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Kurzfassung 

Intrakranielle Hirntumoren gehören zu den zehn häufigsten bösartigen Krebsarten und sind für 

eine erhebliche Morbidität und Mortalität verantwortlich. Die größte histologische Kategorie 

der primären Hirntumoren sind die Gliome, die ein äußerst heterogenes Erscheinungsbild auf-

weisen und radiologisch schwer von anderen Hirnläsionen zu unterscheiden sind. Die Neurochi-

rurgie ist meist die Standardbehandlung für neu diagnostizierte Gliom-Patienten und kann von 

einer Strahlentherapie und einer adjuvanten Temozolomid-Chemotherapie gefolgt werden. 

Die Hirntumorchirurgie steht jedoch vor großen Herausforderungen, wenn es darum geht, eine 

maximale Tumorentfernung zu erreichen und gleichzeitig postoperative neurologische Defizite 

zu vermeiden. Zwei dieser neurochirurgischen Herausforderungen werden im Folgenden vorge-

stellt. Erstens ist die manuelle Abgrenzung des Glioms einschließlich seiner Unterregionen 

aufgrund seines infiltrativen Charakters und des Vorhandenseins einer heterogenen Kontrastver-

stärkung schwierig. Zweitens verformt das Gehirn seine Form ̶ die so genannte "Hirnverschie-

bung" ̶ als Reaktion auf chirurgische Manipulationen, Schwellungen durch osmotische Medi-

kamente und Anästhesie, was den Nutzen präoperativer Bilddaten für die Steuerung des 

Eingriffs einschränkt.  

Bildgesteuerte Systeme bieten Ärzten einen unschätzbaren Einblick in anatomische oder patho-

logische Ziele auf der Grundlage moderner Bildgebungsmodalitäten wie Magnetresonanztomo-

graphie (MRT) und Ultraschall (US). Bei den bildgesteuerten Instrumenten handelt es sich 

hauptsächlich um computergestützte Systeme, die mit Hilfe von Computer-Vision-Methoden 

die Durchführung perioperativer chirurgischer Eingriffe erleichtern. Die Chirurgen müssen 

jedoch immer noch den Operationsplan aus präoperativen Bildern gedanklich mit Echtzeitin-

formationen zusammenführen, während sie die chirurgischen Instrumente im Körper manipulie-

ren und die Zielerreichung überwachen. Daher war die Notwendigkeit einer Bildführung wäh-

rend neurochirurgischer Eingriffe schon immer ein wichtiges Anliegen der Ärzte. 

Ziel dieser Forschungsarbeit ist die Entwicklung eines neuartigen Systems für die peri-operative 

bildgeführte Neurochirurgie (IGN), nämlich DeepIGN, mit dem die erwarteten Ergebnisse der 

Hirntumorchirurgie erzielt werden können, wodurch die Gesamtüberlebensrate maximiert und 

die postoperative neurologische Morbidität minimiert wird. Im Rahmen dieser Arbeit werden 

zunächst neuartige Methoden für die Kernbestandteile des DeepIGN-Systems der Hirntumor-

Segmentierung im MRT und der multimodalen präoperativen MRT zur intraoperativen US-

Bildregistrierung (iUS) unter Verwendung der jüngsten Entwicklungen im Deep Learning 

vorgeschlagen. Anschließend wird die Ergebnisvorhersage der verwendeten Deep-Learning-

Netze weiter interpretiert und untersucht, indem für den Menschen verständliche, erklärbare 

Karten erstellt werden. Schließlich wurden Open-Source-Pakete entwickelt und in weithin 

anerkannte Software integriert, die für die Integration von Informationen aus Tracking-

Systemen, die Bildvisualisierung und -fusion sowie die Anzeige von Echtzeit-Updates der 

Instrumente in Bezug auf den Patientenbereich zuständig ist. 
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Die Komponenten von DeepIGN wurden im Labor validiert und in einem simulierten Operati-

onssaal evaluiert. Für das Segmentierungsmodul erreichte DeepSeg, ein generisches entkoppel-

tes Deep-Learning-Framework für die automatische Abgrenzung von Gliomen in der MRT des 

Gehirns, eine Genauigkeit von 0,84 in Bezug auf den Würfelkoeffizienten für das Bruttotumor-

volumen. Leistungsverbesserungen wurden bei der Anwendung fortschrittlicher Deep-Learning-

Ansätze wie 3D-Faltungen über alle Schichten, regionenbasiertes Training, fliegende Datener-

weiterungstechniken und Ensemble-Methoden beobachtet. 

Um Hirnverschiebungen zu kompensieren, wird ein automatisierter, schneller und genauer 

deformierbarer Ansatz, iRegNet, für die Registrierung präoperativer MRT zu iUS-Volumen als 

Teil des multimodalen Registrierungsmoduls vorgeschlagen. Es wurden umfangreiche Experi-

mente mit zwei Multi-Location-Datenbanken durchgeführt: BITE und RESECT. Zwei erfahrene 

Neurochirurgen führten eine zusätzliche qualitative Validierung dieser Studie durch, indem sie 

MRT-iUS-Paare vor und nach der deformierbaren Registrierung überlagerten. Die experimen-

tellen Ergebnisse zeigen, dass das vorgeschlagene iRegNet schnell ist und die besten Genauig-

keiten erreicht. Darüber hinaus kann das vorgeschlagene iRegNet selbst bei nicht trainierten 

Bildern konkurrenzfähige Ergebnisse liefern, was seine Allgemeingültigkeit unter Beweis stellt 

und daher für die intraoperative neurochirurgische Führung von Nutzen sein kann. 

Für das Modul "Erklärbarkeit" wird das NeuroXAI-Framework vorgeschlagen, um das Vertrau-

en medizinischer Experten in die Anwendung von KI-Techniken und tiefen neuronalen Netzen 

zu erhöhen. Die NeuroXAI umfasst sieben Erklärungsmethoden, die Visualisierungskarten 

bereitstellen, um tiefe Lernmodelle transparent zu machen. Die experimentellen Ergebnisse 

zeigen, dass der vorgeschlagene XAI-Rahmen eine gute Leistung bei der Extraktion lokaler und 

globaler Kontexte sowie bei der Erstellung erklärbarer Salienzkarten erzielt, um die Vorhersage 

des tiefen Netzwerks zu verstehen. Darüber hinaus werden Visualisierungskarten erstellt, um 

den Informationsfluss in den internen Schichten des Encoder-Decoder-Netzwerks zu erkennen 

und den Beitrag der MRI-Modalitäten zur endgültigen Vorhersage zu verstehen. Der Erklä-

rungsprozess könnte medizinischen Fachleuten zusätzliche Informationen über die Ergebnisse 

der Tumorsegmentierung liefern und somit helfen zu verstehen, wie das Deep-Learning-Modell 

MRT-Daten erfolgreich verarbeiten kann. 

Außerdem wurde ein interaktives neurochirurgisches Display für die Eingriffsführung entwi-

ckelt, das die verfügbare kommerzielle Hardware wie iUS-Navigationsgeräte und Instrumenten-

verfolgungssysteme unterstützt. Das klinische Umfeld und die technischen Anforderungen des 

integrierten multimodalen DeepIGN-Systems wurden mit der Fähigkeit zur Integration von (1) 

präoperativen MRT-Daten und zugehörigen 3D-Volumenrekonstruktionen, (2) Echtzeit-iUS-

Daten und (3) positioneller Instrumentenverfolgung geschaffen. Die Genauigkeit dieses Sys-

tems wurde anhand eines benutzerdefinierten Agar-Phantom-Modells getestet, und sein Einsatz 

in einem vorklinischen Operationssaal wurde simuliert. Die Ergebnisse der klinischen Simulati-

on bestätigten, dass die Montage des Systems einfach ist, in einer klinisch akzeptablen Zeit von 

15 Minuten durchgeführt werden kann und mit einer klinisch akzeptablen Genauigkeit erfolgt. 

In dieser Arbeit wurde ein multimodales IGN-System entwickelt, das die jüngsten Fortschritte 

im Bereich des Deep Learning nutzt, um Neurochirurgen präzise zu führen und prä- und intrao-

perative Patientenbilddaten sowie interventionelle Geräte in das chirurgische Verfahren einzu-
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beziehen. DeepIGN wurde als Open-Source-Forschungssoftware entwickelt, um die Forschung 

auf diesem Gebiet zu beschleunigen, die gemeinsame Nutzung durch mehrere Forschungsgrup-

pen zu erleichtern und eine kontinuierliche Weiterentwicklung durch die Gemeinschaft zu 

ermöglichen. Die experimentellen Ergebnisse sind sehr vielversprechend für die Anwendung 

von Deep-Learning-Modellen zur Unterstützung interventioneller Verfahren - ein entscheiden-

der Schritt zur Verbesserung der chirurgischen Behandlung von Hirntumoren und der entspre-

chenden langfristigen postoperativen Ergebnisse.  





 

Abstract  

Intracranial brain tumors are one of the ten most common malignant cancers and account for 

substantial morbidity and mortality. The largest histological category of primary brain tumors is 

the gliomas which occur with an ultimate heterogeneous appearance and can be challenging to 

discern radiologically from other brain lesions. Neurosurgery is mostly the standard of care for 

newly diagnosed glioma patients and may be followed by radiation therapy and adjuvant te-

mozolomide chemotherapy. 

However, brain tumor surgery faces fundamental challenges in achieving maximal tumor re-

moval while avoiding postoperative neurologic deficits. Two of these neurosurgical challenges 

are presented as follows. First, manual glioma delineation, including its sub-regions, is consid-

ered difficult due to its infiltrative nature and the presence of heterogeneous contrast enhance-

ment. Second, the brain deforms its shape, called “brain shift,” in response to surgical manipula-

tion, swelling due to osmotic drugs, and anesthesia, which limits the utility of pre-operative 

imaging data for guiding the surgery.  

Image-guided systems provide physicians with invaluable insight into anatomical or pathologi-

cal targets based on modern imaging modalities such as magnetic resonance imaging (MRI) and 

Ultrasound (US). The image-guided toolkits are mainly computer-based systems, employing 

computer vision methods to facilitate the performance of peri-operative surgical procedures. 

However, surgeons still need to mentally fuse the surgical plan from pre-operative images with 

real-time information while manipulating the surgical instruments inside the body and monitor-

ing target delivery. Hence, the need for image guidance during neurosurgical procedures has 

always been a significant concern for physicians. 

This research aims to develop a novel peri-operative image-guided neurosurgery (IGN) system, 

namely DeepIGN, that can achieve the expected outcomes of brain tumor surgery, thus maxim-

izing the overall survival rate and minimizing post-operative neurologic morbidity. In the scope 

of this thesis, novel methods are first proposed for the core parts of the DeepIGN system of 

brain tumor segmentation in MRI and multimodal pre-operative MRI to the intra-operative US 

(iUS) image registration using the recent developments in deep learning. Then, the output 

prediction of the employed deep learning networks is further interpreted and examined by 

providing human-understandable explainable maps. Finally, open-source packages have been 

developed and integrated into widely endorsed software, which is responsible for integrating 

information from tracking systems, image visualization, image fusion, and displaying real-time 

updates of the instruments relative to the patient domain. 

The components of DeepIGN have been validated in the laboratory and evaluated in the simu-

lated operating room. For the segmentation module, DeepSeg, a generic decoupled deep learn-

ing framework for automatic glioma delineation in brain MRI, achieved an accuracy of 0.84 in 

terms of the dice coefficient for the gross tumor volume. Performance improvements were 

observed when employing advancements in deep learning approaches such as 3D convolutions 
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over all slices, region-based training, on-the-fly data augmentation techniques, and ensemble 

methods. 

To compensate for brain shift, an automated, fast, and accurate deformable approach, iRegNet, 

is proposed for registering pre-operative MRI to iUS volumes as part of the multimodal registra-

tion module. Extensive experiments have been conducted on two multi-location databases: the 

BITE and the RESECT. Two expert neurosurgeons conducted additional qualitative validation 

of this study through overlaying MRI-iUS pairs before and after the deformable registration. 

Experimental findings show that the proposed iRegNet is fast and achieves state-of-the-art 

accuracies. Furthermore, the proposed iRegNet can deliver competitive results, even in the case 

of non-trained images, as proof of its generality and can therefore be valuable in intra-operative 

neurosurgical guidance. 

For the explainability module, the NeuroXAI framework is proposed to increase the trust of 

medical experts in applying AI techniques and deep neural networks. The NeuroXAI includes 

seven explanation methods providing visualization maps to help make deep learning models 

transparent. Experimental findings showed that the proposed XAI framework achieves good 

performance in extracting both local and global contexts in addition to generating explainable 

saliency maps to help understand the prediction of the deep network. Further, visualization 

maps are obtained to realize the flow of information in the internal layers of the encoder-

decoder network and understand the contribution of MRI modalities in the final prediction. The 

explainability process could provide medical professionals with additional information about 

tumor segmentation results and therefore aid in understanding how the deep learning model is 

capable of processing MRI data successfully. 

Furthermore, an interactive neurosurgical display has been developed for interventional guid-

ance, which supports the available commercial hardware such as iUS navigation devices and 

instrument tracking systems. The clinical environment and technical requirements of the inte-

grated multi-modality DeepIGN system were established with the ability to incorporate: (1) pre-

operative MRI data and associated 3D volume reconstructions, (2) real-time iUS data, and (3) 

positional instrument tracking. This system's accuracy was tested using a custom agar phantom 

model, and its use in a pre-clinical operating room is simulated. The results of the clinical 

simulation confirmed that system assembly was straightforward, achievable in a clinically 

acceptable time of 15 min, and performed with a clinically acceptable level of accuracy. 

In this thesis, a multimodality IGN system has been developed using the recent advances in 

deep learning to accurately guide neurosurgeons, incorporating pre- and intra-operative patient 

image data and interventional devices into the surgical procedure. DeepIGN is developed as 

open-source research software to accelerate research in the field, enable ease of sharing between 

multiple research groups, and continuous developments by the community. The experimental 

results hold great promise for applying deep learning models to assist interventional procedures 

– a crucial step towards improving the surgical treatment of brain tumors and the corresponding 

long-term post-operative outcomes. 
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1.1 Motivation  

Intra-axial brain tumors are among the ten most common malignancies leading to death (Weller 

et al., 2021). Although there are no screening or preventive examinations, effective diagnosis, 

and therapy influence the further course of gliomas. Neurosurgical intervention is the first and 

sometimes the only therapy for many types of gliomas (Jain, 2018; Pala et al., 2021). In particu-

lar, the precise localization of pathological targets (lesions) within the brain anatomy is a major 

issue in neurosurgery. This challenge is related to the difficulty in visually delineating these 

pathological structures from healthy tissue. Magnetic resonance imaging (MRI) is an important 

modality during the diagnosis, management, and care of glioma patients. MRI is the modality of 

choice for the evaluation of intra-axial, identification of anatomic detail of normal brain struc-

tures, peritumoral edema, and detection of tumor-infiltrated regions (Pope & Brandal, 2018; 

Upadhyay & Waldman, 2011).  

Multi-parametric MRI of the brain, including T1-weighted sequences with (T1Gd) and without 

gadolinium-based contrast agent (T1), T2-weighted images (T2), and T2-weighted fluid-

attenuated inversion recovery (FLAIR) sequences, is the gold standard to detect brain gliomas 

including their sub-regions (Ellingson, Wen, & Cloughesy, 2017). The use of a gadolinium-

based contrast agent allows for the detection of areas where the blood-brain barrier is compro-

mised. In general, gliomas are hypointense on T1 images and hyperintense on T2 images. The 

presence of peripheral contrast enhancement, central necrotic areas, intra-tumoral hemorrhages, 

ill-defined infiltration of surrounding brain tissue, and extensive perifocal edema is commonly 

seen in aggressive lesions and raises the possibility of high-grade glial lesions. The presence of 

peripheral enhancement with central necrotic regions is a common feature of high-grade glio-

mas (HGGs) or glioblastoma (GBM) (WHO grade IV). However, non-enhancing lesions may 

represent low-grade gliomas (LGGs). 

GBM, the most common and aggressive malignant primary tumor of the brain in adults, occurs 

with ultimate heterogeneous sub-regions including the enhancing tumor (ET), peritumoral 

edematous/invaded tissue (ED), and the necrotic components of the core tumor (NCR) (Baid et 

al., 2021; Louis et al., 2020). Still, accurate GBM localization and its sub-regions in MRI are 

considered one of the most challenging segmentation problems in the medical field. Manual 

segmentation is the gold standard for neurosurgical planning, interventional image-guided 

surgery, follow-up procedures, and monitoring tumor growth. However, identification of the 

GBM tumor and its sub-regions by hand is time-consuming, subjective, and highly dependent 

on the experience of clinician’s experience. 

Image-guided neurosurgery (IGN) technology provides physicians with invaluable insight into 

anatomical or pathological targets, based on modern imaging modalities. The IGN is mainly a 

computer-based system with four primary components: segmentation, registration, tracking 

devices, and visualization (Bucholz, Smith, Laycock, & McDurmont, 2001; Cleary & Peters, 

2010). Therefore, the evolution of computers has played an important role in shaping the IGS 

(Menze et al., 2015; Miner, 2017). Figure 1.1 depicts a typical IGN platform that employs an 

optical tracking system to relate surgical instruments to the patient's anatomy. Recent develop-

ments in computer vision methods have been applied to a variety of clinical applications to 

improve the view of the patient's anatomy and to facilitate the performance of neurosurgical 
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procedures. Because no single imaging modality offers real-time physiological and anatomical 

information, IGN systems use a wide range of imaging modalities for measuring brain shift in 

the operating room including pre-operative MRI, intra-operative MRI (iMRI), and intra-

operative ultrasound images (iUS) (Delorenzo et al., 2010; Gerard, Kersten-Oertel, Hall, Sirhan, 

& Collins, 2020). 

 

Figure 1.1: Cranial navigation using the Brainlab image-guided system with optical tracking and surgical dis-

plays. Courtesy of Brainlab AG1. 

The key step of image-guided systems for neurosurgery is the generation of 3D pre-operative 

image data merged with the patient’s anatomy by registration. If the registration is accurate, the 

surgeon can work in the mathematical space (cartesian coordinate system) of the brain image 

that is the same as the physical space under optimum conditions. Fusion of MRI and iUS can 

present prefect imaging modalities for planning, guiding, and monitoring neurosurgery, due to 

their excellent visualization of the brain tissues, tumor tissues, its sub-structure, and surrounding 

tissues. Nevertheless, the acquired MRI and iUS imaging datasets still require sophisticated 

image processing algorithms, such as segmentation techniques to accurately extract the required 

information about a brain tumor. 

 
1 Brainlab AG, Munich, Germany; http://www.brainlab.com/ 

http://www.brainlab.com/
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Recent developments in deep neural networks (DNNs) have demonstrated their effectiveness for 

processing and analyzing medical images, including those associated with brain tumor segmen-

tation(Baxter, Gibson, Eagleson, & Peters, 2018; Havaei et al., 2017; F. Isensee, Jaeger, Kohl, 

Petersen, & Maier-Hein, 2021; Luo et al., 2021; Tajbakhsh et al., 2020), image registration 

(Sedghi et al., 2021), and image classification(Apostolopoulos & Mpesiana, 2020; Mahapatra, 

Bozorgtabar, & Ge, 2021). Hence, further developments in this technological trend for MRI 

and/or iUS-guided systems will significantly contribute to leveraging overall neurosurgery 

performance. 

Nevertheless, most machine learning and/or deep learning techniques are still under develop-

ment for deployment in the clinical field (Angelov, Soares, Jiang, Arnold, & Atkinson, 2021; 

Xie et al., 2021). This is due to the underlying “black-box” nature of the deep learning methods 

which are often characterized by the lack of human-like explainable decisions. In addition, these 

models have a substantial number (within millions) of extracted feature maps in each internal 

layer which are assumed to contain meaningful information about the input problem and its 

possible solution. This makes fully understanding deep learning methods highly problematic 

even for professional experts. Thus, the application of such “black box” models in highly sensi-

tive medical applications is very limited (Angelov et al., 2021; G. Yang, Ye, & Xia, 2022). 

1.2 Objectives of the Thesis  

The focus of this thesis is set on the development of an image-guided system for assisting 

neurosurgery using deep learning methods. The developed IGN platform incorporates novel and 

robust methods to enable pre- and intra-operative assistance for brain tumor interventions. 

Specifically, Fig. 1.2 summarizes the four main modules of the developed IGN system identi-

fied with their underlying research questions. Hence, this research work aims to achieve the 

following main tasks: 

• Automatically define the boundary of brain tumors accurately 

• Registration of pre-operative MRI to iUS images for brain shift compensation 

• Interpreting the developed DNNs using Explainable AI 

• Development of an intuitive neuronavigational display in the operating room 

For approaching the four above aspects of the thesis, different modules are developed and 

integrated into an IGN platform. The contributions can be summarized for each of these tasks as 

follows: 

Automatically define the boundary of brain tumors accurately 

How to correctly delineate brain tumor boundaries from adjacent healthy structures using 

automatic deep-learning models? This module aims at developing a new fully automated MRI 

brain tumor segmentation based on encoder-decoder deep learning models, including the fol-

lowing contributions: 
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Figure 1.2: Overview of the contribution areas and the underlying research questions of this Ph.D. thesis. 

▪ The development of a generic modular architecture for brain tumor segmentation, called 

DeepSeg, enables the integration of new network architectures for the segmentation of 

brain tumors in MRI. 

▪ A detailed ablation study of the state-of-the-art deep learning models highlighting the 

computational performance during training and prediction processes. 

▪ The improved 3D version of DeepSeg utilizes 3D convolutions over all slices for more 

robust and accurate results. Moreover, all the available MRI modalities (T1, T1Gd, T2, 

and FLAIR) are employed so that the brain tumor sub-regions could be detected in com-

parison with the whole tumor only in the original DeepSeg method. 

▪ Presenting the ensemble convolutional neural networks (CNNs) for glioma segmentation 

using multimodal MRI, based on the state-of-the-art encoder-decoder methods. 

▪ Validating the proof of concept to apply various deep learning models for assisting the 

clinical procedures of brain tumor surgery using MRI modality on the Multimodal Brain 

Tumor Segmentation Challenge (BraTS) datasets. 

Registration of pre-operative MRI to iUS images for brain shift compensation 

Which algorithmic methods should be applied to use iUS data to correct the shifted pre-

operative MRI images? In this module, iRegNet is proposed as an automated deformable MRI 

to iUS registration workflow using deep learning, intending to provide considerably improved 

robustness and computational performance toward brain shift compensation for assisting neuro-

surgeons intra-operatively. The contributions of this chapter include the following advance-

ments: 

▪ Presenting the two-step workflow of the proposed iRegNet method, which first takes two 

input volumes: pre-operative MRI (the moving image) and the iUS (the fixed image) as 

input. Then, the DNN generates the corresponding deformation field and corrects the 

brain-shifted MRI volume using deformable registration. 



1  Introduction 

6 

 

▪ Utilizing the truth warped images as the target of the registration rather than the fixed im-

age in the conventional registration method. This provides more precise guided infor-

mation for training iRegNet and, therefore, contributes to the overall accuracy of the reg-

istration results. 

▪ Comprehensively evaluating MRI to iUS registration results using two numerical metrics: 

the mean target registration errors (mTRE) and the computational processing time. Nota-

bly, almost two 3D MRI-iUS pairs per second can be registered on the same graphical 

processing unit (GPU) using the proposed approaches. 

▪ Competitive registration results when applying the proposed methods on unseen MRI-

iUS cases, which evidences their general applicability. 

▪ A detailed comparison with the state-of-the-art non-learning- and learning-based registra-

tion algorithms across multi-site volumes. 

▪ Qualitative analysis is done by two experienced neurosurgeons to highlight the clinical 

applicability of the proposed framework in neurosurgical guidance.  

Interpreting the developed deep neural models using Explainable AI 

Can Explainable AI help to make deep learning networks transparent and understand the 

reason behind their predictions toward gaining human trust? Overall, the main focus of recent 

explainable artificial intelligence (XAI) research in medical image segmentation has been on 

integrating visual interpretability without considering the clinical evaluation of the resultant 

visualizations. Besides, little attention has been paid to the incorporation of medical knowledge 

into the decision approach made by artificial intelligence-based (AI) models. Moreover, the 

decisions of these models must be consistent with the clinical knowledge to gain the trust of 

medical professionals and encourage them to adopt AI-based systems. To cope with these 

challenges, the contributions are divided four-fold: 

▪ An effective NeuroXAI diagnosis generator has been developed to extract 2D and 3D ex-

planations to assist clinicians to understand and trust the performance of brain deep learn-

ing algorithms in clinical procedures. The NeuroXAI method is post-hoc and can be ap-

plied to any brain CNN model without modifying the underlying architecture or 

performance degradation. 

▪ NeuroXAI included seven state-of-the-art backpropagating XAI techniques, namely Va-

nilla Gradient, Guided Backpropagation, Integrated Gradients, Guided Integrated Gradi-

ents, SmoothGrad, Grad-CAM, and Guided Grad-CAM, for generating 2D and 3D visual 

interpretations of CNN output. 

▪ A hybrid CNN-Transformer architecture, called TransXAI, is proposed for the segmenta-

tion of brain tumors, which combines high-resolution local representations from CNN 

and the long-range dependency captured by Transformers.  

▪ A comprehensive evaluation of the proposed NeuroXAI framework demonstrated promis-

ing explanation results for two showcases of MRI classification and segmentation of 

brain tumors. 

▪ Evaluation of the proposed TransXAI framework on the multimodal brain tumor segmen-

tation dataset demonstrates its effectiveness, superiority, and robustness. 
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▪ Explainability-driven evaluation by clinical experts showed that the proposed approaches 

increase surgeons’ trust in deep learning systems by providing evidence linked to the 

results of the TransXAI from the surgical point of view. 

Development of an intuitive neuronavigational display in the operating room 

Which toolkits are required to develop a meaningful display for neuronavigation in an intuitive 

fashion in the operating room? In this module, a meaningful display is developed which visual-

izes all required surgical information simply and intuitively in the operating room with the 

following contributions: 

▪ Development of an IGN toolkit, namely DeepIGN, as an AI-powered neurosurgical navi-

gation application using a set of open-source platforms. 

▪ DeepIGN allows users, developers, and clinical researchers to employ recent deep learn-

ing advances in brain imaging research and image-guided interventions.  

▪ The proposed system is designed to integrate effortlessly with the commercially available 

neuronavigation systems to facilitate clinical translation. 

▪ The prototype research system was evaluated in a simulated clinical environment using a 

custom-made tissue-mimicking brain phantom which evaluated the accuracy of the 

ultrasound navigation and registration. 

▪ As a proof of concept, the system was designed for skull base surgery although it could 

be used during other cranial neuro-oncology surgeries where multi-modal intra-operative 

guidance is desired. 

▪ To the best of our knowledge, this is the first publicly available open-source AI toolkit for 

guiding neurosurgery and brain cancer research using self-contained deep learning meth-

ods. 

1.3 Thesis Roadmap 

The thesis is structured similarly to the research pipeline of Figure 1.2, as follows: 

• Chapter 2 provides the medical fundamentals including medical imaging techniques for 

neurosurgery in addition to brain tumor diagnosis and treatment options. 

• Chapter 3 gives an overview of the fundamentals of deep learning that are essential for 

the remainder of this thesis is presented. Furthermore, technical background on image-

guided neurosurgery, challenges, and limitations are given. 

• Chapter 4 details algorithmic developments in the analysis of brain medical images and 

the development of brain tumor segmentation methods along with the comparison to 

state-of-the-art methods. 

• Chapter 5 presents the framework of the proposed multimodal brain imaging registration 

pipeline with a detailed description, evaluation, and a comparison to existing work in the 

literature qualitatively and quantitatively. 

• Chapter 6 explains the information flow process in the internal layers of DNNs, following 

the input layers to the output predictions, and highlights the attention maps in the process. 

This includes two showcases of the most widely applied brain tumor applications of clas-

sification and segmentation. 
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• Chapter 7 describes the proposed neurosurgical display for providing all required surgical 

information, and patient data as well as its application in the simulated operating room. 

• Chapter 9 concludes this work with a review and an outlook on the many areas that re-

main to be worked on. 

A complete list of publications that resulted from this Ph.D. research is provided in Appendix B. 
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This chapter first introduces the basic imaging modalities used for brain tumor surgery in Sec-

tion 2.1. Then, the definition of brain cancer in addition to brain cancer diagnosis and treatment 

options are presented in Section 2.2.  
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2.1 Medical Imaging Techniques 

Before and during brain surgery, a variety of imaging modalities are used for guiding neurosur-

geons and measuring brain shift including MRI, and ultrasound (US) (Coburger et al., 2014; 

Delorenzo et al., 2010). This section briefly describes the basic concepts of the medical imaging 

modalities used in this thesis. 

2.1.1 Magnetic Resonance Imaging 

MRI is a non-invasive imaging technique that uses strong magnets and low-energy radiofre-

quency waves (RF) to produce tomographic images of the human body. Since the discovery of 

nuclear magnetic resonance (NMR) by Lauterbur et al (Lauterbur, 1973), several articles inves-

tigated the basic principles of MRI (Liang & Lauterbur, 2000; Pagani, Bizzi, Di Salle, De 

Stefano, & Filippi, 2008; Rajan, 1997). MRI provides superior image contrast and high-detailed 

visualization of soft tissue while maintaining a safe procedure since it does not require ionizing 

radiation to obtain images. MRI is the gold standard for the diagnostic visualization of brain 

gliomas including their sub-regions (Ellingson et al., 2017). 

Based on quantum physics, the production of a magnetic field is based on a simple classical 

model in which certain nuclei spin around their axes after excitation by an external magnetic 

field (Pooley, 2005). Most clinical imaging applications of MRI utilize the Hydrogen nucleus 

which is the most abundant atom in the body because of its high sensitivity to magnetic fields 

(van Geuns et al., 1999). Under normal circumstances, hydrogen nuclei are spinning randomly 

around their axis making them act like tiny magnets, as shown in Fig. 2.1 (a). However, upon 

application of a strong magnetic field, hydrogen protons adopt one of the following possible 

states: spin-up, which is in the direction of the external field, and spin-down, as presented in 

Fig. 2.1 (b). Lining up with the magnetic field has the lower energy while the other orientation 

has the higher energy. This net magnetization generated by the parallelly aligned protons be-

comes the source of the MRI signal which is used to produce MRI images. Formally, the reso-

nant frequency F in MHz is calculated by the Larmor equation: 

𝐹 = 𝛾𝐵0  (2.1) 

where γ is the gyromagnetic ratio of the nucleus and 𝐵0 is the strength of the applied magnetic 

field. This frequency is also called the Larmor frequency. 
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(a) (b) 

Figure 2.1: Hydrogen nuclei spinning phenomena. (a) In the absence of a magnetic field, the magnetic moments 

of the nuclei are distributed randomly and thus the net magnetization factor is zero. (b) In the case of 

a strong external magnetic field, the spinning nuclei parallel (spin up) or antiparallel to the external 

field (spin down) (𝐵0) (van Geuns et al., 1999). 

Figure 2.2 gives an example of an MRI scanner at the Department of Neurosurgery, University 

of Ulm. Typically, RF waves are transmitted by a transmitting coil, such as the body coil in Fig. 

2.2, with the energy of exactly the Larmor frequency of the protons (refer to Equation (2.1)). 

After the energy is absorbed by the hydrogen nuclei that have the matching Larmor frequency, 

the net magnetization rotates away from the direction parallel to the imaging magnet (called 

longitudinal direction). After the RF pulse is turned off, the net magnetization starts to grow 

back in the longitudinal direction (called T1 relaxation). Depending on protons associated with 

different soft tissues, the rate at this longitudinal magnetization decays over time varies result-

ing in the contrast in T1. Similarly, T2 is obtained using transverse relaxation, based on the 

spins precessing around the RF frequency source generator. Moreover, other MRI modalities 

are acquired for the precise localization of brain tumors, including T1Gd and FLAIR sequences. 
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Figure 2.2: MRI Scanner at Ulm University Hospital on a 1.5 Tesla Magnetom Symphony (Siemens Medical, 

Germany) with a 12-channel head coil1. 

2.1.2 Ultrasound Imaging 

US imaging is another non-invasive imaging technique that uses pulsed sound waves at higher 

frequencies than those detectable by human hearing (greater than 20 kHz) (Novelline & Squire, 

2004). In 1942, Dr. Dussik published the use of US transmission attenuation data through the 

head to diagnose brain cancer (Dussik, 1942). Since that time, US has been adopted widely in 

many image-guided therapies with the help of evolving multidimensional, multimodality tech-

nologies (Sastry et al., 2017; Stoll, 2014). This is primarily due to its high frame rate, portabil-

ity, low operational costs, and safety. Over the years, a wide variety of US systems have been 

developed and within this thesis, the B-Mode US ("B" for brightness) is used. 

Figure 2.3 (a) shows a typical US scanner and the output B-Mode image with the characteristic 

of brain tumor type and malignancy is shown in Fig. 2.3 (b). Typical medical US systems utilize 

the piezoelectric effect, and the US transducer probe emits pulses at a frequency of 1–20 MHz. 

These pulsed echo signals are transmitted through biological tissues and reflected differently 

depending on their acoustic impedance. US signals also carry a great deal of information includ-

 
1 MRI scanner, Ulm University Hospital, Germany; https://www.uniklinik-ulm.de/ 

https://www.uniklinik-ulm.de/
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ing tissue properties which are combined to generate 2D grayscale images. The US modality 

can assess the dynamic aspects of interventions in real-time, such as tissue deformation and 

instrument motion, which makes it the preferred modality for intra-operative navigation of brain 

tumor surgery (Coburger et al., 2014; Delorenzo et al., 2010; Sastry et al., 2017; Stoll, 2014). 

The use of 3D reconstructed US is introduced in (Miller, Benes, & Sure, 2011), allowing accu-

rate and effective navigation. 

  
(a) (b) 

Figure 2.3: An example of a B-mode US scanner (a) and its output images (b) showing the brain tumor which 

appears in bright grayscale in axial, sagittal, and coronal views (Shetty & Moiyadi, 2016; Xiao, 

Fortin, Unsgard, Rivaz, & Reinertsen, 2017). 

2.2 Brain Tumors  

Brain tumors are one of the leading causes of death for cancer patients, especially children, and 

young people (Weller et al., 2021). The American Cancer Society reported that 23,820 new 

brain cancer cases in the United States were discovered in 2019 (Siegel, Miller, & Jemal, 2019). 
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Brain tumors can be categorized into two types: Primary brain tumors originate in the brain 

cells, and secondary brain tumors developed through the spreading of malignant cells from 

other parts of the body to the brain.  

Malignant glioma is the most common primary brain tumor representing 75% of primary brain 

malignancies among adults (Holland, 2001; Lapointe, Perry, & Butowski, 2018). Gliomas 

normally start at the glial cells of the brain, but they can also invade the surrounding tissues due 

to their infiltrative nature. HGGs are the most common and aggressive type with a median 

survival rate of one to two years (Baid et al., 2021; Buckner, 2003; Louis et al., 2020). Another 

slower-growing LGGs such as astrocytoma have a slightly longer survival time. 

2.2.1 Diagnosis 

The prognosis of glioma cells remains very challenging despite great advancements in 

neurosurgical therapeutics. The main reason behind that is the highly infiltrative nature and 

heterogenous appearance of malignant gliomas. Pre-operative imaging is a key factor in the 

accurate definition of the tumor tissue and its peritumoral regions, and therefore, has a great 

impact on the overall survival rate (Coburger et al., 2016). In particular, MRI is the modality of 

choice for the evaluation of brain tumors, identification of anatomic detail of normal brain 

structures, peritumoral edema, and detection of tumor-infiltrated regions (Coburger et al., 2016; 

Pope & Brandal, 2018; Upadhyay & Waldman, 2011).  

Pre-operative MRI provides superior image contrast and high-resolution soft tissue and thus can 

be essentially used for IGN (Miner, 2017). Multimodal MRI protocols such as T1, T1Gd, T2, 

and FLAIR images provide information to neurosurgeons and can be valuable in diagnostics. 

The use of a gadolinium-based contrast agent in T1Gd allows for the detection of areas where 

the blood-brain barrier is compromised. In general, gliomas are hypointense on T1 images and 

hyperintense on T2 images, as shown in Fig. 2.4. The presence of peripheral contrast 

enhancement, central necrotic areas, intra-tumoral hemorrhages, ill-defined infiltration of 

surrounding brain tissue, and extensive perifocal edema is commonly seen in aggressive lesions 

and raises the possibility of high-grade glial lesions or GBM. On the other hand, non-enhancing 

lesions may represent LGGs. 

Although iMRI offers soft-tissue contrast and diffusion-weighted imaging, it requires long scan 

times and may be associated with high costs. Further, the iMRI scanner limits the physician’s 

access to the operative field and special surgical tools are required due to the strong magnetic 

field which can affect electronic systems. Alternatively, iUS is portable, inexpensive, requires 

little preparation, and provides fast data acquisition. Though iUS can visualize interior soft 

tissue and structures, it has difficulty of low-quality imaging through bones, and its high de-

pendency on inter-operator interpretation may result in image interpretation inconsistency. 

Typically, a manual definition of the tumor location and visual examination are used for brain 

cancer diagnosis. However, interpreting this large amount of data during neurosurgery is a 

demanding task and an appropriate visualization of lesion structure apart from healthy brain 

tissues is crucial (Siekmann, Lothes, Konig, Wirtz, & Coburger, 2018). Therefore, IGN, the 

integration of medical imaging modalities with brain surgery has become an essential tool for 
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assisting neurosurgeons to overcome the above challenge (Coburger & Wirtz, 2019). Figure 2.5 

demonstrates the placement of iUS over pre-operative MRI images. 

 

Figure 2.4: Overview of different MRI modalities showing the characteristics of brain Glioma from the BraTS 

dataset (Menze et al., 2015). Image patches show the different modalities of T1 (a), T1Gd (b), T2 (c), 

and FLAIR (d). 
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Figure 2.5: Fusion of iUS images (green) over pre-operative MRI (grey) of a sample patient from the BITE 

dataset (Mercier, Del Maestro, et al., 2012). From left to right: FLAIR MRI, B-Mode US image, and 

the corresponding overlay of MRI and US images. 

2.2.2 Treatment 

Treatment of malignant brain tumors is still among the most difficult challenges in cancer 

remedies (Lapointe et al., 2018). Treatment protocol can vary based on various factors such as 

the type, size, location, and age of the patient. Neurosurgical intervention is the first and some-

times the only therapy for many types of gliomas, while a combination of surgical removal, 

radiation therapy, and chemotherapy are the most common forms of treatment (Jain, 2018; Pala 

et al., 2021).  

Brain surgery or neurosurgery aims at the complete or partial resection of the brain tumor by 

removing as much as possible of the malignant cells without damaging surrounding healthy 

tissue. Radiation therapy uses high energy radiation to kill cancer cells and shrink the tumor, 

while chemotherapy uses drugs to kill cancer cells. In some cases, other treatments like immu-

notherapy, targeted therapy, and proton therapy may also be used, as shown in Fig. 2.6 (Mustaf, 

Sali, Illzam, Sharifa, & Nang, 2018). It is important to work with a team of specialists such as 

neurosurgeons, oncologists, and radiation therapists to determine the best course of treatment 

for each individual patient. 
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Figure 2.6: Overview of traditional approaches as well as new hybrid strategies for glioblastoma therapy (Shah & 

Heiss, 2022). 
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This chapter provides an overview of the fundamental background knowledge of the technical 

topics covered in this dissertation. This includes an introduction to deep learning concepts and 

the state of modern deep learning applications in Section 3.1 and image-guided neurosurgery in 

Section 3.2. Finally, Section 3.3 summarizes the challenges that face neurosurgical procedures 

and brain surgery. Parts of the section regarding image-guided neurosurgery have previously 

appeared in (Ramy A. Zeineldin, Karar, Burgert, & Mathis-Ullrich, 2023; R. A. Zeineldin, 

Karar, Coburger, Wirtz, & Burgert, 2020; Ramy A. Zeineldin, Karar, Mathis-Ullrich, & 

Burgert, 2022a; Ramy A. Zeineldin, Alex Pollok, et al., 2022). 
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3.1 Deep Learning 

Deep learning, a subfield of AI, has gained a lot of interest over the last decade thanks to its 

successful applications for processing and analyzing medical images including those associated 

with brain tumor segmentation (F. Isensee et al., 2021; Liew, Lee, Lan, & Tan, 2021; L. Zhu et 

al., 2022), image registration (Sedghi et al., 2021), and image classification (Apostolopoulos & 

Mpesiana, 2020; Le et al., 2021; Mahapatra et al., 2021). Recent advances in computational 

hardware, availability of large-scale training datasets, and open-source software have led to a 

renewed interest in analyzing brain cancer, its causes, and its various development phases 

(Chan, Hadjiiski, & Samala, 2020; Lynch & Liston, 2018). This section describes the basic 

principles of deep learning including artificial neural networks, convolutional neural networks, 

transformers, and network training used within this thesis. 

3.1.1 Artificial Neural Networks 

Deep learning is mainly based on artificial neural networks (ANNs) which have been primarily 

introduced to emulate the biological neural networks of the human brain. The term deep learn-

ing refers to a large number of multiple levels of processing layers that can learn representations 

of high-dimensional data (LeCun, Bengio, & Hinton, 2015). A neural network is a collection of 

simple processing nodes, called neurons, that are densely interconnected. Figure 3.1 shows a 

typical neural network that consists of multiple connected layers, namely an input layer, an 

output layer, and (optionally) multiple middle layers (called also hidden layers). The infor-

mation flow in the networks in a feedforward manner, or in other words in one direction from 

the input layer to the output layer through the hidden layers. 

 

Figure 3.1: Sample three-layer neural network with an input layer (blue), two hidden layers (orange), and an 

output layer (green) that are fully connected only in the forward direction. 
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The basic and simplest neural network is a single neuron (or perceptron) which has a minimum 

of one input (dendrites) and a single output (axon) (Goodfellow, Bengio, & Courville, 2016). 

Figure 3.2 presents the biological brain neuron in addition to its artificial mathematical model. 

Mathematically, the artificial neuron output is determined by an input function g(x, w) depend-

ent on the input signals x, weights w based on the multiplicative interaction with the dendrites of 

other neurons, and constant bias term b (Habibi Aghdam & Jahani Heravi, 2017). 

𝑔(𝑥, 𝑤) =  𝑔(∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1 + 𝑏)  (3.1) 

 

 
 

Figure 3.2: Concept of artificial neural networks, a perceptron (up), which was originally inspired by biological 

neural systems, a biological neuron (down) (Zhang, Yu, Barbiero, Wang, & Gu, 2019). 

The axon conveys the electrical pulse that eventually branches out at multiple synapses which 

are connected to other neurons. The synaptic strengths or weights are learnable and control the 

strength of the electrical signals and their direction can be stimulating (positive influence) or 

inhibiting (negative influence) (Kandel et al., 2000). If the sum of the accumulated inputs is 

above a certain threshold, the neuron sends out an electrical spike of a certain intensity along its 
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axon. The function 𝑔 is the respective activation function of the neuron, which represents the 

frequency of these spikes. Common choices for activation functions of neural networks are the 

sigmoid function (Equation (3.2)) and the hyperbolic tangent function (Equation (3.3)).  

𝑔(𝑥) =  𝜎(𝑥) =
1

1+𝑒−𝑥  (3.2) 

𝑔(𝑥) =  𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥  (3.3) 

On the other hand, the Rectified Linear Unit (ReLU) function (Equation (3.4)) (Dahl, Sainath, 

& Hinton, 2013) and its variants such as leaky ReLU (LReLU) (Equation (3.5)) (Maas, Hannun, 

& Ng, 2013) are more popular nonlinearity functions in DNNs with improved performance. 

𝑔(𝑥) = {
0    𝑖𝑓 𝑥 ≤ 0
𝑥    𝑖𝑓 𝑥 > 0

   (3.4) 

𝑔(𝑥) = {
0.01𝑥    𝑖𝑓 𝑥 ≤ 0
𝑥            𝑖𝑓 𝑥 > 0

   (3.5) 

3.1.2 Convolutional Neural Networks 

CNNs are a specific type of multi-layer perceptron. A common problem of the single perceptron 

is that it can only address linear problems and multi-layer perceptron is needed for more com-

plex and high dimensional data encountered in advanced medical image analysis tasks. Due to 

its inherent fully connected layers, the number of weights increases very fast in the hidden 

layers making it impossible to handle with modern computational resources. Thanks to the 

convolutional kernels, CNNs can effectively handle large and dense amounts of data such as 

images: sparse connection, and parameter sharing, as illustrated in Figure 3.3 (Lecun, Bottou, 

Bengio, & Haffner, 1998). Sparse connection means that neurons of layer (ℓ) are only connect-

ed to neurons of the previous layer (ℓ-1) within a fixed local neighborhood rather than being 

connected to all previous neurons. Another important modification is that CNNs share the same 

parameters for all neurons within a hidden layer. Both modifications help to significantly im-

prove computational efficiency by reducing the number of parameters and consequently the 

network complexity (Goodfellow et al., 2016; LeCun et al., 2015). 

The architecture of a typical convolutional network (Fig. 3.4) consists of a series of three basic 

types of layers: convolutional layers, pooling layers, and fully connected layers (Lecun et al., 

1998). Convolutional layers are composed of learnable filters, also called channels, to capture 

sufficient spatial information from the previous layer. Each filter is characterized by its kernel 

size which defines the corresponding local neighborhood, also known as the receptive field. The 

output of a convolutional layer is often referred to as feature maps which is the locally weighted 

sum over all channels via element-wise addition. 

Pooling is another important operation of the CNN which reduces the size of the feature maps 

and therefore increases the receptive field. Pooling layers merge similar elements within the 

feature map semantically into one by a simple mathematical operation, typically the mean, 

minimum, or maximum of the local patch. The maximum operation, known as max pooling, is 
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selected for this thesis. Through convolution and pooling, it is possible to train larger and deeper 

CNNs for more complex computer vision and medical tasks with increased computational 

speed. Finally, the output is fed into one or more fully connected layers and the non-linear 

ReLU activation. 

 

Figure 3.3: Two ideas employed by a convolutional layer to reduce the number of parameters and thus the 

network complexity: sparse connection and parameter sharing. The first row shows layer interconnec-

tion for a fully connected layer as well as the two enhancements by the convolution operation. Their 

respective weight matrices are presented in the second row. 

  

Figure 3.4: Architecture of a convolutional network for image classification (Kang, Ullah, & Gwak, 2021). 

3.1.3 CNN Architectures 

CNNs have proved during the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 

(Russakovsky et al., 2015) their ability to accurately detect and localize different types of ob-

jects. In 2012, an advanced pre-trained CNN model called AlexNet (Krizhevsky, Sutskever, & 

Hinton, 2017) showed the best results in the image classification challenge. Then, other CNN 

models have dominated the ILSVRC competition; namely Visual Geometry Group Network 
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(VGGNet) (Simonyan & Zisserman, 2014), Residual Neural Network (ResNet) (He, Zhang, 

Ren, & Sun, 2016), Dense Convolutional Network (DenseNet) (Huang, Liu, Van Der Maaten, 

& Weinberger, 2017), Xception (Chollet, 2017), MobileNet (Howard et al., 2017), NASNet 

(Zoph, Vasudevan, Shlens, & Le, 2018), and MobileNetV2 (Sandler, Howard, Zhu, Zhmoginov, 

& Chen, 2018). Moreover, CNN methods have been applied to perform MRI tumor segmenta-

tion (Havaei et al., 2017; naceur, Saouli, Akil, & Kachouri, 2018). 

VGGNet (Simonyan & Zisserman, 2014) is proposed by the Visual Geometry Group from the 

University of Oxford and is the winner of the ILSVRC 2014 in the localization task. It is chosen 

to be the baseline model because of its simplicity, consisting only of small 3×3 convolutional 

layers and max-pooling layers for the downsampling process followed by two fully connected 

layers for feature extraction. 

 

Figure 3.5: Comparison of the basic blocks for different convolutional networks. (a) the residual block of ResNet; 

(b) a 3-layer dense block, (c) a depth-wise based module of MobileNet, (d) a simplified Inception 

module, (e) an extreme module of Inception (Xception module), and (f) MobileNetV2 blocks with 

two stride values. 

In fact, increasing the neural network layer would increase the accuracy of the training phase, 

however, there is a significant problem with this approach; for example, vanishing gradients 

(Glorot & Bengio, 2010) cause the neural network accuracy to saturate and then degrade rapid-

ly. In ILSVRC 2015, a novel micro-architecture called ResNet (He et al., 2016) was introduced 

to solve this exploding behavior. The ResNet consists of residual blocks as shown in Fig. 3.5 

(a), and each block consists of the original two convolutional layers in addition to a shortcut 

connection from the input of the first layer to the output of the second layer. By employing skip 

connections to the DNN, neither additional parameters nor computational complexity are added 
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to the network. Owing to this approach, they are able to train up to 152-layer DNN while main-

taining a lower complexity than the above VGG models. 

DenseNet (Huang et al., 2017) uses the feature map of the preceding layers as inputs into all the 

following layers, as depicted in Fig. 3.5 (b). This type of DNN model has L(L+1)/2 connections 

for a CNN with L layers, whereas traditional networks would have only L connections. Remark-

ably, they can achieve additional improvements such as a smaller number of parameters besides 

the ability to scale the network to hundreds of layers. 

Xception presents an extreme version of the Inception network (Chollet, 2017). The Inception 

model aimed at improving the utilization of the computing resources within the neural network 

through special modules. Each inception module is a multi-level feature extractor by stacking 

1x1 and 3x3 convolutions beside each other in the same layer rather than using only one convo-

lutional layer. The Xception, as shown in Fig. 3.5 (c), achieved a slightly better result than 

Inception models on ImageNet, however, it showed superior improvement when the used da-

taset becomes larger. 

Google presented MobileNet (Howard et al., 2017) as an efficient lightweight network for 

mobile applications, as presented in Fig. 3.5 (d). Additionally, the BN is applied after each 

convolution followed by a ReLU activation. Then MobileNetV2 (Sandler et al., 2018) is intro-

duced, which enhanced the state-of-the-art performance of mobile models based on inverted 

residual blocks as shown in Fig. 3.5 (e). These bottleneck blocks are similar to the residual 

block of ResNet where the input of the block is added to the output of the narrow layers. ReLU6 

is also utilized, because of its robustness in low-precision computation, to remove the non-

linearities in the bottleneck layers. Although MobileNetV2 shows a similar performance to the 

previous MobileNet, it uses only 2.5 times fewer operations than the first version. 

Google Brain introduced NASNet (Zoph et al., 2018) to obtain state-of-the-art segmentation 

results with relatively smaller model size. The basic architecture of NASNet is made up of two 

main repeated blocks namely Normal Cell and Reduction Cell. The first type is consisting of 

convolutional layers with output features of the same dimensions, and the height and width of 

the other type’s output are reduced by a stride of 2. ScheduledDropPath is also presented to 

make the model generalize well, where each path in the cell can be dropped with an increased 

probability over the training sequence.  

A U-Net is a special type of CNNs that contains two main paths: a contracting encoder path and 

an expansive decoder path to produce full-resolution segmentation maps, as displayed in Fig. 

3.6 (Ronneberger, Fischer, & Brox, 2015). U-Net architecture has become one of the most 

successful and popular CNN architectures for medical semantic segmentation thanks to its 

precise localization (F. Isensee et al., 2021). The encoder is typically a CNN consisting of 

consecutive two 3 × 3 convolutional layers, each followed by a ReLU activation and 2 × 2 

spatial max pooling. Contrarywise, the decoder aims at upsampling the resultant feature map 

using deconvolution layers followed by 2 × 2 up-convolution, a concatenation layer with the 

corresponding down-sampled layer from the encoder, two 3 × 3 convolutions, and a ReLU. 

Finally, the upsampled features are then directed to a 1 × 1 convolution layer to output the final 

segmentation map. With the help of data augmentation (Springenberg, Dosovitskiy, Brox, & 
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Riedmiller), U-Net achieves precise segmentation using only a few training images. Further-

more, the tiling strategy allows the model to employ high-resolution images in the training stage 

with low GPU memory requirements. 

 

Figure 3.6: U-Net network consists of convolutional blocks (blue boxes), maximum pooling (orange arrows), 

upsampling (grey arrows), and softmax output (green block). 

3.1.4 Transformers 

CNN-based approaches use convolutional operations to capture local texture features by gather-

ing information from neighborhood pixels. Although this strategy has led to performance im-

provements demonstrating its effectiveness in the medical field, it still exhibits limitations in 

capturing long-range context. On the other hand, Transformer, the state-of-the-art encoder-

decoder architecture, has achieved tremendous success in the natural language processing (NLP) 

field (Vaswani et al., 2017). The self-attention mechanism in Transformer allows for the model 

of correlations among all the input tokens and hence is superior to CNN in handling long-range 

dependencies.  

Figure 3.7 shows the model architecture of the Transformer. The Transformer encoder (Vaswani 

et al., 2017) is composed of a stack of N identical blocks. Each block consists of two layers; a 

multi-head self-attention mechanism (MSA) and a multilayer perceptron network (MLP). A 

LayerNorm (LN) layer is applied before each MSA and MLP layer in addition to employing 

residual connection around the output of each layer. Formally, the output 𝑧ℓ of the ℓ-the layer in 

the Transformer encoder can be expressed as: 

𝑧́ℓ  =  MSA(LN(𝑧ℓ−1)) + 𝑧ℓ−1  (3.6) 

𝑧ℓ  =  MLP(LN(𝑧ℓ)) + 𝑧́ℓ  (3.7) 
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Where ℓ𝜖[1,2, … , 𝐿], LN(∙) is the layer normalization, and 𝑧́ℓ is the encoded image representa-

tion. The main restriction of using Transformers in the medical domain is that they rely heavily 

on large-scale training datasets since a huge training dataset is not always available (Devlin, 

Chang, Lee, & Toutanova, 2018; Dosovitskiy et al., 2020; Vaswani et al., 2017). 

 

Figure 3.7: Overview of the Transformer architecture (Vaswani et al., 2017). 

3.1.5 Deep Network Training 

The training of a DNN is to find the optimized weights of the connections between the neurons 

with an objective function termed loss function (LeCun et al., 2015). Supervised learning is the 

most common type of DNN in which the network receives preassigned labels for the training 

data. Thereby, the neural network weights w are adjusted stepwise, and the learning algorithm 

computes a gradient of the entire training set indicating by what amount the error would in-

crease or decrease accordingly. More formally, the loss function (or the reward function) L on a 

set D of training samples is considered an optimization problem defined as: 

𝐿 =  
1

|𝐷|
∑ ℒ(𝑔(𝑥, 𝑤), 𝑦)(𝑥,𝑦)∈𝐷   (3.8) 

where 𝑔(𝑥, 𝑤) is the network specified by Equation (3.1) and ℒ(𝑔(𝑥, 𝑤), 𝑦) is the loss defined 

on a data pair with input x and desired output y.  
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However, for training large datasets, the above gradient descent loss is inefficient and can 

overfit the training data. Therefore, stochastic gradient descent (SGD) (Amari, 1993) is widely 

adopted as a common optimization method. Rather than following the gradient of the entire 

training dataset, SGD calculates the gradient of a randomly selected chosen subset of the train-

ing data called minibatch for each iteration and then backpropagates through all layers of the 

network. Many optimization methods have been proposed to improve SGD such as momentum 

SGD (Qian, 1999), AdaGrad (Duchi, Hazan, & Singer, 2011), and Adam (Kingma & Ba, 2014) 

which can be differently chosen depending on the specific task. 

3.2 Image-guided Neurosurgery 

Over the last decades, brain tumor surgery has altered from removing tumors based only on 

visual inspection to the resection of surrounding malignant cells beyond microscopic navigation 

with the help of imaging technologies breakthrough (Schipmann-Miletić & Stummer, 2020). 

IGN is the integration of imaging modalities with brain surgery which provides the ability to 

accurately visualize surgical targets during planning, operative, and follow-up procedures 

(Miner, 2017; Schipmann-Miletić & Stummer, 2020).  

Thus, diagnostic imaging is critical to IGN to locate the tumor borders precisely as well as the 

adjacent brain healthy tissue (Miner, 2017). Imaging provides information about possible pa-

thologies, intra-path anatomy, planning, progress monitoring, and assessing the interventional 

results (Miner, 2017). Further, intra-operative imaging guides the neurosurgeon dynamically in 

identifying residual tumor mass and real-time placement of surgical instruments allowing for 

the maximum extent of resection (EOR) as the basis of modern neurosurgery with a strong 

correlation to survival rate (Hervey-Jumper & Berger, 2016; Sanai, Polley, McDermott, Parsa, 

& Berger, 2011). Still, the pre- and intra-operative imaging data need advanced image pro-

cessing and computer vision methods to allow IGN systems to reach their full potential 

(Schipmann-Miletić & Stummer, 2020). 

3.2.1 IGN Components 

A historical overview of image-guided interventional systems including their primary techno-

logical components and clinical applications are presented in (Cleary & Peters, 2010). For 

instance, semantic segmentation is an integral part of IGN that provides information about the 

location of surgical targets; tumors, and surrounding anatomical structures (Chapter 4). Another 

essential component of IGN is registration to accurately transform certain intra-operative 

patient data (physical space) into the corresponding imaging coordinates on the pre-operative 

MRI (image space) (Chapter 5). This can be done through paired point transformation using 

adhesive masks with multiple fiducials on their surface, anatomic structure identification, or 

hybrid systems. Multimodal registration can be also employed for combining information 

from different imaging modalities to provide the surgeon with map correspondences between 

pre-operative, intra-operative, and post-recurrence allowing better guidance (Chapter 5). Fur-

thermore, tracking devices are an essential part of IGN systems that are used to track the rela-
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tive position of instruments to the patient space (Chapter 7). Finally, visualization of data is a 

particularly important component of IGN in every phase of brain surgery (Chapter 7). 

3.2.2 IGN Software 

In general, IGN platforms can be divided into two main categories: open-source research sys-

tems and commercial systems. These software systems are the backbone of IGN which inter-

connects all IGN components such as segmentation, registration, tracking devices, and visuali-

zation. Table 3.1 provides a comparison of features provided by currently available platforms 

for image-guided interventions. Typical commercially available IGN systems, such as Brainlab 

AG1  (Munich, Germany) systems, Medtronic StealthStation2 (Minneapolis, USA), and ImFu-

sion Suite3 (Munich, Germany), are routinely used for various neurosurgical interventions. 

However, these platforms are closed in terms of their imaging data, processing algorithms, 

tracking, and other modules. One further limitation is that these systems usually do not allow 

adding other proprietary or open-source components (Shapey et al., 2021). 

In contrast to commercial systems, open-source systems are open meaning that their source code 

is made freely available to the medical and research communities allowing them to integrate 

new contributions seamlessly. 3D Slicer (Fedorov et al., 2012), the Medical Imaging Interaction 

Toolkit (MITK) (Galloway et al., 2004), and the Image-Guided Surgery Toolkit (IGSTK) 

(Enquobahrie et al., 2007) are the three most widely used open-source platforms for the devel-

opment of general medical image-guided systems (Cleary & Peters, 2010). To provide neu-

ronavigation, these systems can be integrated with additional plugins such as the SlicerIGT 

extension(Ungi, Lasso, & Fichtinger, 2016), NifTK module (Clarkson et al., 2015), and the 

PLUS Toolkit (Lasso et al., 2014). IBIS (Drouin et al., 2017) and CustusX (Askeland et al., 

2016) are other examples of open research platforms developed as intra-operative navigation 

systems. 

  

 
1 Brainlab AG, Munich, Germany; http://www.brainlab.com/ 
2 Medtronic StealthStation, Minneapolis, USA; https://www.medtronic.com/ 
3 imFusion Suite, Munich, Germany; https://www.imfusion.com/ 

http://www.brainlab.com/
https://www.medtronic.com/
https://www.imfusion.com/
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Table 3.1: Comparison of the available platforms for image-guided interventions regarding visualization, 

segmentation, registration, acquisition, and iUS navigation. 

Features NifTK CustusX IBIS SlicerIGT ImFusion Brainlab Medtronic 

2D/ 3D Visualization Yes Yes Yes Yes Yes Yes Yes 

Customizable User 

Interface 
No No No Yes No Yes Yes 

Cranial Planning No No No No No Yes Yes 

Interactive Manual 

Segmentation 
Yes No No No Yes Yes Yes 

Patient Registration No Yes Yes Yes No Yes Yes 

MRI-MRI Registration Yes Yes No No Yes No No 

MRI-US Registration No Yes Yes No Yes No No 

iUS Navigation No Yes Yes Yes No Yes Yes 

Brain shift 

Visualization 
No No Yes Yes Yes Yes Yes 

Brain shift Correction No No Yes No No No No 

Instrument Tracking Yes Yes Yes Yes No Yes Yes 

Augmented Reality No No Yes No No No No 

Deep learning Yes No No No Yes No No 

FDA Approved No No No No No Yes Yes 

Open source Yes Yes Yes Yes No No No 

3.3 Challenges and Limitations 

Despite that there is previous research on developing image-guided systems for assisting brain 

surgery, several challenges and limitations still exist. This section summarizes the most im-

portant challenges related to neurosurgical procedures (Section 3.3.1) and challenges related to 

technology and technical development (Section 3.3.2). 

3.3.1 Neurosurgical Challenges 

3.3.1.1 Precise Tumor Localization 

In neurosurgery, inferring the pathological tissue while avoiding damage to other surrounding 

anatomical structures is one of the key challenges. This challenge is related to the difficulty of 

visually delineating these pathological targets from healthy tissue since most primary brain 

tumors grow by infiltration of healthy parenchyma (Coburger & Wirtz, 2019; Miner, 2017). 
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This is particularly important in surgery of LGG where these tumors often demonstrate only 

slight differences in texture and consistency compared to normal brain (Coburger et al., 2016). 

Furthermore, 2D iUS systems provide many advantages for intra-operative navigation (refer to 

Section 2.1.2); however, the main limitation is their low image quality due to poor spatial reso-

lution and small field of view (Unsgaard, Gronningsaeter, Ommedal, & Nagelhus Hernes, 

2002). Insufficient imaging quality makes the identification of various brain structures challeng-

ing, especially deep structures such as the brainstem (Steno et al., 2021).  

3.3.1.2 Brain shift 

Neuronavigation using 3D pre-operative imaging data has become an indispensable tool for the 

planning and surgical guidance of brain tumor operations in many centers (Gerard et al., 2020). 

However, the accuracy of neuronavigation may become unreliable after the shifting of patient 

anatomy as a result of the surgery, patient positioning, application of mannitol, release of cere-

bral spinal fluid, and progressive resection of the tumor. This intra-operative brain deformation  ̶

called “brain shift” ̶ reduces the utility of pre-operative imaging data for neurosurgical guidance. 

Brain shift has been observed to be as large as 24 mm at the brain cortex and exceeding 3 mm 

for the deep tumor margin in glioma operations (Hastreiter et al., 2004). 

3.3.1.3 Inter-rater Variability 

The inter-rater variability for the delineation of gliomas is the difference in tumor volumes, as 

assessed on imaging, between different interpreters (Kubben, Postma, Kessels, van Overbeeke, 

& van Santbrink, 2010; Visser et al., 2019). In enhancing tumors in glioblastoma, this in only a 

minor issue since observer agreements are excellent among experts (range 0.98–1.00). Howev-

er, in non-enhancing tumor segmentations of glioblastoma, the spatial agreement was invariably 

highest with poor to fair agreement (range 0.41–0.79) for both pre-operative T2 and FLAIR 

MRI. The results reveal also that enhancing tumors in non-glioblastoma patients are very chal-

lenging to detect even for experienced raters (Visser et al., 2019). 

3.3.2 Technical Challenges 

3.3.2.1 Multiple Modules Integration 

The software system is the core component of IGN, which contains segmentation, registration, 

tracking devices, and visualization modules, as discussed in Section 3.2. IGN system develop-

ment is mostly time-consuming and still needs labor-intensive processes to integrate the above-

mentioned elements. Providing that automatic brain tumor localization algorithms, information 

by tracking systems, and imaging data fusion typically come from different sources that belong 

to environments, correlating these huge amounts of data with the relevant images with real-time 

visualization is still a non-trivial task. Further, the software development must be carefully 

designed to ensure ease of use, robustness, and stability as it is used in life-critical applications 

(Enquobahrie et al., 2007).  
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3.3.2.2 Deep Networks Transparency 

Most machine learning and/or deep learning techniques are still under development for deploy-

ment in the clinical field (Angelov et al., 2021; Xie et al., 2021). This is due to the underlying 

“black-box” nature of the deep learning methods which are often characterized by the lack of 

human-like explainable decisions. In addition, these models have a substantial number (within 

millions) of extracted feature maps in each internal layer which are assumed to contain mean-

ingful information about the input problem and its possible solution. This makes fully under-

standing deep learning methods highly problematic even for professional experts. Thus, the 

application of such “black box” models in highly sensitive medical applications is very limited 

(Angelov et al., 2021; G. Yang et al., 2022). 

Recently, there is a growing interest in XAI to address the fundamental question about the 

justification of the decision-making process made by deep learning models (Du, Liu, & Hu, 

2019). Though the explainability does not improve the accuracy of the deep learning model, 

XAI is important to guarantee safety in use and increase the trust of non-deep learning users, 

i.e., surgeons and radiologists. XAI provides machine learning methods the ability to describe 

their “black-box” nature in explainable or interpretable terms to humans (Angelov et al., 2021; 

G. Yang et al., 2022). 

3.3.2.3 Neuronavigational Challenges 

Image-guided navigation using MRI imaging acquired pre-operatively provides the surgeon 

with valuable information to define brain tumor boundaries and their adjacent structures. How-

ever, neuronavigation loses its significance as the surgery progresses and brain shift and defor-

mation occur (Bastos et al., 2021; Censi, Mattei, Triventi, Bartolini, & Calcagnini, 2012). Intra-

operative navigation using iUS partially handles this problem by providing low-cost real-time 

imaging with less disruption to the surgical workflow. But interpreting iUS images is still a 

challenging task and requires neurosurgeons with extensive experience. Further, the reconstruc-

tion of 3D iUS volumes may contain some artifacts due to variations in the steadiness of the 

transducer and the operational speed of the probe translation (Bastos et al., 2021). 



  

33 

4 Brain Tumor Segmentation 

Contents 

4.1 Introduction --------------------------------------------------- 34 

4.2 Related Work ------------------------------------------------- 34 

4.3 Methods -------------------------------------------------------- 36 

4.3.1 DeepSeg------------------------------------------------- 36 

4.3.1.1 Feature extractor ----------------------------- 36 

4.3.1.2 Image upscaling ------------------------------- 37 

4.3.2 3D DeepSeg -------------------------------------------- 37 

4.3.3 Ensemble Methods ----------------------------------- 38 

4.3.4 Post-processing --------------------------------------- 39 

4.4 Experiments --------------------------------------------------- 39 

4.4.1 Data ----------------------------------------------------- 39 

4.4.2 Experimental setup ---------------------------------- 42 

4.4.3 Evaluation Metrics ----------------------------------- 43 

4.4.4 Ablation Study ---------------------------------------- 44 

4.5 Results and Discussion -------------------------------------- 45 

4.5.1 Statistical Evaluation -------------------------------- 45 

4.5.2 Qualitative Output ----------------------------------- 47 

4.5.3 Ensemble Results ------------------------------------- 49 

4.6 Summary ------------------------------------------------------ 52 

Within this chapter, the first module of the proposed IGN pipeline (see Figure 1.2 “DeepIGN”) 

called Automatically define the boundary of brain tumors accurately is described. This chapter 

is organized as follows: Introduction to glioma detection in Brain MRI and related automatic 

segmentation methods is given in Section 4.1 and Section 4.2, respectively. Section 4.3 de-

scribes the architecture of the proposed framework in addition to the developed ensemble meth-

ods. The utilized brain tumor segmentation dataset, experimental setup, and evaluation metrics 

are presented in Section 4.4. Section 4.5 gives comprehensive experiments and comparisons 

with the state-of-the-art, and finally, this chapter work is concluded in Section 4.6. Parts of this 

chapter have previously appeared in (Ramy A. Zeineldin et al., 2023; R. A. Zeineldin et al., 

2020; Ramy A. Zeineldin, Mohamed E. Karar, et al., 2022a).  
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4.1 Introduction 

Manual segmentation of the brain tumor is a vital procedure and needs a group of clinical ex-

perts to accurately define the location and the type of the tumor. Moreover, the process of lesion 

localization is very labor-based and highly dependent on the physicians’ experience, skills, and 

slice-by-slice decisions. Alternatively, automated computer-based segmentation methods pre-

sent a suitable solution to save the surgeon’s time and to provide reliable and accurate results, 

while reducing the exerted efforts of experienced physicians to accomplish the procedures of 

diagnosis or evaluation for every single patient (Karar, Merk, Falk, & Burgert, 2016).  

Formerly, numerous machine learning algorithms were developed for the segmentation of 

normal and abnormal brain tissues using MRI images (W. Wu, Chen, Zhao, & Corso, 2014). 

However, choosing features that enable this operation to be fully automated is very challenging 

and requires a combination of computer engineering and medical expertise. Therefore, classical 

approaches depend heavily on the applied application and do not generalize well. Nevertheless, 

developing fully automated brain tumor methods is still a challenging task, because malignant 

areas varied in terms of shape, size, and localization, and they can only be defined through the 

intensity changes relative to surrounding healthy cells.  

Semantic segmentation is currently one of the most important tasks in the field of computer 

vision toward complete scene understanding. Deep learning has become recently an attractive 

field of machine learning that outperforms traditional computer vision algorithms in a wide 

range of applications such as object detection (Ouyang et al., 2017), semantic segmentation 

(Shelhamer, Long, & Darrell, 2017) as well as other applications such as navigation guidance 

(Saleh, Zeineldin, Hossny, Nahavandi, & El-Fishawy, 2018). 

4.2 Related Work 

Early approaches to applying semantic segmentation in the medical field use patch-wise image 

classification (Cireşan, Giusti, Gambardella, & Schmidhuber, 2012). However, it suffers from 

two main problems: First, the training patches are much larger than the training samples, which 

require a higher number of computation cycles resulting in a large running time consumption. 

Second, the segmentation accuracy depends heavily on the appropriate size of patches. Accord-

ingly, new U-shaped encoder-decoder architecture was introduced, refer to Section 3.1.3, which 

can solve classical semantic segmentation problems by using two main paths: a contracting path 

(or encoder) and an expansive path (or decoder) (Ronneberger et al., 2015).  

Inspired by the recent Densenet architecture (Huang et al., 2017) and U-Net (Ronneberger et al., 

2015), DeepSCAN architecture was proposed for semantic segmentation. Figure 4.1 shows the 

two DeepSCAN architectures introduced for brain tumor segmentation. Instead of using transi-

tion layers and pooling operations, dilated convolutions are used to increase the receptive field 

of the encoder. Similar to Densenet, the output of each layer is concatenated with its input 

before passing to the next layer. Moreover, label-uncertainty is applied directly to the loss-

function, which allows the prediction of the CNN to be involved in evaluating the network 
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decision. This hybrid 2D/ 3D approach led to more stable results and is one of the winning 

solutions in the BraTS 2018 challenge.   

 

Figure 4.1: DeepSCAN architectures, as applied to brain tumor segmentation in BraTS 2018 challenge 

(McKinley, Meier, & Wiest, 2019). 

The baseline nnU-Net is outlined in Fig. 4.2, which is a self-adaptive deep learning-based 

framework for 3D semantic biomedical segmentation (F. Isensee et al., 2021). Unlike the pro-

posed DeepSeg, nnU-net does not use any of the recently proposed architectural advances in 

deep learning and only depends on plain convolutions for feature extraction. nnU-Net used 

strided convolutions for downsampling and convolution transposed for upsampling. The initial 

filter size of convolutional kernels is set to 32 and doubled at the following layers with a maxi-

mum of 320 in the bottleneck layers. 

By modifying the baseline nnU-Net and making BraTS-specific processing, nnU-Net won first 

place in the segmentation task of the BraTS challenge in 2020 (Fabian Isensee, Jäger, Full, 

Vollmuth, & Maier-Hein, 2021). The softmax output was replaced with a sigmoid layer to target 

the three evaluated tumor sub-regions: whole tumor (consisting of all 3 labels), tumor core 

(label 1 and label 4), and enhancing tumor (label 4). Further, the training loss was changed to a 

binary CE instead of a categorical CE that optimized each of the sub-regions independently. 

Also, the batch size was increased to 5 as opposed to 2 in the baseline nnU-Net and more ag-

gressive data augmentations were incorporated. Similar to DeepSeg, nnU-Net utilized BN 

instead of instance normalization. After all, the sample dice loss function was changed to batch 

dice by computing over all samples in the batch. 



4  Brain Tumor Segmentation 

36 

 

 

Figure 4.2: nnU-Net network consists of strided convolution blocks (grey boxes), and upsampling as convolution 

transposed (blue arrows). The input patch size was set to 128 × 128 × 128 and the maximum filter 

size is 320 (Fabian Isensee et al., 2021). 

This chapter aims at developing a new fully automated MRI brain tumor segmentation based on 

modified U-Net models. First, DeepSeg is proposed in Section 4.3.1 as a generic modular 

architecture of the brain tumor segmentation with two elements: feature extraction and image 

expanding paths, in order to support applying different deep neural network models successful-

ly. Moreover, two fully automated CNN methods were proposed for glioma segmentation based 

on an ensemble of three encoder-decoder methods, namely, DeepSeg (R. A. Zeineldin et al., 

2020), nnU-Net (Fabian Isensee et al., 2021), and DeepSCAN (McKinley et al., 2019). All 

networks follow the U-Net pattern (Çiçek, Abdulkadir, Lienkamp, Brox, & Ronneberger, 2016; 

Ronneberger et al., 2015) and consist of encoder-decoder architecture interconnected by skip 

connections. 

4.3 Methods 

4.3.1 DeepSeg 

DeepSeg is a generic decoupled framework for automatic tumor segmentation, as shown in Fig. 

4.3. Thanks to the basic U-Net structure (Ronneberger et al., 2015), it consists of two main 

parts: a feature extractor (or encoder) part and an image upscaling (or decoder) part. This uni-

versal design has two main advantages: First, it allows the extensibility of the system, i.e. dif-

ferent encoders and decoders can be added easily. Moreover, a discriminative comparison 

between the various proposed models can be done straightforwardly. In the following, the 

proposed architecture is described in detail. 

4.3.1.1 Feature extractor 

The modified U-Net encoder has been implemented by using advances in CNNs including 

dropout and batch normalization (BN) (Ioffe & Szegedy, 2015; Srivastava, Hinton, Krizhevsky, 

& Salakhutdinov, 2014). In addition, state-of-the-art DNN architectures are integrated into the 
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benchmarking system to extract the feature map. These models are utilized to achieve better 

performance than the obtained results in the ILSVRC competition until now (Russakovsky et 

al., 2015). Every proposed model has its own set of parameters and computational resource 

requirements, as described below. 

 

Figure 4.3: DeepSeg architecture for using different feature extractor models of MRI brain tumors. 

4.3.1.2 Image upscaling 

In semantic segmentation, it is very crucial to use both semantic and spatial information so that 

the neural network can perform well. Hence, the decoder should recover the missing spatial 

information to get the full-resolution segmented map from the consequential encoded features. 

By skip connections (Fig. 4.3), U-Net can obtain the semantic feature map from the bottleneck 

and recombine it with higher resolution outputs from the encoder respectively. 

Unlike the standard U-Net decoder, some modifications were incorporated for further excep-

tional segmentation results. Firstly, a BN layer is applied between each convolution and ReLU 

to make each layer learn independently from other layers and thus contribute to faster learning. 

Additionally, a smaller filter size of 32 as the base filter is selected and doubled at the following 

layers, in order to apply the full size as input rather than using patches or small regions of the 

input. Finally, the output of the network is passed into a softmax output layer which converts 

the output logics into a list of probability distributions. 

4.3.2 3D DeepSeg 

Figure 4.4 shows a 3D enhanced version of the first model, DeepSeg, which is a modular 

framework for fully automatic brain tumor detection and segmentation. The proposed network 

differs from the original network in the following: First, the original DeepSeg network was 

proposed for 2D tumor segmentation using only FLAIR MRI data, however, 3D convolutions 
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are applied here over all slices for more robust and accurate results. Second, all the available 

MRI modalities (T1, T1Gd, T2, and FLAIR) are incorporated so that the GBM sub-regions 

could be detected in comparison with the whole tumor only in the original DeepSeg version 

(Section 4.3.1). Third, additional modifications are made such as region-based training, exces-

sive data augmentation, a simple postprocessing technique, and a combination of cross-entropy 

(CE) and Dice similarity coefficient (DSC) loss functions. 

Following the structure of U-Net, DeepSeg consists of two main parts: a feature extractor part 

and an image upscaling part. Downsampling is performed with 2 × 2 × 2 max-pooling and 

upsampling is performed with 2 × 2 × 2 up convolution. DeepSeg uses the recently proposed 

advances in CNNs including dropout, BN, and ReLU (Ioffe & Szegedy, 2015; Srivastava et al., 

2014). The feature extractor consists of five consecutive convolutional blocks, each containing 

two 3 × 3 × 3 convolutional layers, followed by ReLU. In the image upscaling part, the resultant 

feature map of the feature extractor is upsampled using deconvolutional layers. The final output 

segmentation is attained using a 1 × 1 × 1 convolutional layer with a softmax output.  

 

Figure 4.4: 3D DeepSeg network consists of convolution neural blocks (blue boxes), downsampling using 

maximum pooling (orange arrows), upsampling using up convolution (blue arrows), and softmax 

output layer (green block). The input patch size was set to 128 × 128 × 128. 

4.3.3 Ensemble Methods 

The ensemble is a widely adopted effective paradigm of deep learning, which aims to improve 

the global performance of deep models (Dietterich, 2000). For the image segmentation problem, 

a standard ensemble method has been developed by taking the combination of two or more 

segmentations networks. However, this simple strategy does not take into account potential 

variability in the quality or performance between models, addressing each network output in the 
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same way. Furthermore, such voting strategies do not enable prior information on the segment-

ed structure to be incorporated (P. Yang, Hwa Yang, B Zhou, & Y Zomaya, 2010). Another 

advanced ensemble method called the Simultaneous Truth and Performance Level Estimation 

(STAPLE) (Warfield, Zou, & Wells, 2004), was proposed as an instance of the expectation-

maximization algorithm (Dempster, Laird, & Rubin, 1977). Using a collection of image seg-

mentations, STAPLE calculates a probability estimate of the actual segmentation and simulta-

neously a measure of the performance level represented by each segmentation. 

4.3.4 Post-processing 

Determining the small blood vessels in the tumor core (necrosis or edema) is one of the most 

challenging segmentation tasks in the BraTS Challenge. In particular, this is clear in low-grade 

glioma (LGG) patients where they may not have enhancing tumors and, therefore, the BraTS 

challenge evaluates the segmentation as binary values of 0 or 1. Although if there are only small 

false positives in the predicted segmentation map of a patient with no enhancing tumor will 

result in a dice value of 0. To overcome this problem, all enhancing tumor output were re-

labeled with necrotic (label 1) if the total predicted ET regions are less than a threshold. This 

threshold value was selected based on our analysis of the validation set results so that our model 

performs better. This strategy has a possible side effect of removing some correct predictions. 

4.4 Experiments 

4.4.1 Data 

MRI data from the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 

BraTS challenges 2019 and 2021 (Baid et al., 2021; S. Bakas et al., 2017; Spyridon Bakas et al., 

2018; Menze et al., 2015) have been used in this chapter for accomplishing the brain tumor 

segmentation task. 

DeepSeg was performed using the FLAIR MRI data from the BraTS 2019 challenge (Menze et 

al., 2015). Although T1Gd is the standard imaging for Glioma, FLAIR is becoming increasingly 

relevant in the case of malignant tumors, since there is a trend to also resect the FLAIR positive 

areas (Y. M. Li, Suki, Hess, & Sawaya, 2016). Moreover, the advantages of FLAIR images in 

the brain surgery of LGGs have been investigated (Coburger et al., 2016). BraTS 2019 dataset 

(Spyridon Bakas et al., 2018) contains multi-institutional pre-operative MRI of 336 heterogene-

ous (in shape, appearance, size, and texture) Glioma patients (259 HGGs and 76 LGGs). While 

the BraTS 2021 dataset (Baid et al., 2021; S. Bakas et al., 2017; Menze et al., 2015) provides 

the largest multi-institutional annotated mpMRI dataset, with more than 2000 cases, aiming at 

evaluating state-of-the-art automated deterministic solutions for the segmentation of intra-axial 

brain tumors. 

Each patient of BraTS datasets has four multimodal scans: native T1, post-contrasted T1Gd, T2, 

and FLAIR. MRI data were acquired from multiple institutions using various clinical protocols 

and different scanners. The manual segmentation of the data was done by experienced neuro-
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radiologists, from 1 to 4, following the same annotation procedure. After that, the MRI scans are 

resampled and interpolated to the same resolution of 1 mm3. Fig. 4.5 displays the provided 

segmented labels: background (label 0), necrotic and non-enhancing tumor core (NCR/NET) 

(label 1), ED (label 2), and ET (label 4). These labels are combined to generate the final evalua-

tion of three regions: the tumor core (TC) of labels 1 and 4, enhancing tumor (ET) of label 4, 

and the whole tumor (WT) of all labels. 

 

(a) (b) 

 

(c) (d) 

Figure 4.5: A sample of the mpMRI BraTS 2021 training set. Shown are image slices in two different MRI 

modalities T1Gd (a), T2 (b), FLAIR (c), and the ground truth segmentation (d). The color labels indi-

cate Edema (yellow), enhancing solid tumor (red), non-enhancing tumor core, and necrotic core 

(green). Images were obtained by using the 3D Slicer software (Fedorov et al., 2012). 

The BraTS 2021 data were acquired using different clinical protocols, from different MRI 

scanners and multiple institutions, therefore, a pre-processing stage is essential. First, standard 

pre-processing routines have been applied by the BraTS challenge as stated by (Baid et al., 

2021). This includes conversion from DICOM into NIFTI file format, re-orientation to the same 

coordinate system, co-registration of the multiple MRI modalities, resampling to 1 × 1 × 1 mm 
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isotropic resolution, and brain extraction and skull-stripping. Following these pre-processing 

steps, the image cropping stage is applied where all brain pixels were cropped, and the resultant 

image was resized to a spatial resolution of 192 × 224 × 160. This method effectively results in 

a closer field of view (FOV) to the brain with fewer image voxels leading to a smaller resource 

consumption while training the deep learning models. Finally, z-score normalization was ap-

plied by subtracting the mean value and dividing it by the standard deviation individually for 

each input MRI image.  

For the training of large neural networks using limited training data, some precautions should be 

taken to prevent the problem of overfitting. One of them is data augmentation, which is the 

process of creating new artificial training data from the original one to improve the model 

performance by making the model generalize well to the new testing data. In this study, a set of 

simple on-the-fly data augmentation methods is applied (as listed in Table 4.1) by horizontal 

and vertical flipping, rotation, scaling, shearing, and shift. Unfortunately, these simple methods 

are not enough to get sufficient immune training data, therefore more complex methods are also 

introduced such as elastic distortion corresponding to uncontrolled noise of MRI sensors, where 

σ is the elasticity coefficient and β is the multiplying factor of the displacement fields which 

controls the intensity of deformation. Figure 4.6 shows some examples of the applied augmenta-

tion techniques.  

Table 4.1: List of the applied data augmentation methods. 

Methods Parameters 

Flip horizontally 20% of all images 

Flip vertically 20% of all images 

Scale ±20% on both horizontal and vertical direction 

Translation ±20% on both horizontal and vertical direction 

Rotation ±25° 

Shear ±8° 

Elastic transformation β = 720, σ = 24 

 



4  Brain Tumor Segmentation 

42 

 

 

Figure 4.6: Random augmented image transformation. The first row shows the original image. The next three 

rows present horizontal and vertical flipping, scaling, translation, rotation, and shearing methods. The 

elastic transformation is presented in the last row. 

4.4.2 Experimental setup 

The proposed methods of this chapter were run on AMD Ryzen 2920X (32M Cache, 3.50 GHz) 

CPU with a single Nvidia GPU (RTX 2080 Ti or RTX 3060). Proposed DeepSeg models were 

implemented using Tensorflow (Abadi et al., 2016) while nnU-Net was implemented using 

PyTorch (Paszke et al., 2019).  

For DeepSeg, experiments are done using FLAIR MRI sequences with a resolution of 224 × 

224 in order to use all the proposed feature extractor networks. DeepSeg networks are trained 

for 35 epochs and a batch size of 16. During the training process, spatial dropout with a rate of 

0.5 was used after the feature extractor path. This is a simple type of regularization to ensure 

that the neural networks generalize well without overfitting the training dataset. Adam optimizer 

(Kingma & Ba, 2014) has been applied with a learning rate of 0.00001.  

For 3D DeepSeg and ensemble methods, the input is set to randomly sampled patches of 128 × 

128 × 128 voxels with varying batch sizes from 2 to 5 and the post-processing threshold is set to 

200 voxels. This tiling strategy allows the model to be trained on multi-modal high-resolution 

MRI images with low GPU memory requirements. Each model was trained as five-fold cross-

validation on the 1251 training cases of BraTS 2021 for a maximum of 1200 epochs. Adam 
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optimizer (Kingma & Ba, 2014) has been applied with an initial learning rate of 1e-4 and a 

default value of 1e-7 for epsilon 

Nevertheless, the BraTS dataset suffers from a data imbalance problem where the tumor pixels 

are less than 2% and the healthy pixels are mostly 98% of the whole dataset. To solve this 

problem in two steps, firstly, the models were trained on the brain sequences and ignored the 

empty slices, secondly, weighted CE loss for each label was used to pay more attention to the 

malignant labels than the background as defined by: 

𝐿2𝐷 =  − ∑ 𝑦𝑐 𝑙𝑜𝑔(𝑝𝑐) ∗ 𝑤𝑐
𝑁𝑐
𝑐=1    (4.1) 

where 𝑁𝑐 is the number of classes including the background and the tumor cells in this study, 𝑦𝑐 

represents the true labels for the cth class, 𝑝𝑐 is the predicted softmax output for those true 

labels, and 𝑤𝑐 is the proposed weight class map of (0.05, 0.95) to focus on the tumor pixels 

rather than the background.  

For training 3D DeepSeg and ensemble methods, the loss function is a combination of CE and 

DSC loss functions, which can be calculated as follows: 

𝐿3𝐷  = 𝐷𝑆𝐶 + 𝐶𝐸 =  
2∗∑ 𝑦𝑐𝑝𝑐

𝑁𝑐
𝑐=1 +𝜀

∑ 𝑦𝑐
𝑁𝑐
𝑐=1 + ∑ 𝑝𝑐

𝑁𝑐
𝑐=1 + 𝜀

− ∑ 𝑦𝑐 . log (𝑝𝑐)
𝑁𝑐
𝑐=1   (4.2) 

where ε is the smooth parameter to make the dice function differentiable. To further overcome 

the effect of class imbalance between tumor labels and the brain healthy tissue, on-the-fly 

spatial data augmentations were applied during training (random rotation between 0 and 30°, 

random 3D flipping, power-law gamma intensity transformation, or a combination of them). 

4.4.3 Evaluation Metrics 

For the evaluation of segmentation results, four metrics namely; DSC, sensitivity, specificity, 

and the Hausdorff distance (HD) are computed. DSC score calculates the overlap of the seg-

mented region and the ground truth y and is applied to the network softmax predictions p as 

follows:  

𝐷𝑆𝐶 =  
2∗ ∑ 𝑦𝑝+ 𝜀

∑ 𝑦+ ∑ 𝑝+ 𝜀
  (4.3) 

Note that ε is the smooth parameter to make the dice function differentiable. This dice overlap 

can take values from 0 (represents lower overlap) to 1 (indicates a full overlap). Specificity and 

sensitivity are given by: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (4.4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (4.5) 

where true positives (TP) and false positives (FP) refer to the number of retrieved points that are 

correct/incorrect, and similarly for true and false negatives, TN and FN, respectively.  
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Dice, Sensitivity, and Sensitivity metrics are measures of pixel-based overlap between the 

ground truth and the predicted segmentations. In addition, the HD gives the largest distance of 

the segmentation set to the nearest point in the truth set, as defined by 

𝐻𝐷(𝑝, 𝑦) =  𝑚𝑎𝑥{ℎ(𝑝, 𝑦), ℎ(𝑦, 𝑝)}  (4.6) 

with 

ℎ(𝑝, 𝑦) =  𝑚𝑎𝑥𝑖∈𝑝 {𝑚𝑖𝑛𝑗∈𝑦{𝐷(𝑖, 𝑗)}}  (4.7) 

where the shortest Euclidian distance 𝐷(𝑖, 𝑗) is calculated for every point i of the segmentation 

set p, with respect to the ground truth point j in the image. 95% percentile of the Hausdorff 

distance (HD95) was utilized to reduce the number of outliers in the local distance error estima-

tion. 

4.4.4 Ablation Study 

Thanks to the DeepSeg framework, several methods were analyzed and compared simultaneous-

ly. Table 4.2 illustrates the different characteristics of these automated methods with the corre-

sponding computational times. Training and prediction times present the average estimated time 

of applying each algorithm about 35 times during the training and validation respectively. These 

tests showed that the MobileNet encoder requires the smallest resources with only 22 MB of 

memory and roughly 5.6 thousand parameters. It is worth mentioning that MobileNet and Mo-

bileNetV2 are mainly developed for mobile and embedded applications where the hardware 

resources are limited. Likewise, U-Net, modified U-Net, and NASNet consumes a small amount 

of memory of 30 MB, 30 MB, and 37 MB respectively. Apparently from the results, there is a 

proportional relationship between the number of parameters and the demanded memory. On 

contrary, the ResNet model consumes the largest amount of memory of 118 MB, which is not 

considered a problem since modern GPUs possess a memory of several Gigabytes. Other mod-

els such as DenseNet, VGGNet, and XCeption are located in the middle level of memory con-

sumption of 51 MB, 71 MB, and 103 MB, respectively. 

Moreover, the number of layers has a significant influence on both the training and prediction 

time. For instance, the training time of one epoch using U-Net with the smallest number of 

layers (39 layers), is 381 seconds and the prediction time is just 1.1 seconds. But the NASNet 

model with 818 layers requires 684 seconds for one epoch to train and the prediction of one 

patient took 4.4 seconds. Nevertheless, this is not the general rule since modified U-Net, Mo-

bileNet, and MobileNetV2 share the second place with a training time of 385 seconds even 

though they have various numbers of layers of 74, 129, and 202, respectively. The main reason 

is the internal building architecture of MobileNet variants which is developed for smartphone 

devices.  
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Table 4.2: A comparative performance of the employed models. Average computational times for each encoder 

of 35 results during training and validation phases. 

Encoder 
Size 

(MB) 

Training Time 

(sec) 

Prediction Time 

(sec) 
Parameters Layers 

U-NET 30 381 1.1 7760642 39 

Modified U-NET 30 385 1.3 7763050 74 

VGGNet 71 540 1.6 18540938 56 

ResNet 118 446 2.3 30546458 223 

DenseNet 51 482 3.2 12947674 474 

XCeption 103 580 1.9 26769602 184 

MobileNet 30 385 1.5 7590746 129 

NASNet 37 684 4.4 8652846 818 

MobileNetV2 22 386 1.8 5591770 202 

4.5 Results and Discussion 

4.5.1 Statistical Evaluation 

The DeepSeg framework consists of several automated feature extractors in addition to an 

image-expanding path. The corresponding evaluation results have been obtained by running 

two-fold cross-validation on the 336 training cases of the BraTS 2019 dataset divided as fol-

lows: 270 cases for training and 66 for validation. Table 4.3 summarizes the comparison and the 

overall measurement results of all tested methods on the BraTS 2019 training database. 

The proposed DeepSeg architectures were able to accurately detect tumor regions in the valida-

tion set with mean DSC scores ranging from 0.809 to 0.839, while the mean dice score of the 

expert’s annotation for the whole tumor mass is about 0.85 as reported in (Diba, Sharma, 

Pazandeh, Pirsiavash, & Gool, 2017). Although statistical analysis of results is relatively close 

or identical (like Specificity), these results give an important indication that fully automated 

deep learning models maybe utilized in the task of brain tumor segmentation. As illustrated in 

Table 4.3, The DenseNet, Xception, VGGNet, and MobileNet encoders achieved the best DSC 

scores of 0.839, 0.839, 0.837, and 0.835, respectively. Although the Xception encoder showed 

the best value for the sensitivity of 0.856 approximately 7% better than the original U-Net 

model, it achieved the same value of specificity. This result confirms that point-based approach-

es are not enough for evaluating the brain tumor segmentation method. Therefore, the HD95 

measurements were applied to verify both the best accuracy and performance among all tested 

deep encoders. The MobileNet showed the shortest HD95 value of 10.924. 
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Table 4.3: Mean DSC, Sensitivity, Specificity, and Hausdorff distance scores of testing different encoders on 

BraTS 2019 training data. 

Encoder DSC  Sensitivity  Specificity  HD95  

U-NET 0.809 0.799 0.998 12.926 

Modified U-NET 0.814 0.783 0.999 13.341 

VGGNet 0.837 0.819 0.998 12.633 

ResNet 0.811 0.789 0.998 13.652 

DenseNet 0.839 0.827 0.998 13.156 

XCeption 0.839 0.856 0.998 11.337 

MobileNet 0.835 0.843 0.998 10.924 

NASNet 0.834 0.826 0.998 12.608 

MobileNetV2 0.827 0.822 0.998 12.029 

 

For consistency with other publications, the proposed DeepSeg architectures have been also 

tested on the validation datasets of BraTS 2019 (125 cases). Table 4.4 presents the compared 

scores of mean dice similarity coefficient, sensitivity, specificity, and HD95, similar to the 

online evaluation platform (https://ipp.cbica.upenn.edu/). These results showed that the pro-

posed models are robust and able to deal with MRI segmentation tasks. In Table 4.4, the 

DenseNet architecture outperformed other models for the DSC (0.841) as well as in the training 
 

Table 4.4: Mean DSC, Sensitivity, and Specificity scores of applied models on BraTS 2019 validation data. 

Encoder DSC  Sensitivity  Specificity  HD95  

U-NET 0.813 0.841 0.987 19.747 

Modified U-NET 0.820 0.853 0.987 12.014 

VGGNet 0.829 0.837 0.990 9.756 

ResNet 0.823 0.832 0.990 10.005 

DenseNet 0.841 0.860 0.989 10.595 

XCeption 0.834 0.865 0.988 12.571 

MobileNet 0.830 0.855 0.989 11.696 

NASNet 0.830 0.861 0.988 11.673 

MobileNetV2 0.822 0.854 0.988 13.894 
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set, however, it ranked second with an HD95 (10.595) which is clinically accepted. The dice 

metrics and HD95 are the most important measurements when evaluating and comparing deep 

learning models because they show the percentage of the overlapping between ground truth 

segmentation and predictions. In contrast, the lack of false positives indicated high values of 

both specificity and sensitivity, which may not precisely reflect the actual performance. 

4.5.2 Qualitative Output 

Figures 4.7 and 4.8 show segmentation results for the proposed DeepSeg architectures generat-

ed from the validation set (67 cases). In both figures, the first row indicates the FLAIR images 
 

 

Figure 4.7: Brain tumor segmentation results. FLAIR, ground truth, and output of Original U-Net, Modified U-

Net, VGGNet, ResNet, and DenseNet. Tumor regions are indicated in red. 
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Figure 4.8: Brain tumor segmentation results. FLAIR, ground truth, and output of Xception, MobileNet, NASNet, 

and MobileNetV2. Tumor regions are indicated in red. 

in gray color mode, and the manual ground truth segmentations are shown in the second row. In 

the following rows, segmentation results of different automated methods are presented. It can be 

observed that segmented tumor boundaries (indicated in red) from proposed encoders are very 

similar to the manual annotation even when the lesion region is heterogeneous in shape, vol-

ume, and texture. For instance, a small-sized tumor in case TCIA12_470_1 was accurately 

segmented by the proposed methods, however, when the heterogeneity of malignant cells in-

creased, the performance varied remarkably. This is clear in the TCIA10_103_1 case since 

some encoders such as U-Net, VGGNet, and MobileNet tend to over-segment the tumor area, 

while modified U-Net, ResNet, Xception, NASNet, and MobileNetV2 tend to under-segment. 

This result showed superior accuracy of the Xception, and DenseNet encoders compared to 

other tested architectures for the most difficult tumor segmentation case, e.g. the case of 

TCIA10_351_1. Although the DenseNet encoder provided a lower score of tumor segmentation 

result in the case of TCIA10_490_1, it is valid and clinically accepted. However, other encoders 

such as U-Net and NASNet failed to give accepted segmentation results.  
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4.5.3 Ensemble Results 

The results of ensemble models on the BraTS 2021 validation set are summarized in Table 4.5, 

where the five models for each cross-validation training configuration are averaged as an en-

semble. Two evaluation metrics are used for the BraTS 2021 benchmark, computed by the 

online evaluation platform of Sage Bionetworks Synapse1, which is the DSC and the HD95. The 

averages of DSC scores and HD95 values were computed across the three evaluated tumor sub-

regions and then used to rank the methods in the final column. 

DeepSeg A refers to the baseline DeepSeg model, which has large input patches of the full pre-

processed image, and a smaller batch size of 2. With DSC values of 0.82, 0.84, and 0.90 for the 

ET, TC, and WT regions, respectively, DeepSeg A model yields good results, especially when 

compared to the inter-rater agreement range for manual MRI segmentation of GBM (Tacher et 

al., 2013; Visser et al., 2019). By using a region-based version of DeepSeg with an input patch 

size of 128 × 128 × 128 voxels, batch size of 5, applied post-processing stage, and on-the-fly 

data augmentation, the DeepSeg B model achieved better results of DSC values of 0.84, 0.85, 

and 0.91 for the ET, TC, and WT regions, respectively. 

Additionally, two different configurations of the BraTS 2020 winning approach nnU-Net 

(Fabian Isensee et al., 2021) and DeepSCAN, one of the BraTS 2018 top-ranking approaches, 

were used. The first model, nnU-Net A, is a region-based version of the standard nnU-Net with 

a large batch size of 5 and more aggressive data augmentation as described in (Fabian Isensee et 

al., 2021), trained using batch Dice loss, and including the postprocessing stage. nnU-Net B 

model is very similar to the nnU-Net A model with an applied brightness augmentation proba-

bility of 0.5 for each input modality compared with 0.3 for model A. nnU-Net models ranks 

fourth and fifth in our ranking (see Table 4.5) achieving an average DSC and HD95 results of 

87.78, 87.87 and 9.60, 10.14 for each model, correspondingly. DeepSCAN model is similar to 

nnU-Net and DeepSeg model with the output layer as three logits, one for the WT, TC and ET 

regions rather than using a softmax layer. DeepSCAN model ranks third in the local ranking 

(see Table 4.5) achieving the best average HD95 of 8.79 while maintaining a good DSC of 

0.8739. 

In BraTS 2021 Challenge, the Ensemble 2021 model is implemented using DeepSeg B + nnU-

Net A + nnU-Net B, while the best ranking HD95, namely the Deep-SCAN model, is included 

in the Ensemble 2022 model. The final ensemble is implemented by first predicting the valida-

tion cases individually with each model configuration, followed by averaging the softmax 

outputs to obtain the final cross-validation predictions. After that, the STAPLE (Warfield et al., 

2004) is applied to aggregate the segmentation produced by each of the individual methods 

using the probabilistic estimate of the true segmentation. It is worth mentioning that the Ensem-

ble 2021 method is ranked among the ten best teams of the BraTS 2021 challenge, whereas the 

Ensemble 2022 method is the winner of the BraTS 2022 challenge. 

 
1 Team name is CaMed; https://www.synapse.org/#!Synapse:syn25829067/wiki/612712/ 

https://www.synapse.org/#!Synapse:syn25829067/wiki/612712
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Table 4.5: Results of the five-fold cross-validation models on BraTS 2021 validation cases. All reported values 

were computed by the online evaluation platform Synapse. The average of DSC and HD95 scores are 

computed and used for ranking the methods locally. 

Model DSC  HD95  Rank 

 ET  TC WT Avg ET  TC WT Avg  

DeepSeg A 0.8164 0.8400 0.8998 0.8521 19.77 10.25 5.11 11.71 7 

DeepSeg B* 0.8356 0.8508 0.9137 0.8667 17.75 11.56 4.15 11.15 6 

nnU-Net A** 0.8402 0.8718 0.9213 0.8778 16.03 8.95 3.82 9.60 4 

nnU-Net B*** 0.8372 0.8784 0.9205 0.8787 17.73 8.81 3.87 10.14 5 

DeepSCAN**** 0.8306 0.8683 0.9228 0.8739 14.50 7.91 3.95 8.79 3 

Ensemble 2021 

(*, **, ***) 
0.8410 0.8733 0.9200 0.8781 16.02 8.91 3.81 9.58 2 

Ensemble 2022 

(*, ***, ****) 
0.8423 0.8762 0.9270 0.8819 17.50 7.53 3.60 9.54 1 

• Bold values correspond to higher scores 

Figure 4.9 shows the qualitative segmentation predictions of the Ensemble 2022 model on the 

BraTS 2021 validation dataset. These outcomes were generated by applying the ensemble 

model. The rows show the best, median, and worse segmentations based on their DSC scores, 

respectively. From this figure, it can be seen that the model achieves very good results with 

overall high quality. Although the worst case, BraTS2021_Validation_01774, has a TC of zero, 

this finding was not quite surprising as illustrated in Section 4.3.4 as a side effect of applying 

the postprocessing strategy. Notably, the WT region was detected with a good quality (DSC of 

0.9606) which could be already valuable for clinical use. 
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(a) Best: BraTS2021_Validation_01779, EC (0.9817), TC (0.9867), WT (0.9919) 

 
(b) Median: BraTS2021_Validation_01684, EC (0.8953), TC (0.9662), WT (0.9338) 

 
(c) Worse: BraTS2021_Validation_01774, EC (0), TC (0.8247), WT (0.9606) 

Figure 4.9: Sample qualitative validation set results of the ensemble model. The best, median, and worse cases 

are shown in the rows. Columns display the T2, FLAIR, and overlay of the predicted segmentation on 

the FLAIR image. WT includes all visible labels (green, yellow and red labels), TC is a union of 

green and red, while the ET class is shown in red. 
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4.6 Summary 

This chapter demonstrated the feasibility of employing deep learning approaches for assisting 

the procedures of brain surgery. The DeepSeg framework is developed successfully for fully 

automated segmenting of brain tumors in MR FLAIR images, based on different architectures 

of deep CNN models. Moreover, the findings of this comparative study have been validated 

using the BraTS online evaluation platform, as illustrated in Table 4.4.  

Furthermore, two ensemble models of two encoder-decoder-based CNN networks were pro-

posed namely, DeepSeg (R. A. Zeineldin et al., 2020), nnU-Net (Fabian Isensee et al., 2021), 

and DeepSCAN (McKinley et al., 2019). Table 4.5 list the results of the methods on the BraTS 

challenge validation set. Remarkably, the method achieved DSC of 92.00, 87.33, and 84.10 as 

well as HD95 of 3.81, 8.91, and 16.02 for, ET, TC, and WT regions on the validation dataset, 

respectively. For the testing dataset, the final ensemble yielded DSC of 87.63, 87.49, and 91.87 

in addition to HD95 of 12.1343, 14.8915, and 6.2716 for ET, TC, and WT regions, correspond-

ingly. It is worth mentioning that the Ensemble 2021 and Ensemble 2022 methods are ranked 

among the ten best teams and ranked first in the BraTS 2021 and BraTS 2022 challenges, re-

spectively. The qualitative evaluation also supports the numerical evaluation showing a high-

quality segmentation. Clinical partners suggested that this approach can be applied for guiding 

brain tumor surgery. 
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The chapter describes the second module called Registration of pre-operative MRI to iUS imag-

es for brain shift compensation, proposed in the IGN pipeline (see Figure 1.2 “DeepIGN”). The 

next section highlights the limitations of classical registration methods and the need for auto-

matic multimodal registration methods. The state-of-the-art registration methods are mentioned 

in Section 5.2. Section 5.3 describes briefly medical image registration and the proposed MRI-

iUS registration workflow. In Section 5.4, experiments and the employed registration procedure 

are presented. Finally, experimental results on two datasets in multiple locations are discussed 

in Section 5.5, and conclusions are summarized in Section 5.6. Some parts of this chapter have 

already appeared in (Ramy A. Zeineldin et al., 2020; Ramy A. Zeineldin, Karar, Elshaer, et al., 

2021; Ramy A. Zeineldin, Karar, Mathis-Ullrich, & Burgert, 2021, 2022b). 
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5.1 Introduction 

Imaging has proven to be a valuable tool for assisting neurosurgeons in the planning, interven-

tional, and post-operative clinical phases (Coburger & Wirtz, 2019; Miner, 2017). Yet, achiev-

ing accurate lesion localization and differentiation from the surrounding anatomical structures 

remains a challenging task in neurosurgery. This challenge is related to the difficulty of visually 

defining these pathologic structures from healthy tissue in addition to the brain movements, 

known as “brain shift”, due to neurosurgical manipulation, gravity, and anesthesia (De Momi et 

al., 2016).  

Hence, iMRI and iUS images have been used as compensation for brain shifts during surgery 

(Delorenzo et al., 2010). The iMRI scanner however limits the physician’s access to the opera-

tive field and special surgical tools are required, which may be associated with high costs. iUS 

is portable, inexpensive, requires little preparation, and provides fast data acquisition. Though 

iUS can visualize interior soft tissue and structures, it has difficulty of imaging through bones, 

and its high dependency on inter-operator interpretation may result in image inconsistency. 

Consequently, the fusion of pre-interventional MRI images with the iUS data acquired intra-

operatively is proposed to compensate for the brain shift to enable guided surgery. 

Therefore, an automatic, fast, robust fusion of 3D-reconstructed iUS data with the pre-operative 

MRI images becomes highly important to accomplish interventional procedures. However, the 

registration of misaligned pre-operative MRI images to the iUS is still a complex and challeng-

ing problem according to the type of information represented by each modality. Previous studies 

of medical image registration can be categorized into classical and learning-based methods 

(Grant Haskins, Kruger, & Yan, 2020; Liu et al., 2019; Sotiras, Davatzikos, & Paragios, 2013).  

5.2 Related Work 

Classical or non-learning MRI to US image registration methods is formulated as an iterative 

pair-wise optimization problem that requires proper feature extraction, choosing a similarity 

measurement, defining the used transformation model, and finally an optimization mechanism 

to investigate the search space. Over time, an extensive literature has developed using diverse 

combinations of the similarity metrics such as Correlation Coefficient (CC), Correlation Ratio 

(CR), Mutual Information (MI), Normalized Correlation Coefficient (NCC), Self-Similarity 

Correlation (SSC), and Linear Correlation of Linear Combination (LC2) (De Nigris, Collins, & 

Arbel, 2013; Drobny, Vercauteren, Ourselin, & Modat, 2018; Mattias P. Heinrich, 2018; 

Mattias Paul Heinrich, Jenkinson, Papież, Brady, & Schnabel, 2013; Jiang, Shi, Yao, Wang, & 

Song, 2016; I. Machado et al., 2019; Inês Machado et al., 2018; Masoumi, Xiao, & Rivaz, 2019; 

Rivaz, Chen, & Collins, 2015; Rivaz, Karimaghaloo, Fonov, & Collins, 2014; Shams, Boucher, 

& Kadoury, 2018; Wein, 2018; Wein et al., 2013; Zimmer, Ballester, & Piella, 2019). One 

major drawback of the traditional registration methods is the high computational cost required 

to align every 3D MRI and iUS pair even with the efficient implementation on modern GPUs. 

To overcome the limitations of classical methods, learning-based approaches have been pro-

posed in recent years. Recently, deep learning, a subfield of artificial intelligence, has gained 
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increasing popularity because of its outstanding performance in various computer vision and 

image analysis applications including, but not limited to object detection (Krizhevsky et al., 

2017), feature extraction (He et al., 2016), image segmentation (Ronneberger et al., 2015; R. A. 

Zeineldin et al., 2020), image classification (Saleh et al., 2018), and other medical applications 

(Armanious et al., 2020; Dolz et al., 2020). The learning process is achieved through backprop-

agation, which is a feedback loop for computing the partial derivative of the cost function with 

respect to the network weights (LeCun et al., 2015). Initially, supervised deep learning methods 

were proposed (Cheng, Zhang, & Zheng, 2018; Rohé, Datar, Heimann, Sermesant, & Pennec, 

2017; Sun & Zhang, 2018; Zhong et al., 2018) to learn similarity features from the training data 

using different imaging modalities. Then, deep learning methods have been applied to solve the 

challenging multi-modal medical image registration problem where images from different 

image sensors are aligned together (G. Haskins et al., 2019; Hu et al., 2018; Lee, Liu, Cheng, & 

Fu, 2019; Ma et al., 2017; X. Yang, Kwitt, Styner, & Niethammer, 2017).  

Further, unsupervised learning was developed as a demand for faster registration procedures and 

to eliminate the challenges related to the ground truth data generation and optimization tech-

niques (Balakrishnan, Zhao, Sabuncu, Guttag, & Dalca, 2019; de Vos et al., 2019; H. Li & Fan, 

2018). Although the proposed method, iRegNet, uses an encoder-decoder-based method similar 

to (X. Yang et al., 2017) and (Balakrishnan et al., 2019), this is, to the best of our knowledge, 

the first study to use the truth warped images as the target of the registration rather than the 

fixed image which provides more precise information for the training process. Unsupervised 

approaches show promising registration results; however, it is still difficult to apply them to 

multi-modal registration of MRI and iUS applications since represented information originates 

from very distinct physical properties. Lately, CNN learning methods have been introduced as 

part of the Correction of Brain shift with Intra-Operative Ultrasound challenge (CuRIOUS) 

(Xiao et al., 2020) in conjunction with the MICCAI (Sun & Zhang, 2018; Zhong et al., 2018). 

Overall, once the deep learning networks are trained, they can provide a faster registration than 

classical optimization methods, without the need for fine-tuning parameters at the test time, in 

addition to being more robust to outliers. 

5.3 Methods 

5.3.1 Deformable Image Registration 

Image registration is the process of finding spatial correspondences between two or more imag-

es (Karar et al., 2016; Kneöaurek, Ivanovic, Machac, & Weber, 2000; Sotiras et al., 2013). 

Within the medical field, image registration is attractive for providing more information when 

the imaging data come from different sources and/ or different modalities. The term deformable 

denotes that the images are related through non-linear spatial deformation and the resultant 

transformation not only includes rigid operations (such as rotation and translation) but also non-

uniform operations like shearing. Consider two sets of images: the source or moving image 𝐼𝑀 

and the target or fixed image 𝐼𝐹. Then, the goal of deformable registration is finding the optimal 

deformation field 𝜙 that relates the two images while optimizing the energy function 𝜀: 
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  (5.1) 

where 𝑆 quantifies the level of similarity between the 𝐼𝑀 and 𝐼𝐹 images and the regularization 

term ℝ(𝜙) allows a smooth transformation aiming to fulfill any user-specific requirements. In 

this study, the MRI is used as the moving image and iUS as the fixed image so that the MRI 

could be updated to reflect the brain shift intra-operatively. 

5.3.2 Learning-based Registration Framework 

In this section, the proposed registration workflow is described (Fig. 5.1). Section 5.3.2.1) 

presents the developed CNN. The loss functions of the CNN are illustrated in Section 5.3.2.2), 

and the global optimization of the deformation field is explained in Section 5.3.2.3). 

 

Figure 5.1: A representative workflow of the proposed MRI-iUS deformable registration approach, where dashed 

red arrows indicate the data flow only required in the training stage. 

5.3.2.1 Deep Neural Network Architecture 

Fig. 5.2 depicts the overall architecture of the proposed CNN utilized in the experiments. The 

proposed network is based on the U-Net structure (Ronneberger et al., 2015), which has been 

widely utilized in various medical applications achieving competitive performance. A 3D ver-

sion of U-Net is introduced by Çiçek et al (Çiçek et al., 2016), in which 3D operations are 

applied instead of the standard 2D processes. Besides, several studies have demonstrated en-

hancements to the original U-Net (de Vos et al., 2019; Grant Haskins et al., 2020; R. A. 

Zeineldin et al., 2020).  

Similar to the standard U-Net, the proposed network has an encoder-decoder architecture with 

an image analysis path (left side) and a deformation estimation path (right side). As shown in 
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Fig. 5.2, the feature analysis is designed as a 3D CNN with four repetitive down-sampling 

blocks. Table 5.1 lists the detailed implementation of each layer in the 3D CNN. The input to 

the network is 128 × 128 × 128 voxels with 2 channels of the MRI and iUS images. Each en-

coder block consists of two consecutive 3 × 3 × 3 convolutional layers (unpadded convolutions) 

with a stride of 2, each followed by a ReLU and BN. At each down-sampling step, the number 

of feature maps is doubled, while the spatial dimension is halved using 3D spatial max pooling.  

Initialization of all convolutional kernels is done by using the Glorot or Xavier uniform (Glorot 

& Bengio, 2010) with the default bias set to zeros. It is worth noting that this contracting archi-

tecture is similar to the classical pyramid image registration scheme. 

To restore the original image resolution, four up-sampling blocks are adopted in the defor-

mation estimation path. Every step in the up-sampling path is composed of a 3 × 3 × 3 trans-

posed convolutional layer (up-convolution) with a stride of 2 followed by a ReLU and BN. 

Dissimilar to the encoder, using up-convolution doubles the input spatial resolution and halves 

the number of feature maps. The high-level features in the encoding path are concatenated with 

the corresponding low-level features in the decoding path via skip connections. As the output 

layer, a 1 × 1 × 1 convolutional layer is incorporated to get the output deformation field with a 

dimension of 128 × 128 × 128 in x, y, and z directions, respectively. 

 

 

Figure 5.2: The enhanced 3D CNN architecture for predicting the deformation field ϕ. The network consists of 

3D convolution with batch normalization layers (blue blocks), maximum pooling (orange arrows), 

up-sampling (grey arrows), and concatenate connections (dashed grey lines). The number of features 

is doubled in each step of the encoder part, while halved in the decoder part. 
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Table 5.1: The deformable CNN architecture details. 

# Operation Output  # Operation Output 

0 Input 128×128×128×1   Concatenate 32×32×32×320 

 Input 128×128×128×1   Conv3D/ BN/ ReLU 32×32×32×128 

 Concatenate 128×128×128×2   Conv3D/ BN/ ReLU 32×32×32×128 

1 Conv3D/ BN/ ReLU 64×64×64×32 9 UpSampling3D 64×64×64×128 

2 Conv3D/ BN/ ReLU 32×32×32×64   Concatenate 64×64×64×160 

3 Conv3D/ BN/ ReLU 16×16×16×128   Conv3D/ BN/ ReLU 64×64×64×64 

4 Conv3D/ BN/ ReLU 8×8×8×256   Conv3D/ BN/ ReLU 64×64×64×64 

5 Conv3D/ BN/ ReLU 8×8×8×512 10 UpSampling3D 128×128×128×32 

 Dropout 8×8×8×512   Concatenate 128×128×128×34 

7 UpSampling3D 16×16×16×512   Conv3D/ BN/ ReLU 128×128×128×16 

 Concatenate 16×16×16×640   Conv3D/ BN/ ReLU 128×128×128×16 

 Conv3D/ BN/ ReLU 16×16×16×256 11 Conv3D/ BN/ ReLU 128×128×128×16 

 Conv3D/ BN/ ReLU 16×16×16×256 12 Conv3D 128×128×128×3 

8 UpSampling3D 32×32×32×256       

5.3.2.2 Loss Functions 

The choice of the loss function plays a crucial role in network training and contributes to the 

overall performance of CNN. As illustrated in Fig. 5.1, the overall loss function 𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙  con-

sists of two main elements (refer to Equation (2)). The similarity measurement between the 

resultant deformed image (𝜙. 𝐼𝑀) and the ground truth warped image 𝐼𝑊 is denoted by 𝐿𝑠𝑖𝑚, 

while 𝐿𝑑𝑖𝑠𝑝 represents the spatial deformation gradient error. 

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐿𝑠𝑖𝑚 + 𝐿𝑑𝑖𝑠𝑝 (5.2) 

In the experiments, two distinct similarity metrics of the mean squared error (MSE) and the local 

normalized correlation coefficient (NCC) are employed as 𝐿𝑠𝑖𝑚. Let 𝐼𝑀(𝑃) and 𝐼𝑊(𝑃) represent 

a corresponding patch P of 𝑁𝑃 patches in the moving and truth-warped images, respectively. 

MSE and NCC are calculated as follows: 

𝑀𝑆𝐸(𝐼𝑊, 𝜙. 𝐼𝑀) =
1

|𝑁𝑃|
∑ ((𝐼𝑊(𝑃) − 𝜙. 𝐼𝑀(𝑃)))2

𝑃∈𝑁𝑃
 (5.3) 

𝑁𝐶𝐶(𝐼𝑊 , 𝜙. 𝐼𝑀) =
1

𝑁𝑃
∑

∑ (𝐼𝑊(𝑃)−𝐼𝑊(𝑃))𝑖 ∑ (𝜙.𝐼𝑀(𝑃)−𝜙.𝐼𝑀(𝑃))𝑖

√∑ (𝐼𝑊(𝑃)−𝐼𝑊(𝑃))𝑖
2

√∑ (𝜙.𝐼𝑀(𝑃)−𝜙.𝐼𝑀(𝑃))𝑖
2𝑃∈𝑁𝑃
  (5.4) 
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where 𝐼𝑊(𝑃) denote the mean pixel intensities for the warped image. For MRI-iUS registration, 

it is very important to choose modality-invariant similarity metrics that can evaluate the similar-

ity between MRI and iUS images after the deformable alignment. The NCC similarity is invari-

ant to scaling and linear intensity variations, which makes it more preferable in the current 

application. Similar to traditional registration approaches, the second loss works as a regulariza-

tion term preventing a non-smooth deformation field. Let 𝑑𝑝𝑟𝑒𝑑 denote the predicted spatial 

gradient and 𝑑𝑡𝑟𝑢𝑡ℎ denote the ground truth gradient. Then, 𝐿𝑑𝑖𝑠𝑝 can be calculated as follows: 

𝐿𝑑𝑖𝑠𝑝 = ∑ ‖𝑑𝑡𝑟𝑢𝑡ℎ(𝑃) − 𝑑𝑝𝑟𝑒𝑑(𝑃)‖𝑝∈𝑋  (5.5) 

5.3.2.3 Global Optimization 

Traditionally, the optimization of the deformation field has been formulated as an iterative pair-

wise optimization problem (refer to equation (1)). This is a computationally expensive problem 

that consumes a large processing time and may last for hours for a single pair depending on the 

used CPU. In contrast, deep learning methods recast the classical optimization problem into a 

problem of cost function estimation (LeCun et al., 2015). In other words, this formulates the 

problem to find a function that takes a pair of MRI-iUS images and directly computes the output 

deformation field using backpropagation, which makes the proposed method optimize over the 

whole training set moving away from expensive iterative optimization. 

5.3.3 Self-supervised iRegNet 

In this sub-section, a fully automatic, patient-specific registration approach is proposed for pre- 

and post-operative brain MRI sequences of only a single modality using iRegNet (Ramy A. 

Zeineldin, Karar, Elshaer, et al., 2021). In particular, an unsupervised approach of iRegNet is 

introduced (see Fig. 5.2) in which only moving and fixed MRI pairs are utilized. Then, the 

proposed method optimizes deformation fields directly from input images using backpropaga-

tion. 

More formally, self-supervised learning is incorporated to compute the optimal deformation 

field 𝜙̂ corresponding to the smoothness regularization. This model uses only the input MRI 

volume pair, and the registration field is computed accordingly by the CNN network. Formally, 

this task is defined as: 

𝜙̂ = arg minϕℒsim(𝐼𝐹 , 𝜙. 𝐼𝑀) + R(𝜙) (5.6) 

where ℒ𝑠𝑖𝑚 computes the image similarity between the warped image (𝜙 .  𝐼𝑀) and the fixed 

image 𝐼𝐹, 
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5.4 Experiments 

5.4.1 Data 

In this study, the proposed iRegNet method was tested on two public multi-center databases, 

which are BITE (Mercier, Del Maestro, et al., 2012) and RESECT (Xiao et al., 2017). BITE is 

the first online dataset for tracked 3D iUS volumes of the brain alongside pre-operative MRI 

images. It contains 14 patients with either LGG or HGG from the Montreal Neurological Insti-

tute, Canada. Nevertheless, the technology used to collect the iUS in the BITE dataset is no 

longer up-to-date and recent US scanners provide improved quality and higher-resolution imag-

es. Consequently, RESECT was proposed to overcome this problem and help, therefore, devel-

op image registration techniques for brain shift compensation. The dataset contains pre-

operative MRI and iUS images from 22 patients with LGG who have received surgeries at St. 

Olavs University Hospital, Norway. Table 5.2 gives detailed information on the applied datasets 

with a wide variety of (a) data-acquiring locations, (b) patient and tumor details, and (c) applied 

MRI and US protocols. 

Expert-labeled anatomical markers were provided for both databases, to facilitate the baseline 

evaluation of MRI to iUS registration. The procedure of generating these landmarks highly 

depends on the employed datasets. For the BITE dataset, homologous landmark points were 

chosen manually by at least two experts. An average of nine landmarks was provided in the 

BITE database for each patient. For the RESECT dataset, more landmarks were provided which 

may lead to better validation of registration accuracy. In both datasets, the package named 

‘register’, included in the MINC toolkit  (Vincent et al., 2016), was used to visualize the 3D 

MRI-US pairs and produce the homologous landmarks. It should be noted that this process was 

performed only in the training stage, however, during the inference, no landmarks are utilized to 

get the corrected MRI volumes. For each pair in BITE, the homologous landmarks from the first 

two experts (D.L.C. and L.M.) were used without the third expert’s labels since they tagged 

only up to patient #6 (Mercier, Fonov, et al., 2012). 

Furthermore, the Brain Tumor Sequence Registration Challenge 2022 (BraTS-Reg 2022) da-

taset was utilized to evaluate the proposed self-supervised network. The BraTS-Reg 2022 da-

taset (Baheti et al., 2021) comprises 250 patient-specific pairs of pre-operative and follow-up 

brain multi-institutional MRI scans. For each patient, i) native T1-weighted (T1), ii) contrast-

enhanced T1 (T1ce), iii) T2-weighted (T2), and iv) T2 Fluid Attenuated Inversion Recovery 

(FLAIR) sequences are provided for the pre-operative and follow-up with a time-window in the 

range of 27 days to 37 months. Reference landmark annotations for the validation set are not 

made available to the participants. Instead, participants can use the online evaluation platform1 

to evaluate their models and compare their results with other teams on the online leaderboard2. 

 
1 BraTS Evaluation Plattform; https://ipp.cbica.upenn.edu/  
2 BraTS Leaderboard; https://www.cbica.upenn.edu/BraTSReg2022/lboardValidation.html/ 

https://ipp.cbica.upenn.edu/
https://www.cbica.upenn.edu/BraTSReg2022/lboardValidation.html/
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Standard pre-processing techniques were applied such as rigid registration to the same anatomi-

cal template, resampling to the same isotropic resolution (1mm3), skull removal, and brain 

extraction. Following these pre-processing steps, the image cropping stage is applied where all 

brain pixels were cropped. Afterward, z-score normalization was applied by subtracting the 

mean value and dividing it by the standard deviation individually for each input MRI image. 

5.4.2 Registration Procedure 

As listed in Table 5.2, it is evident that there are several dissimilarities between the two datasets 

in terms of imaging locations, study characteristics, followed MRI and iUS protocols, and, 

therefore, a preprocessing step is essential before performing the MRI-iUS registration. First, 

the ultrasound images are resampled to the isotropic 1 × 1 × 1 mm3 voxel size, the same as the 

MRI spatial resolution. 

Table 5.2: A detailed description of the two databases used in this study. 

  BITE RESECT 

(a) Imaging Site  
Montreal Neurological 

Institute, Montreal, Canada 

St. Olavs University Hospital, Trond-

heim, Norway 

(b) Study Character-

istics 
N. of Patients 14 22 

 
Tumor Type 

 

LGG (4) 

HGG (9) 
LGG (22) 

 
N. of Land-

marks 
355 338 

(c) MRI Protocol MRI Scanner 
1.5T General Electric Signa 

EXCITE 

3T Siemens Magnetom Skyra and 1.5T 

Siemens Magnetom Avanto 

 Date of Acquisi-

tion 

Avg. 17 days before surgery  

(1–72 days) 
1 day before surgery 

 MRI Modalities T1w Gd-enhanced 
T1w Gd-enhanced and T2w fluid-

attenuated inversion recovery (FLAIR) 

 MRI Resolution 256 × 256 × 256 256 × 256 × 192 

 Voxel Size 1 × 1 × 1 mm3 1 × 1 × 1 mm3 

(d) iUS Protocol iUS Probe Phased-array transducer 12FLA-L linear probe 

 iUS Frequencies 7-4 MHz 6-12 MHz 

 iUS Resolution 0.3 × 0.3 × 0.3 mm3 
0.14 × 0.14 × 0.14 mm3 to  

0.24 × 0.24 × 0.24 mm3 
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Figure 5.3: The MRI-iUS registration procedure (a) Input MRI; (b) Input iUS; (c) Cropped MRI; (d) An overlap 

between iUS and corrected MRI. 

Second, iUS images are pad to 128 × 128 × 128 voxels to make them suitable for the DNN 

input. Third, the initial alignment of MRI images to iUS data is used, and then the MRI is 

cropped to match the field of view of the iUS, as shown in Fig. 5.3. Fourth, z-score normaliza-

tion is applied by subtracting the mean value and dividing by the standard deviation individually 

for each input volume. Fifth, an affine MRI to iUS alignment is achieved using the MINC 

toolkit (Vincent et al., 2016) to focus on the non-linear misalignment. Finally, truth deformation 

fields for all patients were computed using the software named ‘register’, included in the MINC 

toolkit so that the deformation field gradient error 𝐿𝑑𝑖𝑠𝑝 could be estimated (refer to Section 

5.3.2.1). 

5.4.3 Experimental Setup and Evaluation 

5.4.3.1 Supervised Approach 

As the number of cases is rather limited, intensive data augmentation methods were applied to 

help prevent the model from overfitting and improve the registration results. This involves 

random 3D flipping, 3D rotations [0-30 degrees], random gamma intensity transformation [0.8-

1.2], and elastic deformation. For the experiments, the model was implemented in Python using 

the TensorFlow library (Abadi et al., 2016). The experiments were conducted on an AMD 

Ryzen 2920X (32M Cache, 3.50 GHz) CPU with 32 GB RAM and a single NVIDIA RTX 

2080Ti GPU with 11GB. For training the network, the cases are divided into two sets 78% for 

the training set and 22% for the validation set, the Adam optimizer (Kingma & Ba, 2014) with 

an initial learning rate of 0.0001, and a batch size of 2 was used. All iRegNet models were 

trained for 500 epochs, with one epoch being defined as an iteration over 500 mini-batches. 

The proposed approach was evaluated using three configurations: The first configuration, re-

ferred to as Model BITE or Model B, involved training on the BITE dataset only. The second 



5.4  Experiments 

63 

 

configuration, referred to as Model RESECT or Model R, involved training on the RESECT 

dataset only. The last configuration, referred to as Model Combined or Model C, involved 

training on both BITE and RESECT datasets. It is important to note that a total of six experi-

ments, which use affinely aligned MRI-iUS images, were conducted for the registration of MRI-

iUS based on alternating NCC and MSE as a similarity measurement for training the CNN. For 

the training phase, 11, 17, and 28 pairs of MRI and iUS images are used for Model B, Model R, 

and Model C, respectively. Whereas 3, 5, and 8 pairs of MRI and iUS images are used for 

validation in the same order.  

The two datasets, BITE and RESECT, provide expert-annotated landmarks for each correspond-

ing MRI-iUS pair (as summarized in Table 5.2). In line with previous studies (De Nigris et al., 

2013; Drobny et al., 2018; Mattias P. Heinrich, 2018; Hong & Park, 2018; Jiang et al., 2016; 

Inês Machado et al., 2018; Masoumi et al., 2019; Rivaz et al., 2015; Rivaz et al., 2014; Shams et 

al., 2018; Sun & Zhang, 2018; Wein, 2018; Wein et al., 2013; Zhong et al., 2018), the mTRE is 

used, which represents the average pair-wise distance between the corresponding points in MRI 

and iUS volumes after registration. Let m and u denote the expert-labeled corresponding annota-

tions in the MRI and iUS volumes, respectively. The mTRE of 𝑁𝑙 corresponding landmarks, 

following the registration, is calculated as follows: 

𝑚𝑇𝑅𝐸 =
1

𝑁𝑙
∑ ‖𝜙(𝑚𝑖) − 𝑢𝑖‖𝑁𝑙

𝑖=1   (5.7) 

where ‖𝑟‖ is the L2 norm of the vector r. The evaluation of the experiments was performed 

using the same approach reported in (Mattias P. Heinrich, 2018). 

5.4.3.2 Self-supervised Approach 

To ensure computational efficiency for the GPU, MRI scans for each patient were center 

cropped to 160 × 192 × 160 pixels. For training and validation, sets, respectively, the BraTS-

Reg dataset was randomly split into 112 (80%) and 28 (20%) volumes. Another 20 MRI vol-

umes were provided by the BraTS-Reg organizers as online validation set with landmarks 

provided only for the fixed MRI scans. Finally, an affine alignment was performed on moving 

and fixed MRI volumes using the BRAINSFit toolkit (Johnson, Harris, & Williams, 2007) to 

focus on the non-linear misalignment between volumes. For the experiments, the model was 

implemented in Python 3.7 using the TensorFlow 2.4 library. The experiments were run on an 

AMD Ryzen 2920X (32M Cache, 3.50 GHz) CPU with 64 GB RAM and a single NVIDIA 

GPU (RTX 3060 12 GB or RTX 2080 Ti 11 GB). The Adam optimizer (Kingma & Ba, 2014) 

with an initial learning rate of 1e-4 and a batch size of 2 was used.  

To compare with other studies, the mean mTRE (Equation (5.7)), which represents the average 

distance between the corresponding landmarks in each pre-post MRI pair before and after 

registration, was used. In addition, the proposed method was evaluated by the online submission 

platform using the following metrics, namely Median Absolute Error (MAE), robustness, and 

smoothness of the displacement field. 
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5.5 Results and Discussion 

5.5.1 Quantitative Registration Results  

Tables 5.3 and 5.4 summarize the mTREs of pre-and post-registration of the three proposed 

methods for all the trained 14 BITE and 22 RESECT cases, individually. The last row of each 

table denotes a summary of the results of the listed cases. The results show that the proposed 

methods provide a major improvement over the initial alignment. For the BITE database, the 

developed algorithms reduced the initial mTRE from (4.18 ± 1.84 mm) to a range from (1.47 ± 

0.61 mm) to (2.00 ± 0.45 mm) based on the applied configuration. Similarly, average mTRE 

from (0.84 ± 0.16 mm) to (2.50 ± 0.66 mm) was achieved on the RESECT database starting 

with an initial mTRE value of (5.35 ± 4.19 mm). Notably, the use of NCC as a similarity metric 

had a great impact on registration accuracy as all NCC-based models show an improvement 

over the standard MSE-based methods. This proves the effectiveness of using NCC for multi-

modal registration as it is intensity and scaling invariant. 

From the BITE results, it is important to note that the most accurate results were generated by 

Model C NCC. This result emphasizes that utilizing more training data in deep learning often 

leads to performance enhancement. However, this did not have the same effect on the RESECT 

dataset wherein Model C NCC ranked third after Model R versions. This might be due to the 

differences in the two databases, refer to Table 5.2, resulting in a model struggling to extract 

common features. Still, Model C NCC improved significantly the initial mTRE from (5.35 ± 

4.19 mm) to (0.84 ± 0.16 mm). The results indicated that the deep learning approach can per-

form automatic accurate deformable MRI to iUS image registration, and thus could be used in 

image-guided neurosurgical interventions. 

5.5.2 Generality Evaluation  

One of the main goals is to build an automated learning model that can be applied to multi-site 

data without database-specific model parameters fine-tuning. To achieve this goal, the three 

proposed models, Model B, Model R, and Model C, were evaluated on both utilized databases. 

For instance, Model B was trained using the BITE dataset only, therefore, testing this model on 

the other dataset of RESECT would give us a general idea about how the developed method 

may generalize with other unseen datasets. 

Remarkably, Model B and Model B NCC decreased the initial mTRE from (5.35 ± 4.19 mm) to 

only (2.50 ± 0.66 mm) and (1.85 ± 0.40 mm) experienced on the untrained RESECT dataset. 

Likewise, the two variations of Model R, trained on the RESECT dataset only, delivered aston-

ishing results on the BITE dataset with average mTRE from (2.00 ± 0.45 mm) to (1.98 ± 0.44 

mm) over the initial (4.18 ± 1.84 mm). These findings further strengthened the conviction that 

deep learning-based models can deliver competitive MRI to iUS registration results even if they 

are not trained on the evaluated data, which shows therefore a promise for use during brain 

surgery. 
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Table 5.3: Pre-and post-registration TREs for the proposed models in the BITE dataset. Model B, Model R, and 

Model C represent the proposed models trained on the BITE, RESECT, and both datasets, corre-

spondingly. Test cases are shown in bold underlined and the lowest error in each row is highlighted in 

bold. 

Case Initial 
Model B 

MSE 

Model B 

NCC 

Model R 

MSE 

Model R 

NCC 

Model C 

MSE 

Model C 

NCC 

Case01  5.88(2.31)  1.42(0.79)  1.17(0.55)  1.82(0.96)  1.83(0.98)  1.82(0.97)  1.04(0.58) 

Case02  6.06(1.61)  1.14(0.67)  1.27(0.77)  1.46(0.83)  1.54(0.82)  1.39(0.80)  0.97(0.45) 

Case03  8.91(2.02)  1.57(1.12)  1.39(0.87)  2.24(1.23)  2.19(1.28)  2.11(1.26)  1.22(0.87) 

Case04  3.87(1.19)  0.91(0.41)  1.01(0.51)  1.57(0.86)  1.50(0.72)  1.45(0.69)  0.90(0.47) 

Case05  2.57(1.61)  1.43(1.09)  1.50(1.00)  2.02(1.51)  2.04(1.50)  2.00(1.51)  1.21(0.80) 

Case06  2.24(1.05)  1.21(0.57)  1.24(0.57)  1.57(0.68)  1.52(0.63)  1.50(0.65)  1.08(0.50) 

Case07  3.02(1.58)  2.15(0.95)  2.16(0.77)  2.15(0.79)  1.99(0.81)  1.99(0.76)  2.08(0.80) 

Case08  3.75(1.97)  1.36(0.67)  1.61(0.81)  2.31(1.11)  2.22(1.06)  2.17(1.03)  1.37(0.69) 

Case09  5.08(1.33)  1.60(0.71)  1.87(1.16)  2.43(1.14)  2.48(1.12)  2.39(1.07)  1.49(0.81) 

Case10  2.99(1.34)  1.80(0.82)  1.59(0.79)  1.41(0.69)  1.45(0.73)  1.44(0.73)  1.75(0.88) 

Case11  1.51(0.73)  1.60(0.84)  1.47(0.73)  1.34(0.64)  1.32(0.68)  1.32(0.68)  1.48(0.69) 

Case12  3.68(1.85)  3.14(2.60)  2.91(2.45)  2.74(1.75)  2.70(1.77)  2.66(1.74)  3.38(3.28) 

Case13  5.13(2.73)  1.81(1.35)  1.67(1.08)  2.51(1.30)  2.59(1.23)  2.40(1.30)  1.40(0.87) 

Case14  3.78(1.23)  1.34(0.64)  1.42(0.78)  2.44(0.91)  2.31(0.85)  2.24(0.87)  1.18(0.43) 

mTRE 4.18(1.84) 1.61(0.52) 1.59(0.46) 2.00(0.45) 1.98(0.44) 1.92(0.42) 1.47(0.61) 

Table 5.4: Pre- and post-registration TREs for the proposed models in the RESECT dataset. Model B, Model R, 

and Model C represent the proposed models trained on the BITE, RESECT, and both datasets, corre-

spondingly. Test cases are shown in bold underlined and the lowest error in each row is highlighted in 

bold. 

Case Initial 
Model B 

MSE 

Model B 

NCC 

Model R 

MSE 

Model R 

NCC 

Model C 

MSE 

Model C 

NCC 

Case01 1.81(0.84) 3.71(1.30) 2.07(0.87) 1.17(0.74) 1.13(0.58) 1.13(0.58) 1.42(0.76) 

Case02 5.70(1.39) 2.79(0.83) 2.67(0.85) 1.05(0.43) 0.72(0.37) 1.15(0.57) 0.86(0.37) 

Case03 9.56(0.52) 3.30(0.97) 1.96(0.68) 0.91(0.38) 0.86(0.34) 0.94(0.37) 0.94(0.37) 

Case04 2.45(0.67) 0.89(0.39) 1.04(0.40) 1.26(0.46) 1.04(0.40) 1.04(0.40) 1.72(0.61) 

Case05 12.03(1.05) 2.73(0.97) 1.77(0.61) 0.79(0.32) 0.73(0.37) 1.00(0.47) 0.82(0.38) 
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Case06 3.25(0.63) 2.75(0.93) 1.70(0.57) 0.85(0.32) 0.85(0.29) 0.91(0.32) 0.89(0.30) 

Case07 1.86(1.06) 2.47(0.90) 2.18(0.66) 0.97(0.41) 0.73(0.32) 1.24(0.56) 0.81(0.37) 

Case08 2.65(0.86) 3.14(0.91) 2.10(0.78) 1.29(0.49) 1.28(0.43) 1.21(0.45) 1.60(0.60) 

Case12 19.71(0.72) 3.02(1.14) 1.85(0.78) 0.91(0.30) 0.82(0.29) 0.96(0.30) 0.83(0.35) 

Case13 4.56(1.29) 2.13(0.65) 1.64(0.48) 0.93(0.39) 0.85(0.30) 1.01(0.40) 0.89(0.34) 

Case14 3.02(0.61) 2.63(0.88) 2.55(0.87) 1.11(0.42) 1.05(0.39) 1.05(0.39) 1.17(0.36) 

Case15 3.23(1.28) 2.70(0.76) 2.09(0.61) 0.95(0.51) 0.85(0.45) 1.30(0.55) 1.00(0.46) 

Case16 3.39(0.83) 2.32(0.72) 1.66(0.42) 0.68(0.20) 0.71(0.24) 0.90(0.34) 0.74(0.24) 

Case17 6.37(0.75) 2.48(1.07) 1.63(0.80) 0.73(0.27) 0.69(0.29) 1.02(0.42) 0.73(0.25) 

Case18 3.57(0.93) 2.27(0.90) 1.32(0.40) 0.68(0.25) 0.69(0.28) 0.81(0.31) 0.72(0.30) 

Case19 3.29(1.25) 1.93(1.09) 1.65(0.45) 0.78(0.39) 0.64(0.26) 0.80(0.38) 0.68(0.29) 

Case21 4.56(0.71) 2.92(0.90) 1.84(0.62) 0.82(0.28) 0.78(0.20) 1.05(0.47) 0.82(0.27) 

Case23 7.02(1.02) 1.75(0.95) 1.68(0.58) 0.65(0.21) 0.70(0.26) 0.71(0.26) 0.70(0.24) 

Case24 1.09(0.40) 1.87(0.95) 1.68(0.46) 0.68(0.26) 0.60(0.28) 0.71(0.26) 0.64(0.29) 

Case25 10.06(2.27) 1.52(0.72) 1.41(0.53) 1.11(0.43) 0.94(0.45) 0.94(0.45) 1.60(0.54) 

Case26 2.82(0.81) 3.58(1.31) 2.68(0.90) 0.77(0.29) 0.84(0.27) 0.97(0.42) 0.83(0.31) 

Case27 5.77(0.66) 2.05(0.91) 1.63(0.74) 1.00(0.38) 0.89(0.33) 1.15(0.42) 1.00(0.35) 

mTRE 5.35(4.19) 2.50(0.66) 1.85(0.40) 0.91(0.19) 0.84(0.16) 1.00(0.16) 0.97(0.32) 

5.5.3 Processing Time Analysis  

Fig. 5.4 shows the computation time for the training stage (Fig. 5.4 (a)) and the test stage (Fig. 

5.4 (b)). The most remarkable result is that the first configuration, Model B and Model B NCC, 

has the lowest training time of 45 and 55 minutes, respectively, because they are trained on the 

BITE dataset containing only 14 patients. On the other hand, the largest training times of 172 

and 180 minutes are obtained by the third setup, Model C and Model C NCC, which use a total 

of 36 patients from both datasets. It becomes notable that incorporating the NCC as the similari-

ty measurement leads  
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Figure 5.4: Processing time analysis for the proposed approaches on two different multiple sites datasets. (a) 

Training time in minutes; (b) Test time in seconds using CPU (in Blue) and GPU (in Red). 

to increase the training time by 5 to 26% over the MSE versions, but the test time remains 

approximately constant. Overall, the three approaches provide similar processing test times of 

approximately 0.5 seconds on the GPU and 2.6 seconds on the CPU which provides additional 

support for using iRegNet in time-critical image-guided interventions 
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5.5.4 Comparison with Other MRI-iUS Studies  

Fig. 5.5 shows the initial and final landmarks errors for the proposed iRegNet methods and 

methodologies found in the literature for MRI-iUS registration, performed on the BITE data-

base. To assess the proposed methods, a comparison was made against other MRI-iUS registra-

tion algorithms proposed for brain shift compensation: LC2 (Wein et al., 2013), SSC (Mattias 

Paul Heinrich et al., 2013), SeSaMI (Rivaz et al., 2014), CoCoMI (Rivaz et al., 2014), RaPTOR 

(Rivaz et al., 2015), miLBP (Jiang et al., 2016),  Laplacian Comm (Zimmer et al., 2019), 

cDRAMMS (I. Machado et al., 2019), and Arena (Masoumi et al., 2019). The results obtained 

indicate that the methods, highlighted in orange, outperform other evaluated competing tech-

niques. In particular, the configuration Model C NCC ranked first for the BITE with an mTRE 

(1.47 ± 0.61 mm) with a 0.61 mm margin smaller than the best-performing method cDRAMMS 

(I. Machado et al., 2019). 

Additional comparison of the registration methods against other approaches using pre-operative 

MRI and pre-resection US images from the RESECT database are presented in Fig. 5.6. 

iRegNet methods are compared to conventional studies: LC2  (Wein, 2018), SSC (Mattias P. 

Heinrich, 2018), NiftyReg (Drobny et al., 2018), cDRAMMS (Inês Machado et al., 2018), 

MedICAL (Shams et al., 2018), Structural Skeleton (Hong & Park, 2018), ARENA (Masoumi 

et al., 2019) as well as learning studies: FAX (Zhong et al., 2018), CNN + STN (Sun & Zhang, 

2018). It is important to note that the LC2 algorithms applied to BITE utilized different configu-

rations than the one applied to RESECT. In (Wein et al., 2013), the algorithm aligns 2D US to 

3D MRI volumes initialized with a rigid registration and smaller patch sizes of 2 to 24, while in 

(Wein, 2018), a non-linear optimization algorithm was initialized with a translation before the 

rigid registration and the patch size is larger with 73 voxels. Similarly, the SSC methods in 

(Mattias Paul Heinrich et al., 2013) and (Mattias P. Heinrich, 2018) are separate from each 

other. In  (Mattias P. Heinrich, 2018), the authors set the parameters for the discrete optimiza-

tion with a complex 107 degrees of freedom. On the other hand, the graph is simplified in 

(Mattias Paul Heinrich et al., 2013) and contains no loops leading to a faster and smoother 

transformation. 

As can be seen from Fig. 5.6, Model R variants rank first on the RESECT dataset with average 

mTRE (0.84 ± 0.16 to 0.91 ± 0.19 mm) followed by the learning-based method FAX with mTRE 

of (1.21 ± 0.55 mm). Although team FAX reported comparable results, this method failed to 

obtain similar results on the test dataset of the CuRIOUS challenge (Xiao et al., 2020), which 

presumably is due to an overfit over the training images. In contrast, Model B and Model B NCC 

enhanced the initial mTRE of RESECT by 2.85 and 3.50 mm in turn, however, they failed to 

provide competitive outcomes. This implies that the accuracy of deep learning approaches does 

seem to depend on the size of the available training data. 
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Figure 5.5: A comparison of the registration error (mTRE) for the proposed iRegNet methods and the state-of-the-

art methods on the BITE dataset. 

 

Figure 5.6: A comparison of the registration error (mTRE) for the proposed iRegNet methods and the state-of-the-

art methods on the RESECT dataset. 
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5.5.5 Qualitative Analysis by Neurosurgeons 

Two experienced neurosurgeons (Z. A.) and (M. S.) with eight and five years of clinical prac-

tice, respectively, visually inspected the MRI-iUS registration results individually and rated the 

results based on the tumor boundaries and other brain structures, such as sulci and falx. Table 

5.5 summarizes their qualitative analysis. It is worth mentioning that only 11% of alignments 

were classified as “limited” (no improvements over the initial registration), and 8% or 17%, 

respectively, of aligned results, were “fair” (minor improvements), 36% or 39%, respectively, of 

alignments, were “good” (major improvements), and 44% or 33%, respectively, of alignments, 

were “excellent” (little or no visible misalignment). 

Figure 5.7 displays the results of aligning MRI to iUS using the best method, namely Model C 

NCC, for six different patients: BITE (cases #6, #8, and #11) and RESECT (cases #23, #14, and 

#21), correspondingly. The cases are selected as best, median, and worst according to their 

qualitative evaluation as given in Table 5.5. In each figure, columns provide pre-operative MRI, 

interventional US, initial alignment of both images before registration, and overlap of corrected 

MRI over iUS after applying iRegNet, correspondingly. Similar to other studies, the raters 

confirm that the quality of the used US images in the BITE dataset is rather limited as shown in 

case #8 in Fig. 5.7 (a).  

The results of this study demonstrated that iRegNet, Model C NCC, yields better registration 

results (last row) than the initial misaligned MRI and iUS pairs (third row). Although widely 

accepted, it suffers from a comparable larger training time of 180 minutes, however, this is only 

apparent in the training stage while obtaining a very competitive inference time of about half-

second on GPU-based implementation. Another limitation of this implementation is that this 

improvement may be unclear in a few cases, such as Case12 from the BITE dataset. A popular 

explanation is that the initial alignment has a small brain shift that makes it difficult to observe. 

Overall, this analysis yields an overview of the potential clinical applicability of the method 

regarding the accuracy and quality of the registration outputs. 

Table 5.5: Statistical assessment of the MRI-iUS alignment of 36 cases by two expert neurosurgeons. 

 Assessment 

Neurosurgeon Limited Fair Good Excellent 

#1 4 3 13 16 

#2 4 6 14 12 

Total 8 9 27 28 
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(a) 

 
(b) 

Figure 5.7: Alignment of pre-operative MRI (gray color mode) to iUS (green color mode) in six different cases 

from (a) BITE (cases #6, #8, and #11) and (b) RESECT (cases #23, #14, and #21). Column designa-

tions: pre-operative FLAIR MRI, intra-operative US, initial misaligned MRI over iUS before registra-

tion, and the final aligned MRI over iUS after registration, and the deformed grids. Yellow arrows in-

dicate expert-labeled landmarks while mTRE values are shown (bottom right). 
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5.5.6 Self-supervised Results 

To explore the MRI modality which achieves the best performance for the task of longitudinal 

registration, an ablation study has been carried out. The BRAINSFit toolkit was utilized to 

perform affine alignments on moving and fixed MRI volumes. As listed in Table 5.6, T1ce has 

obtained the overall best results on the validation dataset in terms of the mean and median MAE 

scores while FLAIR achieved the best robustness. Therefore, in the experiments, the T1ce 

volumes from each patient were only used. Theoretically, using multiple modalities could 

increase the accuracy of the image registration, and this would be further investigated in future 

work. 

Table 5.6: The ablation study of MRI modalities on the BraTS-Reg 2022 validation cases. Bold highlights the 

best scores. 

Modality MAEmedian MAEmean Robustness 

Initial 8.20  8.65 - 

T1 4.74 5.65 0.66 

T1ce 4.35 5.23 0.62 

T2 4.85 5.60 0.63 

FLAIR 4.64  5.40 0.67 

Figure 5.8 shows example results from three patients, where the registration of post- to pre-

operative MRI scans is achieved using the self-supervised iRegNet method and the comparing 

baseline method. From the visual results, it can be seen that warped MRI scans are significantly 

improved after applying iRegNet. Note that, Fig. 5.8 (c) shows the FLAIR scans for the follow-

up MRI images, only for visualization purposes, to better depict the surgically imposed cavities 

of these illustrated examples. All the applied registration methods use only the T1ce modality as 

discussed in Section 3.2. 

Moreover, Table 5.7 reports the registration performance of the proposed method as well as the 

baseline on the BraTS-Reg challenge validation database. The baseline denotes the BRAINSFIT 

affine transformation between the full-resolution images of pre-operative and follow-up MRI. 

Compared with the affine method, the proposed self-supervised method effectively improves 

registration performance. It is notable that the average runtime of the proposed method is 1 

second and does not require any manual interaction or supervision. Besides, only one sequence 

(T1ce) is required in this application. 

The statistics of the paired landmark errors before and after the registration are displayed in Fig. 

5.9. For the training database, the model reduced the initial mean MAE (computed by the evalu-

ation platform) from 8.20 ± 7.62 mm to 3.51 ± 3.50 mm. Similarly, an MAE of 2.93 ± 1.63 mm 

was achieved on the validation database which has an initial 7.80 ± 5.62 mm. This result high-
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lights that the method delivers significantly better results than both initial alignment and affine 

registration. 

 

Figure 5.8: Example registration results from three validation cases (patients 141, 148, and 152). From left to 

right: (a) and (b) the post- and pre-operative MRI T1ce, (c) the follow-up to pre-operative affine reg-

istration of BRAINSFit, (d) the follow-up to pre-operative deformable registration of the iRegNet, (e) 

the pre-operative FLAIR scans, only for visualization purposes, and (f) determinant of the Jacobian of 

the displacement field are shown, respectively. The red box highlights regions of major differences. 

 

Figure 5.9: Boxplots of the mean landmark errors. For each method, the landmark errors are computed against 

the fixed landmarks of the BraTS-Reg dataset. From left to right, mean absolute registration errors are 

shown for the initial dataset, affine, and the enhanced iRegNet, respectively. On each box, the red line 

is the median and the green triangle is the mean. 
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Table 5.7: Quantitative results of the proposed method and the baseline affine method on the BraTS-Reg 

challenge validation set. MAE denotes the average of median absolute error between the predicted 

coordinates and the ground truth coordinates, whereas Robustness represents the successful rate of 

measuring how many landmarks have improved MAE after the registration. 

Case Initial Affine Enhanced iRegNet 

 MAE  MAE Robustness MAE Robustness 

BraTSReg_141 13.50 3.64 1.00 2.18 1.00 

BraTSReg_142 14.00 5.98 0.88 7.18 0.75 

BraTSReg_143 16.00 8.85 0.88 4.89 1.00 

BraTSReg_144 15.00 9.44 0.88 5.64 1.00 

BraTSReg_145 17.00 5.36 1.00 4.71 1.00 

BraTSReg_146 17.00 7.13 1.00 2.62 1.00 

BraTSReg_147 1.50 2.50 0.00 2.53 0.50 

BraTSReg_148 3.50 3.06 0.30 2.61 0.75 

BraTSReg_149 9.00 2.18 1.00 1.38 1.00 

BraTSReg_150 4.00 4.00 0.11 2.20 0.74 

BraTSReg_151 3.00 2.00 0.45 1.47 0.75 

BraTSReg_152 5.00 2.00 0.95 1.61 0.95 

BraTSReg_153 2.00 2.00 0.33 1.68 0.75 

BraTSReg_154 2.00 2.10 0.15 1.83 0.55 

BraTSReg_155 2.00 2.63 0.21 2.10 0.53 

BraTSReg_156 7.00 3.30 1.00 1.62 1.00 

BraTSReg_157 10.00 6.52 0.90 4.58 1.00 

BraTSReg_158 4.50 3.75 0.40 1.65 1.00 

BraTSReg_159 6.00 8.00 0.36 3.58 1.00 

BraTSReg_160 4.00 2.50 0.70 2.47 0.60 

Mean 7.80 4.35 0.62 2.93 0.84 

StdDev 5.62 2.46 0.36 1.63 0.19 

Median 5.50 3.47 0.79 2.33 0.97 
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5.6 Summary 

iRegNet was presented as an automated, fast, and robust deformable approach for pre-operative 

MRI to pre-resection iUS registration for compensating brain shift phenomenon. In six experi-

ments, the proposed method has been successfully tested and evaluated on 36 cases from two 

multi-location datasets, validating the registration performance qualitatively and quantitatively. 

Notably, iRegNet achieved considerable performance and computational efficiency even with 

untrained cases, demonstrating the generality of the proposed method. Compared with other 

registration methods, iRegNet achieved the best accuracy results in terms of the mean TRE with 

values of (1.47 ± 0.61 and 0.84 ± 0.16 mm) for the utilized BITE and RESECT datasets, respec-

tively, as illustrated in Tables 5.3 and 5.4. Additional qualitative results indicate that the regis-

tered MRI-iUS pairs have a significant improvement over their initial alignment. Also, the 

proposed iRegNet achieved significant performance on multi-center data and is, therefore, a 

potentially promising automatic registration algorithm for use with IGN systems. Moreover, 

iRegNet is flexible, modality-, and anatomy-invariant, and therefore could be used in a wide 

range of medical image analysis and processing surgical procedures.  

Furthermore, a patient-specific registration framework is proposed based on iRegNet, which 

aligns pre-operative and post-recurrence MRI T1ce sequences. The enhanced iRegNet frame-

work uses deep unsupervised learning for deformable image registration driven by the regulari-

zation hyperparameter. The proposed method is evaluated on the BraTS-Reg challenge dataset 

brain MR images comprising 140, 20, and 40 divided into training, validation, and testing 

cohorts. Therefore, the results of the proposed registration method are promising and can be 

applied for clinical use during future work. 
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Within this chapter, the third module of the proposed IGN pipeline (see Figure 1.2 “DeepIGN”) 

called Interpreting the developed DNNs using Explainable AI is described. The remainder of 

this chapter is organized as follows. First, introduction about making deep learning models 

transparent is given in Section 6.1. Then, the state-of-the-art explanation methods are given in 

Section 6.2. Section 6.3 gives an overview of the proposed explainable machine learning sys-

tem, the hybrid CNN Transformer network for brain tumor segmentation, and relevant interpret-

ability methodologies. The experimental setup and the utilized data are described in Section 6.4. 

After that, Section 6.5 describes and discusses the results of the extensive experiments. The 

clinical relevance is clarified in Section 6.6. Finally, the concluding remarks and prospects of 

this study are given in Section 6.6. Parts of this chapter have previously been published in (R. 

A. Zeineldin et al., 2022).  
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6.1 Introduction 

Recent developments in DNNs have demonstrated their effectiveness for processing and analyz-

ing medical images, including those associated with brain tumor segmentation [10-13], image 

registration [14, 15], and image classification [16-18]. However, the introduction of deep learn-

ing techniques in the clinical environment is still limited due to some restrictions (G. Yang et 

al., 2022). The most significant one is that deep learning strategies consider only the input 

images and the output results, without any transparency of the underlying information flow in 

the network's internal layers. In sensitive applications such as brain imaging applications, it is 

crucial to understand the reason behind the network prediction to ensure that the model provides 

the correct estimation.  

Accordingly, XAI has gained a substantial interest to explore the “black box” deep learning 

networks in the medical field (Gulum, Trombley, & Kantardzic, 2021; G. Yang et al., 2022). 

XAI methods allow researchers, developers, and end-users to obtain transparent deep learning 

models that can describe their decisions to humans in an understandable manner. For medical 

end-users, the demand for explainability is increasing to create their trust in deep learning 

techniques and to encourage them to utilize these systems for assisting clinical procedures. 

Moreover, the European Union data protection law, titled General Data Protection Regulation 

(GDPR), imposes the explanation as a requirement for automated learning systems before being 

used with patients clinically (Temme, 2017). 

6.2 Related Work 

Generally, XAI techniques in medical imaging can be grouped into perturbation-based or gradi-

ent-based approaches. Perturbation-based methods investigate the network by changing the 

input features and measuring the impact on the output estimations by a forward training of the 

model. Some examples include LIME (Ribeiro, Singh, & Guestrin, 2016), Shapely additive 

explanations (SHAP) (Ribeiro et al., 2016), Deconvolution (Zeiler & Fergus, 2014), and Occlu-

sion (Zeiler & Fergus, 2014). Gradient-based XAI methods have been widely adopted to pro-

vide feature attribution maps by calculating the partial derivative of the output predictions 

through every layer of the neural network with respect to (w.r.t) the input images. These tech-

niques have the advantage of being post-hoc, meaning that they are applied after the training 

phase of the deep learning model avoiding the accuracy vs explainability trade-off. In addition, 

they are usually fast compared with perturbation approaches since their runtime does not depend 

on the number of input features. A number of publications have been reported for back-

propagating approaches such as Vanilla Gradient (VG) (Simonyan, Vedaldi, & Zisserman, 

2014), Guided Backpropagation (GBP) (Springenberg et al., 2015), Integrated Gradients (IG) 

(Sundararajan, Taly, & Yan, 2017), and Guided Integrated Gradients (GIG) (Kapishnikov et al., 

2021), SmoothGrad (Smilkov, Thorat, Kim, Viégas, & Wattenberg, 2017), Grad-CAM 

(GCAM) (Selvaraju et al., 2017), and Guided Grad-CAM (GGCAM) (Selvaraju et al., 2017). 

Several XAI methods have been previously proposed for natural image tasks, while little atten-

tion has been paid to explaining brain imaging applications (Gulum et al., 2021). For brain 

cancer classification, Windisch et al. (Windisch et al., 2020) applied 2D GCAM to generate 
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heatmaps indicating which areas of the input MRI made the classifier decide on the category of 

the existence of a brain tumor. Similarly, 2D GCAM was used in (Esmaeili, Vettukattil, 

Banitalebi, Krogh, & Geitung, 2021) to evaluate the performance of three deep learning models 

in brain tumor classification. The key limitation of these studies is that experiments were con-

cluded on 2D MRI slices without investigating the model on 3D medical applications.  

In previous studies, several interpretability approaches have been proposed to explain the be-

havior of machine learning models in medical applications such as COVID-19 diagnosis (Singh, 

Pandey, & Babu, 2021; Y. H. Wu et al., 2021), retinal imaging (Maloca et al., 2021; Sayres et 

al., 2019), skin cancer (Datta, Shaikh, Srihari, & Gao, 2021; Shorfuzzaman, 2021; Young, 

Booth, Simpson, Dutton, & Shrapnel, 2019), colonoscopy (Wickstrom, Kampffmeyer, & 

Jenssen, 2020), and brain imaging (Eitel & Ritter, 2019; Natekar, Kori, & Krishnamurthi, 2020; 

Pereira, Meier, Alves, Reyes, & Silva, 2018; S. Pereira et al., 2018; Saleem, Shahid, & Raza, 

2021; B. Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016).  

Also, some research works have been conducted to generate explainable results for brain tumor 

segmentation networks. In (S. Pereira et al., 2018), Pereira et al. employed a joint Restricted 

Boltzmann Machine system (RBM) and a Random Forest (RF) classifier to enhance the inter-

pretability of a machine learning system. Inspired by (Ribeiro et al., 2016), they provided two 

levels of interpretation, i.e. local and global, allowing for an evaluation of the extracted task-

specific features and the voxel-level predictions, respectively. A key limitation of their mutual 

RBM-RF feature selection strategy is the requirement for random perturbation of input feature 

vectors which can be computationally expensive for medical imaging tasks and, therefore, very 

slow. 

Natekar et al. generated visual explanations of three DNNs for brain tumor segmentation 

(Natekar et al., 2020). They applied 2D GCAM (Selvaraju et al., 2017) to explain the contribu-

tion of the internal layers of those segmentation networks helping to understand “why” DNN 

achieved quantitively high accurate tumor segmentations. The experiments indicated that DNN 

follows a human-like hierarchical approach for localizing different parts of the brain tumor. 

However, the three explained models are implemented in 2D, limiting the applicability of this 

approach to 3D explainable medical applications. 

In (Saleem et al., 2021), a method has been developed for 3D visual explanations towards 

explaining the “black-box” nature of CNNs. This method extended Class Activation Mapping 

(CAM) (B. Zhou et al., 2016) to extract 3D explanations to interpret a brain tumor segmentation 

network. Moreover, they investigated how the input MRI modality perturbation affects the 

prediction strategy of different brain tumor sub-regions. However, altering the deep model 

architecture is a requirement to make it interpretable, which trades off the model complexity and 

accuracy of the network. Furthermore, CAM-based approaches are restricted to a certain type of 

CNNs without including any multi-modal input or fully connected layers CNNs. 

Li et al. developed an explainable ensemble Gaussian kernel (XEGK) to substitute for CNN in 

feature extraction, in which they used an explainable Gaussian kernel to capture characteristic 

features from relevant regions of the input (J. Li et al., 2021). They applied their method to 

mono-channel input and multi-channel inputs by using by leveraging the Gaussian mixture 
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model (GMM) and fusion of multiple GMMs, respectively. To interpret the experimental re-

sults, they used SHAP (Lundberg & Lee, 2017) to reflect the features’ importance. SHAP is a 

perturbation-based approach from the coalitional game theory which assigns a feature im-

portance value for each class prediction. It is therefore inefficient in critical medical applications 

since the network must be run for the number of samples × the number of features times. 

6.3 Methods 

6.3.1 NeuroXAI 

While the state-of-the-art explanation methods were primarily proposed for interpreting deep 

image classification, the proposed framework provides an adaptive approach to medical image 

segmentation as well. Moreover, NeuroXAI converts the segmentation task into a multi-label 

classification task. This is achieved through global average pooling for each class on the output 

prediction layer. Therefore, the NeuroXAI offers state-of-the-art XAI methods for the classifica-

tion and segmentation of both 2D and 3D medical image data. The overall pipeline of NeuroX-

AI is depicted in Fig. 6.1. It is a two-step approach, a neural network for tumor segmentation, 

and an explainability generator. The first step is to perform any brain imaging task data using 

CNN-based architecture. The second step is a justification generator that is employed to provide 

3D visual feature explanations. The following subsections describe the detailed structure of the 

CNN model and the justification generator. 

 

 

Figure 6.1: Pipeline of the proposed NeuroXAI framework. 
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6.3.1.1 Vanilla Gradient 

Vanilla Gradient (VG) (Simonyan et al., 2014) is the simplest form of visualizing regions of the 

image that contributes most to the classification output of the neural network. This computes the 

saliency map by making a single backward pass of the activation of the output class after a 

forward pass over the network, which can be defined as computing the VG of the output activa-

tion w.r.t the input image. Let 𝑃𝑐(𝑥𝐼) be the prediction of class c, computed by the classification 

layer of the CNN for an input image 𝑥𝐼. The objective of Vanilla Gradient is to find the L2-

regularised image, which has the maximum 𝑃𝑐, while 𝜆 is the regularization term: 

𝑉𝐺 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃𝑐(𝑥𝐼) − 𝜆‖𝑥𝐼‖2
2 (6.1) 

6.3.1.2 Guided Backpropagation 

GBP is used to highlight features learned by CNNs that contribute most to the predicted result 

(Springenberg et al., 2015). GBP is a new variant of the deconvolution approach introduced in 

(Zeiler & Fergus, 2014), especially for visualizing the concepts learned by higher network 

layers toward CNN analysis. During backpropagation, GBP reverses the data flow of a CNN, 

making a backward pass of the network from the high-level output layer to the input image. By 

using the ReLU activation function, GBP masks out the values with at least one negative value 

which acts as an additional guidance signal to typical backpropagation. Figure 6.2 demonstrates 

the computation of guided back-propagation in a sample CNN network.  

 

Figure 6.2: Applying Guided Backpropagation to a sample brain tumor segmentation CNN model. 

Let f represent the input feature map calculated by a layer ℓ from a CNN, R denotes the result-

ant reconstructed image, and then the GBP can be calculated as follows (Springenberg et al., 

2015): 

  𝑅𝑖
ℓ = (𝑓𝑖

ℓ > 0). (𝑅𝑖
ℓ+1 > 0). 𝑅𝑖

ℓ+1  (6.2) 
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  𝑅𝑖
ℓ+1 =

𝜕𝑓𝑖
𝐿

𝜕𝑓𝑖
ℓ+1  (6.3) 

Where L is the total number of layers in the CNN. 

6.3.1.3 Integrated Gradients 

Sundararajan et al. (Sundararajan et al., 2017) introduced IG to mitigate the saturation problem 

of gradient-based methods. Let a function G: Rn → [0, 1] denote a DNN which has XI = γ (α = 

1) ∈ Rn as the input image, while XB = γ (α = 0) ∈ Rn represents the baseline. The baseline is 

simply a black image with all values set to zeros. The IG can be computed by accumulating the 

gradients at all points on the straight-line path from the baseline XB to the input image XI: 

𝐼𝐺𝑖(𝑥) = ∫
𝜕𝐹(𝛾(𝛼))

𝜕𝛾𝑖(𝛼)

𝜕𝛾𝑖(𝛼)

𝜕𝛼

1

𝛼=0
𝑑𝛼 (6.4) 

Here, i is the feature for the input image whereas α represents the interpolation constant to 

perturb image features.  

6.3.1.4 Guided Integrated Gradients 

Kapishnikov et al (Kapishnikov et al., 2021) proposed GIG as an adaption of the attribution path 

based on the input image, baseline, and the deep model to be explained. Similar to IG, the GIG 

calculates the gradients on the path which starts at the baseline (XB) and ends at the input being 

explained (XI). However, the GIG path is determined at every step as opposed to the fixed 

direction of the IG. This means that GIG finds a subset of features (𝕊) that have the least im-

portance among all features toward the input image. Mathematically, 

𝐺𝐼𝐺𝑖(𝑋𝐵 , 𝑋𝐼 , 𝐺) =
𝜕𝛾𝑖

𝐹(𝛼)

𝜕𝛼
= {

𝑥𝑖
𝐼 − 𝑥𝑖

𝐵 , 𝑖𝑓 𝑖 𝜖 𝕊,

0            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (6.5) 

𝕊 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑖(𝒴) (6.6) 

6.3.1.5 SmoothGrad 

Smilkov et al. (Smilkov et al., 2017) presented an improvement for the common problem of 

gradient-based methods. SmoothGrad (Smilkov et al., 2017) solved this problem by providing 

visually sharpened sensitivity maps. It computes the gradient over multiple samples surrounding 

the input 𝑋𝐼, and the average is calculated after adding Gaussian noise. More formally,  

𝑀𝑐
̅̅ ̅̅ (𝑋𝐼) =

1

𝑁𝑠
∑ 𝑀𝑐(𝑋𝐼 + ℊ(0, 𝜎2))

𝑁𝑠
1  (6.7) 

Where 𝑀𝑐(𝑋𝐼) is the original sensitivity map, 𝑁𝑠 is the number of samples, and ℊ(0, σ2) de-

notes Gaussian noise with variance 𝜎2. In General, 𝑀𝑐(𝑋𝐼) can be any gradient-based visualiza-

tion method, such as explanation methods in the previous sub-sections.  

6.3.1.6 Grad-CAM 

GCAM is a generalization of the local visualization approach CAM (B. Zhou et al., 2016) for 

identifying discriminative features and addressing its shortcomings. Figure 6.3 shows an appli-
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cation of GCAM to segmentation CNN, which can be applied without any architectural modifi-

cations while the model’s output layer is differentiable with respect to its input feature neurons. 

By using the gradient information from the last convolutional layers of the CNN, GCAM can 

highlight the regions responsible for a particular class of interest.  

 

Figure 6.3: Applying Grad-CAM to a sample brain tumor segmentation CNN model. 

Let us define the 3D GCAM heatmap as 𝐿𝐺𝐶𝐴𝑀
𝑐  which captures the important localization fea-

ture map k for a target class c with respect to all N pixels (indexed by x, y, z). 𝐿𝐺𝐶𝐴𝑀
𝑐  is the 

linear combination of the forward pass activation map 𝐴𝑘 and the backpropagated gradient ℬ𝑘
𝑐  

for the input activations followed by a ReLU activation function. 

  𝐿𝐺𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ ℬ𝑙

𝑐𝐴𝑙
𝑙 ) (6.8) 

  ℬ𝑙
𝑐 =

1

𝑁
∑ ∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑥,𝑦,𝑧
𝑙𝑧𝑦𝑥  (6.9) 

 

6.3.1.7 Guided Grad-CAM 

GBP localizes important features in the input image that contribute more to the network predic-

tion with high-resolution visualization, but the results are not class-distinct. In contrast, GCAM 

coarse heatmaps are class-discriminative producing smoother regions due to mapping from 

lower-resolution convolutional layers. To combine the advantages of both methods, GBP and 

GCAM are combined via pixel-wise products resulting in GGCAM (Selvaraju et al., 2017). 

This results in generating high-resolution explanations that correspond to the specific class 

output estimates with respect to any region of interest. The adoption of GGCAM for brain 

tumor segmentation CNN is shown in Fig. 6.4.  
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Figure 6.4: Applying Guided Grad-CAM to a sample brain tumor segmentation CNN model. 

6.3.2 TransXAI 

The overall proposed gradient-based justification hybrid CNN-Transformer architecture for 

explainable brain lesion segmentation is depicted in Fig. 6.5. It is a two-step approach, which 
 

 

Figure 6.5: Overall proposed TransXAI pipeline for visual justification of glioma segmentation in brain MRI 

using a hybrid CNN-Transformer architecture. 
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combines a deep network for tumor segmentation, and an explainability generator. The first step 

is to segment the brain tumor boundaries from multimodal MRI data using a combined neural 

network with Transformer. The second step is a justification generator that is employed to 

provide 2D visual feature explanations. The following subsections describe the detailed struc-

ture of the deep model and the justification generator. 

6.3.2.1 CNN-Transformer Hybrid Architecture 

A detailed pipeline of the proposed TransXAI approach is given in Fig. 6.5. Given an input MRI 

volume 𝑥 ∈ ℝ𝐻×𝑊×𝑁𝑐 where H × W is the spatial resolution and Nc number of channels (# of 

modalities), a modified 2D CNN is first utilized, based on the widely used U-shaped encoder-

decoder architecture (Çiçek et al., 2016; Ronneberger et al., 2015; R. A. Zeineldin et al., 2020), 

as shown in Fig. 6.6,  to extract high-level feature representations capturing local spatial fea-

tures. The CNN-based encoder blocks contain 2D 3 × 3 convolutional blocks to capture the 

spatial and depth information. Besides, every CNN block has a BN layer between the convolu-

tion layers and ReLU activation (Ioffe & Szegedy, 2015; Srivastava et al., 2014). For 

downsampling, 2 × 2 max-pooling is used to gradually extract spatial feature maps 𝑓 ∈

ℝ𝐾×
𝐻

8
×

𝑊

8
×

𝑁𝑐
8  (K = 24), which is 1/8 of input dimensions of H and W. Then, the Transformer 

encoder blocks leverage to extract the long-distance dependencies through the self-attention 

mechanism. The decoder is composed of 2 × 2 up convolutional layers that are applied to up-

scale the resultant encoded feature representation into the full-resolution segmentation maps of 

  

 

Figure 6.6: The architecture of the hybrid CNN-Transformer brain segmentation network from mpMRI volumes. 

The input is a 2D multi-modal MRI of T1, T1Gd, T2, and FLAIR with a patch spatial resolution of 

192 × 192 × 4. The network has 8 convolution neural blocks (blue boxes), each consisting of two suc-

cessive convolutional layers 3 × 3, BN layer, and ReLU activation. 
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H × W. This hybrid CNN-Transformer strategy allows to model local context information across 

spatial dimensions as well as global context for volumetric segmentation. 

Transformer Blocks 

Fig. 6.6 shows a number of Transformer blocks embedded in the bottleneck of the TransXAI 

network. Each Transformer block (Vaswani et al., 2017) consists of two layers; MSA and MLP 

as discussed in Section 3.1.4. 

However, using a pure Transformer as an encoder would be impractical due to its computational 

complexity proportional to the number of input sequences. Therefore, the Vision Transformer 

(ViT) approach (Dosovitskiy et al., 2020) is incorporated by splitting the 𝑥 into fixed-size (P × 

P) patches image 𝑥𝑝 ∈ ℝ𝑃2∙𝑁𝑐 and then reshaping each patch into a token. Note that the input to 

the ViT blocks is the extracted image representations by the convolutional neural encoder 

blocks instead of raw input images. 

Feature Restoration 

To match the spatial resolution of the TransXAI decoder, a feature restoration module is intro-

duced to decode the resultant features. Specifically, the Transformer’s output sequence 𝑧ℓ ∈

ℝ
𝐻𝑊

𝑃2 ×𝑁𝑐 is initially reshaped to 
𝐻

𝑃
×

𝑊

𝑃
× 𝑁𝑐, but the direct usage of the low-resolution Trans-

former encoded data (compared with the original resolution H × W) may cause loss of low-level 

tumor region details. To compensate for such information loss, a 1 × 1 convolutional layer is 

utilized which reduces the number of feature maps. 

Upsampling Path 

To gradually recover the abstract features and output the full-resolution segmentation map of H 

× W, progressive upsampling is performed using 2 × 2 up convolutional operations. Inspired by 

U-Net (Ronneberger et al., 2015), low-level encoder details are fused with high-level decoder 

counterparts for finer semantic information with spatial details. Finally, a multi-label softmax 

layer is used to estimate the final probability distribution for the output predictions. 

6.3.2.2 Explainable CNN Generator 

Since the main goal of this study is to investigate the hybrid CNN-based and Transformer model 

for brain segmentation, an efficient post-hoc XAI technique is integrated. This means that all 

experiments are carried out after the inference of the model, i.e., at prediction time. Principally, 

GCAM is applied from NeuroXAI (Section 6.3.1.6) to explore the spatial attention of the net-

work predictions over internal input features based on our trials with neurosurgeons at Ulm 

University Hospital. 
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6.4 Experiments 

6.4.1 Data 

MRI data from the BraTS challenges 2019 and 2021 (Baid et al., 2021; S. Bakas et al., 2017; 

Spyridon Bakas et al., 2018; Menze et al., 2015) have been used in this study for accomplishing 

the classification and segmentation tasks. Each subject has four MRI sequences including pre-

operative multimodal MRI scans of native T1W, Gadolinium T1Gd, T2W, and FLAIR, ac-

quired from multiple different institutions, as shown in Fig. 6.7. Although the main aim of the 

challenge is to compare the best algorithms for segmenting the ET, the TC, and the WT regions, 

the BraTS 2019 dataset also provides classification labels for gliomas. The BraTS 2019 data-

base comprises 259 cases of HGGs and 76 cases of LGGs, which were used for the first show-

case. The second showcase applies to the BraTS 2021 database, which contains 1251 MRI 

images with ground truth annotations without any explicit glioma classification. 

 

Figure 6.7: Glioma sub-regions in a sample scan from the BraTS 2019 challenge database. Image patches show 

the different modalities of T1 (a), T1Gd (b), T2 (c), FLAIR (d), and annotated expert-labeled tumor 

segmentation (e). Ground truth segmentation is provided for the enhancing tumor (blue) surrounding 

the non-enhancing necrotic tumor core (green) visible in T1Gd, and (b) the peritumoral Edema (yel-

low) visible in the FLAIR, respectively. 

Since MRI sequences were acquired using multi-parametric instruments in multi-location cen-

ters, input images needed to be standardized. A pre-processing stage has been applied to all 

MRI scans, specifically min-max scaling of each MRI modality using z-score normalization, 

and image cropping to a spatial resolution of 192×224×160. During the training, data augmenta-



6  Explainability of Deep Neural Networks 

88 

 

tion was applied including random flipping, random rotations, intensity transformation, as well 

as dynamic patch augmentation cropping size of 128×128×128 to avoid overfitting problems. 

6.4.2 Experimental Setup 

The proposed approach NeuroXAI is post-hoc in the sense that it provides explanations after 

obtaining the model predictions, instead of being inserted into the CNN architecture itself. 

Therefore, all explainability experiments have been done after the training of the deep learning 

networks. Pre-trained weights for the segmentation and classification tasks were used for gener-

ating the heatmaps of the seven used XAI methods, i.e., VG, GBP, IG, GIG, SmoothGrad, 

Grad-CAM, and GGCAM. It is notable that our BrainXAI generator can be applied to any 

CNN-based network, and 3D DeepSeg (Ramy A. Zeineldin, Mohamed E. Karar, et al., 2022a) is 

given here as an example. In this study, the interpretability of the brain tumor segmentation 

system is the main focus at hand, thus a thorough accuracy evaluation is out of scope. 

For the classification task, a simple classifier was employed based on a pre-trained ResNet (He 

et al., 2016) because of its accurate classification results. Deep transfer learning was then adopt-

ed to make the model capable of extracting features from brain MR images. Table 6.1 summa-

rizes the added top layers to the ResNet-50 in the experiment. This model is not meant to obtain 

the best performance since the main goal is to illustrate the explainability capabilities of the 

proposed NeuroXAI framework on a set of different neural networks for two typical applica-

tions in medical image analysis.  

For the segmentation problem, an encoder-decoder neural network was utilized, namely 3D 

DeepSeg (refer to Section 4.3.2). The structure of the proposed network is presented in Figure 

6.8. The encoder, or feature extractor, is typically a CNN comprising successive blocks each 

consisting of 3 × 3 × 3 convolutional layers, BN, a ReLU activation function, and a 2 × 2 × 2 

max pooling operation. On the other hand, the decoder, or segmentation estimator, aims at 

upscaling the resultant feature maps by consecutive blocks, each consisting of two deconvolu-

tions, 2 × 2 × 2 up-convolution, and a ReLU activation function. Skip connections connect the 

two parts of the neural network to combine high-resolution feature maps from the encoder and 

the corresponding semantic features from the decoder. 

Table 6.1: List of the added top layers to the standard ResNet-50. 

Type Output Feature Maps 

Average Pooling 2D 2 × 2 512 

Flatten 2048 1 

Dense 256 1 

Dropout 256 1 

Dense 2 1 
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Figure 6.8: The architecture of the enhanced 3D brain segmentation network (DeepSeg) for brain tumor segmen-

tation from mpMRI volumes. The input is a 3D multi-modal MRI of T1, T1Gd, T2, and FLAIR with 

a patch spatial resolution of 192 × 224 × 160. The CNN network has 24 convolution neural blocks 

(blue boxes), four downsampling blocks (orange boxes), four upsampling blocks (grey boxes), and a 

final softmax output layer (green box). 

Both deep learning models were implemented using the TensorFlow library (Abadi et al., 2016) 

version 2.4. Adam optimizer (Kingma & Ba, 2014) was used to update the weights of the net-

work, with an initial learning rate of 1e – 3 and 1e – 4 at the very beginning, the maximum 

number of training epochs is set to 150 and 1000, and batch size of 64 and 5 for the classifica-

tion and segmentation networks, respectively. Training the networks was performed on a single 

NVIDIA graphic card (RTX 2080Ti with 11 GB RAM or RTX 3060 with 12 GB RAM). Ex-

plainability experiments were carried out after the training of the original neural network be-

cause of using post-hoc XAI methods without network re-training or architecture modifications. 

The final sensitivity maps were generated by the proposed NeuroXAI framework with the pre-

trained saved weights for both deep learning models. 

6.5 Results and Discussion 

6.5.1 Showcase I: Application to Classification 

Here, the application of NeuroXAI to generate visual explanations for automatic brain glioma 

grading using deep learning is introduced. To better understand the deep model’s prediction, the 

trained model is used to visualize various gradient-based sensitivity maps (refer to Fig. 6.9 and 

Fig 6.10). Notably, the classifier model achieved a superior accuracy of 98.62 and specificity of 

98.98 for the unseen validation set which is comparable with the state-of-the-art (Ge, Gu, 

Jakola, & Yang, 2018; Muhammad, Khan, Ser, & Albuquerque, 2021). 
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Figure 6.9: Comparing different XAI visualization methods for brain glioma classification. Sensitivity maps are 

presented for four HGG cases. 
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Figure 6.10: Comparing different XAI visualization methods for brain glioma classification. Sensitivity maps are 

presented for three LGG cases. 
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Each XAI method is unique and can be helpful in a different scenario with its inherent ad-

vantages and limitations. For example, VG is simple with the advantage of being supported by 

conventional machine learning frameworks such as TensorFlow (Abadi et al., 2016) and 

PyTorch (Paszke et al., 2019). This makes VG applicable to any DNN without architectural 

modifications. On the other hand, the saliency maps generated by VG  are noisy as well as they 

suffer from declining influences of features due to gradient saturation as reported in previous 

work (Shrikumar, Greenside, Shcherbina, & Kundaje, 2016). GBP is efficient in terms of im-

plementation; however, it is limited to CNN models with ReLU activations and does not pro-

vide class-distinctive visualization maps.  

Recently, IG has become popular thanks to the ease of implementation, no requirement for 

instrumentation of the network, and the fixed number of calls to the gradient. GIG is an en-

hancement to eliminate the false perturbations problem of IG, but a choice has to be made at 

every step of the path from baseline to input, and thus the direction of the path is not fixed. 

Although SmoothGrad can help improve visualizations of the overall true signal the major 

drawback of being non-class-discriminative. Conversely, GCAM allows interpreting any convo-

lutional layer of the CNN by highlighting the discriminative region and thus can help in under-

standing the internal functionality. To eliminate the lower resolution heat maps problem of 

GCAM, GGCAM was implemented as the combination of GBP and GCAM advantages. 

From Fig. 6.9 and Fig. 6.10, it can be seen that visualization maps by pixel-space XAI methods, 

such as GBP, IG, and GIG, underlined fine-grained details in the input MRI image, but are not 

class-distinctive. In contrast, localization approaches like GCAM, are highly class-distinctive 

providing a smooth activation map. Notably, combining GBP with GCAM yielded better-

localized visualizations with high resolution. SmoothGrad provided the best overall feature 

maps highlighting the main discriminative parts of the input FLAIR image so as to make the 

glioma grading. In contrast, VG provided noisy visualization maps compared with other meth-

ods due to the gradient saturation as reported by (Shrikumar et al., 2016), making it less reliable 

for this application. 

 

6.5.2 Showcase II: Application to Segmentation 

In this subsection, a feasible application of NeuroXAI is provided to interpret deep brain glioma 

sub-region segmentation using multimodal MRIs. In encoder-decoder networks, like DeepSeg, 

generated saliency maps for one of the last encoder layers are smooth and do not capture feasi-

ble information in the segmentation problem. This is due to the fact that these layers generate 

the smallest feature dimensions in the network and intensive upscaling is required to match the 

output prediction map. In contrast, selecting one of the last layers (e. g. the output layer) from 

the decoder network provides a higher-resolution feature map showing detailed features of the 

segmentation process since these layers are combined with the encoder layers through concate-

nation. Moreover, by incorporating the output layer into the explanation generation process, the 

limitation of GCAM for generating low-resolution heatmaps is resolved. 
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Since segmentation networks pinpoint the localized region of brain tumor regions, providing 

visual saliency maps of the output layer alone does not help in making the network transparent. 

Therefore, to better investigate the behavior of the deep model and to determine how spatial 

information flows inside the internal layers, four main experiments were conducted to extend 

the explainability approach as follows: 

• Quantitative evaluation of the BraTS validation database and comparison with SOTA 2D 

and 3D methods. 

• Identifying the contribution of each MRI input modality in the final predicted tumor sub-

components. 

• Interpreting the CNN layers using the best XAI method to reveal how the network repre-

sents information in the internal filters. 

• Clinical feedback on the proposed method from the clinical collaborators. 

In the following subsections, the above experiments are described, and their results are dis-

cussed. 

6.5.2.1 Comparing Different XAI Methods 

To be able to compare different XAI methods’ explanations, the BraTS segmentation task is 

converted into a multi-label classification problem by splitting the final convolutional layer 

class-wisely. Figure 6.11 shows the qualitative results from different XAI methods for explain-

ing the glioma segmentation network as well as the dice coefficient score for each case as a 

quantitative metric. Further, Table 6.2 lists the average DSC and HD95 for the proposed model 

as reported by the BraTS 2021 evaluation platform (Baid et al., 2021). 

Table 6.2: Quantitative results of CNN models on the BraTS 2021 Challenge database. 

Tumor Component DSC HD95 

Enhancing Tumor 84.10 16.0179 

Tumor Core 87.33 8.9077 

Whole Tumor 92.00 3.8097 

Average 87.81 9.5784 
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Figure 6.11: Comparing different XAI visualization methods for brain glioma segmentation. 
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It can be seen that the employed visualization methods generally clustered their attributions 

around the segmented brain tumor. In particular, GCAM, GGCAM, and SmoothGrad provided 

the least noisy visualization maps with the advantage of GCAM of being class-discriminative. 

GBP generated high-resolution saliency maps in which the edges of the tumor sub-regions are 

highlighted instead of the tumor itself. 

Besides, each layer output was analyzed using the GCAM method towards the transparency of 

the black-box segmentation model. Figure 6.12 provides these explanation maps following the 

layers from the input MRI scans to the predicted segmentation map. It can be seen that the DNN 

can learn some explicit concepts, which the CNN was not originally trained on, as well as 

implicit concepts from the underlying dataset. For instance, layer 22 in Fig. 6.12 (g) seems to be 

learning the whole tumor region, as an explicit concept from the ground truth labeling data. 

Another example is shown in Fig. 6.12 (c) for layer 3 learning the Grey and White Matter as an 

implicit concept that is not included in the training annotations. 

 

Figure 6.12: Visualization of the information flow in the segmentation CNN internal layers. The input MRI 

sequences are shown in (a). (b) – (d) show implicit concepts for which no ground truth labels are 

available in addition to explicit concepts (e) – (g) with trained labels. L stands for convolutional layer. 

Recently, Adebayo et al. (Adebayo et al., 2018) observed that the dependence on visual assess-

ment alone can be misleading proposing an extensive evaluation strategy for interpreting the 

adequacy of several explanation approaches. First, they carried out model parameter randomiza-

tion tests where the output of a visualization method on a pre-trained network is compared 

against the same network output with randomly initialized weights. Second, data randomization 
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tests were performed to evaluate the behavior of saliency maps on randomly permuted labeled 

datasets against the original labeled one. The results highlight that GCAM passes the sanity 

checks, while both GBP and GGCAM fail these two sanity checks and remain almost un-

changed across all architectures and datasets perturbations regardless of network performance 

degradation. In particular, the output of explanation maps of GBP and GGCAM would not be 

reliable for CNN debugging tasks like this application. Therefore, the next experiments were 

performed by using only GCAM for generating trustworthy heatmaps. 

6.5.2.2 Role of MRI in Tumor Detection 

To better interpret the behavior of the CNN model, a further experiment was performed for 

generating visual explanations of every tumor class using GCAM. TransXAI was experimented 

with to infer with a specified MRI modality without involving other MRI sequences. This led to 

understanding the importance of each MRI input, namely, T1, T1Gd, T2, and FLAIR in the 

process of different tumor label localization. 

Fig. 6.13 outlines the visual representation captured by the output convolutional layer of the 

TransXAI model with respect to the input MRI modality. The results demonstrate that the 
 

 

Figure 6.13: Impact of MRI input modality in the detection of different tumor labels. The first row shows the input 

MRI sequences and the ground truth annotations. The following rows correspond to label 1 (the ne-

crotic tumor core), label 2 (the peritumoral edema), and label 4 (the enhancing tumor). In the saliency 

maps, warmer regions represent a high score for the specified label detection. 
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detection of each tumor sub-region is related to one or more of the input MRI volumes coherent 

with expert radiologists' and raters' observations in reference (Menze et al., 2015). For instance, 

T1Gd and T2 contribute most to the detection of the gross TC, including both label 1 (NC) and 

label 4 (ET), while label 2 (ED) and the WT region are predicted using FLAIR. Though, the 

visual explanations of T1 are the least important maps with very little contribution to the tumor 

sub-components segmentation and could, therefore, be removed for computational performance 

advantage without model accuracy degradation. 

6.5.2.3 GCAM for CNN Layers 

In this section, GCAM has been applied to interpret the proposed TransXAI for tumor segmen-

tation. Fig. 6.14 and Fig. 6.15 show saliency maps for the internal convolutional layers of the 

investigated CNN model. These visual explanations provide details on the information flow 

inside individual filters of the network and how it learns some meaningful concepts. In this 

hybrid network, the encoder typically consists of successive layers to capture contextual  
 

 

Figure 6.14: Saliency maps for implicit concepts learned by individual filters of the CNN model. It is interesting to 

note that there are no labels for these concepts in the training dataset. Warmer regions represent a 

high score for the specified concept in the prediction map. Note that EB and DB denote the encoder 

and decoder block layers, individually. 
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Figure 6.15: Saliency maps for explicit concepts learned by individual filters of the CNN model which are labeled 

in the training dataset. Warmer regions represent a high score for the specified concept in the predic-

tion map. Note that EB and DB denote the encoder and decoder block layers, individually. 

information, Transformer blocks embedded in the bottleneck, and the expanding decoder path 

contains upsampling operators to enable high-resolution localization of the target tumor voxels. 

It is important to observe that, internal layers of the DNN learn some implicit as well as explicit 

concepts although the training stage included only explicit tumor labels. For example, Fig. 6.14 

(b) demonstrates how the model implicitly differentiates white matter and gray matter region in 

encoder block 1 which the network has not been trained to learn. Similarly, the network under-

stands other implicit concepts such as initial and final non-tumor boundaries in decoder block 3 

(Fig. 6.14 (d)) and block 4 (Fig. 6.14 (e)), correspondingly. In addition, the CNN model learns 

explicit brain tumor sub-regions as depicted in Fig. 6.15. 

Furthermore, the results show that the proposed network follows a top-down approach for 

detecting and segmenting brain glioma. First, the model starts with learning the entire brain 

tissue, followed by the initial tumor boundaries, and finally, small objects and fine details are 

localized. In Fig. 6.15, some examples of finer segmentations are presented for the expansive 

path. Such filters outline the NC (label 1) in Fig. 6.15 (b), the ET (label 4) in Fig. 6.15 (d), the 
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TC region (label 1 and label 4) in Fig. 6.15 (c), and the WT region (all labels) in Fig. 6.15 (e). 

Neural networks are mathematical representations that have been motivated by the functioning 

of the brain (Guo et al., 2016). The findings are consistent with the top-down coupling approach 

that the human brain follows for the comprehension of relevant visual features in global first 

then local areas (Dijkstra, Zeidman, Ondobaka, van Gerven, & Friston, 2017). 

6.5.2.4 CNN Node Failure Detection 

To allow for CNN transparency, an important question should be answered such as why the 

model has failed to predict some tumor sub-regions or provided a partial segmentation map. 

This allows us to enhance the model's accuracy by avoiding these problems during training 

time. In addition, the visual explanation may help medical experts gain human-understandable 

interpretations for the inference. Therefore, this analysis was performed to identify the neural 

network’s failure nodes. The model first predicts segmentation maps, then the DSC scores were 

calculated for each tumor component in the BraTS validation set, as presented in Fig. 6.16, and 

finally, saliency maps were generated for subjects with the lowest performance.  

Figure 6.17 gives the ground truth annotations as well as GCAM visual explanations obtained at 

selected intermediate layers for three validation subjects from BraTS 2021. These concept-

oriented activation maps aid in debugging why the CNN model has failed to detect such areas. 

In Fig. 6.17 (a), the DSC of TC (label 1 and label 4) is the highest at 0.92 followed by ET (label 

4) at 0.85. However, the network failed to predict the ED (label 2) accurately resulting in WT 

(label 1, label 2, and label 4) of dice score of 0.48. The reason behind that can be seen in the 

corresponding saliency maps where it seems that the model localized the tumor region incor-

rectly at the beginning as seen in encoder block 4. Further, the model misclassified the tumor as 

part of the healthy brain in the encoder block 4. Consequently, the resulting whole tumor region 

is only about half of the original one leading to that DSC value. 

 

Figure 6.16: Prediction failure detection DSC metrics on 70 selected subjects from the BraTS 2021 validation 

database. Each point per color represents one of the brain tumor sub-regions. WT, TC, and ET stand 

for Whole Tumor, Tumor Core, and Enhancing Tumor, respectively. 
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(a) Subject #00493 with DSC 0.48, 0.92, 0.85 for WT, TC, and ET 

 

(b) Subject #01438 with DSC 0.87, 0.18, 0.86 for WT, TC, and ET 

 

(c) Subject #01291 with DSC 0.96, 0.85, 0.55 for WT, TC, and ET 

Figure 6.17: Overview of the relevant gradient-based class activation maps for failure cases. 
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Another subject #01438 is presented in Fig. 6.17 (b), where the dice score for the tumor core 

(label 1 and label 4) is the lowest of 0.18 and the ET core (label 4) is 0.86. To reveal what made 

the network misidentify the NC (label 1), the GCAM heatmaps were generated for correspond-

ing filters. Although the model localized the tumor correctly, it focused on a small part of the 

core tumor voxels, and this is apparent in the saliency map of the core tumor region afterward. 

Similarly, the visual interpretations in Fig. 6.17 (c) illustrate that the neural network predicted 

the whole tumor and core tumor regions accurately but fails to obtain a similar result for the ET 

(label 4). From this figure, it can be seen that the CNN model somewhat captured correct infor-

mation about the ET but tit focused on other parts of the tumor as well.  

6.6 Clinical Relevance 

In the medical domain, explainable and interpretable AI systems are crucial for many applica-

tions such as research, education, and clinical treatments (Holzinger, Biemann, Pattichis, & 

Kell, 2017). XAI systems can support medical professionals to understand the prediction pro-

cess followed by deep learning models, and thus, enhance human experts’ trust in the system’s 

decisions. In this section, clinical partners at the Department of Neurosurgery, University of 

Ulm evaluated the above extensive experiments in Section 6.5. 

First, it is helpful to provide different methodologies of explanation, however, the second XAI 

method, namely GCAM was found to be easier to understand and interpret from the surgical 

point of view. Moreover, it showed a better way to evaluate the capability of the software to 

identify the tumor boundaries and to differentiate between different structures in the MRI imag-

es.  

Second, utilizing FLAIR and T2 MRI scans in the clinical routine could lead to a better and 

more accurate estimation of the perifocal edema surrounding the tumor. While applying the 

T1Gd could lead to a better assessment of the tumor boundaries in high-grade intra-axial le-

sions. The decreased accuracy in detecting the tumor boundaries in low-grade lesions can be 

explained by the failure to identify the tumors in T1, where these lesions do not show a marked 

enhancement. In these conditions, tumor segmentations would rely more on the T1Gd, T2, and 

FLAIR sequences incoherent with the reported results. 

Finally, the software showed a logical systematic process during the segmentation process, 

which has a significant similarity to the way used to identify the neoplastic tissues in the clinical 

practice, the perifocal edema, and the surrounding brain parenchyma. Finally, providing activa-

tion maps of internal filters in the neural network could help to provide more confidence about 

the perdition output and transparency about the “black box” machine learning systems. This 

may be valuable to generate on-demand human-understandable interpretations to help medical 

specialists in assessing the legitimacy of the segmentations and thus motivate them to evaluate it 

in their clinical trials. 
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6.7 Summary 

This chapter presented a new explainability framework, named NeuroXAI, for assisting the 

interpretation of the behavior of deep learning networks using state-of-the-art visualization 

attention maps. NeuroXAI is post-hoc and can therefore be applied to any deep neural models 

gaining insight into the behavior of these already trained models. Since visual pixel-based 

representations are not enough to give meaningful information, extensive experiments were 

conducted to provide interpretability by evaluating their clinical significance. Additionally, the 

two showcases have demonstrated the significance of incorporating XAI methods in medical 

image analysis tasks. NeuroXAI can also support the analysis of CNNs by providing an individ-

ual activation map for every internal filter.  

The obtained results supported the technical research work to realize that deep neural models 

behave in a human-understandable manner and are consistent with the surgical experts’ domain 

knowledge. Moreover, XAI methods showed the importance of explainability for medical 

imaging tasks to understand deep learning models to accelerate their clinical acceptance by 

medical staff in the field. 
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The fourth module of the proposed IGN pipeline (see Figure 1.2 “DeepIGN”) called Develop-

ment of an intuitive neuronavigational display in the operating room is described in this chap-

ter. This includes a short introduction to the neuronavigation system in Section 7.1. Section 7.2 

summarizes the relevant neuronavigational systems. Then, the overall concept of the proposed 

AI-assisted toolkit for neuronavigation is described in Section 7.3. In Section 7.4 the results of 

the extensive experiments are presented and discussed. A brief summary of this chapter is 

provided in Section 7.5. Parts of this chapter have previously appeared in (Ramy A. Zeineldin, 

Weimann, Karar, Mathis-Ullrich, & Burgert, 2021).  
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7.1 Introduction 

Neuronavigation is crucial in all phases of the IGN and contributes to the success of brain 

surgeries, for instance, it has an effect on the residual tumor mass and the post-operative follow-

up treatment plan. Therefore, reliable and robust neuronavigation software is mandatory for 

precise and effective neurosurgical guidance. Neuronavigation allows the tracking of surgical 

tools in real-time and the presentation of surgical tools on an intuitive display in the correct 

orientation with respect to a virtual patient model. 

7.2 Related Work 

Several commercial software platforms have been widely developed for the basic principles of 

image guidance such as Medtronic’s StealthStation and Brainlab’s Curve system. However, 

these proprietary systems are typically built for specific applications and due to their restrictive 

licenses, lack flexibility and extensibility, which are two main factors in developing research 

toolkits. Consequently, various initiatives have been launched for open-source medical research 

toolkits, such as 3D Slicer (Fedorov et al., 2012), MITK (Goch, Metzger, & Nolden, 2017), and 

ITK-Snap (Yushkevich et al., 2006). With the addition of OpenIGTLink (Tokuda et al., 2009) 

and PLUS (Lasso et al., 2014), open-source general medical imaging platforms can also provide 

integrated multimodal imaging acquisition and navigation such as SlicerIGT (Ungi et al., 2016) 

and NifTK (Clarkson et al., 2015). IBIS and CustusX are both open-source software platforms 

developed for assisting brain surgery; however, integrating with commercially available naviga-

tion systems is non-trivial and the scope of integrating iUS with additional functionalities such 

as neuromonitoring is limited. 

Lately, 3D Slicer and MITK have integrated the AI framework NVIDIA Clara (W. Zhu et al., 

2020) for automatic segmentation using deep learning. NVIDIA Clara is a cloud-powered 

application framework that enables automatic tumor volume inference using some pre-trained 

models. Similarly, Mehrtash et al. (Mehrtash et al., 2017) proposed DeepInfer, which is an 

application package developed as an extension for Slicer 3D to provide over-the-cloud deep 

learning models. Shortcomings of the above extensions include dependency on the network 

speed for uploading the MRI image data and downloading the predicted segmented model. 

Additionally, major privacy concerns become apparent since sensitive imaging data must be 

transferred over the internet before being processed using the backend network.  

7.3 System Design 

The development of image-guided surgery (IGS) applications is supported by several existing 

open-source platforms which can be categorized according to their level of system integration. 

Toolkits with a high level of system integration are ready to use in specialized image-guiding 

applications, while less integrated platforms that require significant investment in software 

engineering. On the other hand, less integrated toolkits have the advantage of being more flexi-
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ble and supporting a range of applications, whereas high integrated systems sacrifice flexibility 

in favor of being specialized on single or multiple tasks with more enhanced usability. 

Figure 7.1 depicts existing open-source platforms dedicated to IGS and their dependencies. At 

the lowest level of integration, Hardware, and common libraries are required for building IGS 

applications. The following level is called General Platform, which contains general imaging 

platforms such as 3D Slicer and MITK. By installing plugins or external libraries, general 

imaging software can be applied for IGS applications such as SlicerIGT and NifTK which is the 

third layer of integration called the IGS Plugin. Fully integrated IGS platforms for specific 

applications can be found at the final layer of the Application. For instance, CustusX and IBIS 

research software focuses on the integration of iUS for brain shift visualization toward assisting 

neurosurgery. The proposed AI-based IGN toolkit, namely DeepIGN, lies at the fully integrated 

end layer. 

 

Figure 7.1: Existing open-source platforms dedicated to IGS and their dependencies. From left to right: (1) 

Common libraries for interfacing with the hardware in the operating room. (2) General imaging plat-

forms that provide visualization capabilities with customizable interfaces. (3) Add-on plugins for the 

general-purpose platforms in level (2) to provide image-guidance capabilities. (4) Fully integrated 

IGS platforms for specific target applications. 

7.3.1 Design Requirements 

This section presents the design requirements for an integrated multimodal imaging and naviga-

tion system for assisting neurosurgery called the DeepIGN system. Table 1 provides an over-

view of the design requirements (RX) of the proposed system, which can be categorized into 
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two groups: clinical environment requirements (CR) and technical requirements (TR). For the 

purposes of this study, clinical requirements were determined through consultation with the 

surgical team and understanding the medical device regulations (Pesapane, Volonte, Codari, & 

Sardanelli, 2018). Specific technical requirements were then determined to satisfy these clinical 

requirements. 

Table 7.1: Design requirements for a multimodal image-guided navigation system for assisting neurosurgery. 

CRX and TRX stand for clinical and technical requirements, respectively. 

Requirement Description 

CR1. System as-

sembly 

System assembly should be straightforward and should ideally be com-

pleted within 15 min. It should not interfere with the routine surgical 

workflow 

CR2. Surgical safety Surgical sterility and safety are maintained for each system component 

CR3. Tracking 

accuracy 
TRE < 5 mm 

CR4. System cali-

bration 

Interventional system calibration should be completed in less than 5 min 

and should achieve satisfactory spatial accuracy (RMS < 5 mm) 

TR1. System com-

patibility 

The system should be compatible with US systems that support sharing 

video data over a network connection as well as standard clinical devices 

TR2. Intuitive 

display 

The GUI of the system should be simple and easy to use displaying all 

required information with intuitive user interaction and switching be-

tween modules 

TR3. Ultrasound 

visualization 

US imaging should be displayed in real-time in conventional axial, 

sagittal, and coronal planes 

TR4. Frame rate 
Fast frame rate to provide real-time information and thus helps in fast 

surgical decision-making (minimum of 10 FPS) 

7.3.2 System Components 

The described system hardware included a commercial ultrasound system (Esaote, Italy), a 

standard laptop (Intel Core i7-6700HQ, 3.5GHz, 32GB Ram, 64-bit Windows 10), and NDI 

Vicra optical tracking camera (NDI Medical, USA). 3D Slicer (version 5.0.3) [9] and the PLUS 

Toolkit (version 2.8.0) [10] form the core of the navigation software. Figure 7.2 provides an 

overview of the hardware and software components of the proposed navigation system. 

7.3.2.1 3D Slicer Software 

3D Slicer (Fedorov et al., 2012), an open-source, cross-platform, and extensible software pro-

gram for medical image computing and analysis, serves as the main neuronavigation software. 

Over two decades, 3D Slicer was implemented and developed through multi-institutional sup-

port from the National Institute of Health (NIH) as well as a worldwide developer community. 

Slicer 3D provides 2D, 3D, and 4D visualization capabilities for different imaging modalities 

(for example MRI, CT, and Ultrasound). Besides, 3D Slicer supports importing and exporting 

imaging data from multiple standard data formats including NIFTI, DICOM, and NRRD. 
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The 3D Slicer application follows a modular paradigm allowing the development of additional 

modules for feature-specific functionalities. Numerous modules providing a wide range of 

medical applications are distributed with the standard 3D Slicer software. Core modules are 

primarily categorized according to their function. One example is the Filtering module provid-

ing tools for basic pre-processing functions on medical images including arithmetic operations, 

Gaussian, bias field correction, and denoising filters. 

 

Figure 7.2: Overview of the proposed DeepIGN navigation system for assisting neurosurgery. NDI Vicra system 

is tracking the three optical markers: attached to the brain phantom, pointer tool (stylus), and the ul-

trasound transducer probe. Each marker is composed of four optically reflective spheres. 

7.3.2.2 Hardware Interfacing Layer 

PLUS Toolkit (Lasso et al., 2014) is a public open-source library for real-time data acquisition, 

streaming of imaging, and position tracking. PLUS was originally developed for ultrasound-

guided interventions, and hence its name is the Public software Library for UltraSound imaging 

research Toolkit. PLUS implements an abstraction layer for low-level data acquisition from 

various commercial vendors and data forwarding in a standardized format through a network 

connection. For the purpose of the IGN system, PLUS is used mainly to provide data from the 

navigated ultrasound transducer as well as the NDI tracking device. Ultrasound data and track-

ing information for each tracked object, specifically a 4x4 homogenous transformation matrix, 

is provided from PLUS Toolkit to 3D Slicer via OpenIGTLink (Tokuda et al., 2009). 

OpenIGTLink (Tokuda et al., 2009) is a standardized communication protocol among devices in 

operating rooms, which provides real-time data input-output. This configuration allowed a 

frame rate of approximately 15 FPS with a clinically acceptable latency. 
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7.3.2.3 SlicerIGT Calibration 

SlicerIGT (Ungi et al., 2016) is an open-source extension of 3D which provides additional 

functionality for the rapid development of image-guided interventions. In particular, SlicerIGT 

provides a convenient user interface for the registration of tracked stylus and ultrasound probe 

to their virtual complements in 3D Slicer. The calibration procedure consists of a two-step 

process whereby the tracked instrument was pivoted and then rotated around a fixed point for 15 

s each in a sequential manner1. After each movement, the root-mean-square error (RMSE) value 

is computed and the final value following the whole pivot calibration procedure should be less 

than 0.5 mm. This calibration process is performed once at the start of each operation using the 

pivot calibration module provided as part of SlicerIGT software. From this set of corresponding 

landmarks, SlicerIGT computes the transformation matrix from the reference to 3D Slicer RAS 

(namely Right, Anterior and Superior) coordinate system, ReferenceToRAS, as depicted in Fig. 

7.3. Other transforms of the stylus and the US probe are provided by the PLUS Toolkit, append-

ed in the scene graph below ReferenceToRAS (Fig. 7.3).  

 

Figure 7.3: The hierarchy of transformations within the 3D slicer software (left), and their representations (right). 

purple transforms represent coordinate transformations from all tracked tools to the tracking camera, 

whereas PLUS Toolkit is responsible for generating the transforms of tracked tools to the reference 

(blue transforms). Orange transforms show fixed transforms that are the result of all registration pro-

cedures (Preiswerk, Brinker, McDannold, & Mariano, 2019). 

7.3.2.4 DeepIGN Extensions 

The modular design of 3D Slicer allows the development of additional modules for delivering 

further feature-specific functionalities. The core of Slicer is written in C++ programming lan-

guage; however, the APIs of the core modules are also implemented in Python programming 

language allowing great support for rapid and simple prototyping applications. Similarly, Deep-

IGN follows a modular layered architecture, as presented in Fig. 7.1. DeepIGN shares common 

libraries with 3D Slicer such as the CTK and Qt libraries to create a custom user interface for 

deep learning-assisted neurosurgery. In each extension, additional libraries for image pro-

 
1 Pivot Calibration, Tutorial U-11, SlicerIGT; http://www.slicerigt.org/wp/user-tutorial/ 

http://www.slicerigt.org/wp/user-tutorial/
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cessing, tracking, resampling, and registration are included separately according to the required 

function. 

As discussed in Section 3.2, an IGN system consists of segmentation, registration, tracking, and 

visualization core functions. For each module, DeepIGN creates a custom end-user interface 

using 3D Slicer, as a slicelet2 where extraneous GUI components are removed, providing a 

greatly simplified workflow ready for clinical use, as shown in Fig. 7.4. Figure 7.5 presents the 

segmentation component, also called DeepSeg Module, as a sample DeepIGN module that is 

implemented as an external 3D Slicer extension coded in Python as a scripted module. DeepSeg 

module extends the functionality of the 3D Slicer providing automatic segmentation of brain 

glioma using the approaches in Chapter 4. Similar to the DeepSeg module, the NeuroXAI 

module provides human-understandable attention maps to make the deep learning models 

transparent and thus increase medical users’ trust and encourage their usage clinically. Further-

more, non-linear pre-operative MRI to iUS registration is performed by the iRegNet module to 

compensate for the brain shift during neurosurgical interventions. 

Both DeepIGN and 3D Slicer are distributed under the BSD-style license that allows free use 

for both academic and commercial purposes without any restrictions. Source codes will be 

released on the project website3, where users, developers, data scientists, and clinical research-

ers are welcome to contribute and add their models and comments. 

 

 
2 Slicelet, 3D Slicer; https://www.slicer.org/wiki/Documentation/Nightly/Developers/Slicelets/ 
3 DeepIGN project website; https://www.github.com/razeineldin/DeepIGN/ 

https://www.slicer.org/wiki/Documentation/Nightly/Developers/Slicelets
https://www.github.com/razeineldin/DeepIGN
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Figure 7.4: A high-level overview of the Proposed AI-powered IGN platform architecture and its relationship 

with 3D Slicer software and other libraries. Each extension has its dependencies for image processing, 

tracking information, resampling, or registration. 

 

Figure 7.5: DeepSeg module during visualization of the resultant tumor boundaries. The GUI panel is shown on 

the left, where the user can specify inputs, output volumes, model parameters, and other 3D visualiza-

tion options. Brain tumor segmentation results (green) of a sample HGG case from the BraTS 2021 

challenge are presented on the right. The application layout shows the axial (top middle), sagittal (bot-

tom middle), and coronal (bottom right), as well as 3D views (top right). 

7.4 Results and Discussion 

7.4.1 Pre-operative Application to BraTS Dataset 

7.4.1.1 Use Case Example 

In order to demonstrate the capabilities of using the DeepSeg module, part of the DeepIGN 

system, with the 3D Slicer for addressing brain imaging segmentation problems, a sample HGG 

case from the BraTS dataset was employed.  

The user must install the Slicer 3D program and then download the DeepSeg extension via the 

3D Slicer Extension Manager4. After that, DeepSeg can be selected from the machine learning 

category in the modules list. The default parameter settings include two different pre-trained 

deep learning models based on the input MRI image modalities. The first model is from the 

previous work, DeepSeg (Section 4.3.1) which requires only the FLAIR MRI data as an input 

 
4 Slicer-DeepSeg module, DeepIGN project, https://github.com/razeineldin/Slicer-DeepSeg. 

https://github.com/razeineldin/Slicer-DeepSeg
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and automatically predicts the tumor region. The second model is the winning approach in the 

segmentation task of the MICCAI BraTS 2022 challenge, 3D DeepSeg (Section 4.3.2), which 

requires the four MRI modalities like the BraTS challenge: FLAIR, T1, T1Gd, and T2.  

After the DeepSeg installation, the user can choose one model, specifies its input data, creates a 

new segmentation volume, and presses the “apply” button, as shown in Fig. 7.5. Then, an auto-

matic pre-processing stage, including resampling, cropping, and registration, is applied before 

the resultant tumor region is predicted using the specified pre-trained DNNs. Finally, the seg-

mented tumor is displayed in both Slicer 2- and 3D scenes as presented in Fig. 7.5. 

7.4.1.2 Runtime Results 

Table 7.1 lists the time runtime speed analysis for the two built-in neural networks, namely, 

DeepSeg and nnU-Net. The experiments were run on a computer with AMD Ryzen 2920X 

(32M Cache, 3.50 GHz) CPU, 32 GB RAM, and a single NVIDIA RTX 3060 GPU 12GB 

GDDR6. Slicer 3D version 4.11 was used with Python 3.6 running on 64-bit Ubuntu 18.04. 

Each measurement has been repeated 10 times and the average values are reported. Outstand-

ingly, the DeepSeg module was able to detect and localize the tumor region in an average of 

1.87 and 4.25 seconds using 3D DeepSeg (Section 4.3.2) and nnU-Net (Section 4.2) models, 

respectively. Compared to other cloud-based Slicer 3D extensions such as NVIDIA Clara and 

DeepInfer which take about 2 to 3 minutes for inference, the DeepSeg extension demonstrates 

significant performance advantages using pre-trained local models. 

Table 7.2: Runtime measurement comparing the two integrated DNNs: DeepSeg and nnU-Net on both CPU and 

GPU implementations. 

Process DeepSeg (s) nnU-Net (s) 

Loading data and pre-processing 0.07 0.70 

Building the DNN 0.58 0.81 

Tumor prediction 1.20 2.35 

Results visualization 0.02 0.02 

Total time 1.87 4.25 

7.4.2 Phantom Study 

7.4.2.1 Experimental Setup 

In this study, a tailored-made brain phantom based on tissue-mimicking material was used to 

simulate intra-operative navigation and evaluate the accuracy of the system’s tracking and 

registration capabilities. The detailed protocol followed to make the abstract model is provided 

in Appendix A. Figure 7.6 shows the use of the brain phantom to simulate the use of the Deep-

IGN navigation system in a clinical operating room. Public MRI Data from the BraTS 2021 

dataset was used as the basis for manufacturing the phantom. The resultant brain phantom was 

placed in a classic skull model manufactured by 3B Scientific Corporation (Fig. 7.6 (a)). MRI 
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images were first used to register the phantom model data in the DeepIGN. Then, an iUS trans-

ducer connected to the Esaote MyLabSat ultrasound system captures real-time US data which is 

displayed in the DeepIGN display with its 3D reconstructed volumetric data using 3D Slicer-

IGT. 

 

Figure 7.6: Validation of the DeepIGN system for use in guided neurosurgery in the simulated OR using the 

fabricated brain phantom. (a) custom brain phantom; (b) pre-operative FLAIR MRI with tumor high-

lighted in green; (c) live iUS image captured with the Esaote MyLabSat ultrasound linear transducer. 

7.4.2.2 DeepIGN Workflow 

Pre-operative preprocessing 

Pre-operative preprocessing refers to the preparation of images through data visualization, 

image processing, tumor segmentation, and the generation of a virtual 3D model of the patient. 

This process involves volume data, geometric models, AI methods, and spatial and temporal 

relations between them. The underlying building blocks for 3D computer graphics and visuali-

zation are provided by the Visualization Toolkit (VTK)5. Automatic segmentation of brain 

tumors in MRI volumes is provided by deep learning in the DeepSeg module (Figure 7.5) 

whereas semi-automatic segmentation can be done using a variety of tools in the segment editor 

module (Figure 7.7). Different file formats can be imported directly such as DICOM6, NIFTI7, 
  

 
5 The Visualization Toolkit; http://www.vtk.org/ 
6 Digital Imaging and Communication in Medicine; https://www.dicomstandard.org/ 

http://www.vtk.org/
https://www.dicomstandard.org/
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Figure 7.7: Interactive segmentation using the segment editor module as a built-in module of 3D Slicer. Tools 

such as threshold, paint, draw, erase, and grow from seed are available on the left (module panel). 

 

Figure 7.8: The NeuroXAI module provides sensitivity maps to explain the prediction of the tumor segmentation 

in brain MRI. 

ITK8, and VTK file formats. Figure 7.7 the user interface of the Segment Editor module, which 

offers editing of overlapping segments, volume displaying in both 2D and 3D views, editing in 

 
7 Neuroimaging Informatics Technology Initiative; https://nifti.nimh.nih.gov/ 
8 The Insight Toolkit; http://www.itk.org/ 

https://nifti.nimh.nih.gov/
http://www.itk.org/
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3D views, and creating segmentation by interpolating or extrapolating segmentation on a few 

slices. Explanation maps can be provided on-demand to justify the decision of the deep neural 

network via the NeuroXAI module (Figure 7.8). 

Registration 

The term registration refers to the process of determining the spatial relation between two 

coordinate systems. In general, there are two general forms of registration implemented in the 

DeepIGN system. First, image-to-image registration where one set of images (moving) is trans-

formed into the coordinate space of another set of images (fixed). iRegNet module allows fast 

and accurate MRI-iUS registration during neurosurgical interventions using an AI-based ap-

proach (Figure 7.9). Second, image-to-patient registration transforms the virtual patient model 

into the physical patient, thus enabling image navigation using physical tools. This type is 

provided using specific methods of VTK, in which the same point set is defined in the two 

spaces to be registered, and then finding the relation between them using the least squares fit. 

 

Figure 7.9: Automatic image-to-image registration using the iRegNet module. MRI and iUS scans are utilized as 

moving and fixed images, respectively, since the main goal is to reflect the brain shift in the pre-

operative MRI data. 

Position Tracking 

Position tracking technology is a key component of navigation, in which a dynamic visualiza-

tion of instruments and tools is achieved at the correct location in the 3D guidance display. 

Tracking Tools are physical devices that are used by the operator to interact with the patient. 

Surgical instruments, stylus pointers, and US probes are examples of tracking tools. All IGSTK 

devices, namely the optical tracking system (Polaris, NDI, Canada) and the ultrasound imaging 

(MyLabSat, Esaote, Italy), are connected via the PLUS toolkit. The instruments to be tracked 

are equipped with special sensors with attached reflective markers, and the tracking system 
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provides realtime information about their position and orientation. For quality control reasons, 

all tracked devices are calibrated before each procedure using the SlicerIGT and the configura-

tions are stored in XML files. Figure 7.10 shows an example of the stylus probe calibration 

using fiducial landmarks registration as a two-step approach: First, the transform between a 

tracker tool attached to the probe and the stylus tip is estimated. Second, the registration of the 

device's physical coordinates to the simulated 3D model is achieved. 

 

Figure 7.10: Illustration of the stylus calibration using the VTK landmark registration method as part of the 

SlicerIGT extension. (a) – (d) show different fiducial landmarks, whereas the resultant registered sty-

lus pointer is displayed in cyan (e)9. 

Image Acquisition 

The clinician navigates through the patient's anatomy using tools, and the views show the posi-

tion inside the virtual patient. For each phase of the brain surgery, the user has the option to 

choose between a number of pre-defined layouts, which may contain 2D slices, 3D patient 

models, and table views for statistics. During the intervention, the acquisition of updated image 

data may be necessary due to patient movement, anatomical changes, or lack of pre-operative 

data. DeepIGN can use image modalities such as the US to provide this updated information. 

With a properly calibrated and tracked US probe, new 3D volumes can be created. Figure 7.11 

display a live iUS visualization using the DeepIGN system. 

 
9 Landmark registration, Tutorial U-12, SlicerIGT; http://www.slicerigt.org/wp/user-tutorial/ 

http://www.slicerigt.org/wp/user-tutorial/
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(a) 

 

(b) 

Figure 7.11: Illustration of the live US acquisition as part of the DeepIGN system. (a) provides US view with 

recording and reconstruction of 3D US images. (b) provide a view of the tracked US probe and its lo-

cation with respect to the pre-operative MRI. 
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7.4.2.3 System Accuracy 

To enable research and clinical trials in the operating room, overall clinical accuracy, robust-

ness, and responsiveness of the system and the anatomical representation of relevant structures 

should meet standard levels. The proposed IGN system shares similar components with other 

computer-aided interventional systems including image segmentation algorithms, multimodal 

registration, data visualization, and tracking system. Segmentation errors were measured using 

DSC and HD95 between the predicted tumor and ground truth volumes in 3D. The proposed 

DeepSeg module has been successfully tested and evaluated on-line based on MRI datasets of 

the BraTS 2022 challenge, including more than 1200 cases. It is worth noting that the ensemble 

method is the winner of this MICCAI challenge among more than one thousand teams world-

wide achieving an average DSC of 0.9270 and HD95 of 3.60 mm for the whole tumor region. 

To evaluate the registration module, experiments were conducted using 36 patients from two 

publicly available multi-location databases: BITE and RESECT. The TRE was calculated 

between the center of the fitted spheres in 3D. Quantitatively, iRegNet reduced the mean land-

mark errors from pre-registration values of (4.18 ± 1.84 and 5.35 ± 4.19 mm) to the lowest 

value of (1.47 ± 0.61 and 0.84 ± 0.16 mm) for the BITE and RESECT datasets, respectively.  

The integrated navigation system was also tested in a pre-clinical operating room (Figure 7.12). 

A volunteer computer-assisted medicine student correctly assembled the system hardware and 

completed the initial set-up in about 11 min (CR1). The computing device can be put on a 

separate sterilized table and connected to other operating devices via a network connection 

(CR2). Calibration and position tracking of rigid surgical tools (stylus for simulation, and iUS 

transducer) has achieved an accuracy of less than 0.5 mm (CR3), and the process was completed 

in less than one minute (CR4). 

 

Figure 7.12: Intra-operative simulation of 3D Ultrasound reconstruction using patient data and a patient-specific 

phantom model. 
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The system is assumed to be compatible with ultrasound systems that support sharing video data 

over a network connection or using an image grabber device (TR1). Further, a pre-clinical 

evaluation of the system's usability was undertaken independently by an experienced neurosur-

geon who considered the system to be highly useful, with an intuitive display and clinically 

acceptable accuracy (TR2). Frame rate imaging of an average of 19 FPS was achieved, as per 

the target requirement (TR4). The system provides live US imaging (Figure 7.11 (a)) fulfilling 

the requirement of (TR3). Nevertheless, the available US imaging system (MyLabSat, Esaote, 

Italy) does not provide 3D US imaging and future work will include testing the proposed system 

with neurosurgical navigation US systems (TR3). Overall, the proposed prototype research 

system met all of the minimum requirements specified in Table 7.1, but further refinement in 

collaboration with commercial partners will be employed. 

7.4.3 Comparison with IGN Platforms 

As discussed in Section 3.2.2, two categories can be distinguished including commercial sys-

tems and open-source research platforms. Table 7.2 summarizes the differences between exist-

ing systems for image-guided interventions as well as the proposed DeepIGN platform. Com-

mercial IGN systems, for example, Brainlab, Medtronic, and imFusion, are built for routine 

clinical use and are widely used for surgical planning and guidance worldwide. The other group 

comprises open research systems that are built specifically to be used as intra-operative naviga-

tion systems and are designed with a focus on neurosurgery. Another major difference is that a 

research system should be at the forefront of the development and has a rapid introduction of 

new features into the clinic compared to commercial systems which emphasize stability and 

ease of use. 

The proposed DeepIGN system belongs to the second group of open-source guidance systems, 

which allows components to be improved upon or replaced to accommodate research projects 

while replicating the common functionality of a commercial IGNS. Two distinguishing features 

of DeepIGN are its fully automatic deep learning solution for brain tumor segmentation in MRI 

images as well as its capabilities of explaining neural network prediction using XAI methods. 

Besides the effective visualization of brain shift intra-operatively using iUS navigation, Deep-

IGN provides an automatic methodology for the correction of deformed brain images with the 

help of recent advances in DL. Since the backend software of the proposed IGN system is 3D 

Slicer, interfaces can be overwritten with a simple Python script, which can greatly ease the 

development process.  

Another important aspect to consider when choosing an open-source research system is the level 

of support by the community of developers and users. This aspect is fully fulfilled with 3D 

Slicer as it has one of the largest and most active community that applied it in a variety of 

clinical and pre-clinical research applications (Fedorov et al., 2012). For instance, a recent study 

indicated the possibility of using 3D Slicer in pre-operative planning of brain lesions surgery (L. 

Zhou et al., 2022) although cranial planning has been a unique feature of Brainlab so far. Simi-

larly, some research studies have investigated the use of augmented reality to assist neurosurgi-

cal procedures such as (Dominguez-Velasco, Perez-Lomeli, Padilla-Castaneda, Tello-Mata, & 

Alcocer-Barradas, 2022; Haouchine et al., 2022; Yavas, Caliskan, & Cagli, 2021). 
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Table 7.3: Comparative analysis of the proposed DeepIGN platform against the available image guidance 

systems. 

Features NifTK CustusX IBIS SlicerIGT ImFusion Brainlab Medtronic DeepIGN 

2D/ 3D  

Visualization 
Yes Yes Yes Yes Yes Yes Yes Yes 

Customizable User 

Interface 
No No No Yes No Yes Yes Yes 

Cranial Planning No No No No No Yes Yes No 

Interactive Manual 

Segmentation 
Yes No No No Yes Yes Yes Yes 

Automatic Tumor 

Segmentation 
No No No No No No No Yes 

Patient Registration No Yes Yes Yes No Yes Yes Yes 

MRI-MRI  

Registration 
Yes Yes No No Yes No No Yes 

MRI-US  

Registration 
No Yes Yes No Yes No No Yes 

iUS Navigation No Yes Yes Yes No Yes Yes Yes 

Brain shift  

Visualization 
No No Yes Yes Yes Yes Yes Yes 

Brain shift  

Correction 
No No Yes No No No No Yes 

Instrument Tracking Yes Yes Yes Yes No Yes Yes Yes 

Augmented Reality No No Yes No No No No No 

Deep Learning Yes No No No Yes No No Yes 

Explainable AI* No No No No No No No Yes 

FDA Approved No No No No No Yes Yes No 

Open source Yes Yes Yes Yes No No No Yes 

* Bold values highlight distinctive features of the proposed DeepIGN system 
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7.5 Summary 

An open-source integrated intra-operative navigation toolkit, called DeepIGN, was developed 

and tailored to neurosurgery. With its simple GUI, easy installation guide, and range of availa-

ble modules, DeepIGN gives users and clinical researchers the opportunity to utilize advanced 

deep learning approaches within brain cancer research without the need for advanced program-

ming skills or detailed knowledge of several software packages. DeepIGN has a modular archi-

tecture with the ability to incorporate the following functions: (1) multimodal 3D pre-operative 

MRI and iUS volume visualizations of the brain tumor and surrounding healthy structures, (2) 

pre-operative brain tumor segmentation in MRI images, (3) neuronavigation based on the pre-

operative MRI volumes, (4) intra-operative guidance with the help of iUS volumes, (5) brain 

shift corrections using the registration of pre-operative MRI to iUS scanning, (6) real-time 

tracking of the surgical instruments and the iUS transducer. Except for the commercial iUS 

system, all other system’s software components including the DeepIGN application, 3D Slicer 

platform, PLUS toolkit, and SlicerIGT plugin software are open source under the BSD license. 

Nonetheless, the proposed navigation system can be integrated with any type of clinical hard-

ware for tracking surgical tools and iUS streaming. 
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8.1 Conclusions 

In this thesis, an image-guided system is proposed for assisting neurosurgical interventions 

using deep learning methods. Hence, an efficient research pipeline (see Figure 1.2) is defined to 

address the four necessary modules including an automatic and accurate definition of the brain 

tumor boundaries, registration of pre-operative MRI to iUS images for brain shift compensation, 

interpreting the developed DNNs using XAI, and the development of an intuitive neuronaviga-

tional display in the operating room. The main part of this thesis, therefore, comprises four 

chapters dedicated to each of the following research questions.  

How to correctly delineate brain tumor boundaries from adjacent healthy structures using 

automatic deep-learning models? 

Accurate segmentation of brain tumor boundaries and their neighboring healthy structures in 

multimodal MRI is the basis for successful neurosurgery. In particular, the precise localization 

of pathological targets (lesions) within the brain anatomy is a major issue in neurosurgery. This 

challenge is related to the difficulty in visually delineating these pathological structures from 

healthy tissue. Typically, manual segmentation is the gold standard and is usually performed by 

an expert: often a radiologist or a specialized clinician. While it has the advantage of incorporat-

ing expert knowledge, the drawbacks of this method are the time-consuming nature of the 

procedure and the proneness of inter-observer variability (refer to Section 3.3.1).  

Different novel approaches are proposed in Chapter 4 as the first step of the research pipeline. 

Initially, the 2D DeepSeg framework is proposed for automatic segmentation of the brain glio-

ma in MR FLAIR images based on seven state-of-the-art CNN models. By incorporating mul-

timodal MRI inputs, utilizing region-based training, applying a larger batch size of 5, post-

processing stage, and on-the-fly data augmentation, the 3D DeepSeg model achieved a better 

DSC score of 0.91 for all tumor sub-regions, respectively. Utilizing the STAPLE ensemble 

strategy contributed further to the improvement of the global performance of the deep networks 

with DSC scores of 0.84, 0.88, and 0.93 for the ET, TC, and WT glioma sub-regions, respec-

tively. It is worth noting that the proposed Ensemble 2022 model is the winner of the BraTS 

2022 segmentation challenge and on two different datasets: the BraTS test dataset and the Sub-

Saharan Africa population (SSA) dataset as proof of its generality to unseen data. 

Which algorithmic methods should be applied to use iUS data to correct the shifted pre-

operative MRI images? 

Intra-operative brain deformation in response to surgical manipulation, swelling, gravity, and 

anesthesia, called brain shift, reduces the utility of pre-operative imaging data for neurosurgical 

guidance. Pre-operative MRI presents perfect imaging modalities for neurosurgical guidance, 

due to its excellent visualization of the brain tissues, its sub-structure, and surrounding tissues. 

However, MRI suffers from long scan times and requires special precautions in the operating 

room in order not to affect the MRI scanning quality or cause any image artifacts. On the other 

hand, the US modality offers portable, low-cost, non-ionizing radiation, fast scan times ranging 

from seconds to minutes, easy to use, good visualization of the internal soft tissue and struc-

tures, and could achieve a spatial resolution within 0.20 mm. The disadvantages of intervention-
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al US are the difficulty in imaging through bone and image inconsistency because of inter-

operator variability. 

Thereby, the iRegNet framework is presented in Chapter 5 as an automatic, fast, and accurate 

framework for the alignment of pre-interventional MRI to iUS to correct tissue shift and enable 

guided surgery. Pre-operative MRI (as a moving image) and iUS (as a fixed image) are first 

appended to the convolutional neural network, after which a non-rigid transformation field is 

estimated. The MRI image is then transformed using the output displacement field to the iUS 

coordinate system. Extensive quantitative experiments of six iRegNet configurations demon-

strated the robustness and generality of the proposed method (refer to Section 5.5). Statistically, 

non-rigid registration results showed that TRE values decreased from initial values of (4.18 ± 

1.84 mm and 5.35 ± 4.19 mm) to reduced values of (1.47 ± 0.61 and 0.84 ± 0.16 mm) outper-

forming other state-of-the-art methods on the BITE and RESECT datasets, respectively, as 

illustrated in Tables 5.2 and 5.3. Moreover, qualitative evaluation by two experienced neurosur-

geons shows that registered MRI-iUS pairs have significantly improved over the original align-

ment. 

Can Explainable AI help to make deep learning networks transparent and understand the 

reason behind their predictions toward gaining human trust? 

AI, in particular DL, has achieved remarkable results for medical image analysis in several 

applications. Yet the lack of human-like explanations of such systems is considered the princi-

pal restriction before utilizing these methods in clinical practice. XAI provides a human-

explainable and interpretable description of the “black-box” nature of DL, as illustrated in 

Chapter 6. An effective XAI diagnosis generator, namely NeuroXAI (refer to Section 6.3.1), has 

been developed to extract 3D explanations from CNN models of brain gliomas. By providing 

visual justification maps, NeuroXAI can help make deep learning models transparent and thus 

increase the trust of medical experts 

NeuroXAI has been applied to two applications of the most widely investigated problems in 

brain imaging analysis, i.e. image classification and segmentation using MRI. Visual attention 

maps of multiple XAI methods have been generated and compared for both applications, which 

could help to provide transparency about the performance of deep learning systems. NeuroXAI 

helps to understand the prediction process of 3D CNN networks for brain glioma using human-

understandable explanations. Since visual pixel-based representations are not enough to give 

meaningful information, extensive experiments were conducted to provide interpretability by 

evaluating their clinical significance. Results revealed that the investigated deep learning mod-

els behave in a logical human-like manner and can improve the analytical process of the MRI 

images systematically. Due to its open architecture, ease of implementation, and scalability to 

new XAI methods, NeuroXAI could be utilized to assist medical professionals in the detection 

and diagnosis of brain tumors. 

Which toolkits are required to develop a meaningful display for neuronavigation in a simple 

and intuitive fashion in the operating room? 

Neuronavigation has become an indispensable tool in the management of brain tumors, allowing 

for smaller, more precisely positioned incisions and the accurate localization of tumors and 
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surrounding structural and functional regions which may be at risk during surgery. However, 

dynamic changes in the surgical environment regularly occur during the intervention, making 

the surgeon face continuously challenging intra-operative circumstances, as illustrated in Sec-

tion 3.3.2. Consequently, image guidance using computerized navigation based on pre-operative 

imaging data does not provide enough information to complete the surgical guidance, and the 

demand for intra-operative acquired images raises to provide online information as the surgery 

progresses.  

Chapter 7 gives a detailed outline of the proposed DeepIGN software including several main 

components organized in a particular way for neuronavigation procedures. A commercial Esaote 

system is utilized to provide real-time live iUS data, while accurate tracking information is 

transmitted by the PLUS toolkit to allow for the accurate definition of the tumor and surgical 

tools positions relative to patient anatomy (Section 7.3). Visualization of multimodal imaging 

data in a meaningful display simply and intuitively in the operating room is another feature of 

DeepIGN provided by 3D Slicer software. Position tracking of the Stylus and iUS transducer 

was calibrated at the start of each intervention using the SlicerIGT software as an integrated part 

of the DeepIGN. 

In conclusion, the proposed DeepIGN system is an effective open toolkit for assisting neurosur-

gery which greatly facilitates the surgeon's understanding of the relationship between normal 

and pathological anatomy. Among its benefits in pre-operative planning and visualization in 

neurosurgery is the automatic segmentation of glioma in pre-operative Brain MRI, displaying 

the position and exact location of the lesion in 2D and 3D views, and extracting human-

understandable attention maps to interpret the deep learning networks and explain their deci-

sion-making procedure. Furthermore, DeepIGN has been proven to be highly valuable at volu-

metrically representing iUS data and using them to compensate for brain deformation during 

neurosurgical interventions. 

8.2 Outlook 

The main focus of this thesis was set on the development of multimodal image-guided methods 

for brain surgery guidance using the recent advances in deep learning. The main part of this 

thesis therefore comprised four chapters dedicated to each of the IGN tasks of glioma segmenta-

tion in Brain MRI, Multimodal MRI to iUS registration, explainability of DNNs, and DeepIGN 

system integration. Thereby, the evaluation of the results depicts further capabilities of the 

proposed approaches (refer to Table 7.2), which are discussed within the following subsections. 

8.2.1 Multimodal Registration 

Further research work should be conducted to investigate the optimal cropping radius for MRI 

images to minimize the missing data as possible. Automating this procedure will contribute 

towards rendering iRegNet an end-to-end pipeline. Furthermore, employing the recent learning-

based approaches and registration advances would lead to improving the overall registration 

performance, specifically atrous spatial pyramid pooling (ASPP) (Chen, Papandreou, Kokkinos, 
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Murphy, & Yuille, 2018), resection cavities segmentation (Canalini, Klein, Miller, & Kikinis, 

2020), multi-resolution (Nan, Tennant, Rubin, & Ray, 2020), spatial attention (Y. Zhu et al., 

2021), and locally adaptive regularization (Dalca, Balakrishnan, Guttag, & Sabuncu, 2019), and 

unsupervised learning (Balakrishnan et al., 2019). 

Another limitation of the multimodal registration module is concerning the training datasets. In 

general, the quantity and diversity of training data are limited to particular areas and recording 

conditions, thereby impairing the generality and transferability of learned models. While the 

proposed registration pipeline exhibits good accuracy results on unseen data, limitations of its 

transferability become obviously recognizable, especially in the case of a real intra-operative 

application to brain phantom.  

8.2.2 Need for large datasets 

Despite the great progress, deep learning-based algorithms have made in solving various medi-

cal segmentation problems, their performance is highly dependent on the availability of large, 

high-quality expert-annotated datasets (Fu et al., 2021; Kim et al., 2019). Another challenge 

facing researchers, particularly in the field of medical imaging, is scarce annotations where only 

a limited number of real clinical images are available for the training and validation of new 

image analysis algorithms (Tajbakhsh et al., 2020). In the presence of these shortcomings, even 

the most advanced learning models may fail to generalize to real-world applications.  

Accordingly, researchers from the medical imaging community have actively sought solutions 

to these problems of preparing both medical imaging data and their annotations (Tajbakhsh et 

al., 2020). One idea was to invest effort in developing new methods for the expansion and 

enhancement of existing datasets would reduce the annotation time and operational costs 

(Lundervold & Lundervold, 2019). Synthetic data generation was also proposed using genera-

tive adversarial networks (GANs) to actively enlarge the training dataset through effective 

algorithms (Donnez et al., 2021). The combination of synthetic and real datasets could consid-

erably increase the performance of neural networks under the condition that a sufficient quantity 

of original data is accessible. This assumption may be addressed in future studies. 

8.2.3 Mixed Reality 

Mixed reality allows for the superimposition of virtual objects with the real world. In medicine, 

especially in complex surgical interventions, the availability of patient- and pathology-related 

information can be the decisive factor for the success of the intervention. There are first ap-

proaches to use mixed reality in surgical interventions (Guha et al., 2017), e.g. the overlay of 

tumor boundaries in a surgical microscope (Drouin et al., 2017; Mascitelli et al., 2018) or the 

use of Microsoft HoloLens for open procedures (Galati et al., 2020). The question is still un-

known, which information shall be displayed using which specific visual representation at what 

point in time to guarantee that the surgeons are not distracted by the mixed reality overlay or the 

interaction with the system? 
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8.2.4 Explainable Deep Models 

For future work, the generalization architecture of the proposed TransXAI can be extended by 

adding new deep-learning models. Further studies should explore feeding on-demand 3D con-

cept activation maps back to the neural network as on-demand deep supervision. That will 

provide additional guidance to the network and thus enhance the overall accuracy of assisting 

the surgeons during interventional procedures. Moreover, future work will be focused on the 

quantitative evaluation of XAI methods to assess the quality of the generated sensitivity maps 

and study their relationship with the deep learning accuracy metrics with additional experiments 

on multi-modal MRI-guided neurosurgery. 
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Appendix A. Brain Phantom 
Preparation 

The use of patient-specific anatomical phantoms with appropriate tissue-mimicking properties is 

often a critical part of the testing environment and can increase the confidence of clinicians who 

are learning to use a new image-guiding system (Pacioni et al., 2014). In the following, the steps 

involved in the fabrication of a durable, patient-specific brain phantom are described. The 

resultant phantom was utilized for the test and evaluation of the proposed DeepIGN navigation 

system for assisting brain tumor surgery. Appendix A reproduces parts of the following publica-

tion (Earle, Portu, & DeVos, 2016; Mackle et al., 2020). 

A.1 Design Requirements 

The brain tumor phantom must possess several key characteristics in order to be suitable for the 

validation of the iUS neuronavigation application, as follows: 

• The phantom should be made of non-toxic materials for safe clinical use. 

• Has realistic imaging properties, i.e. suitable for US attenuation. 

• Possess mechanical properties similar to human tissue to simulate brain shifts. 

• To be based on real patient data to allow for pre-clinical simulation. 

• Made of durable materials to be used repeatedly for the testing and validation processes. 

A.2 Data 

The publicly available data of the BraTS 2019 challenge was utilized that describes a multi-

institutional collection of pre-operative multimodal MRI brain scans of 336 subjects diagnosed 

with high-grade (HGG) and lower-grade gliomas (LGG) (Spyridon Bakas et al., 2018; Menze et 

al., 2015). Details of the dataset and pre-processing are described in Section (4.4.1). The phan-

tom described in this study was created using pre-operative T1Gd/ FLAIR MRI data from an 

HGG patient (#00153) and iUS live data from the Esaote MyLabSat ultrasound system. 

A.3 Material 

Polyvinyl alcohol cryogel (PVA-c) is a popular choice of tissue-mimicking material thanks to 

its acoustic and mechanical properties, which can be tuned by varying its freeze-thaw cycles. 

However, their mechanical strength and durability are limited, and they do not meet the required 

design requirements for this application. Similarly, agar and gelatin are aqueous materials used 

widely as tissue-mimicking materials for organ phantoms (Fromageau et al., 2007). Agar is also 

durable and has a high degree of elasticity allowing for repetitive use without the need for 

refrigeration. 
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A.4 Parts Segmentations 

1. Install the 3D Slicer software1 to segment the patient data. 

2. Tumor segmentation 

1. Open DeepIGN software and load the four MRI modalities provided by the 

BraTS dataset. 

2. The ‘DeepSeg’ module will be loaded, and a new segmentation named ‘Tumor’ 

is automatically created. 

3. Change the tumor type to ‘Whole Tumor’ from the advanced segmentation pa-

rameters. 

4. Press the ‘Apply’ button to perform automatic segmentation of the brain tumor. 

5. Open the ‘Segment Editor’ module, and correct the segmentation if necessary, 

using the ‘Paint’, ‘Draw’, and ‘Erase’ functions. 

6. Apply the ‘Smoothing’ function (suggested median 2.00 mm 5 x 5 x 3 pixels). 

7. Save ‘Tumor’ segmentations. 

8. Open the ‘Segmentations’ module and export ‘Tumor’ as STL files. 

3. Brain tissue segmentation 

1. Open the ‘Segment Editor’ module and create a new segmentation named 

‘Brain’. 

2. Use the ‘Threshold’ function to highlight the brain. Make sure to set the 

threshold value from 1.0 to exclude the empty background pixels. 

3. Use the ‘Smoothing’ function (suggested median 2.00 mm, 5 × 5 × 3 pixels). 

4. Use the ‘Scissors’ function to remove any unwanted or erroneous segmenta-

tions. 

5. Save ‘Brain’ segmentations. 

6. Open the ‘Segmentations’ module and export ‘Brain’ as STL files. 

A.5 3D Printing of Molds 

1. Create the brain and tumor molds 

1. Import the STL file ‘Brain’ into computer-aided design (CAD) software2. 

2. Click the ‘MESH’ tab and use the ‘Reduce’ tool to reduce the size of the mod-

el so that it can be handled by the program – the aim is to reduce the size as 

much as possible, whilst still retaining all the detail necessary. 

3. Use the ‘Covert Mesh’ tool to convert the imported mesh to a body that can be 

manipulated. If this action cannot be completed, the mesh was not reduced 

enough in the last step. 

4. Click ‘Create’ in the ‘SOLID’ tab then ‘Box’ and draw a box around the tu-

mor. Select to create this as a ‘New Body’ and rotate the view to ensure the box 

completely encloses the tumor on all sides. 

 
1 3D Slicer, USA; https://www.slicer.org/ 
2 Fusion 360, Autodesk, USA; https://www.autodesk.com/products/fusion-360/ 

https://www.slicer.org/
https://www.autodesk.com/products/fusion-360/
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5. In the modify tab, use the ‘Combine’ tool to cut the tumor (the ‘Brain Body’) 

from the box (the ‘Target Body’). This will then leave a box with a hollow 

shape of the tumor inside it. 

6. Check that the hollowed-out box is present. Cut this box into an appropriate 

number of pieces so that once the mold is filled, it can be prized apart without 

damaging the phantom inside. For the tumor here, it is enough to split the box 

in two, but for the other parts of the phantom, more pieces are needed. 

7. Create planes through the box in the places where the mold needs to be cut. 

Click ‘Construct’ and then ‘Midplane’ to create a plane through the center of 

the box. Right-click on the created plane and choose ‘Offset Plane’ to position 

the plane more precisely. 

8. Use the ‘Split Body’ function in the ‘Modify’ tab to split the mold along the 

planes created. 

9. Move the individual pieces of the mold, by right-clicking and selecting 

‘Move/Copy’, so that all the pieces are facing outwards. 

10. Add rivets to the faces of each piece of the mold (so it can fit together secure-

ly), by clicking ‘Create sketch’ then ‘Centre diameter circle’ and on each 

face, drawing small circles. Right click then ‘Extrude’ these circles outwards a 

few millimeters on one face and extrude them inwards on the corresponding 

face. 

NOTE: The circles that are extruded inwards need to be slightly bigger – ap-

proximately 1.5 mm - than those that are extruded outwards so that they will fit 

together snugly. 

11. Create a hole at the side of the mold to pour the material into the tumor. Click 

‘Hole’ in the ‘SOLID’ tab and draw a hole on the tumor side. Select the hole 

type to ‘Countersink’. 

12. Similarly, create another hole at the bottom of the molds to pour the material in.  

13. Save each piece of the mold as a separate STL file. 

2. Print the 3D molds 

1. Install or open 3D printing software. 

2. Open the STL file for each piece of the mold in the printing software and rotate 

it so that it lies flat against the build plate. It is possible to add multiple mold 

pieces to the build plate and to print these simultaneously. 

3. Choose a large layer height (around 0.2 mm) and low infill value (around 20%) 

for faster printing. Print the molds using a rigid material such as Polylactic acid 

(PLA). If the molds are positioned appropriately, the support material is not 

necessary. 

A.6 Preparation of Agar 

1. Measure 75 g of agar powder and set it to the side. 

2. Mix 1500 mL of cold water with the agar powder. 

3. Stir until the agar is suspended in water without clumps. 

4. Briefly bring the mixture to a boiler while stirring periodically. 
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5. The agar can be left at room temperature for a few hours until the temperature reaches 50 

°C. 

A.7 Phantom Assembly 

1. Measure out enough agar to fill the tumor mold into a beaker. 

2. To the agar gel for the tumor, add 1 w/w% glass microspheres for ultrasound contrast and 

stir by hand. 

3. Sonicate the beaker to ensure homogenous mixing of the additives. 

4. Leave to cool and allow any bubbles formed to escape, around 10 min, then scrape any 

bubbles from the surface. 

5. Secure the tumor mold together (tape can be used to cover the joins in the mold) and pour 

about 10% of the prepared mix through the hole in the top of the mold.  

6. Let set at room temperature for 20 min. 

7. Pour the remaining agar gel into the mold. 

8. The agar phantom can be left uncovered at room temperature for one week or up to four 

weeks in the fridge. 

A.8 Phantom US Imaging 

1. Apply ultrasound gel to the imaging probe. 

NOTE: Gel is not used intraoperatively but may be used in simulation and does not sig-

nificantly change the clinical workflow or the quality of the acquired images. 

2. Image the brain and tumor through the craniotomy, with a clinical scanner and burr hole 

probe.
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neural network framework for automatic brain tumor segmentation using magnetic 

resonance FLAIR images. International journal of computer assisted radiology and 

surgery, 15(6), 909-920. https://doi.org/10.1007/s11548-020-02186-z 

Zeineldin, R., Weimann, P., Karar, M., Mathis-Ullrich, F. & Burgert, O. (2021). Slicer-

DeepSeg: Open-Source Deep Learning Toolkit for Brain Tumour Segmentation. 

Current Directions in Biomedical Engineering, 7(1), 30-34. 

https://doi.org/10.1515/cdbme-2021-1007 

Zeineldin, R.A., Karar, M.E., Mathis-Ullrich, F., Burgert, O. (2021). A Hybrid Deep 

Registration of MR Scans to Interventional Ultrasound for Neurosurgical Guidance. 

In International Workshop on Machine Learning in Medical Imaging (pp. 586-595). 

Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_60 

Zeineldin, R. A., Karar, M. E., Elshaer, Z., Schmidhammer, M., Coburger, J., Wirtz, C. R., ... & 

Mathis-Ullrich, F. (2021). iRegNet: non-rigid registration of MRI to interventional US 

for brain-shift compensation using convolutional neural networks. IEEE Access, 9, 

147579-147590. https://doi.org/10.1109/ACCESS.2021.3120306 

Zeineldin, R.A., Karar, M.E., Mathis-Ullrich, F., Burgert, O. (2022). Ensemble CNN Networks 

for GBM Tumors Segmentation Using Multi-parametric MRI. In: Crimi, A., Bakas, S. 

(eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 

BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. 

https://doi.org/10.1007/978-3-031-08999-2_41 

Zeineldin, R. A., Karar, M. E., Elshaer, Z., Coburger, J., Wirtz, C. R., Burgert, O., & Mathis-

Ullrich, F. (2022). Explainability of deep neural networks for MRI analysis of brain 

tumors. Int J Comput Assist Radiol Surg, 17(9), 1673-1683. 

https://doi.org/10.1007/s11548-022-02619-x 

Zeineldin, R.A., Pollok, A., Mangliers, T., Karar, M., Mathis-Ullrich, F. & Burgert, O. (2022). 

Deep automatic segmentation of brain tumours in interventional ultrasound data. 

Current Directions in Biomedical Engineering, 8(1), 133-137. 

https://doi.org/10.1515/cdbme-2022-0034 

Zeineldin, R.A., Karar, M.E., Mathis-Ullrich, F., Burgert, O. (2023). Multimodal CNN 

Networks for Brain Tumor Segmentation in MRI: A BraTS 2022 Challenge Solution. 

Accepted in BraTS 2022 Challenge, BrainLes 2022. Lecture Notes in Computer 

Science. Springer, Cham.  

Zeineldin, R.A., Karar, M.E., Mathis-Ullrich, F., Burgert, O. (2023). Self-supervised iRegNet 

for the Registration of Longitudinal Brain MRI of Diffuse Glioma Patients. Accepted in 

BraTS-Reg 2022 Challenge, BrainLes 2022. Lecture Notes in Computer Science. 

Springer, Cham.  

Zeineldin, R. A., Karar, M. E., Elshaer, Z., Coburger, J., Wirtz, C. R., ... & Mathis-Ullrich, F. 

(2023). Explainable Hybrid Vision Transformers and Convolutional Network for 

Multimodal Glioma Segmentation in Brain MRI. Under Review at IEEE Journal of 

Biomedical and Health Informatic 

https://doi.org/10.1515/cdbme-2020-0039
https://doi.org/10.1007/s11548-020-02186-z
https://doi.org/10.1515/cdbme-2021-1007
https://doi.org/10.1007/978-3-030-87589-3_60
https://doi.org/10.1109/ACCESS.2021.3120306
https://doi.org/10.1007/978-3-031-08999-2_41
https://doi.org/10.1007/s11548-022-02619-x
https://doi.org/10.1515/cdbme-2022-0034




  

133 

References 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Devin, M. (2016). 

Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 

preprint arXiv:1603.04467.  

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B. (2018). Sanity checks 

for saliency maps. Paper presented at the Proceedings of the 32nd International 

Conference on Neural Information Processing Systems. 

Amari, S.-i. (1993). Backpropagation and stochastic gradient descent method. Neurocomputing, 

5(4-5), 185-196. doi:10.1016/0925-2312(93)90006-o 

Angelov, P. P., Soares, E. A., Jiang, R., Arnold, N. I., & Atkinson, P. M. (2021). Explainable 

artificial intelligence: an analytical review. WIREs Data Mining and Knowledge 

Discovery, 11(5). doi:10.1002/widm.1424 

Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: automatic detection from X-ray 

images utilizing transfer learning with convolutional neural networks. Physical and 

Engineering Sciences in Medicine, 43(2), 635-640. doi:10.1007/s13246-020-00865-4 

Armanious, K., Jiang, C., Fischer, M., Kustner, T., Hepp, T., Nikolaou, K., . . . Yang, B. (2020). 

MedGAN: Medical image translation using GANs. Comput Med Imaging Graph, 79, 

101684. doi:10.1016/j.compmedimag.2019.101684 

Askeland, C., Solberg, O. V., Bakeng, J. B., Reinertsen, I., Tangen, G. A., Hofstad, E. F., . . . 

Lindseth, F. (2016). CustusX: an open-source research platform for image-guided 

therapy. Int J Comput Assist Radiol Surg, 11(4), 505-519. doi:10.1007/s11548-015-

1292-0 

Baheti, B., Waldmannstetter, D., Chakrabarty, S., Akbari, H., Bilello, M., Wiestler, B., . . . 

Abidi, S. (2021). The brain tumor sequence registration challenge: Establishing 

correspondence between pre-operative and follow-up mri scans of diffuse glioma 

patients. arXiv preprint arXiv:2112.06979.  

Baid, U., Ghodasara, S., Bilello, M., Mohan, S., Calabrese, E., Colak, E., . . . Bakas, S. (2021). 

The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation 

and Radiogenomic Classification. arXiv:2107.02314. Retrieved from 

https://ui.adsabs.harvard.edu/abs/2021arXiv210702314B 

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J. S., . . . Davatzikos, C. 

(2017). Advancing The Cancer Genome Atlas glioma MRI collections with expert 

segmentation labels and radiomic features. Sci Data, 4(1), 170117. 

doi:10.1038/sdata.2017.117 

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., . . . Rozycki, M. (2018). 

Identifying the best machine learning algorithms for brain tumor segmentation, 

progression assessment, and overall survival prediction in the BRATS challenge. arXiv 

preprint arXiv:1811.02629.  

Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J., & Dalca, A. V. (2019). VoxelMorph: A 

Learning Framework for Deformable Medical Image Registration. IEEE Trans Med 

Imaging. doi:10.1109/TMI.2019.2897538 

Bastos, D. C. A., Juvekar, P., Tie, Y., Jowkar, N., Pieper, S., Wells, W. M., . . . Kapur, T. 

(2021). Challenges and Opportunities of Intraoperative 3D Ultrasound With 

Neuronavigation in Relation to Intraoperative MRI. Front Oncol, 11, 656519. 

doi:10.3389/fonc.2021.656519 

https://ui.adsabs.harvard.edu/abs/2021arXiv210702314B


References 

134 

 

Baxter, J. S. H., Gibson, E., Eagleson, R., & Peters, T. M. (2018). The semiotics of medical 

image Segmentation. Medical Image Analysis, 44, 54-71. 

doi:10.1016/j.media.2017.11.007 

Bucholz, R. D., Smith, K. R., Laycock, K. A., & McDurmont, L. L. (2001). Three-dimensional 

localization: from image-guided surgery to information-guided therapy. Methods, 25(2), 

186-200. doi:10.1006/meth.2001.1234 

Buckner, J. C. (2003). Factors Influencing Survival in High-Grade Gliomas. Seminars in 

Oncology: W.B. Saunders. 

Canalini, L., Klein, J., Miller, D., & Kikinis, R. (2020). Enhanced registration of ultrasound 

volumes by segmentation of resection cavity in neurosurgical procedures. Int J Comput 

Assist Radiol Surg, 15(12), 1963-1974. doi:10.1007/s11548-020-02273-1 

Censi, F., Mattei, E., Triventi, M., Bartolini, P., & Calcagnini, G. (2012). Radiofrequency 

identification and medical devices: the regulatory framework on electromagnetic 

compatibility. Part I: medical devices. Expert Rev Med Devices, 9(3), 283-288. 

doi:10.1586/erd.12.4 

Chan, H. P., Hadjiiski, L. M., & Samala, R. K. (2020). Computer-aided diagnosis in the era of 

deep learning. Med Phys, 47(5), e218-e227. doi:10.1002/mp.13764 

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018). DeepLab: 

Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and 

Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 40, 834-848. doi:10.1109/TPAMI.2017.2699184 

Cheng, X., Zhang, L., & Zheng, Y. F. (2018). Deep similarity learning for multimodal medical 

images. Computer Methods in Biomechanics and Biomedical Engineering-Imaging and 

Visualization, 6(3), 248-252. doi:10.1080/21681163.2015.1135299 

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. 

Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, 

CVPR 2017: Institute of Electrical and Electronics Engineers Inc. 

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3D U-Net: 

Learning Dense Volumetric Segmentation from Sparse Annotation. In Medical Image 

Computing and Computer-Assisted Intervention – MICCAI 2016 (pp. 424-432). 

Cireşan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2012). Deep neural 

networks segment neuronal membranes in electron microscopy images. Advances in 

Neural Information Processing Systems. 

Clarkson, M. J., Zombori, G., Thompson, S., Totz, J., Song, Y., Espak, M., . . . Ourselin, S. 

(2015). The NifTK software platform for image-guided interventions: platform 

overview and NiftyLink messaging. Int J Comput Assist Radiol Surg, 10(3), 301-316. 

doi:10.1007/s11548-014-1124-7 

Cleary, K., & Peters, T. M. (2010). Image-guided interventions: technology review and clinical 

applications. Annu Rev Biomed Eng, 12(1), 119-142. doi:10.1146/annurev-bioeng-

070909-105249 

Coburger, J., Konig, R. W., Scheuerle, A., Engelke, J., Hlavac, M., Thal, D. R., & Wirtz, C. R. 

(2014). Navigated high frequency ultrasound: description of technique and clinical 

comparison with conventional intracranial ultrasound. World Neurosurg, 82(3-4), 366-

375. doi:10.1016/j.wneu.2014.05.025 

Coburger, J., Merkel, A., Scherer, M., Schwartz, F., Gessler, F., Roder, C., . . . Wirtz, C. R. 

(2016). Low-grade Glioma Surgery in Intraoperative Magnetic Resonance Imaging: 

Results of a Multicenter Retrospective Assessment of the German Study Group for 

Intraoperative Magnetic Resonance Imaging. Neurosurgery, 78(6), 775-786. 

doi:10.1227/NEU.0000000000001081 



References 

135 

 

Coburger, J., & Wirtz, C. R. (2019). Fluorescence guided surgery by 5-ALA and intraoperative 

MRI in high grade glioma: a systematic review. J Neurooncol, 141(3), 533-546. 

doi:10.1007/s11060-018-03052-4 

Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013). Improving deep neural networks for LVCSR 

using rectified linear units and dropout. Paper presented at the 2013 IEEE International 

Conference on Acoustics, Speech and Signal Processing.  

Dalca, A. V., Balakrishnan, G., Guttag, J., & Sabuncu, M. R. (2019). Unsupervised learning of 

probabilistic diffeomorphic registration for images and surfaces. Med Image Anal, 57, 

226-236. doi:10.1016/j.media.2019.07.006 

Datta, S. K., Shaikh, M. A., Srihari, S. N., & Gao, M. (2021). Soft Attention Improves Skin 

Cancer Classification Performance. In Interpretability of Machine Intelligence in 

Medical Image Computing, and Topological Data Analysis and Its Applications for 

Medical Data (pp. 13-23). 

De Momi, E., Ferrigno, G., Bosoni, G., Bassanini, P., Blasi, P., Casaceli, G., . . . Cardinale, F. 

(2016). A method for the assessment of time-varying brain shift during navigated 

epilepsy surgery. Int J Comput Assist Radiol Surg, 11(3), 473-481. doi:10.1007/s11548-

015-1259-1 

De Nigris, D., Collins, D. L., & Arbel, T. (2013). Fast rigid registration of pre-operative 

magnetic resonance images to intra-operative ultrasound for neurosurgery based on high 

confidence gradient orientations. Int J Comput Assist Radiol Surg, 8(4), 649-661. 

doi:10.1007/s11548-013-0826-6 

de Vos, B. D., Berendsen, F. F., Viergever, M. A., Sokooti, H., Staring, M., & Isgum, I. (2019). 

A deep learning framework for unsupervised affine and deformable image registration. 

Med Image Anal, 52, 128-143. doi:10.1016/j.media.2018.11.010 

Delorenzo, C., Papademetris, X., Staib, L. H., Vives, K. P., Spencer, D. D., & Duncan, J. S. 

(2010). Image-guided intraoperative cortical deformation recovery using game theory: 

application to neocortical epilepsy surgery. IEEE Trans Med Imaging, 29(2), 322-338. 

doi:10.1109/TMI.2009.2027993 

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete 

Data Via theEMAlgorithm. Journal of the Royal Statistical Society: Series B 

(Methodological), 39(1), 1-22. doi:10.1111/j.2517-6161.1977.tb01600.x 

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep 

bidirectional transformers for language understanding. arXiv preprint 

arXiv:1810.04805.  

Diba, A., Sharma, V., Pazandeh, A., Pirsiavash, H., & Gool, L. V. (2017, 21-26 July 2017). 

Weakly Supervised Cascaded Convolutional Networks. Paper presented at the 2017 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 

Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. In Multiple Classifier 

Systems (pp. 1-15). 

Dijkstra, N., Zeidman, P., Ondobaka, S., van Gerven, M. A. J., & Friston, K. (2017). Distinct 

Top-down and Bottom-up Brain Connectivity During Visual Perception and Imagery. 

Sci Rep, 7(1), 5677. doi:10.1038/s41598-017-05888-8 

Dolz, J., Desrosiers, C., Wang, L., Yuan, J., Shen, D., & Ben Ayed, I. (2020). Deep CNN 

ensembles and suggestive annotations for infant brain MRI segmentation. Comput Med 

Imaging Graph, 79, 101660. doi:10.1016/j.compmedimag.2019.101660 

Dominguez-Velasco, C. F., Perez-Lomeli, J. S., Padilla-Castaneda, M. A., Tello-Mata, I. E., & 

Alcocer-Barradas, V. (2022). A Ventriculostomy Simulation through Augmented Reality 

Navigation System for Learning and Improving Skills in Neurosurgery. Paper presented 

at the 2022 IEEE Mexican International Conference on Computer Science (ENC).  

Donnez, M., Carton, F.-X., Le Lann, F., De Schlichting, E., Chabanas, M., Linte, C. A., & 

Siewerdsen, J. H. (2021). Realistic synthesis of brain tumor resection ultrasound 



References 

136 

 

images with a generative adversarial network. Paper presented at the Medical Imaging 

2021: Image-Guided Procedures, Robotic Interventions, and Modeling.  

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., . . . 

Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition 

at scale. arXiv preprint arXiv:2010.11929.  

Drobny, D., Vercauteren, T., Ourselin, S., & Modat, M. (2018). Registration of MRI and iUS 

Data to Compensate Brain Shift Using a Symmetric Block-Matching Based Approach. 

In Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and 

Navigation (pp. 172-178). 

Drouin, S., Kochanowska, A., Kersten-Oertel, M., Gerard, I. J., Zelmann, R., De Nigris, D., . . . 

Collins, D. L. (2017). IBIS: an OR ready open-source platform for image-guided 

neurosurgery. Int J Comput Assist Radiol Surg, 12(3), 363-378. doi:10.1007/s11548-

016-1478-0 

Du, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning. 

Communications of the ACM, 63(1), 68-77. doi:10.1145/3359786 

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and 

stochastic optimization. Journal of machine learning research, 12(7).  

Dussik, K. (1942). On the possibility of using ultrasound waves as a diagnostic aid. Neurol 

Psychiat, 174, 153-168.  

Earle, M., Portu, G., & DeVos, E. (2016). Agar ultrasound phantoms for low-cost training 

without refrigeration. Afr J Emerg Med, 6(1), 18-23. doi:10.1016/j.afjem.2015.09.003 

Eitel, F., & Ritter, K. (2019). Testing the Robustness of Attribution Methods for Convolutional 

Neural Networks in MRI-Based Alzheimer’s Disease Classification. In Interpretability 

of Machine Intelligence in Medical Image Computing and Multimodal Learning for 

Clinical Decision Support (pp. 3-11). 

Ellingson, B. M., Wen, P. Y., & Cloughesy, T. F. (2017). Modified Criteria for Radiographic 

Response Assessment in Glioblastoma Clinical Trials. Neurotherapeutics, 14(2), 307-

320. doi:10.1007/s13311-016-0507-6 

Enquobahrie, A., Cheng, P., Gary, K., Ibanez, L., Gobbi, D., Lindseth, F., . . . Cleary, K. (2007). 

The image-guided surgery toolkit IGSTK: an open source C++ software toolkit. J Digit 

Imaging, 20 Suppl 1(Suppl 1), 21-33. doi:10.1007/s10278-007-9054-3 

Esmaeili, M., Vettukattil, R., Banitalebi, H., Krogh, N. R., & Geitung, J. T. (2021). Explainable 

Artificial Intelligence for Human-Machine Interaction in Brain Tumor Localization. J 

Pers Med, 11(11). doi:10.3390/jpm11111213 

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J. C., Pujol, S., . . . 

Kikinis, R. (2012). 3D Slicer as an image computing platform for the Quantitative 

Imaging Network. Magn Reson Imaging, 30(9), 1323-1341. 

doi:10.1016/j.mri.2012.05.001 

Fromageau, J., Gennisson, J. L., Schmitt, C., Maurice, R. L., Mongrain, R., & Cloutier, G. 

(2007). Estimation of polyvinyl alcohol cryogel mechanical properties with four 

ultrasound elastography methods and comparison with gold standard testings. IEEE 

Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 54(3), 498-509. 

doi:10.1109/tuffc.2007.273 

Fu, Y., Lei, Y., Wang, T., Curran, W. J., Liu, T., & Yang, X. (2021). A review of deep learning 

based methods for medical image multi-organ segmentation. Phys Med, 85, 107-122. 

doi:10.1016/j.ejmp.2021.05.003 

Galati, R., Simone, M., Barile, G., De Luca, R., Cartanese, C., & Grassi, G. (2020). 

Experimental Setup Employed in the Operating Room Based on Virtual and Mixed 

Reality: Analysis of Pros and Cons in Open Abdomen Surgery. Journal of Healthcare 

Engineering, 2020, 1-11. doi:10.1155/2020/8851964 



References 

137 

 

Galloway, J. R. L., Wolf, I., Vetter, M., Wegner, I., Nolden, M., Bottger, T., . . . Meinzer, H.-P. 

(2004). The medical imaging interaction toolkit (MITK): a toolkit facilitating the 

creation of interactive software by extending VTK and ITK. Paper presented at the 

Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display.  

Ge, C., Gu, I. Y.-H., Jakola, A. S., & Yang, J. (2018). Deep Learning and Multi-Sensor Fusion 

for Glioma Classification Using Multistream 2D Convolutional Networks. Paper 

presented at the 2018 40th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC).  

Gerard, I. J., Kersten-Oertel, M., Hall, J. A., Sirhan, D., & Collins, D. L. (2020). Brain Shift in 

Neuronavigation of Brain Tumors: An Updated Review of Intra-Operative Ultrasound 

Applications. Front Oncol, 10, 618837. doi:10.3389/fonc.2020.618837 

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward 

neural networks. Paper presented at the Proceedings of the Thirteenth International 

Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning 

Research. https://proceedings.mlr.press/v9/glorot10a.html 

Goch, C. J., Metzger, J., & Nolden, M. (2017). Abstract: Medical Research Data Management 

Using MITK and XNAT. In Bildverarbeitung für die Medizin 2017 (pp. 305-305). 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning: MIT press. 

Guha, D., Alotaibi, N. M., Nguyen, N., Gupta, S., McFaul, C., & Yang, V. X. D. (2017). 

Augmented Reality in Neurosurgery: A Review of Current Concepts and Emerging 

Applications. Canadian Journal of Neurological Sciences / Journal Canadien des 

Sciences Neurologiques, 44(3), 235-245. doi:10.1017/cjn.2016.443 

Gulum, M. A., Trombley, C. M., & Kantardzic, M. (2021). A Review of Explainable Deep 

Learning Cancer Detection Models in Medical Imaging. Applied Sciences, 11(10). 

doi:10.3390/app11104573 

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual 

understanding: A review. Neurocomputing, 187, 27-48. 

doi:10.1016/j.neucom.2015.09.116 

Habibi Aghdam, H., & Jahani Heravi, E. (2017). Guide to Convolutional Neural Networks. 

Haouchine, N., Juvekar, P., Nercessian, M., Wells, W., Golby, A., & Frisken, S. (2022). Pose 

Estimation and Non-Rigid Registration for Augmented Reality During Neurosurgery. 

IEEE Trans Biomed Eng, 69(4), 1310-1317. doi:10.1109/TBME.2021.3113841 

Haskins, G., Kruecker, J., Kruger, U., Xu, S., Pinto, P. A., Wood, B. J., & Yan, P. (2019). 

Learning deep similarity metric for 3D MR-TRUS image registration. Int J Comput 

Assist Radiol Surg, 14(3), 417-425. doi:10.1007/s11548-018-1875-7 

Haskins, G., Kruger, U., & Yan, P. (2020). Deep learning in medical image registration: a 

survey. Machine Vision and Applications, 31(1-2). doi:10.1007/s00138-020-01060-x 

Hastreiter, P., Rezk-Salama, C., Soza, G., Bauer, M., Greiner, G., Fahlbusch, R., . . . Nimsky, C. 

(2004). Strategies for brain shift evaluation. Med Image Anal, 8(4), 447-464. 

doi:10.1016/j.media.2004.02.001 

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., . . . Larochelle, 

H. (2017). Brain tumor segmentation with Deep Neural Networks. Medical Image 

Analysis, 35, 18-31. doi:10.1016/j.media.2016.05.004 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 

Proceedings of the IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition. 

Heinrich, M. P. (2018). Intra-operative Ultrasound to MRI Fusion with a Public Multimodal 

Discrete Registration Tool. In Simulation, Image Processing, and Ultrasound Systems 

for Assisted Diagnosis and Navigation (pp. 159-164). 

https://proceedings.mlr.press/v9/glorot10a.html


References 

138 

 

Heinrich, M. P., Jenkinson, M., Papież, B. W., Brady, S. M., & Schnabel, J. A. (2013). Towards 

Realtime Multimodal Fusion for Image-Guided Interventions Using Self-similarities, 

Berlin, Heidelberg. 

Hervey-Jumper, S. L., & Berger, M. S. (2016). Maximizing safe resection of low- and high-

grade glioma. J Neurooncol, 130(2), 269-282. doi:10.1007/s11060-016-2110-4 

Holland, E. C. (2001). Progenitor cells and glioma formation. Current opinion in neurology, 14, 

683-688.  

Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build 

explainable AI systems for the medical domain? arXiv preprint arXiv:1712.09923.  

Hong, J., & Park, H. (2018). Non-linear Approach for MRI to intra-operative US Registration 

Using Structural Skeleton. In Simulation, Image Processing, and Ultrasound Systems 

for Assisted Diagnosis and Navigation (pp. 138-145). 

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., . . . Adam, H. 

(2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision 

Applications.  

Hu, Y., Modat, M., Gibson, E., Li, W., Ghavami, N., Bonmati, E., . . . Vercauteren, T. (2018). 

Weakly-supervised convolutional neural networks for multimodal image registration. 

Med Image Anal, 49, 1-13. doi:10.1016/j.media.2018.07.002 

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected 

convolutional networks. Proceedings - 30th IEEE Conference on Computer Vision and 

Pattern Recognition, CVPR 2017: Institute of Electrical and Electronics Engineers Inc. 

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by 

reducing internal covariate shift. 32nd International Conference on Machine Learning, 

ICML 2015: International Machine Learning Society (IMLS). 

Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a 

self-configuring method for deep learning-based biomedical image segmentation. Nat 

Methods, 18(2), 203-211. doi:10.1038/s41592-020-01008-z 

Isensee, F., Jäger, P. F., Full, P. M., Vollmuth, P., & Maier-Hein, K. H. (2021). nnU-Net for 

Brain Tumor Segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and 

Traumatic Brain Injuries (pp. 118-132). 

Jain, K. K. (2018). A Critical Overview of Targeted Therapies for Glioblastoma. Front Oncol, 

8, 419. doi:10.3389/fonc.2018.00419 

Jiang, D., Shi, Y., Yao, D., Wang, M., & Song, Z. (2016). miLBP: a robust and fast modality-

independent 3D LBP for multimodal deformable registration. Int J Comput Assist 

Radiol Surg, 11(6), 997-1005. doi:10.1007/s11548-016-1407-2 

Johnson, H., Harris, G., & Williams, K. (2007). BRAINSFit: Mutual Information Registrations 

of Whole-Brain 3D Images, Using the Insight Toolkit. The Insight Journal. 

doi:10.54294/hmb052 

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., Hudspeth, A. J., & Mack, S. 

(2000). Principles of neural science (Vol. 4): McGraw-hill New York. 

Kang, J., Ullah, Z., & Gwak, J. (2021). MRI-Based Brain Tumor Classification Using Ensemble 

of Deep Features and Machine Learning Classifiers. Sensors (Basel), 21(6). 

doi:10.3390/s21062222 

Kapishnikov, A., Venugopalan, S., Avci, B., Wedin, B., Terry, M., & Bolukbasi, T. (2021). 

Guided Integrated Gradients: An Adaptive Path Method for Removing Noise. Paper 

presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition. 

Karar, M. E., Merk, D. R., Falk, V., & Burgert, O. (2016). A simple and accurate method for 

computer-aided transapical aortic valve replacement. Computerized Medical Imaging 

and Graphics, 50, 31-41. doi:10.1016/j.compmedimag.2014.09.005 



References 

139 

 

Kim, M., Yun, J., Cho, Y., Shin, K., Jang, R., Bae, H. J., & Kim, N. (2019). Deep Learning in 

Medical Imaging. Neurospine, 16(4), 657-668. doi:10.14245/ns.1938396.198 

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint 

arXiv:1412.6980.  

Kneöaurek, K., Ivanovic, M., Machac, J., & Weber, D. A. (2000). Medical image registration. 

Europhysics News, 31(4), 5-8. doi:10.1051/epn:2000401 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep 

convolutional neural networks (Vol. 60): Association for Computing Machinery. 

Kubben, P. L., Postma, A. A., Kessels, A. G., van Overbeeke, J. J., & van Santbrink, H. (2010). 

Intraobserver and interobserver agreement in volumetric assessment of glioblastoma 

multiforme resection. Neurosurgery, 67(5), 1329-1334. 

doi:10.1227/NEU.0b013e3181efbb08 

Lapointe, S., Perry, A., & Butowski, N. A. (2018). Primary brain tumours in adults. Lancet, 

392(10145), 432-446. doi:10.1016/S0140-6736(18)30990-5 

Lasso, A., Heffter, T., Rankin, A., Pinter, C., Ungi, T., & Fichtinger, G. (2014). PLUS: open-

source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng, 

61(10), 2527-2537. doi:10.1109/TBME.2014.2322864 

Lauterbur, P. C. (1973). Image Formation by Induced Local Interactions: Examples Employing 

Nuclear Magnetic Resonance. Nature, 242(5394), 190-191. doi:10.1038/242190a0 

Le, N. Q. K., Hung, T. N. K., Do, D. T., Lam, L. H. T., Dang, L. H., & Huynh, T. T. (2021). 

Radiomics-based machine learning model for efficiently classifying transcriptome 

subtypes in glioblastoma patients from MRI. Comput Biol Med, 132, 104320. 

doi:10.1016/j.compbiomed.2021.104320 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. 

doi:10.1038/nature14539 

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to 

document recognition. Proceedings of the IEEE, 86(11), 2278-2324. 

doi:10.1109/5.726791 

Lee, J., Liu, P., Cheng, J., & Fu, H. (2019). A Deep Step Pattern Representation for Multimodal 

Retinal Image Registration. Paper presented at the 2019 IEEE/CVF International 

Conference on Computer Vision (ICCV).  

Li, H., & Fan, Y. (2018). Non-Rigid Image Registration Using Self-Supervised Fully 

Convolutional Networks without Training Data. Proc IEEE Int Symp Biomed Imaging, 

2018, 1075-1078. doi:10.1109/ISBI.2018.8363757 

Li, J., Huo, H., Li, C., Wang, R., Sui, C., & Liu, Z. (2021). Multigrained Attention Network for 

Infrared and Visible Image Fusion. IEEE Transactions on Instrumentation and 

Measurement, 70, 1-12. doi:10.1109/tim.2020.3029360 

Li, Y. M., Suki, D., Hess, K., & Sawaya, R. (2016). The influence of maximum safe resection 

of glioblastoma on survival in 1229 patients: Can we do better than gross-total 

resection? J Neurosurg, 124(4), 977-988. doi:10.3171/2015.5.JNS142087 

Liang, Z.-P., & Lauterbur, P. C. (2000). Principles of magnetic resonance imaging: SPIE 

Optical Engineering Press Bellingham. 

Liew, A., Lee, C. C., Lan, B. L., & Tan, M. (2021). CASPIANET++: A multidimensional 

Channel-Spatial Asymmetric attention network with Noisy Student Curriculum 

Learning paradigm for brain tumor segmentation. Comput Biol Med, 136, 104690. 

doi:10.1016/j.compbiomed.2021.104690 

Liu, J., Singh, G., Al'Aref, S., Lee, B., Oleru, O., Min, J. K., . . . Mosadegh, B. (2019). Image 

Registration in Medical Robotics and Intelligent Systems: Fundamentals and 

Applications. Advanced Intelligent Systems, 1(6). doi:10.1002/aisy.201900048 

Louis, D. N., Wesseling, P., Aldape, K., Brat, D. J., Capper, D., Cree, I. A., . . . Ellison, D. W. 

(2020). cIMPACT-NOW update 6: new entity and diagnostic principle 



References 

140 

 

recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification 

and grading. Brain Pathol, 30(4), 844-856. doi:10.1111/bpa.12832 

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. 

Paper presented at the Proceedings of the 31st international conference on neural 

information processing systems. 

Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging 

focusing on MRI. Z Med Phys, 29(2), 102-127. doi:10.1016/j.zemedi.2018.11.002 

Luo, X., Wang, G., Song, T., Zhang, J., Aertsen, M., Deprest, J., . . . Zhang, S. (2021). 

MIDeepSeg: Minimally interactive segmentation of unseen objects from medical 

images using deep learning. Medical Image Analysis, 72. 

doi:10.1016/j.media.2021.102102 

Lynch, C. J., & Liston, C. (2018). New machine-learning technologies for computer-aided 

diagnosis. Nat Med, 24(9), 1304-1305. doi:10.1038/s41591-018-0178-4 

Ma, K., Wang, J., Singh, V., Tamersoy, B., Chang, Y.-J., Wimmer, A., & Chen, T. (2017). 

Multimodal Image Registration with Deep Context Reinforcement Learning, Cham. 

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural 

network acoustic models. Paper presented at the Proc. icml. 

Machado, I., Toews, M., George, E., Unadkat, P., Essayed, W., Luo, J., . . . Ou, Y. (2019). 

Deformable MRI-Ultrasound registration using correlation-based attribute matching for 

brain shift correction: Accuracy and generality in multi-site data. Neuroimage, 202, 

116094. doi:10.1016/j.neuroimage.2019.116094 

Machado, I., Toews, M., Luo, J., Unadkat, P., Essayed, W., George, E., . . . Ou, Y. (2018). 

Deformable MRI-Ultrasound Registration via Attribute Matching and Mutual-Saliency 

Weighting for Image-Guided Neurosurgery. In Simulation, Image Processing, and 

Ultrasound Systems for Assisted Diagnosis and Navigation (pp. 165-171). 

Mackle, E. C., Shapey, J., Maneas, E., Saeed, S. R., Bradford, R., Ourselin, S., . . . Desjardins, 

A. E. (2020). Patient-Specific Polyvinyl Alcohol Phantom Fabrication with Ultrasound 

and X-Ray Contrast for Brain Tumor Surgery Planning. Journal of Visualized 

Experiments(161). doi:10.3791/61344 

Mahapatra, D., Bozorgtabar, B., & Ge, Z. (2021). Medical Image Classification Using 

Generalized Zero Shot Learning. Paper presented at the Proceedings of the IEEE/CVF 

International Conference on Computer Vision. 

Maloca, P. M., Muller, P. L., Lee, A. Y., Tufail, A., Balaskas, K., Niklaus, S., . . . Denk, N. 

(2021). Unraveling the deep learning gearbox in optical coherence tomography image 

segmentation towards explainable artificial intelligence. Commun Biol, 4(1), 170. 

doi:10.1038/s42003-021-01697-y 

Mascitelli, J. R., Schlachter, L., Chartrain, A. G., Oemke, H., Gilligan, J., Costa, A. B., . . . 

Bederson, J. B. (2018). Navigation-Linked Heads-Up Display in Intracranial Surgery: 

Early Experience. Operative Neurosurgery, 15(2), 184-193. doi:10.1093/ons/opx205 

Masoumi, N., Xiao, Y., & Rivaz, H. (2019). ARENA: Inter-modality affine registration using 

evolutionary strategy. Int J Comput Assist Radiol Surg, 14(3), 441-450. 

doi:10.1007/s11548-018-1897-1 

McKinley, R., Meier, R., & Wiest, R. (2019). Ensembles of Densely-Connected CNNs with 

Label-Uncertainty for Brain Tumor Segmentation. In Brainlesion: Glioma, Multiple 

Sclerosis, Stroke and Traumatic Brain Injuries (pp. 456-465). 

Mehrtash, A., Pesteie, M., Hetherington, J., Behringer, P. A., Kapur, T., Wells, W. M., 3rd, . . . 

Abolmaesumi, P. (2017). DeepInfer: Open-Source Deep Learning Deployment Toolkit 

for Image-Guided Therapy. Proc SPIE Int Soc Opt Eng, 10135. 

doi:10.1117/12.2256011 

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., . . . Van 

Leemput, K. (2015). The Multimodal Brain Tumor Image Segmentation Benchmark 



References 

141 

 

(BRATS). IEEE Trans Med Imaging, 34(10), 1993-2024. 

doi:10.1109/TMI.2014.2377694 

Mercier, L., Del Maestro, R. F., Petrecca, K., Araujo, D., Haegelen, C., & Collins, D. L. (2012). 

Online database of clinical MR and ultrasound images of brain tumors. Med Phys, 

39(6), 3253-3261. doi:10.1118/1.4709600 

Mercier, L., Fonov, V., Haegelen, C., Del Maestro, R. F., Petrecca, K., & Collins, D. L. (2012). 

Comparing two approaches to rigid registration of three-dimensional ultrasound and 

magnetic resonance images for neurosurgery. Int J Comput Assist Radiol Surg, 7(1), 

125-136. doi:10.1007/s11548-011-0620-2 

Miller, D., Benes, L., & Sure, U. (2011). Stand-alone 3D-ultrasound navigation after failure of 

conventional image guidance for deep-seated lesions. Neurosurg Rev, 34(3), 381-387; 

discussion 387-388. doi:10.1007/s10143-011-0314-9 

Miner, R. C. (2017). Image-Guided Neurosurgery. J Med Imaging Radiat Sci, 48(4), 328-335. 

doi:10.1016/j.jmir.2017.06.005 

Muhammad, K., Khan, S., Ser, J. D., & Albuquerque, V. H. C. (2021). Deep Learning for 

Multigrade Brain Tumor Classification in Smart Healthcare Systems: A Prospective 

Survey. IEEE Trans Neural Netw Learn Syst, 32(2), 507-522. 

doi:10.1109/TNNLS.2020.2995800 

Mustaf, M., Sali, A., Illzam, E., Sharifa, A., & Nang, M. (2018). Brain cancer: Current 

concepts, diagnosis and prognosis. IOSR Journal of Dental and Medical Sciences, 

17(3), 41-46.  

naceur, M. B., Saouli, R., Akil, M., & Kachouri, R. (2018). Fully Automatic Brain Tumor 

Segmentation using End-To-End Incremental Deep Neural Networks in MRI images. 

Computer Methods and Programs in Biomedicine, 166, 39-49. 

doi:10.1016/j.cmpb.2018.09.007 

Nan, A., Tennant, M., Rubin, U., & Ray, N. (2020). DRMIME: Differentiable Mutual 

Information and Matrix Exponential for Multi-Resolution Image Registration. Paper 

presented at the Proceedings of the Third Conference on Medical Imaging with Deep 

Learning, Proceedings of Machine Learning Research. 

https://proceedings.mlr.press/v121/nan20a.html 

Natekar, P., Kori, A., & Krishnamurthi, G. (2020). Demystifying Brain Tumor Segmentation 

Networks: Interpretability and Uncertainty Analysis. Front Comput Neurosci, 14, 6. 

doi:10.3389/fncom.2020.00006 

Novelline, R. A., & Squire, L. F. (2004). Squire's fundamentals of radiology: La Editorial, UPR. 

Ouyang, W., Zeng, X., Wang, X., Qiu, S., Luo, P., Tian, Y., . . . Tang, X. (2017). DeepID-Net: 

Object Detection with Deformable Part Based Convolutional Neural Networks. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 39, 1320-1334. 

doi:10.1109/TPAMI.2016.2587642 

Pacioni, A., Carbone, M., Freschi, C., Viglialoro, R., Ferrari, V., & Ferrari, M. (2014). Patient-

specific ultrasound liver phantom: materials and fabrication method. International 

Journal of Computer Assisted Radiology and Surgery, 10(7), 1065-1075. 

doi:10.1007/s11548-014-1120-y 

Pagani, E., Bizzi, A., Di Salle, F., De Stefano, N., & Filippi, M. (2008). Basic concepts of 

advanced MRI techniques. Neurol Sci, 29 Suppl 3(S3), 290-295. doi:10.1007/s10072-

008-1001-7 

Pala, A., Durner, G., Braun, M., Schmitz, B., Wirtz, C. R., & Coburger, J. (2021). The Impact 

of an Ultra-Early Postoperative MRI on Treatment of Lower Grade Glioma. Cancers 

(Basel), 13(12). doi:10.3390/cancers13122914 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . Chintala, S. (2019). 

PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in 

https://proceedings.mlr.press/v121/nan20a.html


References 

142 

 

Neural Information Processing Systems 32 (Nips 2019), 32, 8026-8037. Retrieved from 

<Go to ISI>://WOS:000534424308009 

Pereira, S., Meier, R., Alves, V., Reyes, M., & Silva, C. A. (2018). Automatic Brain Tumor 

Grading from MRI Data Using Convolutional Neural Networks and Quality 

Assessment. In Understanding and Interpreting Machine Learning in Medical Image 

Computing Applications (pp. 106-114). 

Pereira, S., Meier, R., McKinley, R., Wiest, R., Alves, V., Silva, C. A., & Reyes, M. (2018). 

Enhancing interpretability of automatically extracted machine learning features: 

application to a RBM-Random Forest system on brain lesion segmentation. Med Image 

Anal, 44, 228-244. doi:10.1016/j.media.2017.12.009 

Pesapane, F., Volonte, C., Codari, M., & Sardanelli, F. (2018). Artificial intelligence as a 

medical device in radiology: ethical and regulatory issues in Europe and the United 

States. Insights Imaging, 9(5), 745-753. doi:10.1007/s13244-018-0645-y 

Pooley, R. A. (2005). AAPM/RSNA physics tutorial for residents: fundamental physics of MR 

imaging. RadioGraphics, 25(4), 1087-1099. doi:10.1148/rg.254055027 

Pope, W. B., & Brandal, G. (2018). Conventional and advanced magnetic resonance imaging in 

patients with high-grade glioma. Q J Nucl Med Mol Imaging, 62(3), 239-253. 

doi:10.23736/S1824-4785.18.03086-8 

Preiswerk, F., Brinker, S. T., McDannold, N. J., & Mariano, T. Y. (2019). Open-source 

neuronavigation for multimodal non-invasive brain stimulation using 3D Slicer. 

arXiv:1909.12458. Retrieved from 

https://ui.adsabs.harvard.edu/abs/2019arXiv190912458P 

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Netw, 

12(1), 145-151. doi:10.1016/s0893-6080(98)00116-6 

Rajan, S. S. (1997). MRI: a conceptual overview.  

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). " Why should i trust you?" Explaining the 

predictions of any classifier. Paper presented at the Proceedings of the 22nd ACM 

SIGKDD international conference on knowledge discovery and data mining. 

Rivaz, H., Chen, S. J., & Collins, D. L. (2015). Automatic deformable MR-ultrasound 

registration for image-guided neurosurgery. IEEE Trans Med Imaging, 34(2), 366-380. 

doi:10.1109/TMI.2014.2354352 

Rivaz, H., Karimaghaloo, Z., Fonov, V. S., & Collins, D. L. (2014). Nonrigid registration of 

ultrasound and MRI using contextual conditioned mutual information. IEEE Trans Med 

Imaging, 33(3), 708-725. doi:10.1109/TMI.2013.2294630 

Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., & Pennec, X. (2017). SVF-Net: Learning 

Deformable Image Registration Using Shape Matching, Cham. 

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for 

Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted 

Intervention – MICCAI 2015 (pp. 234-241). 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Fei-Fei, L. (2015). 

ImageNet Large Scale Visual Recognition Challenge. International Journal of 

Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-y 

Saleem, H., Shahid, A. R., & Raza, B. (2021). Visual interpretability in 3D brain tumor 

segmentation network. Comput Biol Med, 133, 104410. 

doi:10.1016/j.compbiomed.2021.104410 

Saleh, K., Zeineldin, R. A., Hossny, M., Nahavandi, S., & El-Fishawy, N. (2018). End-to-End 

Indoor Navigation Assistance for the Visually Impaired Using Monocular Camera. 

Paper presented at the 2018 IEEE International Conference on Systems, Man, and 

Cybernetics (SMC).  

https://ui.adsabs.harvard.edu/abs/2019arXiv190912458P


References 

143 

 

Sanai, N., Polley, M. Y., McDermott, M. W., Parsa, A. T., & Berger, M. S. (2011). An extent of 

resection threshold for newly diagnosed glioblastomas. J Neurosurg, 115(1), 3-8. 

doi:10.3171/2011.2.jns10998 

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: 

Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, 4510-4520. 

doi:10.1109/CVPR.2018.00474 

Sastry, R., Bi, W. L., Pieper, S., Frisken, S., Kapur, T., Wells, W., 3rd, & Golby, A. J. (2017). 

Applications of Ultrasound in the Resection of Brain Tumors. J Neuroimaging, 27(1), 

5-15. doi:10.1111/jon.12382 

Sayres, R., Taly, A., Rahimy, E., Blumer, K., Coz, D., Hammel, N., . . . Webster, D. R. (2019). 

Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist 

Grading for Diabetic Retinopathy. Ophthalmology, 126(4), 552-564. 

doi:10.1016/j.ophtha.2018.11.016 

Schipmann-Miletić, S., & Stummer, W. (2020). Image-Guided Brain Surgery. In Molecular 

Imaging in Oncology (pp. 813-841). 

Sedghi, A., O’Donnell, L. J., Kapur, T., Learned-Miller, E., Mousavi, P., & Wells, W. M. 

(2021). Image registration: Maximum likelihood, minimum entropy and deep learning. 

Medical Image Analysis, 69. doi:10.1016/j.media.2020.101939 

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-

cam: Visual explanations from deep networks via gradient-based localization. Paper 

presented at the Proceedings of the IEEE international conference on computer vision. 

Shah, A. H., & Heiss, J. D. (2022). Neurosurgical Clinical Trials for Glioblastoma: Current and 

Future Directions. Brain Sciences, 12(6). doi:10.3390/brainsci12060787 

Shams, R., Boucher, M.-A., & Kadoury, S. (2018). Intra-operative Brain Shift Correction with 

Weighted Locally Linear Correlations of 3DUS and MRI. In Simulation, Image 

Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation (pp. 179-

184). 

Shapey, J., Dowrick, T., Delaunay, R., Mackle, E. C., Thompson, S., Janatka, M., . . . 

Vercauteren, T. (2021). Integrated multi-modality image-guided navigation for 

neurosurgery: open-source software platform using state-of-the-art clinical hardware. 

Int J Comput Assist Radiol Surg, 16(8), 1347-1356. doi:10.1007/s11548-021-02374-5 

Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic 

Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 

640-651. doi:10.1109/TPAMI.2016.2572683 

Shetty, P., & Moiyadi, A. V. (2016). Clinical Ultrasound: Historical Aspects. In Intraoperative 

Ultrasound (IOUS) in Neurosurgery (pp. 3-8). 

Shorfuzzaman, M. (2021). An explainable stacked ensemble of deep learning models for 

improved melanoma skin cancer detection. Multimedia Systems, 28(4), 1309-1323. 

doi:10.1007/s00530-021-00787-5 

Shrikumar, A., Greenside, P., Shcherbina, A., & Kundaje, A. (2016). Not just a black box: 

Learning important features through propagating activation differences. arXiv preprint 

arXiv:1605.01713.  

Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019 (US statistics). CA: A 

Cancer Journal for Clinicians, 69, 7-34. doi:10.3322/caac.21551 

Siekmann, M., Lothes, T., Konig, R., Wirtz, C. R., & Coburger, J. (2018). Experimental study 

of sector and linear array ultrasound accuracy and the influence of navigated 3D-

reconstruction as compared to MRI in a brain tumor model. Int J Comput Assist Radiol 

Surg, 13(3), 471-478. doi:10.1007/s11548-018-1705-y 



References 

144 

 

Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside convolutional networks: 

Visualising image classification models and saliency maps. Paper presented at the In 

Workshop at International Conference on Learning Representations. 

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale 

Image Recognition.  

Singh, R. K., Pandey, R., & Babu, R. N. (2021). COVIDScreen: explainable deep learning 

framework for differential diagnosis of COVID-19 using chest X-rays. Neural Comput 

Appl, 33(14), 8871-8892. doi:10.1007/s00521-020-05636-6 

Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). Smoothgrad: removing 

noise by adding noise. arXiv preprint arXiv:1706.03825.  

Sotiras, A., Davatzikos, C., & Paragios, N. (2013). Deformable medical image registration: a 

survey. IEEE Trans Med Imaging, 32(7), 1153-1190. doi:10.1109/TMI.2013.2265603 

Springenberg, J., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015). Striving for Simplicity: 

The All Convolutional Net. Paper presented at the ICLR (workshop track). 

Srivastava, N., Hinton, G., Krizhevsky, A., & Salakhutdinov, R. (2014). Dropout: A Simple 

Way to Prevent Neural Networks from Overfitting. Paper presented at the Journal of 

Machine Learning Research. 

Steno, A., Buvala, J., Babkova, V., Kiss, A., Toma, D., & Lysak, A. (2021). Current Limitations 

of Intraoperative Ultrasound in Brain Tumor Surgery. Front Oncol, 11, 659048. 

doi:10.3389/fonc.2021.659048 

Stoll, J. (2014). Technology of Ultrasound-Guided Therapy. In Intraoperative Imaging and 

Image-Guided Therapy (pp. 155-162). 

Sun, L., & Zhang, S. (2018). Deformable MRI-Ultrasound Registration Using 3D Convolutional 

Neural Network. In Simulation, Image Processing, and Ultrasound Systems for Assisted 

Diagnosis and Navigation (pp. 152-158). 

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. Paper 

presented at the International Conference on Machine Learning. 

Tacher, V., Lin, M., Chao, M., Gjesteby, L., Bhagat, N., Mahammedi, A., . . . Geschwind, J.-F. 

(2013). Semiautomatic Volumetric Tumor Segmentation for Hepatocellular Carcinoma. 

Academic Radiology, 20(4), 446-452. doi:10.1016/j.acra.2012.11.009 

Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J. N., Wu, Z., & Ding, X. (2020). Embracing 

imperfect datasets: A review of deep learning solutions for medical image 

segmentation. Med Image Anal, 63, 101693. doi:10.1016/j.media.2020.101693 

Temme, M. (2017). Algorithms and Transparency in View of the New General Data Protection 

Regulation. European Data Protection Law Review, 3(4), 473-485. 

doi:10.21552/edpl/2017/4/9 

Tokuda, J., Fischer, G. S., Papademetris, X., Yaniv, Z., Ibanez, L., Cheng, P., . . . Hata, N. 

(2009). OpenIGTLink: an open network protocol for image-guided therapy 

environment. Int J Med Robot, 5(4), 423-434. doi:10.1002/rcs.274 

Ungi, T., Lasso, A., & Fichtinger, G. (2016). Open-source platforms for navigated image-

guided interventions. Med Image Anal, 33, 181-186. doi:10.1016/j.media.2016.06.011 

Unsgaard, G., Gronningsaeter, A., Ommedal, S., & Nagelhus Hernes, T. A. (2002). Brain 

Operations Guided by Real-time Two-dimensional Ultrasound: New Possibilities as a 

Result of Improved Image Quality. Neurosurgery, 51(2), 402-412. Retrieved from 

https://journals.lww.com/neurosurgery/Fulltext/2002/08000/Brain_Operations_Guided_

by_Real_time.19.aspx 

Upadhyay, N., & Waldman, A. D. (2011). Conventional MRI evaluation of gliomas. Br J 

Radiol, 84 Spec No 2(special_issue_2), S107-111. doi:10.1259/bjr/65711810 

van Geuns, R. J., Wielopolski, P. A., de Bruin, H. G., Rensing, B. J., van Ooijen, P. M., 

Hulshoff, M., . . . de Feyter, P. J. (1999). Basic principles of magnetic resonance 

imaging. Prog Cardiovasc Dis, 42(2), 149-156. doi:10.1016/s0033-0620(99)70014-9 

https://journals.lww.com/neurosurgery/Fulltext/2002/08000/Brain_Operations_Guided_by_Real_time.19.aspx
https://journals.lww.com/neurosurgery/Fulltext/2002/08000/Brain_Operations_Guided_by_Real_time.19.aspx


References 

145 

 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. 

(2017). Attention is all you need. Advances in neural information processing systems, 

30.  

Vincent, R. D., Neelin, P., Khalili-Mahani, N., Janke, A. L., Fonov, V. S., Robbins, S. M., . . . 

Evans, A. C. (2016). MINC 2.0: A Flexible Format for Multi-Modal Images. Front 

Neuroinform, 10, 35. doi:10.3389/fninf.2016.00035 

Visser, M., Muller, D. M. J., van Duijn, R. J. M., Smits, M., Verburg, N., Hendriks, E. J., . . . de 

Munck, J. C. (2019). Inter-rater agreement in glioma segmentations on longitudinal 

MRI. Neuroimage Clin, 22, 101727. doi:10.1016/j.nicl.2019.101727 

Warfield, S. K., Zou, K. H., & Wells, W. M. (2004). Simultaneous Truth and Performance 

Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation. 

IEEE Transactions on Medical Imaging, 23(7), 903-921. doi:10.1109/tmi.2004.828354 

Wein, W. (2018). Brain-Shift Correction with Image-Based Registration and Landmark 

Accuracy Evaluation. In Simulation, Image Processing, and Ultrasound Systems for 

Assisted Diagnosis and Navigation (pp. 146-151). 

Wein, W., Ladikos, A., Fuerst, B., Shah, A., Sharma, K., & Navab, N. (2013). Global 

Registration of Ultrasound to MRI Using the LC2 Metric for Enabling Neurosurgical 

Guidance, Berlin, Heidelberg. 

Weller, M., van den Bent, M., Preusser, M., Le Rhun, E., Tonn, J. C., Minniti, G., . . . Wick, W. 

(2021). EANO guidelines on the diagnosis and treatment of diffuse gliomas of 

adulthood. Nat Rev Clin Oncol, 18(3), 170-186. doi:10.1038/s41571-020-00447-z 

Wickstrom, K., Kampffmeyer, M., & Jenssen, R. (2020). Uncertainty and interpretability in 

convolutional neural networks for semantic segmentation of colorectal polyps. Med 

Image Anal, 60, 101619. doi:10.1016/j.media.2019.101619 

Windisch, P., Weber, P., Furweger, C., Ehret, F., Kufeld, M., Zwahlen, D., & Muacevic, A. 

(2020). Implementation of model explainability for a basic brain tumor detection using 

convolutional neural networks on MRI slices. Neuroradiology, 62(11), 1515-1518. 

doi:10.1007/s00234-020-02465-1 

Wu, W., Chen, A. Y. C., Zhao, L., & Corso, J. J. (2014). Brain tumor detection and 

segmentation in a CRF (conditional random fields) framework with pixel-pairwise 

affinity and superpixel-level features. International Journal of Computer Assisted 

Radiology and Surgery, 9, 241-253. doi:10.1007/s11548-013-0922-7 

Wu, Y. H., Gao, S. H., Mei, J., Xu, J., Fan, D. P., Zhang, R. G., & Cheng, M. M. (2021). JCS: 

An Explainable COVID-19 Diagnosis System by Joint Classification and Segmentation. 

IEEE Trans Image Process, 30, 3113-3126. doi:10.1109/TIP.2021.3058783 

Xiao, Y., Fortin, M., Unsgard, G., Rivaz, H., & Reinertsen, I. (2017). REtroSpective Evaluation 

of Cerebral Tumors (RESECT): A clinical database of pre-operative MRI and intra-

operative ultrasound in low-grade glioma surgeries. Med Phys, 44(7), 3875-3882. 

doi:10.1002/mp.12268 

Xiao, Y., Rivaz, H., Chabanas, M., Fortin, M., Machado, I., Ou, Y., . . . Reinertsen, I. (2020). 

Evaluation of MRI to Ultrasound Registration Methods for Brain Shift Correction: The 

CuRIOUS2018 Challenge. IEEE Trans Med Imaging, 39(3), 777-786. 

doi:10.1109/TMI.2019.2935060 

Xie, X., Niu, J., Liu, X., Chen, Z., Tang, S., & Yu, S. (2021). A survey on incorporating domain 

knowledge into deep learning for medical image analysis. Med Image Anal, 69, 101985. 

doi:10.1016/j.media.2021.101985 

Yang, G., Ye, Q., & Xia, J. (2022). Unbox the black-box for the medical explainable AI via 

multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. 

Inf Fusion, 77, 29-52. doi:10.1016/j.inffus.2021.07.016 

Yang, P., Hwa Yang, Y., B Zhou, B., & Y Zomaya, A. (2010). A review of ensemble methods 

in bioinformatics. Current Bioinformatics, 5(4), 296-308.  



References 

146 

 

Yang, X., Kwitt, R., Styner, M., & Niethammer, M. (2017). Quicksilver: Fast predictive image 

registration - A deep learning approach. Neuroimage, 158, 378-396. 

doi:10.1016/j.neuroimage.2017.07.008 

Yavas, G., Caliskan, K. E., & Cagli, M. S. (2021). Three-dimensional-printed marker-based 

augmented reality neuronavigation: a new neuronavigation technique. Neurosurg 

Focus, 51(2), E20. doi:10.3171/2021.5.FOCUS21206 

Young, K., Booth, G., Simpson, B., Dutton, R., & Shrapnel, S. (2019). Deep Neural Network or 

Dermatologist? In Interpretability of Machine Intelligence in Medical Image Computing 

and Multimodal Learning for Clinical Decision Support (pp. 48-55). 

Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. 

(2006). User-guided 3D active contour segmentation of anatomical structures: 

Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116-1128. 

doi:10.1016/j.neuroimage.2006.01.015 

Zeiler, M. D., & Fergus, R. (2014). Visualizing and Understanding Convolutional Networks. In 

Computer Vision – ECCV 2014 (pp. 818-833). 

Zeineldin, R. A., Karar, M. E., Burgert, O., & Mathis-Ullrich, F. (2023). Multimodal CNN 

Networks for Brain Tumor Segmentation in MRI: A BraTS 2022 Challenge Solution. In 

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 

Zeineldin, R. A., Karar, M. E., Coburger, J., Wirtz, C. R., & Burgert, O. (2020). DeepSeg: deep 

neural network framework for automatic brain tumor segmentation using magnetic 

resonance FLAIR images. Int J Comput Assist Radiol Surg, 15(6), 909-920. 

doi:10.1007/s11548-020-02186-z 

Zeineldin, R. A., Karar, M. E., Coburger, J., Wirtz, C. R., Mathis-Ullrich, F., & Burgert, O. 

(2020). Towards automated correction of brain shift using deep deformable magnetic 

resonance imaging-intraoperative ultrasound (MRI-iUS) registration. Current 

Directions in Biomedical Engineering, 6(1). doi:10.1515/cdbme-2020-0039 

Zeineldin, R. A., Karar, M. E., Elshaer, Z., Coburger, J., Wirtz, C. R., Burgert, O., & Mathis-

Ullrich, F. (2022). Explainability of deep neural networks for MRI analysis of brain 

tumors. Int J Comput Assist Radiol Surg, 17(9), 1673-1683. doi:10.1007/s11548-022-

02619-x 

Zeineldin, R. A., Karar, M. E., Elshaer, Z., Schmidhammer, M., Coburger, J., Wirtz, C. R., . . . 

Mathis-Ullrich, F. (2021). iRegNet: Non-Rigid Registration of MRI to Interventional 

US for Brain-Shift Compensation Using Convolutional Neural Networks. IEEE Access, 

9, 147579-147590. doi:10.1109/access.2021.3120306 

Zeineldin, R. A., Karar, M. E., Mathis-Ullrich, F., & Burgert, O. (2021). A Hybrid Deep 

Registration of MR Scans to Interventional Ultrasound for Neurosurgical Guidance. In 

Machine Learning in Medical Imaging (pp. 586-595). 

Zeineldin, R. A., Karar, M. E., Mathis-Ullrich, F., & Burgert, O. (2022a). Ensemble CNN 

Networks for GBM Tumors Segmentation Using Multi-parametric MRI. In 

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (pp. 473-

483). 

Zeineldin, R. A., Karar, M. E., Mathis-Ullrich, F., & Burgert, O. (2022b). Self-supervised 

iRegNet for the Registration of Longitudinal Brain MRI of Diffuse Glioma Patients. 

arXiv:2211.11025. Retrieved from 

https://ui.adsabs.harvard.edu/abs/2022arXiv221111025Z 

Zeineldin, R. A., Pollok, A., Mangliers, T., Karar, M. E., Mathis-Ullrich, F., & Burgert, O. 

(2022). Deep automatic segmentation of brain tumours in interventional ultrasound 

data. Current Directions in Biomedical Engineering, 8(1), 133-137. 

doi:10.1515/cdbme-2022-0034 

Zeineldin, R. A., Weimann, P., Karar, M. E., Mathis-Ullrich, F., & Burgert, O. (2021). Slicer-

DeepSeg: Open-Source Deep Learning Toolkit for Brain Tumour Segmentation. 

https://ui.adsabs.harvard.edu/abs/2022arXiv221111025Z


References 

147 

 

Current Directions in Biomedical Engineering, 7(1), 30-34. doi:10.1515/cdbme-2021-

1007 

Zhang, Q., Yu, H., Barbiero, M., Wang, B., & Gu, M. (2019). Artificial neural networks 

enabled by nanophotonics. Light Sci Appl, 8(1), 42. doi:10.1038/s41377-019-0151-0 

Zhong, X., Bayer, S., Ravikumar, N., Strobel, N., Birkhold, A., Kowarschik, M., . . . Maier, A. 

(2018). Resolve Intraoperative Brain Shift as Imitation Game. In Simulation, Image 

Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation (pp. 129-

137). 

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features 

for discriminative localization. Paper presented at the Proceedings of the IEEE 

conference on computer vision and pattern recognition. 

Zhou, L., Wang, W., Wei, H., Song, P., Li, Z., Cheng, L., . . . Cai, Q. (2022). Clinical 

application of 3D Slicer combined with Sina/MosoCam multimodal system in 

preoperative planning of brain lesions surgery. Scientific Reports, 12(1). 

doi:10.1038/s41598-022-22549-7 

Zhu, L., He, Q., Huang, Y., Zhang, Z., Zeng, J., Lu, L., . . . Zhou, F. (2022). DualMMP-GAN: 

Dual-scale multi-modality perceptual generative adversarial network for medical image 

segmentation. Comput Biol Med, 144, 105387. doi:10.1016/j.compbiomed.2022.105387 

Zhu, W., Zhao, C., Li, W., Roth, H., Xu, Z., & Xu, D. (2020). LAMP: Large Deep Nets with 

Automated Model Parallelism for Image Segmentation, Cham. 

Zhu, Y., Zhou, Z., Liao, G., Yuan, K., Landman, B. A., & Išgum, I. (2021). A novel 

unsupervised learning model for diffeomorphic image registration. Paper presented at 

the Medical Imaging 2021: Image Processing.  

Zimmer, V. A., Ballester, M. A. G., & Piella, G. (2019). Multimodal image registration using 

Laplacian commutators. Information Fusion, 49, 130-145. 

doi:10.1016/j.inffus.2018.09.009 

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning Transferable Architectures 

for Scalable Image Recognition. Proceedings of the IEEE Computer Society Conference 

on Computer Vision and Pattern Recognition, 8697-8710. 

doi:10.1109/CVPR.2018.00907 

 


	Kurzfassung
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Table of Symbols
	1 Introduction
	1.1 Motivation
	1.2 Objectives of the Thesis
	1.3 Thesis Roadmap

	2 Medical Background
	2.1 Medical Imaging Techniques
	2.1.1 Magnetic Resonance Imaging
	2.1.2 Ultrasound Imaging

	2.2 Brain Tumors
	2.2.1 Diagnosis
	2.2.2 Treatment


	3 Technical Background
	3.1 Deep Learning
	3.1.1 Artificial Neural Networks
	3.1.2 Convolutional Neural Networks
	3.1.3 CNN Architectures
	3.1.4 Transformers
	3.1.5 Deep Network Training

	3.2 Image-guided Neurosurgery
	3.2.1 IGN Components
	3.2.2 IGN Software

	3.3 Challenges and Limitations
	3.3.1 Neurosurgical Challenges
	3.3.1.1 Precise Tumor Localization
	3.3.1.2 Brain shift
	3.3.1.3 Inter-rater Variability

	3.3.2 Technical Challenges
	3.3.2.1 Multiple Modules Integration
	3.3.2.2 Deep Networks Transparency
	3.3.2.3 Neuronavigational Challenges



	4 Brain Tumor Segmentation
	4.1 Introduction
	4.2 Related Work
	4.3 Methods
	4.3.1 DeepSeg
	4.3.1.1 Feature extractor
	4.3.1.2 Image upscaling

	4.3.2 3D DeepSeg
	4.3.3 Ensemble Methods
	4.3.4 Post-processing

	4.4 Experiments
	4.4.1 Data
	4.4.2 Experimental setup
	4.4.3 Evaluation Metrics
	4.4.4 Ablation Study

	4.5 Results and Discussion
	4.5.1 Statistical Evaluation
	4.5.2 Qualitative Output
	4.5.3 Ensemble Results

	4.6 Summary

	5 Multimodal Registration
	5.1 Introduction
	5.2 Related Work
	5.3 Methods
	5.3.1 Deformable Image Registration
	5.3.2 Learning-based Registration Framework
	5.3.2.1 Deep Neural Network Architecture
	5.3.2.2 Loss Functions
	5.3.2.3 Global Optimization

	5.3.3 Self-supervised iRegNet

	5.4 Experiments
	5.4.1 Data
	5.4.2 Registration Procedure
	5.4.3 Experimental Setup and Evaluation
	5.4.3.1 Supervised Approach
	5.4.3.2 Self-supervised Approach


	5.5 Results and Discussion
	5.5.1 Quantitative Registration Results
	5.5.2 Generality Evaluation
	5.5.3 Processing Time Analysis
	5.5.4 Comparison with Other MRI-iUS Studies
	5.5.5 Qualitative Analysis by Neurosurgeons
	5.5.6 Self-supervised Results

	5.6 Summary

	6 Explainability of Deep Neural Networks
	6.1 Introduction
	6.2 Related Work
	6.3 Methods
	6.3.1 NeuroXAI
	6.3.1.1 Vanilla Gradient
	6.3.1.2 Guided Backpropagation
	6.3.1.3 Integrated Gradients
	6.3.1.4 Guided Integrated Gradients
	6.3.1.5 SmoothGrad
	6.3.1.6 Grad-CAM
	6.3.1.7 Guided Grad-CAM

	6.3.2 TransXAI
	6.3.2.1 CNN-Transformer Hybrid Architecture
	Transformer Blocks
	Feature Restoration
	Upsampling Path
	6.3.2.2 Explainable CNN Generator


	6.4 Experiments
	6.4.1 Data
	6.4.2 Experimental Setup

	6.5 Results and Discussion
	6.5.1 Showcase I: Application to Classification
	6.5.2 Showcase II: Application to Segmentation
	6.5.2.1 Comparing Different XAI Methods
	6.5.2.2 Role of MRI in Tumor Detection
	6.5.2.3 GCAM for CNN Layers
	6.5.2.4 CNN Node Failure Detection


	6.6 Clinical Relevance
	6.7 Summary

	7 DeepIGN Integration and  Neuronavigation Display
	7.1 Introduction
	7.2 Related Work
	7.3 System Design
	7.3.1 Design Requirements
	7.3.2 System Components
	7.3.2.1 3D Slicer Software
	7.3.2.2 Hardware Interfacing Layer
	7.3.2.3 SlicerIGT Calibration
	7.3.2.4 DeepIGN Extensions


	7.4 Results and Discussion
	7.4.1 Pre-operative Application to BraTS Dataset
	7.4.1.1 Use Case Example
	7.4.1.2 Runtime Results

	7.4.2 Phantom Study
	7.4.2.1 Experimental Setup
	7.4.2.2 DeepIGN Workflow
	7.4.2.3 System Accuracy

	7.4.3 Comparison with IGN Platforms

	7.5 Summary

	8 Conclusions and Outlook
	8.1 Conclusions
	8.2 Outlook
	8.2.1 Multimodal Registration
	8.2.2 Need for large datasets
	8.2.3 Mixed Reality
	8.2.4 Explainable Deep Models


	Appendix A. Brain Phantom Preparation
	Appendix B. List of Publications
	References

