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Abstract: Moving horizon estimation (MHE) is applied to estimate the spatial-temporal
evolution of the state of nonlinear diffusion-reaction system with linear sensor dynamics. A
late-lumping approach is introduced, which exploits directly the partial differential equation
(PDE) and the ordinary differential equation (ODE) of the sensor dynamics to solve the optimal
estimation problem. This leads to the determination of an adjoint PDE-ODE system, whose
solution yields a gradient that is used for the implementation of a line search approach to
achieve fast convergence to the minimum of the cost functional. The initial state of the MHE
herein serves as decision variable and is determined on a receding horizon. Simulation results
for in-domain measurement illustrate the performance of the approach.
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1. INTRODUCTION

The aim of the moving horizon estimation approach is to
estimate the state trajectory from only the measurement
of the output by using dynamic optimization on fixed-size
time horizons Muske et al. (1993); Robertson et al. (1996);
Kühl et al. (2011); Rawlings (2013). Subsequently moving
horizon estimation is applied to a distributed parameter
system governed by a nonlinear diffusion-reaction equation
with in-domain, locally averaged measurement subject to
additive noise. The sensor dynamics is explicitly included
in terms of a linear ordinary differential equation (ODE).
Such a dynamical formulation becomes relevant in applica-
tions, where the sensor dynamics and the process dynamics
evolve approximately on the same time scale or when
the sensor rise time has implications for the estimator
performance.

Partial differential equations (PDEs) are widely used to
model systems with high dynamic complexity, e.g., in
chemical engineering Jensen and Ray (1982), mechatronics
Preumont (1997); Meurer (2013a), heating-cooling pro-
cesses Moura et al. (2013); Schaum et al. (2018) or for-
mation control for multi-agent systems Frihauf and Krstic
(2010); Freudenthaler and Meurer (2019). Herein, the com-
plete knowledge of the spatial-temporal state of the system
is needed to address feedback stabilization and closed-loop
(optimal) control.

Observers are designed for PDE systems by making use
of early- or late-lumping. For early-lumping the problem
is discretized / approximated first to obtain a set of
ODEs so that established finite-dimensional techniques
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can be applied. This approach has already been success-
fully introduced and applied to design moving horizon
estimators (MHEs), see, e.g., Rhein et al. (2013); Jang
et al. (2014). Late-lumping directly exploits the infinite-
dimensional PDE formulation for the control and observer
design. In the context of moving horizon estimation, this
implies to first determine the necessary optimality con-
ditions with respect to the decision variables using vari-
ational calculus before imposing approximation schemes
for their numerical evaluation. Hence, this requires to
introduce Lagrange multipliers which are governed by the
so-called adjoint system, see, e.g., Troeltzsch (2010) for
related results in the context of PDE-constrained optimal
control and, e.g., Nguyen et al. (2016) for adjoint-based
state and parameter estimation approaches applied to a
switched hyperbolic overland flow model.

In this contribution, the late-lumping approach is used to
address nonlinear PDE-based moving horizon estimation.
The corresponding PDE-ODE-constrained optimization
problem to minimize the difference between measured
and estimated output is formulated and the necessary
optimality conditions are deduced. The resulting adjoint
system has to be solved backward in time to determine the
gradient needed to set up a line search approach for the
decision variable. The latter is given by the initial state of
the observer system, which is solved forward in time. The
problem is solved on a moving (receding) horizon taking
into account the measurement updates. Tailored gradient-
based line search is presented and applied so that a fast
convergence of the estimator for a diffusion-reaction PDE-
based system under disturbances with sensor dynamics is
guaranteed.

The paper is organized as follows. In Section 2, the
nonlinear system model is summarized to motivate the
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Kühl et al. (2011); Rawlings (2013). Subsequently moving
horizon estimation is applied to a distributed parameter
system governed by a nonlinear diffusion-reaction equation
with in-domain, locally averaged measurement subject to
additive noise. The sensor dynamics is explicitly included
in terms of a linear ordinary differential equation (ODE).
Such a dynamical formulation becomes relevant in applica-
tions, where the sensor dynamics and the process dynamics
evolve approximately on the same time scale or when
the sensor rise time has implications for the estimator
performance.

Partial differential equations (PDEs) are widely used to
model systems with high dynamic complexity, e.g., in
chemical engineering Jensen and Ray (1982), mechatronics
Preumont (1997); Meurer (2013a), heating-cooling pro-
cesses Moura et al. (2013); Schaum et al. (2018) or for-
mation control for multi-agent systems Frihauf and Krstic
(2010); Freudenthaler and Meurer (2019). Herein, the com-
plete knowledge of the spatial-temporal state of the system
is needed to address feedback stabilization and closed-loop
(optimal) control.

Observers are designed for PDE systems by making use
of early- or late-lumping. For early-lumping the problem
is discretized / approximated first to obtain a set of
ODEs so that established finite-dimensional techniques

� The authors gratefully acknowledge the financial support of the
Deutsche Forschungsgemeinschaft (DFG) in the individual grant ref.
274852737.

can be applied. This approach has already been success-
fully introduced and applied to design moving horizon
estimators (MHEs), see, e.g., Rhein et al. (2013); Jang
et al. (2014). Late-lumping directly exploits the infinite-
dimensional PDE formulation for the control and observer
design. In the context of moving horizon estimation, this
implies to first determine the necessary optimality con-
ditions with respect to the decision variables using vari-
ational calculus before imposing approximation schemes
for their numerical evaluation. Hence, this requires to
introduce Lagrange multipliers which are governed by the
so-called adjoint system, see, e.g., Troeltzsch (2010) for
related results in the context of PDE-constrained optimal
control and, e.g., Nguyen et al. (2016) for adjoint-based
state and parameter estimation approaches applied to a
switched hyperbolic overland flow model.

In this contribution, the late-lumping approach is used to
address nonlinear PDE-based moving horizon estimation.
The corresponding PDE-ODE-constrained optimization
problem to minimize the difference between measured
and estimated output is formulated and the necessary
optimality conditions are deduced. The resulting adjoint
system has to be solved backward in time to determine the
gradient needed to set up a line search approach for the
decision variable. The latter is given by the initial state of
the observer system, which is solved forward in time. The
problem is solved on a moving (receding) horizon taking
into account the measurement updates. Tailored gradient-
based line search is presented and applied so that a fast
convergence of the estimator for a diffusion-reaction PDE-
based system under disturbances with sensor dynamics is
guaranteed.

The paper is organized as follows. In Section 2, the
nonlinear system model is summarized to motivate the

Moving Horizon Estimator Design for a
Nonlinear Diffusion-Reaction System with

Sensor Dynamics �

Marcel Kevin Jiokeng Dongmo ∗ Thomas Meurer ∗

∗ Automation and Control Group, Faculty of Engineering, Kiel
University, Kaiserstr. 2, 24143 Kiel, Germany (e-mail: {mj,

tm}@tf.uni-kiel.de).

Abstract: Moving horizon estimation (MHE) is applied to estimate the spatial-temporal
evolution of the state of nonlinear diffusion-reaction system with linear sensor dynamics. A
late-lumping approach is introduced, which exploits directly the partial differential equation
(PDE) and the ordinary differential equation (ODE) of the sensor dynamics to solve the optimal
estimation problem. This leads to the determination of an adjoint PDE-ODE system, whose
solution yields a gradient that is used for the implementation of a line search approach to
achieve fast convergence to the minimum of the cost functional. The initial state of the MHE
herein serves as decision variable and is determined on a receding horizon. Simulation results
for in-domain measurement illustrate the performance of the approach.

Keywords: Moving horizon estimation, late-lumping, sensor dynamics, optimal estimation.

1. INTRODUCTION

The aim of the moving horizon estimation approach is to
estimate the state trajectory from only the measurement
of the output by using dynamic optimization on fixed-size
time horizons Muske et al. (1993); Robertson et al. (1996);
Kühl et al. (2011); Rawlings (2013). Subsequently moving
horizon estimation is applied to a distributed parameter
system governed by a nonlinear diffusion-reaction equation
with in-domain, locally averaged measurement subject to
additive noise. The sensor dynamics is explicitly included
in terms of a linear ordinary differential equation (ODE).
Such a dynamical formulation becomes relevant in applica-
tions, where the sensor dynamics and the process dynamics
evolve approximately on the same time scale or when
the sensor rise time has implications for the estimator
performance.

Partial differential equations (PDEs) are widely used to
model systems with high dynamic complexity, e.g., in
chemical engineering Jensen and Ray (1982), mechatronics
Preumont (1997); Meurer (2013a), heating-cooling pro-
cesses Moura et al. (2013); Schaum et al. (2018) or for-
mation control for multi-agent systems Frihauf and Krstic
(2010); Freudenthaler and Meurer (2019). Herein, the com-
plete knowledge of the spatial-temporal state of the system
is needed to address feedback stabilization and closed-loop
(optimal) control.

Observers are designed for PDE systems by making use
of early- or late-lumping. For early-lumping the problem
is discretized / approximated first to obtain a set of
ODEs so that established finite-dimensional techniques

� The authors gratefully acknowledge the financial support of the
Deutsche Forschungsgemeinschaft (DFG) in the individual grant ref.
274852737.

can be applied. This approach has already been success-
fully introduced and applied to design moving horizon
estimators (MHEs), see, e.g., Rhein et al. (2013); Jang
et al. (2014). Late-lumping directly exploits the infinite-
dimensional PDE formulation for the control and observer
design. In the context of moving horizon estimation, this
implies to first determine the necessary optimality con-
ditions with respect to the decision variables using vari-
ational calculus before imposing approximation schemes
for their numerical evaluation. Hence, this requires to
introduce Lagrange multipliers which are governed by the
so-called adjoint system, see, e.g., Troeltzsch (2010) for
related results in the context of PDE-constrained optimal
control and, e.g., Nguyen et al. (2016) for adjoint-based
state and parameter estimation approaches applied to a
switched hyperbolic overland flow model.

In this contribution, the late-lumping approach is used to
address nonlinear PDE-based moving horizon estimation.
The corresponding PDE-ODE-constrained optimization
problem to minimize the difference between measured
and estimated output is formulated and the necessary
optimality conditions are deduced. The resulting adjoint
system has to be solved backward in time to determine the
gradient needed to set up a line search approach for the
decision variable. The latter is given by the initial state of
the observer system, which is solved forward in time. The
problem is solved on a moving (receding) horizon taking
into account the measurement updates. Tailored gradient-
based line search is presented and applied so that a fast
convergence of the estimator for a diffusion-reaction PDE-
based system under disturbances with sensor dynamics is
guaranteed.

The paper is organized as follows. In Section 2, the
nonlinear system model is summarized to motivate the
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moving horizon estimation problem introduced in Section
3, where also the necessary optimality conditions are
deduced. Section 4 covers the discretization of the obtained
PDEs and an algorithm is introduced for the numerical
solution. In Section 5 simulation results are presented and
the paper closes with some final remarks in Section 6.

2. PROBLEM FORMULATION

Consider the nonlinear diffusion-reaction system

∂tx(z, t) = d∂2
zx(z, t) + r(z, t, x(z, t)) (1a)

on z ∈ (0, 1) for t > 0 with boundary conditions

b∂zx(0, t) + x(0, t) = u(t)

∂zx(1, t) = 0
(1b)

for t ≥ 0 and initial state

x(z, 0) = x0(z), z ∈ [0, 1] (1c)

Herein d is the diffusion coefficient and the function
r(z, t, x) is assumed continuous in z, continuously differen-
tiable in t and locally Lipschitz continuous in x uniformly
in t on bounded intervals. This implies the existence and
uniqueness of a mild solution of (1), see, e.g., (Pazy, 1992,
Thm. 6.1.4). The parameter b ∈ R is used to model
Dirichlet (b = 0) or mixed (b �= 0) boundary conditions.
The system output is determined via the ODE

ẇ(t) =
1

T
(y(t)− w(t)), t > 0, w(0) = w0 (1d)

with time constant T > 0 and

y(t) = (Cx)(t) + v(t), t ≥ 0, (1e)

where (Cx)(t) =
∫ 1

0
c(z)x(z, t)dz denotes the in-domain,

spatially averaged measurement with the spatial charac-
teristics c(z) and v(t) is the additive noise. The properties
of v(t) will be further characterized in the simulation
examples in Section 5.

The basic idea of the moving horizon estimator design is
to reformulate the estimation problem as a (quadratic)
optimization problem that has to be solved on a fixed-
size estimation time windows to minimize the distance
between the output w(t) and its estimate ŵ(t) Rao et al.
(2003). This implies accounting for a fixed amount of data
to compute the best approximate of the output based on
the measurement data on the current horizon.

3. PDE-BASED MOVING HORIZON ESTIMATION

In the following the moving horizon estimation problem
is set up and variational calculus is applied to determine
the necessary optimality conditions in terms of the adjoint
PDE-ODE system.

3.1 Dynamic optimization problem

The MHE is obtained by solving repeatedly the dynamic
optimization problem

min
x̂tk−τ (z),ŵtk−τ

J =
1

2

∫ tk

tk−τ

(
∆w(t)

)2
dt (2a)

for ∆w(t) = w(t)− ŵ(t) subject to

∂tx̂(z, t) = d∂2
z x̂(z, t) + r(z, t, x̂(z, t)),

z ∈ (0, 1), t ∈ (tk − τ, tk)

˙̂w(t) =
1

T
((Cx̂)(t)− ŵ(t)), t ∈ [tk − τ, tk)

b∂zx̂(0, t) + x̂(0, t) = u(t) and

∂zx̂(1, t) = 0, t ≥ tk − τ

x̂(z, tk − τ) = x̂tk−τ (z), z ∈ [0, 1]

ŵ(tk − τ) = ŵtk−τ

(2b)

with τ > 0 the estimation horizon. Herein, x̂tk−τ (z) and
ŵtk−τ denote the decision variables for fixed end time
tk. The cost functional J(x̂tk−τ (z), ŵtk−τ ) measures the
quadratic difference between the actual and the observed
output after processing by the sensor and is defined in such
a way that the optimal initial state x̂tk−τ (z) and initial
sensor value ŵtk−τ coincide with its (local) minimum. The
estimated state x̂(z, t) and sensor output ŵ(t) for z ∈ [0, 1]
and t ∈ [tk− τ, tk) are governed by the system (2b), which
is subsequently called the forward system.

3.2 Optimality conditions

By applying variational calculus, see, e.g., Troeltzsch
(2010), the necessary optimality conditions are obtained
in terms of the adjoint PDE-ODE system

∂tp(z, t) = −d∂2
zp(z, t)− ∂x̂r(z, t, x̂(z, t))p(z, t)

− q(t)

T
c(z), z∈(0, 1), t∈(tk−τ, tk)

q̇(t) =
q(t)

T
+∆w(t), t∈ [tk−τ, tk)

b∂zp(0, t) + p(0, t) = ∂zp(1, t) = 0, t ≥ tk − τ

p(z, tk) = ptk(z) = 0, z ∈ [0, 1]

q(tk) = qtk = 0,

(3)

where p(z, t) and q(t) are Lagrange multipliers. This
equation is derived from the first variation of the Lagrange
functional

L = J +

∫ tk

tk−τ

∫ 1

0

p(z, t)
(
d∂2

z x̂(z, t)

+ r(z, t, x̂)− ∂tx̂(z, t)
)
dzdt

+

∫ tk

tk−τ

q(t)
( 1

T

(
(Cx̂)(t)− ŵ(t)

)
− ˙̂w(t)

)
dt

(4)

related to the dynamic optimization problem (2). The
derivation of (3) from (4) is summarized in Appendix
A. Equation (3) is subsequently called backward system
since it has to be solved backward in time taking into
account terminal conditions p(z, tk) = 0, z ∈ [0, 1] and
q(tk) = 0. The adjoint states p(z, tk − τ) and q(tk − τ) can
be interpreted as the gradients of the cost functional (2a),
which will be used to update the initial states x̂tk−τ (z)
and ŵtk−τ until (2a) reaches a (local) minimum and (2b)
provides the estimate.

It is a rather standard procedure to re-cast the forward
and the backward system into a form that is easier to
handle for numerical purposes by introducing the change of
coordinates s := s(t) = t−(tk−τ) so that x̂(·, t) �→ x̂(·, s),
p(·, t) �→ p(·, s), q(t) �→ q(s). This yields

∂sx̂(z, s) = d∂2
z x̂(z, s) + r̄(z, s, x̂(z, s)),

z ∈ (0, 1), s ∈ (0, τ)

∂sŵ(s) =
1

T
((Cx̂)(s)− ŵ(s)), s ∈ (0, τ)

b∂zx̂(0, s) + x̂(0, s) = ū(s), ∂zx̂(1, s) = 0, s ≥ 0

x̂(z, 0) = x̂0(z), z ∈ [0, 1]

ŵ(0) = ŵ0

(5a)

with r̄(z, s, x̂(z, s)) = r(z, t(s), x̂(z, t(s))), ū(s) = u(t(s)),
∆w̄(s) = ∆w(t(s)) for t(s) = s+ (tk − τ) and

∂sp(z, s) = −d∂2
zp(z, s)− ∂x̂r̄(z, s, x̂(z, s))p(z, s)

− q(s)

T
c(z), z ∈ (0, 1), s ∈ (0, τ)

∂sq(s) =
q(s)

T
+∆w̄(s), s∈(0, τ)

b∂zp(0, s) + p(0, s) = ∂zp(1, s) = 0, s ≥ 0

p(z, τ) = 0, z ∈ [0, 1]

q(τ) = 0.

(5b)

Herein, (x̂0(z), ŵ0) denotes the minimizer of (2a) with

∆w̄(s) = (w(t(s))− ŵ(s)) given ŵ(s) =
∫ 1

0
c(z)x̂(z, s)dz.

Remark 1. The adjoint PDE (5b) can be re-formulated as
an initial-boundary-value problem by reversing the time
coordinate. Hence, let α := α(s) = τ − s or s(α) = τ − α,
respectively, and p(·, s) �→ p(·, α), q(s) �→ q(α), then (5b)
reads

∂αp(z, α) =d∂2
zp(z, α)+∂x̂r̄(z, s(α), x̂(z, s(α)))p(z, α)

+
q(α)

T
c(z), z ∈ (0, 1), α ∈ (0, τ)

∂αq(α) = −q(α)

T
−∆w̄(s(α)), α∈(0, τ)

b∂zp(0, α) + p(0, α) = ∂zp(1, α) = 0, α ≥ 0

p(z, 0) = 0, z ∈ [0, 1]

q(0) = 0.

(6)

In this case the solution x̂(z, s) of (5a) has to be mapped
accordingly.

3.3 Estimation algorithm

The optimization problem is solved based on (5) by means
of gradient iteration and line search by carrying out the
following steps:

(1) Obtain the output w(t) from the system governed by
(1) involving the sensor dynamics.

(2) Initialize the decision variables (x̂
(i)
0 (z), ŵ

(i)
0 ), then

repeat the following gradient iteration until a suitable
stopping criteria is fulfilled:
(a) Solve (5a) forward in time to obtain the state and

output trajectories (x̂(i)(z, s), ŵ(i)(s)) at the ith
iteration on the current horizon on the basis of
the initial state (x̂

(i)
0 (z), ŵ

(i)
0 );

(b) Solve (5b) backward in time or solve respec-
tively (6) to obtain the adjoint state trajectory
(p(i)(z, s), q(i)(s)) for the considered horizon;

(c) Compute the gradients g
(i)
x̂0
(z) = p(i)(z, 0) and

g
(i)
ŵ0

= q(i)(0);

(d) Update the estimated state and output

x̂
(i+1)
0 (z) = x̂

(i)
0 (z)− α

(i)
x̂ g

(i)
0 (z)

ŵ
(i+1)
0 = ŵ

(i)
0 − α

(i)
ŵ g

(i)
ŵ0

(7)

with the step sizes α
(i)
x̂ > 0 and α

(i)
ŵ > 0.

Using the steepest descent avoids the need to compute

the Hessian related to g
(i)
x̂0
(z) and g

(i)
ŵ0

, which is in general
computationally demanding. However, steepest descent is
robust enough to achieve convergence for randomly chosen
initial values. Alternatively conjugated gradients could be

used. For the determination of the step sizes α
(i)
x̂ and

α
(i)
ŵ a Wolfe condition, nested intervals or some adaptive

procedure can be used Nocedal and Wright (2006).

For moving horizon estimation the aforementioned opti-
mization problem is repeatedly computed on the intro-
duced receding horizon. Due to the considered change of
coordinates this refers to update w(t), u(t) and r(·, t, ·)
with time. Note that the previously introduced late-
lumping approach for the general formulation is indepen-
dent of the particular choice of numerical approximation
method. Subsequently, (5a) and (5b) or (6), respectively,
are approximated exemplarily using the finite differences
method for the PDE parts of the equations and are solved
recursively using adequate numerical tools. The spatial
discretization step is chosen small enough to remain as
close as possible to the covered infinite dimensional sys-
tems. This helps reducing the numerical dispersion due to
the discretization and thus increases the applicability of
the designed MHE.

Remark 2. If we consider the time constant T of the
sensor dynamics as an additional decision variable, then
its variation, see, Appendix A, leads to the constraint that
ŵ(t) = (Cx̂)(t). Hence the x̂-part of the MHE setting
reduces to

∂tx̂(z, t) = d∂2
z x̂(z, t) + r(z, t, x̂(z, t)),

z ∈ (0, 1), t ∈ (tk − τ, tk)

b∂zx̂(0, t) + x̂(0, t) = u(t) and

∂zx̂(1, t) = 0, t ≥ tk − τ

x̂(z, tk − τ) = x̂tk−τ (z), z ∈ [0, 1].

(8)

The variation of T leads to the cancellation of the sensor
dynamics so that the spatially averaged estimated state
(Cx̂)(t) is directly used in the adjoint sensor dynamics.
This influences in turn the adjoint state and the compu-
tation of the respective gradient.

4. NUMERICAL APPROXIMATION

To solve the forward and backward PDE-ODE systems
numerically, a finite difference discretization is applied
as an example. Note that any other technique such as
weighted residuals, collocation techiques or Galerkin’s
method can be considered similarly. The resulting finite-
dimensional approximation is composed of two coupled
sets of ODEs, where the first set is solved forward and
the second backward in time, respectively.

4.1 Finite differences discretization of PDE subsystems

The spatial coordinate z is discretized using a uniform
grid of n + 1 nodes zj = (j − 1)∆z, j ∈ {1, . . . , n + 1}
for ∆z = 1/n. Let x̂j(·) = x̂(zj , ·), pj(·) = p(zj , ·) so
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∂sx̂(z, s) = d∂2
z x̂(z, s) + r̄(z, s, x̂(z, s)),

z ∈ (0, 1), s ∈ (0, τ)

∂sŵ(s) =
1

T
((Cx̂)(s)− ŵ(s)), s ∈ (0, τ)

b∂zx̂(0, s) + x̂(0, s) = ū(s), ∂zx̂(1, s) = 0, s ≥ 0

x̂(z, 0) = x̂0(z), z ∈ [0, 1]

ŵ(0) = ŵ0

(5a)

with r̄(z, s, x̂(z, s)) = r(z, t(s), x̂(z, t(s))), ū(s) = u(t(s)),
∆w̄(s) = ∆w(t(s)) for t(s) = s+ (tk − τ) and

∂sp(z, s) = −d∂2
zp(z, s)− ∂x̂r̄(z, s, x̂(z, s))p(z, s)

− q(s)

T
c(z), z ∈ (0, 1), s ∈ (0, τ)

∂sq(s) =
q(s)

T
+∆w̄(s), s∈(0, τ)

b∂zp(0, s) + p(0, s) = ∂zp(1, s) = 0, s ≥ 0

p(z, τ) = 0, z ∈ [0, 1]

q(τ) = 0.

(5b)

Herein, (x̂0(z), ŵ0) denotes the minimizer of (2a) with

∆w̄(s) = (w(t(s))− ŵ(s)) given ŵ(s) =
∫ 1

0
c(z)x̂(z, s)dz.

Remark 1. The adjoint PDE (5b) can be re-formulated as
an initial-boundary-value problem by reversing the time
coordinate. Hence, let α := α(s) = τ − s or s(α) = τ − α,
respectively, and p(·, s) �→ p(·, α), q(s) �→ q(α), then (5b)
reads

∂αp(z, α) =d∂2
zp(z, α)+∂x̂r̄(z, s(α), x̂(z, s(α)))p(z, α)

+
q(α)

T
c(z), z ∈ (0, 1), α ∈ (0, τ)

∂αq(α) = −q(α)

T
−∆w̄(s(α)), α∈(0, τ)

b∂zp(0, α) + p(0, α) = ∂zp(1, α) = 0, α ≥ 0

p(z, 0) = 0, z ∈ [0, 1]

q(0) = 0.

(6)

In this case the solution x̂(z, s) of (5a) has to be mapped
accordingly.

3.3 Estimation algorithm

The optimization problem is solved based on (5) by means
of gradient iteration and line search by carrying out the
following steps:

(1) Obtain the output w(t) from the system governed by
(1) involving the sensor dynamics.

(2) Initialize the decision variables (x̂
(i)
0 (z), ŵ

(i)
0 ), then

repeat the following gradient iteration until a suitable
stopping criteria is fulfilled:
(a) Solve (5a) forward in time to obtain the state and

output trajectories (x̂(i)(z, s), ŵ(i)(s)) at the ith
iteration on the current horizon on the basis of
the initial state (x̂

(i)
0 (z), ŵ

(i)
0 );

(b) Solve (5b) backward in time or solve respec-
tively (6) to obtain the adjoint state trajectory
(p(i)(z, s), q(i)(s)) for the considered horizon;

(c) Compute the gradients g
(i)
x̂0
(z) = p(i)(z, 0) and

g
(i)
ŵ0

= q(i)(0);

(d) Update the estimated state and output

x̂
(i+1)
0 (z) = x̂

(i)
0 (z)− α

(i)
x̂ g

(i)
0 (z)

ŵ
(i+1)
0 = ŵ

(i)
0 − α

(i)
ŵ g

(i)
ŵ0

(7)

with the step sizes α
(i)
x̂ > 0 and α

(i)
ŵ > 0.

Using the steepest descent avoids the need to compute

the Hessian related to g
(i)
x̂0
(z) and g

(i)
ŵ0

, which is in general
computationally demanding. However, steepest descent is
robust enough to achieve convergence for randomly chosen
initial values. Alternatively conjugated gradients could be

used. For the determination of the step sizes α
(i)
x̂ and

α
(i)
ŵ a Wolfe condition, nested intervals or some adaptive

procedure can be used Nocedal and Wright (2006).

For moving horizon estimation the aforementioned opti-
mization problem is repeatedly computed on the intro-
duced receding horizon. Due to the considered change of
coordinates this refers to update w(t), u(t) and r(·, t, ·)
with time. Note that the previously introduced late-
lumping approach for the general formulation is indepen-
dent of the particular choice of numerical approximation
method. Subsequently, (5a) and (5b) or (6), respectively,
are approximated exemplarily using the finite differences
method for the PDE parts of the equations and are solved
recursively using adequate numerical tools. The spatial
discretization step is chosen small enough to remain as
close as possible to the covered infinite dimensional sys-
tems. This helps reducing the numerical dispersion due to
the discretization and thus increases the applicability of
the designed MHE.

Remark 2. If we consider the time constant T of the
sensor dynamics as an additional decision variable, then
its variation, see, Appendix A, leads to the constraint that
ŵ(t) = (Cx̂)(t). Hence the x̂-part of the MHE setting
reduces to

∂tx̂(z, t) = d∂2
z x̂(z, t) + r(z, t, x̂(z, t)),

z ∈ (0, 1), t ∈ (tk − τ, tk)

b∂zx̂(0, t) + x̂(0, t) = u(t) and

∂zx̂(1, t) = 0, t ≥ tk − τ

x̂(z, tk − τ) = x̂tk−τ (z), z ∈ [0, 1].

(8)

The variation of T leads to the cancellation of the sensor
dynamics so that the spatially averaged estimated state
(Cx̂)(t) is directly used in the adjoint sensor dynamics.
This influences in turn the adjoint state and the compu-
tation of the respective gradient.

4. NUMERICAL APPROXIMATION

To solve the forward and backward PDE-ODE systems
numerically, a finite difference discretization is applied
as an example. Note that any other technique such as
weighted residuals, collocation techiques or Galerkin’s
method can be considered similarly. The resulting finite-
dimensional approximation is composed of two coupled
sets of ODEs, where the first set is solved forward and
the second backward in time, respectively.

4.1 Finite differences discretization of PDE subsystems

The spatial coordinate z is discretized using a uniform
grid of n + 1 nodes zj = (j − 1)∆z, j ∈ {1, . . . , n + 1}
for ∆z = 1/n. Let x̂j(·) = x̂(zj , ·), pj(·) = p(zj , ·) so
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that x̂(·) = [x̂2(·), . . . , x̂n(·)]T , p(·) = [p2(·), . . . , pn(·)]T
and consider centered finite differences to approximate the
second order derivative

∂2
z x̂(z, ·) ≈

x̂j+1(·)− 2x̂j(·) + x̂j−1(·)
(∆z)2

. (9)

Then (5) can be approximated according to

∂sx̂(s) = Ax̂(s) + bū(s) + f(s, x̂(s)) (10a)

∂sŵ(s) =
1

T

(
(Cx̂)(s)− w(s)

)
(10b)

∂sp(s) = −Ap(s)− g(s, x̂(s),p(s))− q(s)

T
c (10c)

∂sq(s) =
q(s)

T
+∆w̄(s) (10d)

for s ∈ (0, τ) with initial and terminal conditions

x̂(0) = x̂0, ŵ(0) = ŵ0, p(τ) = 0, q(τ) = 0 (10e)

and

A =
d

(∆z)2




−2− ν

1− ν
1 0 · · · 0 0

1 −2 1 · · · 0 0
...

...
0 0 0 · · · 1 −1




b =




d

(∆z)2(1− ν)
0
...
0




c =




c(z2)
c(z3)
...

c(zn)




f =



r̄(z2, s, x̂2(s))

...
r̄(zn, s, x̂n(s))


 , g =



∂x̂r̄(z2, s, x̂2(s))p2(s)

...
∂x̂r̄(zn, s, x̂n(s))pn(s)




for ν = b/∆z. Using first order forward and backward
finite differences the boundary values follow as

x̂1(s) =
ū(s)− νx̂2(s)

1− ν
, x̂n+1(s) = x̂n(s)

p1(s) = − ν

1− ν
p2(s), pn+1(s) = pn(s).

Note that Remark 1 can be applied to re-formulate the
final-value problems for p(s) and q(s) into an initial-value
problems on a reverse time scale.

4.2 Discretization-based estimation algorithm

The numerical solution process is based on the gradient
algorithm developed in Section 3.3 and is implemented as
follows:

(1) Obtain the output w(t) from the system governed by
(1) involving the sensor dynamics.

(2) Initialize the decision variables (x̂
(i)
0 , ŵ

(i)
0 ) for each

iteration i and execute the following steps until a
stopping condition is reached:
(a) Solve (10a) and (10b) forward in time and deter-

mine the corresponding states (x̂(i)(s), ŵ(i)(s))
on the current horizon s ∈ [0, τ ].

(b) Solve (10c) and (10d) backward in time to obtain

(p(i)(s), q(i)(s)) and evaluate the gradients g
(i)
x̂0

=

p(i)(0) and g
(i)
ŵ0

= q(i)(0).

(c) Update the initial state and output

x̂
(i+1)
0 = x̂

(i)
0 − α

(i)
x̂ g

(i)
x̂0

ŵ
(i+1)
0 = ŵ

(i)
0 − α

(i)
ŵ g

(i)
ŵ0

(11)

with suitable step lengths α(i) and α
(i)
ŵ .

5. SIMULATION RESULTS

Subsequently simulation results are presented for the mov-
ing horizon estimation problem given by (1) with measure-
ments corrupted by noise.

5.1 Implementation

The set of PDEs (5) is solved numerically using the
discretization introduced in (10) at each iteration step. For
thisMatlab is used, where the gradient descent algorithm
described in Section 3.3 or 4.2, respectively, is applied. To
determine the nominal solution of (1) the solver pdepe
is used to compute x(z, t). The output w(t) defined in
(1d) is evaluated numerically and the in-domain output
y(t) is determined utilizing an adaptive quadrature rule
to evaluate the integral of c(z)x(z, t) over z ∈ [0, 1]. The
spatial measurement characteristics is assigned as a square
pulse

c(z) = σ(z − ξ1)− σ(z − ξ2) (12)

with 0 < ξ1 < ξ2 < 1 and σ(·) denoting the Heaviside func-
tion. The additive output disturbance v(t) is assumed to
be normally distributed with zero mean. The parameters
are assigned as d = 1, b = 1 and the external boundary
input is set to zero, i.e., u(t) = 0.

The considered horizon interval is [tk−τ, tk], where τ = 0.2
is chosen as horizon length and tk is the upper bound
of the current horizon interval. At the beginning of the
simulation tk = τ holds true and tk is incremented by
τ at the end of each horizon. Each horizon [tk − τ, tk]
is discretized in time using 10 grid elements. The spatial
discretization was carried out with n = 21 grid points and
the MHE was evaluated using (10). The time constant T
is chosen as a multiple of τ .

For the evaluation of the MHE performance, we consider
the L2-norm of the estimation error

‖e‖L2(t) = ‖x(z, t)− x̂(z, t)‖L2 . (13)

The line search algorithm summarized in Section 4.2 is
evaluated using an adaptive line search Englert et al.
(2019) for the computation of the step length.

5.2 Bistable diffusion-reaction system

The reaction term in (1) is chosen as

r(z, t, x(z, t)) = β0x(z, t)(β1(z, t)− x(z, t))×
(x(z, t)− β2(t)) (14)

with β0 = 10, β1(z, t) = 1/2 + cos(5πzt/2) and β2(t) =
sin(2πt)/2, see also Pesin and Yurchenko (2004); Meurer
(2013b). With this, (1) represents a bistable semilinear
PDE. The initial state of the nominal system is assigned
as x0(z) = 5/4σ(z − 1/2) with the Heaviside function
σ(·). The MHE is initialized with x̂0(z) = −x0(z). Due
to the bistability induced by (14) the solution of (1) for
the initial states x0(z) and −x0(z), respectively, converges

a) x0(z) = 5/4σ(z − 1/2). b) x̂0(z) = −5/4σ(z − 1/2).

Fig. 1. Evolution of x(z, t) for x(z, 0) = x0(z) and x(z, 0) =
x̂0(z) used for the initialization of the system dynam-
ics and the MHE, respectively. The resulting conver-
gence to different final states due to the bistability
becomes visible.

a) Time evolution of L2-norm of

state estimation error ‖e‖L2 (t) ac-

cording to (12).

b) Estimated measurement ŷ(t)

and sensor value ŵ(t) compared to

simulated values.

Fig. 2. MHE with time constant T = τ .

a) Time evolution of L2-norm of

state estimation error ‖e‖L2 (t) ac-

cording to (12).

b) Estimated measurement ŷ(t)

and sensor value ŵ(t) compared to

simulated values.

Fig. 3. MHE with time constant T = 5τ .

a) Time evolution of L2-norm of

state estimation error ‖e‖L2 (t) ac-

cording to (12).

b) Estimated measurement ŷ(t)

compared to simulated value.

Fig. 4. MHE with time constant T = 5τ with sensor time
constant as decision variable according to Remark 2.

to different stable (transient) operation profiles, see, Fig.
1. The measurement characteristics (12) is parametrized
using ξ1 = 0.6 and ξ2 = 0.7.

The simulation results are computed for the nominal
model of the system. Hereby, the observer system remains
in its original form (2b) and the initial state of the sensor
dynamics ŵtk−τ is updated at the end of each estimation
horizon by the gradient ∂δŵtk−τL = qtk−τ according to
the algorithm introduced in Section 3.3. Based on this
algorithm, the simulation results depicted in Fig. 2 and
Fig. 3 are obtained for two different values of the time
constant T taking into account the same noise level v(t).
For the smaller time constant T = τ = 0.2 (Fig. 2)
the MHE is able to follow the measurement quickly and
precisely. The convergence of the estimation error is fast
with minor local perturbations due to the added noise.
The estimation ŵ(t) similarly converges to w(t) with initial
transients due to the determination of the initial value on
each receding horizon. In Fig. 3 determined for T = 5τ = 1
the initial transient phase is extended but convergence of
the estimation error is achieved similarly. Both cases have
an average computational time of 0.182s per iteration step
considering an Intel Core i5-8265U CPU.

If Remark 2 is applied and ŵ(t) = (Cx̂)(t) is imposed, then
the performance of the resulting MHE is shown in Fig. 4
for the scenario of Fig. 3, i.e. T = 1. This in particular
provides a better estimation performance as the rather
slow sensor dynamics considered in this example is omitted
in the MHE evaluation.

6. CONCLUSIONS

A moving horizon estimator for a nonlinear diffusion-
reaction system with sensor dynamics is designed using
a late-lumping approach by directly exploiting the PDE-
ODE formulation of the system. The necessary optimality
conditions are evaluated and are used to formulate a line
search approach involving the solution of the adjoint PDE-
ODE system defining the gradient. Based on this, a finite
differences discretization is presented and utilized for the
evaluation of the MHE. Simulation results for a bistable
diffusion-reaction system with measurements subject to
additive noise and processed via a linear sensor dynamics
confirm the applicability of the PDE-ODE-based moving
horizon estimation.

Current research addresses the proper selection of the
optimization horizon in view of optimality, sampling times
and computational time, the connection of the sensor
placement and the performance of the MHE as well as the
inclusion of noise estimation into the MHE setup. This in
addition includes the comparison with early-lumping MHE
for nonlinear PDE systems.
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Appendix A. FIRST VARIATION OF LAGRANGE
FUNCTIONAL

The optimality conditions (3) are deduced evaluating the
first variation or Gâteaux derivative, respectively, for (2).
To this end, the Lagrange functional (4) is evaluated tak-
ing into account also T as additional decision variable (see
Remark 2). Hence, integration by parts of the Lagrangian
yields

L = J −
∫ 1

0

[
p(z, t)x̂(z, t)

]tk
tk−τ

dz

+

∫ tk

tk−τ

d
[
p(z, t)∂zx̂(z, t)− ∂zp(z, t)x̂(z, t)

]1
0
dt

+

∫ tk

tk−τ

∫ 1

0

(
x̂(z, t)

(
d∂2

zp(z, t) + ∂tp(z, t)
)

+ r(z, t, x̂(z, t))p(z, t)
)
dzdt

−
[
q(t)ŵ(t)

]tk
tk−τ

+

∫ tk

tk−τ

(
ŵ(t)

(
q̇(t)− q(t)

T

)
+

q(t)

T
(Cx̂)(t)

)
dt.

The Gâteaux derivative of the Lagrangian can be for-
mulated as δL = δLx̂ + δLŵ + δLT , whereby δJ =

−
∫ tk
tk−τ

(
w(t)− ŵ(t)

)
δŵ(t)dt such that

δLx̂ = −
∫ 1

0

[
p(z, t)δx̂(z, t)

]tk
tk−τ

dz

+

∫ tk

tk−τ

d
[
p(z, t)δ∂zx̂(z, t)− ∂zp(z, t)δx̂(z, t)

]1
0
dt

+

∫ tk

tk−τ

∫ 1

0

δx̂(z, t)
(
∂tp(z, t) + d∂2

zp(z, t)

+ ∂x̂r(z, t, x̂(z, t))p(z, t) +
q(t)

T
c(z)

)
dzdt,

δLŵ = −
[
q(t)δŵ(t)

]tk
tk−τ

+

∫ tk

tk−τ

δŵ(t)
(
q̇(t)− q(t)

T
−
(
w(t)− ŵ(t)

))
dt,

δLT =

∫ tk

tk−τ

q(t)

T 2

(
ŵ(t)− (Cx̂)(t)

)
δTdt.

Taking into account the fundamental lemma of variational
calculus for admissible directions δx̂(z, t), δŵ(t), and δT
the evaluation of the first order necessary optimality
condition δL = 0 implies (2) and (3). In addition, the
gradients

∂x̂(z,tk−τ)L =

∫ 1

0

p(z, tk − τ)dz, ∂ŵ(tk−τ)L = q(tk − τ)

are obtained, which are used in Section 3.3. Furthermore,
the evaluation of δLT = 0 implies ŵ(t) = (Cx̂)(t), see also
Remark 2.


