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Abstract
Monitoring the protein concentration and buffer composition during the Ultrafiltration/Diafiltration (UF/DF) step enables
the further automation of biopharmaceutical production and supports Real-time Release Testing (RTRT). Previously, in-line
Ultraviolet (UV) and Infrared (IR) measurements have been used to successfully monitor the protein concentration over a
large range. The progress of the diafiltration step has been monitored with density measurements and Infrared Spectroscopy
(IR). Raman spectroscopy is capable of measuring both the protein and excipient concentration while being more robust and
suitable for production measurements in comparison to Infrared Spectroscopy (IR). Regardless of the spectroscopic sensor
used, the low concentration of excipients poses a challenge for the sensors. By combining sensor measurements with a semi-
mechanistic model through an Extended Kalman Filter (EKF), the sensitivity to determine the progress of the diafiltration
can be improved. In this study, Raman measurements are combined with an EKF for three case studies. The advantages
of Kalman-filtered Raman measurements for excipient monitoring are shown in comparison to density measurements.
Furthermore, Raman measurements showed a higher measurement speed in comparison to Variable Pathlength (VP) UV
measurement at the trade-off of a slightly worse prediction accuracy for the protein concentration. However, the Raman-
based protein concentration measurements relied mostly on an increase in the background signal during the process and not
on proteinaceous features, which could pose a challenge due to the potential influence of batch variability on the background
signal. Overall, the combination of Raman spectroscopy and EKF is a promising tool for monitoring the UF/DF step and
enables process automation by using adaptive process control.
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Introduction

Biopharmaceuticals are an important asset to the modern
pharmaceutical industry due to their potential to address
diseases that were previously difficult to treat and, from
an economical point of view, due to their high retail
prices [1, 2]. Biopharmaceuticals are most often produced
by genetically modified cells in bioreactors [3]. After the
cultivation, the biopharmaceuticals are purified during the
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matthias.rudt@hes-so.ch

1 Institute of Engineering in Life Sciences, Section IV:
Biomolecular Separation Engineering, Karlsruhe Institute
of Technology (KIT), Karlsruhe, Germany

2 Hoffmann-La Roche AG, Basel, Switzerland

3 Haute Ecole d’Ingénierie (HEI), HES-SO Valais-Wallis, Rue
de l’industrie 19, Sion, Switzerland

Downstream Processing (DSP) to a target purity to allow
an administration to patients. The DSP most importantly
incorporates centrifugation, chromatography, and filtration
steps [4].

Among the listed DSP unit operations, Cross-flow
Filtration (CFF) is used at least once at the end of the
production process to set the final protein concentration
and transfer biopharmaceuticals into their formulation
buffers [5]. The unit operation uses the large hydrodynamic
diameter of proteins to retain them in a recycling system,
while buffer components, water, and contaminants are
forced through a membrane [6]. Typically, the process is
performed in multiple steps. First, the biopharmaceutical
is concentrated to an intermediate concentration to reduce
the initial volume during a first Ultrafiltration (UF) step.
Second, a buffer exchange into the formulation buffer is
performed during a Diafiltration (DF) step. Normally, the
protein concentration remains stable during this step. A
preset volume of formulation buffer (e.g., five times the pool
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volume) is forced over the membrane to ensure a sufficient
depletion of the original buffer. In the case of highly
concentrated drug substance solutions, a second UF step
is subsequently used to concentrate the biopharmaceutical
to its target concentration. The second UF step helps to
avoid concentration-related gel formation on the membrane
during the previous DF step which would decrease the
process performance [5]. Additionally, the DF buffer should
be designed to reduce the viscosity of the protein solution to
reduce the process time of the second UF step [7].

It is common practice during process development
and production to rely on mass balances to monitor the
progress of the Ultrafiltration/Diafiltration (UF/DF) steps.
For example, the DF step is completed if a certain number
of DF volumes have been exchanged. Typically, either
scales or mass flow meters (e.g., Coriolis sensors) are
used as input for the mass balances. While this allows
monitoring the overall progress, it is only an indirect
measurement of important metrics such as the exchange
of buffering species or the current protein concentration.
During development, effects such as the Donnan effect [8]
and protein adsorption to the CFF membrane [9] need to
be investigated. The Donnan effect may prevent the full
depletion of product counter ions due to the build-up of an
electrostatic potential over the membrane [10]. Some buffer
components thus might be inadvertently retained despite
a diafiltration step. Protein adsorption on membranes is
caused by concentration polarization [9]. Proteins are
advectively transported to the membrane reaching very high
concentrations. Consequently, the proteins may adsorb or
interact with other proteins. The conditions may lead to
protein aggregation, decreased permeate flow and protein
loss.

Off-line analytics are often required to measure the
concentration of the target protein and buffer components.
In-line and real-time measurements promise to more easily
detect said effects and may potentially speed up process
development [11]. During production, a control strategy
needs to ensure that the product concentration is within the
normal operating range during DF and that the final protein
concentration complies with the specifications. Especially
for subcutaneously administered monoclonal Antibodys
(mAbs), the high concentrations and low volumes make an
in-line control attractive. Not achieving the required protein
concentrations during DF and at the end of the process
may result in reprocessing or even batch loss. In-line and
real-time measurements can reduce this risk and are useful
to reduce manual interventions. Additionally, real-time
measurements can be used to automate the process resulting
in better-controlled processes and improved process times.

Previously, several studies have already investigated Pro-
cess Analytical Technology (PAT) methods for the UF/DF
step. Most studies focused on monitoring at least one of

the typical critical quality attributes (protein concentra-
tion, excipient concentration, and aggregate content) during
UF/DF. Rolinger et al. used a combination of multiple pro-
cess analyzers, which were mathematically connected, to
calculate protein concentration, buffer exchange progress,
and the apparent molecular weight [12]. While in this
approach a density signal allowed to monitor the buffer
exchange, the effect of the changing protein concentration
was neglected, thus potentially resulting in a biased obser-
vation. Furthermore, the apparent molecular weight is based
on light-scattering measurements which does not allow the
independent quantification of aggregates and monomeric
species. West et al. [13] used on-line Ultra High Perfor-
mance Liquid Chromatography (UHPLC) to monitor the
protein concentration, aggregate content, and the UV-active
excipients. The benefit of an on-line UHPLC is the mea-
surement accuracy, the downsides are long measurement
times (5min to 15min), the preset dilution factors of the
on-line samples and the limited measurability of excipi-
ents when using UV absorption for detection. Thakur et
al. demonstrated the use of Near Infrared Spectroscopy
(NIR) for monitoring and controlling protein and excipi-
ent concentrations during CFF in a conventional [14] and
a single-pass setup [15]. Both applications are interest-
ing as NIR is well suited for in-line applications in the
manufacturing area [16]. However, the water absorbance is
strong in the NIR [17] and Infrared Spectroscopy (IR) spec-
tral region and shows a significant temperature dependence
[11]. The chemometric model thus needs to be validated
against temperature variations during a given process but
also against long-term variations (e.g., seasonal fluctua-
tions) [18]. Wasalathanthri et al. [19] used Fourier Trans-
form Infrared Spectroscopy (FTIR) to monitor the protein
and excipient concentration. While FTIR is more selective
compared to NIR, the measurement time was 45s com-
pared to the 15s presented by Thakur et al. with NIR. Both
measurement speeds can be too slow for UF/DF runs if
rapid concentration changes occur in processes due to large
membrane areas.

In this study, Raman measurements were used to monitor
the protein concentration and buffer exchange. Raman
features advantages such as little interference from water
and sharp spectral features for the different molecules. The
results of the Raman measurements were compared to UV
absorption and density measurements as a benchmark. As
the changes in buffer and excipient concentrations during
the DF are decreasing with increasing process time, an EKF
was implemented to estimate the process state based on
a semi-mechanistic process model with the predictions on
Raman and density measurements. This setup was applied
in three case studies to evaluate its performance in different
processes and to show the benefits and the limitations of the
setup.
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Materials andmethods

UF/DF experiments

Experimental setup

The custom-made setup from Rüdt et al. [20] and
Rolinger et al. [12] was adjusted for automation of
the UF/DF process. Figure 1 shows the setup as a
Piping and Instrumentation Diagram (P&ID). A KrosFlo
KRIIi CFF unit (Spectrum Labs, Rancho Dominguez,
USA) was equipped with a FlowVPE Variable Pathlength
(VP) Ultraviolet and Visible (UV/Vis) spectrometer (C
Technologies, Bridgewater, USA), a non-bypass version of
a flow-through micro Liquid Density Sensor (microLDS)
(TrueDyne Sensors AG, Reinach, CH), a MarqMetrix
BioReactor Ballprobe (MarqMetrix, Seattle, USA) inserted
into an in-house made flow cell for Raman measurements
and a T-piece with injection plug (Fresenius Kabi, Bad
Homburg, DE) placed after the retentate reservoir of the
CFF unit for drawing samples for off-line analytics. The
ball probe was connected to a HyperFlux PRO Plus 785
Raman analyzer with Spectralsoft 2.8.0 (Tornado Spectral
Systems, Toronto, CA). Additionally, a fractionation valve
of an Äkta prime (Cytiva, Chicago, USA) was connected to
a relay module, which was controlled via a NI USB-6008
data acquisition device (National Instruments, Austin, USA)
to switch between air and DF buffer. A Topolino magnetic
stirrer (IKA Werke GmbH & Co. KG, Staufen im Breisgau,
DE) and a stir bar ensured homogeneous mixing in the
retentate reservoir.

Lysozyme

The protocol for the UF/DF process for Lysozyme
(Hampton Research, Aliso Viejo, USA) from our previous
publication [21] was slightly adjusted by changing the
DF buffer to 50mM phosphate buffer (VWR Chemicals,
Leuven, B) at pH 7.1. In short, the process consisted of
an UF phase concentrating the protein from 10gL−1 to
20gL−1, a DF phase, where a buffer exchange from citrate
buffer at pH 6.0 to a phosphate buffer at pH 7.1 occurred,
and a second DF phase to achieve a final concentration of
40gL−1.

mAb

The mAb UF/DF process was adjusted from our previous
publication [21]. In the first UF phase, the filtered
mAb stock solution at a concentration of 2.79gL−1 was
concentrated to 25gL−1. A Pellicon 3 Cassette with an
Ultracel membrane (type C screen with 3kDa cutoff, 88cm2

membrane area) in a Pellicon Mini Cassette Holder was

used (both Merck) in the UF/DF setup. The process was
run at a Transmembrane Pressure (TMP) of 1.5bar and a
feed flow of 45mLmin−1. In the DF phase, the solution
was diafiltrated with eight Diafiltration Volumes (DVs) of
DF buffer (250mM glycine, 25mM histidine at pH 5.8).
In the second UF phase, the solution was concentrated
to approximately 100gL−1. The mAb was provided by an
industrial partner who may not be disclosed due to the
established confidentiality agreement.

bsAb

For the Antibody (bsAb), the membrane, TMP and
feed flowrate settings from the mAb process were used.
The bsAb stock solution (concentration 11.49gL−1) was
adjusted with a 2M Tris(hydroxymethyl)amino methane
(TRIS) buffer to pH 7.1 and filtered before use. In a first
UF step, the concentration was raised to 25gL−1. Next,
the solution was diafiltrated with eight DVs of DF buffer
(2.2mM sodium phosphate, 1.3mM TRIS). A second UF
step concentrated the product to approximately 80gL−1.
The bsAb was provided by an industrial partner who may
not be disclosed due to the established confidentiality
agreement.

Data acquisition and analysis

During experiments, all integrated sensors and devices
communicated with and were controlled (except for the
Raman analyzer) by a custom-made application developed
in MATLAB (version R2020a, The Mathworks, Natick,
USA) and adapted from Rüdt et al. [20] and Rolinger
et al. [12]. Besides connecting the devices and starting
and stopping measurements, the application gathered the
signals from the integrated sensors and calculated quality
attributes and process parameters. Communication and
control were performed through software libraries provided
by the different instrument manufacturers. In contrast to the
previous publications, no Graphical User Interface (GUI)
was used to display the signals to save computational
power. Data acquisition and analysis of the density and
viscosity measurements, Raman measurements, and UV
measurements were performed as described below.

UV absorbance measurements and processing

UV slope spectra were recorded from 280nm to 300nm for
lysozyme, mAb, and bsAb with a resolution of 5nm. For
concentration calculations, the absorbance at 280nm was
used without scatter correction. The settings resulted in a
measurement speed of 0.9min per spectrum. To improve
the measurement speed, measuring at a wavelength of
280nm would be sufficient. Measuring more wavelengths
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can give information about the formation of aggregates
in the solution, as large aggregate scatter increases the
background scatter signal in the UV range.

Temperature and protein concentration correction of
density measurements

In general, the density ρ of solutions is affected by the
buffer components, protein concentration, and temperature.
For the obtained data, this was important as the used
microLDS dissipates a noticeable amount of heat into
the measured liquid. To obtain comparable results, the
measured viscosity and density were corrected to a standard
process temperature yielding ηT0 and ρT0 , respectively.
As the temperature differences were relatively small
(�T ≤ 5K), it was assumed that the deviations from
the ideal solution behavior were neglectable [22–24].
The temperature correction was thus performed by cross-
multiplication for viscosity and density measurements.

ρT0 = ρwater,T0

ρwater,T
ρ (1)

This approach is similar to the temperature correction
of the sedimentation coefficient performed in analytical
ultracentrifugation [25, 26]. Reference values for the
density/viscosity of water were obtained from the National
Institute of Standards and Technology (NIST) chemistry
webbook [27].

To calculate the buffer density ρbuff er,T0 , the influence
of the protein concentration on the density was subtracted
from the temperature corrected density ρT0 .

ρbuff er,T0 = ρT0 − aprot · cprot (2)

where cprot is the protein concentration and aprot is a
buffer-dependent factor, also referred to as partial specific
volume of the protein. To obtain aprot serial dilutions of the
protein in buffer solutions were performed and aprot was
estimated as the slope of an ordinary linear regression of
ρT0 = ρbuff er,T0 + aprot · cprot since a linear relationship
is expected [28]. As the applied buffer conditions in this
paper are fairly narrow in terms of pH range and ionic buffer
strength, only small changes in aprot are expected during the
DF phase [29]. We therefore used aprot for the DF buffer as
an approximation for the whole process phase.

Ramanmeasurements

The laser power during acquisition was set to 495mW
with an exposure time of 800ms and 10 acquisitions per
spectrum for lysozyme and the bsAb. Due to the lower
concentration of the mAb, an initial exposure time of
1200ms was chosen. As the mAb showed a significant level
of background scattering, which increased with increasing

mAb concentration, the exposure time was step-wise
lowered, every time the maximum intensity reached the
saturation limit of the detector. X-axis, Y-axis, and laser
calibration were done before the experiment according to
the manual.

For Partial-least Squares (PLS) modeling, Solo 8.9
(Eigenvector Research, Inc., Wenatchee, USA) was used.
First, different spectral preprocessing steps were evaluated
to improve the model prediction and linearity based on the
recorded dilution series. However, the raw spectra provided
the best model accuracy during cross-validation and initial
optimization. Consequently, no spectral preprocessing was
done and no wavelength selection was done. Only mean
centering was applied as it is a standard treatment for
spectral data. More information on the PLS models is
provided in the Electronic Supplementary Material. For
visualization purposes, the automatic asymmetric Whittaker
Filter was used along with the Savitzky-Golay filter
(15 points, second-order, no derivative) to remove the
background/baseline signal and to smooth the data.

Extended Kalman filter implementation

An EKF was used to smooth the data during DF. The
EKF concept was selected, because it is the classical
concept for extending the Kalman filter concept to non-
linear state transitions and observer models, where the direct
derivation of the Hessian and Jacobian matrix is possible
[30, 31]. However, other alternatives like Particle filters, the
Unscented Kalman Filter, or an EKF based on a second-
order Taylor expansion [32] would have been also a valid
choice for smoothing the data during the DF phase. The
basic idea behind the EKF is to combine measurements with
a non-linear process model to estimate the current true state
of the process. This approach also makes predictions into
the future possible by leveraging the predictive abilities of
the non-linear process model. Predictions may be used to
timely terminate reactions, anticipate unwanted behavior or
control the process in other ways.

For DF processes, the process may be approximated by
the buffer exchange in a Continuously Stirred Tank Reactor
(CSTR) under the assumption that the retentate flow is
much bigger than the permeate flow and the process volume
remains constant. We thus describe the buffer exchange in
our CFF setup by following differential equation:

dc

dt
= cin

F

V
− c

Fκ

V
, (3)

where c and cin are the concentration of the considered
species in the retentate tank resp. the DF buffer, F is the
constant permeate flowrate, V is the constant volume of
the retentate tank and κ is an empirical sieving coefficient.
For free membrane passing ions, κ is close to 1 [33]. If a
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Donnan effect occurs, the sieving coefficient κ can increase
or decrease depending on the kind of interaction between
the ions of the excipient, protein and membrane [33]. For
the differential equation integration and for the EKF transfer
function, we assume that κ is constant over time. Since κ is
recursively estimated by the EKF, the estimate may change
over the course of the run. By integration from tk−1 to tk , we
obtain:
cin

κ
− ck =

(cin

κ
− ck−1

)
exp

(
−κF

V
�t

)
(4)

with ck−1 and ck being the concentration at tk−1 and tk ,
respectively, and �t being the step in time. Consequently,
a buffer signal during DF follows an exponential decay
towards a new steady-state concentration. It is worth noting
that Eq. 4 can directly be used for the EKF as long
as a measurement calibration is available. This allows to
directly estimate the empirical sieving coefficient κ by
the EKF. For the current application, the goal was to
implement an EKF which does not require prior calibration.
To this end, we now replace the concentrations c with
the more general concept of a signal linearly correlated
to the concentration. The signal may either be a Raman
band intensity, a density measurement, or indeed also a
buffer component concentration. The signal may either be
increasing or decreasing depending on the nature of the
measurement. Transforming Eq. 4 and lumping the signal
terms xin

κ
− x(t) = �x(t) results in:

�x(tk) = �x(tk−1) exp

(
−κF

V
�t

)
. (5)

Starting from Eq. 5, the EKF is now implemented as
described in [30]. Equation 6 is used to predict the state
vector x̂k|k−1 at the time point k based on the measurements
up to the time point k − 1. The first entry in the state vector
x̂k|k−1 is the estimated delta buffer signal x̂1 = E(�x).
x̂2 is the estimated buffer exchange rate E

(− κF
V

�t
)
.

As discussed above, the model assumes that the buffer
exchange rate x̂2 is constant over time. x̂3 is the estimated
offset, i.e., the terminal signal height E

(
xin

κ

)
. The offset

of the measurement signal x̂3,k|k−1 and the buffer signal
x̂1,k|k−1 is then used to predict the observation ẑk|k−1 with
Eq. 7.

Predict state of buffer signal x̂k|k−1 =
⎡
⎣ x̂1,k−1|k−1 · ex̂2,k−1|k−1

x̂2,k−1|k−1
x̂3,k−1|k−1

⎤
⎦ (6)

Predict state of observation ẑk|k−1 = x̂1,k|k−1 + x̂3,k|k−1 (7)

Equation 8 is used to predict the covariance matrix
P k|k−1 from the previous covariance matrix P k−1|k−1 and
the Jacobian matrix F k to linearize the state function on
the local point by a first-order Taylor series expansion. The
process covariance matrix Qk is added to account for the

model uncertainty. σv is the covariance coefficient of the
process error.

Predict covariance matrixP k|k−1 = F kP k−1|k−1F
ᵀ
k +Qk

(8)

with F k =
⎡
⎣ e−x̂2,k−1|k−1 −e−x̂2,k−1|k−1 · x̂1,k−1|k−1 0

0 1 0
0 0 1

⎤
⎦

and Qk =
⎡
⎣

σ 2
v 0 0
0 0 0
0 0 0

⎤
⎦

The innovation covariance matrix Sk is calculated via
Eq. 9 based on the Jacobian of the sensor transfer
functions [H k], the covariance matrix P k|k−1 and the sensor
covariance matrix [Rk]. σw is the covariance coefficient of
the sensor error.

Predict innovation covarianceSk = H kP k|k−1H
ᵀ
k +Rk (9)

with H k =
1
0
1
and Rk =

σ 2
w 0 0
0 0 0
0 0 0

Now, the Kalman gain Kk can be calculated via Eq. 10
from the covariance matrix Pk|k−1 and the sensor transfer
functions Hk , scaled by the innovation covariance matrix
Sk .

Predict Kalman gainKk = P kH
ᵀ
k S−1

k (10)

With the calculated Kalman gain Kk , the prediction of
the state estimate x̂k|k and the covariance matrix P k|k can
be updated via Eqs. 11 and 12, respectively.

Updated state estimate x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1) (11)

Updated covariance estimate P k|k = (I − KkH k)P k|k−1 (12)

In principle, the peak height of the buffer component in
question in the Raman spectrum may be used as an input
signal for the EKF. To improve the prediction and reduce
noise levels, Raman spectra were factorized by a Principal
Component Analysis (PCA) and the principal component
score of the buffer component was used as input for the
EKF.

Off-line analytics by SE-HPLC

The off-line Size Exclusion High Performance Liquid
Chromatography (SE-HPLC) analytic was done according
to our previous publication [21], with the difference that
already mAb and bsAb samples with concentrations higher
than 30gL−1 were diluted 10-fold. bsAb samples were
analyzed according to the protocol for the mAb.
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Results and discussion

In this study, three different case studies are investigated
to compare Raman spectroscopy, UV spectroscopy, and
density measurement for their ability to measure the
protein concentration and buffer exchange progress. First,
the Raman spectra are discussed in detail. Then, Raman
spectroscopy and UV spectroscopy are compared towards
their prediction accuracy for the protein concentration.
Finally, density measurements and Raman spectroscopy
will be compared towards their ability to monitor the buffer
exchange progress.

Raman spectra

In Fig. 2, every 50th spectrum of the lysozyme process
and every 40th spectrum of the mAb and bsAb process are
shown. For lysozyme, the protein features are well visible in
the Raman spectra with bands in the range from 500cm−1

to 1700cm−1 and around 2900cm−1. The sapphire bands at
384cm−1, 418cm−1, 452cm−1 and 753cm−1 are visible in
the Raman spectra of all case studies and are, as expected,
constant. The protein bands, especially at 1006cm−1

originating from phenylalanine, 1360cm−1, 1448cm−1,
and 1549cm−1 originating from tryptophane and C-H
deformation [34, 35], and at 2942cm−1 originating from
C-H stretching [25], are distinct from other components
by the fact that they also increase during the second
UF step. Additionally, an increase in background signal
correlates with the increase in protein concentration.
This phenomenon was already discussed in a previous
publication and is likely related to increased Rayleigh
scattering [36]. For the bsAb, the spectra look comparable
to the lysozyme spectra, even though the height of the
protein features is lower. The mAb shows an increased
background signal in comparison to the other two proteins
and, therefore, lower intensities in the protein bands
compared to the background signal. Already in the last
publication, an increased molecule to molecule interaction
of the mAb was detected, which lead to buffer-induced
light scattering increase and gel formation [36]. Here, the
change in the background signal is more pronounced than
the change in protein features. Again, the intensity of the
background signal correlates with the protein concentration.
Measurement-wise, the large amount of background signal
made a reduction of exposure time necessary to prevent

Fig. 1 Piping and instrumentation diagram of the experimental setup.
A VP UV/Vis spectrometer, a microLDS and a Raman probe are
incorporated into the flow of the Tangential Flow Filtration (TFF).
Additionally, a three-way valve is incorporated to change between UF

and DF phase. All sensors are connected to a computer for captur-
ing the data centrally. Electronic communication lines are indicated by
dashed lines. The letters indicate: C control, D density, I indicate, P
pressure, R record, U multivariable, V viscosity, W weight

846 L. Rolinger et al.



Fig. 2 The raw Raman spectra recorded by the in-line Raman analyzer are plotted and colored according to the protein concentration. The different
subplots show the results for lysozyme (A), mAb (B), and bsAb (C)
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the over-saturation of the detector. The spectra were
subsequently normalized by the exposure time (shown in
Electronic Supplementary Material).

In-line protein concentrationmeasurements

For monitoring the protein concentration, the absorbance
at 280nm from the VP UV spectrometer and the full
spectra of the Raman analyzer in combination with a
PLS model were used. In Fig. 3, the predicted protein
concentrations are compared to the results obtained from
off-line SE-HPLC analysis. Qualitatively, both the predicted
protein concentration from the Raman analyzer and the VP
UV spectrometer are in good agreement with the off-line
analytics for all three processes. For lysozyme, towards the
end of the second UF, the FlowVPE signal starts to deviate
from the Raman signal. This was attributed to an increasing
amount of air bubbles in the solution, which impaired the
FlowVPE measurements.

During the whole process, the Raman predictions
showed a few outliers, probably caused by air bubbles
in the measurement chamber. In manufacturing, this
could be mitigated by rejecting the predictions based on
the Hotelling’s T 2 value or the distance to the model
hyperplane. The PLS model for the Raman-based protein
concentration predictions is mostly influenced by the
background signal. This is in agreement with [36] and can
already be seen by comparing the concentration prediction
to Fig. S1 in the electronic supplementary material, which
shows the intensity trend at 700cm−1, where no protein
vibrational band is located. Theoretically, a PLS model
might not be necessary to predict the protein concentration
as a single intensity already correlates well to the protein
concentration. However, a single wavenumber/wavelength

measurement has usually lower accuracy compared to
the PLS model based on several wavenumber [36]. The
dependence of the PLS model on the background reduces
the specificity of the model for the protein of interest. For
example, an increased aggregate content likely increases the
background signal disproportionately and thereby affects
the protein concentration prediction. In routine production,
the reduced selectivity is however not a problem since
any manufacturing process must be reproducible regarding
the feed composition and will work with highly pure
protein solution, especially towards the end of the process.
UV/Vis absorption relies on the more specific absorption of
the aromatic amino acids [11]. Quantification is normally
robust and not significantly impacted by batch-to-batch
variability. In the current experimental results, the UV-based
protein concentration measurements show fewer outliers
in comparison to the Raman measurements. However, UV
measurements were already filtered based on a coefficient
of determination higher than 0.97 during the VP regression.

Quantitatively, the Root Mean Square Error (RMSE)
for lysozyme and the bsAb of the UV- and Raman-based
measurements are very similar (cf. Table 1). However,
for the mAb, the Root Mean Square Error (RMSE) of
the Raman predictions is with 4.59gL−1 more than twice
as high as the RMSE of the UV-based measurements at
1.73gL−1. This difference is mostly driven due to the
residuals in the second UF phase. Due to the fast change in
protein concentration, the uncertainty in the sampling time
affects the measurement accuracy more strongly than during
the rest of the process. Furthermore, as shown in the P&ID
(Fig. 1), the Raman spectra were measured in the retentate
(due to pressure constraints of the flow cell), while sampling
and UV-based measurements were conducted in the feed.
Normally, if the feed and retentate flow are similar, this does

A B C

Fig. 3 The total protein concentration is shown as measured by the in-line FlowVPE VP spectrometer (blue lines), Raman analyzer (teal lines)
and off-line SE-HPLC (orange circles). The different subplots show the results for lysozyme (A), mAb (B), and bsAb (C)
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Table 1 RMSE and coefficients of determination for UV and Raman measurements compared to off-line analytics

Concentration prediction based on FlowVPE Concentration prediction based on Raman

RMSE/ g L−1 R2 normalized RMSE % RMSE/ g L−1 R2 normalized RMSE %

Lysozyme 0.87 0.9874 4.87 0.99 0.9799 5.54

mAb 1.73 0.9943 3.31 4.59 0.9788 8.80

bsAb 2.88 0.9709 3.83 2.67 0.9771 3.55

not pose a problem. However, at the beginning of the second
UF phase, the process progressed very quickly introducing
a systematic offset and increasing the overall RMSE for the
Raman measurements.

Given the results obtained in the three case studies,
both VP UV/Vis spectroscopy and Raman spectroscopy are
useful tools for quantifying proteins in-line in real-time
during UF/DF processes. Raman spectroscopy was quicker
compared to VP UV/Vis spectroscopy, which takes about
8s when measuring at one wavelength at four pathlengths.
UV/Vis spectroscopy may be more robust towards process
variability (e.g., changing aggregate content), because the
background effect in the Raman measurements seems to
mostly origin from the molecular weight and interaction
between molecules. Additionally, UV/Vis spectroscopy
works by simple determination of the absorption coefficient
without the need to calibrate a chemometric model.
Although the data analysis of the Raman spectra is more
complex in comparison to UV/Vis measurements, Raman
spectroscopy allows for simultaneous insights into the
protein and excipient concentrations. The ability of Raman
spectroscopy to selectively measure different excipients
will be used in Section 3 to monitor the buffer exchange
process. Both methods measure protein concentration in
the investigated range without any major deviations from
linearity. Noise levels remain comparably small. In this
study, the traditional limit of quantification could not
be applied for comparing the concentration predictions.
This is due to the fact that the concentration predictions
from Raman spectra relied on a multivariate PLS model
which does not permit traditional limit of quantification
calculations. It is worth considering that the limit of
quantification for Raman-based concentration prediction
changes due to changing measurement settings (e.g.,
exposure time). We therefore consider the comparison of
Root Mean Square Error of Cross-Validation (RMSECV) as
most insightful.

Predicting the concentration of the different aggregate
and fragment species was attempted with Raman spec-
troscopy in this study, but it was ultimately unsuccessful.
The concentrations of the individual species might be too
low and the structural changes between differently sized
species not prominent enough to be picked up by Raman

spectroscopy in the short measurement times. However, Wei
et al. [37] showed promising results to quantify aggregates
and fragments with a multi-product PLS model based on
offline Raman measurements with a measurement time of
22.5 minutes.

Buffer exchange progress monitoring

In Fig. 4, the preprocessed Raman spectra of the DF
phase are plotted. For the lysozyme case study, the change
from citrate buffer to phosphate is most prominently
visible at 840cm−1, 952cm−1, 990cm−1 and 1412cm−1.
The citrate buffer has a significant number of bands (see
teal line). The most prominent band at 952cm−1 can be
attributed to COOH out-of-plane deformation vibration of
the carboxylic acid group [38]. Also prominent is the
carboxylate symmetric stretching band at 1412cm−1 and the
carbon-carbon stretching mode at 840cm−1 [39]. Phosphate
shows a major band at 990cm−1 due to the P-O stretching
of phosphate [38, 40–42] along with bands at 1078cm−1

and 877cm−1, which can be attributed to the symmetrical
P(OH)2 stretching vibration and the in-plane PO2 [41].

For the mAb case study, the DF buffer consists of
histidine and glycine which have the most dominant
peaks at 899cm−1, 1332cm−1, 1413cm−1, 1446cm−1 and
2972cm−1 (Fig. 4B, black line). Glycine has a strong C-
C stretching band at 899cm−1 [43]. The other two intense
Raman bands 1332cm−1 and 1413cm−1 can be attributed to
the twisting of the NH3 and CH2 groups and a NH3 wagging
mode coupled with COO stretching [43]. A smaller band
is located at 1448cm−1 and is caused by CH2 scissoring
[43]. The peak at 2972cm−1 is caused by the symmetric
stretching of CH2 [44]. These peaks are expected to build
up during the DF. No distinct bands for histidine are visible.
This might be caused by the 10-fold lower concentration.

The phosphate and TRIS DF buffer for the bsAb case
study is very low concentrated, therefore no changing peaks
attributed to the DF buffer are visible in the process spectra.
TRIS has a CH2 deformation band at 1470cm−1 and CO
stretching at 1066cm−1 [38, 45]. However, a chemical with
two peaks at 881cm−1 and 930cm−1 is depleted during the
DF. This chemical presumably originates from the previous
production step, a chromatographic separation.
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Fig. 4 The preprocessed Raman spectra recorded during the DF phase are
plotted and colored by diafiltration volumes. The diafiltration buffer
(black line) are plotted with an offset. For lysozyme, additionally the

ultrafiltration buffer (teal line) is depicted. The different subplots show
the results for lysozyme (A), mAb (B), and bsAb (C)
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Figure 5 shows the normalized buffer signal derived
from the Raman spectra over time. The normalized signal
consists of the normalized scores of the principal component
collecting the spectral variability due to the buffer exchange.
This approach was used to improve the signal-to-noise ratio.
In principle, also a unique peak of a buffer component could
be chosen. However, due to the various proteineous Raman
peaks, the peaks are often overlapping with the protein
peaks. A PCA allows separating the protein signal from
the buffer signal. The PCA score plots are shown in the
Electronic Supplementary Material.

For the first case study with lysozyme, the phosphate
peaks of the DF buffer are too weak and overlapping with
the citrate peak, so that an individual monitoring of the two
species is not possible. Instead, the principal component
representing the citrate buffer was used. The signal itself
follows a decay curve as expected during DF. Interestingly,
the signal is still changing around the end of the DF at
four DV. Raman spectroscopy provides this information in
real-time allowing for an immediate evaluation of the DF
process. Based on the observed behavior, a decision may be
taken to extend the DF phase.

For both the mAb and bsAb, the buffer signal seems
stable towards the end of the DF. For the mAb, the
principal component analysis did not differentiate between
the two components of the DF buffer, glycine and histidine.
Depending on the net-charge of the mAb at the given
pH, a Donnan effect was previously observed with an
accumulation of histidine during the DF for negatively
charged (mAbs) [46, 47]. The observed accumulation was
within 3mM after eight DV [46]. Either the higher overall
ion-concentration [48], a positively charged mAb or the
quantification limit of the Raman could have led to the
non-observability of the effect.

The Raman signal in all case studies shows significant
noise, which makes the signal more difficult to interpret
and to use to control the process. To reduce the noise level,
an EKF was used to approximate the real process state
from the noisy measurements. Kalman filters allow for some
plant variability. They are also applicable in real-time for
recursive state estimation and control. The orange lines in
Figs. 5 and 6 indicate the EKF-filtered results. It is worth
noting that the EKF successfully suppresses a significant
part of the measurement noise. Furthermore, with the
used estimates for the system and measurement noise,
the EKF is still flexible enough to adjust the prediction
dynamically to changing conditions. For example, during
the diafiltration of the mAb (Figs. 5B and 6B), the buffer
exchange initially starts more slowly than expected. The
EKF incorporates this into its prediction by adjusting the
two other state variables (offset and exponential decay
constant). The estimated state variables may also be used to
gain insight into changes of the filtration behavior, e.g., due
to a changing sieving coefficient. This approach provides a
real-time mechanistic insight into the process performance
and may help to improve the understanding of the ongoing
process. The EKF, thus, provides an interesting tool for real-
time recursive evaluation of the buffer exchange progress
and a method for an improved understanding of the ongoing
process variability.

Next to the Raman signal, the buffer exchange was
monitored by the evolution of the density signal. The
density signal is univariate, collecting information from
all components in the solution in one variable. Therefore,
no separate monitoring of individual species is possible.
Next to the buffer components, the density signal is also
affected by changing protein concentrations. In Fig. 6, the
temperature and protein concentration-corrected density are

A B C

Fig. 5 The normalized buffer signal derived from a PCA of the Raman spectra are plotted over time with the state estimate of the Kalman filter.
The different subplots show the results for lysozyme (A), mAb (B), and bsAb (C)
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Fig. 6 The density (light teal) and the concentration-corrected density (teal) are plotted over the DF run time along with the normalized buffer
signal from the Raman measurements and the EKF prediction (orange). The different subplots show the results for lysozyme (A), mAb (B), and
bsAb (C)

plotted. The concentration correction was done with the
protein concentration predictions from the Raman due to
the higher measurement frequency of the Raman signal.
For lysozyme, the density measurements were corrupted
by air bubbles due to the increasing viscosity of the
solution over time. Repeating the experiments led to
the same phenomena. The air bubbles seem to decrease
the liquid density and remain in the feed due to the
viscosity of the solution. Only filters could help to remove
bigger air bubbles from the solution, but might introduce
more aggregation due to shear forces. For viscose protein
solutions, the density measurements seem difficult due to
the air entrapment. Therefore, the concentration correction
does not work for the lysozyme case study, because during
the DF the corrected density is decreasing, which is not
physically reasonable and not in agreement with the Raman
data. For the mAb and bsAb case study, the protein
concentration correction of the density leads to a stable
signal towards the end of the DF. The measured density for
the mAb and bsAb case study seems to decline over the
whole DF phase due to the protein concentration decrease,
whereas the Raman-based buffer signal already indicates

a stabilization and thereby completion of the DF process.
The measured density signal alone is, therefore, only of
limited use to monitor and control the DF phase. The protein
concentration correction density seems to agree with the
Raman-based buffer signal. However, a direct comparison
between the protein concentration-corrected density and the
normalized buffer signal by Raman is difficult to make
based on Fig. 6. Therefore, the comparison is directly
plotted in Fig. 7.

Figure 7 shows the comparison between the Raman
measurements and the concentration-corrected density
measurements. The lysozyme data is not plotted due to
the unreliability of the density measurements as discussed
above. Both are in good agreement, even though a
significant noise level is apparent for both measurements.
For the density data, the Kalman filter can improve the
DF progress prediction as well. The density signal has the
benefit of even observing Raman-inactive components in
the solution, like NaCl, under the prerequisite of a density
difference between buffers. However, the needed protein
concentration correction makes a second sensor necessary,
which adds complexity and room for failure.

Fig. 7 The concentration-
corrected density is compared to
the normalized Raman signal.
The different subplots show the
results for mAb (A), and bsAb
(B)

A B
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Conclusion

In this study, the advantages and disadvantages of Raman
spectroscopy for monitoring UF/DF processes were shown
in three case studies and compared to UV absorption and
density measurements as a benchmark. To improve the sen-
sitivity of the measurements, an EKF was implemented to
estimate the process state during the DF based on a semi-
mechanistic process model combined with the predictions
of Raman and density measurements. Raman spectroscopy
and VP UV/Vis spectroscopy were compared for their pre-
diction accuracy of the protein concentration in comparison
to off-line measurements. VP UV spectroscopy showed
slightly better or comparable coefficients of determination
in comparison to the Raman measurements. UV concentra-
tion measurements were derived based on the absorption
coefficient at 280nm, while Raman measurements required
a PLS model to predict the protein concentration. Raman
measurements took less than a second in comparison to
eight seconds for the VP UV measurements. The higher
measurement speed of the Raman spectrometer may be an
advantage for fast processes. However, the Raman measure-
ments were more prone to outliers in comparison to the
UV measurements. A drawback of the Raman spectroscopy
is that the prediction of the protein concentration seems
to rely on the unspecific background effect, that correlates
with the protein concentration. In addition to the protein
concentration prediction, the Raman spectra provided the
concentration of Raman-active buffer components. These
concentration predictions were used to monitor the buffer
exchange progress. To reduce the measurement noise, an
EKF was used for state estimation. The prediction of the
buffer exchange progress by Raman was less noisy com-
pared to the density measurement. Another advantage of
Raman spectroscopy is the ability to monitor individual
buffer components.

Among other applications, Raman measurements thus
pave a further step on the way towards the real-time
control of the protein concentration during and at the
end of the UF/DF process ensuring the final product
concentration and buffer composition within the processes.
Raman measurements thus pave a further step on the way
towards Real-time Release Testing (RTRT) by replacing off-
line in-process controls of critical quality attributes by their
in-line equivalents.
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