 8.1 shows the interaction cycle of a MDP. At each time step t, the
agent receives a representation of the current state of the environment st ∈ S. The state
st is used to select an action at ∈ A(s), whereA(s) is the set of actions available in state
s. In the next time step, the environment provides an immediate reward rt+1 ∈ R ⊂ R
in part as consequence of the action. Additionally, the agent recognizes a new state
st+1. The reward rt+1 and state st+1 of the next time step t + 1 always only depend
on the immediately preceding state st and action at and not on states or actions earlier
in the past. Therefore, a requirement for states in MDPs is that they have to include
all necessary information of the past interactions between agent and environment. A
system where the states fulfill this requirement is said to have the Markov property.

In summary, the MDP framework abstracts the problem of goal-directed learning from
interaction and reduces the problem to three signals between the agent and the environ-

114

8.2 - Theoretical Background

Figure 8.1: The interaction cycle between an agent and its environment in a Markov
decision process [192, 131]

ment. The first signal represents the choices in form of actions made by the agent. The
basis for theses choices, the states, are represented by the second signal. Rewards or
the goal of the agent are defined by the third signal. The following section introduces re-
inforcement learning, a sub-category of machine learning. Reinforcement learning uses
MDPs to formalize its problem statement and learning methodology.

8.2.3 Reinforcement Learning

Machine Learning is traditionally categorized into three main subclasses depending on
the information or feedback available to the learning algorithm [192, 131]. The first two
classes are supervised and unsupervised learning. In supervised learning, an exterior
supervisor provides labeled training data that represents the correct and desired behav-
ior, the label, in a specific situation [192]. The learning algorithm then has to generalize
this knowledge to be able to act correctly in yet unknown situations. In contrast, unsu-
pervised learning tries to find patterns and structures in unlabeled data without exterior
knowledge [192].

Although labeled and unlabeled input seem to exhaustively classify machine learning
paradigms, a third class, called reinforcement learning (RL), exists [192]. RL describes
the phenomenon of learning by interaction and a feedback signal. It differs from super-
vised learning by the fact that the learning system learns from its own experience and
not from an external knowledge source that provides examples of correct behavior [192,
131]. So, a RL system learns a task by reward and punishment without a distinct speci-
fication of how to correctly solve the task [193]. Generally, the goal of RL is to maximize
a reward signal in contrast to finding hidden patterns or structures in a data set, the
objective of unsupervised learning [131, 192].

115

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

RL problems may be episodic or continuous, i.e., the problem has terminal states,
such as the outcome of a game, or is on-going. An example of an on-going task is an
on-going process-control task. An idealized mathematical formalization of RL problems
is given by MDPs (introduced in Sec. 8.2.2) [192, 194]. Consequently, a reinforcement
learning system consists of the following elements [192].

• Agent : In RL systems the learner and decision maker is called agent. There
is a strict distinction between the agent itself and its environment. Everything
within an agent is controllable and known whereas the opposite may be true for
its environment. The agent constantly interacts with its environment by selecting
actions and tries to maximize a reward signal.

• Environment : Everything outside an agent is called environment. The environment
may be not completely known to the agent. It reacts to the agent’s actions by
providing some information about itself, called state or situation, and a reward
signal to the agent.

• Policy : The behavior of an agent is defined by its policy π(a|s), i.e., the policy
maps the perceived environment states to actions. In particular, π(a|s) gives the
probability that action a is selected in state s. A policy may be a simple function or
lookup table, an extensive search, or even stochastic.

• Reward : The goal of the RL problem is maximizing the reward signal over the
agent’s life cycle. The reward is a numerical value rt ∈ R provided by the environ-
ment after the agent executed an action. Thereby, the reward defines what is good
or bad for an agent and causes policy changes. Generally, the reward signal is a
stochastic function that maps an environment state and an action to a numerical
value.

• Value function: The value of a state is the total reward an agent is expected to
accumulate in the future starting from this state. Hence, compared to reward,
which determines what is good in the short term, the value function defines what
is good in the long run or the long-term desirability. Values are the basis of action
selections as the objective is to maximize future rewards. In contrast to rewards,
values are not directly provided by the environment, rather they have to be esti-
mated from past observations made by the agent. Therefore, value functions are
the main component a RL algorithm has to learn. Formally, a value function vπ(s)
under policy π is defined as follows:

vπ(s) = Eπ
[∞∑
k=0

γkrt+k+1

∣∣st = s
]

for alls ∈ S, (8.3)

where γ is the discount rate, which is used to reduce the impact of future rewards
r in a continuous problem, and t is any time step.

116

8.2 - Theoretical Background

• Model : A model of the environment is utilized for planning, i.e., deciding on future
actions, by making predictions about the behavior of the environment. Models
are not mandatory for RL algorithms. Algorithms using a model are called model-
based whereas algorithms without a model are called model-free.

In the next section, learning classifier systems are presented. Learning classifier
systems are a class of learning algorithms that are tightly coupled to RL.

8.2.4 Learning Classifier System

The paradigm of learning classifier systems (LCSs) was introduced by John H. Holland
in 1976 [195] as "a framework that uses genetic algorithms to study learning in condi-
tion/action, rule-based systems" [196]. Holland later revised the LCS framework to its
current form [197].

In the context of LCSs, the system continuously interacts with its environment. The
system determines the state of the environment s with a set of detectors, e.g., sensors
that capture parts or the entire surrounding of the system [196]. The output of the detec-
tors are converted into messages for the system and based on this messages the system
selects its actions. These actions are then carried out by so called effectors, e.g., the
muscles in a human body [196]. Choosing an action is carried out by a set of rules,
called classifiers, that map messages representing states si to messages representing
actions aj . These rules are usually represented by an "IF condition THEN action" state-
ment [198]. In the classic form of LCS, the condition is a string of the ternary alphabet
0, 1,#, where # stands for "don’t-care" accepting every value. Hereby, an action is a
string of the binary alphabet.

The general LCS framework utilizes two different components to drive its progress
[199]. The first component is the discovery mechanism. In this context, discovery refers
to discovering new rules in the solution space and adding them to the established rule
set, called population. Discovery is done by a version of the genetic algorithm (GA). GA is
a metaheuristic optimization algorithm belonging to the class of evolutionary algorithms.
Introduced in 1975 by Holland [200], GA is based on Darwin’s evolution theory of natural
selection. Thereby, elements of the solution space are represented by chromosomes
comprised of the genome (the rule condition) and the phenotype (the rule solution/ac-
tion). GA iterates over a set of chromosomes, the population, until a termination criteria
is satisfied. The population of a certain iteration is called generation. Fundamentally, GA
is comprised of five steps:

1. An initial population of size N is created by generating usually random chromo-
somes.

2. All chromosomes of the current generation are evaluated by a fitness function.

117

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

3. Based on the computed fitness value, chromosomes are selected to create off-
spring. In the literature, there are several different selection methods, e.g., roulette
wheel selection, and tournament selection, that usually include some randomiza-
tion. Additionally, if the population has grown larger than N , chromosomes are
deleted based on their fitness.

4. The selected chromosomes are used to create offspring by utilizing the genetic
operators crossover and mutation.

• Crossover: Two parent chromosomes are split up and then combined to pro-
duce offspring chromosomes.

• Mutation: A parent chromosome is randomly mutated, i.e., parts of the values
are randomly altered,

5. The steps two to four are repeated until a termination criteria is fulfilled.

In the literature, there exist several modifications and variations of the genetic algorithm
and the aforementioned steps. For example, different methods of chromosome selection,
and various implementations of the genetic operators are employed depending on the
field of application and the underlying problem.

The second component is the learning mechanism of LCS. The objective of the learn-
ing mechanism is to improve local performance by "tuning the associated statistic/param-
eters of a rule through accumulated trial-and-error experience" [198]. Therefore, one or
more strength or accuracy fitness values and parameters are associated with each clas-
sifier. These values are iteratively updated by either reinforcement learning (RL) (s. Sec.
8.2.3), i.e., reward/punishment of past interactions, or supervised learning, i.e., training
examples of correct behavior [199]. Traditionally, LCSs use RL and a strength-based
value that estimates the expected payoff of the associated classifier.

Figure 8.2 shows the fundamental flow diagram of the basic LCS algorithm with RL.
A typical algorithm iteration consists of the following nine steps:

1. One or several detectors capture the current state of the environment.

2. A representation of this current state encoded with a particular alphabet is provided
to the LCS, in particular to the classifier population [P]. [P] has a limit N for its
size set by the user.

3. The LCS compares all classifiers with the current state, a process that is called
matching. All classifiers which conditions match the current state form the match
set [M].

4. If [M] is empty or does not contain enough classifiers, either in total or for a specific
action a, again a limit is set by the user, covering is activated. Covering, then,
generates new classifiers that cover the input state.

118

8.2 - Theoretical Background

Figure 8.2: The fundamental flow diagram of a LCS with RL [199]

5. Usually [M] is comprised of classifiers with different action phenotypes. Therefore,
one of the available actions has to be selected. Thereby, different strategies can be
utilized and a trade-off between exploration and exploitation has to be considered.
Typically, the selection is based on the fitness value of the classifiers and involves
some sort of randomization. All classifiers with the selected action asel then form
the action set [A].

6. In the next step, the selected action is executed by a set of effectors. AS a result
of the action, the environment gives feedback in the form of a reward signal.

7. The LCS uses the reward signal to update the parameters of the classifiers whereby
all classifiers in [A] are updated. Again, different update strategies are available
depending on the parameters of the used LCS implementation.

119

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

8. Rule discovery is used to create better classifiers by applying the genetic algo-
rithm (GA). Here, LCS implementations differ in the time at which rule discovery is
invoked, and in the implementation of GA.

9. To make room for the newly generated classifiers by GA, old classifiers have to be
deleted. Like action selection, deletion typically is based on the classifier fitness
and involves some sort of randomization. The specific deletion algorithm is thereby
dependent on the LCS implementation.

As mentioned before, LCS includes several parameters and building blocks that can
be tuned and varied by the user. The following section introduces a prominent variant of
LCS, called XCS.

XCS

In 1995 Stewart W. Wilson introduced a LCS modification, called XCS [201]. Classic
LCSs utilize a strength-based value as a prediction of future reward and as fitness for
GA. This means that a classifier that predicts a small payoff is less likely to survive a GA
iteration than a classifier that promises a bigger payoff. However, the amount of payoff a
classifier receives may not adequately represent how accurate its prediction is. It is quite
possible that a classifier with a small future reward prediction accurately represents the
outcome of this situation. Additionally, a classifier with small reward may potentially still
be the best solution for this particular environmental niche and should therefore remain
in the population.

To solve this problem, Wilson introduced a separate fitness value for GA next to the
strength of the classifier utilizing knowledge gained in the research of RL. The GA fitness
is hereby based on the accuracy of the prediction and not the prediction value itself [201].
More precisely, the following three parameters replace strength in XCS:

1. Prediction p: the average received future reward

2. Prediction error ε: "an average of a measure of the error in the prediction param-
eter" [201]

3. Fitness F : the inverse of the prediction error

Next to the separation of strength, GA is only applied to the matching set [M] rather than
to the whole classifier population [P], thereby reducing survival competition between
different environmental niches.

In total, the following modifications were introduced with XCS over the whole algorithm
iteration:

120

8.2 - Theoretical Background

• Action selection: To select an action, a prediction array with system prediction
P (ai) for every action ai is computed. The computation of P (ai) utilizes a fitness-
weighted average of the prediction values of the classifiers advocating action ai.

• Update: The update function computes new values for the three parameters pre-
diction p, prediction error ε, and fitness F of the action set classifiers in the last
time step [A]−1. The update computation itself is based on Q-learning [202] and
is defined as follows:

1. Fj ← Fj + β(κ′j − Fj), where β is the user-set learning rate,

κ′ =
κ∑

cl∈[A]

κcl
, and

κ =

{
1 if εj < ε0

exp
(
ln(α)

εj−ε0
ε0

)
else

,

where α and ε0 are user-set parameters ∈ (0, 1)

2. εj ← εj +β(|rj +γmaxa P (aj)−pj|−εj), where γ is the user-set discount
rate, and rj is the reward received in the last time step

3. pj ← pj + β(rj + γmaxa P (aj)− pj)

• Discovery component: The GA is applied to the match set [M] and not the whole
classifier population [P]. The GA is activated for a match set if a certain number
of time steps has passed since the last GA iteration in that match set.

• Numerosity: If a newly added classifier has the same genome and phenotype as
an existing one, the classifier is not added, but a numerosity nnum field is incre-
mented by one in the existing classifier. A newly added classifier is initialized with
a numerosity value of 1.

In additional publication, Wilson further extended and improved XCS. The input of an
XCS was extended to continuous real-values represented as intervals with a center and
deviation value [203]. This extension also required adaptations in the mutation operator
and the covering mechanism. To improve the generation of new classifiers, Wilson re-
stricted the application of GA to the action set [A] instead of the match set [M] in the
original XCS version as the combination of classifiers with different actions often resulted
in inaccuracies [204]. Additionally, a subsumption rule was introduced in the generation
of offspring [204]. If an offspring is created whose condition is logically subsumed (all
strings that match the offspring’s condition are a subset of the match set by the parent) by
one parent and the parent is accurate and sufficiently experienced, the offspring is dis-
carded and the numerosity of this parent increased by one. In 2002, Wilson introduced
XCSF [205], an extension to XCS that allows to learn functions.

121

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

8.3 Problem Statement

The focus of this chapter is solving the multi-optimization problem of finding a suitable
balance between the differing system objectives. Thereby, the underlying system is as-
sumed to be dynamic. In the context of this thesis, dynamic means that new applications
or tasks and task instances may arrive at any time in the system, and unforeseen envi-
ronmental events may occur.

This thesis focuses on four system objectives: makespan, i.e., the total time that is
needed to execute all applications, energy consumption, i.e., the amount of energy that
is required to execute all applications, system temperature, and system and component
reliability. Reliability is considered implicitly in this thesis. An application is allowed to
set a minimum reliability percentage for its execution. The symptom-based fault detec-
tion mechanism introduced in Chapter 6.3 enables the system to compute a heuristic
reliability metric. Combined with the required minimum reliability percentage of the appli-
cation, it is possible to compute how often an application has to be repeatedly executed
on a specific processing unit to fulfill its minimum reliability requirement. The additional
executions are reflected in increased execution costs for the application, e.g., increased
total execution time.

The balance of the system objectives is expressed through normalized weights wi ∈
R, where

∑n
i=0wi = 1, that shall be dependent on the current state of the system and

the environment, and the upcoming tasks to be executed. Therefore, the optimization
problem has to map an input vector ~s = (s0, . . . , sm) that represents the current situ-
ation through different metrics sj to a vector ~w representing the weights of the system
objectives.

These weights are utilized to build an evaluation function f(x) for task scheduling
algorithms, in particular list scheduling. Hereby, x is a vector ~x = (x0, . . . , xn) where
xi is the percental improvement/deterioration of objective i, e.g., the makespan over all
scheduled tasks, compared to the best solution found so far. The evaluation function f
is then defined as f(x) = w1 · x1 + · · ·+ wn · xn.

Determining continuous weights for the system objectives translates to a regression
problem. As regression problems are computationally more complex than classification
problems, I reduced the weight mapping to a classification problem by introducing a
step size of 10 % instead of continuous values for the weights. Hence, there is only a
numbered amount of possible weights that can therefore be interpreted as classification
categories.

The systems considered in this thesis are continuously running and new applications
or tasks are allowed to dynamically arrive in the system at any time. Thereby, past
scheduling decisions may affect future decisions because they partly determine the sys-
tem state the next scheduling decision is based upon. However, it can generally be
assumed that knowledge about the current state is sufficient to make a decision. There-
fore, the states fulfill the Markov property and the scheduling problem can be regarded as

122

8.4 - Related Work

a Markov decision process. In the scope of RL, a problem without a definite end is called
a continuous task and a task where a goal has to be achieved over several state-action
transitions is called a multi-step task.

If the problem of balancing the system objectives is viewed as a RL problem, the
set of input vectors sk that represents the current situation and the set of weights ~w
are synonymous with the state set S and the action set A in the formal RL definition,
respectively. A model of the environment can be provided by the monitoring component
and history database as it allows predictions and estimations about the effects of different
schedules on the system. So, in summary, the problem of this chapter can be expressed
as a continuous, multi-step, multi-objective RL problem whose states fulfill the Markov
property and therefore can be interpreted as a Markov decision process and solved
accordingly.

8.4 Related Work

In the literature, there exist several approaches and algorithms that target considering
multiple optimization goals in the context of task scheduling. Particularly, energy-aware
scheduling algorithms, i.e., algorithms that try to minimize the energy consumption next
to minimizing the makespan, are widely studied. Lee and Zomaya proposed the two
energy-conscious scheduling heuristics ECS and ECSidle [206] that utilize dynamic volt-
age scaling (DVS) to adjust processors’ voltage supply levels (VSLs) in order to reduce
energy consumption. The scheduling decisions of these two heuristics are based upon a
new metric called relative superiority (RS). For a given task ti, a processor pj , and a VSL
vj,k with the as of yet best task processor combination t′, p′, RS is defined as follows:

RS(ti, pj, vj,k, t
′, v′) = −

(
Ed(ti, pj, vj,k)− Ed(ti, p′, v′)

Ed(ti, pj, vj,k

+

(
eft(ti, pj, vj,k)− eft(ti, p′, v′)

eft(ti, pj, vj,k)

)
−min est(ti, pj, vj,k), est(ti, p

′, v′)

)
,

(8.4)

where eft and est are the earliest finish and earliest start time, respectively. The al-
gorithm chooses the task processor pair that maximizes the RS value. Additionally, the
makespan-conservative energy reduction (MCER) technique is applied after a schedule
is computed to further check for possibilities of energy reduction without increasing the
overall makespan.

123

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

As longer processor idle times are not considered in this approach, the RS metric was
adapted to:

RSidle =



−
(
Ed(ti, pj, vj,k)− Ed(ti, p′, v′)

Ed(ti, pj, vj,k

+
eft(ti, pj, vj,k)− eft(ti, p′, v′)
eft(ti, pj, vj,k)− est(ti, pj, vj,k)

) if eft(ti, pj, vj,k) < eft(ti, p
′, v′)

−
(
Ed(ti, pj, vj,k)− Ed(ti, p′, v′)

Ed(ti, pj, vj,k

+
eft(ti, pj, vj,k)− eft(ti, p′, v′)
eft(ti, p′, v′)− est(ti, p′, v′)

) otherwise,

(8.5)
which favors shorter task completions. The MCER technique is also modified to include
idle energy consumption. Compared to this thesis, the weighting between makespan re-
duction and energy consumption minimization is static and not dependent on the current
situation.

Chen et al. utilize dynamic voltage and frequency scaling (DVFS) to reduce energy
consumption of iterative workloads with parallel tasks [207]. Their proposed algorithm
adjusts the CPU core frequencies of cores that execute smaller workloads, thereby
reducing energy consumption without degrading performance. An approach that tar-
gets CPU-GPU architectures is provided by Ma et al. [208]. Their approach, called
GreenGPU, is separated in two tiers. The first tier consists of a workload balancing
mechanism that distributes iterative workloads to the CPU and GPU. Hereby, the mech-
anism tries to reduce idle times of both processors. The second tier adjusts the frequen-
cies of the CPU and GPU according to their utilization. If low utilization is monitored, the
frequency is reduced. Both of these approaches only target specific workloads and only
consider energy optimization when it does not affect performance. Additionally, prepar-
ing a workload in such a way that it is finely distributable over a GPU and CPU is a
difficult task.

In [209] four heuristics based on the Min-Min algorithm (s. Sec. 9.2.3) that con-
sider both energy and makespan are presented. The first heuristic uses Min-Min to
compute a task schedule and then utilizes dynamic voltage scaling (DVS) to reduce the
energy consumption without violating a predefined schedule length Lc. As finding the
optimal voltages is a computationally complex problem, the second heuristic simplifies
the problem by restricting the voltage selection to two voltage levels vl and vh that satisfy
vl ≤ ft(pj)

Lc
vmax ≤ vh, where ft(pj) is the finish time of processor pj . The third heuristic

schedules the tasks in order of the Min-Min ranking. After each scheduling decision, the
completion time of the task is checked and if it is below a certain threshold, the supplied
voltage will be reduced to reduce energy consumption while not increasing the comple-
tion time too much. The last heuristic, again, schedules each task in the same order,

124

8.4 - Related Work

however first minimizing its energy consumption while maintaining a makespan thresh-
old. Like the other approaches presented before, these heuristics always find a static
compromise between the two objectives makespan and energy and do not dynamically
adapt to new situations.

Another optimization objective that is combined with makespan minimization is the
system temperature. In [210], a task scheduling algorithm for soft real-time tasks on
homogeneous chip multiprocessors that tries to minimize the core temperatures while
adhering to task deadlines is introduced. The work utilizes the compact RC thermal
model and pre-built look-up tables to compute the thermal distribution on the chip after
a task allocation based on the power input on each core. The scheduling algorithm
considers all idle cores as potential candidates for a newly arrived task and computes
the thermal map for each potential mapping candidate. A task is finally assigned to the
core that minimizes a weight w =

∑
i,j tm(i, j) · rrt(i, j), where i, j are the processor

core indices, tm is the thermal map, and rrt(i, j) is the remaining runtime of the task on
core (i, j).

In their work, Sheikh et al. additionally consider both the system temperature and
energy consumption as optimization objectives next to makespan [211]. Rather than
optimizing only one objective under constraints of the other two objectives, Sheikh et
al. offer an algorithm that computes the Pareto front of the solution space. To com-
pute the Pareto front, their algorithm, called E-FORCE, utilizes SPEA-II, an evolutionary
technique that deploys genetic operators, to create new solutions. The user can pro-
vide a preference vector to select a solution out of the Pareto front. My approach selects
weights for the different system objectives according to the current situation and does not
require the computational overhead of an evolutionary algorithm each time a scheduling
decision is needed.

To proactively adapt the contradicting optimization goals, this chapter deploys Organic
Computing (OC) principles, in particular a hierarchical observer/controller (O/C) archi-
tecture that includes an XCS (s. Sec. 8.2.4) component. Such an approach has been
used in different fields of application in the literature. Prothmann et al. [212] introduced
an Organic Traffic Control (OTC) system that utilizes OC mechanisms to self-organize
and self-adapt urban traffic. This system consists of three parts, a self-adaptive traffic
light control mechanism, a self-organized coordination mechanism to obtain a Progres-
sive Signal System (PSS), and self-organized route guidance. The traffic light control
mechanism employs a hierarchical O/C architecture to determine the length of the green
light phases of an intersection. Thereby, the first layer including a modified XCS (s. Sec.
8.5) matches current traffic conditions to its rule base selecting a traffic light configura-
tion. Unknown traffic situations are handled offline by the second layer that utilizes an
evolutionary strategy to create new rules and then determines their value in a simula-
tion. The feedback for a selected traffic light configuration and thus the rule reward is the

125

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

average delay of the complete intersection. Proactivity for the OTC system is achieved
by the self-organized route guiding mechanism, called Dynamic Route Guiding (DRG)
mechanism, that recommends the best path trough the road network to drivers at each
intersection.

The hierarchical O/C concept is also deployed by Hurling et al. [213] to form an Or-
ganic Network Control (ONC) system. Again, the first layer uses a modified XCS to
match situations with a rule base where a rule selects the parameters of the underlying
communication protocol. As trial-and-error runs are not feasible in a technical system, a
second offline layer is also utilized to generate new rules and simulate their value with
a network simulator. This concept has been implemented for Mobile Ad-Hoc Networks
(MANets) [214], where the ratio of forwarded to received messages is optimized, Wire-
less Sensor Networks (WSN) [215] optimizing the number of active nodes, the coverage
of the environment, and energy consumption, and finally Peer-to-Peer (P2P) protocols
[214] maximizing the received download rate.

8.5 Approach and Implementation

This thesis’ target systems and fields of application entail specific requirements for a
dynamic system adaptation mechanism. The mechanism has to make fast decisions
without large computational overheads compared to the actual workload in order for the
system to be able to benefit from the adaptations. Furthermore, trial-and-error explo-
ration runs, i.e., evaluating unknown adaptations at runtime, need to be avoided as they
may lead to dangerous behavior in safety-critical systems or may drastically reduce qual-
ity of service and therefore result in a bad user experience. Still, system adaptations are
necessary as the target systems are dynamic in nature and allow updates and the addi-
tion of new applications.

The multi-level observer/controller (MLOC) framework introduced by Müller-Schloer
and Tomforde [9] provides a solution to these challenges. Figure 8.3 gives an overview
of the abstract framework. The basic framework consists of four layers, the productive
layer, the reactive adaptation layer, the reflection layer, and the collective layer. On the
lowest level, the productive system encapsulates the system that needs to be controlled
and adapted. This system is continuously observed by the higher layers. Layer 1, the re-
active adaptation layer, is the first control mechanism of the framework. Therefore, it ob-
serves the underlying system and deploys a modified XCS (s. Sec. 8.2.4) to proactively
adapt the underlying system to the current situation. The most important modification
is outsourcing the generation of new rules typically done by a genetic algorithm to the
third layer. Separating the generation of new rules from the XCS allows the framework to
compute new rules offline and in parallel to the running system. In order to still keep the
system running, a fall back covering mechanism and backup default rules are utilized in
the absence of rules for a specific situation.

126

8.5 - Approach and Implementation

Figure 8.3: The abstract multi-level observer/controller (MLOC) framework by Müller-
Schloer and Tomforde [9]

The reflection layer observers layer 1 and in the case of a missing rule, the process of
generating a new rule is started. As the computation has to be done offline and may not
affect the actual system, a simulator is deployed. To compute new rules, an evolutionary
algorithm is used. The last layer provides an interface to communicate with neighboring
systems and the user, e.g., to allow the user to influence the system objectives.

In the following sections, the implementation of this model in this thesis is elucidated in
detail. Section 8.5.1 discusses the implementation of the XCS that utilizes the knowledge
provided by Chapters 6 and 7, i.e., the observer component of the reactive layer, to
proactively adapt the underlying system.

8.5.1 Implementation of the Modified XCS

The XCS implementation of this thesis is based on the C++ library XCSLib [216]. The
basic functionality of XCSLib was ported from C++ to C for the integration into the runtime
system HALadapt. Compared to the definition of an XCS in Sec. 8.2.4 two changes are
made. Next to the three strength values prediction p, prediction error ε, and fitness F ,
each rule stores the average size of its match sets sizems. sizems is updated as follows:

• sizems+ = γ · (sizemscur − sizems), where sizemscur is the size of the current
match set.

127

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

Additionally, the formula to compute κ is changed to:

• κ =

{
1 if εj < ε0

α(
εj
ε0

)−ν else
,

where ν is usually set to 5.

For the communication with HALadapt, the XCS interface includes two functions, re-
ceiveInput() and receiveReward(). receiveInput() takes the description of the current
system state and computes the according system objective weights. The system state
description is comprised of the following metrics:

• A description of the current task graph

– The total number of tasks

– The average execution time of the longest graph path

– The maximum graph width, i.e., the maximum number of tasks that may be
executed in parallel

• A description of the hardware state

– The current temperatures of the available processing units

– The average waiting time over all processing unit queues

• Given constraints, e.g., maximum temperatures for the system’s processing units

• A description of the next prospective task graph if a prediction is possible

Fig. 8.4 depicts the computational sequence of receiveInput(). First, the match set,
i.e., all rules that match with the given system state description, is determined. If not
enough rules for the given state exist, the offline rule generation mechanism is started.
This mechanism simulates several task schedules created with different system objective
weights and selects the weight with the best result as the new action. In this thesis, the
system objectives total makespan, total energy consumption, and maximum processing
unit temperatures are considered. The reliability of processing units acts as a constraint
that determines how often a task has to be repeated on a certain processing unit to
achieve the desired result reliability. The number of task repetitions hereby depends
on the current value of the processing unit’s heuristic fault rate (s. Ch. 6.3 for more
details). The offline rule generation employs a step size of 0.1 for the weights of the
system objectives.

If there is no single task schedule that dominates all other schedules, i.e., a Pareto
set of best solutions exists, a solution of the Pareto set is randomly selected. To finally
create the new rule, the received system state description is randomly widened. A lower

128

8.5 - Approach and Implementation

Figure 8.4: Computational sequence of receiveInput()

and upper bound are created by decreasing/increasing each metric value by 0 to 50 %
at random. At last, the new rule is added to the XCS. If, after adding a new rule, the total
number of rules exceeds a user-set maximum value, a roulette-wheel deletion mecha-
nism is started. Here, every rule computes a deletion probability pdelete = sizems ·nnum.
If a rule has an experience value larger than ϑdelete and a fitness value F smaller than
δdelete · F , its deletion probability is increased to pdelete = F

F
. A random number draw

finally decides which rule is deleted.
As the rule generation is executed offline, i.e., in parallel to the running system, the

system cannot be stopped while the new rule is computed. In case there is at least one
rule that satisfies the system state, this rule is utilized to keep the system running. If no
rule exists yet, it is checked whether it is possible to widen an existing rule or, if this is
not possible, balanced weights are returned as a fallback rule. A rule may be widened if
its Euclidean distance is smaller than a specified threshold.

Otherwise, if there exists at least δmatch rules that satisfy the system state, the ac-
tion selection algorithm is started. This algorithm either selects the action with the best
predicted payoff or a random action of the match set. The decision between best and
random selection is made by generating a random value between 0 and 1. If the value is
smaller than the threshold 0.2, the action is chosen at random. After selecting an action,

129

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

the action set is computed. Finally, every tenth learning step, the XCS checks if rules
can be subsumed, i.e., if rules exist that are more general than others and therefore
are able to overlap them, the less general rules are deleted and the numerosity of the
general rules increased. Additionally, a rule my only act as a subsumption candidate if it
has an error value below ε0 and an experience value above ϑsubsume. These parameters
depend on the considered scenario, e.g., the size of the problem space, the number of
learning steps in an experiment, and the average number of rule matches.

The second function, receiveReward(), takes the reward generated by HALadapt and
updates the XCS fitness values (s. Sec. 8.2.4 for the remaining update formulas). In this
thesis, the learning rate β and the discount rate γ are set to 0.2 and 0.7, values that are
also used in XCSLib. The parameter α is again taken from XCSLib and set to 0.1.

HALadapt’s reward mechanism is explained in detail in the following section. As the
targeted problem usually is a multi-step problem (s. Sec. 8.3), up to five past rewards
are stored to update the action sequence. Additionally, the time difference between two
successive task graphs is evaluated. If the time difference is greater than a threshold of
ten seconds, the start of a new sequence is presumed and all stored past action sets are
updated.

8.5.2 Reward Function

In order for an XCS to be able to learn and improve its rule base and decision making,
it needs some form of feedback from the underlying system in response to the selected
actions. Generally, two machine learning concepts are associated with XCSs, super-
vised learning and reinforcement learning (s. Sec. 8.2.3). The use case of the XCS
in this thesis is task scheduling, in particular multi-objective task scheduling. Finding
the optimal solution for a task scheduling problem is considered NP-hard. Additionally,
multi-objective optimization problems usually do not posses a single optimal solution, in-
stead a set of optimal solutions, called the Pareto set (s. Sec. 8.2.1) exists. Supervised
learning, however, requires labeled data, i.e., in the case of this thesis, a weighting that
leads to an optimal task scheduling. As finding an optimal solution is too computationally
expensive for an online feedback mechanism, reinforcement learning is selected as the
learning concept for the XCS in this thesis.

Section 8.5 introduced the MLOC framework by Müller-Schloer and Tomforde [9] that
consists of an online and an offline layer. Hence, two reward functions for both the on-
line layer that utilizes the XCS and the offline layer that uses an optimization heuristic to
generate new rules are needed. As the offline layer allows for more computational over-
head, HALadapt’s task execution simulator is employed to determine the execution costs
of several task schedules created with a variety of different optimization goal weightings.
In particular, three optimization goals, makespan, energy consumption, and temperature,
are considered in this thesis. Thereby, the goals are to minimize the overall makespan,

130

8.5 - Approach and Implementation

to minimize the overall energy consumption, and to minimize the maximum processing
unit temperature. These goals can be formalized as follows:

Minimize max
1≤i≤N

ft(ti), (8.6)

where ti is the i-th of N tasks, and ft(ti) the finish time of task ti.

Minimize
∑

1≤i≤N

e(ti), (8.7)

where e(ti) is the energy needed to execute task ti.

Minimize max
1≤j≤M

Tj(t) ∀t ∈ [0, tend], (8.8)

where Tj(t) is the temperature of processing unit j ofM system processing units at time
t.

The task execution simulator utilizes the profiling data stored in HALadapt’s database
(s. Sec. 3.3.1 and Sec. 6.2) to compute the task costs. However, the energy costs of an
application or task set are not solely determined by the tasks that are executed as idle
processing units also consume energy. Especially the introduction of thread variation for
OpenMP tasks in Sec. 6.2 may lead to idle slots on certain CPU cores in a task schedule.
Therefore, the idle times of the system’s processing units have to be considered as well.
Thereby, the amount of energy a CPU core or the GPU consumes while being idle was
determined empirically by conducting several series of measurements. For the CPU
utilized in the evaluation, power values of 1W and 4.5W were measured for a single
core being idle without and with a CUDA kernel executing in parallel, respectively. The
power value measured for the GPU is 56.62W .

To compute the maximum temperature of the processing units during an application
or task set execution in the simulator, a lumped RC model [217] is utilized. The model
is a simplified version of the HotSpot algorithm by Skadron et al. [218, 219]. Fig. 8.5
shows the processor thermal model. Included in the abstract RC model are a single
thermal resistance and a single thermal capacitance, denoted as R and C in the figure,
respectively. Additionally, the power consumption P of the chip at time t and the ambient
temperature Tamb are depicted. Together, this results in the die temperature T . In the
model utilized by Zhang and Chatha [217], the temperature T after time t is computed
as follows assuming the power consumption P remains constant in the interval [0, t]:

T (t) = P ·R + Tamb − (P ·R + Tamb − T (0)) · e
−t
RC , (8.9)

whereR is the thermal resistance, C the thermal capacitance, Tamb the ambient temper-
ature, and T (0) the temperature at time 0. The required values for the power consump-
tion P , the thermal resistance R, and the thermal capacitance C for the CPU and GPU

131

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

Figure 8.5: Abstract thermal model for the processing units’ temperatures [217]

were again determined empirically with several series of measurements. Depending on
the core number, the frequency, and the task execution time, the values for the CPU for
P , R, and C lie in the ranges of 17W to 73.5W , 0.27 K

W
to 0.49 K

W
, and 3 J

K
to 560 J

K
,

respectively. For the GPU, the values for P and C lie within the ranges of 102W to
112W , and 80 J

K
to 200 J

K
. For R the single value 0.32 K

W
was determined.

For the offline reward function, several task schedules are created with a weighting
step size of 0.1 utilizing a multi-objective implementation of the HEFT algorithm [220,
221]. The resulting schedules are compared against each other to find schedules that
are not dominated by other schedules. Furthermore, it is checked if the schedules vi-
olate potential system constraints. All weightings that lead to schedules that fulfill the
constrains and are not dominated by other schedules are suitable actions for the new
rule.

An important objective of this chapter is to minimize the response time of the schedul-
ing algorithm. Hence, it is not feasible to create and evaluate several different task sched-
ules to compute a reward value for the online system. So, the schedule created with the
selected weight is only compared to a schedule computed with balanced weights. In
the case of this thesis that focuses on the optimization objectives makespan, energy
consumption, and maximum processing unit temperatures, a balanced weight vector is
(1

3
, 1

3
, 1

3
). If the selected schedule dominates the balanced one, a reward of 10 is re-

turned. The other way round, if the balanced schedule dominates, a reward of −10 is
returned. If no schedule dominates, 0 is returned.

132

8.6 - Evaluation

8.6 Evaluation

In this section, the experimental setup and the evaluation results are presented and dis-
cussed. The evaluation was conducted on a server with an Intel Xeon E5-2650 v4 CPU
with 12 cores at 2.2 GHz each, an NVIDIA Tesla K80, and 128 GB of 2.4 GHz DDR4
SDRAM DIMM (PC4-19200). The CPUs were utilized without hyperthreading and the
scaling governor was set to performance. On the server, CentOS Linux 7.9.2009 with
the kernel 3.10.0, glibc 2.17, the nvidia-470.103, NVIDIA CUDA 11.4, and the GCC 9.3.1
compiler are installed. All parameters used to parameterize the XCS are shown in Table
8.1. The parameter values have been taken from XCSLib. However, the values for the
number of considered past rewards, the number of total rules allowed, δmatch, ϑdelete, and
ϑsubsume have been altered to better reflect the properties of the training scenario. The

Table 8.1: Parameter values of the XCS

Parameter Value
α 0.1
β 0.2
γ 0.7

δdelete 0.1
ε0 10

ϑdelete 3
ϑsubsume 10

ν 5
δmatch 5

Maximum number of rules 400
Maximum number of past rewards 5

evaluation process is separated into two distinct phases. In the first phase, the modified
XCS is trained with several runs of training scenarios, i.e., a set of rules is created that
serves as the initial rule population for the evaluation phase. A training scenario consists
of up to five task graphs forming a pattern that is repeated ten times. Training task graphs
are comprised of up to three applications, in particular a multiplication of quadratic integer
matrices, particle filter of the Rodinia benchmark suite [123], and a Mandelbrot compu-
tation. All applications provide both OpenMP and CUDA implementations for all of their
tasks. Furthermore, each OpenMP task may use one of three frequency scaling levels,
1400MHz, 2100MHz, and 2500MHz. Detailed explanations of the applications can
be found in Section 8.6.1.

133

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

In total, 140 partly randomized patterns are executed in the training phase. A pattern
utilized to train the XCS rule base is built as follows:

• A task graph consisting of matrix multiplications with length three and a random-
ized width between two and five, i.e., between two and five matrix multiplications
may execute in parallel and the matrix multiplications are repeated three times on
the same input data. So, for a graph width of five, ten input matrices and five
output matrices are utilized to create the needed data independence and allow
parallel execution. The dimensions of the matrices are randomized between 2000
and 4000 with a step size of 500.

• The second task graph is built with mandelbrot computations. Its length is set to
four and the width randomized between three and six. Furthermore, the problem
size is randomized between 1000 and 4000 with a step size of 500.

• In every pattern iteration, a task graph with length three combining matrix multi-
plications and mandelbrot computations is added with a probability of 60 % after
the second graph. Hence, this graph contains three sequential matrix multiplica-
tions and three sequential mandelbrot computations. The problem sizes for both
applications are taken from the first and second graph, respectively.

• The fourth graph is made up of two to five iterations of particle filter. For all itera-
tions, the same number of particles is utilized. This number is randomized between
10000 and 50000 with a step size of 10000. To every iteration of particle filter, a
matrix multiplication and a mandelbrot computation is added with a probability of
70 % and 50 %, respectively.

• The last graph of the training pattern contains three sequential particle filter execu-
tion, three sequential mandelbrot computations, and a single matrix multiplication.
The problem sizes for all three applications are taken from the preceding graphs.

In this evaluation, predictions are only simulated and no real model is employed as the
prediction component is not yet integrated into HALadapt. Chapter 7, though, proved
that it is possible to predict upcoming tasks and applications. As randomly arriving task
graphs and tasks cannot be predicted, in this scenario, predictions are only added to the
respective system state descriptions between the first and second, and fifth and first task
graph. The other graphs are specifically designed with randomized components or are
only added to the pattern with a certain probability to simulate aperiodic behavior that
cannot be predicted.

After the training phase, an evaluation with a different execution pattern is conducted.
The pattern is repeated five times and consists of the following five task graphs:

134

8.6 - Evaluation

• The pattern starts with a task graph containing matrix multiplications. The task
graph is of length and width three. The parallel multiplications have problem sizes
of 2000, 2500, and 3000, respectively.

• For the second task graph, the hotspot3D computation with the problem sizes
presented in Sec. 8.6.1 is employed. The graph is initialized with length and width
four.

• The third graph is comprised of MLEM and hotspot3D. It computes three iterations
of MLEM, i.e., a total of twelve sequential tasks. In parallel to MLEM, the task graph
contains four hotspot3D iterations where always two possess a data dependency.

• A fourth graph is added to the pattern in the first, third and fifth pattern repetition.
This graph is comprised of matrix multiplications with width two and length three.
The problem sizes of the matrix multiplication are 2500 and 3500.

• To build the fifth task graph, all three applications are used. The graph includes
three sequential executions of MLEM, three sequential iterations of hotspot3D, and
a matrix multiplication with problem size 3000.

Fig. 8.6 shows the first task graph of the pattern used to evaluate the framework. It
particularly illustrates that the width y of a graph allows to execute up to y tasks in
parallel. The evaluation results are presented in Section 8.6.2.

8.6.1 Applications

Particle filter is a statistical estimator of the locations and paths of target objects in a
Bayesian framework given noisy measurements. The benchmark is mainly composed
of four distinct kernels, likelihood(), sum(), normalizeWeights(), and findIndex(), that are
executed in this sequence iteratively over a set of frames. However, in order to combine
and interchange the CUDA and OpenMP implementations, the two kernels likelihood()
and sum() had to be combined into a single kernel likelihoodSum(). Each kernel is
represented by a single task in HALadapt.

Particle filter is defined by four parameters, the width x and height y of a frame, the
number of frames z, and the number of particlesNp, which have to be set by the user. In
the experiments of this chapter, x and y are set to 128. The number of frames z and the
number of particlesNp are selected randomly between 2 and 4, and 100000 and 500000
with a step size of 100000, respectively. Thereby, the number of frames is equivalent to
the number of times the kernels are repeated within a task graph.

Computation of the Mandelbrot set is a parallel processing benchmark that iteratively
solves the equation fc(z) = z2 + c, where z ∈ C until the absolute value of the com-
plex number is observed to be either diverging or converging. The maximum number of

135

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

Figure 8.6: Task graph one of the evaluation pattern containing matrix multiplications
with width and length three and problem sizes 2000 to 3000

iterations is set to 1000000 and the maximum absolute value to 1024. For visualization,
colors are derived by mapping the number of iterations until termination to a color palette,
where black indicates convergence. In HALadapt, the computation is represented by a
single task with an OpenMP and a CUDA implementation. The Mandelbrot application
is defined by a single problem size parameter that is set randomly between 1000 and
4000 with steps of 500. A problem size of 4000 results in the computation of 32000000
complex numbers.

The matrix multiplication implemented for this evaluation multiplies two quadratic in-
teger matrices. Therefore, only a single parameter is needed to define the application,
the dimension of a matrix. The dimension is randomized between 2000 and 4000 with a
step size of 500.

Hotspot3D iteratively computes the heat distribution of a 3D chip represented by a grid.
In every iteration, a new temperature value depending on the last value, the surrounding
values, and a power value is computed for each element of the grid. I combined 500 iter-
ations to create a task for HALadapt and provided OpenMP and CUDA implementations
for a task. The size of the chip is set to 512× 512× 8.

136

8.6 - Evaluation

The Maximum Likelihood Expectation Maximization (MLEM) algorithm [222, 223]
reconstructs 3D images from data obtained from Positron Emission Tomography (PET)
scanners. Reconstructing a 3D image from the scanner readout is an inverse problem.
The algorithm requires two inputs: the scanner readout and the system matrix and is
therefore defined by their size. Hereby, the system matrix describes the properties of the
PET scanner, e.g., the spatial arrangement of the detectors and the physical effects dur-
ing image acquisition. The system matrix used in this thesis describes the small animal
PET scanner Madpet-II [224] and contains 22511722 non-zero elements. It consumes
around 173 MB of memory stored in compressed sparse row (CSR) format.

MLEM consists of the following four computation kernels that are all represented by
an individual task in its HALadapt implementation:

1. Calculate the estimated scanner readout by using the current image approxima-
tion.

2. Calculate a correction vector by correlating the estimated readout with the actual
readout.

3. Transfer the correction factor into the image domain.

4. Apply the correction factor and a normalization to the image in order to obtain a
new image estimate.

8.6.2 Results

The first goal of the conducted experiments is to evaluate the ability of my approach to
improve the balance of the system’s optimization objectives and with that the resulting
task schedule. Therefore, my approach is compared to the results of a HEFT schedul-
ing algorithm that employs the same weight of 1

3
to the three optimization objectives

makespan, energy consumption, and maximum temperature. The evaluation scenario
described in Sec. 8.6 is repeated ten times for both algorithms. After every experiment
iteration, the rule set is reset to its state after the training phase. To compare the ap-
proaches, the minimum, the maximum, the average, and the standard deviation σ of
the overall makespan, energy consumption, maximum GPU temperature, and maximum
temperature of a CPU core are monitored and computed. The results are presented
in Tab. 8.2. Over the ten experiment iterations, my approach reduces the makespan
by 10.4 % or 26.7 s, the energy consumption by 4.7 % or 2061.1 J , and the maximum
temperature of the GPU by 3.6 % or 2.7K on average. Only the maximum CPU core
temperature is increased by 6 % or 2.3K. The small values of the standard deviation,
e.g., just 0.8K for the maximum GPU temperature or 2.2 s for the makespan, confirm
that these results are stable and are obtained in every iteration of the experiment. An-
other important research topic is the question if my approach is able to learn rules that

137

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

Makespan Energy Max GPU temp. Max CPU core temp.
min. 253.6 s 43.5 kJ 74 ◦C 37 ◦C

XCS & HEFT avg. 257.7 s 43.98 kJ 75.7 ◦C 38.2 ◦C
max. 260.7 s 44.55 kJ 77 ◦C 39 ◦C
σ 2.2 s 283.7 J 0.8K 0.6K

min. 284.2 s 44.71 kJ 77 ◦C 35 ◦C
Balanced HEFT avg. 284.4 s 46.05 kJ 78.4 ◦C 35.9 ◦C

max. 284.6 s 47.65 kJ 79 ◦C 37 ◦C
σ 0.16 s 888.7 J 0.7K 1K

Table 8.2: Results of the evaluation scenario for the combination of XCS and HEFT and
balanced HEFT

are general enough to be utilized outside of their training scenario. In order to answer
this question, I monitored the number of rule matches in the first pattern iteration over
the ten experiment runs. Only the first iteration is considered because after the first iter-
ation newly generated rules may have been added to the rule set. In all ten experiment
iterations, rule matches were registered for the third and fourth task graph. Additionally,
in three out of the ten iterations further matches were monitored for task graphs two and
five. So, it is fair to say that it is possible to learn generally applicable rules with my
approach.

The second objective of this approach is to reduce the response time of the scheduling
algorithm while still guaranteeing proactive adaptation and an efficient task schedule. As
the generation of new rules can be done offline, the most overhead is produced by the
online reward mechanism. To evaluate the overhead, I measured the execution time
of the online reward mechanism for all five task graphs of the evaluation scenario. On
average, it executed for 0.115 s to compute the necessary reward for the five task graphs.
The largest overhead was created for the computation of the second graph with 0.224 s.
This approximately matches the time HALadapt needs to execute the HEFT algorithm
itself. To evaluate the capability of my approach to adapt the system to new situations,
an additional experiment is conducted. After two iterations of the evaluation pattern,
maximum temperatures for the CPU cores and the GPU are set. These constraints then
have to be considered by the XCS. In this experiment, the limit was set to 37 ◦C for the
CPU cores and 69 ◦C for the GPU. After two iterations of the pattern, the CPU cores have
a maximum temperature of 34 ◦C and the GPU has a maximum temperature of 72 ◦C.
For the three remaining pattern iterations, max temperatures of 37 ◦C and 74 ◦C were
monitored. The average for the maximum temperatures over all applications is 36.1 ◦C
and 73.2 ◦C. Compared to maximum temperatures monitored in the first experiment, this
is a decrease for the maximum GPU temperature while keeping the CPU temperature
below the set threshold. However, it was not possible to fulfill both constraints as the
GPU temperature remains over 69 ◦C.

138

8.7 - Summary and Conclusion

8.7 Summary and Conclusion

The objective of this chapter is to utilize the knowledge acquired in Chapters 6 and 7
to dynamically and, in particular, proactively adapt the system to avoid disadvantageous
system states. This has to be done without the help of exhaustive search algorithms as
a fast response time is a necessity for the systems this thesis focuses on. A solution
for these challenges is provided by Müller-Schloer’s and Tomforde’s hierarchical MLOC
framework. The framework employs a modified XCS and an offline rule generator to
proactively and safely adapt a underlying system. Additionally, the offline rule generation
guarantees a fast response time of the XCS.

This chapter proposes an adaptation and implementation of this framework in the
context of task scheduling. An important part of an XCS is its reward function that allows
the classifier system to evaluate its rules and progress its knowledge. To implement the
reward function, this thesis provides a novel task cost simulator that is able to compute
the costs of a task graph offline. The simulator employs a simulation model for heat
dissipation, the lumped RC model, and utilizes HALadapt’s execution database.

To evaluate the framework, the evaluation process was split into two distinct phases.
The first phase, the training phase, learns and builds the initial rule set for the evalua-
tion phase. For the training, an execution pattern including randomized elements was
deployed (s. Sec. 8.6 for a detailed elucidation of the training pattern). A pattern was re-
peated ten times and a total of 140 patterns were executed. The evaluation phase uses
a pattern of up to five task graphs that is repeated five times. In total, the experiment
was repeated ten times. Thereby, my approach reduced makespan by 10.4 %, energy
consumption by 4.7 %, and the maximum temperature of the GPU by 3.6 % while only in-
creasing the maximum CPU core temperature by 6 %. The experiment also showed that
my approach is able to learn rules that are applicable outside of their training scenario
and that its overhead is in the magnitude of an additional HEFT algorithm execution.
Hence, the overhead is usually neglectable compared to the makespan of application
patterns and the potential schedule improvements.

To summarize, this chapter provides the control mechanism of this thesis’ holistic ap-
proach. It utilizes the knowledge acquired in the previous chapters to dynamically and
proactively adapt the system to new situations by finding an efficient balance between
the system’s contradicting optimization objectives. This is achieved without creating sig-
nificant overhead.

139

Chapter 8 - Dynamically Balancing Contradicting Optimization Goals

140

CHAPTER

NINE

TASK-SCHEDULING IN TASK-BASED RUNTIME
SYSTEMS

This chapter covers the task scheduling component of the overall approach. The com-
ponent is used to influence and direct the behavior of the underlying system according
to the decisions made in Chapter 8. In particular, the task scheduling component utilizes
the weights for the optimization goals provided by the balancing mechanism to evaluate
and choose between possible scheduling candidates. In the holistic approach presented
in Section 4.2, this chapter is represented by the yellow task scheduling box.

Task scheduling, in general, is a good method to direct the system behavior as it
directly determines which task is executed when and where. Thereby, task scheduling
controls the system load, the energy consumption, and heat generation of the system.
In the context of this thesis, scheduling is strictly limited to mapping tasks to processing
units and setting their execution order. This excludes scheduling other resources, e.g.,
giving exclusive access to a cache to a specific set of tasks. Additionally, preempting
tasks that are already executing is also not supported in the scope of this thesis.

In this thesis, two differing scheduling scenarios are considered. The first scenario fo-
cuses on dynamically arriving independent tasks of a single process, i.e., all tasks belong
to a single runtime system instance. Additionally, priorities are assigned to these tasks
to support soft real-time constraints. Here, a dynamic priority adaptation scheme is de-
signed that is able to improve the overall makespan of scheduled applications. The focus
of the second scenario lies on the coordination of multiple processes, where each pro-
cess possesses its own runtime system instance that schedules a set of tasks organized
in a directed acylcic graph (DAG). This thesis contributes a co-scheduling mechanism
that is able to dynamically re-schedule tasks that are already scheduled but not yet run-
ning when a new process arrives in the system. The mechanism, thereby, utilizes shared
memory to implement communication between the different processes.

141

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

The remainder of this chapter is organized as follows. The formal definition of the
scheduling problem and some necessary fundamentals are introduced in Section 9.1.
Section 9.2 motivates and discusses the first task scheduling scenario, dynamic schedul-
ing of independent tasks with priorities, and presents my associated scheduling mecha-
nism and its evaluation. Scenario two is the topic of Section 9.3. This includes a motiva-
tion of this scenario, the developed scheduling mechanism, and the obtained evaluation
results. Finally, the chapter ends by summarizing the two scheduling mechanisms and
the insights obtained during their evaluation in Section 9.4.

This chapter contains previously published content [10, 16, 11, 12].

9.1 The Scheduling Problem

The formal scheduling problem is known to be NP-equivalent, which means the associ-
ated Entscheidungsproblem is NP-complete [225]. The basic scheduling problem com-
prises a set of n tasks T := {t1, . . . , tn} that has to be assigned to a set ofm processing
units P := {p1, . . . , pm}. Next to mapping a task ti to a processing unit pj , scheduling
also includes the assignment of an ordering and time slices. In the case of heteroge-
neous systems, the processing units pj may have different characteristics, which can
lead to varying executions times for a single task on different units [220]. The execution
times are stored in an n×m matrix W .

Additionally, a set of tasks can be represented by a directed acyclic graph (DAG)
G = (V, E), where V is the set of v tasks and E the set of edges between the tasks.
An edge (ti, tj) ∈ E represents a data dependency between tasks ti and tj , which
means that task ti has to be executed before task tj . The data that has to be moved
between the tasks because of the data dependencies are represented by a v× v matrix
D. Data transfer rates between the processors are represented by an m × m matrix
B. So, the communication costs between tasks ti and tj run on processors pl and pk
are defined as ci,j =

Di,j

Bl,k
. If two processors use the same memory, the communication

costs are 0.
As there is no algorithm that can solve all scheduling problems efficiently, there ex-

ist many heuristics. Generally, these can be classified into static and dynamic algo-
rithms [226]. The main difference is that static algorithms make all decisions before a
single task is executed, whereas dynamic algorithms schedule tasks at runtime. Hence,
static algorithms have to know all relevant task information beforehand, while dynamic
ones do not need full information and are able to adapt their behavior.

In this thesis, two different dynamic scenarios are considered. Section 9.2 targets
tasks that may potentially create infinite task instances for execution and whose start
times may be unknown. This scenario combines minimizing the total makespan with
task priorities and hence, considering task starvation and waiting time minimization as
optimization goals. In general, task priorities can be set for every instance of a task and

142

9.2 - Task Scheduling with Priorities

then remain static over its lifecycle, or they are dynamically set for every task instance at
runtime and may change over time [184]. The earliest deadline first (EDF) algorithm [227]
is a well-known example with dynamic task priorities. Each task instance is assigned the
priority p = 1

d
when it arrives in the system, where d is the deadline of this instance.

Contrary to EDF, rate-monotonic scheduling [228] assigns static priorities. Each task is
assigned the priority p = 1

ri
, where ri is the period of task ti. In the considered scenario,

an application developer is allowed to assign a static priority to a task, which is then used
for all instances of this task. However, an aging mechanism that is allowed to increase
the priority of a single task instance in order to improve fairness if the waiting time of
an instance is considered too long is utilized in addition. It has to be noted that task
preemption is not supported in this scenario.

Section 9.3 covers the coordination of multiple processes, called co-scheduling. In
this scenario, processes with their own set of tasks are started independently and run in
parallel. Beforehand it is not known which processes are started and at which point in
time a new process arrives in the system.

9.2 Task Scheduling with Priorities

Modern computing systems used in fields like embedded and high performance comput-
ing feature a high degree of parallelism and are often equipped with additional accelera-
tors, e.g., GPUs. This parallelism can be used to execute different functionality or appli-
cations in parallel as not all applications are able to exploit the available computational
power due to a lack of scaling capability. However, executing multiple applications and
their corresponding tasks in parallel can be problematic if a certain quality of service is
required or expected for a subset of the applications. A common way to express differing
importance of applications or functionality in non-safety-critical systems is to assign pri-
orities accordingly. In highly utilized systems though, static task priorities can lead to the
starvation of certain tasks. Starvation can be avoided by applying aging mechanisms.
Aging refers to the technique of raising the priority of tasks that have waited a certain
amount of time in the system for execution. This is not to be confused with hardware
aging, where the fault rate of a hardware component increases over its lifetime.

Today’s computing systems are often dynamic in nature, which means that the set of
tasks to be executed does not remain static, and tasks’ start times may be unknown as
they may be triggered by signals or user interactions. Therefore, the focus of this section
is on dynamic scheduling algorithms. An adaptive aging mechanism that considers the
current system state and load is added to avoid starvation.

Generally, heterogeneous architectures present many challenges to application de-
velopers. A state-of-the-art solution is offered by task-based runtime systems that ab-
stract from the underlying system and provide helpful functionality for developers. To
utilize these features, an existing task-based runtime system, the Embedded Multicore

143

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

Building Blocks (EMB2) (s. Section 3.4), an open-source runtime system and library
developed by Siemens is used as a basis to implement the scheduling algorithms. In
summary, this section provides the following contributions:

• Six dynamic scheduling algorithms are integrated into a task-based runtime sys-
tem and the ability to consider task priorities is added to the scheduler module.

• A two-level adaptive aging mechanism is developed to extend the scheduling mod-
ule.

• The algorithms are evaluated with and without aging on a real system and their
behavior in terms of different metrics is investigated.

• The effect of aging in these experiments is analyzed.

In two evaluation scenarios, three independent heterogeneous tasks with differing prior-
ities and sporadic start times for the task instances, and two benchmarks of the Rodinia
benchmark suite [123], hotspot3D and particlefilter, in parallel with different priorities, the
results show an improvement of total average makespan (average speed up of 3.75 %
and 2.16 % for five and four out of six algorithms, respectively) while reducing the waiting
time of the lower priority tasks.

9.2.1 Related Work

Known existing task-based runtime systems such as HALadapt [60, 5], the TANGO
framework [29], and HPX [80] do not employ task priorities to distinguish application
importance. StarPU [6], though, supports assigning a priority per processing unit type to
a task. Compared to this thesis, StarPU does not adapt priorities at runtime.

Task or job scheduling algorithms with priorities are usually employed in the context of
real-time systems, especially hard real-time systems with strict deadlines. These algo-
rithms can be classfied by the way they assign priorities [184]. Algorithms like EDF [227]
or least laxity first (LLF) [229] assign each task instance a different priority. Thereby,
EDF assigns each instance an individual static priority based on its deadline (s. Sec.
6.1), whereas the priorities assigned by LLF are dynamically adapted as the laxity, the
remaining time until a task has to be started to fulfill its deadline, decreases over time
[184]. Contrary to this, algorithms like RMS [228] set a static priority that applies to each
instance. The work of this paper differs from these algorithms as my tasks do not pos-
sess deadlines. In my work, an application developer is allowed to set a priority for a task
that then applies to each instance. However, I additionally utilize an aging mechanism to
increase fairness, i.e., priorities may be dynamically adapted.

Similarly to EDF, list scheduling algorithms [220, 230, 231] prioritize and then order
individual task instances by computing metrics like the upward rank used by the hetero-
geneous earliest finish time (HEFT) heuristic.

144

9.2 - Task Scheduling with Priorities

Kim et al. [232] consider task priorities and deadlines in the context of dynamic sys-
tems, where the arrival of tasks is unknown. The paper uses three priority levels, high,
medium, low, that can be assigned to task instances. The priorities are combined with
the tasks’ deadlines to compute the worth of executing a task. Thereby, a scheduling
order is created. In contrast to our approach, priorities are not dynamically adapted to
avoid starvation.

Aging mechanisms have been employed in several other works. Kannan et al. [233]
implemented three priority queues and task instances get promoted to a higher priority
level after a fixed time interval. Similarly, the priority of a task also gets promoted at
fixed time intervalls in [234]. In [235], a counter is decreased after high priority tasks are
executed. If a threshold is reached, a low priority task is executed next.

9.2.2 Extensions to EMBB

EMB2 is designed and implemented in a modular fashion that easily allows developers to
add further scheduling policies. However, a few extensions were necessary to implement
the selected algorithms and extend them via an aging mechanism.

An abstract scheduling module and a general abstraction for processing units and
grouped identical processing units in classes to allow a uniform treatment of all pro-
cessing units was introduced. Every processing unit is implemented with an OS-level
worker thread. Workers corresponding to CPU cores are directly pinned to their respec-
tive cores, but are assigned a lower priority than device workers. The idea is that the
device worker threads are not used for computation directly, and merely use the CPU for
short periods of time to communicate with a device. The task scheduler then submits
tasks to the worker threads for execution. Both the task scheduler and the processing
unit abstractions use waiting queues to store submitted and assigned tasks, respectively.
For EMB2 to be able to support different task priorities, each component owns a set of
queues with one queue for every priority level available in the system. Assigned tasks
and tasks ready to execute are then stored in queues according to their current priority.

Scheduling algorithms usually need task execution times to make sophisticated deci-
sions. These can either be given by the user, an analysis step or predicted at runtime.
For this algorithm, the focus lies on dynamic systems which means that problem sizes
are not known beforehand and static analyses are not possible. Therefore, I extended
EMB2 by a monitoring component that measures task execution times and stores them
within a history database with the problem size as key similar to the mechanism used
in [5]. As of yet, EMB2 does not consider data transfers separately. So, a task executed
on an accelerator always transfers its data on and off the accelerator regardless of its
predecessor and successor tasks. Therefore, the task execution times always include
the necessary data transfers. The stored data is then used to predict execution times
of upcoming tasks to improve scheduling decisions. If there is already data stored for a

145

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

particular task’s implementation version and problem size, the data can be used directly.
If there is data for a task’s implementation version but with different problem sizes, inter-
polation is utilized to predict the execution time. In the case of no available data, EMB2

executes this implementation version to create a database entry.

Aging Mechanism

To avoid starvation of tasks, a two-level aging mechanism was added to the scheduling
module of EMB2. The first level is directly part of the scheduler module. Tasks ready to
execute are stored into priority-specific ready-queues in the task scheduler. Therefore, if
there are n distinct priority levels, n separate ready-queues are created. Each time the
scheduler is activated, each non-empty queue with a priority lower than the set maximum
priority is checked for potential aging candidates if at least two times the amount of active
processing units of tasks are currently ready to execute. So, the aging mechanism is only
activated if at least 2 · p tasks are enqueued, where p ist the number of currently active
processing units. A task in a ready-queue is selected for priority promotion if the task is
older than the average task waiting time multiplied with a threshold factor αprom. Formally,
this is defined as:

promote priority of ti if waitingT ime(ti) >

m∑
j=1

waitingT ime(tj)

m
· αprom, (9.1)

where m is the total number of tasks currently submitted to the task scheduler. After
a task is promoted to a new priority queue by increasing its priority, the task is pushed
to the back of the queue and its waiting time reset to 0. The second level of the aging
mechanism targets the processing units’ waiting queues. Each processing unit pos-
sesses priority-specific queues, where assigned tasks are stored. Again, if there are n
distinct priority levels, each processing unit possesses n separate waiting queues. A
task is assigned to the priority level, which it last had in the scheduler. As long as a
processing unit is active, i.e., at least one waiting queue is non-empty, each non-empty
queue with a priority lower than the set maximum priority is checked for potential ag-
ing candidates. Again, a task in a waiting queue is selected for priority promotion if the
task is older than the average queue waiting time multiplied with a threshold factor αprom

(s. Equation 9.1). Actually, different threshold factors αprom can be used. However in
this work, I use αprom = 1.7 for both levels. This value was determined empirically as
a compromise to reduce overall priority promotion while still enabling the promotion for
long-waiting tasks. Again, the waiting time of a task is reset after a promotion and it is
pushed to the back of the new queue.

146

9.2 - Task Scheduling with Priorities

9.2.3 Dynamic Scheduling Algorithms

This section presents the algorithms that have been integrated into EMB2. The algo-
rithms were selected on the basis of their runtime overhead, since scheduling decisions
have to be made as fast as possible in dynamic systems, their implementation complex-
ity, and their ability to work with limited knowledge about the set of tasks to be executed.
The selected heuristics can be classified into immediate and batch mode. Immediate
mode considers tasks in a fixed order, only moving on to the next task after making a
scheduling decision. In contrast, batch mode considers tasks out-of-order and so delays
task scheduling decisions as long as possible, thereby increasing the pool of potential
tasks to choose from.

Immediate Mode Heuristics

Minimum Completion Time (MCT)
[236] combines the execution time of a task ti with the estimated completion time ct of
the already assigned tasks of a processing unit pj . In total, MCT predicts the completion
time ct of a task ti and assigns ti to the processing unit pj that minimizes ct of ti.

Batch Mode Heuristics

Min-Min
[237] extends the idea of MCT by considering the complete set of currently ready-to-
execute tasks. The heuristic then assigns the task ti that has the earliest completion
time to the processing unit pj that minimizes the completion time of ti ct(ti). In general,
the core idea is to schedule shorter tasks first to encumber the system for as short a
time as possible. This can lead to starvation of larger tasks if steadily new shorter tasks
arrive in the system.

Max-Min
[232] is a variant of Min-Min and based on the observation that Min-Min often leads to
large tasks getting postponed to the end of an execution cycle, needlessly increasing the
total makespan because the remaining tasks are too coarse-granular to partition equally.
So, Max-Min schedules the tasks with the latest minimum completion time first, leaving
small tasks to pad out any load imbalance in the end. However, this can lead to starva-
tion of small tasks if steadily new longer tasks arrive.

147

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

RASA
[238] is a combination of both Min-Min and Max-Min. It uses them alternatively for each
iteration, starting with Min-Min if the number of resources is odd, and Max-Min otherwise.
This way, RASA tries to negate the disadvantages of Min-Min and Max-Min respectively
and to combine their strengths.

Sufferage
[232] ranks all tasks ready-to-execute according to their urgency based on how much
time the task stands to lose if it does not get mapped to its preferred resource. The
ranking is given by the difference between the task’s minimum completion time and the
minimum completion time the task would achieve if the fastest processing unit would not
be available. Tasks that do not have a clear preference for a processing unit are prone
to starvation.

Relative Cost (RC)
[239] uses the new metric rc, which divides the ct of a task ti by its average ct over
all processing units, to rank tasks. RC both utilizes a static and a dynamic variant of
the relative cost metric to compute the final metric. The static variant is defined as
γs(ti, pj) =

et(ti,pj)

etavg(ti)
, where et(ti, pj) is the execution time of task ti on processing unit

pj , and etavg(ti) is the average execution time of ti over all processing units. γd(ti, pj),
the dynamic variant is defined as γd(ti, pj) =

ct(ti,pj)

ctavg(ti)
, where ct(ti, pj) is the completion

time of ti on pj , and ctavg(ti) is the average ct of ti over all processing units. The second
variant is dynamic as ct is updated after each time a task is mapped to a processing
unit. The variants are then combined into rc = γs(ti, pj)

α · γd(ti, pj), where α ∈ [0, 1]
determines the effect of the static costs. In this work, I use α = 0.5. RC then maps the
task with minimum rc to pj that minimizes ct(ti).

9.2.4 Evaluation

As benchmarks, I considered two different scenarios with all benchmark tasks providing
both a CPU and a GPU OpenCL implementation. The first scenario consists of three
independent heterogeneous tasks with differing priorities and has already been used in
previous work [10]. This benchmark resembles dynamic systems as the task instances
are started sporadically, thereby adding a random component to the starting point of a
task instance.

For the second scenario, two benchmarks of the Rodinia benchmark suite [123],
Hotspot3D and Particlefilter, are executed in parallel with different priorities. Both bench-
marks distribute their work over several parallel tasks.

All experiments were conducted ten times with and without aging. For each exper-
iment, I measured the makespan of each application or job, and the total makespan

148

9.2 - Task Scheduling with Priorities

of all tasks. Then, the average, the minimum, and the maximum were computed. The
makespan is defined as the time from start to finish of an application or task. Additionally,
I measured the flow time of each task and again computed the average, the minimum,
and the maximum. The flow time of ti is defined as ti,flow = ti,finish − ti,release, where
ti,release is the release time or system arrival time of ti and ti,finish is the finish time of ti.
So, ti,flow is basically the time ti spends in the system. It has to be noted that the flow time
is usually dominated by a task’s waiting time. This potentially leads to large differences
between minimum, average, and maximum values.

The experiments were performed on a server with two Intel Xeon E5-2650 v4 CPUs
with 12 cores at 2.2 GHz each and dynamic voltage and frequency scaling enabled, an
NVIDIA Tesla K80, and 128 GB of 2.4 GHz DDR4 SDRAM DIMM (PC4-19200). The soft-
ware environment includes Ubuntu 18.04.3, the Linux 4.15.0-74.84-generic kernel, glibc
2.27, and the nvidia-410.48 driver. EMB2 was compiled with the GCC 7.4.0 compiler.
Additionally, EMB2 was limited to 16 CPU cores for the experiments in order to increase
the system load and simulate a highly utilized system.

The scheduling algorithms presented in Section 9.2.3 operate in the so-called pull
mode. In pull mode, the scheduler gets triggered iff at least one processing unit is idle.
This mode was chosen because it allows the scheduler to accumulate a set of tasks
before making a scheduling decision, which is needed to be able to benefit from the
batch mode heuristics.

Independent Heterogeneous Jobs

The first scenario is comprised of three video-processing tasks that have both an OpenCL
and a CPU implementation:

• J1 (Mean): A 3× 3 box blur.

• J2 (Cartoonify): Performs a Sobel operator with a threshold selecting black pixels
for edge regions and discretized RGB values for the interior. The Sobel operator
consists of two convolutions with different 3×3 kernels followed by the computation
of an Euclidean norm.

• J3 (Black-and-White (BW)): A simple filter which replaces (R,G,B) values with
their greyscale version (R+G+B

3
, R+G+B

3
, R+G+B

3
).

All operations were applied to the kodim23.png test image. The three operations execute
for 72.8ms, 165.97ms, and 11.4ms on the CPU and 3.4ms, 3.1ms, and 3.1ms on the
GPU. Different priorities were assigned to the three tasks. Mean was assigned the prior-
ity 1, Cartoonify the priority 2, and Black-and-White the priority 0 with 2 being the highest
and maximum priority in the system. A sporadic profile was used to create instances of
these three tasks. New task instances were released with a minimum interarrival time

149

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

of 1
k
secs, where k is the parameter to control the load, plus a random delay drawn from

an exponential distribution with parameter λ = k. By varying k, I can generate a range
of different loads to create different profiles for the scheduling heuristics evaluation. The
evaluation workload consists of 3000 task instances corresponding in equal proportions
to instances of all three tasks. To simulate a heavily utilized system, the experiment was
conducted with k = 2000. The results of the makespan measurements can be seen in
Table 9.1. They show that for five out of six algorithms the average total makespan is

MCT Min-Min Max-Min Suff RASA RC
min w/o aging 1.43 s 1.46 s 1.45 s 1.46 s 1.42 s 1.44 s
min w/ aging 1.68 s 1.64 s 1.79 s 1.51 s 1.79 s 1.59 s

Cartoonify avg w/o aging 1.49 s 1.56 s 1.54 s 1.53 s 1.59 s 1.52 s
avg w/aging 1.88 s 1.87 s 2.22 s 1.68 s 2.25 s 1.82 s
max w/o aging 1.64 s 1.70 s 1.65 s 1.74 s 1.78 s 1.65 s
max w/ aging 2.38 s 2.24 s 3.67 s 2.23 s 3.71 s 2.69 s
min w/o aging 2.17 s 2.31 s 2.35 s 2.36 s 2.29 s 2.35 s
min w/ aging 2.20 s 2.69 s 2.46 s 2.48 s 2.43 s 2.70 s

Mean avg w/o aging 2.29 s 2.45 s 2.49 s 2.48 s 2.51 s 2.46 s
avg w/ aging 2.37 s 2.86 s 2.71 s 2.60 s 2.62 s 2.85 s
max w/o aging 2.55 s 2.82 s 2.70 s 2.86 s 2.93 s 2.70 s
max w/ aging 2.57 s 3.08 s 3.23 s 2.68 s 3.14 s 3.06 s
min w/o aging 2.38 s 2.75 s 2.79 s 2.83 s 2.68 s 2.85 s
min w/ aging 2.28 s 2.42 s 2.72 s 2.52 s 2.35 s 2.56 s

BW avg w/o aging 2.51 s 2.92 s 2.98 s 2.95 s 2.96 s 2.97 s
avg w/ aging 2.46 s 2.57 s 2.98 s 2.74 s 2.58 s 2.80 s
max w/o aging 2.77 s 3.27 s 3.23 s 3.32 s 3.38 s 3.27 s
max w/ aging 2.70 s 2.74 s 3.23 s 2.84 s 2.75 s 2.99 s
min w/o aging 2.38 s 2.75 s 2.79 s 2.83 s 2.68 s 2.85 s
min w/ aging 2.31 s 2.69 s 2.72 s 2.62 s 2.52 s 2.70 s

Total avg w/o aging 2.51 s 2.92 s 2.98 s 2.95 s 2.96 s 2.97 s
avg w/ aging 2.47 s 2.86 s 3.03 s 2.74 s 2.82 s 2.90 s
max w/o aging 2.77 s 3.27 s 3.23 s 3.32 s 3.38 s 3.27 s
max w/ aging 2.70 s 3.08 s 3.67 s 2.82 s 3.71 s 3.06 s

Table 9.1: Makespan results of the independent heterogeneous jobs experiment

improved by adding the aging mechanism, with Max-Min being the only algorithm where
the makespan increases by 1.6 % or 0.05 s. On average over all algorithms that show
an improvement, the average makespan is improved by about 3.75 %. Sufferage profits
the most with an improvement of about 7.5 % or 0.24 s. Considering the single applica-
tions, aging increases the average makespan for Cartoonify by about 26.9 % or 0.42 s
and for Mean by about 8.9 % or 0.22 s compared to a decrease of 6.7 % or 0.19 s for
Black-and-White. Especially for Max-Min and RASA, which uses Max-Min, the average
makespan of Cartoonify suffers from an increase of over 40 %. Other noteworthy results
are an increase of over 13.7 % for the maximum measured total makespan for Max-Min
and of over 9.5 % for RASA, which correlates with an increase of 123.1 % and 108 %
respectively for Cartoonify. Comparing the algorithms, MCT achieves the best average
total makespan with and without aging while Max-Min achieves the worst result in both
cases. Sufferage gets the second best results in both cases.

150

9.2 - Task Scheduling with Priorities

Further, I obtained results for the flow time ti,flow of each task instance ti and then
computed the minimum, average, and maximum flow time for all three tasks. Table 9.2
lists the results. The results show a significant increase, by 95.2 % or 0.15ms on av-

MCT Min-Min Max-Min Suff RASA RC
min w/o aging 1.54 ms 1.61 ms 1.46 ms 1.49 ms 1.46 ms 1.48 ms
min w/ aging 1.77 ms 2.00 ms 1.47 ms 1.56 ms 1.51 ms 1.61 ms

Cartoonify avg w/o aging 214.01 ms 239.59 ms 222.93 ms 229.04 ms 233.67 ms 220.88 ms
avg w/ aging 477.43 ms 355.65 ms 427.44 ms 230.28 ms 730.11 ms 202.69 ms
max w/o aging 1047.54 ms 948.90 ms 1500.34 ms 1137.52 ms 1000.74 ms 1124.99 ms
max w/ aging 1306.71 ms 1553.85 ms 3624.45 ms 1454.86 ms 3313.17 ms 1838.82 ms
min w/o aging 1.81 ms 1.72 ms 1.62 ms 1.72 ms 1.64 ms 1.64 ms
min w/ aging 2.99 ms 6.05 ms 1.65 ms 1.81 ms 1.66 ms 1.79 ms

Mean avg w/o aging 1073.45 ms 1208.23 ms 1206.62 ms 1261.46 ms 1145.06 ms 1226.23 ms
avg w/ aging 904.87 ms 1092.57 ms 1030.84 ms 1073.86 ms 886.34 ms 1213.63 ms
max w/o aging 1498.08 ms 2570.64 ms 2708.11 ms 2513.19 ms 2180.18 ms 2605.41 ms
max w/ aging 1459.64 ms 26617.62 ms 3196.53 ms 1904.88 ms 2830.09 ms 2883.13 ms
min w/o aging 1.41 ms 1.69 ms 1.33 ms 1.41 ms 1.44 ms 1.57 ms
min w/ aging 1.76 ms 1.76 ms 1.49 ms 1.37 ms 1.48 ms 1.73 ms

BW avg w/o aging 1744.71 ms 2085.71 ms 2085.25 ms 2142.52 ms 2016.48 ms 2123.33 ms
avg w/ aging 1400.28 ms 1333.99 ms 1946.73 ms 1587.36 ms 1263.95 ms 1517.70 ms
max w/o aging 2365.10 ms 2823.32 ms 3116.59 ms 2914.91 ms 2817.72 ms 3026.06 ms
max w/ aging 2089.93 ms 2161.86 ms 3210.39 ms 2321.71 ms 2402.84 ms 2666.41 ms

Table 9.2: Flow time results of the independent heterogeneous jobs experiment

erage, in the average flow time for Cartoonify in 5 out of 6 experiments, with RC being
the exception. For Cartoonify, this correlates with an increase in the maximum flow time
for each algorithm. In contrast, the average flow time for both Mean and Black-and-
White decreases for each algorithm by 13.1 % or 153.2ms on average and 25.67 % or
524, 7ms on average, respectively. This shows the desired effect of the aging mecha-
nism as the waiting time for instances of both tasks is reduced by increasing their priority
if the waiting time has become too long. For Black-and-White, this also correlates with a
decrease in the maximum flow time measured.

Parallel Applications

The second scenario consists of two Rodinia benchmark applications, hotspot3D and
particle filter, executed in parallel. Particle filter was assigned the priority 1, and hotspot3D
the priority 0.

Hotspot3D iteratively computes the heat distribution of a 3D chip represented by a grid.
In every iteration, a new temperature value for each grid element depending on the tem-
perature value of this element in the last iteration, the surrounding values, and a power
value is computed. The computation was parallelized over the z-axis by integrating it
into EMB2. The CPU implementation then further splits its task into smaller CPU specific
subtasks. This is done manually and statically by the programmer to use the underlying

151

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

MCT Min-Min Max-Min Suff RASA RC
min w/o aging 26.46 s 26.52 s 25.97 s 26.57 s 26.62 s 25.61 s
min w/ aging 27.25 s 25.96 s 26.37 s 26.82 s 26.23 s 26.42 s

Particle filter avg w/o aging 27.61 s 27.73 s 27.82 s 27.72 s 27.56 s 27.85 s
avg w/ aging 27.76 s 27.17 s 27.49 s 27.61 s 27.62 s 27.67 s
max w/o aging 28.79 s 27.92 s 28.83 s 28.54 s 28.79 s 29.56 s
max w/ aging 28.62 s 28.37 s 28.55 s 28.97 s 29.15 s 29.47 s
min w/o aging 26.84 s 27.82 s 29.91 s 30.52 s 26.63 s 30.22 s
min w/ aging 26.27 s 25.37 s 26.02 s 25.93 s 25.33 s 27.82 s

Hotspot3D avg w/o aging 30.93 s 30.59 s 31.44 s 31.38 s 30.71 s 31.78 s
avg w/ aging 30.70 s 30.59 s 30.03 s 30.96 s 30.64 s 30.93 s
max w/o aging 32.60 s 32.18 s 32.02 s 32.28 s 32.09 s 33.46 s
max w/ aging 31.81 s 31.91 s 31.71 s 32.47 s 31.83 s 33.16 s
min w/o aging 26.84 s 27.82 s 29.91 s 30.52 s 26.63 s 30.22 s
min w/ aging 27.42 s 26.68 s 26.62 s 26.82 s 26.48 s 27.82 s

total avg w/o aging 30.93 s 30.59 s 31.44 s 31.38 s 30.71 s 31.78 s
avg w/ aging 30.81 s 30.72 s 30.09 s 31.05 s 30.76 s 30.93 s
max w/o aging 32.60 s 32.18 s 32.02 s 32.28 s 32.09 s 33.46 s
max w/ aging 31.81 s 31.91 s 31.71 s 32.47 s 31.83 s 33.16 s

Table 9.3: Makespan results of the Rodinia benchmarks experiment

parallelism of the multicore CPU and still have a single original CPU task that handles
the same workload as the GPU task. For the evaluation, a 512 × 512 × 8 grid with
the temperature and power start values that are included in the benchmark, and 1000
iterations were utilized as parameters. The average runtime on the CPU is 5.03ms and
7.36ms on the GPU.

Particle filter is a statistical estimator of the locations of target objects given noisy
measurements of that target’s location and an idea of the object’s path in a Bayesian
framework. Profiling showed that findIndex() is the best candidate for a parallelization as
it consumes the most execution time. findIndex() computes the first index in the cumu-
lative distribution function array with a value greater than or equal to a given value. As
findIndex() is called for every particle, the computation was parallelized by dividing the
particles into work groups. The CPU implementation again further divides those groups
into subtasks. I employed the standard parameters 128 for both matrix dimensions, 100
for the number of frames, and 50000 for the number of particles for the evaluation. The
average task runtime on the CPU is 17.8ms and 6.5ms on the GPU. Table 9.3 shows
the makespan results for this experiment with and without aging, respectively.

The average total makespan is improved for four out of six algorithms when aging is used,
with Min-Min and RASA being the exceptions. Over these four algorithms, the average
total makespan is improved by a speed up of about 2.16 % or a decrease of 0.66 s. In
this scenario, Max-Min profits the most from using the aging mechanism with a speed
up of about 4.5 % or a decrease in average total makespan of 1.35 s. The individual
average makespans decrease by 0.6 % for particle filter and by 1.6 % for Hotspot3D over

152

9.2 - Task Scheduling with Priorities

MCT Min-Min Max-Min Suff RASA RC
min w/o aging 4.58 ms 4.56 ms 4.52 ms 4.92 ms 4.59 ms 4.34 ms
min w/ aging 4.29 ms 4.37 ms 4.68 ms 4.65 ms 4.18 ms 4.45 ms

Particle filter avg w/o aging 42.16 ms 42.10 ms 43.93 ms 43.61 ms 42.19 ms 42.21 ms
avg w/ aging 43.35 ms 41.98 ms 43.46 ms 41.69 ms 42.66 ms 43.47 ms
max w/o aging 564.30 ms 568.94 ms 606.79 ms 663.52 ms 528.12 ms 723.96 ms
max w/ aging 636.67 ms 506.50 ms 490.95 ms 639.28 ms 651.32 ms 543.53 ms
min w/o aging 2.34 ms 1.96 ms 2.15 ms 1.92 ms 1.94 ms 1.67 ms
min w/ aging 1.63 ms 1.65 ms 1.62 ms 1.63 ms 2.33 ms 1.62 ms

Hotspot3D avg w/o aging 13.33 ms 13.06 ms 13.27 ms 13.16 ms 13.25 ms 13.49 ms
avg w/ aging 13.31 ms 13.28 ms 13.16 ms 13.31 ms 13.17 ms 13.37 ms
max w/o aging 932.72 ms 801.60 ms 838.39 ms 686.93 ms 648.79 ms 819.58 ms
max w/ aging 709.43 ms 674.13 ms 656.37 ms 938.87 ms 664.43 ms 735.07 ms

Table 9.4: Flow time results of the Rodinia benchmarks experiment

all scheduling heuristics. It is also noteworthy that the minimum obtained makespan
of hotspot3D decreases by over 13 % for both Max-Min and Sufferage. Comparing the
scheduling heuristics, Min-Min achieves the best average total makespan without aging
and Max-Min the best result with aging, with Min-Min getting the second best result.

Again, we additionally monitored the flow time ti,flow for all task instances ti and com-
puted the minimum, average, and maximum over all instances for both applications. The
results are shown in Table 9.4.

The results show a decrease in the minimum and maximum flow time of hotspot3D
for 5 and 4 algorithms, respectively. This correlates with shorter waiting times caused
by a priority raise. The averages roughly remain unchanged. This can be explained by
the much larger number of tasks for hotspot3D, which results in many hotspot3D tasks
being executed after particle filter is finished. Hence, these tasks that do not need and
profit from aging dominate the average for hotspot3D, which means the average remains
roughly unchanged.

9.2.5 Result Discussion

The results show a slight improvement in total average makespan (average speed up of
3.75 % and 2.16 %) for 5 out of 6 algorithms in the first and for 4 out of 6 algorithms in
the second scenario. As expected, this correlates with an increase in average makespan
for the applications with higher priorities caused by additional waiting time (the total time
spent in queues in the scheduler and processing unit). This is also reflected in the
flowtime measurements. The average increase of 95.2 % for the average flowtime of
cartoonify is exemplary for this statement. However, the average flowtime and the av-
erage makespan of the application/task with the highest priority remain lowest over all
applications/tasks in all experiments. Thereby, the intention of the user to favor these ap-
plications is preserved. In return, the aging mechanism reduces the waiting time, which
is reflected by improvements of the average makespan and the average flowtime, of the

153

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

task/application with the lowest priority (25 % decrease in average flowtime for black-
and-white). A comparison between the scheduling algorithms shows that no algorithm
dominates the other ones considering the average total makespan. MCT, Sufferage, and
RC, though, are able to profit in all experiments by using aging.

In summary, our adaptive aging mechanism slightly improves the overall makespan
in most experiments while reducing the time a low priority task instance has to wait for
its execution, thereby increasing fairness, and still securing the fastest execution and
shortest time spent in the system for the task with the highest priority. In the future, sup-
plemental evaluations are necessary to further solidify these conclusions. Furthermore,
additional optimization goals next to fairness and makespan, like energy consumption,
have to be considered in future work.

9.3 Scheduling Multiple Processes

Modern computer architectures combine a steadily growing number of heterogeneous
processing units in a single system to satisfy the ever increasing performance demand.
Many existing applications are, however, not ready for such an increased degree of intra-
node parallelism as their scaling capabilities are limited. This prevents efficient system
usage, potentially leaving several computing resources idle at runtime. Prior work pro-
posed an approach called Co-Scheduling to combat this problem. Co-Scheduling aims
to schedule multiple, different applications on the same computing node simultaneously.
This approach works best, if these applications have complimentary characteristics, e.g.,
one application is memory-bound and one compute bound or one application targets an
accelerator and one the CPU. Additionally, multiple applications usually do not belong
to the same process requiring a mechanism that coordinates different processes on one
computing node. Since new processes with new tasks may arrive aperiodically in the
system, the co-scheduling has to be adapted dynamically to improve the current system
state.

This section presents a solution for the aforementioned challenges by expanding HA-
Ladapt’s shared memory waiting queue concept presented in Section 3.3. Thereby,
additional data structures in shared memory are introduced that are able to share in-
formation about the tasks to be executed with other processes. This information is then
employed by an added co-scheduling mechanism The mechanism is additionally able
to redistribute tasks already mapped to a processing unit, however does not support
preemption.

In particular, this section makes the following contributions:

• Data structures that store information about tasks to be executed, e.g., execution
costs, task dependencies etc., are added in shared memory to share with other
HALadapt instances.

154

9.3 - Scheduling Multiple Processes

• A co-scheduling mechanism that uses the information stored in shared memory
to optimize the distribution of tasks belonging to different processes is developed.
The mechanism also considers tasks already mapped to processing units that
have not started execution.

• Different strategies that decide when the computation of a new co-schedule should
be initiated are implemented.

Using several use case scenarios including Rodinia Benchmark [123] applications and a
Mandelbrot computation, to evaluate this approach, I show that my approach is able to
achieve a speedup of atleast 17.7 % compared to an approach that does not adapt its
decisions if new tasks arrive in the system.

9.3.1 Related Work

Various studies in the literature shed light on the many contexts where co-scheduling is
applicable. They thereby make up numerous hot topics in recent research, due to the
fact that the necessity of computational co-scheduling arises wherever independent jobs
in separate processes are scheduled in parallel to multiple execution devices. Therefore,
co-scheduling occurs on different levels of abstraction.

Besides work focusing on the co-scheduling of processes in a virtual machine envi-
ronment [240, 241], a large field of research is made up of co-scheduling jobs on ho-
mogeneous architectures, i.e., symmetric multicore processors (SMPs). There, effort is
spent on examining approaches for co-scheduling [242, 243, 244], finding (approximately
[245]) optimal co-schedules [246], or regard multi SMP systems [247]. The presented
approaches mostly focus on solving issues regarding cache contention, which is not
necessarily a predominant concern within the field of heterogeneous computing.

To support the co-scheduling of multiple processes, inter-process communication is
required. Standards like the Message Passing Interface (MPI) [3] enable such mech-
anisms. StarPU [6, 248], a runtime system for heterogeneous systems (s. Sec. 3.5
for more details) also supports MPI and offers scheduling contexts that allow to share a
GPU between several kernels or divide a multicore CPU into mulitple sections. However,
these contexts have to be defined by the application developer and are not dynamic. Ad-
ditionally, there is no communication between multiple StarPU instances and therefore
only a single application workload is scheduled. Similarly, the runtime system Uintah
[249, 250], specifically designed for three-dimensional grid simulations, utilizes MPI to
communicate over several computing nodes. However, again only a single application
workload can be scheduled and communication is restricted to a single MPI application.

The runtime system Dandelion [251] distributes sequential code over a heteroge-
neous cluster by assigning graphs to machines and graph vertices to specific processing
units. The data synchronization is implemented by asynchronous channels. Compared

155

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

to this work, Dandelion only distributes a single workload over multiple processing units
and does not share processing units between multiple workloads.

The LAMA framework [252] also enables inter-process communication, but focuses
mainly on mathematical applications and thereby introduces some limitations with re-
spect to the user’s application diversity.

Newsom et al. implemented a co-scheduling mechanism for CPU clusters that op-
timizes energy usage based on simulation results [253]. The scheduler is written in
Unified Parallel C (UPC) and schedules MPI applications on a SMP cluster and adjusts
system parameters like the CPU frequency to reduce energy consumption. The mech-
anism of this thesis additionally considers heterogeneous accelerators like GPUs during
its co-scheduling process.

Inter-process communication based on shared memory is employed by schedGPU
[254] to schedule multiple CUDA applications on a single GPU. Here, shared memory is
used to communicate the state of the GPU’s memory in order to ensure that parallelly
running CUDA kernels do not run out of memory and solely kernels that all can satisfy
their memory requests are executed parallelly. Scheduling policies like first in, first out
and maximum memory utilization are utilized to decide which waiting kernel is allowed to
allocate newly available memory. In contrast to this work, the co-scheduling is limited to
GPUs.

Jiménez et al. [255] also utilize shared memory to share scheduling information be-
tween multiple processes. In their work, Jiménez et al. introduce three scheduling al-
gorithm concepts. The most sophisticated algorithm is based on a performance history.
For every task, a set of allowed processing units is created that includes the processing
units without a big performance unbalance. The algorithm then tries to map each task
to a processing unit of the set. If all units are currently busy, the scheduler selects the
processing unit that minimizes the waiting time of the task. Compared to this work, the
scheduling algorithms do not alter their scheduling decisions when new processes or
tasks arrive in the system.

9.3.2 Scheduling Algorithms Background

This section introduces and elucidates the scheduling algorithms, the HEFT algorithm
and simulated annealing (SA), that are utilized in the co-scheduling mechanism of this
thesis. Particularly, the parametrization of SA is discussed in detail as these parameters
determine the efficiency and potency of the algorithm.

Heterogeneous Earliest Finish Time Algorithm

The Heterogenous Earliest Finish Time (HEFT) algorithm [220, 221] is a popular list
scheduling heuristic for heterogeneous systems. HEFT sorts all tasks by computing a

156

9.3 - Scheduling Multiple Processes

specific priority called upward rank. The upward rank u of a task i depends on its average
execution and communication costs and is defined as follows:

ranku(i) = Wi + max
j∈succ(i)

(ci,j + ranku(j)), (9.2)

where succ(i) is the set of i’s successors. Tasks are sorted in a list in decreasing order
of the upward rank and then, in this order, mapped to the processing units. Each task is
mapped to the processing unit that minimizes its finish time.

Simulated Annealing

Simulated Annealing (SA) is an iterative search based optimization heuristic [256] and
therefore offers a way to overcome local minima, a feature a greedy heuristic does not
posses. SA is based on the annealing process of molten materials [257], where in ev-
ery iteration the temperature is decreased. Precisely, it is based on the observation that
a slow and controlled annealing process encourages the creation of especially uniform
crystals, which resembles an optimization process because a uniform crystal is the en-
ergetic minimal structure.

In the scheduling context the Simulated Annealing algorithm usually is used as de-
picted in Algorithm 1.

SA includes several parameters and functions that are defined as follows:

• Sinitial, Snew, Sbest, S represent the initial, new, best, and last accepted schedule.

• Cinitial, Cnew, Cbest, C are the costs of the initial, new, best, and last accepted
schedule.

• Tstart, Tend, T represent the starting, final, and current temperature of the algo-
rithm.

• Rmax, R are defined as the maximum and current number of sequentially rejected
new schedules.

• L represents the number of algorithm iterations per temperature level.

• create_new_schedule(S) computes a new schedule by modifying the last ac-
cepted schedule.

• accept_new_schedule(∆C, T) depending on the current temperature, decides if
a new schedule is accepted.

• compute_new_temperature(i, Tstart, L) computes the temperature for the next
algorithm iteration.

Some of these parameters and functions have to be specified by the algorithm developer
as there exists a wide range of different possibilities in the literature.

157

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

Algorithm 1 Simulated Annealing

Constants: Sinitial, Cinitial , Tstart, Tend, Rmax, L
Temp variables: S ← Sinitial, Sbest, C ← Cinitial, Cbest, T, R, i
while ! terminated(T, Tf , R,Rmax) do

for l← 1 to L do
Snew ← create_new_schedule(S)
Cnew ← evaluate_schedule(Snew)
∆C ← Cnew − C
if ∆C ≤ 0 or accept_new_schedule(∆C, T) then

(S, C)← (Snew, Cnew)
R← 0
if Cnew < Cbest then

(Sbest, Cbest)← (Snew, Cnew)
end if

else
R← R + 1

end if
end for
i← i+ 1
compute_new_temperature(i, Tstart, L)

end while
return Sbest

158

9.3 - Scheduling Multiple Processes

Parametrization of SA

The SA parameters start and end temperature Tstart, Tend, the maximum number of se-
quential rejections Rmax, and the temperature level L all heavily influence the algorithm
runtime and hence have to be chosen carefully. In [258] an extensive study of these
parameters was done by Orsila et al. For Tstart and Tend, we selected the following
definitions based on Orsila et al.:

Tstart =
tmax
tminsum

Tend =
tmin

tmaxsum
,

(9.3)

where tmax is the longest execution time of any task on any processor, tmin is the fastest
execution time of any task on any processor, tminsum is the minimal sum of execution
times on one processor, which means the sum of execution times on the on average
fastest processor, and tmaxsum is the maximum sum of execution times on one processor,
which means the sum of execution times on the on average slowest processor.

The definitions of Rmax and L are also inspired by Orsila et al. However, instead
of using the system’s number of processing units as a factor, I utilize the number of
processing unit groups as the number of processing units has grown substantially in the
last years. The definition is as follows:

L = Rmax = N · (Qclass − 1), (9.4)

where N is the number of tasks and Qclass is the number of processing unit groups in
the system. I already evaluated these parameters in past work [259]. To compute a
new temperature in each iteration, I chose the standard method "geometric temperature
schedule" Ti = T0 ∗ qb

i
Lc, where q = 0.95.

Finally, computing a new schedule is an essential step in the algorithm. First, a global
task order based on an initial solution by HEFT is created. To compute a new schedule, a
task is randomly selected and a new position in the global order is determined. The new
position is computed by searching the task predecessor with the highest and the suc-
cessor with the lowest index in the global task order. Then, the task is randomly placed
in between the computed interval in the global order and all other tasks are reordered
accordingly. In the final step, an implementation variant and a mapping to processing
units for the selected task is chosen randomly.

9.3.3 Shared Memory Data Structures

To implement further coordination between multiple HALadapt processes, the runtime
system’s use of the shared memory is extended. Suitable data structures that hold in-
formation on tasks of all currently existing HALadapt instances in the system as well as

159

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

flags for signaling purposes are added. In detail, I further introduce two different data
structures, a central management file and task specific information files, which were
necessary as pointer dependencies make it impossible to store the complete task struct
used by HALadapt in shared memory:

• Co-Scheduling Information Management File (CSIMF): This file may exist only
once per computing node. Its purpose is to hold information that processes need
for coordination and signaling of a co-scheduling procedure and allows processes
for a quick check whether further action is required. The header of the CSIMF
consists of mutexes, the number of CSI files that processes have stored, the co-
scheduling’s status and the process ID of the initiator thereof. The header is fol-
lowed by a variable amount of CSIMF entries, of which every entry corresponds to
a CSI file that a HALadapt instance has stored in the shared memory. The CSIMF
entries hold various task information that a scheduler can access before looking up
the actual CSI file which can be useful for scheduling algorithms. This information
includes the current mapping of the task, i.e., on which processing unit(s) a task
should be executed, and an algorithm-specific task priority.

• Co-Scheduling Information (CSI) File: The CSI files hold task specific information
needed by a scheduler for decision making. Its header contains information on
execution dependencies of the respective task, and its current best index, i.e., the
position of the currently best fitting execution alternative in the payload according
to the current state of the scheduling. The CSI file’s aforementioned payload is of
variable length and holds information on execution times of the specific task im-
plementations. A CSI file also possesses a trailer that contains information about
the input and output data of a task to enable the computation of necessary data
transfers and their cost. The sheer presence of a CSI file in the shared memory
implies that the corresponding task is not running yet, rendering it subject for a
co-scheduling. Processes delete their tasks’ CSI files as soon as the respective
task is started.

9.3.4 Co-Scheduling Mechanism

Figure 9.1 gives an overview of the overall control flow of the co-scheduling mecha-
nism. The scheduling process of a HALadapt instance begins by assembling the tasks
submitted by the application into a task graph and computing a schedule with a "local"
scheduling algorithm. Additionally, the tasks are stored in shared memory to provide
information to potential other HALadapt processes. After a schedule is computed, HAL-
adapt checks if a co-schedule is necessary considering the new system state created by
the task allocations. Thereby, I implemented several different strategies that a user can
pick to decide if a co-schedule should be computed:

160

9.3 - Scheduling Multiple Processes

Scheduling local tasks

Scheduling local tasksStore tasks in shared memory

Co-scheduling
 necessary?

 Compute
 co-schedule
 &
store result in
shared memory

Co-schedule from
 other process?

Notify other
 processes

 Discard
 &
rebuild task graph
 mapping

Start

 Execute next task
 &
delete shared memory
 entry

 All tasks
executed?

End

Yes

No

Yes

Yes No

No

Figure 9.1: General overview of the control flow of the co-scheduling mechanism

• Always: each time a HALadapt instance adds new tasks to the system, a new
global schedule is computed.

• Hardware contention: a new schedule is deemed necessary, if a new task is
mapped to a processing unit that is already occupied by tasks of another process.

• Processing unit availability: a new schedule is only computed, if the processing
units are occupied for at least the amount of time it takes to compute the new
schedule. The costs to compute a new schedule are heuristically predicted by the
history database. The profiling mechanism monitors the execution costs of the
scheduling process and stores the measurements with the sum of implementation
variants over all tasks as key. This allows to predict future scheduling costs.

161

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

If based on the selected strategy the computation of a new co-schedule is deemed
necessary, the shared memory data structures are locked, signaling the computation
of a new schedule. The mechanism then collects all tasks and task information stored
in the shared memory, creates an initial schedule utilizing HEFT (see Sec. 9.3.2) and
computes all parameters necessary for SA (see Sec. 9.3.2). The initial schedule serves
as starting point for SA. As mentioned before, it is not possible to store the original
task structs of HALadapt in shared memory. Therefore, local processing units were
added that can work with the task information stored in shared memory and are used to
compute processing unit availability. Following the creation of a final schedule solution by
SA, the result is stored in shared memory, and additionally a flag is set and the shared
memory structures are unlocked to signal all other processes that a new schedule is
available. Subsequently, every HALadapt instance maps its actual tasks according to
the stored schedule and starts its execution. Before each execution, our mechanism
checks if another process has computed a new global schedule and re-maps its tasks if
necessary until all its tasks are executed.

9.3.5 Evaluation

This section presents the evaluation conducted for the co-scheduling mechanism. The
experiments were performed on a server with two Intel Xeon E5-2650 v4 CPUs with 12
cores at 2.2 GHz each, an NVIDIA Tesla K80, and 128 GB of 2.4 GHz DDR4 SDRAM
DIMM (PC4-19200). The CPUs were used without hyper-threading and the scaling gov-
ernors set to performance. The software environment includes Ubuntu 18.04.5, the Linux
4.15.0-136-generic kernel, glibc 2.27, the nvidia-410.48 driver, and the GCC 7.5.0 com-
piler. For the evaluation, the co-scheduling mechanism is set to the mode hardware
contention (s. Section 9.3.4).

In the experiments, two scenarios are considered. The first scenario targets OpenMP
applications that compete for the CPU cores. Thereby, a scaling application is executed
in parallel with a memory-bound application. In the second scenario, the focus lies on
applications than can be executed either on the CPU or the GPU, i.e., have OpenMP and
CUDA implementations. As evaluation metric, the total makespan over all applications
is measured. In this case, this includes all initialization costs including the set up of
HALadapt and all data structures, the scheduling overhead, and the execution costs. All
measurements are repeated ten times and the average, maximum, and minimum are
computed over these measurements.

Benchmarks

To evaluate my co-scheduling mechanism, I created two scenarios, a CPU-only and a
heterogeneous scenario, that are comprised of three experiments using a set of bench-
marks that represent common workloads in parallel computing. The benchmark set con-

162

9.3 - Scheduling Multiple Processes

sists of four benchmarks, hotspot3D and particle filter of the Rodinia Benchmark Suite
[123], a Mandelbrot computation, and an example implementation of an OpenMP ker-
nel that does not scale with a growing number of threads. I integrated these benchmarks
into HALadapt, thereby dividing the applications into tasks. The following sections shortly
give an overview of the benchmarks and how they are divided into tasks for HALadapt.

Hotspot3D iteratively computes the heat distribution of a 3D chip represented by a grid.
In every iteration, a new temperature value depending on the last value, the surrounding
values, and a power value is computed for each element of the grid. I combined 500
iterations to create a task for HALadapt and provided OpenMP and CUDA implementa-
tions for a task. As input arguments, I use the power and temperature data provided by
Rodinia in the dimension 512 × 512 × 8. Fig. 9.2 shows the average execution time
of a single task execution of the hotspot3D OpenMP kernel, i.e., 500 iterations, over
all available thread numbers. Each measurement was repeated ten times. The graph

Figure 9.2: Average execution times of the hotspot3D kernel

demonstrates that hotspot3D scales well with the growing number of threads and the
lowest average execution time is achieved with 24 threads. Hereby, the lowest average
execution time is 0.995 s. Additionally, a small spike in the execution times at and after
13 threads is visible. This can be explained with the fact that a single processor consists
of twelve cores and splitting the computation and data over two cores creates overhead
if only a small number of threads operates on the second CPU. The CUDA kernel has an
average execution time of 0.155 s on the NVIDIA Tesla K80 of the test server.

163

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

Particle filter is a statistical estimator of the locations and paths of target objects in a
Bayesian framework given noisy measurements. The benchmark is mainly composed
of four distinct kernels, likelihood(), sum(), normalizeWeights(), and findIndex(), that are
executed in this sequence iteratively over a set of frames. However, in order to combine
and interchange the CUDA and OpenMP implementations, the two kernels likelihood
and sum had to be combined. I used each of these three kernel functions to create tasks
and provided both an OpenMP and a CUDA implementation for each kernel. For the
evaluation, the grid parameters 128 × 128, five frames, and 100000 particles were uti-
lized. Thereby, the three kernels compute each frame sequentially, i.e., the three kernels
are repeated five times each. The average execution times of the particle filter OpenMP
kernels for a single frame are displayed in Fig. 9.3 and Fig. 9.4. Again, each mea-
surement was repeated ten times. Hereby, findIndex() clearly dominates the execution
time of particle filter. FindIndex() scales well with the growing number of threads and

Figure 9.3: Average execution times of the normalizeWeights and likelihoodSum kernels

reaches its minimum average execution time of 1.347 s with 24 threads. LikelihoodSum()
also scales with a growing number of threads, however its minimum average execution
of 0.033 s time is achieved with 12 threads. As normalizeWeights() almost has no com-
putational costs, the kernel does not scale well and the minimum average execution time
of 0.00119 s is already achieved with four threads. Any additional threads only produce
overhead and thereby increase the execution time. Again, all three kernels show the
same spike symptom at and after 13 threads. On the Tesla K80, the CUDA implementa-
tions of likelihoodSum(), normalizeWeights(), and findIndex() have an average execution
time of 0.099 s, 0.033 s, and 0.102 s over ten measurements, respectively.

164

9.3 - Scheduling Multiple Processes

Figure 9.4: Average execution times of the findIndex kernel

Computation of the Mandelbrot set is a parallel processing benchmark that iteratively
solves the equation fc(z) = z2 + c, where z ∈ C until the absolute value of the complex
number is observed to be either diverging or converging. For visualization, colors are
derived by mapping the number of iterations until termination to a color palette, where
black indicates convergence. I integrated the Mandelbrot set computation as a single
task into HALadapt and again, provided both an OpenMP and a CUDA implementation.
In the experiments, two different problem sizes, a large and a small workload, are uti-
lized. The small workload computes 2000000 complex numbers, the large one 18000000
complex numbers. The Mandelbrot benchmark is only used for the heterogeneous co-
scheduling experiment. Therefore, only the average execution times of the GPU kernel
and the OpenMP kernel with all 24 cores are stated here. With 24 threads, the OpenMP
kernel has an average execution time of 0.455 s for the small workload and 3.9282 s for
the large one. The GPU kernel achieves an average execution time of 0.145 s for the
small workload and 0.443 s for the large one on the Tesla K80.

Critical section kernel is a representation test implementation of an OpenMP kernel
that does not scale well with a growing number of threads because its parallelism is hin-
dered by a critical section and random memory accesses. The kernel executes math
operations like additions, logarithms, powers, and trigonometric functions, on integers
over 2, 000, 000 iterations. An overview of the average execution time over ten measure-
ments of the kernel is presented in Fig. 9.5. As intended, the kernel does not scale with

165

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

Figure 9.5: Average execution times of the critical section kernel

the growing number of threads and has its minimum average execution time at four
threads with 1.978 s. The kernel also shows the same symptom as the other kernels
when the split over the two processors occurs.

CPU Co-Scheduling

In this scenario, two OpenMP applications are executed in parallel and have to compete
for the CPU cores. Thereby, a schedule without co-scheduling is compared to a schedule
of the co-scheduling mechanism.

The first experiment of the OpenMP scenario combines hotspot3D with the critical
section kernel. Both applications are integrated into HALadapt and are started with their
own separate HALadapt instance. Hotspot3D is started 1.5 seconds before the critical
section kernel and both kernels are repeated five times. Thereby, the kernels of each ap-
plication are data dependent, i.e., kernel two of hotspot3D uses the output of kernel one
as input data and so on. This scenario is executed with and without the co-scheduling
mechanism enabled and all measurements are repeated ten times.

The experiments without the co-scheduling mechanism resulted in the following task
schedule. As hotspot3D is started first and is scaling well on the test system (s. Fig.
9.2), HALadapt maps the five hotspot3D kernels consecutively to all 24 available cores.
When the second application critical section kernel is started, all cores are already oc-
cupied. Therefore, all five critical section kernels are scheduled consecutively after all
hotspot3D kernels are finished. Here, HALadapt maps the kernel to four cores as the
kernel achieves its minimum execution time with four threads. In total, an average

166

9.3 - Scheduling Multiple Processes

makspan of 16.114 s was achieved with this schedule. The result is also listed in Table
9.5 with additional information in the form of the minimum and maximum makespan over
all ten measurements. With the co-scheduling mechanism enabled, HALadapt creates

Table 9.5: Total makespans of the hotspot3D and critical section scenario

W/o co-scheduling With co-scheduling
Average makespan 16.114 s 13.482 s

Speedup – 19.52 %
Minimum makespan 15.725 s 13.055 s
Maximum makespan 16.747 s 14.092 s

the following schedule. First, all five hotspot3D kernels are again mapped to all 24 avail-
able cores. When the second process is started, the co-scheduling mechanism detects
a resource conflict between hotspot3D and the critical section kernel. As the first of five
hotspot3D kernels already executes, it is not interrupted. However, for the remaining
four kernels and all five critical section kernel instances, a new schedule is computed
by the co-scheduling mechanism. Thereby, the mechanism maps the critical section
kernels consecutively to the first four CPU cores. The four hotspot3D kernels are then
mapped in parallel to the critical section kernels to the last 20 cores. This means that
the co-scheduling mechanism shares the number of cores between the two kernels and
executes them in parallel. Figure 9.6 displays the computed co-schedule. The schedule
resulted in an average total makespan of 13.482 s, a speedup of 19.52 % or a makespan
reduction of 2.632 s compared to the execution without the co-scheduling mechanism (s.
Tab. 9.5).

The second OpenMP experiment pairs the critical section application with particle
filter. Both applications are repeated five times with data dependencies between each
iteration. This means particle filter executes 15 kernels in total as it consists of the three
kernels likelihoodSum(), normalizeWeights(), and findIndex(). Again, the critical section
kernels are started 1.5 s after particle filter.

Without the co-scheduling mechanism, the particle filter functions are mapped to
twelve, four, and 24 cores respectively as these numbers minimize the execution time
for likelihoodSum, normalizeWeights, and findIndex, respectively. The critical sections
are then mapped to four cores after all particle filter kernels have finished their execu-
tion. This is necessary as the execution of an iteration of likelihoodSum and normal-
izeWeights is not long enough to execute a critical section kernel instance in parallel.
Over ten measurements an average total makespan of 17.315 s was achieved with this
schedule without co-scheduling. Table 9.6 presents this result and additional information.
When the co-scheduling mechanism is activated, it detects the resource conflict at the
start of the five critical section kernels. At this point in time, the first three kernels, one

167

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

Figure 9.6: The schedule of hotspot3D and the critical section kernel created by the
co-scheduling mechanism

instance of each likelihoodSum, normalizeweights, and findIndex, of particle filter have
already been executed or are currently executing. All three particle filter kernels have
again been mapped to twelve, four, and 24 cores, respectively. The remaining twelve
kernels are then re-scheduled together with the five critical section kernels. Thereby, the
following schedule is created. The five critical section kernel instances are mapped to the
first four cores. All particle filter kernels are scheduled to execute in parallel to the critical
section kernels. LikelihoodSum and normalizeWeights are again mapped to twelve and
four cores. FindIndex is mapped to the remaining 20 cores that are still unused by the
critical section kernel. This schedule results in a average total makespan of 14.321 s and
a speedup of 20.91 % compared to the execution without the co-scheduling mechanism.
The results are also presented in Table 9.6 and the computed schedule is displayed in
Figure 9.7.

168

9.3 - Scheduling Multiple Processes

Table 9.6: Total makespans of the particle filter and critical section scenario

W/o co-scheduling With co-scheduling
Average makespan 17.315 s 14.321 s

Speedup – 20.91 %
Minimum makespan 16.879 s 13.789 s
Maximum makespan 17.712 s 15.138 s

The experiments also showed that executing two kernels in parallel comes with an
overhead. If this is not considered in the database of the profiling mechanism, profiling
measurements that are conducted with additional kernels running in parallel can lead to
suboptimal decisions when compared to measurements without the slowdown of parallel
kernels. To solve this problem, measurements with parallelly executing kernels have to
be marked and stored separately from "normal" measurements.

Heterogeneous Co-Scheduling

The objective of this section is the co-scheduling of two processes on a heterogeneous
platform consisting of a multicore CPU and a GPU. Both processes can be executed
on the CPU and the GPU, i.e., have an OpenMP and a CUDA kernel implementation.
For the experiment, a scenario that executes two mandelbrot processes, one with a
smaller and one with a larger workload, is utilized. The small workload is comprised of
2000000 complex numbers and the large one of 18000000 numbers (s. Sec. 9.3.5). In
the experiment, both workloads are each subsequently executed five times. The large
workload process is started 0.1 s before the small workload process. However, the small
workload kernels still start with their execution as its initialization overhead is smaller and
therefore the scheduler maps these kernels first.

Without the co-scheduling mechanism all ten kernels are scheduled in sequence to
the Tesla K80 as it minimizes the execution time of the kernels. This leads to an average
total makespan of 3.596 s. Further details are listed in Tab. 9.7. When the scenario is

Table 9.7: Total makespans of the mandelbrot scenario

W/o co-scheduling With co-scheduling
Average makespan 3.596 s 3.055 s

Speedup – 17.71 %
Minimum makespan 3.487 s 2.989 s
Maximum makespan 3.715 s 3.152 s

169

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

Figure 9.7: The schedule of particle filter and the critical section kernel created by the
co-scheduling mechanism

executed with the co-scheduling mechanism, a resource conflict is detected when the
mandelbrot kernels with the larger workload (called mandelbrot B from here on forward)
are also scheduled to the GPU. The mechanism then re-schedules the remaining four
mandelbrot kernels with the lower workload (called mandelbrot A from here on forward)
to the CPU using all 24 available cores. In summary, the following schedule is created:

• All five kernels of mandelbrot A are scheduled to the GPU by its HALadapt in-
stance. The first kernel starts its execution.

• The five kernels of mandelbrot B are also scheduled to the GPU by its HALadapt
instance. Thereby, the co-scheduling mechanism detects a resource conflict and
re-schedules all nine kernels not already running .

170

9.4 - Summary and Conclusion

• The co-scheduling mechanism schedules the four remaining kernels of mandelbrot
A to the 24 available CPU cores. Furthermore, it schedules the five kernels of
mandelbrot B to the GPU.

Executing this scenario with the co-scheduling mechanism results in an average total
makespan of 3.055 s. This is a speedup of 17.71 % or a makespan reduction of 0.541 s
compared to the original schedule.

9.3.6 Result Discussion

The evaluation shows that the co-scheduling mechanism is able to improve the total
makespan of the processes in both the CPU-only and the heterogeneous scenario. Over
both scenarios, the mechanism could achieve at least a speedup of 17.71 %. This un-
derlines the benefit potential of sharing resources between applications and dynamically
adapting schedules to newly arriving tasks and processes. However, the experiments
also showed some limitations of this concept.

Executing kernels in parallel comes with an overhead that occurred in both scenar-
ios. Firstly, this overhead has to be considered in HALadapt’s profiling mechanism and
database. Measurements of kernels that are executing in parallel with other kernels have
to be separated from "normal" measurements as mixing them together then falsifies the
original measurements and may lead to suboptimal scheduling decisions. Additionally,
a scaling factor is needed that adds the overhead to "normal" measurements when the
kernel is utilized in a co-scheduling scenario and executed in parallel with another kernel.
This is necessary to realistically simulate and predict the results of scheduling decisions,
which is a requirement for a sophisticated scheduling mechanism.

Secondly, the overhead that came with sharing computing resources differs between
different applications and system settings. So, a speedup in the CPU-only experiments
was only possible with hyper-threading deactivated and the scaling governors of the
CPU cores set to performance instead of powersave. Furthermore, no speedup could
be achieved when the hotspot3D benchmark was executed on the CPU while parallelly
executing the mandelbrot benchmark on the GPU as hotspot3D was considerably slowed
down. Therefore, in the future, further analysis and research into the cause of this slow
down is necessary. Particularly, application characteristics have to be studied in order
to determine which characteristic combinations may cause problems. This will allow to
predetermine which applications are ideal candidates for sharing processing units.

9.4 Summary and Conclusion

In this thesis, future system behavior is affected by dynamically adapting the schedule
of the system’s tasks. Therefore, this chapter focuses on two dynamic task scheduling

171

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

scenarios and provides mechanisms that improve the overall makespan of the resulting
schedules compared to their static solutions.

The first mechanism targets dynamic systems that allow the application developer
to assign specific priorities to different applications or functionalities in order to express
differing importance. EMB2 (s. Sec. 3.4), a task-based runtime system specifically de-
signed for the parallel programming of embedded systems, serves as the basis of the
mechanism. As static priorities may easily lead to task starvation, an adaptive aging
mechanism was added to the scheduling module. The aging mechanism dynamically
adapts the priorities of task instances according to their waiting time and the load in the
system. Thereby, the aging mechanism operates on two levels, the scheduler module
and the processing units themselves. On both levels, priority waiting queues are im-
plemented that hold the task instances. These queues are checked for potential aging
candidates, which are then promoted to the next highest queue. The aging mechanism
was combined with six different dynamic scheduling algorithms and evaluated on two
scheduling scenarios. The first scenario consists of three independent heterogeneous
tasks with differing priorities that are started sporadically to resemble a dynamic system.
For the second scenario, two Rodinia benchmark applications, hotspot3D and particle
filter, are executed in parallel with differing priorities. The results show a slight improve-
ment in total average makespan (average speed up of 3.75 % and 2.16 %) for five out
of six algorithms in the first and for four out of six algorithms in the second scenario.
This is achieved while overall reducing the time a low priority task instance has to wait
for its execution, thereby increasing fairness, and still securing the fastest execution and
shortest time spent in the system for the task with the highest priority.

With the second mechanism of this chapter, the focus lies on scenarios where multiple
processes are run in parallel on a heterogeneous computing node. Hereby, the schedul-
ing mechanism improves the overall makespan of the processes by intelligently sharing
processing units and re-adjusting computed schedules to newly arriving processes. In
the literature, this process is known as co-scheduling. HALadapt, a task-based runtime
system (s. Sec. 3.3) into which this mechanism was integrated, deploys shared memory
structures to communicate processing unit utilization between different processes. This
communication mechanism is extended by additional shared memory data structures
that enable the processes to share task information necessary for re-scheduling. Fur-
thermore, a dynamic co-scheduling mechanism is added that utilizes the information in
shared memory to adjust the task schedule if it is activated by the arrival of a new process
in the system. The co-scheduling mechanism is evaluated in two scenarios, a CPU-only
and a heterogeneous one, and three experiments overall. In all three experiments, the
mechanism at least achieves a speedup of 17.71 % compared to the execution without
co-scheduling. However, the experiments also brought limitations to light, e.g., sharing
the CPU cores may require some additional settings and not all applications are compat-
ible for sharing processing units.

172

9.4 - Summary and Conclusion

In summary, this chapter adds mechanisms to the existing scheduling modules of the
runtime systems EMB2 and HALadapt that improve their schedules in dynamic scenar-
ios. This is an important feature of this thesis, as task scheduling in the context of this
thesis is utilized to affect the future behavior of the underlying system and to dynamically
adapt the system to new situations.

173

Chapter 9 - Task-Scheduling in Task-based Runtime Systems

174

Part IV

Summary and Outlook

175

CHAPTER

TEN

CONCLUSION AND OUTLOOK

The final chapter of this thesis summarizes its contributions and results, and provides a
conclusion. Additionally, this chapter gives an outlook on future work that may sensibly
extend this thesis and further enhance its results and contributions.

10.1 Summary & Conclusion

The overarching objective of this thesis is to design and create dynamic and proactive
system adaptation within a runtime system for heterogeneous systems. Thereby, the
proactive adaptation shall be utilized to maintain efficiency concerning multiple contra-
dicting optimization goals, in particular application makespan, total energy consumption,
maximum processing unit temperatures, and system reliability. To achieve this objective,
this thesis makes contributions to five research topics (s. Sec. 4.1):

I. Analysis of task-based runtime systems in different use cases and computing
classes of heterogeneous systems to find and identify the specific optimization
goals, constraints, and requirements.

II. A thorough study of methods and tools to capture the system state by monitoring
the execution behavior and the system environment, and the introduction of new
possibilities to evaluate the system and reduce profiling overhead. This includes a
mechanism to heuristically measure the reliability of processing units.

III. The exploration of ways to augment the system state description by the prediction
of prospective system sates, in particular predicting upcoming applications and
task instances.

IV. The research of methods to proactively and dynamically balance contradicting op-
timization goals based on both user inputs and alterations of the system state.

V. Studying ways to influence future system behavior via task scheduling.

177

Chapter 10 - Conclusion and Outlook

Contributions I to III are the focus of Part II of the thesis. In Chapter 5, I analyzed all
projects that I have done over the course of this thesis and compared their project ob-
jectives and constraints. It became obvious that all projects had several contradicting
optimization goals and that the optimal balance between these goals is always depen-
dent on the state of the system and its environment. Therefore, a runtime system is
required that is able to dynamically and proactively balance and optimize the underlying
system in different situations.

The basis for sophisticated decision making is knowledge. In case of a runtime sys-
tem, this knowledge is acquired by monitoring the execution behavior of the system. This
thesis contributes twofold to the research topic of monitoring system behavior. Firstly,
creating an extensive knowledge base requires significant overhead. Hence, the first
contribution reduces this overhead through mechanisms that detect scaling behavior,
utilizes interpolation to predict task costs, and utilizes machine learning to predict the
execution times of OpenCL kernels. However, the results of the kernel execution time
prediction showed that a reliable prediction still needs additional work and only the fastest
processing unit can reliably be predicted. This, however, is possible with an accuracy of
69 % in the worst case compared to a baseline of 25 % that always guesses the proces-
sor that dominates the most amount of kernels.

The second contribution is a heuristic metric for the reliability of processing units. For
the metric’s computation, I employ symptom-based fault detection. Symptom-based fault
detection is a light-weight mechanism to detect soft errors in hardware during runtime by
monitoring the execution behavior via performance counters and comparing the mon-
itored behavior against a database storing correct execution behavior. If a significant
deviation from the correct behavior is monitored, the occurrence of a fault is assumed.
This allows to compute a heuristic and dynamic fault rate for processing units, which can
be utilized as a measure for their reliability. To evaluate the concept of symptom-based
fault detection, several fault classes and faults that simulate hardware faults and inter-
ferences were injected into CPU and GPU benchmarks. The evaluation showed that all
faults could be detected by symptom-based fault detection on both the CPU and GPU. To
analyze the statistical significance of the observed performance metric deviations and to
statistically back up the usefulness of symptom-based fault detection, I applied Welch’s
t-test. Thereby, the t-test results confirmed the impression of the evaluation.

Though, achieving proactivity requires more than just monitoring the current state of
the system and its environment. Proactivity also requires knowledge about states in the
future or at least in the near future. Therefore, I introduced two task/application predic-
tion mechanisms based on run length encoding (RLE) Markov predictors combined with
prediction by partial matching (PPM) in Chapter 7. The first mechanism targets indepen-
dent tasks that may start new instances of this task during their life cycle. Hence, the
idea of the prediction mechanism is trying to detect the execution patterns of the tasks
in the system and to differentiate between periodic and aperiodic patterns. My mecha-

178

10.1 - Summary & Conclusion

nism was able to reliably detect regular patterns and predict the time difference between
two instances with a maximum sMAPE value of 4.33 % for sporadic and 0.002 % for
periodic tasks.

I designed the second predictor to focus on dependent applications, i.e., applications
that form execution patterns, e.g., application B always succeeds application A. Again,
the task of the mechanism is to detect regular patterns while ignoring interferences from
randomly arriving applications. The objective of the mechanism is to predict the next up-
coming application and its starting time. Over ten experiments, my mechanism achieved
an average accuracy of 77.6 %. Thereby, a prediction was deemed correct if the next
application is correctly predicted and its predicted starting time does not deviate more
than 0.5ms or if no prediction is made and the next application is not part of a regular
pattern. It is noteworthy, that my mechanism is designed in such a way that false posi-
tives, i.e., predicting the wrong application, are strongly avoided which can be seen in the
evaluation results where no false positive prediction occurred. However, avoiding false
positives by, e.g., requiring a certain amount of pattern occurrences before accepting a
pattern, reduces the amount of true positives, i.e., making a correct prediction.

Part III of my thesis provides contributions IV and V. Chapter 8 utilizes the knowledge
provided by Part II to dynamically and proactively find a suitable compromise between
the system’s optimization objectives. This is achieved by a hierarchical Organic Comput-
ing framework that includes an XCS to map system state descriptions to a weight vector.
To implement this framework in the context of task scheduling, I provide a novel reward
mechanism employing a specifically created task execution cost simulator. The weight
vector returned by the XCS is used to create an evaluation function for list scheduling
algorithms. In an evaluation scenario consisting of an application pattern that is repeated
five times, this approach decreased the makespan by 10.4 % or 26.7 s, the energy con-
sumption by 4.7 % or 2061.1 J , and the maximum temperature of the GPU by 3.6 % or
2.7K. Solely the maximum CPU core temperature was increased by 6 % or 2.3K. An-
other important goal of the XCS approach was to guarantee a fast response time, i.e.,
to minimize the additional overhead created by the framework. As the generation of new
rules is executed offline, i.e., in parallel to the live system, the main factor affecting the
overhead is the online reward mechanism. For the five task graphs of the evaluation sce-
nario, an average overhead of 0.115 s was measured which amounts to an additional run
of the HEFT algorithm. This is usually neglectable compared to the overall makespan
and the potential schedule improvements.

Finally, I contributed to the research field of dynamic task scheduling in heteroge-
neous systems in Chapter 9 as it provides an appropriate way to influence and guide
the system behavior. Particularly, I introduced two scheduling algorithms or rather exten-
sions to scheduling algorithms. The first algorithm is specifically created for non-safety
critical embedded systems that deploy task priorities to express differing importance of
applications. As priorities may lead to starvation issues, I developed an aging mecha-

179

Chapter 10 - Conclusion and Outlook

nism that dynamically adapts task priorities to avoid starvation and reduce overall waiting
times. To evaluate the benefits of my aging mechanism, I tested it with six different dy-
namic scheduling algorithms in the runtime system EMB2. In two scenarios, the average
makespan was improved by 3.75 % and 2.16 % for five out of six and four out of six
scheduling algorithms, respectively, while simultaneously reducing the waiting time of
the lower priority tasks. This is reflected in a decrease of the average flow time (a metric
for the total time a task spends in the system) of up to 25 %. It has to be noted, though,
that this decrease comes with an increase in flow time and individual makespan for the
higher priority tasks. However, the intended hierarchy of the applications still remains
intact.

The second scheduling algorithm contributes to scenarios where multiple different
processes share the same processing units. This research field is called co-scheduling.
My approach utilizes shared memory to share the necessary scheduling information be-
tween multiple instances of the runtime system HALadapt. When new tasks arrive in the
system, my approach decides if computing a new co-schedule is reasonable. Thereby,
the new tasks are combined with all tasks that have not yet started executing and a new
schedule for all these tasks is computed. As a scheduling algorithm to compute the
co-schedule, I deploy simulated annealing. I tested my approach in two scenarios, a
CPU-only scenario with OpenMP tasks sharing 24 cores and a heterogeneous scenario
with an NVIDIA Tesla K80 and the same multicore cpu. For the two CPU-only tests, my
co-scheduling approach achieved average speedups of 19.52 % and 20.91 % compared
to the execution without a co-scheduling mechanism. However, it has to be noted that
co-scheduling several tasks on the same CPU does not generally work for all tasks as,
e.g., available cache memory may be a limiting factor that can slow down parallelly ex-
ecuting tasks. In the heterogeneous scenario, my approach again showed its benefits
and resulted in an average speedup of 17.71 %.

In conclusion, the contributions of this thesis provide mechanisms that, combined,
enable a system to dynamically and proactively adapt to new situations and efficiently
utilize its resources concerning application makespan, energy consumption, processing
unit temperatures, and system reliability. Simultaneously, the contributions reduce com-
plexity for users and application developers by outsourcing decisions to the system itself.
Thereby, usability of heterogeneous systems in different fields of application is increased.

10.2 Outlook & Future Work

Predicting OpenCL kernel execution times utilizing machine learning and static code
analysis to avoid profiling runs did not result in reliable predictions. However, the ap-
proach definitely showed potential, particularly by correctly classifying kernels to the
fastest processing unit and by predicting accurate execution times for some kernels. An
approach for future research to improve and stabilize the prediction results is to analyze

180

10.2 - Outlook & Future Work

the characteristics of kernels whose prediction values are accurate and characteristics
of kernels whose prediction values are inaccurate. If there were kernel characteristics
that distinguish accurate from inaccurate predictions, it would be possible to classify new
kernels and only utilize the prediction mechanism if their characteristics indicate accurate
prediction results.

The prediction mechanisms introduced in Chapter 7 show that it is possible to predict
upcoming tasks if regular patterns exist. So far, however, they have only been evaluated
in simulations. In future work, such mechanisms should be integrated into the runtime
system HALadapt to combine prediction with its profiling modules. This allows to eval-
uate the prediction mechanisms in a running system with real applications and their
impact on the XCS. Additionally, more sophisticated prediction models, e.g., created by
deep neural networks may allow to predict several steps into the future or additional
information.

I created a co-scheduling mechanism to utilize the high degree of parallelism offered
by modern computing systems even if a single application or task may not benefit from
the increased number of processing units because of limited scaling capability. Extend-
ing the co-scheduling mechanism with the approach to dynamically balance multiple op-
timization goals is a promising direction for future research. Furthermore, the results of
the co-scheduling evaluation showed that not all task/application combinations are able
to benefit from parallel execution on a multicore CPU. Therefore, studying the character-
istics of applications that can be combined via co-scheduling is an interesting possibility
for future work.

In the scope of this thesis, the evaluation of the dynamic and proactive adaptation of
the system’s optimization goals is conducted on a single system. This system is a server
utilized to execute parallel and heterogeneous computations with a higher degree of par-
allelism. Hence, it has some basic conditions, e.g., it has sufficient cooling capacity, no
energy budget limitations or is not heavily influenced by its environment as its environ-
ment is steady and optimized for the server. Therefore, further studying and analyzing
the contributions of my thesis on systems with different basic conditions like embedded
systems with their limited resources should lead to further insights and show additional
benefits and limitations of my mechanisms. Due to the wide range of fields where my ap-
proach can be employed, more extensive evaluations with a wider range of applications
from different fields are necessary to fully understand its applicability in different comput-
ing domains. In particular, embedded systems and the specific characteristics of their
applications should be the focus of future work. The organic computing framework and
particularly the XCS used in this thesis are defined by a set of parameters. The focus
of this work is to study and analyze the ability of this framework to implement proactive
system adaptation in the context of task scheduling. Hence, there is no extensive analy-
sis of the XCS’ parameters. Future work should gain insight on their influence and study
the potential of adapting and optimizing these parameters.

181

Chapter 10 - Conclusion and Outlook

182

BIBLIOGRAPHY

[1] OpenCL - The Open Standard for Parallel Programming of Heterogeneous Sys-
tems, revision 3. (last visit 03/30/22) https://www.khronos.org/opencl/.

[2] OpenMP - Application Programming Interface for Parallel Programming, version
5.0. (last visit 03/30/22) https://www.openmp.org/.

[3] MPI: A Message-Passing Interface Standard, version 4.0. (last visit 03/30/22)
https://www.mpi-forum.org/mpi-40/.

[4] SYCL 2020, version 2.2. (last visit 03/30/22) https://www.khronos.org/
sycl/.

[5] Mario Kicherer, Fabian Nowak, et al. “Seamlessly Portable Applications: Man-
aging the Diversity of Modern Heterogeneous Systems”. In: ACM Trans. Archit.
Code Optim. 8.4 (Jan. 2012), 42:1–42:20. ISSN: 1544-3566.

[6] Cédric Augonnet, Samuel Thibault, et al. “StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures”. In: Concurrency and
Computation: Practice and Experience. Euro-Par 2009 best papers 23.2 (2011),
pp. 187–198.

[7] HSA - Heterogeneous System Architecture, version 1.2. (last visit 03/30/22)
http://www.hsafoundation.com/.

[8] Scott Camazine, Nigel R. Franks, et al. Self-Organization in Biological Systems.
Princeton, NJ, USA: Princeton University Press, 2001. ISBN: 0691012113.

[9] Christian Müller-Schloer and Sven Tomforde. “Organic Computing – Technical
Systems for Survival in the Real World”. In: Autonomic Systems. 2017.

[17] G. E. Moore. “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE Solid-
State Circuits Society Newsletter 11.3 (Sept. 2006), pp. 33–35. ISSN: 1098-4232.

183

https://www.khronos.org/opencl/
https://www.openmp.org/
https://www.mpi-forum.org/mpi-40/
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
http://www.hsafoundation.com/

BIBLIOGRAPHY

[18] G. E. Moore. “Progress in digital integrated electronics [Technical literaiture,
Copyright 1975 IEEE. Reprinted, with permission. Technical Digest. International
Electron Devices Meeting, IEEE, 1975, pp. 11-13.]” In: IEEE Solid-State Circuits
Society Newsletter 11.3 (Sept. 2006), pp. 36–37. ISSN: 1098-4232.

[19] R. H. Dennard, F. H. Gaensslen, et al. “Design of ion-implanted MOSFET’s with
very small physical dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (Oct.
1974), pp. 256–268. ISSN: 1558-173X.

[20] Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall: Implications of the
Obvious”. In: SIGARCH Comput. Archit. News 23.1 (Mar. 1995), pp. 20–24. ISSN:
0163-5964.

[21] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edition:
A Quantitative Approach. 6th. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2017. ISBN: 0128119055.

[22] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities”. In: Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference. AFIPS ’67 (Spring). Atlantic City, New Jersey: Asso-
ciation for Computing Machinery, 1967, pp. 483–485. ISBN: 9781450378956.

[23] Sparsh Mittal and Jeffrey S. Vetter. “A Survey of CPU-GPU Heterogeneous Com-
puting Techniques”. In: ACM Comput. Surv. 47.4 (July 2015). ISSN: 0360-0300.

[24] K. Pocek, R. Tessier, and A. DeHon. “Birth and adolescence of reconfigurable
computing: a survey of the first 20 years of field-programmable custom comput-
ing machines”. In: 2013 IEEE 21st Annual International Symposium on Field-
Programmable Custom Computing Machines. Apr. 2013, pp. 1–17.

[25] CUDA Toolkit Documentation, version 10.2.89. (last visit 03/30/22) https://
docs.nvidia.com/cuda/index.html.

[26] 1800–2017 – IEEE Standard for SystemVerilog – Unified Hardware Desing,
Specification, and Verification Language. (last visit 03/30/22) https : / /
standards.ieee.org/standard/1800-2017.html.

[27] “IEEE Standard VHDL Language Reference Manual”. In: IEEE Std 1076-2008
(Revision of IEEE Std 1076-2002) (Jan. 2009), pp. 1–640. ISSN: null.

[28] The OpenACC Application Programming Interface, version 3.0. (last visit
03/30/22) https://www.openacc.org/sites/default/files/inline-
images/Specification/OpenACC.3.0.pdf.

[29] Karim Djemame, Django Armstrong, et al. “TANGO: Transparent heterogeneous
hardware Architecture deployment for eNergy Gain in Operation”. In: CoRR
abs/1603.01407 (2016). arXiv: 1603.01407.

184

https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://standards.ieee.org/standard/1800-2017.html
https://standards.ieee.org/standard/1800-2017.html
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://arxiv.org/abs/1603.01407

BIBLIOGRAPHY

[30] Xilinx Zynq Ultrascale+ MPSoC Data Sheet: Overview, version 1.8. (last visit
03/30/22) https://www.xilinx.com/support/documentation/data_

sheets/ds891-zynq-ultrascale-plus-overview.pdf.

[31] Get Under the Hood of Parker, Our Newest SOC for Autonomous Vehicles. (last
visit 03/30/22) https://blogs.nvidia.com/blog/2016/08/22/parker-
for-self-driving-cars/.

[32] George Vlahakis and Dimitris Apostolou. “Proactivity in Service Based Applica-
tions”. In: Proceedings of the 2012 16th Panhellenic Conference on Informatics.
PCI ’12. USA: IEEE Computer Society, 2012, pp. 62–67. ISBN: 9780769548258.

[33] V. Klös, T. Göthel, and S. Glesner. “Be Prepared: Learning Environment Profiles
for Proactive Rule-Based Production Planning”. In: 2018 44th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA). Aug. 2018,
pp. 89–96.

[34] A. Bousdekis, N. Papageorgiou, et al. “A probabilistic model for context-aware
proactive decision making”. In: 2016 7th International Conference on Information,
Intelligence, Systems Applications (IISA). July 2016, pp. 1–6.

[35] Gregory D. Abowd, Anind K. Dey, et al. “Towards a Better Understanding of Con-
text and Context-Awareness”. In: Proceedings of the 1st International Sympo-
sium on Handheld and Ubiquitous Computing. HUC ’99. Karlsruhe, Germany:
Springer-Verlag, 1999, pp. 304–307. ISBN: 3540665501.

[36] Kai Tian, Yunlian Jiang, et al. “An Input-Centric Paradigm for Program Dy-
namic Optimizations”. In: Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications. OOPSLA
’10. Reno/Tahoe, Nevada, USA: Association for Computing Machinery, 2010,
pp. 125–139. ISBN: 9781450302036.

[37] J. Grosinger, F. Pecora, and A. Saffiotti. “Proactivity through equilibrium mainte-
nance with fuzzy desirability”. In: 2017 IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC). Oct. 2017, pp. 2117–2122.

[38] Geoffroy Vallee, Kulathep Charoenpornwattana, et al. “A Framework for Proactive
Fault Tolerance”. In: Proceedings of the 2008 Third International Conference on
Availability, Reliability and Security. ARES ’08. USA: IEEE Computer Society,
2008, pp. 659–664. ISBN: 9780769531021.

[39] D. Kramer and W. Karl. “Realizing a Proactive, Self-Optimizing System Behavior
within Adaptive, Heterogeneous Many-Core Architectures”. In: 2012 IEEE Sixth
International Conference on Self-Adaptive and Self-Organizing Systems. Sept.
2012, pp. 39–48.

185

https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://blogs.nvidia.com/blog/2016/08/22/parker-for-self-driving-cars/
https://blogs.nvidia.com/blog/2016/08/22/parker-for-self-driving-cars/

BIBLIOGRAPHY

[40] Yagil Engel and Opher Etzion. “Towards Proactive Event-Driven Computing”.
In: Proceedings of the 5th ACM International Conference on Distributed Event-
Based System. DEBS ’11. New York, New York, USA: Association for Computing
Machinery, 2011, pp. 125–136. ISBN: 9781450304238.

[41] Sebastian VanSyckel. “System Support for Proactive Adaptation”. PhD thesis.
University of Mannheim, 2015. URL: https://ub-madoc.bib.uni-mannheim.
de/39016.

[42] Jochen Fromm. The emergence of complexity. First. Kassel University Press
GmbH, 2004. ISBN: 978-3-89958-069-3.

[43] Sven A. Brueckner and Hans Czap. “Organization, Self-Organization, Autonomy
and Emergence: Status and Challenges”. In: ITSSA 2 (2006), pp. 1–10.

[44] Wilfried Elmenreich and Hermann de Meer. “Self-Organizing Networked Systems
for Technical Applications: A Discussion on Open Issues”. In: Self-Organizing
Systems. Ed. by Karin Anna Hummel and James P. G. Sterbenz. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2008, pp. 1–9. ISBN: 978-3-540-92157-8.

[45] Tom De Wolf and Tom Holvoet. “Emergence Versus Self-Organisation: Different
Concepts but Promising When Combined”. In: Engineering Self-Organising Sys-
tems. Ed. by Sven A. Brueckner, Giovanna Di Marzo Serugendo, et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 1–15. ISBN: 978-3-540-31901-
6.

[46] Francis Heylighen. “Complexity and Self-organization”. In: Encyclopedia of Li-
brary and Information Sciences (Jan. 2008).

[47] H. Schmeck. “Organic computing - a new vision for distributed embedded sys-
tems”. In: Eighth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’05). May 2005, pp. 201–203.

[48] C. Müller-Schloer. “Organic Computing: On the Feasibility of Controlled Emer-
gence”. In: Proceedings of the 2Nd IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. CODES+ISSS ’04. Stock-
holm, Sweden: ACM, 2004, pp. 2–5. ISBN: 1-58113- 937-3.

[49] U. Richter, M. Mnif, et al. “Towards a Generic Observer/Controller Architecture
for Organic Computing”. In: Informatik 2006, Informatik für Menschen. Ed.: C.
Hochberger. Vol. 93. GI-Edition, lecture notes in informatics. Gesellschaft für In-
formatik, Bonn, 2006, pp. 112–119. ISBN: 978-3-88579-187-4.

[50] Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer. Organic Com-
puting - A Paradigm Shift for Complex Systems. 1st. Berlin, Heidelberg: Springer-
Verlag, 2011. ISBN: 3034801297, 9783034801294.

186

https://ub-madoc.bib.uni-mannheim.de/39016
https://ub-madoc.bib.uni-mannheim.de/39016

BIBLIOGRAPHY

[51] Sven Tomforde, Bernhard Sick, and Christian Müller-Schloer. “Organic Comput-
ing in the Spotlight”. In: CoRR abs/1701.08125 (2017). arXiv: 1701.08125.

[52] R. Allrutz, C. Cap, et al. “Organic Computing – Computer- und Systemarchitektur
im Jahr 2010”. In: VDE/ITG/GI-Positionspapier (2003).

[53] Thorsten Schöler and Christian Müller-Schloer. “An Observer/Controller Archi-
tecture for Adaptive Reconfigurable Stacks”. In: vol. 3432. Mar. 2005, pp. 139–
153.

[54] J.J. Di Stefano, A.R. Stubberud, and I.J. Williams. Feedback and Control Sys-
tems. Schaum’s outline series. McGraw-Hill Book Company, 1976.

[55] J. O. Kephart and D. M. Chess. “The vision of autonomic computing”. In: Com-
puter 36.1 (Jan. 2003), pp. 41–50.

[56] S. R. White, J. E. Hanson, et al. “An architectural approach to autonomic comput-
ing”. In: International Conference on Autonomic Computing, 2004. Proceedings.
May 2004, pp. 2–9.

[57] H. Choset, K. M. Lynch, et al. Principles of Robot Motion: Theory, Algorithms,
and Implementations. MITP, 2005. ISBN: 9780262255912.

[58] Sven Burmester, Holger Giese, et al. “Tool support for the design of self-
optimizing mechatronic multi-agent systems”. In: International Journal on Soft-
ware Tools for Technology Transfer 10.3 (June 2008), pp. 207–222. ISSN: 1433-
2787.

[59] Michael Wooldridge. An Introduction to MultiAgent Systems. 2nd. Wiley Publish-
ing, 2009. ISBN: 0470519460.

[60] Mario Kicherer. “Reducing the Complexity of Heterogeneous Computing: A Uni-
fied Approach for Application Development and Runtime Optimization”. PhD the-
sis. 2014.

[61] Mario Kicherer and Wolfgang Karl. “Automatic task mapping and heterogeneity-
aware fault tolerance: The benefits for runtime optimization and application de-
velopment”. In: Journal of Systems Architecture 61.10 (2015). Special section
on Architecture of Computing Systems edited by Editors: Wolfgang Karl, Erik
Maehle, Kay Römer, Eduardo Tovar, Martin Danek Special section on Testing,
Prototyping, and Debugging of Multi-Core Architectures edited by Editors: Frank
Hannig & Andreas Herkersdorf Special section on Embedded Vision Architec-
tures and Applications edited by Editors: Christophe Bobda, Walter Stechele, Ali
Ahmadinia and Miaoqing Huang, pp. 628–638. ISSN: 1383-7621.

187

https://arxiv.org/abs/1701.08125

BIBLIOGRAPHY

[62] Mario Kicherer, Rainer Buchty, and Wolfgang Karl. “Cost-aware Function Migra-
tion in Heterogeneous Systems”. In: Proceedings of the 6th International Confer-
ence on High Performance and Embedded Architectures and Compilers. HiPEAC
11. Heraklion, Greece: ACM, 2011, pp. 137–145. ISBN: 978-1-4503-0241-8.

[63] Tobias Schuele. “Embedded Multicore Building Blocks: Parallel Programming
Made Easy”. In: Embedded World (2015).

[64] Urs Gleim and Markus Levy. MTAPI: Parallel Programming for Embedded Mul-
ticore Systems. 2013. URL: http://multicore- association.org/pdf/
MTAPI%5C_Overview%5C_2013.pdf.

[65] Robert D. Blumofe and Charles E. Leiserson. “Scheduling Multithreaded Com-
putations by Work Stealing”. In: Journal of the ACM 46.5 (Sept. 1999), pp. 720–
748.

[66] Sebastian Mattheis, Tobias Schuele, et al. “Work Stealing Strategies for Parallel
Stream Processing in Soft Real-time Systems”. In: Proceedings of the 25th Inter-
national Conference on Architecture of Computing Systems. ARCS 12. Munich,
Germany: Springer-Verlag, 2012, pp. 172–183. ISBN: 978-3-642-28292-8.

[67] Alejandro Duran, Eduard Ayguadé, et al. “Ompss: a Proposal for Program-
ming Heterogeneous Multi-Core Architectures”. In: Parallel Processing Letters
21 (2011), pp. 173–193.

[68] Eduard Ayguadé, Rosa M. Badia, et al. “Extending OpenMP to Survive the Het-
erogeneous Multi-Core Era”. In: International Journal of Parallel Programming
38.5 (Oct. 2010), pp. 440–459. ISSN: 1573-7640.

[69] OmpSs-2 Specification. (last visit 03/30/22) https://pm.bsc.es/ftp/ompss-
2/doc/spec/.

[70] Nanos++ Runtime. (last visit 03/30/22) https://github.com/bsc-pm/nanox.

[71] Nanos6 Runtime. (last visit 03/30/22) https://github.com/bsc-pm/nanos6.

[72] J. M. Perez, R. M. Badia, and J. Labarta. “A dependency-aware task-based pro-
gramming environment for multi-core architectures”. In: 2008 IEEE International
Conference on Cluster Computing. Sept. 2008, pp. 142–151.

[73] Judit Planas, Rosa Maria Badia, et al. “Selection of Task Implementations in the
Nanos++ Runtime”. In: 2013.

[74] TANGO Whitepaper. “TANGO Toolbox-Final version scientific report”. In: 2019.

[75] TANGO Architecture. (last visit 03/30/22) http : / / www . tango - project .
eu / sites / default / files / tango / public / field / image / TANGO _

architecture.jpg.

188

http://multicore-association.org/pdf/MTAPI%5C_Overview%5C_2013.pdf
http://multicore-association.org/pdf/MTAPI%5C_Overview%5C_2013.pdf
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://github.com/bsc-pm/nanox
https://github.com/bsc-pm/nanos6
http://www.tango-project.eu/sites/default/files/tango/public/field/image/TANGO_architecture.jpg
http://www.tango-project.eu/sites/default/files/tango/public/field/image/TANGO_architecture.jpg
http://www.tango-project.eu/sites/default/files/tango/public/field/image/TANGO_architecture.jpg

BIBLIOGRAPHY

[76] Rosa M. Badia, Javier Conejero, et al. “COMP Superscalar, an interoperable pro-
gramming framework”. In: SoftwareX 3-4 (2015), pp. 32–36. ISSN: 2352-7110.

[77] R. Kavanagh and K. Djemame. “Energy-aware Self-Adaptive Middleware for Het-
erogeneous Parallel Architectures”. In: 2018 Fifth International Symposium on
Innovation in Information and Communication Technology (ISIICT). Oct. 2018,
pp. 1–8.

[78] Cédric Augonnet, Samuel Thibault, and Raymond Namyst. “Automatic Cali-
bration of Performance Models on Heterogeneous Multicore Architectures”. In:
Euro-Par 2009 – Parallel Processing Workshops. Ed. by Hai-Xiang Lin, Michael
Alexander, et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 56–65.
ISBN: 978-3-642-14122-5.

[79] Cédric Augonnet and Raymond Namyst. “A Unified Runtime System for Het-
erogeneous Multi-core Architectures”. In: Euro-Par 2008 Workshops - Parallel
Processing. Ed. by Eduardo César, Michael Alexander, et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 174–183. ISBN: 978-3-642-00955-6.

[80] Thomas Heller, Patrick Diehl, et al. “HPX – An open source C++ Standard Library
for Parallelism and Concurrency”. In: Proceedings of OpenSuCo 2017, Denver,
Colorado USA, November 2017 (OpenSuCo’17). 2017, p. 5.

[81] P. Diehl, M. Seshadri, et al. “Integration of CUDA Processing within the C++
Library for Parallelism and Concurrency (HPX)”. In: 2018 IEEE/ACM 4th In-
ternational Workshop on Extreme Scale Programming Models and Middleware
(ESPM2). Nov. 2018, pp. 19–28.

[82] M. Bauer, S. Treichler, et al. “Legion: Expressing locality and independence with
logical regions”. In: SC 12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. Nov. 2012, pp. 1–
11.

[83] K. Bergman, S. Borkar, et al. ExaScale Computing Study: Technology Challenges
in Achieving Exascale Systems Peter Kogge, Editor & Study Lead. 2008.

[84] Sparsh Mittal. “Power Management Techniques for Data Centers: A Survey”. In:
(Apr. 2014).

[85] Edward Curry, Bill Guyon, et al. “Developing an Sustainable IT Capability:
Lessons From Intel’s Journey”. In: MIS Quarterly Executive 11 (June 2012),
pp. 61–74.

[86] Tobias Schuele. “Embedded Multicore Building Blocks: Parallel Programming
Made Easy”. In: Embedded World (2015).

[87] Renhan Lou. “Symptom-based Fault Detection on GPUs”. Bachelor’s Thesis.
Karlsruhe Institute of Technology, May 2020.

189

BIBLIOGRAPHY

[88] Markus Helwig. “Leistungsvorhersage OpenCL-fähiger Beschleuniger mittels
statischer Code-Analyse und Machine Learning”. MA thesis. Karlsruhe Institute
of Technology, Feb. 2017.

[89] D. Kramer and W. Karl. “Realizing a Proactive, Self-Optimizing System Behavior
within Adaptive, Heterogeneous Many-Core Architectures”. In: 2012 IEEE Sixth
International Conference on Self-Adaptive and Self-Organizing Systems. Sept.
2012, pp. 39–48.

[90] Intel 64 and IA-32 Architectures Software Developer’s Manual, volume 1, 2ABCD,
3ABCD, 4. (last visit 03/30/22) https : / / software . intel . com / sites /
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf.

[91] AMD uProf User Guide, version 3.2. (last visit 03/30/22) https://developer.
amd.com/wordpress/media/files/AMDuprof_Resources/User_Guide_

AMD_uProf_v3.2_GA.pdf.

[92] NVIDIA Management Library. (last visit 03/30/22) https : / / developer .
nvidia.com/nvidia-management-library-nvml.

[93] Linux manual page perf_event_open. (last visit 03/30/22) http://man7.org/
linux/man-pages/man2/perf_event_open.2.html.

[94] lm-sensors. (last visit 03/30/22) https://github.com/lm- sensors/lm-
sensors.

[95] Dan Terpstra, Heike Jagode, et al. “Collecting Performance Data with PAPI-C”. In:
Tools for High Performance Computing 2009. Ed. by Matthias S. Müller, Michael
M. Resch, et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 157–
173. ISBN: 978-3-642-11261-4.

[96] Jan Treibig, Georg Hager, and Gerhard Wellein. “LIKWID: Lightweight Perfor-
mance Tools”. In: Competence in High Performance Computing 2010. Ed. by
Christian Bischof, Heinz-Gerd Hegering, et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 165–175. ISBN: 978-3-642-24025-6.

[97] likwid-perfctr: Measuring applications’ interaction with the hardware using the
hardware performance counters. (last visit 03/30/22) https://github.com/
RRZE-HPC/likwid/wiki/likwid-perfctr.

[98] CUPTI documentation. last visit (03/30/22) https : / / docs . nvidia . com /
cupti/Cupti/index.html. NVIDIA Corporation, 2007–2019.

[99] John Wernsing and Greg Stitt. “Elastic Computing: A Framework for Transparent,
Portable, and Adaptive Multi-core Heterogeneous Computing”. In: vol. 45. Apr.
2010, pp. 115–124.

190

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://developer.amd.com/wordpress/media/files/AMDuprof_Resources/User_Guide_AMD_uProf_v3.2_GA.pdf
https://developer.amd.com/wordpress/media/files/AMDuprof_Resources/User_Guide_AMD_uProf_v3.2_GA.pdf
https://developer.amd.com/wordpress/media/files/AMDuprof_Resources/User_Guide_AMD_uProf_v3.2_GA.pdf
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://github.com/lm-sensors/lm-sensors
https://github.com/lm-sensors/lm-sensors
https://github.com/RRZE-HPC/likwid/wiki/likwid-perfctr
https://github.com/RRZE-HPC/likwid/wiki/likwid-perfctr
https://docs.nvidia.com/cupti/Cupti/index.html
https://docs.nvidia.com/cupti/Cupti/index.html

BIBLIOGRAPHY

[100] Artur Podobas, Mats Brorsson, and Vladimir Vlassov. “Exploring Heterogeneous
Scheduling Using the Task-Centric Programming Model”. In: Euro-Par 2012: Par-
allel Processing Workshops. Ed. by Ioannis Caragiannis, Michael Alexander, et
al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 133–144. ISBN: 978-
3-642-36949-0.

[101] Víctor J. Jiménez, Lluís Vilanova, et al. “Predictive Runtime Code Scheduling
for Heterogeneous Architectures”. In: High Performance Embedded Architec-
tures and Compilers. Ed. by André Seznec, Joel Emer, et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 19–33. ISBN: 978-3-540-92990-1.

[102] Jacques A. Pienaar, Anand Raghunathan, and Srimat Chakradhar. “MDR: Per-
formance Model Driven Runtime for Heterogeneous Parallel Platforms”. In: Pro-
ceedings of the International Conference on Supercomputing. ICS ’11. Tucson,
Arizona, USA: ACM, 2011, pp. 225–234. ISBN: 978-1-4503-0102-2.

[103] What exactly is a P-State? (last visit 03/30/22) https://software.intel.
com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1.

[104] intel_pstate. (last visit 03/30/22) https://www.kernel.org/doc/html/v4.
12/admin-guide/pm/intel_pstate.html.

[105] Felix Salfner, Maren Lenk, and Miroslaw Malek. “A Survey of Online Failure Pre-
diction Methods”. In: ACM Comput. Surv. 42.3 (Mar. 2010), 10:1–10:42. ISSN:
0360-0300.

[106] Wolfram Schiffmann and Robert Schmitz. Technische Informatik 2. Springer
Berlin Heidelberg, Jan. 2002.

[107] A. W. Williams, S. M. Pertet, and P. Narasimhan. “Tiresias: Black-Box Failure
Prediction in Distributed Systems”. In: 2007 IEEE International Parallel and Dis-
tributed Processing Symposium. Mar. 2007, pp. 1–8.

[108] Joy Arulraj, Po-Chun Chang, et al. “Production-run Software Failure Diagnosis
via Hardware Performance Counters”. In: SIGARCH Comput. Archit. News 41.1
(Mar. 2013), pp. 101–112. ISSN: 0163-5964.

[109] Cemal Yilmaz and Adam Porter. “Combining Hardware and Software Instrumen-
tation to Classify Program Executions”. In: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering.
FSE ’10. Santa Fe, New Mexico, USA: ACM, 2010, pp. 67–76. ISBN: 978-1-
60558-791-2.

[110] Martin Dimitrov and Huiyang Zhou. “Unified Architectural Support for Soft-Error
Protection or Software Bug Detection”. In: Oct. 2007, pp. 73–82. ISBN: 978-0-
7695-2944-8.

191

https://software.intel.com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1
https://software.intel.com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1
https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html

BIBLIOGRAPHY

[111] S. Narayanasamy, A. K. Coskun, and B. Calder. “Transient Fault Prediction Based
on Anomalies in Processor Events”. In: 2007 Design, Automation Test in Europe
Conference Exhibition. Apr. 2007, pp. 1–6.

[112] N. J. Wang and S. J. Patel. “ReStore: symptom based soft error detection in mi-
croprocessors”. In: 2005 International Conference on Dependable Systems and
Networks (DSN’05). June 2005, pp. 30–39.

[113] S. K. S. Hari, M. Li, et al. “mSWAT: Low-cost hardware fault detection and di-
agnosis for multicore systems”. In: 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Dec. 2009, pp. 122–132.

[114] C. Ding, C. Karlsson, et al. “Matrix Multiplication on GPUs with On-Line Fault Tol-
erance”. In: 2011 IEEE Ninth International Symposium on Parallel and Distributed
Processing with Applications. May 2011, pp. 311–317.

[115] N. Maruyama, A. Nukada, and S. Matsuoka. “A high-performance fault-tolerant
software framework for memory on commodity GPUs”. In: 2010 IEEE Interna-
tional Symposium on Parallel Distributed Processing (IPDPS). Apr. 2010, pp. 1–
12.

[116] S. Di Carlo, G. Gambardella, et al. “A software-based self test of CUDA Fermi
GPUs”. In: 2013 18th IEEE European Test Symposium (ETS). May 2013, pp. 1–
6.

[117] Jingweijia Tan and Xin Fu. “RISE: Improving the streaming processors reliability
against soft errors in GPGPUs”. In: Proceedings of the 21st international confer-
ence on Parallel architectures and compilation techniques. 2012, pp. 191–200.

[118] Alessio Netti, Zeynep Kiziltan, et al. “FINJ: A Fault Injection Tool for HPC Sys-
tems”. In: CoRR abs/1807.10056 (2018). arXiv: 1807.10056.

[119] S. K. S. Hari, T. Tsai, et al. “SASSIFI: An architecture-level fault injection tool for
GPU application resilience evaluation”. In: 2017 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). Apr. 2017, pp. 249–
258.

[120] SASSIFI. (last visit 03/30/22) https://github.com/NVlabs/sassifi.

[121] M. Stephenson, S. K. S. Hari, et al. “Flexible software profiling of GPU architec-
tures”. In: 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA). 2015, pp. 185–197.

[122] Ozan Tuncer, Emre Ates, et al. “Diagnosing Performance Variations in HPC Ap-
plications Using Machine Learning”. In: High Performance Computing. Ed. by Ju-
lian M. Kunkel, Rio Yokota, et al. Cham: Springer International Publishing, 2017,
pp. 355–373. ISBN: 978-3-319-58667-0.

192

https://arxiv.org/abs/1807.10056
https://github.com/NVlabs/sassifi

BIBLIOGRAPHY

[123] Shuai Che, Michael Boyer, et al. “Rodinia: A Benchmark Suite for Heteroge-
neous Computing”. In: Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC). IISWC 09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 44–54. ISBN: 978-1-4244-5156-2.

[124] B. L. WELCH. “THE GENERALIZATION OF ’STUDENT’S’ PROBLEM WHEN
SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED”. In:
Biometrika 34.1-2 (Jan. 1947), pp. 28–35. ISSN: 0006-3444. eprint: http://
oup.prod.sis.lan/biomet/article-pdf/34/1-2/28/553093/34-1-2-
28.pdf.

[125] Microsoft. Microsoft Excel – TTEST-Function. 2020. URL: https://support.
microsoft.com/de-de/office/ttest-funktion-1696ffc1-4811-40fd-
9d13-a0eaad83c7ae.

[126] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation”. In: Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04). Palo Alto, Califor-
nia, Mar. 2004.

[127] Brian A. Nejmeh. “NPATH: A Measure of Execution Path Complexity and Its Ap-
plications”. In: Commun. ACM 31.2 (Feb. 1988), pp. 188–200. ISSN: 0001-0782.

[128] T. J. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software Engi-
neering SE-2.4 (Dec. 1976), pp. 308–320. ISSN: 0098-5589.

[129] OCLint. OCLint. (last visit 03/30/22) http://oclint.org/. 2012.

[130] Jason R. C. Patterson. “Accurate Static Branch Prediction by Value Range Prop-
agation”. In: SIGPLAN Not. 30.6 (June 1995), pp. 67–78. ISSN: 0362-1340.

[131] Stephen Marsland. Machine Learning: An Algorithmic Perspective, Second Edi-
tion. 2nd. Chapman & Hall/CRC, 2014. ISBN: 1466583282, 9781466583283.

[132] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Ma-
chine Learning. The MIT Press, 2012. ISBN: 026201825X, 9780262018258.

[133] T. A. Runkler. Data Analytics - Models and Algorithms for Intelligent Data Analy-
sis, Second Edition. Springer Wiesbaden, 2016. ISBN: 978-3-658-14075-5.

[134] Tin Kam Ho. “Random Decision Forests”. In: Proceedings of the Third Interna-
tional Conference on Document Analysis and Recognition (Volume 1) - Volume
1. ICDAR ’95. Washington, DC, USA: IEEE Computer Society, 1995, pp. 278–.
ISBN: 0-8186-7128-9.

[135] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statisti-
cal learning: data mining, inference and prediction. 2nd ed. Springer, 2009.

193

http://oup.prod.sis.lan/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
http://oup.prod.sis.lan/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
http://oup.prod.sis.lan/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
https://support.microsoft.com/de-de/office/ttest-funktion-1696ffc1-4811-40fd-9d13-a0eaad83c7ae
https://support.microsoft.com/de-de/office/ttest-funktion-1696ffc1-4811-40fd-9d13-a0eaad83c7ae
https://support.microsoft.com/de-de/office/ttest-funktion-1696ffc1-4811-40fd-9d13-a0eaad83c7ae
http://oclint.org/

BIBLIOGRAPHY

[136] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. ISBN:
0387310738.

[137] Paul Munro. “Backpropagation”. In: Encyclopedia of Machine Learning. Springer,
2010. ISBN: 978-0-387-30164-8.

[138] F. Pedregosa, G. Varoquaux, and A. Gramfort et al. “Scikit-learn: Machine Learn-
ing in Python”. In: Journal of Machine Learning Research (2011).

[139] AMD. AMD APP SDK. (last visit 09/30/16) http : / / developer . amd .
com / tools - and - sdks / opencl - zone / amd - accelerated - parallel -
processing-app-sdk/. 2016.

[140] Intel. Intel OpenCL Samples. (last visit 03/30/22) https://software.intel.
com/en-us/intel-opencl-support/code-samples. 2016.

[141] Y. Sun, X. Gong, et al. “Hetero-mark, a benchmark suite for CPU-GPU collabora-
tive computing”. In: IEEE International Symposium on Workload Characterization
(IISWC). 2016.

[142] J. A. Stratton, C. Rodrigues, et al. Parboil: A Revised Benchmark Suite for Scien-
tific and Commercial Throughput Computing. Tech. rep. IMPACT-12-01. Univer-
sity of Illinois at Urbana-Champaign, Mar. 2012.

[143] S. Grauer-Gray, L. Xu, et al. “Auto-tuning a high-level language targeted to GPU
codes”. In: 2012 Innovative Parallel Computing (InPar). May 2012, pp. 1–10.

[144] Scott Grauer-Gray and Louis-Noel Pouchet. PolyBench/GPU - Implementation of
PolyBench codes for GPU processing. (last visit 03/30/22) http://web.cse.
ohio-state.edu/~pouchet/software/polybench/GPU/. Mar. 2012.

[145] A. Danalis, G. Marin, et al. “The Scalable Heterogeneous Computing (SHOC)
benchmark suite.” In: GPGPU. Vol. 425. ACM International Conference Proceed-
ing Series. Mar. 18, 2010.

[146] C. Beffa and R. J Connell. “Two-dimensional flood plain flow. I: Model descrip-
tion”. In: Journal of Hydrologic Engineering (2001).

[147] Tomas Borovicka, Marcel Jirina Jr, et al. Selecting representative data sets. IN-
TECH Open Access Publisher, 2012.

[148] Yi-Wei Chen and Chih-Jen Lin. “Combining SVMs with Various Feature Selection
Strategies”. In: Feature Extraction: Foundations and Applications. Ed. by Isabelle
Guyon, Masoud Nikravesh, et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 315–324. ISBN: 978-3-540-35488-8.

[149] I. Baldini, S. J. Fink, and E. R. Altman. “Predicting GPU Performance from CPU
Runs Using Machine Learning.” In: SBAC-PAD. IEEE Computer Society, 2014,
pp. 254–261. ISBN: 978-1-4799-6904-3.

194

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
https://software.intel.com/en-us/intel-opencl-support/code-samples
https://software.intel.com/en-us/intel-opencl-support/code-samples
http://web.cse.ohio-state.edu/~pouchet/software/polybench/GPU/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/GPU/

BIBLIOGRAPHY

[150] Y. Wen, Z. Wang, and M. F. P. O’Boyle. “Smart multi-task scheduling for OpenCL
programs on CPU/GPU heterogeneous platforms”. In: 2014 21st International
Conference on High Performance Computing (HiPC). Dec. 2014, pp. 1–10.

[151] A. Hayashi, K. Ishizaki, et al. “Machine-Learning-based Performance Heuristics
for Runtime CPU/GPU Selection”. In: Proceedings of the Principles and Practices
of Programming on The Java Platform. PPPJ ’15. Melbourne, FL, USA: ACM,
2015, pp. 27–36. ISBN: 978-1-4503-3712-0.

[152] G. Wu, J. L. Greathouse, et al. “GPGPU performance and power estimation using
machine learning”. In: 2015 IEEE 21st International Symposium on High Perfor-
mance Computer Architecture (HPCA). Feb. 2015, pp. 564–576.

[153] M. Amarís, R. Y. de Camargo, et al. “A comparison of GPU execution time predic-
tion using machine learning and analytical modeling”. In: 2016 IEEE 15th Inter-
national Symposium on Network Computing and Applications (NCA). Oct. 2016,
pp. 326–333.

[154] K. Hoste, A. Phansalkar, et al. “Performance prediction based on inherent pro-
gram similarity”. In: 2006 International Conference on Parallel Architectures and
Compilation Techniques (PACT). 2006, pp. 114–122.

[155] D. Grewe and M. F. P. O’Boyle. “A Static Task Partitioning Approach for Het-
erogeneous Systems Using OpenCL”. In: Proceedings of the 20th International
Conference on Compiler Construction: Part of the Joint European Conferences
on Theory and Practice of Software. CC’11/ETAPS’11. Saarbrücken, Germany:
Springer-Verlag, 2011, pp. 286–305. ISBN: 978-3-642-19860-1.

[156] K. Kofler, I. Grasso, et al. “An Automatic Input-sensitive Approach for Heteroge-
neous Task Partitioning”. In: Proceedings of the 27th International ACM Confer-
ence on International Conference on Supercomputing. Eugene, Oregon, USA,
2013. ISBN: 978-1-4503-2130-3.

[157] Spyros Makridakis. “Accuracy measures: theoretical and practical concerns”. In:
International Journal of Forecasting 9.4 (1993), pp. 527–529. ISSN: 0169-2070.

[158] Jan Petzold, Faruk Bagci, et al. “The state predictor method for context predic-
tion”. In: Proceedings: Fifth International Conference on Ubiquitous Computing
2003 (UbiComp 2003) October 12-15, 2003, Seattle, Washington, USA. Ed. by
Joe McCarthy, Anind K. Dey, and Albrecht Schmidt. 2003, pp. 191–192.

[159] A. E. Nicholson and J. M. Brady. “Dynamic belief networks for discrete monitor-
ing”. In: IEEE Transactions on Systems, Man, and Cybernetics 24.11 (Nov. 1994),
pp. 1593–1610. ISSN: 2168-2909.

[160] Uri Nodelman, Christian R. Shelton, and Daphne Koller. “Continuous Time
Bayesian Networks”. In: UAI’02. Alberta, Canada: Morgan Kaufmann Publishers
Inc., 2002, pp. 378–387. ISBN: 1558608974.

195

BIBLIOGRAPHY

[161] Christos Anagnostopoulos, Panagiotis Mpougiouris, and Stathes Hadjiefthymi-
ades. “Prediction Intelligence in Context-Aware Applications”. In: Proceedings of
the 6th International Conference on Mobile Data Management. MDM ’05. Ayia
Napa, Cyprus: Association for Computing Machinery, 2005, pp. 137–141. ISBN:
1595930418.

[162] Fenghua Gao, J. S. Thorp, et al. “Dynamic state prediction based on Auto-
Regressive (AR) Model using PMU data”. In: 2012 IEEE Power and Energy Con-
ference at Illinois. Feb. 2012, pp. 1–5.

[163] H. Livani, S. Jafarzadeh, et al. “A Unified Approach for Power System Predic-
tive Operations Using Viterbi Algorithm”. In: IEEE Transactions on Sustainable
Energy 5.3 (July 2014), pp. 757–766. ISSN: 1949-3037.

[164] L. Hernandez, C. Baladron, et al. “A multi-agent system architecture for smart grid
management and forecasting of energy demand in virtual power plants”. In: IEEE
Communications Magazine 51.1 (Jan. 2013), pp. 106–113. ISSN: 1558-1896.

[165] Michael Hind, Vadakkedathu Rajan, and Peter Sweeney. “Phase Shift Detection:
A Problem Classification”. In: (Dec. 2003).

[166] Thomas Becker. “Phasendefinition und Phasenvorhersage in adaptiven Many-
Core Architekturen”. Bachelor’s Thesis. Karlsruhe Institute of Technology, Sept.
2011.

[167] David Kramer. “Self-awareness in heterogeneous, adaptive many-core architec-
tures enabling proactive, self-optimizing systems”. Zsfassungen in dt. und engl.
SpracheZugl.: Karlsruhe, Karlsruher Inst. fúr Technologie, Diss., 2012IMD-Felder
maschinell generiert (GBV). PhD thesis. Aachen, 2012. ISBN: 9783844013450.
URL: https://www.gbv.de/dms/tib-ub-hannover/725615893.pdf.

[168] Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere. “A Detailed
Study on Phase Predictors”. In: Euro-Par’05. Lisbon, Portugal: Springer-Verlag,
2005, pp. 571–581. ISBN: 3540287000.

[169] Timothy Sherwood, Suleyman Sair, and Brad Calder. “Phase Tracking and Pre-
diction”. In: 31.2 (May 2003), pp. 336–349. ISSN: 0163-5964.

[170] Martin Hock, Karthik Jayaraman, et al. Phase Capture and Prediction with Appli-
cations. 2005.

[171] Xipeng Shen, Yutao Zhong, and Chen Ding. “Locality Phase Prediction”. In: Pro-
ceedings of the 11th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. ASPLOS XI. Boston, MA, USA:
Association for Computing Machinery, 2004, pp. 165–176. ISBN: 1581138040.

[172] Xipeng Shen, Yutao Zhong, and Chen Ding. “Predicting locality phases for dy-
namic memory optimization”. In: J. Parallel Distrib. Comput (2007), pp. 783–796.

196

https://www.gbv.de/dms/tib-ub-hannover/725615893.pdf

BIBLIOGRAPHY

[173] Zhenman Fang, Jiaxin Li, et al. “Improving Dynamic Prediction Accuracy through
Multi-Level Phase Analysis”. In: LCTES ’12. Beijing, China: Association for Com-
puting Machinery, 2012, pp. 89–98. ISBN: 9781450312127.

[174] H. Quan, T. Zhang, and J. Guo. “Task Scheduling Prediction Algorithms for Dy-
namic Hardware/Software Partitioning”. In: 2012 Fifth International Symposium
on Parallel Architectures, Algorithms and Programming. Dec. 2012, pp. 80–85.

[175] Andrey Vladimirovich Gritsenko, Nikita Georgievich Demurchev, et al. “Decom-
position Analysis and Machine Learning in a Workflow-Forecast Approach to the
Task Scheduling Problem for High-Loaded Distributed Systems”. In: Mathemati-
cal Models and Methods in Applied Sciences 9 (2015), p. 38.

[176] George Edward Pelham Box and Gwilym Jenkins. Time Series Analysis, Fore-
casting and Control. USA: Holden-Day, Inc., 1990. ISBN: 0816211043.

[177] Hema R. Madala and Alekseæi Grigoşevich Ivakhnenko. Inductive Learning Al-
gorithms for Complex Systems Modeling. USA: CRC Press, Inc., 1994. ISBN:
0849344387.

[178] N. Golyandina and D. Stepanov. “SSA-based approaches to analysis and fore-
cast of multidimensional time series”. In: Proceedings of the 5th St. Petersburg
Workshop on Simulation. 2005.

[179] “Reprint of: Mahalanobis, P.C. (1936) "On the Generalised Distance in Statis-
tics."” In: Sankhya A 80.1 (Dec. 2018), pp. 1–7. ISSN: 0976-8378.

[180] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. AMS, 2003.

[181] Xinye Yang. “Markov Chain and Its Applications”. PhD thesis. Mar. 2020.

[182] D. Joseph and D. Grunwald. “Prefetching using Markov predictors”. In: IEEE
Transactions on Computers 48.2 (Feb. 1999), pp. 121–133. ISSN: 1557-9956.

[183] I-Cheng K. Chen, John T. Coffey, and Trevor N. Mudge. “Analysis of
Branch Prediction via Data Compression”. In: ASPLOS VII. Cambridge, Mas-
sachusetts, USA: Association for Computing Machinery, 1996, pp. 128–137.
ISBN: 0897917677.

[184] Robert I. Davis and Alan Burns. “A Survey of Hard Real-Time Scheduling for
Multiprocessor Systems”. In: ACM Comput. Surv. 43.4 (Oct. 2011). ISSN: 0360-
0300.

[185] Leonard Kleinrock. Theory, Volume 1, Queueing Systems. USA: Wiley-
Interscience, 1975. ISBN: 0471491101.

[186] Mersenne Twister 64bit version. (last visit 03/30/22) http://www.math.sci.
hiroshima-u.ac.jp/~m-mat/MT/emt64.html.

197

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html

BIBLIOGRAPHY

[187] Makoto Matsumoto and Takuji Nishimura. “Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number Generator”. In:
ACM Trans. Model. Comput. Simul. 8.1 (Jan. 1998), pp. 3–30. ISSN: 1049-3301.

[188] Shouvik Chakraborty and Kalyani Mali. “Application of Multiobjective Optimization
Techniques in Biomedical Image Segmentation—A Study”. In: Multi-Objective
Optimization: Evolutionary to Hybrid Framework. Ed. by Jyotsna K. Mandal,
Somnath Mukhopadhyay, and Paramartha Dutta. Singapore: Springer Singapore,
2018, pp. 181–194. ISBN: 978-981-13-1471-1.

[189] Seyedali Mirjalili and Jin Song Dong. Multi-Objective Optimization using Artifi-
cial Intelligence Techniques. 1st. Springer International Publishing, 2020. ISBN:
3030248345.

[190] Abdullah Konak, David W. Coit, and Alice E. Smith. “Multi-objective optimization
using genetic algorithms: A tutorial”. In: Reliability Engineering & System Safety
91.9 (2006). Special Issue - Genetic Algorithms and Reliability, pp. 992–1007.
ISSN: 0951-8320.

[191] Anne Koziolek. “Automated Improvement of Software Architecture Models for
Performance and Other Quality Attributes”. PhD thesis. Karlsruhe, Germany: In-
stitut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut
für Technologie, July 2011. URL: http://digbib.ubka.uni-karlsruhe.de/
volltexte/1000024955.

[192] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: A Bradford Book, 2018. ISBN: 0262039249.

[193] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. “Reinforcement
Learning: A Survey”. In: 4.1 (May 1996), pp. 237–285. ISSN: 1076-9757.

[194] G. Mongillo, H. Shteingart, and Y. Loewenstein. “The Misbehavior of Reinforce-
ment Learning”. In: Proceedings of the IEEE 102.4 (2014), pp. 528–541.

[195] John H. Holland. “Adaptation”. In: Progress in Theoretical Biology. New
York:Plenum, 1976, pp. 263–293. ISBN: 978-0-12-543104-0.

[196] John Holland, Lashon Booker, et al. “What Is a Learning Classifier System?” In:
vol. 1813. Jan. 1999, pp. 3–32. ISBN: 978-3-540-67729-1.

[197] John H. Holland. “Adaptive algorithms for discovering and using general patterns
in grow ing knowledge-bases”. In: International Journal of Policy Analysis and
Information Systems 4.3 (1980), pp. 245–268.

[198] Ryan J. Urbanowicz and Will N. Browne. Introduction to Learning Classifier Sys-
tems. 1st. Springer Publishing Company, Incorporated, 2017. ISBN: 3662550067.

198

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955

BIBLIOGRAPHY

[199] Ryan Urbanowicz and Jason Moore. “Learning Classifier Systems: A Complete
Introduction, Review, and Roadmap”. In: Journal of Artificial Evolution and Appli-
cations 2009 (Sept. 2009).

[200] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. Repub-
lished by the MIT Press, 1992. Ann Arbor: University of Michigan Press, 1975.
ISBN: 0472084607.

[201] Stewart W. Wilson. “Classifier Fitness Based on Accuracy”. In: Evol. Comput. 3.2
(June 1995), pp. 149–175. ISSN: 1063-6560.

[202] Christopher John Cornish Hellaby Watkins. “Learning from Delayed Rewards”.
PhD thesis. Cambridge, UK: King’s College, May 1989. URL: http://www.cs.
rhul.ac.uk/~chrisw/new_thesis.pdf.

[203] Stewart W. Wilson. “Get Real! XCS with Continuous-Valued Inputs”. In: Learn-
ing Classifier Systems, From Foundations to Applications. Berlin, Heidelberg:
Springer-Verlag, 2000, pp. 209–222. ISBN: 3540677291.

[204] S. W. Wilson. “Generalization in the XCS Classifier System”. In: Genetic Pro-
gramming 1998: Proceedings of the Third Annual Conference. Ed. by J. R. Koza,
W. Banzhaf, et al. San Francisco, CA: Morgan Kaufmann, 1998.

[205] Stewart W. Wilson. “Classifiers That Approximate Functions”. In: Natural Comput-
ing: An International Journal 1.2-3 (June 2002), pp. 211–234. ISSN: 1567-7818.

[206] Y. C. Lee and A. Y. Zomaya. “Energy Conscious Scheduling for Distributed Com-
puting Systems under Different Operating Conditions”. In: IEEE Transactions on
Parallel and Distributed Systems 22.8 (2011), pp. 1374–1381.

[207] Q. Chen, L. Zheng, et al. “EEWA: Energy-Efficient Workload-Aware Task
Scheduling in Multi-core Architectures”. In: 2014 IEEE International Parallel Dis-
tributed Processing Symposium Workshops. 2014, pp. 642–651.

[208] Kai Ma, Xue Li, et al. “GreenGPU: A holistic approach to energy efficiency in
GPU-CPU heterogeneous architectures”. In: Sept. 2012, pp. 48–57. ISBN: 978-
1-4673-2508-0.

[209] W. Sun and T. Sugawara. “Heuristics and Evaluations of Energy-Aware Task Map-
ping on Heterogeneous Multiprocessors”. In: 2011 IEEE International Sympo-
sium on Parallel and Distributed Processing Workshops and Phd Forum. 2011,
pp. 599–607.

[210] Jin Cui and Douglas L. Maskell. “Dynamic Thermal-Aware Scheduling on Chip
Multiprocessor for Soft Real-Time System”. In: GLSVLSI ’09. Boston Area,
MA, USA: Association for Computing Machinery, 2009, pp. 393–396. ISBN:
9781605585222.

199

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

BIBLIOGRAPHY

[211] H. F. Sheikh, I. Ahmad, and D. Fan. “An Evolutionary Technique for Performance-
Energy-Temperature Optimized Scheduling of Parallel Tasks on Multi-Core Pro-
cessors”. In: IEEE Transactions on Parallel and Distributed Systems 27.3 (2016),
pp. 668–681.

[212] Holger Prothmann, Sven Tomforde, et al. “Organic Traffic Control”. In: Organic
Computing — A Paradigm Shift for Complex Systems. Ed. by Christian Müller-
Schloer, Hartmut Schmeck, and Theo Ungerer. Basel: Springer Basel, 2011,
pp. 431–446.

[213] Björn Hurling, Sven Tomforde, and Jörg Hähner. “Organic Network Control”. In:
Organic Computing — A Paradigm Shift for Complex Systems. Ed. by Christian
Müller-Schloer, Hartmut Schmeck, and Theo Ungerer. Basel: Springer Basel,
2011, pp. 611–613. ISBN: 978-3-0348-0130-0.

[214] Sven Tomforde, Björn Hurling, and Jörg Hähner. “Distributed Network Protocol
Parameter Adaptation in Mobile Ad-Hoc Networks”. In: Informatics in Control,
Automation and Robotics. Ed. by Juan Andrade Cetto, Jean-Louis Ferrier, and
Joaquim Filipe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 91–104.
ISBN: 978-3-642-19539-6.

[215] Sven Tomforde, Ioannis Zgeras, et al. “Adaptive Control of Sensor Networks”.
In: Autonomic and Trusted Computing. Ed. by Bing Xie, Juergen Branke, et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 77–91. ISBN: 978-3-
642-16576-4.

[216] Pier Luca Lanzi, Daniele Loiacono, and Pier Luca. “XCSLib: The XCS classifier
system library”. In: (Apr. 2009).

[217] Sushu Zhang and Karam S. Chatha. “Approximation algorithm for the
temperature-aware scheduling problem”. In: 2007 IEEE/ACM International Con-
ference on Computer-Aided Design. 2007, pp. 281–288.

[218] Kevin Skadron, Mircea R. Stan, et al. “Temperature-Aware Microarchitecture:
Modeling and Implementation”. In: ACM Trans. Archit. Code Optim. 1.1 (Mar.
2004), pp. 94–125. ISSN: 1544-3566.

[219] K. Skadron, T. Abdelzaher, and M.R. Stan. “Control-theoretic techniques and
thermal-RC modeling for accurate and localized dynamic thermal management”.
In: Proceedings Eighth International Symposium on High Performance Computer
Architecture. 2002, pp. 17–28.

[220] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. “Task Scheduling Algorithms
for Heterogeneous Processors”. In: Proceedings of the Eighth Heterogeneous
Computing Workshop. HCW ’99. Washington, DC, USA: IEEE Computer Society,
1999, pp. 3–. ISBN: 0-7695-0107-9.

200

BIBLIOGRAPHY

[221] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. “Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing”. In: IEEE Trans. Par-
allel Distrib. Syst. 13.3 (Mar. 2002), pp. 260–274. ISSN: 1045-9219.

[222] L. A. Shepp and Y. Vardi. “Maximum Likelihood Reconstruction for Emission To-
mography”. In: IEEE Transactions on Medical Imaging 1.2 (1982), pp. 113–122.

[223] Tilman Küstner, Josef Weidendorfer, et al. “Parallel MLEM on Multicore Architec-
tures”. In: ICCS 2009: 9th Int. Conf. on Computational Science. Ed. by G. Allen
et al. Berlin, Heidelberg: Springer, 2009. ISBN: 978-3-642-01970-8.

[224] Magdalena Rafecas, Brygida Mosler, et al. “Use of a Monte Carlo-Based Proba-
bility Matrix for 3-D Iterative Reconstruction of MADPET-II Data”. In: IEEE Trans.
on Nuclear Science 51.5 (2004).

[225] R.L. Graham, E.L. Lawler, et al. “Optimization and Approximation in Deterministic
Sequencing and Scheduling: a Survey”. In: Discrete Optimization II. Ed. by P.L.
Hammer, E.L. Johnson, and B.H. Korte. Vol. 5. Annals of Discrete Mathematics
Supplement C. Elsevier, 1979, pp. 287–326.

[226] Nidhi Rajak, Anurag Dixit, and Ranjit Rajak. “Classification of List Task Schedul-
ing Algorithms: A Short Review Paper”. In: Journal of Industrial and Intelligent
Information 2 (Jan. 2014).

[227] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP–Completeness. USA: W. H. Freeman & Co., 1990. ISBN:
0716710455.

[228] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment”. In: J. ACM 20.1 (Jan. 1973), pp. 46–61. ISSN:
0004-5411.

[229] M. L. Dertouzos and A. K. Mok. “Multiprocessor online scheduling of hard-real-
time tasks”. In: IEEE Transactions on Software Engineering 15.12 (Dec. 1989),
pp. 1497–1506. ISSN: 2326-3881.

[230] Yuming Xu, Kenli Li, et al. “A genetic algorithm for task scheduling on hetero-
geneous computing systems using multiple priority queues”. In: Information Sci-
ences 270 (2014), pp. 255–287. ISSN: 0020-0255.

[231] Henan Zhao and Rizos Sakellariou. “An Experimental Investigation into the Rank
Function of the Heterogeneous Earliest Finish Time Scheduling Algorithm”. In:
Euro-Par 2003 Parallel Processing. Ed. by Harald Kosch, László Böszörményi,
and Hermann Hellwagner. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 189–194. ISBN: 978-3-540-45209-6.

201

BIBLIOGRAPHY

[232] Jong-Kook Kim, Sameer Shivle, et al. “Dynamically mapping tasks with priorities
and multiple deadlines in a heterogeneous environment”. In: Journal of Parallel
and Distributed Computing 67.2 (2007), pp. 154–169. ISSN: 0743-7315.

[233] G. Kannan and S. Thamarai Selvi. “Nonpreemptive Priority (NPRP) based Job
Scheduling model for virtualized grid environment”. In: 2010 3rd International
Conference on Advanced Computer Theory and Engineering(ICACTE). Vol. 4.
Aug. 2010, pp. V4-377-V4–381.

[234] Risat Mahmud Pathan. “Unifying fixed- and dynamic-priority scheduling based
on priority promotion and an improved ready queue management technique”. In:
21st IEEE Real-Time and Embedded Technology and Applications Symposium
(2015), pp. 209–220.

[235] P. Dhivya., V. Sangamithra., et al. “Improving the resource utilization in grid
environment using Aging Technique”. In: 2012 Third International Conference
on Computing, Communication and Networking Technologies (ICCCNT’12). July
2012, pp. 1–5.

[236] R. Armstrong, D. Hensgen, and T. Kidd. “The relative performance of various
mapping algorithms is independent of sizable variances in run-time predictions”.
In: Heterogeneous Computing Workshop, 1998. (HCW 98) Proceedings. 1998
Seventh. Mar. 1998, pp. 79–87.

[237] Oscar H. Ibarra and Chul E. Kim. “Heuristic Algorithms for Scheduling Indepen-
dent Tasks on Nonidentical Processors”. In: J. ACM 24.2 (Apr. 1977), pp. 280–
289. ISSN: 0004-5411.

[238] Saeed Parsa and Reza Entezari-Maleki. “RASA: A new task scheduling algorithm
in grid environment”. In: World Applied Sciences Journal 7 (Jan. 2009), pp. 152–
160.

[239] Min-You Wu and Wei Shu. “A high-performance mapping algorithm for heteroge-
neous computing systems”. In: Proceedings 15th International Parallel and Dis-
tributed Processing Symposium. IPDPS 2001. Apr. 2001, 6 pp.-.

[240] Yuebin Bai, Cong Xu, and Zhi Li. “Task-Aware Based Co-Scheduling for Vir-
tual Machine System”. In: Proceedings of the 2010 ACM Symposium on Applied
Computing. SAC ’10. Sierre, Switzerland: Association for Computing Machinery,
2010, pp. 181–188. ISBN: 9781605586397.

[241] Orathai Sukwong and Hyong S. Kim. “Is Co-Scheduling Too Expensive for SMP
VMs?” In: Proceedings of the Sixth Conference on Computer Systems. EuroSys
’11. Salzburg, Austria: Association for Computing Machinery, 2011, pp. 257–272.
ISBN: 9781450306348.

202

BIBLIOGRAPHY

[242] L. He, H. Zhu, and S. A. Jarvis. “Developing Graph-Based Co-Scheduling Algo-
rithms on Multicore Computers”. In: IEEE Transactions on Parallel and Distributed
Systems 27.6 (2016), pp. 1617–1632.

[243] Major Bhadauria and Sally A. McKee. “An Approach to Resource-Aware Co-
Scheduling for CMPs”. In: Proceedings of the 24th ACM International Conference
on Supercomputing. ICS ’10. Tsukuba, Ibaraki, Japan: Association for Computing
Machinery, 2010, pp. 189–199. ISBN: 9781450300186.

[244] E. Frachtenberg, G. Feitelson, et al. “Adaptive parallel job scheduling with flexible
coscheduling”. In: IEEE Transactions on Parallel and Distributed Systems 16.11
(2005), pp. 1066–1077.

[245] Y. Jiang, X. Shen, et al. “Analysis and approximation of optimal co-scheduling
on Chip Multiprocessors”. In: 2008 International Conference on Parallel Architec-
tures and Compilation Techniques (PACT). 2008, pp. 220–229.

[246] Kai Tian, Yunlian Jiang, and Xipeng Shen. “A Study on Optimally Co-Scheduling
Jobs of Different Lengths on Chip Multiprocessors”. In: Proceedings of the 6th
ACM Conference on Computing Frontiers. CF ’09. Ischia, Italy: Association for
Computing Machinery, 2009, pp. 41–50. ISBN: 9781605584133.

[247] Terry R Jones, Pythagoras C Watson, et al. “Parallel-aware, dedicated job co-
scheduling within/across symmetric multiprocessing nodes”. In: (Oct. 2010).

[248] Cédric Augonnet, Olivier Aumage, et al. StarPU-MPI: Task Programming over
Clusters of Machines Enhanced with Accelerators. Research Report RR-8538.
INRIA, May 2014. URL: https://hal.inria.fr/hal-00992208.

[249] Q. Meng, A. Humphrey, and M. Berzins. “The uintah framework: a unified hetero-
geneous task scheduling and runtime system”. In: 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis. 2012, pp. 2441–
2448.

[250] B. Peterson. “Portable and Performant GPU/Heterogeneous Asynchronous
Many-task Runtime System. Ph.D. Dissertation”. PhD thesis. University of Utah,
School of Computing, Dec. 2019. URL: http : / / www . sci . utah . edu /
publications/Pet2019a/bradpeterson-thesis.pdf.

[251] Christopher J. Rossbach, Yuan Yu, et al. “Dandelion: A Compiler and Runtime
for Heterogeneous Systems”. In: Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles. SOSP ’13. Farminton, Pennsylvania:
Association for Computing Machinery, 2013, pp. 49–68. ISBN: 9781450323888.

203

https://hal.inria.fr/hal-00992208
http://www.sci.utah.edu/publications/Pet2019a/bradpeterson-thesis.pdf
http://www.sci.utah.edu/publications/Pet2019a/bradpeterson-thesis.pdf

BIBLIOGRAPHY

[252] Thomas Brandes, Eric Schricker, and Thomas Soddemann. “The LAMA Ap-
proach for Writing Portable Applications on Heterogenous Architectures”. In: Sci-
entific Computing and Algorithms in Industrial Simulations: Projects and Products
of Fraunhofer SCAI. Ed. by Michael Griebel, Anton Schüller, and Marc Alexander
Schweitzer. Cham: Springer International Publishing, 2017, pp. 181–198. ISBN:
978-3-319-62458-7.

[253] D. K. Newsom, O. Serres, et al. “Energy Efficient Job Co-scheduling for High-
Performance Parallel Computing Clusters”. In: 2015 IEEE International Confer-
ence on Smart City/SocialCom/SustainCom (SmartCity). 2015, pp. 550–556.

[254] C. Reaño, F. Silla, et al. “Intra-Node Memory Safe GPU Co-Scheduling”. In: IEEE
Transactions on Parallel and Distributed Systems 29.5 (May 2018), pp. 1089–
1102. ISSN: 1045-9219.

[255] Víctor J. Jiménez, Lluís Vilanova, et al. “Predictive Runtime Code Scheduling
for Heterogeneous Architectures”. In: High Performance Embedded Architec-
tures and Compilers. Ed. by André Seznec, Joel Emer, et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 19–33.

[256] Andrew Burkimsher. “Grid Scheduling of Dependent Task Sets: A Literature Sur-
vey”. In: EngD Literature Survey, Department of Computer Science, University of
York, YO10 5DD, UK (2010).

[257] Peter Koch. Strategies for Realistic and Efficient Static Scheduling of Data Inde-
pendent Algorithms onto Multiple Digital Signal Processors. 1995.

[258] H. Orsila, T. Kangas, et al. “Parameterizing Simulated Annealing for Distributing
Task Graphs on Multiprocessor SoCs”. In: System-on-Chip, 2006. International
Symposium on. 2006, pp. 1–4.

[259] Thomas Becker. “Iteratives Scheduling von bedingten Task-Graphen in einem
heterogenen System”. MA thesis. Karlsruhe Institute of Technology, Mar. 2014.

204

	I Motivation and Approach
	1 Introduction
	1.1 Thesis Organization
	1.2 Collaborations
	1.3 Previously Published Content

	2 Problem Statement
	3 Background and Related Work
	3.1 Proactivity & Proactive Adaptation
	3.2 Self-Organization & Organic Computing
	3.2.1 Observer/Controller Architecture
	3.2.2 Relationship to Other Research Fields

	3.3 HALadapt
	3.3.1 Cost Awareness Based on Past Behavior
	3.3.2 Memory Management
	3.3.3 Online Simulation of Task Schedules

	3.4 Embedded Multicore Building Blocks (EMB2)
	3.5 Related Work

	4 An Aproach for Proactive Adaptation in Self-Organizing Task-based Runtime Systems
	4.1 Contributions
	4.2 Bringing It All Together - The Holistic Approach

	II The System State
	5 Requirements, Constraints & Optimization Goals
	5.1 Task-based Runtime Systems in Different Heterogeneous Systems
	5.2 Summary and Conclusion

	6 Capturing the System State
	6.1 Introduction & Related Work
	6.2 Monitoring System Behavior
	6.3 A Heuristic Reliability Metric
	6.3.1 Symptom-based Fault Detection
	6.3.2 Related Work for Symptom-based Fault Detection
	6.3.3 Evaluation of Symptom-based Fault Detection

	6.4 Reducing Profiling Overhead
	6.4.1 Interpolation & Scaling Checks
	6.4.2 Predicting Task Execution Times

	6.5 Summary and Conclusion

	7 Predicting Future System States
	7.1 Introduction & Related Work
	7.2 Theoretical Background
	7.2.1 Markov Chains
	7.2.2 Markov Predictors

	7.3 Prediction Mechanisms
	7.3.1 Predicting Independent Tasks
	7.3.2 Predicting Dependent Applications

	7.4 Evaluation
	7.4.1 Predicting Independent Tasks
	7.4.2 Predicting Dependent Applications

	7.5 Summary and Conclusion

	III Affecting Future System Behavior
	8 Dynamically Balancing Contradicting Optimization Goals
	8.1 Introduction
	8.2 Theoretical Background
	8.2.1 Multi-objective Optimization
	8.2.2 Markov Decision Process
	8.2.3 Reinforcement Learning
	8.2.4 Learning Classifier System

	8.3 Problem Statement
	8.4 Related Work
	8.5 Approach and Implementation
	8.5.1 Implementation of the Modified XCS
	8.5.2 Reward Function

	8.6 Evaluation
	8.6.1 Applications
	8.6.2 Results

	8.7 Summary and Conclusion

	9 Task-Scheduling in Task-based Runtime Systems
	9.1 The Scheduling Problem
	9.2 Task Scheduling with Priorities
	9.2.1 Related Work
	9.2.2 Extensions to EMBB
	9.2.3 Dynamic Scheduling Algorithms
	9.2.4 Evaluation
	9.2.5 Result Discussion

	9.3 Scheduling Multiple Processes
	9.3.1 Related Work
	9.3.2 Scheduling Algorithms Background
	9.3.3 Shared Memory Data Structures
	9.3.4 Co-Scheduling Mechanism
	9.3.5 Evaluation
	9.3.6 Result Discussion

	9.4 Summary and Conclusion

	IV Summary and Outlook
	10 Conclusion and Outlook
	10.1 Summary & Conclusion
	10.2 Outlook & Future Work

	Bibliography

