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1. Introduction

Photovoltaics (PV) is one of the most auspicious technologies for
the transition of the global energy mix toward a sustainable future.
Within PV, hybrid metal-halide perovskite semiconductors have
emerged since 2009 as a promising absorber material class for
the next-generation thin-film solar cells.[1,2] Already today, the

technology demonstrates outstanding power
conversion efficiencies (PCEs), exceeding
25%.[3] Despite numerous favorable
optoelectronic properties of perovskite
semiconductors, four key challenges remain
and delay the successful commercialization
of perovskite solar cells (PSCs): 1) the
long-term stability, 2) the toxicity of the
contained lead, 3) upscaling to large-areas,
and 4) unlocking cost-effective, reliable
large-scale production (high throughput
and high yield).[2,4] Traditional efforts in
material science and device engineering
in the field are based on countless trial-
and-error experiments. However, these
approaches for material discovery, process
development, characterization, full device
evaluation, and stability testing are often
complicated, expensive, laborious, and
time-consuming given the large experimen-
tal parameter space.[5] These drawbacks
motivate the implementation of autonomous
experimentation methods and data-driven
techniques like machine learning (ML).[6,7]

In an increasing number of research fields, ML methods are
employed to identify yet undiscovered correlations and to provide
insights into fundamental working principles. Besides pattern
extraction, ML can be utilized to make classifications or predic-
tions and to uncover new insights into the studied data. For this
reason, ML algorithms are successfully adopted to an increasing
number of applications in materials science,[8–11] encompassing,
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Large-area processing remains a key challenge for perovskite solar cells (PSCs).
Advanced understanding and improved reproducibility of scalable fabrication
processes are required to unlock the technology’s economic potential. In this
regard, machine learning (ML) methods have emerged as a promising tool to
accelerate research and unlock the control needed to produce large-area solution-
processed perovskite thin films. However, a suitable dataset allowing the analysis
of a scalable fabrication process is currently missing. Herein, a unique labeled
in situ photoluminescence (PL) dataset for blade-coated PSCs is introduced and
explored with unsupervised k-means clustering, demonstrating the feasibility to
derive meaningful insights from such data. Correlations between the obtained
clusters and the measured performance of PSC reveal that the in situ PL signal
encodes information about the perovskite thin-film quality. Detrimental mecha-
nisms during thin-film formation are detected by identifying spatial differences in
PL patterns and, consequently, of device performance. In addition, k-nearest
neighbors is applied to predict the performance of PSCs, motivating further
investigations into ML-based in-line process monitoring of scalable PSC fabrication
to detect, understand, and ultimately minimize process variations across iterations.
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most recently, also the field of perovskite PV.[12–15] ML is employed
for the discovery of new perovskite semiconductors[16–18] and
to showcase the accelerated development of lead-free
perovskites.[19–21] Moreover, the long-term stability of PSCs has
been investigated by combining ML with high-throughput experi-
mentation[22,23] or by applying ML to datasets generated through
data mining of previous publications on the topic of perovskite
stability.[24] Time series models have been developed for acceler-
ated material stability evaluation and performance forecasting in
humid environments.[25–27] Furthermore, data-driven approaches
can be used to generate predictive models for optoelectronic char-
acteristics such as the bandgap[28–31] based on theoretical physical
material features like ionization energy, atomic/molecular sizes,
or lattice constant. These material parameters can be extracted
from open-access material properties databases.[32–36] Yet, ML
applications in PV are not limited to accelerated material
discovery, the prediction of theoretical material properties, or
the extraction of new knowledge from previous publications
through data mining. As demonstrated for silicon PV, ex situ
deployment of these methods in combination with imaging
techniques enables monitoring and quantification of the current
operational status of fully processed solar cells during operation in
the field.[37–45]

The key ingredient for unlocking large-scale and thus econom-
ically viable production of PSCs is the upscaling of the thin-film
formation process to large areas using scalable deposition
techniques. To this end, the entangled phases of film formation,
i.e., drying, nucleation, and crystal growth, must be carefully
monitored and controlled to obtain high-quality optoelectronic
thin films.[4] The ideal perovskite thin film exhibits morphology
that features large grain sizes, high film density, low surface
roughness, and uniform crystal structure without pinholes
and imperfections on large areas. Considering the complexity
of the entangled film formation phases, scaling the technology
is intricate and requires an enhanced understanding of the
highly complex thin-film formation.[4] To this end, in situ char-
acterization methods, are needed to non-invasively monitor the
quality of the thin film during its formation on large areas with a
temporal resolution of less than one second.[46] Fulfilling these
requirements, in situ photoluminescence (PL) imaging is used to
gain insight into the complex fabrication process of the perov-
skite thin film. In situ PL imaging has great potential to monitor,
control and research the perovskite thin-film formation.[46–50] In
this work, we introduce and analyze a unique, labeled dataset
containing in situ PL data from 1129 blade-coated perovskite
thin-film solar cells processed under the very exact same condi-
tions, layer stacks, and precursor materials, so that performance
variations are solely caused by fluctuations in the fabrication
process itself. In contrast to the commonly used spin-coating
fabrication process, blade-coating is closer to an industrial
manufacturing scenario since it is scalable to larger areas.
Data acquisition was performed with an in-house-built imaging
setup[50] during the vacuum-assisted quenching of blade-coated
perovskite thin films, which initiates the drying and crystalliza-
tion of high-quality perovskite absorber layers.[51–53] This dataset
offers the potential to enhance the understanding of the scalable
fabrication of perovskite layers, a critical step toward the com-
mercialization of perovskite PV (see Figure 1A). The application
of ML techniques to analyze the perovskite layer formation allows

identifying the circumstances and causes of unintended devia-
tions across iterations from a previously optimized fabrication
process. In the conventional fabrication process, unintentional
deviations from the optimized experimental process cannot be
detected and evaluated until the layer stack is completed into
a full device, which requires several additional experimental pro-
cess steps after the perovskite layer is deposited. Elucidating the
link between the imaged PL intensity acquired in situ during the
perovskite deposition step and the performance of the finished
solar cells will ultimately enable performance predictions prior to
the solar cells actually going through the several remaining proc-
essing steps to finalize the full devices. Additionally, implement-
ing early detection of fabrication flaws in an industrial
production line can mitigate costs through the application of pre-
ventive maintenance strategies, resulting in savings in both time
and materials.

To exploit the potential of in situ PL imaging for monitoring
perovskite formation, this work explores supervised and unsu-
pervised ML algorithms on the generated in situ PL dataset to
detect unintended process variations introduced by upscaling
of the fabrication process. First, the advantage of acquiring in
situ data during the perovskite formation over ex situ PL data
is revealed by highlighting the correlation between expert-chosen
in situ PL features and the corresponding PCE. Then, unsuper-
vised k-means clustering is used for initial data exploration of
human-encoded features extracted from the luminescence data.
Subsequently, the dependence on data encoding by human
experts is fully removed by clustering the entire PL transients.
It is demonstrated that k-means clustering creates transient
PL clusters that correlate with the performance of the final
PSC. In addition, k-means clustering is used to identify adverse
process mechanisms in the formation of perovskite thin films.
Spatial correlations of the generated transient PL clusters and,
consequently, of solar cell performance are detected. Areas with
increased detrimental perovskite thin-film properties are identi-
fied through differences in the spatial distribution of PL data pat-
terns assigned to the different clusters. Finally, after the initial
exploration of the dataset using unsupervised k-means cluster-
ing, the supervised ML algorithm k-nearest neighbors (kNN)
is applied to predict PV parameters and perovskite layer thick-
ness, which has a major influence on solar cell performance.
The promising results motivate further investigations using
more advanced supervised ML techniques like neural networks
in conjunction with the entire image time series data. In sum-
mary, this work demonstrates that ML-based analysis of our
introduced unique in situ PL dataset offers high potential for
in-line process monitoring and can accelerate the commerciali-
zation of perovskite thin-film PV by identifying process varia-
tions at an early stage during device fabrication.

2. Results and Discussion

2.1. Experimental In Situ Luminescence Dataset for Perovskite
PV

Applying ML methods to data acquired in situ during the fabri-
cation process of PSCs is a promising strategy for improving pro-
cess understanding and reproducibility. However, to train ML
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models, large in situ datasets are necessary. To this end, 1129
solar cells were fabricated using the blade coating deposition
technique (see Figure S1, Supporting Information). The vacuum
quenching process of the perovskite layer was monitored using a
PL imaging setup. The camera captures images of the entire
32� 64mm2 substrate with the blade-coated perovskite layer
on top (see Figure 2A and S2, Supporting Information).

Accordingly, the generated dataset contains time-resolved in
situ images acquired during the formation of the perovskite layer
(see Figure 1B). The imaging setup outputs four channels con-
taining image time series (2Dþ t) measured through different
spectral filters, capturing reflectance (one channel) and different
parts of the PL spectrum (three channels). Furthermore, the
three PL channels with different spectral transmissions were
used to compute an image time series of spatially resolved PL
peak energy (one channel) using the method introduced by

Chen et al.[54] In a preprocessing step, the images were cropped
into 32 smaller patches (65� 56 pixels each), only depicting the
active area of a singular solar cell. For all experimental iterations,
the transient data was aligned at the beginning of the evacuation
of the vacuum chamber. 170 s after the start of data acquisition,
i.e., after �505 time steps, the chamber was flooded with ambi-
ent air before data acquisition ended after a total of 240 s, result-
ing in a time series of 719 time steps at 3 frames per second.
Consequently, the image time series in the dataset encompasses
the drying and crystallization of the blade-coated perovskite thin
films.

All solar cells were then built to completion and their perfor-
mance was measured to determine current-density–voltage
curves. For each solar cell in the dataset, the PV parameters
(PCE, open-circuit voltage (VOC), short-circuit current density
(JSC), fill factor (FF)), measured backward and forward, were

A

B

Figure 1. Process understanding and prediction through machine learning. A) Schematic illustration of a feedback loop driven by machine learning (ML)
methods applied to experimental in situ data. Training an ML model on in situ data enables directly predicting the solar cell characteristics without having
to complete the fabrication process. Furthermore, ML helps to understand and to optimize the perovskite deposition by revealing underlying patterns the
model uses for its prediction. B) Description of the generated dataset containing 1129 solar cells. For each solar cell, time-resolved in situ imaging was
performed during perovskite formation yielding multiple channels of image time series (videos) which can be used as features when implementing ML
algorithms. Furthermore, performance metrics as well as the perovskite layer thickness were acquired and can be used as labels.
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added as parameters to the dataset. In this work, the mean
between backward and forward measurement is used as a label
for all performance metrics. Furthermore, the mean perovskite
layer thickness of each solar cell’s active area was determined
with a profilometer along three spatially offset scan lines. The
thickness information was added to the dataset as an additional
parameter. Auxiliary information such as the substrate ID and
the position of each solar cell within its substrate is provided
as well.

The complete dataset contains data from a total of 1129 solar
cells. For the evaluation of the predictive capabilities of ML mod-
els, the dataset was split into training and test datasets, contain-
ing 780 and 349 solar cell samples, respectively. The training set
is used for model development, i.e., the selection of hyperpara-
meters, and for training the models, while the test set allows for
an unbiased evaluation of the models using previously unseen
data. The split was performed on a substrate level, moving all
(up to 32) solar cells originating from the same substrate in uni-
son to either the training or test split. This way, the evaluation of
the model using the test set can be viewed as actual predictions
on newly generated experimental data. Furthermore, the training
dataset was divided into five subsets for fivefold cross-validation,
again assigning solar cells originating from the same substrate to
the same data subset (see Experimental Section for more
information).

All solar cells were fabricated using the same materials, the
same experimental methods, and the same experimental

parameters. Thus, this dataset can be utilized for the application
of ML techniques to improve process understanding, as well as
for in-line performance prediction, for process monitoring, and
for in-line detection of inferior perovskite thin-film quality due to
differences between blade coating iterations. These potential
applications highlight that this experimental dataset is a crucial
stepping stone enabling data-driven in-line process monitoring
to accelerate the industrialization of perovskite PV. The dataset
is made publicly available to the community (https://doi.org/10.
5281/zenodo.7 503 391).[55]

2.2. Benefits of Acquiring In Situ Photoluminescence Data

The initial investigation of the training dataset in this work dem-
onstrates the value of the generated dataset by showing that the
in situ PL data correlates with solar cell performance and can be
used to predict it. To decrease the complexity of the problem, the
data’s dimensionality is reduced by conducting feature reduction
using domain knowledge, i.e., expert knowledge about the under-
lying research area and the generated data. For each time step,
the spatially resolved patches in the PL images coinciding with
the solar cells’ active area are encoded by the mean value of the
PL intensity of the patch (see Figure 2A,B). This emphasizes the
temporal sequence of the experiment and allows the investiga-
tion of small differences in the material formation process
between iterations, which are revealed by variations in the tem-
poral evolution of PL intensity. Among the resulting transients

B

C D

A

Figure 2. Rationale for using in situ data. A) Exemplary photoluminescence (PL) images of a blade-coated perovskite thin-film layer acquired at four
different points in time during the vacuum quenching process. The rectangles mark six out of a total of 32 areas on the substrate, which coincide with the
active area of a solar cell. B) Graph displaying the transient behavior of the spatial mean PL intensity of the active areas of six solar cells marked in (A). The
orange cross at t= t2 marks the transients’ maxima as an in situ feature. Starting at t= t3, the vacuum chamber is again vented with ambient air.
C,D) Scatter plots showing each solar cell as a data point scattered over its measured power conversion efficiency (PCE) and the detected mean
PL intensity of the in situ feature at t= t2 (C) or of the ex situ feature at t= t4 (D). The black lines represent the fits of the linear regression corresponding
to the calculated correlation coefficients.
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for each channel, only the data acquired through the 725 nm long
pass filter is selected, as it captures the entire PL emission spec-
trum of the used perovskite material (optical band gap of approx-
imately 1.59 eV). Hence, the data used in this work focuses on
the transient evolution of the PL intensity while keeping the anal-
ysis of spatial (in-)homogeneity in the image patches for future
work.

The benefits of recording in situ data during the perovskite
formation process are highlighted by comparing the correlation
of the solar cell performance with in situ PL features versus ex
situ PL features. First, the in situ PL transients are examined with
a simple, intuitive approach, e.g., by correlating the most promi-
nent feature of the transients, the maximum in PL, to the solar
cell performance (see Figure 2C). It is apparent that the PCE of
the solar cell tends to increase with the maximum of the transient
PL. For highmaximummean PL values, the corresponding PCEs
are mostly higher than 11% (see Figure 2C). For low maximum
mean PL, the mean PCE decreases and the distribution widens.
This implies that even for low mean maximum PL some solar
cells show high performance, but the ratio of low performing
solar cells (PCE< 10%) increases. The correlation between the
in situ feature and the PCE is quantified by a Pearson correlation
coefficient of r= 0.3386 with a fit quality measure of r2= 0.1147
(see Table 1) and by the increasing slope of the fitted line
obtained by linear regression (see Figure 2C). While the expert’s
domain knowledge is crucial to encode the in situ PL transient,
the choice of the data point used as the input feature is somewhat
sensitive and highly influences the result. However, already the
simple approach provided here reveals the above-mentioned cor-
relation. In the second step, the last data points of the transients
(t= t4) are selected as representative of ex situ data to demon-
strate the benefit of acquiring in situ data during the vacuum
quenching process over ex situ data. When compared to the cor-
responding in situ plot, the ex situ data points are more dispersed
(see Figure 2D) indicating that the ex situ data encodes less infor-
mation content regarding the subsequently measured PCE of the
solar cell when compared to the previously presented in situ data.
The small correlation between the ex situ feature and the PCE is
demonstrated by a correlation coefficient of r= 0.0182 with a fit
quality measure of r2= 0.0003 (see Table 1) as well as by the
nearly flat linear regression line (see Figure 2D).

Finally, the correlation coefficients confirm a higher correla-
tion between the in situ feature and the labels compared to
the ex situ features (see Table 1). In addition to the difference
in correlation for PCE, the correlation coefficient for the in situ
feature is also particularly high for FF compared to the ex situ
value. The highest correlation for both the in situ as well as ex
situ feature is found for perovskite layer thickness. This is
due to the fact that the performance of the solar cell is influenced

by the quality of the entire device, while the perovskite layer
thickness is completely determined during the process step
represented in the dataset. The other steps do not add any uncer-
tainty to the layer thickness, whereas the performance parame-
ters may be subject to variation introduced by the other
processing steps, leading to a lower correlation. In summary, in
situ PL data is considerably more insightful compared to ex situ
PL data and, consequently, highly advantageous for in-the-loop
ML-based process monitoring.

2.3. Initial Exploration of the Dataset Using Unsupervised
Machine Learning

To explore and analyze the dataset further, the unsupervised ML
technique of k-means clustering is applied to the training set.
The main use case of unsupervised ML is a data exploration
and pattern extraction. The k-means clustering algorithm divides
data into k clusters, each containing data with similar character-
istics (see Experimental Section for more information).[56–58] To
ensure comparability, the number of clusters k is fixed. In the
Figure S3, Supporting Information, the choice of the number
of clusters k= 4 is most suitable according to the established
elbow method[59] in combination with cross-validation for all
examples presented in the following.

By selecting features, the entire transient is reduced into a small
number of values, making it easy to interpret the data. In this initial
exploration, prominent features of the PL transients are selected as
input for the clustering algorithm. In the process, gradually more
and more input features are introduced, leading to an increase in
information, but also to higher complexity (see Figure 3A–C).

First, the maximummean PL introduced earlier is used as the
input feature for the k-means clustering algorithm (see
Figure 3D). The aforementioned trend that the PCE of the solar
cell increases with the maximum of the transient PL is confirmed
by the differences in the PCE distributions of the four clusters
(see Figure 3G and S4, Supporting Information). Having clus-
tered the maximummean PL intensity as a single in situ feature,
the time of the transient’s maximum is introduced as an addi-
tional second input feature (see Figure 3B). Examining the
two features, the existence of two distinct groups within the data-
set is evident (see Figure 3E). For a number of solar cells, the
detection of the maximum mean PL is delayed when compared
to most others. The solar cells with delayed maximum mean PL
are assigned to cluster 0 and display the worst general perfor-
mance (see Figure 3H and S4, Supporting Information). The
group without delayed time of maximum mean PL is grouped
into the three remaining clusters depending on the maximum
mean PL intensity (see Figure 3H). Cluster 1 to cluster 3 show
increasing median and mean PCE. Again, the best-performing

Table 1. Correlation coefficients confirm a higher correlation between the in situ feature and the labels.

a) PCE VOC JSC FF Layer thickness

In situ feature 0.3386 (r2= 0.1147)b) 0.0496 (r2= 0.0025) 0.1707 (r2= 0.0291) 0.4225 (r2= 0.1785) �0.6080 (r2= 0.3696)

Ex situ feature 0.0182 (r2= 0.0003) 0.1249 (r2= 0.0156) �0.0116 (r2= 0.0001) �0.0313 (r2= 0.0010) 0.6091 (r2= 0.3710)

a)r2: coefficient of determination, PCE: power conversion efficiency, VOC: open-circuit voltage, JSC: short-circuit current density, FF: fill factor;
b)Bold values indicate higher

correlation for given label.

www.advancedsciencenews.com www.solar-rrl.com

Sol. RRL 2023, 7, 2201114 2201114 (5 of 14) © 2023 The Authors. Solar RRL published by Wiley-VCH GmbH

 2367198x, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/solr.202201114 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.solar-rrl.com


cluster 3 is of low variance even though 228 solar cells are
assigned to it.

The addition of a third feature further increases the information
contained in the input and allows for potentially better clustering
of the data as more information is available. As the number of
features increases, the input provides a more holistic representa-
tion of the entire data. However, it also leads to a more complex
problem, which is harder for humans to interpret, thus requiring
the use of machine learning. To cluster three-feature samples, the
local maximum of the oscillation of the mean PL transient (see
Figure 3C) is added to the existing features. The oscillation is
attributed to the start of the venting process, i.e., the opening
of the vacuum valve, subsequent to the evacuation time interval
and the consequent increase of the pressure in the experimental
chamber. While the two distinct groups within the fitted clusters
are evident, variance is added through the introduction of the third

feature, especially to the group without delayed PL maxima (see
Figure 3F). The borders between different clusters are placed sim-
ilarly to the two-feature clustering case which leads to a similar
assignment of solar cells to the clusters (see Figure 3I).

It is demonstrated that the corresponding general solar cell
performances of the generated multi-feature clusters differ
substantially. This allows for distinguishing favorable from less
favorable properties of the acquired in situ PL transient. Other
feature sets of two or three parameters extracted from the
mean PL transients, the resulting clusters, and corresponding
performance can be found in Figure S5 and S6, Supporting
Information.

Plotting and qualitatively interpreting features with more
than three parameters is increasingly difficult, which necessitates
the use of automated methods that can deal with such a
high-dimensional feature space.

A

E

FC

HB

I

D G

Figure 3. Clustering of human-readable multi-feature data. A–C) Exemplary mean photoluminescence transients. First, one single data point is extracted
from the transient and used as feature when clustering the data (A). Afterwards, a second (B) and third data point (C) is added to the model input.
D–F) Scatter plots showing each solar cell as a data point. The single feature values are scattered over the PCE (D). The data points are scattered in two-
dimensional space when using two features as model input (E) and in 3D space when using three features (F). G–I) The PCE distributions of the resulting
clusters are displayed as boxplots for the clustering of one feature (G), two features (H), and three-feature data (I). Mean and median values are indicated
by white diamonds and black lines, respectively.
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2.4. Clustering In Situ Photoluminescence without
Human-Encoded Features

By selecting features, the entire curve is boiled down into a small
number of values, making it easier for the human expert to inter-
pret the data. However, potentially valuable information is
removed by making it human-readable. Therefore, in the follow-
ing experiment, the entire mean PL transients are used as input
for the ML algorithm. Without the need to identify the transients’
features with the highest possible information content, no prior
decisions are made by a human expert for encoding the data.

Applying k-means clustering to the entire mean PL transient
data of the training dataset shows that unsupervised ML can be
used to identify in situ transient data patterns which correspond
to varying performance of the final solar cells. It is observed that
the clusters differ with respect to various characteristics of the
transients (see Figure 4A). Comparing the transients assigned
to the different clusters, a temporal offset of the PL signal onset
can be recognized. The transients assigned to cluster 3 show an
early onset of the PL signal while the transients’ onsets of cluster
0 are considerably delayed. The variation in onset time can be
explained by spatial differences in the wet-film thickness (see
Figure 4D for boxplots of layer thickness information). For areas
with thicker wet films and hence more material, the film takes
longer to dry, and therefore the PL signal onset is delayed when
compared to areas with thinner wet films.[60] In addition to the PL
onset time, the transients assigned to the clusters also differ
regarding the height of the initial maximum (see Figure 4B).

The transients of cluster 0 have low initial maximal PL peaks.
The average peak height increases with cluster number and clus-
ter 3 only contains transients with a high initial peak. The differ-
ences in PL peak height can also be explained by different layer
thicknesses. However, for the absolute PL intensity also the
quenching process plays a major role. The underlying
self-assembled monolayer (2PACz) also differs spatially in layer
thickness since it was blade-coated as well. This leads to spatial
differences in charge carrier extraction and therefore to locally
different quenching of the PL.[60] In addition to differences in
absolute PL intensity, the four clusters also differ regarding
the relative behavior over time (see Figure 4C). The transients
of cluster 0 with low absolute PL intensity show merely a small
relative decrease over time while the relative decrease after the
initial maximum gets steeper with increasing cluster number.
Having investigated the differences in the transients’ character-
istics, the clusters are examined regarding the performance of
the corresponding solar cells. It is confirmed that clustering
the entire mean PL transient curves can be used for extracting
data patterns that correlate with the performance of the full devi-
ces. PCE as well as FF increase from cluster 0 to cluster 3 coin-
ciding with higher PL signal peaks and earlier PL signal onsets
(see Figure 4D and S7, Supporting Information). This suggests a
correlation between the PL signal onset time and the transients’
peak height with the photovoltaic parameters PCE and FF. Both,
mean and median PCE decline from cluster 3 to cluster 0 which
manifests a general trend. Similar to the clustering examples
shown previously, the PCE variance of the best-performing

J S
C

V O
C

Cluster
#0 #1 #2 #3

Cluster
#0 #1 #2 #3

Cluster
#0 #1 #2 #3

Cluster
#0 #1 #2 #3

Cluster
#0 #1 #2 #3

FF

A

D

B

C

Figure 4. Clustering photoluminescence transients without human input. A) Depiction of the mean PL transients of all the training samples. The tran-
sients are color-coded with regard to the assigned cluster. B) Four different diagrams displaying the mean PL transients which were assigned to the four
clusters. The mean transient curve of each cluster is illustrated as the dashed red line. C) The four diagrams display the normalized transients assigned to
the different clusters. The mean transient curve of each cluster is illustrated as the dashed red line. D) The distributions of the performance parameters of
the resulting clusters are displayed. Next to the PCE, also the boxplots displaying the distributions of open-circuit voltage (VOC), short-circuit current ( JSC),
fill factor (FF), and perovskite layer thickness are shown. Mean and median values are indicated by white diamonds and black lines, respectively.
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cluster is small, but it increases for decreasing mean PCE of the
clusters. This allows the identification of data patterns in cluster 3
which lead to merely well-performing solar cells and nearly no
solar cells of low performance. 87.3% of the solar cells assigned
to cluster 3 perform better than the mean PCE of the complete
(training) dataset (11.57%) highlighting the above-average
performance of the solar cells in cluster 3 (comparable results
for previously shown clustering applications are displayed in
Figure S8, Supporting Information). The same trend can be
observed for the FF in a more pronounced manner. Mean
and median FF decline from cluster 3 to cluster 0 as well.
Also, 93.7% of the solar cells assigned to cluster 3 show a higher
FF than the mean FF of the complete dataset (58.03%). For VOC

and JSC a trend is not apparent. However, the median VOC

decreases from cluster 0 to cluster 3 (cluster 1 being an outlier
from the general trend) which suggests an inverse correlation
between VOC and transients’ peak height and PL signal onset
time. In addition to clustering the mean PL transients, k-means
can also be applied to the transients of the other channels in the
dataset, e.g., reflectance and PL peak energy (see Figure S9 and
S10, Supporting Information).

2.5. Spatial Correlation of Clusters Reveals Detrimental Process
Mechanism

Upon investigation of the four PL transient clusters, it is evident
that the variance of the performance metrics of cluster 0 is much
larger compared to the other clusters. This raises the question of
whether the PL patterns associated with cluster 0 also correlate
with solar cell performance, or whether this subset of the data
does not correlate with the PL transients.

To answer this question, cluster 0 is further subdivided by per-
forming a second round of clustering on the data samples (cells)
assigned to it. It is observed that assigning the samples to three
subclusters allows further differentiation between PL transient
patterns with different solar cell performances. The number of
subclusters ksub= 3 is determined by the implementation of
the elbow method (see Figure S11, Supporting Information).
To emphasize the importance of the transients’ peak height
and the PL signal onset time (which were shown to strongly affect
the clustering, see Figure 4) the 304 data samples used for the
sub-clustering step are truncated by discarding the subsequent
chamber venting. It is observed that the PL signal onset time
has a profound impact on the result (see Figure 5A). When com-
pared to the PCE distribution of the original cluster 0, the solar
cells assigned to cluster 0_a on average perform poorer while
the solar cells attributed to cluster 0_c on average showcase
better PCEs (see Figure 5B). Both mean and median PCE differ
for the three subclusters indicating that the extracted data patterns
lead to differences in performance. A comparison of the centroid
transients fitted in two rounds of clustering with the centroids of a
corresponding single round of clustering with k= 6 illustrates the
differences in the data patterns found (see Figure S11, Supporting
Information). In a second round of clustering, the subset of data is
divided into several low-intensity PL subclusters. However, when
clustering with k= 6 initially, the PL transients are not divided into
clusters in the same way, with low-intensity PL transients, in par-
ticular, being less sharply resolved. In summary, sub-clustering

confirms the correlation with solar cell performance also for data
assigned to cluster 0 (see Figure 5C).

Subsequently, it is shown that the k-means clustering detects
data patterns indicative of poor solar cell performance, thereby
identifying detrimental process mechanisms during perovskite
thin-film formation. Having previously examined the fitted clus-
ters in terms of solar cell performance metrics, the position of
each solar cell on the substrate during fabrication is used as
an additional feature to evaluate the clusters.

Taking into account the additional feature, spatial correlations
of the generated clusters of the transient PL patterns and, con-
sequently, of solar cell performance are identified. It is found that
the spatial histograms of the different clusters differ consider-
ably. First, an accumulation of solar cells assigned to the cluster
with the poorest performance, e.g., cluster 0_a, is found on the
right substrate edge (see Figure 5E). Nearly no solar cell which is
grouped into cluster 0_a was positioned in the left half of the
substrate during the fabrication process. However, over 80%
of the solar cells of cluster 0_a were positioned in the rightmost
quarter of the large substrate. Investigating the morphology of a
blade-coated perovskite thin film (see Figure 5D) reveals an arc-
shaped inhomogeneity as a reason for the spatial accumulation of
low-performing solar cells. The large inhomogeneity is caused by
solution backflow after the coating process (the blade coating
applicator is moved from left to right). The resulting spatial dif-
ferences in the amount of material led to layer thicknesses that
deviate from the target layer thickness defined by suitable exper-
imental parameters.

Second, solar cells assigned to the best-performing cluster
were also predominantly located in a certain sub-area of the sub-
strate. However, in contrast to cluster 0_a, almost no solar cell
assigned to cluster 3 was positioned in the substrate area affected
by the material backflow (see Figure 5F). Thickness deviations
caused by decreasing the amount of solution available for distri-
bution during coating as well as the material flow towards the
upper and lower substrate edges result in the majority of solar
cells being located in the center of the leftmost quarter of the
substrate. The original clusters reveal the same insight when
investigating their spatial histograms in Figure S12,
Supporting Information. Investigating the spatial distribution
of solar cells’ PCE (see Figure S13, Supporting Information) con-
firms the general worse performance of solar cells positioned in
the substrate area affected by the material backflow.

In summary, the potential of unsupervised ML to reveal
new insights into the fabrication process is demonstrated by
extracting transient PL patterns indicative of poor solar cell
performance. Next to correlations with performance metrics
and perovskite layer thickness, the transients also encode infor-
mation about spatial differences in the experiment process and
can be used to identify detrimental process mechanisms during
the experimental procedure.

2.6. Predictive Capability of Supervised Machine Learning on
Previously Unseen Data

Demonstrating the ML model’s ability to predict the final solar
cell performance parameters based on the in situ PL dataset
shows that it can potentially be used for in-the-loop process
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monitoring of perovskite thin-film quality. The detection of devi-
ations from the optimal experimental process will be a critical
step towards an ML-guided active feedback loop that will allow
real-time adjustment of process parameters.

After prior exploration of the dataset using unsupervised ML,
the predictive capability of the supervised ML algorithm k-nearest
neighbors (kNN)[61] is investigated on previously unseen data in
the test set. To predict the target value of each new sample in
the test set, kNN determines the k samples in the training set
which are most similar to the unseen test sample based on a sim-
ilarity metric. The mean of these k most similar training samples
is then used as a prediction for the test sample (see Experimental
Section for more information).

First, the optimal number of neighbors kmust be determined for
the prediction of each target label. Using fivefold cross-validation on
the training set, the quality of the model prediction is assessed for
each fold by calculating the mean absolute error (MAE) between the
predicted values and the actual measured values. The model’s gen-
eral performance on the validation set is then obtained by averaging

the five MAE values. That way, the optimal value of k can be
determined without using the data from the test set.

Comparing the cross-validation results highlights substantial
reductions in MAE when using the kNN regressor instead of a
dummy mean regressor, which always predicts the mean of the
current training set (see Table 2). Compared to the dummymean
regressor, the prediction of PCE with the kNN model is more
accurate, showing a reduction in MAE from 1.8967% to
1.5408% (absolute), corresponding to a relative decrease in
MAE in PCE of 18.76%. While the model does not perform
extensively better than the dummy mean regressor in terms
of VOC showing an 8.44% improvement from 0.0308 to
0.0282 V, the MAE in JSC is reduced from 1.4262 to
1.2456mA cm�2, a 12.66% decrease, and the MAE in FF is
reduced by 22.30% (relative) from 6.5632% to 5.0997%
(absolute). Reducing the MAE from 137.9262 to 79.2875 nm,
the kNN model performs particularly well in predicting
the perovskite layer thickness, showing a 42.51% decrease
in MAE.

Figure 5. Investigation of the clusters showcases the spatial correlation of clusters. A) The mean PL transients previously assigned to cluster 0 are
truncated and sub-clustered. The colors of the curves indicate which subcluster they are assigned to upon second clustering. B) Distribution of the
original cluster 0 (box with higher transparency) alongside the distributions of the newly generated subclusters. Mean and median values are indicated
by white diamonds and black lines, respectively. C) The distributions of the performance parameters of the three subclusters are displayed as boxplots
next to the distributions of the remaining original clusters 1 to 3. D) Image of an exemplary blade-coated perovskite thin-film layer. The blade is moved
from the left to the right-hand side. The red rectangles mark the positions of the 32 solar cells located on the substrate. E,F) Spatial histograms
represented by heat maps showing the number of solar cells in each of the 32 possible positions on the substrate assigned to a single cluster.
The heat maps show the spatial histogram of the solar cells assigned to the cluster performing the poorest, cluster 0_a, (E) and to the best-performing
cluster, cluster 3 (F).
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Second, the optimized models are evaluated on previously
unseen data in the test dataset. After determining k using only
the training set, the kNN models are applied to the test set.
Compared to the dummy mean regressor, i.e., always predicting
the mean of the entire training dataset, the model’s prediction
accuracy improved substantially, showing smaller MAEs
(see Table 2). It is highlighted that the prediction accuracy of
PCE and FF are improved by 21.69% (relative) from 1.9354%

to 1.5156% (absolute) and by 22.20% (relative) from 6.553% to
5.0983% (absolute), respectively. In addition, the MAE for
predicting VOC decreased by 17.09% from 0.0357 to 0.0296 V
and for JSC by 17.04% from 1.3742 to 1.1400mA cm�2. Again,
the improvement in accuracy is highest in the prediction of layer
thickness, showing a 51.59% reduction in MAE for the test data
with kNN compared to the dummy mean regressor, correspond-
ing to a reduction from 139.7959 to 67.6807 nm.

Table 2. Reduction of prediction error using k-nearest neighbors regressor.

a) Cross-validation on training set Test set k

MAE using dummy
mean regressor

MAE
using kNN

Reduction of
prediction error

MAE using dummy
mean regressor

MAE
using kNN

Reduction of
prediction error

PCE [%] 1.8967 1.5408 �18.76% 1.9354 1.5156 �21.69%b) 14

VOC [V] 0.0308 0.0282 �8.44% 0.0357 0.0296 �17.09% 24

JSC [mA cm�2] 1.4262 1.2456 �12.66% 1.3742 1.1400 �17.04% 15

FF [%] 6.5632 5.0997 �22.30% 6.553 5.0983 �22.20% 14

Layer thickness [nm] 137.9262 79.2875 �42.51% 139.7959 67.6807 �51.59% 18

a)kNN: k-nearest neighbors, MAE: mean absolute error, PCE: power conversion efficiency, VOC: open-circuit voltage, JSC: short-circuit current density, FF: fill factor;
b)Bold values indicate prediction improvement on previously unseen data.

k

VOC

JSC

V
O

C

FF

J S
C

FF
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k

Figure 6. Showcase of the predictive capability of the kNN algorithm. Diagrams comparing the predicted values of the test set samples for each label with
the ground truth. The diagonal black lines indicate where the predictions would perfectly match the ground truth. The dummy mean regressor simply
predicts the training set mean of the label for all the test set samples. For each label, the optimal number of neighbors k is determined on the training set
using cross-validation. For illustration purposes, the limits of the axes were chosen in a way that the highest and lowest two percent of the data are
excluded (see all data in Figure S14, Supporting Information).
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The visualization of the prediction results on the test set
underlines that the kNN models achieve a considerably higher
prediction accuracy than the dummy mean regressor
(see Figure 6). For illustration purposes, the limits of the axes
were chosen such that the highest and lowest two percent of
the data were removed (see the visualization of all test data in
Figure S14, Supporting Information). In addition to making pre-
dictions based on the mean PL transients, kNN can also be
applied to the transients of the other channels in the dataset,
e.g., reflectance and PL peak energy (see Figure S15,
Supporting Information). There is a tendency for high target val-
ues to be underestimated, while low target values are overesti-
mated. This motivates further investigations into the dataset
employing more elaborate ML algorithms without prior feature
extraction. Here, the implementation of convolutional neural
networks using the entire acquired 2Dþ t data offers a promis-
ing way to improve prediction accuracy.

However, the prediction results achieved using the supervised
kNN demonstrate that the dataset containing in situ PL data can
be used to predict perovskite layer thickness and performance
parameters of solar cells. This represents a critical step toward
in-line process monitoring enabled by ML-based solar cell perfor-
mance prediction, which will help accelerate the upscaling of
perovskite PV technology.

3. Conclusion

This work reports on ML for process understanding of the
scalable perovskite thin-film formation by generating a unique
in situ PL dataset and analyzing it with ML. The analysis of
the perovskite layer formation using ML enables the early iden-
tification of unintended variations across iterations during device
fabrication. To this end, we introduce a dataset containing
multi-channel PL image time series of 1129 PSCs acquired in
situ during the vacuum quenching of the perovskite layer and
the corresponding solar cell performance metrics as well as
the perovskite layer thickness as labels. After generating transi-
ents from the image time series, first, the correlation between an
expert-chosen in situ PL feature and the corresponding solar cell
performance highlights the advantage of acquiring in situ data
during the perovskite formation compared to ex situ PL data.
For an initial exploration of the data, prominent features of
the PL transients are selected and used as input for the unsuper-
vised ML algorithm k-means clustering. This manual selection of
features by human experts introduces bias into the analysis.
Hence, in the next step, entire PL transients are clustered to
reduce the dependency on human expert input. It is shown that
k-means clustering generates clusters containing different PL
transient patterns which correlate with the performance of the
final PSC. Moreover, spatial correlations of the generated clusters
of PL transients and, consequently, of solar cell performance are
identified. Substrate areas with unfavorable perovskite thin-film
properties are detected displaying the model’s ability to detect
detrimental process mechanisms during the experimental proce-
dure. Finally, the supervised ML technique kNN is applied to
unseen test data for tentative predictions of solar cell perfor-
mance and perovskite layer thickness. The promising prediction
results motivate further investigations into the realization of

ML-based in-line performance prediction for PSCs. Here, the
application of more sophisticated ML algorithms, such as convo-
lutional neural networks, using the entire raw data including spa-
tial information provides an opportunity to further improve
prediction accuracy. In summary, this work demonstrates that
ML-based analysis of in situ PL data has a high potential for
in-line processing monitoring and can accelerate the successful
commercialization of perovskite thin-film PV.

4. Experimental Section

PSC Fabrication: The used materials and the fabrication process are
based on the ones described in detail in the authors’ group’s previous
work described in Ref. [60].

Perovskite Ink Fabrication: For the fabrication of the solar cells, the dou-
ble cation perovskite (DCP) composition Cs0.17FA0.83Pb(I0.91Br0.09)3 was
used. An ink was prepared by dissolving PbI2 (0.875 м, TCI Chemicals),
and PbBr2 (0.125 м, TCI Chemicals) in a mix of N,N-dimethylformamide
(DMF, anhydrous, Sigma-Aldrich), dimethyl sulfoxide (DMSO, anhydrous,
Sigma-Aldrich) in a ratio 4:1 (vol%). Afterward, the PbX2 solution
was added to CH(NH2)2I (FAI, 0.825 M, GreatCell Solar) and CsI
(0.175 M, abcr) and then diluted 2:1 (vol%) with γ-butyrolactone
(GBL, Sigma-Aldrich). Before deposition, 2.4 vol% L-α-phosphatidylcho-
line (Sigma Aldrich) solution (0.5mgmL�1 in DMSO) was added.

Solar Cell Fabrication: The glass substrates with pre-patterned ITO
(Luminescence Technology) were cleaned in acetone and isopropanol
in an ultrasonic bath for 15 and 5min, respectively, and then cleaned using
an oxygen plasma for 3min. Afterward, NiOx was sputtered as a 10 nm
thick hole transport layer (NiOx target by Kurt J. Lesker Company,
99.995% metallic purity, see Ref.[62] for more details). Then, a 1 min
low power oxygen plasma was applied before blade coating a 2PACz solu-
tion (>98%, TCI Chemicals, 1.5 mgmL�1 in ethanol) on top. For blade
coating, a Zehntner ZAA 2300.H automatic film applicator and a ZUA
2000 universal applicator were used with a blading gap of 100 μm.
16 μL 2PACz solution were blade-coated onto the 32� 64mm2 substrate.
The substrate was coated twice in the forward direction at a blade speed of
16mm s�1 and afterward annealed for 10min at 100 °C. For the blade
coating of the perovskite layer, the parameters were changed to 25 μL
ink volume and 25mm s�1 blading speed. After the deposition of the
perovskite layer, the samples were placed in a self-built vacuum chamber
(see Ref.[60] for more details) which was then evacuated for 3 min. After
completion of the vacuum-quenching process, the chamber was vented
with ambient air and the samples were annealed for 30 min at 150 °C.
All blade coating and successive annealing steps were performed in ambi-
ent conditions of �21 °C and 45% relative humidity. The large samples
were then cut into eight 16� 16mm2 samples. To finalize the devices,
a 25 nm C60 fullerene (Sigma Aldrich, 98%) electron transport layer, a
5 nm BCP (Luminescence Technology) interfacial layer, and 100 nm silver
back-contact were deposited by thermal evaporation. Through the usage of
a shadow mask during deposition of the back contact, each sample yields
four cells with an active area of 10.5mm2 per solar cell.

Photoluminescence Imaging: The used in situ PL imaging system is
based on the setup introduced in our previous work.[50] A monochrome
sCMOS camera (CS2100M-USB Quantalux, 1,920� 1,080 pixels,
Thorlabs) was equipped with a lens (MVL25M23, Thorlabs) and a wheel
loaded with four different filters was placed between the camera and the
samples. A microcontroller was used to synchronize the camera’s trigger
(10ms exposure time) and the filter wheel’s rotation (180 rpm). The filter
wheel was loaded with: 1) a 725 nm long pass (Edmund Optics, stacked
below a 620 nm long pass, RG620), 2) a 780 nm long pass (RG780,
Thorlabs, stacked on top of a 715 nm long pass, RG715, Thorlabs),
3) a 775 nm short pass combined with a 665 nm long pass (Edmund
Optics and RG665, Thorlabs), and 4) a neutral density filter with adjustable
transmittance (two stacked linear polarizers LPVISE200-A, Thorlabs). For
excitation, two blue LED bars (LDL2, 146X30BL2-WD, CCS Inc.) with a
center wavelength of 467 nm were mounted in parallel and tilted towards
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each other, enabling illumination of the samples (�0.08 suns) without
visible reflections of the LED bars in the images.

Solar Cell Characterization: Current-density–voltage characteristics
( J–V ) of the solar cells were measured using a class AAA 21-channel
LED solar simulator (Wavelabs Solar Metrology Systems Sinus-70) under
AM1.5G spectrum (100mW cm�2) in a nitrogen atmosphere. The inten-
sity was calibrated using a silicon reference solar cell filtered with a KG5
band pass (Newport). The J–V scans of the cells were measured in back-
ward and forward directions with a shadowmask (aperture size 7.84mm2)
using a scanning rate of circa 0.6 V s�1 (Keithley 2400 source measure-
ment unit). Using a Peltier element controlled by a microcontroller, the
temperature of the solar cells was kept constant at 25 °C.

Machine Learning Methods: ML methods can be categorized into:
i) supervised and ii) unsupervised learning algorithms, which differ in
the type of data they receive as input for the training of the model.

In unsupervised learning, ML models are trained without any labels of
the input data. This approach is of high interest for data exploration since
it can identify patterns in the data without the often cumbersome process
of prior data annotation and therefore help with finding the underlying
structures of the dataset. Clustering is a commonly used unsupervised
learning approach that separates samples in a dataset into groups of sim-
ilar properties. The identified clusters can then be interpreted and analyzed
further to identify relevant information in the dataset.[13,14,58] The most
widely adapted clustering technique is the k-means[56] algorithm. It divides
the unlabeled (training) data into k clusters, defined by a cluster centroid,
such that each sample is assigned to the cluster with the nearest centroid.
The cluster centroids are learned in an iterative process that minimizes the
squared sum of distances between each sample and its corresponding
centroid.[57] The elbow method,[59] a heuristic which plots the sum of
squared error as a function of the number of clusters, can be used to
choose a suitable number of clusters k by selecting the elbow of the plot.
In this work, the unsupervised MLmethod k-means clustering is employed
for the exploration and analyses of the (training) dataset.

Supervised ML models are trained on labeled data. Using a set of data
samples (training set), the model then learns the mapping between the
input feature and the given label. When provided with a new input sample
(test set), the trained model can predict the target for the new input data.
The kNN[61] algorithm is a simple supervised ML technique, which is also
distance-based like the unsupervised k-means clustering. kNN assumes
that similar samples exist at close distances to each other. Therefore, it
predicts a value for each sample in the test set based on the k examples
in the training set which are closest (most similar) to the test sample. To
compute the distance, the default distance metric (Euclidean distance)
implemented in scikit-learn’s[63] KNeighborsRegressor is used in this
work. For regression problems, kNN then returns the mean of the k clos-
est training examples as the prediction for each test sample. The optimal k
can be determined using cross-validation on the training set. In this work,
the kNN is employed for predictions of the solar cell performance metrics
and the perovskite layer thickness.

To enable an unbiased evaluation of the trained model on the test set,
the concept of cross-validation is applied to train and optimize the model
only on the training set. To implement fivefold cross-validation, the train-
ing dataset is divided into five subsets, assigning groups of solar cells of
the same substrate to the same data subset (per-substrate stratification).
This allows training and optimizing the ML models on four out of the five
subsets while the fifth subset is used for validation. This process is
repeated five times using each subset for validation once while the four
remaining subsets are used for training. Finally, the previously unseen data
in the test set is used only to evaluate the model which has been trained
and optimized on the training set using cross-validation.

Computational Methods: All ML models presented in this study were
built using the scikit-learn (1.0.2)[63] library in Python (3.8.6).[64] The
data was preprocessed using scaling algorithms provided by scikit-learn.
The code was written with the additional Python packages
NumPy (1.22.3),[65] pandas (1.4.1),[66] SciPy (1.8.0),[67] h5py (3.6.0),[68]

matplotlib (3.5.1),[69] PyTorch (1.11.0),[70] and TorchMetrics (0.7.0).[71]

Furthermore, the packages tifffile (2021.3.4),[72] OpenCV (4.5.1.48),[73]

and Pillow (9.0.1)[74] were used for preprocessing of the PL images.

The computational experiments were run on the bwUniCluster
2.0þGFB-HPC cluster system located at the Steinbuch Centre for
Computing at Karlsruhe Institute of Technology.
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