KIT | KIT-Bibliothek | Impressum | Datenschutz

Rank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equations

Hochbruck, Marlis 1; Neher, Markus 1; Schrammer, Stefan ORCID iD icon 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

Dynamical low-rank integrators for matrix differential equations recently attracted a lot of attention and have proven to be very efficient in various applications. In this paper, we propose a novel strategy for choosing the rank of the projector-splitting integrator of Lubich and Oseledets adaptively. It is based on a combination of error estimators for the local time-discretization error and for the low-rank error with the aim to balance both. This ensures that the convergence of the underlying time integrator is preserved. The adaptive algorithm works for projector-splitting integrator methods for first-order matrix differential equations and also for dynamical low-rank integrators for second-order equations, which use the projector-splitting integrator method in its substeps. Numerical experiments illustrate the performance of the new integrators.

Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0006-3835, 1572-9125
KITopen-ID: 1000155758
Erschienen in BIT Numerical Mathematics
Verlag Springer
Band 63
Heft 1
Seiten Art.-Nr.: 9
Vorab online veröffentlicht am 31.01.2023
Schlagwörter Dynamical low-rank approximation, Matrix differential equations, Rank-adaptivity
Nachgewiesen in Web of Science
Dimensions
OpenAlex
Scopus
Relationen in KITopen

Verlagsausgabe §
DOI: 10.5445/IR/1000155758
Veröffentlicht am 07.02.2023
Originalveröffentlichung
DOI: 10.1007/s10543-023-00942-6
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Dimensions
Zitationen: 11
Seitenaufrufe: 103
seit 07.02.2023
Downloads: 58
seit 10.02.2023
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page