KIT | KIT-Bibliothek | Impressum | Datenschutz

Rank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equations

Hochbruck, Marlis 1; Neher, Markus 1; Schrammer, Stefan ORCID iD icon 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

Dynamical low-rank integrators for matrix differential equations recently attracted a lot of attention and have proven to be very efficient in various applications. In this paper, we propose a novel strategy for choosing the rank of the projector-splitting integrator of Lubich and Oseledets adaptively. It is based on a combination of error estimators for the local time-discretization error and for the low-rank error with the aim to balance both. This ensures that the convergence of the underlying time integrator is preserved. The adaptive algorithm works for projector-splitting integrator methods for first-order matrix differential equations and also for dynamical low-rank integrators for second-order equations, which use the projector-splitting integrator method in its substeps. Numerical experiments illustrate the performance of the new integrators.


Verlagsausgabe §
DOI: 10.5445/IR/1000155758
Veröffentlicht am 07.02.2023
Originalveröffentlichung
DOI: 10.1007/s10543-023-00942-6
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0006-3835, 1572-9125
KITopen-ID: 1000155758
Erschienen in BIT Numerical Mathematics
Verlag Springer
Band 63
Heft 1
Seiten Art.-Nr.: 9
Vorab online veröffentlicht am 31.01.2023
Schlagwörter Dynamical low-rank approximation, Matrix differential equations, Rank-adaptivity
Nachgewiesen in Dimensions
Web of Science
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page