KIT | KIT-Bibliothek | Impressum | Datenschutz

Nanoparticle Exsolution from Nanoporous Perovskites for Highly Active and Stable Catalysts

Rudolph, Benjamin; Tsiotsias, Anastasios I.; Ehrhardt, Benedikt; Dolcet, Paolo 1; Gross, Silvia 1; Haas, Sylvio; Charisou, Nikolaos D.; Goula, Maria A.; Mascotto, Simone
1 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract:

Nanoporosity is clearly beneficial for the performance of heterogeneous catalysts. Although exsolution is a modern method to design innovative catalysts, thus far it is predominantly studied for sintered matrices. A quantitative description of the exsolution of Ni nanoparticles from nanoporous perovskite oxides and their effective application in the biogas dry reforming is here presented. The exsolution process is studied between 500 and 900 °C in nanoporous and sintered La$_{0.52}$Sr$_{0.28}$Ti$_{0.94}$Ni$_{0.06}$O$_{3±δ}$. Using temperature-programmed reduction (TPR) and X-ray absorption spectroscopy (XAS), it is shown that the faster and larger oxygen release in the nanoporous material is responsible for twice as high Ni reduction than in the sintered system. For the nanoporous material, the nanoparticle formation mechanism, studied by in situ TEM and small-angle X-ray scattering (SAXS), follows the classical nucleation theory, while on sintered systems also small endogenous nanoparticles form despite the low Ni concentration. Biogas dry reforming tests demonstrate that nanoporous exsolved catalysts are up to 18 times more active than sintered ones with 90% of CO$_2$ conversion at 800 °C. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000155746
Veröffentlicht am 10.02.2023
Originalveröffentlichung
DOI: 10.1002/advs.202205890
Scopus
Zitationen: 11
Dimensions
Zitationen: 12
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2198-3844
KITopen-ID: 1000155746
Erschienen in Advanced Science
Verlag Wiley Open Access
Seiten Art.-Nr.: 2205890
Vorab online veröffentlicht am 22.01.2023
Schlagwörter catalyst regeneration, CO2 conversion, hydrogen production, oxygen mobility, small-angle X-ray scattering
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page