KIT | KIT-Bibliothek | Impressum | Datenschutz

Efficiently generating geometric inhomogeneous and hyperbolic random graphs

Bläsius, Thomas ORCID iD icon 1; Friedrich, Tobias; Katzmann, Maximilian; Meyer, Ulrich; Penschuck, Manuel; Weyand, Christopher ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Hyperbolic random graphs (HRGs) and geometric inhomogeneous random graphs (GIRGs) are two similar generative network models that were designed to resemble complex real-world networks. In particular, they have a power-law degree distribution with controllable exponent $β$ and high clustering that can be controlled via the temperature $T$.
We present the first implementation of an efficient GIRG generator running in expected linear time. Besides varying temperatures, it also supports underlying geometries of higher dimensions. It is capable of generating graphs with ten million edges in under a second on commodity hardware. The algorithm can be adapted to HRGs. Our resulting implementation is the fastest sequential HRG generator, despite the fact that we support non-zero temperatures. Though non-zero temperatures are crucial for many applications, most existing generators are restricted to $T=0$. We also support parallelization, although this is not the focus of this paper. Moreover, we note that our generators draw from the correct probability distribution, that is, they involve no approximation.
Besides the generators themselves, we also provide an efficient algorithm to determine the non-trivial dependency between the average degree of the resulting graph and the input parameters of the GIRG model. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000155751
Veröffentlicht am 10.02.2023
Originalveröffentlichung
DOI: 10.1017/nws.2022.32
Scopus
Zitationen: 8
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2050-1242, 2050-1250
KITopen-ID: 1000155751
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Network Science
Verlag Cambridge University Press (CUP)
Band 10
Heft 4
Seiten 361–380
Vorab online veröffentlicht am 23.11.2022
Schlagwörter hyperbolic random graphs, geometric inhomogeneous random graph
Nachgewiesen in Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page