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ABSTRACT

We discuss aspects of the global topology of moduli spaces of hyperkéhler met-
rics. If the second Betti number is larger than 4, we show that each connected
component of these moduli spaces is not contractible. Moreover, in certain cases,
we show that the components are simply connected and determine the second
rational homotopy group. By that, we prove that the rank of the second homo-
topy group is bounded from below by the number of orbits of MBM-classes in
the integral cohomology.

An explicit description of the moduli space of these hyperkédhler metrics in
terms of Torelli theorems will be given. We also provide such a description for
the moduli space of Einstein metrics on the Enriques manifold. For the En-
riques manifold, we also give an example of a desingularization process similar
to the Kummer construction of Ricci-flat metrics on a Kummer K3 surface.

We will use these theorems to provide topological statements for moduli spaces
of Ricci-flat and Einstein metrics in any dimension larger than 3. For a compact
simply connected manifold N we show that the moduli space of Ricci flat met-
rics on N x T* splits homeomorphically into a product of the moduli space of
Ricci flat metrics on N and the moduli of sectional curvature flat metrics on the
torus T*.

il



FUR MEINE ELTERN CHRISTINE UND HANS-JOSEF DEGEN

v



Acknowledgments

First of all, I would like to thank my advisor Prof. Dr. Wilderich Tuschmann for
providing a very pleasant research environment, for interesting suggestions and
ideas, and in particular for his guidance and support. I would also like to thank
Prof. Dr. Roman Sauer for agreeing to be a referee for this thesis.

I am very grateful to Dr. Ruobing Zhang for welcoming me at Princeton Uni-
versity, his kind support, inspiring conversations on Ricci-Flat metrics on K3
and Enriques surfaces, and more. In this context, I would also like to thank the
Karlsruhe House of Young Scientists (KHYS), which funded this stay through
the KHYS Research Travel Grant.

I am grateful to the DFG Research Training Group (RTG) 2229 Asymptotic
Invariants and Limits of Groups and Spaces, where I could enjoy several lectures
and seminars and for funding my position at KIT. Moreover, I would like to
thank all (former) members of the RTG and the Institute of Algebra and Geom-
etry at KIT for the friendly and supportive environment. In particular, I would
like to thank Philipp Reiser, Claudio Liosa Isenrich, and Philippe Kupper for
numerous discussions and helpful conversations on various parts of this thesis.

Thanks also to Claudio Liosa Isenrich, Philipp Reiser, Rafael Dahmen and
Philippe Kupper for reading earlier versions of this thesis and their insightful
comments.

Finally, I would like to thank my family and friends for their unconditional
support throughout all my time at KIT, and Elizaveta for being there for me.



Contents

ABSTRACT 1
0 MOTIVATION 3
1 INTRODUCTION 13
1.1 Backgrounds and State of the Art . . . . . ... ... ... .. .. 14
1.2 Homotopy Groups of Moduli Spaces of Hyperkdhler Metrics . . . 17
1.3  Metric Torelli Theorems . . . . . . . ... ... ... .. ..... 20
1.4 Structure . . . . . . . .. 23
2 PRELIMINARIES 25
2.1 Riemannian Holonomy Groups . . . .. .. ... ... ...... 26
2.2 Pseudo Euclidean Geometry . . . . . .. .. ... .. .. ... .. 32
2.3 Grassmann SPaces . . . . ... .. e e 36
2.4 Lattice Theory . . . . . . . . . ... 40
3 HYPERKAHLER MANIFOLDS 48
3.1 The Group Sp(n) . . . . . . .. 49
3.2 Hyperkédhler Manifolds . . . . .. ... ... ... ... .. .... 53
3.3 Irreducible Holomorphic Symplectic Manifolds . . . . . . . .. .. 56
3.4 The Beauville-Bogomolov Form . . . . ... ... .. ... .... 59
3.5 Examples of Hyperkahler Manifolds . . . . . ... ... ... ... 61
3.6 Torelli Theorems for K3-Surfaces . . . . ... ... ... ..... 68
4 TEICHMULLER SPACES OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC
STRUCTURES 74
4.1 Teichmiiller Space and Deformations . . . . ... ... ... ... 75
4.2 The Complex Period Domain . . . . . . ... ... ... ..... 79
4.3 The Complex Period Map Part I . . . . .. ... ... ... ... 83



4.4 The Kéahler Cone of an IHS-manifold . . . . . . . ... ... ... 86

4.5 The Complex Period Map Part IT . . . . .. ... ... ... ... 91
5 TEICHMULLER AND MODULI SPACES OF HYPERKAHLER METRICS 96
5.1 The Metric Period Map Part I. . . . . ... ... ... ... ... 97
5.2 Metric Teichmiiller Space vs Complex Teichmiiller Space . . . . . 101
5.3 The Metric Torelli Theorem . . . . . . . . . . . .. .. ... ... 105
5.4 The Moduli Space of Hyperkahler Metrics . . . . . .. ... ... 110
6 TOPOLOGICAL ASPECTS OF THE MODULI SPACE OF HYPERKAHLER MET-
RICS 114
6.1 Topological Aspects of the Metric Teichmiiller Space . . . . . . . 115

6.2 First and Second Homotopy Group of the Metric Teichmiiller Space 118
6.3 The Fundamental Group of the Moduli Space of Hyperkédhler Met-

rics of K3M-type . . . . ... 123

6.4 On the Homotopy Groups of the Moduli Space of Hyperkéahler Met-
0 7 125
7 MODULI SPACES OF RICCI-FLAT METRICS 134
7.1 Hyperkédhler Metrics in the Moduli Space of Einstein Metrics . . . 135
7.2 Moduli Spaces of Ricci-Flat Metrics on Products with Tori . . . . 137
7.3 Einstein Metrics on the Enriques Manifold . . . . . . .. ... .. 142

7.4 Torelli Theorem For Einstein Metrics on the Enriques Manifold . 148
7.5 Desingularization of a Flat Orbifold Metric on an Enriques Surface 155

7.6 Holes In the Moduli Space of Hyperkahler Metrics . . . . . . . .. 161
SYMBOLS 165
REFERENCES 182



If I have seen farther than others, it is because 1

have stood on the shoulders of giants.

Isaac Newton

If I have not seen as far as others, it is because

there were giants standing on my shoulders.

Hal Abelson

Motivation

The purpose of this chapter is to provide an informal motivation for the work
presented in this thesis. The results and an introduction of the thesis are then

the content of the next chapter.

Question 1. What is the ‘best’ Riemannian metric on a compact manifold?



The question has been raised by various authors like Yau, Hopf, and Thom.
A general reference for this question and some of the following material is the
chapter ‘Best Metric’ in [18], see also [64].

One way to conceptualize Question 1 is to consider the space of Riemannian
metrics R(M) on a compact manifold M. The best metrics are then the critical,
or minimal, points of a given functional F: R(M) — R. Examples are

o Foun(9) = i IRy|¥?dvol(g) and

* Fscal(g) = [y scal(g)dvol(g).
Both functionals measure the total curvature of a Riemannian metric g, the first
with respect to the norm of the curvature tensor R, and the second with re-
spect to the scalar curvature. In dimension 2 the classical Gauss-Bonnet theo-
rem states that Fsea(g) = 4mx (M), where x(M) is the Euler characteristic of
the manifold M. In particular Fgea(g) is constant. Thus, from now on we as-
sume the dimension to be larger than 2.

First, let us consider the functional Fouy(9) = [y |Ry|¥2dvol(g) on a 4-
dimensional manifold M. If the Euler characteristic x(M) is non-negative, the

generalized Gauss-Bonnet theorem (see [18, 15.7.8])

1 2 : scal(g) _
@/M (lel — [Ricy — —g|" | dvolg(g) = x(M),

provides a lower bound Feu(g) > x(M). Equality holds if and only if

. scal(g)
Ric, — mg = 0. (1)



This equation is famous in physics, as for Lorentzian metrics it is the field equa-
tion in general relativity of vacuum spacetime, see for instance [19, Chapter 3].

For this reason Riemannian metrics solving (1) will be called Einstein metrics.

scal(g)
dim (M)

The scalar curvature of such a metric turns out to be constant, and \ :=
is known as the Finstein constant. The global minima of the functional F¢y,. of
a 4-dimensional manifold M with x(M) > 0 are thus the Finstein metrics.

For higher dimensional manifolds the functional Fcy., provides more chal-
lenges, see for instance [19, 4.H]. The total scalar curvature functional Fgca
turns out to be practical in every dimension. However, in contrast to Fcyu the
functional Fgea never admits a global minimum [19, 4.32 Theorem| and we are
thus interested in its critical points.

Let us now explain what being a critical point actually means. The space
R(M) is an open cone in the vector space of smooth and symmetric 2-tensors
(M, S*TM) endowed with the topology of smooth convergence, see [19, 4.2].
One may think of R(M) as a smooth manifold where the tangent space at a
point ¢ is naturally identified with T'(M, S*T M), similar to the case of an open
subspace in R” but now the dimensions are infinite. A critical point g for a
functional F is one where all the directional derivatives are zero, i.e.

DyF - h — lim 20 ) = F(9)

t—0 t

=0

for every h € T'(M, S*TM).

Also motivated by physics, David Hilbert was the first to compute the deriva-



tive of Fgsear in 1915 [70], see also [19, 4.C]. He showed

_ scal(g)
2

DyFscar - h = /M(Ricg g, —h)dvol(g).

One deduces that the critical metrics are exactly those where Ric, = 0. Such
metrics are called Ricci-flat. They are Einstein metrics with Einstein constant
A = 0. In fact, if one considers the functional Fg., to be defined on metrics
with fixed volume, the critical points are again Einstein metrics, compare [18,
Chapter 11].

The discussion suggests that Einstein or Ricci-flat metrics are natural candi-
dates for being ‘best metrics’ This is supported by various applications, most
notably with respect to the Ricci flow. For this flow Einstein metrics are the
stationary points and thus play a fundamental role in Perelman’s and Hamil-
ton’s solution to Thurston’s geometrization conjecture, see [8].

Having a notion of best metrics, a priori seems to provide us with a natural
choice of metric on every manifold. However, determining Einstein and espe-
cially Ricci-flat metrics in practice can be challenging. Let us say what some of
the problems are and what makes them mysterious.

In dimensions 3 and 4 there are obstructions for a manifold to admit Ein-
stein metrics, see for instance [9, Section 4]. In higher dimension it is an open
question whether every compact manifold admits an Einstein metric. For Ricci-
flat metrics on the other hand there are known obstructions, for instance every
such manifold is finitely covered by a product M x T*, where M is simply con-

nected and T* a torus, see [50]. Aside of some results on the existence of Ricci-



flat metrics, constructing explicit examples which are not sectional curvature
flat seems out of reach. Only for some cases there are approximate solutions.
Furthermore, if they exist on a manifold M, Ricci-flat metrics are usually not
unique and thus choosing a ‘best metric’ on M requires further clarifications.
To solve some of these issues it is natural to study the space of Einstein, re-
spectively Ricci-flat metrics, as a subset of R(M). However, since passing from
a metric to an isomorphic metric provides no new information on the geometry,
it is often more natural and interesting to consider the space of isomorphism
classes of metrics. This is known as the moduli space of Riemannian metrics. It

is defined as the quotient space

M(M) = R(M)/Diff(M),

with respect to the pullback action of Diff(M) on R(M). The moduli spaces of
Einstein metrics E(M) and of Ricci-flat metrics MB=C(M) are the subspaces
of M(M) which consist of isomorphism classes of Einstein, respectively Ricci-
flat, metrics. Now that we have established a notion of ‘best metrics’ our next

question is the following.
Question 2. What do (M) and MP=0(M) look like as topological spaces?

To provide answers for Question 2 is challenging and the main goal of this
thesis. It turns out to be fruitful to go back to Question 1 before going into
more depths on Question 2.

Aside from describing best metrics on a compact manifold as minimal or crit-



ical points of a functional, one may say that a metric g is ‘better’ than another
metric ¢’ if g is compatible with more structures than ¢’. Here, by structure we
mean any quantity which is given by a globally defined tensor s, like certain
forms, endomorphisms etc. We call s compatible with a metric ¢ if Vs = 0,
where V denotes the Levi-Civita connection of g. A tensor s for which Vs = 0
is often called parallel or constant.

A standard example of a compatible structure can be found on a Kdhler man-
ifold X. Such a manifold has an atlas of holomorphic charts, called complex
structure, and is endowed with a Riemannian metric ¢ so that the complex
structure is compatible with the metric. The complex structure can be viewed
as a globally defined (1, 1)-tensor. Indeed, since X is a complex manifold, each
tangent space T, X is a complex vector space and multiplication by ¢ induces an
R-linear endomorphism I on 7, X. Such an endomorphism is a tensor of type
(1,1). If X is Kéhler, this is an isometry with respect to g. One can prove that
VI =0 in this case. On the other hand, by a corollary [108, Theorem 5.5] of the
Newlander-Nirenberg theorem, any parallel endomorphism I of the tangent bun-
dle with I? = —Id is induced by a complex structure. Thus, to endow a smooth
Riemannian manifold (M, ¢g) with a Kéhler structure, one needs to find a cer-
tain parallel tensor on M. We often identify the complex structure with the in-
duced endomorphism I and view a Kéhler manifold as a triple X = (M, g, I).
The additional structures on Kéhler manifolds have led to a rich theory that
extends the standard theory of Riemannian geometry.

To every Riemannian manifold (M, g) there is an associated group which de-



termines the parallel tensors. The group is known as the holonomy group and
is denoted Hol(M, g). It is the group of parallel transports on a tangent space
T, M induced by loops at a point p € M. It acts naturally on 7,,M and, with
respect to a chosen isomorphism 7,M = R", the group can be viewed as a sub-
group of O(n) with its natural representation on R". For the induced represen-
tation of Hol(g) on tensors ®;_; R” ® ®;_,(R™)* one finds that invariant ele-
ments of this representation are in a 1-to-1 correspondence with globally defined
parallel tensors on M. This is known as the holonomy principle, see [85, Propo-
sition 2.5.2]. In terms of this principle, the smaller Hol(g) is, the more parallel
tensors exist on (M, g). For Question 1 we may thus say that g is ‘better’ than
¢' if Hol(g) C Hol(¢').

A priori, there could be a lot of possible subgroups of O(n) which can arise
as holonomy groups. Surprisingly, this is not the case. For simply connected
manifolds which are neither a product nor a symmetric space, the list of possi-

ble holonomy groups is the following by a fundamental theorem of Berger [19,

10.92).
Berger’s List of Holonomy Groups
Holonomy dim | Associated Structure | Comment
Group
SO(n) n Generic Case Orientable
U(n) 2n Kéhler Manifold Kéhler
SU(n) 2n Calabi-Yau Ricci-Flat-Kéhler
Sp(n) 4n Hyperkéhler Ricci-Flat-
Hyperkéhler
Sp(1) - Sp(n) 4n Quaternionic Kéhler-Einstein
Go 7 Go-manifold Ricci-flat
Spin(7) 8 Spin(7)-manifold Ricci-flat

9




For a compact and simply connected n-dimensional Riemannian manifold (M, g),

having holonomy other than SO(n) and U(%) imposes strong curvature con-

strains on the metric. Note that for Hol(g) = U(%) the dimension needs to

be even. For the next cases we assume that n = 4k. The quaternionic case

Sp(1) - Sp(k) is Einstein but never Ricci-flat and the cases Go and Spin(7) imply

Ricci-flatness but are restricted to dimension 7 and 8, see [85] for these metrics.
We are mostly interested in metrics with holonomy Sp(k). In our heuristic

they would be considered best metrics, since one has the inclusions

Sp (k) € SU (2k) € U (2k) C SO(4k).

A metric with Hol(g) = Sp(k) is Ricci-flat. This condition already holds for
metrics with Hol(g) € SU(2k), see [108, Theorem 11.5]. A Riemannian metric
with holonomy Sp(k) is said to be hyperkdhler. The name comes from the fact
that there are three compatible complex structures I, J, K with respect to g so
that

PP=J]=K"=1JK =—Id.

In particular, (M, g) is Kahler in at least three different ways. The complex
structures I, J, K are furthermore special in the sense that each admits a unique
holomorphic symplectic form up to some constant in C*. For the complex struc-

ture I this form is given by

g(J-, ) + ig(K'7 )

10



Simply connected Kéhler manifolds with such a holomorphic form are known as
irreducible holomorphic symplectic manifolds (IHSM). They serve as the algebro
geometric counterpart of hyperkahler manifolds. Finding examples of hyper-
kahler manifolds often results in providing examples of irreducible holomorphic
symplectic manifolds. The most basic example of a manifold admitting a hy-
perkéhler metric is the K3-manifold M. The corresponding complex structures
modeled on M are known as K3-surfaces. These are the complex 2-dimensional
versions of IHS-manifolds. K 3-surfaces have been a popular research topic for
many years, not just as examples of hyperkahler manifolds but also in many
other areas. For instance, they played a central role in the solutions to the Weil
conjectures as well as in mirror symmetry, see [39], [83], respectively [14, 13, 12].
Hyperkahler metrics, just like Ricci-flat metrics, often come in families. We
are thus interested in the space of hyperkdihler metrics R (M) and in particu-

lar in the moduli space of hyperkdihler metrics

MR (M) = REE(M) /Diff (M),

as the hyperkahler condition is preserved under isomorphisms.

The two notions of ‘best metric’, i.e. the one given by critical points of the
functionals Fgea or Fou in dim = 4, and the one provided by the condition
Hol(g) C Hol(¢'), now neatly come together. Since hyperkahler metrics are

Ricci-flat there are natural inclusions

MUIK(ALY € MB=0(A1) € £(M). 2)

11



In general it is not clear when these inclusions are strict, in fact, it is a famous
open question whether there are any Ricci-flat metrics with holonomy SO(n).
But in dimension 4, where the K3-manifold is the only manifold that admits

hyperkéhler metrics, it is known by a result of Hitchin [72] that

MUE(K3) = MR=0(K3) = £(K3).

For higher dimensional manifolds the inclusions (2) are simply given by possibly
adding connected components, see Lemma 7.1.1.

Like in Question 2 we ask the following.
Question 3. What does MM (M) look like as a topological space?

In this thesis we are mainly concerned with partially giving answers to Ques-

tion 2 and 3. In the next section we put this into a wider context.

12



Le but de cette thése est de munir son auteur

du titre de Docteur.

Adrien Douady

Introduction

The main goal of this thesis is to compute homotopy groups of the moduli space
of hyperkahler metrics on a hyperkahlerian manifold. A hyperkdhler manifold
here means a 4n-dimensional compact Riemannian manifold (M, ¢) with holon-
omy Hol(g) = Sp(n), while by a hyperkdhlerian manifold we refer to a differen-

tiable manifold which can be endowed with a hyperkahler metric. The moduli

13



space of hyperkdhler metrics is defined as the quotient space

MUE(M) :={ g € R(M) | g is a hyperkahler metric }/Diff(M),

where R(M) is the space of Riemannian metrics on which the group of diffeo-
morphisms Diff (M) acts by pullback. We endow it with the topology of smooth

convergence.

1.1 BACKGROUNDS AND STATE OF THE ART

We begin by introducing backgrounds on the space M™X(A) and put it into
context with other results on moduli spaces with Ricci curvature constraints.

The space of all Riemannian metrics R(M) is an infinite dimensional convex
cone inside the space of smooth symmetric 2-tensors [122]. The moduli space
MUE(M) on the other hand is significantly smaller, more precisely, it is known
to be an orbifold of dimension 3(by(M) — 3) + 1, see for instance [19, 12.88
Theorem]| respectively [19, 12.98 Proposition].

The space can be encountered in mathematical physics, most notably in the
context of Mirror Symmetry, see [80, 131, 136] and for K3-surfaces [12, 13], [14,
Chapter VIII.22]. In general the moduli space M™X(M) provides a good frame-
work for the question: How many hyperkahler metrics does a hyperkédhlerian
manifold M admit? Determining its homotopy groups then provides insights to
the relaxed question: How many hyperkédhler metrics does M admit up to defor-

mations of these metrics in MYX(M)?

14



This point of view naturally lends itself to an active research program, which
considers questions on the topology of moduli spaces of Riemannian metrics
with various curvature constraints, like positive scalar curvature, non-negative
Ricci curvature, zero sectional curvature, Einstein. For an introduction see [130,
128]. The following works are concerned with non-negative and positive Ricci
curved metrics [94, 40, 41, 140, 58, 139, 129, 25, 26]. For negative Ricci curva-
ture see [97]. Theorems on the moduli space of sectional curvature flat metrics
can be found in [129, 54]. For other spaces of Riemannian metrics we refer to
[129] and the references there in.

Since the Ricci curvature of hyperkédhler manifolds vanishes, we are natu-
rally interested in the moduli space of Ricci-flat metrics MB=0(M), respec-
tively the moduli space of Einstein metrics £(M). In particular, for the moduli
space of Einstein metrics £(M) there has been an intensive research interest
for many years, see for instance the survey [9] and [19, Chapter 12]. See also
[124, 115, 116] for interesting results on compactifications of the moduli space of
hyperkéahler metrics on the K3-manifold.

However, insights into their homotopy groups remain scarce. For Einstein
metrics with positive Einstein constant there are examples of metrics that are
isolated points in £(M), for instance, the standard metric on S* [19, Chapter
12.H]. It is unknown if there are also isolated Ricci-flat metrics. In fact, even
the basic question whether there exists a compact and simply connected mani-
fold M for which the components M"X (M) and MR=0(M) of E(M) are con-

tractible or not seems not to be answered in the literature.

15



The only results in that direction we are aware of are by Giansiracusa on the
Nielsen Realization Problem [55, 56] and the related work by Giansiracusa, Ku-
pers and Tshishiku [57] from 2021. They contain results on the (co)-homology
of the Teichmiiller space of Einstein metrics 7Me*(K3) of the K 3-manifold as
well as a non-vanishing result of the 4th-Betti number for the related homotopy

moduli space. Their results are based on the following classical theorem [19,

12.K], [125, 99].

Theorem 1.1.1 (Metric-Torelli-Type-Theorem). The moduli space of unit
volume Einstein metrics on the K3-manifold is homeomorphic to an open and

dense subspace of

N\OG:19) 10(3) x 0(19)),

where I' is a discrete subgroup of O(3,19).

In fact, by a result of Hitchin [72], Einstein metrics on the K 3-manifold are
the sames as hyperkahler metrics. In a general setting, understanding hyper-
kahler metrics seems to be a more feasible task than understanding the general
case of Finstein metrics. One major reason for this is that hyperkahler mani-
folds can be studied using algebraic geometry. The algebro geometric analogues
are known as irreducible holomorphic symplectic manifolds (IHSM), which in
the case of the K3-manifold are just the K3-surfaces.

Theorem 1.1.1 is based on Torelli theorems for K 3-surfaces which have been
generalized to THS-manifolds by Huybrechts, Markman and Verbitsky, see [82,

132, 135, 42]. We refer to theorems which are proven by Torelli theorems, like

16



Theorem 1.1.1, as metric Torelli theorems to distinguish them from original
Torelli theorems which are concerned with questions on complex structures.

Using these Torelli theorems Amerik and Verbitsky [2] gave a partial gen-
eralization of Theorem 1.1.1 to higher dimensional hyperkahler manifolds, see
also the recent work by Looijenga [100] and Section 1.3. There are also metric
Torelli type theorems for non-compact hyperkahler manifolds, more precisely for
so called gravitational instantons [95, 34, 35, 37, 36]. However, in this work we
focus on the compact case.

The aim of this work is to answer some of the open question stated above.
More precisely, to provide insights on the global topology of MPE(A), MEC=0 (1))

and £(M) in terms of their homotopy groups and metric Torelli theorems.

1.2 HowmoTorPy GROUPS OF MODULI SPACES OF HYPERKAHLER METRICS

We now turn to a discussion of the main results of this thesis.
Concerning contractibility of the moduli space of hyperkdhler metrics we

prove the following.

Theorem A. Let M be a hyperkdhlerian manifold with by(M) > 4 and let
MER(M) be a connected component of the moduli space of hyperkihler metrics

MUR(N). Then MIR(M) is not contractible.

It is an open question if a hyperkéhlerian manifold N with second Betti num-
ber bo(N) = 3 or by(N) = 4 exists. The discussion below shows that when

by(N) = 3 the space MTE(N) would be a finite union of points.

17



For a general hyperkédhlerian manifold M we cannot say anything about the
number of connected components of M"X(M) other than that they are finite,
by a result of Huybrechts [78]. In case of the K3-manifold however, it is known
that this space is connected. Here we obtain a result on the full moduli space of

Einstein metrics.

Theorem B. Let M be the K3-manifold. Then the moduli space of Einstein

metrics E(M) is simply connected and the second rational homotopy group is

m(EM))® Q2 H*(T,Q) @ Q,

where T" is an arithmetic subgroup of O(3,19), given by the automorphism group

of the lattice HQ(M, 7)) with its cup-pairing.

Higher dimensional examples of hyperkahlerian manifolds are difficult to con-
struct. In each dimension 4n there are only two known examples [15], except for
two further examples in dimensions 12 and 20, see [117] and [1]. One of the two
families is given by constructing so called Hilbert schemes or Douady spaces of
length n defined over complex K 3-surfaces. These are irreducible holomorphic
symplectic manifolds and they exist in each dimension 4n. Their Betti number
is by = 23 forn > 2 and for n = 1 the underlying manifold is just the K3-

manifold which has by = 22.

Theorem C. Let M be the underlying manifold of a Douady space of length n,
denoted X" on a K3-surface X. Then the connected component of MUK(M)

which contains a metric which is Kahler with respect to X" is simply connected.

18



Moreover, the rank of the second homotopy group can be bounded from below.

For X" the rank is at least 1, for X at least 3 and for XB at least 5.

Since the inclusions MP¥ (M) ¢ MR=0(A) C E(M) are given by adding
connected components (Lemma 7.1.1), the above results on M"¥ (A1) also pro-
vide information on the topology of the moduli spaces MRi=0(M) and &(M).

By considering products with tori 7% we can use these results to provide fur-
ther statements on moduli spaces of Ricci-flat metrics in every dimension larger
than 3. For instance, inspired by the work of Tuschmann and Wiemeler [129] on
the moduli space of non-negative Ricci curvature metrics MR20(N x T*) we

will prove the following.

Theorem D. Let N be a simply connected compact manifold admitting a Ricci
flat metric and let T* be the k-dimensional torus. Then there is a homeomor-
phism

MRic:O(N % Tk) ~ MRic:O(N) % Msec:O(Tk)’
where M®=0(T*) is the moduli space of sectional curvature flat metrics on T*.

If N is hyperkahlerian we can combine our work with the result [129, Propo-
sition 5.5] on the rational homotopy groups of the space M*“=°(T*). Moreover,

for hyperkéhlerian N we will see that

MRicZO(N % Tk) — MRic:O(N % Tk)

19



1.3 METRIC TORELLI THEOREMS

In this section we turn to the discussion on generalizations of Theorem 1.1.1.

The second cohomology group H*(M,Z) of a hyperkéhlerian manifold M is
torsion free. Moreover, H?(M,R) is naturally endowed with a non-degenerate
bilinear pairing gys of signature (3,ba(M) — 3). When restricted to integral
classes Hz(M ,Z) the pairing ¢y, is integer valued and is known as the Beauville-
Bogomolov form.

Consider the Grassmann space of positive definite 3-dimensional linear sub-
spaces in H?(M,R) and denote it by Gr* (3, H*(M,R)). The metric period map
PMet takes this as its target space by associating to a hyperkihler metric g the

3-dimensional space

P (g) = span{[wi], [wy], [wk]} € Gr™ (3, H*(M,R))

spanned by the Kéhler classes [w;], [wy], [wk] associated to a hyperkéhler triple
(I, J, K) with respect to g.

From now on we restrict to the case of metrics with unit volume. This does
not change the homotopy type of the moduli spaces.

The metric Teichmiiller space is defined as

TME(M) = { g € R*™ (M) | g unit volume }/Diffo(M),

where Diffy(M) is the group of diffeomorphisms isotopic to the identity. We will
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show that PMet induces an injection on each connected component of the Teich-
miiller space TM'(M). Furthermore, we will explicitly determine the image of
this map while giving a detailed proof of the following theorem by Amerik and

Verbitsky, which already appeared in 2015 [2, Theorem 4.9], see also [100].

Theorem 1.3.1. Let TMY(M) be a connected component of the metric Teich-
miiller space. Then there is a subset Sy C H?(M,Z) so that the metric Period

map induces a homeomorphism

TN (M) = Grt (3, H*(M,R)) — |J Gr*(3,21).
2€5,

Here 2zt denotes the orthogonal complement of z in HZ(M ,R) with respect
to qar. The set Sy is the set of so called MBM-classes. Roughly speaking these
classes are induced by 'minimal’ rational curves which determine the Kahler
cone of an irreducible holomorphic symplectic manifold (IHSM), more details
will be given later.

For a connected component M (M) of the moduli space of unit volume hy-

perkdhler metrics we will then obtain the following corollary.

Corollary A. For the connected component MEE(M) there is a discrete sub-

group I' C O(3,by(M) — 3) so that
MM 2 1\ (Grt (3, (M, R)) — Uses, Gt (3, 24)). (1.1)
The group T" is determined by an IHS-structure compatible with a metric in

21



MEK(AL).

We refer to Definition 4.4.4 respectively Theorem 4.4.2 for the definition of
the group I' and to Theorem 5.4.1 for a more detailed version of Corollary A.
The corollary yields that M2K (A7) is homeomorphic to an open and dense sub-

set of the bi-quotient
MNOG b2 =3) A0(3) x O(ba(M) - 3)). (1.2)

These descriptions of the moduli space are our base for analyzing the global
topology of the moduli space of hyperkédhler metrics. Corollary A, respectively
equation (1.2) generalize Theorem 1.1.1.

If M is the K3-manifold one can say even more. Points in (1.2) which are not
associated to a smooth Einstein metric are known to correspond naturally to
certain Ricci-flat orbifold metrics. Moreover, the space (1.2) is isomorphic to the
completion mLQ of £(K3) with respect to the L?>-metric, a naturally defined

metric on E(K3), see [90] and [7].

Theorem E. The moduli space of unit volume Einstein metrics, including orb-

ifold metrics, 8(K3)L is simply connected and by (5(K3)L ) is mon-zero.

Closely related to the K3-manifold is the Enriques manifold S. It is a Zy quo-
tient of the K3-manifold and is known to admit Ricci-flat metrics. While these
metrics are never hyperkahler, we will prove that every Einstein metric g on .S
is locally hyperkahler, and thus that g is Ricci-flat. Furthermore, we show that

g is Kéhler with respect to a unique complex structure, see Lemma 7.3.4.
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We will use this fact and Torelli theorems for K 3-surfaces to provide an ex-
plicit description of the moduli space £(S) similar to the one described above
for hyperkédhler metrics. This is closely related to the moduli space of Enriques
surfaces Mgy, see [110, 74, 14]. See [62] for a result on the topology of Mgy,.

Moreover, we will show that the famous Kummer construction, which approx-
imates Ricci-flat metrics on a Kummer K 3-surface by gluing Eguchi-Hanson

spaces with a singular flat K 3-surface, also works for a related Enriques surface.

1.4 STRUCTURE

Chapter 2 is a preliminary chapter where we collect statements we use through-
out the text. First, we discuss Riemannian holonomy groups, for which we also
recommend [85, 19]. We provide backgrounds on Grassmann spaces as they ap-
pear in equation (1.1). Moreover, in Section 2.4 we discuss lattices in the con-
text of an abelian group endowed with an integral bilinear pairing as they natu-
rally appear on H?(M, Z) for hyperkéhlerian manifolds.

What we have not included are backgrounds in complex algebraic and Kéhler
geometry. Here we generally refer to books like [60, 75, 108, 85, 14]

In Chapter 3 we give an introduction to the theory of hyperkahler manifolds.
We start this chapter by introducing the group Sp(n). We introduce hyper-
kahler manifolds and the closely irreducible holomorphic symplectic manifolds
(IHSM) and state fundamental topological properties. In the remaining sections
we are concerned with examples. Moreover, in the case of the K3-surface we

discuss how Hodge structures can be used to study IHS-structures and state
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some of the related Torelli theorems for K 3-surfaces. Standard references for
this chapter are [65, 76, 77, 19, 85, 83].

The discussion on Hodge structures will be generalized and described in more
detail in Chapter 4 for IHS-manifolds. In this chapter we also introduce and
discuss the complex period map which is defined on the Teichmiiller space of
[HS-structures.

Based on the results on Teichmiiller spaces and period maps, Theorem 1.3.1
and Corollary A will be proven in Chapter 5.

In Chapter 6 we will discuss the global topology of moduli spaces of hyper-
kahler metrics proving Theorems A, B, C while also providing more detailed
versions of them.

Chapter 7 is about generalizing the results from hyperkahlerian manifolds to
other types of manifolds. Here we consider Ricci-flat manifolds and their mod-
uli spaces and prove Theorem D. For the Enriques manifold we state a metric
Torelli type theorem and discuss a desingularization process of a Ricci-flat orb-

ifold metric. In this context we will also prove Theorem E.
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Oh, he seems like an okay person, except for be-
ing a little strange in some ways. All day he sits
at his desk and scribbles, scribbles, scribbles.
Then, at the end of the day, he takes the sheets
of paper he’s scribbled on, scrunches them all

up, and throws them in the trash can.

John von Neumann’s housekeeper

Preliminaries

We recall basic facts and discuss some preliminary results which will be used
throughout the text. In the first section the notion of holonomy for Riemannian
manifolds is introduced. Here we discuss the holonomy principle and Berger’s
classification Theorem. The second section is about vector spaces endowed with

a non-degenerate bilinear pairing (V, ¢). We will then consider Grassmann spaces
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in the third section. In the last section we discuss lattice theory, the integral

version of (V, q).

2.1 RIEMANNIAN HoLoNOMY GROUPS

Consider a connected Riemannian manifold (M, g) and its Levi-Civita connec-
tion V. For a smooth path v: I — M on a closed interval [ there exists the
notion of parallel transport which we now recall. Let a,b € I be the boundary
points of I and fix a vector v in the tangent space T’ M. The Picard-Lindelof
theorem ensures the existence and uniqueness of a vector field V' along v so that
the following is true

e V(a) =v and

. V%W)V(t) =0 foralltel.
The second condition says that V' is parallel. The parallel transport of v = V'(a)
along ~ is Pg’b(v) = V(b) € T,wM. Every such v with boundary points a,b
thus determines a map

ab .
P7 : T,y(a)M — T,y(b)M

which turns out to be a linear isometry with respect to the Riemannian metric
on the tangent spaces.

Instead of considering only smooth paths, the above notion readily generalizes
to piecewise smooth (p.w.s) paths. Considering only loops, that is paths with

the same start and end point, gives rise to the notion of holonomy.

Definition 2.1.1. For a Riemannian manifold (M, g) the holonomy group at a

26



point p € M is defined as the group of isometries induced by parallel transports

along loops, i.e.
Hol(M, g,p) = { P}" € O(T,M) | 7: [0,1] = M p.w.s with v(0) = v(1) = p }.

The reduced holonomy group is the subgroup Holg(M, g,p) consisting of isome-

tries induced by contractible loops.

The group Hol(M, g, p) comes with a natural representation on 7M. By
choosing an isomorphism 7,M = R" the group Hol(M, g, p) also acts on eu-
clidean space R™. Thus, we may identify Hol(M, g, p) with a subgroup of O(n).
In fact, it is a Lie subgroup, which in addition is closed and connected if M is
compact and simply connected [85, Theorem 3.2.8]. When changing the base
point p to some other point ¢ the two holonomy groups will turn out to be con-
jugate to one another in O(n). Thus, the notion of holonomy without prescrib-
ing a base point exists only up to conjugation. In the following we can always
choose a base point freely and we often simply write Hol(g) ignoring the base
point.

One of the main features of the holonomy group is that it tells us which ten-
sorial structures on the tangent space 7T,M, like certain forms, endomorphisms
etc., can be extended to global objects on the manifold. To make this more pre-
cise, note that the holonomy representation Hol(g) on 7, M naturally extends to
a representation on 7"*(T,M) = Q;_; T,M ® Q;_, T,M*. On the other hand

the Levi-Civita connection induces a connection, also denoted V, on the vector
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bundle ®;_, TM ® Q;_; TM*. A globally defined tensor s is then a section of

this bundle and is said to be parallel if Vs = 0.

Theorem 2.1.1 (Holonomy Principle). For a parallel tensor s the holonomy
representation Hol(M, g, p) at a point p leaves the corresponding element s, €
T (T,M) invariant. On the other hand, if s, € T"*(T,M) is an invariant
element under the holonomy representation, then s, extends to a globally defined

parallel tensor on M.

See [85, Proposition 2.5.2] for a proof of this theorem. Using this principle
one can show that a Riemannian manifold of dimension 2n is a Kahler manifold
if and only if Hol(g) C U(n). While a priori the list of possible holonomy groups

might be extremely large, it turns out that there are strong constraints.

Theorem 2.1.2 (Berger’s Classification Theorem). Let (M, g) be a simply con-
nected compact n-dimensional Riemannian manifold that is not a symmetric
space and whose holonomy representation is irreducible. Then one of the follow-

ing is the case:

(i) Hol(g) = SO(n)

IIZ

(1) n = 2m with m > 2 and Hol(g) = U(m) in SO(2m)

I¢

(7ii) n = 2m with m > 2 and Hol(g U(m) in SO(2m)

I

SU
Sp(m) in SO(4m)
Sp(m)Sp(1) in SO(4m)

112

(9)
(9)
(iv) n = 4m with m > 2 and Hol(g)
(v) n=4m with m > 2 and Hol(g)

(7

(vi) n =T with Hol(g) = Gg in SO(7)
(vii) n = 8 with Hol(g) = Spin(7) in SO(8).
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For a reference see for instance [19, 10.92] and [85, Theorem 3.4.1]. Let us
make some comments on the assumptions of Theorem 2.1.2. First, if M is not
simply connected then the theorem still holds if one replaces Hol(g) with Holy(g).
For symmetric Riemannian manifolds there is a separate list classifying the pos-
sible groups for Holy(g). Since Ricci-flat symmetric spaces are already sectional
curvature flat by [19, 7.61 Theorem], we will not focus on this case and refer
to [19, §10.K]. The assumption on irreducible holonomy representation can be
dealt with in terms of the following theorem, see [85, Theorem 3.2.7] for in-

stance.

Theorem 2.1.3 (De Rham Decomposition). Let (M, g) be a complete, simply
connected Riemannian manifold. Then there exist complete simply connected

Riemannian manifolds (M, g1),- -+ , (M, gr) and an isometry

(M, g) — (My x -+ x My xR gy + -+ + g + gr),

where g1 + - - -+ gr. + gr is the Riemannian product metric and gr is a flat metric
on R!. Furthermore, Hol(g) = Hol(gy) x --- x Hol(gy) and the representation of

each Hol(g;) is irreducible.

Proving the existence of compact manifolds admitting metrics with holonomy
in the list of Theorem 2.1.2 is difficult except for the cases (i), (i7), (v). The case
(7) is the generic case for Riemannian manifolds, while (ii) is the generic case
for Kéahler manifolds. An example for case (v) is provided by the quaternionic

projective space PH" endowed with a Riemannian metric similar to the Fubini-
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Study metric. Finding an example for Hol(g) = SU(m) is already much more
challenging. The key to finding such examples is provided by Yau’s solution to
the Calabi conjecture [141]. We state the theorem in the form in which we will

need it, but remark that there are more detailed and general versions.

Theorem 2.1.4 (Calabi-Yau Theorem). Let X be a compact Kihler manifold
with vanishing first real Chern class. Then each Kdhler class [a] is represented

by a unique Kdhler form w whose corresponding Riemannian metric is Ricci-

flat.

One can now construct an example with Hol(g) = SU(m) as follows. Let X
be a hypersurface of CP"™ with n > 3 given as the zero set of a degree n + 1
homogeneous polynomial. From the adjunction formula [75, Corollary 2.4.9] it
follows that the canonical bundle is trivial so that the first Chern class vanishes.
The Calabi-Yau theorem shows that X admits a Ricci-flat Kahler metric g. The
proof of the following theorem is relatively straightforward, see [108, Theorem

11.5] for instance.

Theorem 2.1.5. A Kahler manifold (M, g) of real dimension 2m is Ricci-flat if
and only if Hol(g) C SU(m).

For the Ricci-flat metric g on X we now show that Hol(g) = SU(m). This will
follow from the classification Theorem 2.1.2 if we show that X does not split as
a product as in Theorem 2.1.3. The Lefschetz hyperplane theorem [24] shows,
for n > 3, that X is simply connected. In addition, for n > 4 it shows that the

second Betti number is by(X) = 1. By Poincaré duality we conclude that the
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Betti numbers b;(X) are 0 in odd degrees. If X is the product of two odd di-
mensional manifolds they would generate a non-vanishing Betti number in odd
degrees, so we can exclude this case. In case that X is the Riemannian prod-
uct of two even dimensional manifolds (X, g;) and (X3, go) then each Hol(g;)
is contained in SU(dim¢(X;)). The X; are therefore also Kahler manifolds. If
n > 4 we arrive at a contradiction since by(X) = bo(X7) + ba(X3) > 2. In the
case n = 3 the manifold X would be a product of two 2-dimensional manifolds,
each of which would be flat and simply connected, a contradiction. Therefore,
by Theorem 2.1.2 we have Hol(g) = SU(n — 1).

In fact, for n = 3 we have Hol(g) = Sp(1) since SU(2) = Sp(1), see Sec-
tion 3.1. In this case X is a so called K3-surface. These and their higher di-
mensional analogs, which are NOT the examples X with n > 4, but the ones
with Hol(g) = Sp(m), will be called hyperkahler manifolds and are at the cen-
ter of our interest. Higher dimensional examples were found by Beauville and
O’Grady for which we refer to Section 3.5.

The remaining two groups Go and Spin(7) also imply Ricci-flatness and the
first compact examples were given by Joyce, see [85].

The groups SU(m), Sp(m), Gz, Spin(7) are called the Ricci-flat holonomy
groups.

Let us end this section by mentioning that metrics whose holonomy is one of
the above groups are in general not unique on a fixed manifold. It is thus nat-
ural to study the space of all metrics having fixed holonomy group R =% (M)

and related spaces. Sometimes one can construct 'coordinates’ on these spaces
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in the following way. From the holonomy principle it is clear that the dimension
of the space of parallel forms P(g) does not change as one varies the metric g in
RUI=CG (D). But the space P(g) viewed as a subspace in cohomology H*(M,R)
is not fixed and can be used as a parameter for the metric g. In this way certain
Grassmann spaces of H*(M, R) are natural parameter spaces for RMI=C(01).
For the case Hol(g) = Sp(n) we will see that the second cohomology is naturally
endowed with an integral valued and indefinite bilinear form ¢y;. The relative
position of P(g) to the integral structure (H*(M,Z), qpr) can provide a lot of

information on RU=%()/) and the metric itself.

2.2 PseubpO EUCLIDEAN GEOMETRY

Euclidean geometry is often understood as the study of a finite dimensional R-
vector space V' endowed with a positive definite scalar product. In this section

we consider the case when we drop the assumption of positive definiteness.

Definition 2.2.1. A pseudo euclidean space is a finite dimensional R-vector
space V' endowed with a symmetric and non-degenerate bilinear pairing q: V X

V — R, which we will also call a scalar product.

By an inner product space we will more generally mean a vector space defined
over a field with a symmetric non-degenerate bilinear pairing. We will often de-
note the scalar product with (-,-) or ¢(+,-). For v € V we set v* := (v,v) and

call it the length of v. Like in the euclidean case one can also take the orthogo-
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nal complement of a subset U C V' defined by

Ut ={veV|(wu) =0foralluclU}.

If U is a subspace one checks that (U+)+ = U and dim(U) +dim(U~) = dim(V),
since (-, -) is non-degenerate. However, not all statements from Euclidean geom-
etry on orthogonal complements carry over to the indefinite case. Usually one
needs to be aware to which regions of V' the subset U belongs, in the sense that
a pseudo euclidean space is naturally separated into the following cones

o the positive cone Pos(V) = {v eV | v? > 0},

o the negative cone Neg(V) = {v € V | v? < 0},

o the isotropic cone V° :={v eV | v? =0}.
In case U is a subspace of V with U N V% = 0 we have U N U+ = 0. Whenever

the latter is the case one obtains an orthogonal decomposition

V=UasU".

On the other hand, if U N U+ # 0, then U + U+ does not need to be equal
to V. Also note that if (r, s) denotes the signature of the bilinear pairing (-, ),
then r is the dimension of a maximal subspace in Pos(V') and s the dimension
of a maximal subspace in Neg(V'). For a subspace U of maximal dimension in
Pos(V) one then has U+ C Neg(V).

Orthogonal transformations are defined as in the Euclidean case, i.e. an in-

vertible linear map g: V' — V' is orthogonal if (gv, gv) = (v,v) for all v € V.
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Definition 2.2.2. The orthogonal group O(V,q) of a pseudo Fuclidean space

(V,q) is the group of orthogonal transformations.

The group O(V, q) is a Lie group, and non-compact if and only if ¢ is indef-
inite. In case of the standard space R"** with scalar product given by ¢,; =
a4 -4 a2 — ot — 22 we also write O(r, s) for the orthogonal group.
Note that each orthogonal group is isomorphic to one of the O(r, s) according to
the sign, for more details see for instance [68].

Among all orthogonal transformations reflections are of particular impor-
tance. This is not only true for Euclidean geometry, but also for the indefinite
case. A reflection r, along a vector a, with a®> # 0, in a pseudo euclidean space
(V,q) is a map of the following form. Let H, := a’ be what is called the reflec-
tion hyperplane, then

V=aR®&H,.

Thus, for each v € V there exist unique s € R and b € H, such that v = sa + b.

Then define r,(v) = —sa + b. Equivalently, a reflection is a map of the form

Vv —2

In the euclidean case it is not too hard to prove that the orthogonal group is
generated by reflections. For the indefinite case this is much more difficult, but

well known, see [53] for a constructive proof and some of the history.

Theorem 2.2.1 (Cartan-Dieudonné). Every orthogonal transformation in a

n-dimensional inner product space is the composition of at most n reflections.
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There are two natural and continuous homomorphisms defined on O(r, s)
with values in {£1}. One is given by the determinant, which does not need
any further introduction. The other is given by the spinor norm which is less
known. This notion exists for more general cases than we will define it. Here we
are only interested in the real case. We set R* := R\ {0} and (R*)? :={ 2? | z €

R* 1.

Definition 2.2.3. The spinor norm on the inner product space (V,q) is the
homomorphism

spn: O(V,q) — R*/(R")* = {+1, -}

induced by sending a reflection r, to —q(a,a) in R*/(R*)%. We denote by O (V)

the kernel of spn.

Often one finds the spinor norm to be defined by the term ¢(a, a) instead of
—q(a,a) for a reflection r,. However, in our situation it turns out to be more
convenient to work with —¢(a, a). Thus, if g € O(V, q) is generated by reflec-
tions g = 74, -+ Ta,, then spn(g) = 1 if and only if the number of reflections
along a vector of positive length in (14, -+ ,7,,) is even. Aside from this the
spinor norm has many more applications. A rather obvious one is that it can
be used to distinguish between connected components of O(r, s). For that, we

recall the following well known fact from [68, p.131].

Proposition 2.2.1. Let r,s > 0. Then O(r) x O(s) is a mazimal compact

subgroup of O(r,s). In particular O(r) x O(s) is homotopy equivalent to O(r, s).
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As an immediate consequence we find that O(r, s) has 4 connected compo-
nents. Now the determinant and the spinor norm can be used to distinguish
between these components, since both are continuous maps into the discrete
space {1, —1}. In the next section on Grassmann manifolds we will see another

interpretation of the spinor norm.

2.3 GRASSMANN SPACES

Grassmann spaces parametrize certain linear subspaces in a fixed vector space.
In this section we recall basic facts about these spaces. We are particularly in-
terested in the case when these Grassmann spaces are defined over a pseudo

Euclidean space (V q).

Definition 2.3.1. Let V' be an n-dimensional R-vector space. The Grassmann
space of k-dimensional subspaces and the one of oriented k-dimensional sub-
spaces are defined as

o Gr(k,V)={H CV | H a k-dimensional linear subspace},

o Gr°(k,V)={H CV | H a k-dimensional oriented linear subspace}.

The general linear group Gl(V') acts transitively on Gr(k, V). Thus, if S de-
notes the stabilizer of this action, one has Gr(k, V) = GI(V)/S. In this way we
endow Gr(k, V) with a topology. Then Gr(k, V') has the structure of a compact
manifold, as we will see below.

If V' is endowed with an indefinite scalar product, we define the following

Grassmann spaces.
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Definition 2.3.2. Let (V,q) be a pseudo Euclidean space. The Grassmann space
of positive k-dimensional subspaces GrT(k, V') is the subspace of Gr(k,V') con-
sisting of elements on which q is positive definite. The Grassmann space of pos-
itive oriented k-dimensional subspaces Gr™°(k, V') is the subspace of Gr°(k, V)

consisting of oriented positive definite subspaces.

It is not hard to see that Gr*(k, V) as well as Gr*°(k, V') are open subspaces
in Gr(k,V) and Gr°(k, V) respectively. Hence, both spaces are non-compact

manifolds. Furthermore, they can also be described as homogeneous spaces.

Lemma 2.3.1. Let (V,q) be an inner product space of dimension n with q hav-
ing signature (r,s). Then we have the following descriptions
« Gr(k,V) = 0(n)/ (O(k) x O(n — k)),
o Gro(k,V)=0(n)/ (SO(k) x O(n — k)).
If k = r, we have
o Grf(k,V)=0(rs)/(O(r) x O(s)),
o Grt°(k, V)= 0(r,s)/ (SO(r) x O(s)).
If k <r, we have
o Gri(k,V)=0(r,s)/ (O(k) x O(r —k,s)),
o Grto(k, V)= O(r,s)/ (SO(k) x O(r — k, s)).

Proof. Tt is enough to consider the standard space (R"*5, ¢y) with the stan-
dard basis {e;}. The group O(r, s) acts smoothly and transitively on each of
the Grassmann spaces. Depending on which structure should be preserved the

stabilizer of span{ey,--- ,ex} is then easily identified. ]
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As a consequence we get the following.

Lemma 2.3.2. Let (V,q) be an inner product space of dimension n and signa-

ture (r,s) with r,s > 0. Then there is a homeomorphism Gr*(r, V) = R,

Proof. By the previous lemma Gr™(r, V) is the homogeneous space given by a
non-compact Lie group modulo its maximal compact subgroup and thus homeo-

morphic to some RY by [71, Theorem 14.3.11]. O

At the end of this section we will prove this fact by constructing a global
chart.

The forgetful map Gr*°(k,V) — Gr*(k,V) is a 2-sheeted covering. In case
that the positive definite subspaces are of maximal dimension, we find that the
covering is trivial by Lemma 2.3.2. In particular Gr*°(k, V') consists of 2 con-
nected components. We can use this to give another interpretation of the spinor

norm.

Lemma 2.3.3. Let (V,q) be a pseudo Euclidean space with sgn(q) = (r,s).
If k = r an orthogonal transformation g € O(V,q) preserves the connected

components of Gr™°(k, V) if and only if spn(g) = 1.

Proof. Since spn is a continuous function it is enough to check the statement for

a single element in each connected component of O(r, s). [

Next, we show how to construct coordinate charts for the Grassmann spaces.

Let Uy be a k-dimensional linear subspace of V' and U, a subspace such that
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V = U; @ U,. Then consider the map Hom(Uy, Us) — Gr(k, V) with

f > Graph(f) ={w+ f(w) | w € Uy }.

By choosing a basis, one may identify Hom(U;, Us) with the space of matrices
Matr((n — k) x k) which then again can be thought of as R*™~*) Choosing U,
and U, appropriately one can construct an atlas on Gr(k, V') using the above
function. One checks that the transition functions are given by quotients of
polynomials. Consequently, Gr(k, V) is not just a manifold, but also an alge-
braic variety. As a side remark, this can also be seen in terms of the famous
Pliicker embedding [60, p.209], which realizes Gr(k, V') as a projective variety.
Using the above charts we can construct a global chart for Gr*(k, V) if k is
the maximal dimension of a positive definite subspace. Consider the standard
space (R, qyq) with W, = span{ey,--- ,ex} and Wo = span{eg,1, -, Crys}-
Then every positive k-space is the graph of a map A: W; — W, If this were
not the case, we would find a space H € Gr*(k, V) whose projection onto W;
would not be surjective. But then W, + H is a positive definite subspace of V'
with dim(W; + H) > dim(H). However, this is not possible since H is of maxi-

mal dimension. Now note that x + Ax is in the positive cone if and only if

k k+s
Soai— Y (Az)i > 0.
i=1 i=k+1

For the map A this just means that the operator norm with respect to the stan-
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dard euclidean norm satisfies ||A|| < 1. Thus, we have found a global chart

{A e Matr((n—k) x k) | [|[4]| < 1} = Grt(k, V).

2.4 LATTICE THEORY

Lattice theory can be viewed as a variation of the theory of pseudo Euclidean
spaces, by replacing the R-vector space V by a free Z-module A and the scalar
product by an integer valued bilinear pairing. Lattices have their roots in num-
ber theory, but they have become an important ingredient in various geometric
applications. We give a brief overview of lattice theory. Standard sources are
[113], [120], [44]. A good survey can be found in [83, Chapter 14].

A lattice will mean the following to us.

Definition 2.4.1. A lattice A is a free abelian group of finite rank, together
with a symmetric, non-degenerate bilinear pairing (-,-): A x A — Z. A lattice is

even if the so called length \* :== (X, \) is even for all X\ € A, otherwise it is odd.

Note, that the above notion of lattice differs from the one given in the theory
of Lie groups as a discrete subgroup with finite co-volume.
Just like in the case of inner product spaces one can take orthogonal comple-

ments. For A\ € A we define

M={NeA|(WN) =0}

Clearly, if \; = n)y for A, A\ € A and n € Z then \{ = \y. We say that an
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element A € A is primitive if A = n) implies that n = +1. More generally, a
sublattice A’ C A is a primitive sublattice if A/A’ is torsion free.

Closely related to the notion of a lattice is that of a quadratic module.

Definition 2.4.2. Let V' denote a module over a commutative ring R. A func-
tion q: V — R with

o g(av) = a?q(v) for allv € V and a € R,

o (z,y) = q(x+vy)—q(z) — q(y) a bilinear pairing on V,
is called a quadratic form, and the tupel (V,q) a quadratic module. Furthermore,
if R =7 and q takes values in 27 we say that (V,q) is an even quadratic mod-

ule.

If (V,q) is an even quadratic module we endow V' with the bilinear pairing

(q(z +y) —q(x) —q(y)).

DN | —

(l’, y) =

On the other hand, if A is a lattice, then setting ¢(x) := (x, z) defines a quadratic
form on A. In case that R = F is a field of characteristic not equal to 2, the no-
tion of a quadratic module over F and that of an inner product space (dropping
any assumptions on definiteness) defined over F are in bijective correspondence
[120, p.27].

Every lattice A determines an inner product space over F by extending (-, )
F-linearly to A ®7 F. Consider the case when F = Q or F = R, then there is a
natural embedding A — A ® F which preserves the bilinear pairing. Thus, we

may view A as a sublattice of the inner product space A ® Q.
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Definition 2.4.3. Let A be a lattice. The dual lattice A* is the sublattice of
A ® Q consisting of those elements © € A ® Q for which (z,\) is an integer for

every \ € A.

Note that the dual lattice is in general not really a lattice, since the bilinear

pairing extended to A* takes values in Q instead of Z.

Definition 2.4.4. A lattice A is unimodular if the dual lattice A* is a lattice

and equal to A.

It is not too hard to see, that A is a unimodular lattice if and only if

A — Hom(A,Z) with A — (-, \)

is an isomorphism of groups. Then, if A denotes the intersection matrix ((e;, €;)), ;
of A for some basis {e;}, one checks that unimodularity of A is equivalent to
det(A) = £1.

Next, let us define some invariants of lattices. We start with those coming

from the induced pseudo Euclidean space.

Definition 2.4.5. Let (A, (+,)) be a lattice and Ag = (A ® R, (-,-)) the R-linear
extension. Then we define

o rank(A) := dim(Ag) the rank,

o sgn(A) = (r,s) where (r,s) is the signature of Ag,

o 7(A) =1 — s the index of A.

The next invariants capture more of the integral structure.
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Definition 2.4.6. The discriminant group of a lattice A is the group Dy =
A*/A. The discriminant form qp is the quadratic form on Dy defined by

e qp([z]) = (z,x) mod Z if A is odd,

o qp([z]) = (z,x) mod 2Z if A is even.
Furthermore, if A denotes the intersection matriz of A in some basis, the dis-

criminant of A is defined as disc(A) := det(A).

First note that disc(A) is well defined. To see this recall that if A’ = XAXT
is the intersection matrix obtained by a base change one has X € Gl(n,Z) and
hence det A’ = det A - (det X)? = det A. By computations in a basis of A it is
also not hard to prove that D, is a finite group. In fact, |disc(A)| is equal to the
number of elements of Dj,.

Let us give some examples.

Example 2.4.1. By I, we denote the lattice Z™* with intersection matriz
given by the diagonal matriz with 1’s in the first r entries and —1’s in the re-

maining s entries of the diagonal.

Example 2.4.2. The hyperbolic lattice, denoted U, is the lattice with intersec-

tion matrix
01

10

It is even and unimodular with sgn(U) = (1,1) and disc(U) = —1.
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Example 2.4.3. The Eg lattice is given by the intersection matriz

2 -1 0 0O O O 0 O
-1 2 -1 0 0 0 0 O
o -1 2 -1 0 0 0 O
o o0 -1 2 -1 0 0 O
o o o0 -1 2 -1 0 -1
o o0 o0 o0 -1 2 -1 0
o o o o0 o0 -1 2 0
o o0 o o0 -1 0 0 2

It is even and unimodular with disc(Es) = 1 and sgn(Es) = (8,0).

One can obtain other examples by taking direct sums. Another important
construction is given by the twist A(m) of a given lattice A, which is obtained
when changing the scalar product of A by multiplying it with an integer m € Z,

ie. (+,)apm) =m - (-,-)a. Here is a classification result.

Theorem 2.4.1. [83, Corollary 1.3 Chapter 14] Let A be an indefinite unimodu-
lar lattice of signature (r,s) and T :=r — s the index.

o If A is even, then T =0 mod 8 and according to the sign of T
A2 ETF @U® or A~ Eg(—1)°F @ U®.

o If A is odd, then N =1, ;.
We will also be interested in the automorphisms of lattices.
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Definition 2.4.7. Let A be a lattice. The orthogonal group, or automorphism

group of A is defined as the group of isomorphisms, i.e.
O, () ={ g: AS A | (gh gN) = (A X) for all \, N € A }.

We will often write O(A) for this group if it is clear what the bilinear pairing is.

Note that O(A) can be viewed as a discrete subgroup of O(A ® R) = O(r, s),
where (7, s) is the sign of A. If O(r, s) is semisimple, which is the case if r + s >
3 [109, Apendix A], then O(A) is an arithmetic subgroup by [109, 5.1.11].

Just like for O(r, s) reflections play an important role for O(A). However,
O(A) is in general not generated by reflections, but the subgroup generated by
those is a large subgroup of O(A). To see this one notes that it is a normal sub-
group and of finite index by Margulis normal subgroup theorem, see [96] and
[104, Chapter IV]. We are particularly interested in the subgroup of O(A) gen-
erated by reflections along (—2)-classes, i.e. along those classes ¢ € A with

c? = —2. We will need the following notion.

Definition 2.4.8. The stable orthogonal group O(A) is the kernel of the natural

homomorphism p: O(A) — O(Dy, qp).

It often happens that p is surjective. This is for example the case whenever
A is an even indefinite lattice such that the number of generators [(Dy) of Dy
satisfies I(Dy) 4+ 2 < rank(A), see [113, Thm. 1.14.2]. If r. is a reflection along a
(—2)-class ¢ € A, then r. = idy + (-.c)e. Since (z,c¢) € Z for all x € A* one finds

that p(r.)(z) =  mod A for all z € A*. Thus, r, € O(A) and spn(r.) = 1.
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Definition 2.4.9. Let OT(A) = O(A) N OT(A ® R), the subgroup of O(A) of
elements with trivial spinor norm. Moreover, let O (A) be the stable orthogonal

subgroup with trivial spinor norm, i.e. Ot (A) := O(A) N OT(A).

Sometimes it happens that O+(A) determines the group generated by reflec-
tions along (—2)-classes. The following result is due to Kneser [87, Satz 4], see

also [62, Theorem 1.1].

Theorem 2.4.2. Let A be a lattice of signature (r,s) with r,s > 2. Assume that
there exists a sublattice A of rank at least 5 with disc(A’) not a multiple of 3.
Furthermore, assume there is another sublattice A" of rank at least 6 such that

disc(A”) is not even. Then the group generated by reflections along (—2)-classes

is OT(A).

Proof. In [87, Satz 4] the above theorem is stated for pairs of reflections along

classes of length 2, i.e. so that the lattice generated by r. - 1, with ¢ = ? = 2
is equal to SO(A) N OT(A). However, by changing A with A(—1) we obtain the
same statement for (—2)-classes. Furthermore, since 7. - g changes the determi-

nant of every element g in O(A), we get the statement stated above. O

Theorem 2.4.2 applies for instance for the lattice A = Eg(—1)®F @ U®" as
in Theorem 2.4.1 with r,s > 3. Since A is unimodular we get that the group
generated by reflections along (—2)-classes is exactly the subgroup Ot (A) in
that case. For r = 3 and s = 19 this lattice is known as the K3-lattice, which

we will come across in the next chapter.
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Let us end this chapter with a statement about orbits of the O(A) action on
A. To state the theorem we need the following notion for a non-zero element A
in A. The divisibility of A, denoted div(\), is the positive integer generating the
subgroup (A, A) C Z. Note that ﬁ(k) - A is an element of A*. The following is a

result due to Eichler, see [44, Paragraph 10] or [61, Lemma 5.3].

Theorem 2.4.3 (Eichler Criterion). Let A be a lattice containing U & U as a
sublattice. Then the O(A)-orbz't of a primitive element A € A is determined by

the length \* and its image [divl(/\) Al in Dy.
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2 =2 = k% = ijk = —1
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Sir William Rowan Hamilton

Hyperkahler Manifolds

The goal of this chapter is to introduce backgrounds on hyperkahler manifolds.
We focus on the case of compact hyperkidhler manifolds as they appear in Berger’s
classification theorem. Closely related to these are so called irreducible holomor-
phic symplectic manifolds. They can be studied in terms of algebraic geometry.

The most basic examples of these are the so called K 3-surfaces, which we will
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introduce among related higher dimensional examples. Furthermore, we state

Torelli theorems for K 3-surfaces.

3.1 TuHE GROUP SP(N)

We start by introducing the notion of an H-Hermitian inner product space. For

that recall that the skew field of quaternions is defined as

H :={ xo+ x10 + x2] + 23k : T, 21, 22,23 € R },

where the 4, j, k satisfy i = j2 = k* = ijk = —1. On H there is a conjugate map

given by T = xg + x11 + 127 + x3k = 19 — T11 — x9j — w3k and the real part of
T = xo+ 11 + 2] + x3k is defined as R(z) = x.

Let V be an H-vector space, that is V' is a right H-module. An H-Hermaitian
inner product on V' is a positive definite pairing (-,-): V' x V' — H, which is

additive in both entries such that for A in H and v, w in V

(v, w) = Mo, w) with (v, wA) = (v, w)\ and (v, w) = (w,v).

For the standard space H" the standard Hermitian inner product is Y v; - w;.

Definition 3.1.1. The unitary quaternionic group of an H-Hermitian vector

space (V, (-, -)) is the group of H-linear isomorphisms of V' which preserve (-, -),

Sp (V) ={G e GL(V,H) | (Gv,Gw) = (v,w) for all v,w € V}.
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For the standard Hermitian inner product space we set Sp(n) = Sp(H").

The group Sp(V) is often called the compact symplectic group. In the follow-
ing we will see why that is. First note that one can reduce scalars to view the
H-module V' as an R-vector space as well as a C-vector space. However, the
complex numbers C embed in several ways into H. For that let ¢ == (z1, z2, x3) €
R? such that 22+ 22422 = 1 and set i, == x1i+2j +23k. Then the map C — H
given by a + ib — a + i.b is an injective homomorphism of rings and each such ¢
induces a complex vector space structure on V.

A complex vector space can also be viewed as an R-vector space endowed
with an endomorphism I such that I? = —Id. The endomorphism is then called
an almost complex structure. The space of associated almost complex structures

on V' is then given by
C(V) = {:1:1[—1— Tod + w3K: 22 + 22 + 22 = 1} C GI(V,R),

where the maps I, J, K are induced by multiplication with ¢, j, k respectively.
For ¢ € R3 of unit length, the induced almost complex structure I, in C(V)

is an isometry for an H-Hermitian inner product. Moreover, I. induces a C-
Hermitian inner product (-,-);, on V. For instance, if ¢ = (1,0,0), one has
(v,w);, = mo + ixy when (v,w) = xy + 211 + x3j + x3k. We also obtain a
euclidean metric (-, -)g on V' by taking the real part (v, w)r = R((v,w)). Then
(-, = (-, )r +1(l.,)r is a C-Hermitian inner product with respect to I.. On

the other hand, for any euclidean metric, for which I, J, K are isometries, one
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gets an induced H-Hermitian metric on V' provided by

(v,w) = (v, w)g + i{Iv, w)g + j{Jv,w)r + k(Kv,w)R.

This is a straightforward computation, but one needs to take care of the order
of operations. For a complex structure I. € C(V') we thus find embeddings
Sp(V) Cc U(V) c O(V). Furthermore, let J. = hJh™! and K, = hKh™! where

h € Sp(1) is some unitary quaternion such that I. = hIh~!. Then the form

o(v,w) = (Ju,w)r + i1 (Kv, w)g.

defines a complex symplectic form on V' with respect to the complex structure
I.. Recall that a symplectic form is a non-degenerate alternating bilinear pair-
ing. The form o is preserved by Sp(V'). In general, the group of complex linear
automorphisms V' that preserve a complex symplectic form is denoted Sp(V, C)

and called the complex symplectic group.

Proposition 3.1.1. Let V' be an H-Hermitian vector space. Then for each as-

sociated C-Hermitian structure on V' one has

Sp(V) = Sp(V,C) N SU(V).

Proof. We have seen that Sp(V') C Sp(V,C) N U(V). Since o is non-degenerate

dimc V' 3

the form o is a volume form. The volume form is preserved under Sp(V,C),

thus every element in Sp(V, C) has determinant 1 and therefore also every ele-
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ment in Sp(V'). On the other hand, let G € Sp(V,C)NSU(V). Then G preserves

the Hermitian metric and the symplectic form

o= (o, )r + (K, )r

and hence also the forms (.J.-,-)g and (K,-,-)g. As G is an isometry for (-, -)r
it will also preserve the complex structures J., K. and I. = J.K,.. Thus G pre-
serves

(v,w) = (v, W)r + 1{Lv, wW)r + j(Jev, W)r + k(K0, W)R
the H-Hermitian form. ]

Example 3.1.2. Consider the case n = 1 and recall, for example from [68,

p.57], that

SU(2) = : a,b€C and|al* +|b)* =1

|
S
Y

Now the group Sp(1) is isomorphic to the group of quaternions of unit length.

Then the map

) ) Zo +il’1 T2 +i$3
o+ x11 + Toj + x3k —

—T9 + il‘3 o — iIl

induces an isomorphism Sp(1) = SU(2).

From [16] respectively [28, Ch.VIII § 13] we obtain the following statement on
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the complex representation of Sp(n) on complex forms.

Theorem 3.1.1. Let V' be a C-Hermitian vector space of complex dimension
2n and o a complex symplectic form. Then the representation of Sp(V) on AV

decomposes as follows
k
/\Vgpk@Pk,Q/\U@Pk,ZL/\O'Q@"' 5

with 0 < 1 < n and P, being irreducible and non-trivial representations for [ > 0.
Furthermore, the o3 are up to complex constants the unique invariant forms in

their respective degree.

3.2 HYPERKAHLER MANIFOLDS

There are different definitions for a Riemannian manifold (M%", g) to be hyper-
kahler. What they usually have in common is the requirement that the holon-

omy group Hol(g) is contained in Sp(n). Here we focus on the strong case.

Definition 3.2.1. A hyperkdhler manifold is a simply connected Riemannian
manifold (M, g) of dimension 4n such that Hol(g) = Sp(n). We say that a man-

ifold M is hyperkdhlerian if there exists a hyperkdhler metric on M.

Later we will see that a compact manifold with holonomy Hol(g) = Sp(n) is
automatically simply connected.
We are mostly interested in compact hyperkédhler manifolds. Only in the late

Sections 7.5 and 7.6 we will come across a non-compact example. Thus, from
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now on we will assume that M is compact. One of our main interests for study-

ing hyperkahler manifolds comes from the following.
Theorem 3.2.1. A hyperkdihler manifold has vanishing Ricci-curvature.

Proof. Already the condition Hol(g) C SU(2n) implies Ricci-flatness, see [75,

Proposition 4.A.18] or Theorem 2.1.5. [
The name hyperkahler comes from the following very useful fact.

Proposition 3.2.1. Let (M, g) be a 4n-dimensional Riemannian manifold.
Then Hol(g) C Sp(n) if and only if there are parallel complex structures I,J, K €

End(TM) satisfying the quaternionic multiplication relations

P=l=K>=1JK = —Id.

In particular, g is a Kdihler metric with respect to each I, J, K.

Proof. 1f such complex structures exist the holonomy must be contained in

Sp(n), as it acts trivially on the H-Hermitian inner product

gp('a )+ Z'gp(Ip'a ) + jgp(Jp'> )+ kgp(Kp'v )

On the other hand, assume that Hol,(M, g) at a point p in M is isomorphic to
a subgroup of Sp(n). Since Sp(1) is a subgroup of Sp(n) the elements i, j, k €
Sp(1) induce complex structures I, J,,, K, on T,M. By the holonomy princi-

ple we can extend these complex structures to parallel almost complex struc-
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tures on T'M. But any parallel almost complex structure is integrable and thus

a complex structure [108, Theorem 5.5]. ]

A triple of complex structures (I, J, K) as in the above proposition will often
be called a hyperkdhler triple. Associated to such a triple one obtains a triple of

Kahler forms

However, note that if a® + b + ¢ = 1 for real numbers a, b, ¢ then
9% =l +bJ + cK

is also a parallel almost complex structure. We find that a hyperkahler manifold
(M, g) admits a whole 2-sphere of complex structures, each of which is Kéhler
with respect to g. One can enhance this fact as follows:

The Twistor Space: For a hyperkihler manifold (M, g) let 1%*¢ be a paral-

lel complex structure as described above. Then we identify the space
T, = { I*** € End(M) | a® + b* + ¢ =1}

with CP! to endow it with a complex structure Icp1. The space T, is called the
twistor line.
For X := M x T, we define a complex structure as follows. At (p, I “’bvc) we

define the almost complex structure ]I< = Ig’b’c@[@ p1 on the tangent space

p71a,b,c>

T( )X = T,M & Tjap.T,. Then by the Newlander-Nirenberg theorem [111]

pyla,b,c
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one can show that I is an integrable almost complex structure on X. Therefore,
X is given the structure of a complex manifold so that the projection 7: X —
T\, is a holomorphic proper surjection. In other words 7 is a family of complex
manifolds and has fiber X = (M, [%%) over the point 1¢%¢. The space X is
called the twistor space. Sometimes we write X(g) and T,,(g) to emphasise the

dependence on the metric.

3.3 IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS

The algebro geometric counterpart of hyperkahler manifolds are the so called

irreducible holomorphic symplectic manifolds which are defined as follows:

Definition 3.3.1. A simply connected compact complex manifold X = (M, )
is called an irreducible holomorphic symplectic manifold (IHSM) if X is Kdhler
and if, up to some constant in C*, there is a unique non-degenerate holomorphic

2-form.

A non-degenerate holomorphic 2-form o is also called a holomorphic sym-
plectic form. For n = dimg(X) we find that 02 is a holomorphic volume form.
Therefore, it induces a trivialization for the canonical bundle Ky of X and
henceforth ¢;(X) = ¢;(Kx) = 0, by [108, Proposition 10.4]. The following result

is taken from [16], see also [19, 14.20 Theorem).

Theorem 3.3.1. Every complex structure I in the twistor line T,, of a hyper-
kahler manifold (M, g) admits up to a constant a unique holomorphic symplectic-

form, i.e. X = (M, I) is irreducible holomorphic symplectic.
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Proof. From Proposition 3.1.1 we know that Hol(g) = Sp(n,C) N SU(2n) pre-
serves a complex symplectic form. By the holonomy principle this gives rise to
a globally defined holomorphic symplectic form. From Theorem 3.1.1 we know

that this form is unique if the holonomy is exactly Sp(n). O

Thus, every hyperkahler manifold gives rise to a family of IHS-manifolds pa-
rameterized by T,, = CP'. On the other hand, the next theorem shows that

each Kahler class on an THSM gives rise to a hyperkéhler manifold.

Theorem 3.3.2. Let X = (M, I) be an IHS-manifold. Then each Kihler class
[wr] is represented by a Kdhler form w; whose corresponding Riemannian metric

is hyperkdhler.

Proof. From the Calabi-Yau theorem 2.1.4 we know that [w;] can be represented
by a Kéhler form of a Ricci-flat Kéhler metric g. By [19, 14.17 Lemma]| every
holomorphic tensor field is parallel. In particular, this is the case for the holo-
morphic symplectic form ¢. Thus, the holonomy group is contained in Sp(n).

Berger’s classification theorem 2.1.2 then implies equality Hol(g) = Sp(n). ]

The THS-manifolds can be understood as irreducible components of compact
Kéhler manifolds with vanishing first real Chern class in terms of a splitting

theorem due to Beauville [16, Théoreme 1].

Theorem 3.3.3 (Beauville-Bogomolov Decomposition). Let X be a compact
complex Kdhler manifold with Ricci-flat Kahler metric. Then the universal cover
X is biholomorphic and isometric to the product IL; X; X IL;Y; x CF, where the

metric on C* is flat and X;,Y; are simply connected compact manifolds with
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« X, are irreducible holomorphic symplectic with Hol(X;) = Sp(2 dim¢ (X)),
« Y, are Calabi-Yau, i.e. Hol(Y;) = SU(dimc(Y})).
Furthermore, there exists a finite cover X' of X such that X' is isometric and

biholomorphic to 11, X; x 11;Y; x T" where T is a flat torus.

It appears that a version of the above theorem can already be attributed to
Calabi from 1957, see [31]. By considering IHS-manifolds we can now show that
the assumption of simply connectedness in our definition of hyperkéhler man-
ifolds is superfluous. For the statement below see also [19, 14.21 Lemma] and

[16].

Proposition 3.3.1. Let (M, g) be a compact 4n-dimensional Riemannian man-
ifold with Hol(g) = Sp(n). Then M is simply connected. Furthermore, the holo-
morphic Fuler characteristic for every IHS-manifold X of real dimension 4n is

X(X,0x)=n+1.

Proof. Endow M with some parallel complex structure I so that X = (M, I, g)
is a Kéahler manifold. From [19, 14.17 Lemma] we know that every holomorphic
k-form on X is parallel. On the other hand from Theorem 3.1.1 we know that
up to a constant there is only one such k-form. Henceforth, the dimension h*°
of the space of holomorphic k-forms H°(X, QF) is 1 if k is even and 0 when k is

odd for 0 < k < 2n. Since Q° = Ox we find by the Hodge symmetries that

XX, 0x) = Y (=1)F dim(H* (X, Ox)) = 3 (=1)* dim(H(X, Q%)) = n + 1.

Next, consider the universal cover (X, §). From [19, p.281 10.16.] we know that
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Hol(g) = Holy(g). As Holy(g) is the connected component of Hol(g) = Sp(n) we
have Hol(g) = Sp(n). Theorem 3.3.3 now shows that the universal covering is
finite. Therefore, X is compact and IHSM. From the above it follows that also
X(X,0%) = n+ 1. If s denotes the number of sheets of the universal covering
X — X the Hirzebruch-Riemann-Roch theorem [75, Theorem 5.1.1] implies that

X(X,05%) = s x(X,0x). In our case s must therefore be 1. O

3.4 THE BEAUVILLE-BOGOMOLOV FORM

Maybe the most important invariant of a hyperkahler manifold (M, g) is the
second cohomology. We first note that H?*(M, Z) is torsion free, since M is sim-
ply connected. The second Betti number by (M) of M is at least 3. This follows
from the fact that H*(M,R) contains the subspace generated by the Kéhler
classes [wy], [ws], [wk]. If we now consider an IHS-manifold X = (M, I) asso-

ciated to (M, g) then the second cohomology is endowed with a quadratic form.

Definition 3.4.1. Let X be an IHS-manifold of complex dimension 2n. Denote
by o the holomorphic symplectic form, scaled such that [ o N = 1. Then there
is a quadratic form fx: H*(M,R) — R, called Beauville-Bogomolov form (BB-
form) which is defined by

fx(a) = g/}(aAaA(aAE)”_1+(1_n) (/Xa/\an—l /\o”) (/Xa/\an /\0”_1>.
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The associated bilinear pairing is also called BB-pairing, and is defined as

x(e,8) 1= 5 Fx @+ 6) — fx() = fx (),

First we note that the BB-pairing behaves well with respect to the Hodge

decomposition. That is, for an IHS-manifold X we are interested in the space
(H*(X) @ H**(X))r = (H**(X) @ H**(X)) N H*(M,R)

and the space of real (1,1)-classes H"'(M,R) := H"* (M) N H*(M, R).

Lemma 3.4.1. Let X be an IHSM, then the space H"' (M, R) is orthogonal to

(H*°(X) @ H**(X))r with respect to the BB-pairing qx.

Proof. This is a straightforward calculation. First one can use the fact that any
element in (H*°(X) @ H*?(X))g is of the form Ao + A, since it is the invariant
part of cC @ ¢C with respect to conjugation. For the computation of some of
the integrals one uses the fact that an integral of a form which is not of type

(2n,2n) is 0, see [60, p.32]. O

The following theorem now shows that the BB-form endows H?*(X, Z) with
the structure of a lattice. The statement goes back to [16, 47, 52], see also [65,

p.184 Proposition 23.14].

Theorem 3.4.2. For an IHS-manifold X there exists a positive constant cx
such that cx - qx endows HZ(X, Z) with the structure of a primitive lattice. Fur-

thermore, the sign of this lattice is (3,be(X) — 3).
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In the spirit of the above theorem we will rescale the BB-form to obtain a
lattice structure on H*(X,Z) without changing the notation gx.

The definition of the BB-form strongly depends on the holomorphic symplec-
tic form and thus on the complex structure. However, from [65, p.212] and [65,
Corollary 23.17] we know that there is a positive constant ¢, depending only on

the dimension such that for o € H*(X,R) one has

x(@,0) = [ o ftd(X),

where 4/td(X) denotes the square root of the Todd class of X. From [73] for

instance we know that \/ = /td(X) and furthermore that the A- genus of
X is % + 1. The important thing to note is that A(X ) is a polynomial in
the Pontryagin classes which only depend on the smooth structure of X. Thus,

we have that the BB-form is in fact independent of any complex structure.

Corollary 3.4.1. For a hyperkdhlerian manifold M the second cohomology
HQ(M ,Z) 1is naturally endowed with an integral valued bilinear pairing of sig-

nature (3,bo(M) — 3).

Note that in real dimension 4 this is just the cup pairing.

3.5 EXAMPLES OF HYPERKAHLER MANIFOLDS

The first examples of IHS-manifolds are the K 3-surfaces which are the only ex-

amples in dimension 4.
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Definition 3.5.1. A K3-surface is a simply connected compact complex surface

that admits a nowhere vanishing holomorphic 2-form.

In a way IHS-manifolds are the higher dimensional analogs of K 3-surfaces.

An example of such a K3-surface is given by the Fermat quartic
F = {[zlz Zy: 231 24) €ECP? | 28 4+ 25 + 25 + 24 :O}

or more generally any hypersurface of degree 4 in CP3, we have seen this exam-
ple already in Section 2.1. One can construct other examples by the so called

Kummer construction.

Example 3.5.1 (Kummer Surfaces). Let A be a rank 4 lattice in R* and let

T* be the torus C2/A. Then on T* the group Z, is acting by taking (21, z2) to
(—z1,—22). The resulting orbit space, X = T*/Zy, is a complex orbifold with 16
singular points. Each singularity has a neighborhood which is diffeomorphic to
C?/ £ 1. For such a singularity there exists a resolution w: T*CP' — C?/ £ 1,
i.e. a map which is a biholomorphism away from the singular point 0 in C*/ £ 1
and its fiber 7=1(0) = CP'. Thus, for each singular point s in X there exists a
neighborhood U, which can be cut out and a copy of T*CP' can be glued in ac-
cordingly, thus replacing the singular point s with a CP'. The resulting space
Kum(7T*) is the blow up of X at the 16 singular points and is known as a Kum-

mer surface.

One can verify that Kum(7*) is a K3-surface by noting that the 2-form o =
dz A dze on C? descents to a form on (C? — {0}) / £ 1. Lifted to T*CP! one
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can show by direct computations in local charts that the lift extends to T*CP!
defining a holomorphic symplectic form. Then o descents also to X and can be
lifted to a holomorphic symplectic form on Kum(7?). For simply connectedness
we refer to [123].

It is interesting to note that the Fermat quartic is isomorphic to a Kummer
surface, see [83, Example 3.18]. However, not every Kummer surface is a hyper-
surface, they might not even be algebraic and in general there is an abundance
of different types of K3-surfaces. But when one forgets about complex struc-
tures and considers the underlying differentiable manifolds only, one has the

following well known theorem [14, (8.6) Corollary].
Theorem 3.5.1. Any two K3-surfaces are diffeomorphic.
Thus, a manifold diffeomorphic to a K3-surface will be called K3-manifold.

Proposition 3.5.2. Let M be the K3-manifold. Then the Fuler number is
X(M) = 24 and the second homology group with its cup pairing is isomorphic
as a lattice to the so called K3-lattice A3 = Es(—1) @ Es(—1)@oUaUGU, i.e.

the unimodular and even lattice of sign (3,19).

Proof. Let X be a complex K3-surface. From Proposition 3.3.1 we have x(X,Ox) =
2. The second Chern class ¢o(X) can now be computed by Noether’s formula

(60, p.472]

cg(X).

2= X(X,0x) = (@ (X + (X)) = 23

12

Since the second Chern class is the Euler class of the tangent bundle we get for

the topological Euler characteristic x(X) = 24 and thus by(X) = 22. The second
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Stiefel Withney class wy is just the image of the first Chern class in H*(X, Zy) =

0. Furthermore, by Wu’s formula [107, p.132] we know
(z,7) = (x U, [X]) = (S¢*(x),[X]) = (wg,2) mod 2.

Since wy = 0 we have that the cup pairing is even. On the other hand by Poincaré
duality we know that the pairing is unimodular. The sign of X can be com-

puted by the Thom-Hirzebruch index theorem [14, I 3.1 Theorem| which yields

rex,zy) = 0 ol el _

By the classification theorem of even unimodular lattices, Theorem 2.4.1, we

know that H*(M,Z) is isomorphic to the lattice Ags. O

The Fermat quartic F is a complex submanifold of CP? and therefore Kéhler.
Thus F' is an example of an THS-manifold. Since the first Betti number is even,
as it vanishes, we know by [14, (3.1) Theorem p. 144] that in fact every K3-
surface admits a Kéhler metric and thus all of them are THS. K 3-surfaces were
the first manifolds for which one could apply the Calabi-Yau Theorem 2.1.4 pro-
ducing hyperkéhler manifolds and also the first examples of non-flat Ricci-flat
metrics. In fact, hyperkahler metrics are the only type of Ricci-flat metrics that

can occur on M. For the following see [19, 6.40] and [72].

Theorem 3.5.2. Let M be the K3-manifold and g a Riemannian metric on M.

Then the following are equivalent:
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e g is Finstein

e g is Ricci-flat

e g has zero scalar curvature

e g has non-negative scalar curvature

e g is hyperkdhler.

HIGHER DIMENSIONAL EXAMPLES

We first give the 2 examples found in dimensions 4k by Beauville. For that we
need the notion of the Douady space of length n. A complex manifold X can
be viewed as a ringed space (X, Ox) where Oy is the structure sheaf, i.e. the
sheaf of holomorphic functions on X. For a complex subspace (A, O4) in the
category of ringed spaces, the length is then defined as Y- ,c 4 dim(Q4,), where
0.4, denotes the stalk of O, at a. The Douady space of length n, denoted X,
is the space which parametrizes all O-dimensional subspaces of length n in X. It
can be described more readily as follows:

Let X™ := X x .-+ x X be the n-fold product of X on which the symmet-
ric group S, acts by permutations. The nth-symmetric product is the quotient
space X(™ = X"/S, which is a complex orbifold. The singular set of X is
given by

A:U{(l‘h"'amn)EXn|5L'i:$’j}.
1#]

Consider the map p: X" — X which takes a 0-dimensional subspace (A, O4)
of length n to (ay, -+ ,a1, -+ ,ap, - ,a;) in X™ where each a; € A appears

exactly dim(Qy ;) times. Fogarty proves in [51] that X "l is a smooth complex
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manifold and p induces a biholomorphism X™ — p='(A) = X(™ — A, Thus,
one may think of p as a desingularization of X . For n = 2 the space X
is obtained by the blow up along A. If the space X is projective the Douady
space agrees with the Hilbert scheme Hilb™(X) which parametrizes subschemes
of length n. The following two examples are due to Beauville, see [16] and [15].
Hyperkihler Manifold of K3["-type: For a K3-surface X the Hilbert
Scheme X" := Hilb"(X) is an IHS-manifold. More precisely, in case X is not
projective one should speak of the Douady space described above. The second

cohomology lattice of X[™ is isomorphic to

Agsm = Eg(—=1) @ Eg(—1) @ U U DU & I 0(—2(n — 1)),

see [65] and [16, Proposition 6]. For the following see also [85, p.166].
Generalized Kummer Variety: Let Y := 7% be a 2-dimensional com-
plex torus which we consider as an abelian Lie group. Let Y™ be its symmet-
ric product and o: Y™ — Y the natural map given by summing the m-points.
Denote by K™ (Y the kernel of the composition Hilb™(Y) — Y™ — V.
Then K™ 1(Y) is a (2m — 2)-dimensional complex submanifold of Hilb"™(Y")

and is moreover IHSM by [16, Prop. 8] with by = 7.

There are certain methods to construct new examples out of old ones. One is
given by deforming an IHS-manifold X ( see also next chapter ), e.g. one con-
structs a smooth proper morphism 7: X — & between connected complex
spaces X and S so that X is the fiber of a designated point s € §. One can

then show that the fiber Y = 7 1(¢), the deformation of X, is also an THS-
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manifold if ¢ is sufficiently close to sg, see [65, Proposition 22.7] and in gen-

eral [65, Section 22.1] for more details. A smooth deformation is one where the
spaces X and S are smooth. For a brief overview on deformation theory see [19,
Chapter I Section 10], [85, 4.9.2] and [75, Chapter 6]. In the case of deforming

Hilb"(X') we introduce the following notion.

Definition 3.5.2. An IHS-manifold Y will be said to be of type K3 if there is

a K3-surface X such that'Y is a smooth deformation of Hilb"(X).

If X is an IHS-manifold sometimes a birational IHS-manifolds can be con-
structed by the so called Mukai flop for which we refer to [65, Example 21.7]
and [65, Example 21.8]. Without going into details on birationality let us make
the following comment to that notion. The condition of birationality for IHS-
manifolds is rather strong compared to the general case. For instance, from
[65, Proposition 21.6] we obtain that for IHS-manifolds X, X" a birational map
f: X --+ X’ can be described as follows. There exists open subspaces U and U’
of X and X’ respectively with codime (X \ U) > 2 and codime (X’ \ U’) > 2 such
that f induces an isomorphism U — U’. Let us mention that when X is not
projective one should in fact use the term bimeromorphic instead of birational.
However, we will also use the term birational and mean bimeromorphic in the

non-projective case.

Lemma 3.5.3. For birational IHS-manifolds X and X' there exists a natural
isometry (H*(X',Z), qx) — (H*(X,Z), qx) which preserves the Hodge decompo-

sition. Furthermore, X' is a smooth deformation of X.
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Proof. The first statement is [76, Lemma 2.6] and the second [65, Proposition

27.8], see also [79]. O

Up until now all known examples of IHS-manifolds are smooth deformations
of a manifold of type K3 or a generalized Kummer variety, except for two
exceptional examples in complex dimension 10 [1] and 6 [117] both found by
O’Grady. Now it is important to note that a smooth deformation f: X — S
is a surjective proper holomorphic map between smooth spaces A and §. The
Ehresmann fibration theorem, see for instance [75, Corollary 6.2.3], states that
f is a differentiable fiber bundle. Henceforth, although the fibers are not neces-
sarily isomorphic as complex manifolds, they are all diffeomorphic. Therefore,
there are only two known examples of hyperkédhlerian manifolds in dimensions

4n, except for the two examples given by O’Grady in real dimensions 12 and 20.

3.6 TORELLI THEOREMS FOR K 3-SURFACES

Let us now briefly explain how one can study and distinguish non-isomorphic
K 3-surfaces.

Since a K3-surface X = (M, I) is Kéhler we may consider the weight 2 Hodge
decomposition

H?*(X;C) = H**(X) ® H"'(X) @ H"*(X)

and its relative position to the lattice H*(M,Z). For instance consider the so
called Neron Severi lattice NS(X) = H"'(X) N H*(M,Z) and Y = Kum(T?)

a Kummer surface. Let ¢; for i = 1,--- 16 denote the Poincaré duals of the
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16 classes E; provided by the CP! we glued in to replace the singular points in
the Kummer constructions 3.5.1. The Kummer lattice Ax is then the smallest
primitive sublattice of H*(Y, Z) that contains all e;. A K3-surface X is then a
Kummer surface if and only if there exists a primitive embedding Ax — NS(X),
see [83, Section 14 Theorem 3.17] and [112].

The Hodge structure therefore provides a lot of information. In general, the
Torelli problems ask to which extent the Hodge structure determine a K 3-surface.
Also, whether every Hodge structure is induced by one. That is, given a decom-
position H?(M,C) = H*° @ H"' @ H*? with dim H** = 1 and H2O = H%2, then is
there a K 3-surface which has this as its Hodge structure. These questions have
been answered affirmatively by various authors, see [30], [101], [119], [121] and
[81] for a modern survey. For the following theorem see for instance [14, p.332

(11.1) Theorem] and was formulated in this form by Burns and Rapoport [30].

Theorem 3.6.1 (Strong Torelli Theorem for K3-Surfaces). Let X and X' be

K 3-surfaces so that there exists an isometry ¢: H*(X,Z) — H*(X',Z) such that
e ¢ is an isomorphism of Hodge structures
o ¢ takes some Kaihler class of X to a Kahler class of X'.

Then there exists a unique biholomorphism f: X' — X such that f* = ¢.

One can translate the above theorem into a statement about injectivity of
a map which is known as a period map. See also [85, Section 7.3.2] for a brief
discussion and the chapter on K 3-surfaces in [14] or [83] for a detailed treat-
ment of the following. We use the language of marked spaces to make this more

precise. A marked K3-surface is a pair (X, ¢) where X is a K3-surface and
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¢: H*(X,Z) — Ags an isomorphism of lattices. The moduli space of marked

K3-surfaces is then the set

My = {(X, ¢) marked K3-surfaces }/ ~

where isomorphic marked spaces are identified, i.e. (X, ¢) ~ (X', ¢') if there is
a biholomorphism f: X — X’ such that in cohomology ¢ o f* = ¢’. Although
it is not clear from the definition, M%; has a natural topology which makes it
a non-Hausdorff complex manifold. The definition of this topology is not triv-

ial, uses deformation theory and the period map defined below, we refer to [14,

Section VIII| for details. Define the period domain as the complex manifold

Per := {0 € Pc(Aks) | (0,6) > 0 and (0,0) = 0}.

In the next section we will see that Per parametrizes the Hodge structures which
arise by K3-surfaces. The period map P: M7, — Per is then defined by map-
ping (X, ¢) to the so called period point ¢c(H*°(X)). The local Torelli theorem
now states that P is a local isomorphism of complex manifolds and is attributed
to Andreotti and Weil, see [92, Thm 17]|. The surjectivity of this map gives a
positive answer to the question whether every possible Hodge structure is in-
duced by a K3-surface and was proven by Todorov [126]. To phrase the second
statement of Theorem 3.6.1 in terms of an injectivity result, we need to refine
the period map and the period domain. For that we use the following very use-

ful description of the Kéhler cone. Recall that the Kdhler cone of a Kahler man-

70



ifold X is the set of Kahler classes Kah(X) in H% ,(X).
Theorem 3.6.2. For a K3-surface X let A = {c € H*(X,Z) NH"(X) | ¢ =
(c,c) = —=2}. Then

Kah(X) = { r e H(X,R)NnH"(X) | (x,¢) >0 for all c € A }

In the next section we will see that x € H*(X,C) is of type (1, 1) if and only
if 2 is orthogonal to H*°(X). Motivated by Theorem 3.6.2 we define A(II) :=
{ce ANTIt | ¢ = =2} for a point IT in Per. A Kdhler chamber of Tl in Ag3z ® R

is a connected component of the set
{z € (Aks ®@R)NTI* | (w,¢) # 0 for all c € A(ID)} .

Let KC(II) denote the set of Kdihler chambers determined by II. The refined

period space is then the space
Per := {(II,C') | II € Per and C' € KC(m)}.

We also obtain a refined period map P: My — Per by associating to a marked
space (X, ¢) the pair (¢c(H*?(X)), ¢c(Kah(X))). The strong Torelli theorem
for K 3-surfaces can then be refined to the statement that the refined period

map is bijective, which is a consequence of a result due to Looijenga [98].
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The Weyl group of a K3-surface X is the group
W(X)={r.€O (HQ(X, R)) | . a reflection along ¢ € A},

i.e. the group of reflections along (—2)-classes of type (1,1). The group acts
transitively on the set of Kédhler chambers while preserving the Hodge structure,
see [83, Proposition 5.5]. From this and the Strong Torelli theorem it follows
that two marked K3-surfaces (X, ¢) and (X', ¢') are biholomorphic if P(X, ¢) =
P(X',¢'), see also [14, p.333 (11.2) Theorem]. This is known as the Weak Torelli
Theorem.

Recall that a hyperkahler metric g defined on the K 3-manifold M induces a
2-sphere of complex structures on M. A complex structure obtained in this way
endows M with the structure of a complex K3-surface. Thus, the Torelli theo-
rems provide an extremely useful tool when studying hyperkahler metrics and
can be used to prove the following theorem on the moduli space of hyperkéhler

metrics, which is originally due to Todorov [125] and Looijenga [99].

Theorem 3.6.3. The moduli space of hyperkdhler metrics of unit volume on the

K3-manifold is homeomorphic to

O(Ak3) \ (Gr+(3, ARR) — U Gr (3, zL))) :

z (—2)—classes

Note, by Theorem 3.5.2 the above is also a description for the moduli space of
unit volume Einstein metrics on the K 3-manifold.

In the following sections we will see analogous results on period maps for gen-
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eral [HS-manifolds. However, instead of working with marked spaces we will
introduce and use the notion of Teichmiiller spaces. In doing so we will recover
a description of the Teichmiiller space of hyperkahler metrics due to Amerik and
Verbistky [3] and generalize the above theorem to higher dimensional hyperkéh-
lerian manifolds.

Before ending this chapter note that points in |J, Gr* (3, %) do not corre-
spond to any hyperkéhler metrics according to Theorem 3.6.3. A natural ques-
tion is if these points still represent geometrically meaning full objects. This
has been answered in the case of the K3-manifold by Kobayashi and Todorov,
see [90], and [7] for a different approach. They show that if one allows not only
smooth hyperkahler metrics but also metrics having certain singularities, then
points in the above space naturally correspond to these singular metrics. For

more details to this we refer to [90] and [7], see also Sections 7.5 and 7.6.
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Was eine Kurve ist, glaubt jeder Mensch zu
wissen, bis er so viel Mathematik gelernt hat,
daf3 ihn die unzéhligen méglichen Abnormitéten
verwirrt gemacht haben.

Felix Klein

Teichmiuller Spaces of Irreducible

Holomorphic Symplectic Structures

We consider the space of complex structures on a fixed hyperkéhlerian manifold
M and discuss the Teichmiiller space 7 P(M) of irreducible holomorphic sym-

plectic structures on M. The Teichmiiller space can be understood as a type of
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moduli space, parametrizing the complex structures up to special isomorphisms.
We then explain how IHS-structures can be studied in terms of their induced
Hodge structure and introduce the notions of a period domain and the complex
period map. The main goal of this chapter is then to state a surjectivity result
of Huybrechts [76], and discuss injectivity statements by the work of Verbitsky
[132, 135] and Markman [42]. See also [65] for some backgrounds.

4.1 TEICHMULLER SPACE AND DEFORMATIONS

We introduce the complex Teichmiiller space on a compact smooth manifold
M of even dimension. Furthermore, we briefly discuss deformation theory and
its relation to the Teichmiiller space. For more details we refer to [32], see also

[122].

Recall that an almost complex structure on M is a section

I: M — End(TM)

of the endomorphism bundle End(T'M), such that I? = —Id. The space of
all almost complex structures on M, denoted AComp(M), is endowed with the
topology of smooth convergence. With this choice of topology AComp(M) has
the structure of an infinite dimensional Fréchet manifold.

Almost complex structures are of particular interest if they are induced by a
complex structure. It is well known that [ is induced in such a way if and only

if I is integrable, see [111]. Recall that integrablity means that the Lie bracket
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of vector fields preserves the splitting TMc = TM"° @ TM%! into eigensubbun-

dles of I, i.e. integrability is the condition

VW] € TM*,

for all vector fields V, W in TM™°. In this way we may view the space of all
complex structures on M, denoted Comp(M), as a closed subspace of AComp(M).
Let us also state that by a complex structure we often mean its associated inte-
grable almost complex structure and vice versa. A complex manifold X is in

this sense a tuple X = (M, I).

It turns out to be convenient for us not to consider the space of all complex
structures, but restrict to those which are Kahler and admit, up to a constant,
a unique holomorphic symplectic form, i.e. irreducible holomorphic symplectic
structures. Thus, we define Comp;ys(M) to be the subspace of Comp(M) con-
sisting of complex structures which are IHS.

The space Comprys(M), as all the others above, comes with an action by the

diffeomorphism group Diff (M) provided by

¢*I :=dp ' ol odo,

for ¢ in Diff(M). Naturally one would be interested in studying the orbit space,
also known as the moduli space of complex structures. However, this space is
often very ill behaved, see [134] for the case that M is hyperkdhlerian. A more

fruitful notion is provided by the Teichmiiller space.
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Definition 4.1.1. The full Teichmiiller space of complex structures is

Teun (M) = Comp(M)/Diffo(M),

where Diffo(M) denotes the identity component of Diff (M).

Since Fuﬁl(M ) possibly also contains elements which are not induced by hy-

perkéhler metrics we are more interested in the following subspace of Tpob (M).

Definition 4.1.2. The Teichmiiller space of irreducible holomorphic symplectic
structures is

TP (M) = Comprus(M)/Diffo(M)

and will be called the complex Teichmiiller space.

The Teichmiiller spaces above can be studied in terms of deformation theory
of complex manifolds. A deformation of X = (M, I), in this context, is a holo-
morphic submersion f: X — S between complex spaces X', S, possibly singular
and non-reduced, such that f=1(0) = X, where 0 is some base point of S. The
deformation f is also called a family over § if each fiber gives rise to a smooth
complex manifold. However, we will mostly not need this general version, but
consider the case when X and S are complex manifolds only. Of particular im-
portance is then the notion of deformation equivalence, which we define now.

Given two complex manifolds X = (M, ) and X' = (M, I’). Then X and X’
are disk deformation equivalent, denoted X ~g; X', if and only if the following
holds. There is a proper holomorphic submersion 7: X — A, with connected

fibers over the unit disk A C C satisfying the following property:
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There exists tq,ts € A with
o 7w 1(t;) is biholomorphic to X,
o 7w Y(ty) is biholomorphic to X'
Two complex manifolds Y = (M, J) and Y' = (M, J’') are deformation equiv-
alent, if there is a sequence X7, --- , X,, of disk deformation equivalent spaces
such that

Y ~disk Xl ~disk X2 N~ Xn ~disk Y’
From [32, Corollary 6] we get the following theorem.

Theorem 4.1.1. Two complex manifolds X and X' are in the same connected

component of Fuﬁl(]\/[) if and only if they are deformation equivalent.

For TCP(M) one can say more. The Kuranishi space B(X) is the germ, in
the sense of complex spaces, which parametrizes all small deformations of the
complex manifold X = (M, I). This means that there is a family 7: F — B(X)
such that any deformation f: X — & of X is induced by a pullback of 7 in a
small neighborhood of the base point 0 € S.

There exists a surjective map B(X) — U;, where U is some neighborhood
of I in Teh!(M). In general this map is not a homeomorphism. However, for
Kaéhler manifolds with trivial canonical bundle one obtains that this map is
indeed an isomorphism [32, Prop.15]. In particular, this is the case for IHS-
manifolds. Furthermore, by [19, 14.31 Theorem)] respectively [20] we get that

B(X) is smooth. This implies the following proposition.

Proposition 4.1.1. The complex Teichmiiller space TP (M) is locally homeo-
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morphic to some C".

Later we will see that TCP!(M) is not Hausdorff.

4.2 THE CoMPLEX PERIOD DOMAIN

Our goal is to study the Teichmiiller space 7°P/(M) by using Hodge decom-
positions. For THS-manifolds these Hodge decompositions are parametrized by
what is called a period domain. In this section we introduce the weight 2 Hodge
structures of IHS-manifolds and the corresponding period domain. We will al-
ways mean the weight 2 Hodge structures of an IHS-manifold when we speak of
its Hodge structure, ignoring the ones in other degrees.

Let X = (M, I) be an IHS-manifold. By definition X is Kéhler, and thus we
get an induced Hodge structure on H*(M, C), i.e. a decomposition of complex

vector spaces

H*(M,C) = H*°(I) @ H**(1) @ H"'(1).

Recall that this decomposition only depends on the complex structure / and not
on any Kahler metric. We also recall, for instance from [75, Corollary 2.6.21],
that H*°(I) is isomorphic to H’(X, Q?), the space of holomorphic 2-forms. For
an IHSM this space is spanned by a unique holomorphic 2-form ¢ and thus we

have

H*°(I) =0 -C and H**(I) =& - C.

With respect to the BB-form ¢ recall from Lemma 3.4.1 that the space of (1,1)-

classes H"!(I) is orthogonal to H*°(I) @ H%?*(I). Another straightforward com-
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putation shows that

q(o,0) =0 and ¢g(o,0) > 0.

We find that the Hodge decomposition of an IHSM is completely determined by
the holomorphic 2-form . On the other hand, any vector v in H*(M, C) satis-
fying g(v,v) = 0 and ¢(v,v) > 0 determines a Hodge structure on H*(M, C) by

setting
H*:=v.C, H*:=%-C, H"':=(w-Caov-C)™"

Clearly, if v’ is a scalar multiple of v the induced Hodge structures are the same.

A Hodge decomposition like above is said to be of ITHSM-type.

Definition 4.2.1. The complex period domain is defined as the projectivization
Per(M) =P ({v € H*(M,C) | q(v,v) = 0 and q(v,v) > 0}) :

The complex period domain is an open subspace of the quadric {g(v,v) = 0}
in P(H*(M,C)). In particular, Per(M) has the structure of a complex manifold.
By the previous discussion we may think of Per(M) as the space of Hodge

structures of IHSM-type. There is another way to think about Per(M) which
turns out to be very convenient for us. See also [65, Section 25.4] for the follow-

ing statements.
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Lemma 4.2.1. The following map is a diffeomorphism,

Per(M) — Gr™°(2, H*(M, R))

[v] — spang (Re(v), Im(v)),

with orientation provided by the basis (Re(v),Im(v)).

Proof. An inverse of the above map can be defined as follows. For a positive
oriented 2-space P we choose an oriented orthonormal basis (v, v,). Then we

set [v] to be the line generated by v = vy + ivs. O

The Grassmann space Gr°(2, H*(M,R)) gives another way to view Per(M),
namely in terms of a homogeneous space as it follows from Lemma 2.3.1 and

Theorem 3.4.2.

Lemma 4.2.2. The Grassmann space Gr*°(2, H*(M,R)) is homeomorphic to

0(3, bg — 3)/ (SO(2) X O(l,bg — 3)) R

where by is the second Betti number of M.
Overall we obtain the following topological description of Per(M).

Corollary 4.2.3. The complex period domain Per(M) is a connected and simply

connected complex manifold of complex dimension by — 2.

Proof. The only thing left to be proved is connectedness and simply connected-

ness. Recall that O(3,by — 3) and O(1,by — 3) have 4 connected components,
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which can be distinguished by the determinant and the spinor norm. The inclu-
sion O(1,by — 3) < O(3,bs — 3) respects these and thus it also respects the

connected components. We conclude that
O(3,b2 — 3)/(50(2) x O(1,bz — 3))

is connected.
Let SO?(3,by—3) denote the connected component of the identity in O(3, by —
3) and SO°(1, by — 3) the corresponding one for O(1, by — 3). Then Per(M) is

homeomorphic to
SO°(3, by — 3)/ (SO(2) x SO°(1,by — 3)).

The quotient map SO°(3,by — 3) — SO?(3,by — 3)/ (SO(2) x SO°(1,by — 3))
is a fiber bundle with fiber SO(2) x SO°(1, by — 3). By ¢ denote the inclusion
SO(2) x SO?(1,by — 3) — SO°(3,by — 3). From the long exact sequence on

homotopy groups we get the exact sequence
<= m(SO(2) x SO°(1,by — 3)) AiN m1(SO%(3, by — 3)) — my(Per(M))) — 0.

We show that i, is surjective which then implies that m (Per(M))) = 0.
Recall that SO(p) x SO(g) is a maximal subgroup of SO°(p, ¢), in particular

they are homotopy equivalent. Now consider the following commutative dia-
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gram:

71(SO(2)) X 71(SO(by — 3)) —— 71(SO(2)) x 7 (SO’(1, by — 3))

J J»

m1(SO(3)) X (SO (by — 3)) ————— m1(SO°(3,by — 3))

All maps are induced by inclusions, furthermore, the horizontal maps are iso-
morphisms. The inclusion SO(2) — SO(3) is surjective on the level of funda-
mental groups. This can be seen by the long exact sequence of homotopy groups

associated to the fibration SO(3) — SO(3)/SO(2) = S2. Thus, we conclude that

1™ is surjective as well. ]

4.3 THE COMPLEX PERIOD MAP PART I

We define the complex period map and state a surjectivity theorem of Huy-
brechts in [76]. Furthermore, we introduce the birational Teichmiiller space and
give first statements about the fibers of the complex period map based on the

work of Verbitsky [132, 135], see also [82].

Definition 4.3.1. The complex period map on a hyperkdhlerian manifold M is
POPL TOPY M) — Per(M),

defined by mapping the complex structure I to [o]|, where o is the nowhere van-
ishing holomorphic 2-form of the THS-manifold (M, I).
Recall that H*Y(I) is spanned by [o] and thus PCPY(I) is the complex line
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H?°(I), when considered as a point in Per(M). Huybrechts proved that the
complex period is surjective. More precisely he showed the following theorem,

see [76, Section 8],[77].

Theorem 4.3.1. Let TCP (M) be a connected component of TPY(M). Then the

period map restricted to the connected component

Pperl. 7;CPI(M) — Per(M),

18 surjective.

In general the map PCP! fails to be injective, even when restricted to con-
nected components. However, Verbitsky proves that the complex period map
is generically injective on connected components. In [132, 135] (see also [82]), he
constructs a Hausdorff version of TCP!(M) over which the period map factorizes.

Let us explain what this means.

Definition 4.3.2. Let X be a topological space which is not Hausdorff. Two
points x,y in X are inseparable, sometimes also called non-Hausdorff, if for all

open neighborhoods U, of x and U, of y one has

U, NU, #0.

The notion of inseparability is in the general case not an equivalence relation,
as it fails to be transitive. However, by studying the period map with lots of

insights into the Teichmiiller space, Verbitsky proved that inseparability turns
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out to be an equivalence relation for the space T CP!(M).

Definition 4.3.3. The birational Teichmiiller space T, "' (M) is defined as

Ty (M) = T (M)/ ~,

where two points are identified if they are inseparable.

The choice for the name will come apparent by the following two theorems

also proven by Verbitsky in [132, 135], see also [82].

Theorem 4.3.2. The period map PP is a local isomorphism which factors
through
PP TP (M) — Per(M).

Cpl . . . .
The map P, is a trivial covering, i.e. a homeomorphism on connected compo-

nents.
From the same work [132, 135] we get a description of the fibers of PP,

Theorem 4.3.3. Let TCPY(M) be a connected component of TP (M) and con-
sider the period map PCP! restricted to TP'(M). Then each fiber of PP in
TCPY M) is finite. Furthermore, the fibers with more than one point correspond
ezactly to the non-Hausdorff points of TP (M). If I and I' are contained in the

same fiber in T.°PY(M), then I is birational to I'.

Note that the theorem does not say that if I and I’ are birational that they

also belong to the same fiber.
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Later we will provide an even more detailed picture of the fibers of P°P!. This
will be done once we have introduced the notion of MBM-classes and Kéahler

chambers.

4.4 THE KAHLER CONE OF AN IHS-MANIFOLD

Recall that a Kéhler class on a complex manifold X = (M, ) is a class [w] in
the de Rham cohomology H7, (M) for which there exists a Kihler form w, with
respect to I, representing [w]. By de Rham’s theorem we will identify de Rham
cohomology with singular cohomology H?*(M,R). In the following we will be
interested in the set of Kéhler classes as the complex structure I may vary while

M is fixed. Recall the definition:

Definition 4.4.1. The Kdhler cone Kah(I) is defined as the set of Kdhler classes
in H*(M,R).

On a compact Kéahler manifold every Kéhler class [w] is real and of type (1, 1),
meaning [w] € H"'(I) N H*(M,R). If X is furthermore assumed to be IHSM,
then the second cohomology group is endowed with the BB-form ¢. For a Kéh-

ler form w, one then finds
a(ll.[w]) = ¢ [w A (o A G >0,

with ¢ a positive constant. Thus, Kdh(7) is contained in the following cone:

Definition 4.4.2. The positive cone of X = (M, I) is the cone of positive (1,1)
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classes which contains a Kdhler class, i.e. Pos(I) is the connected component of

{v e H*(M,R) | q(v,v) >0} NnH"*(I),

which contains Kah([I).

Recall that a cone in a R-vector space V' is a subset K such that R.g-K = K.
A convex cone is then a cone K if for every v, w € K also tjv + tow is contained
in K whenever t;,t; > 0. Clearly Pos(I) is a convex cone. From [75, Cor. 3.1.8]

we get that the same is true for the Kahler cone, more precisely we get:

Lemma 4.4.1. The Kdihler cone Kah(I) on a compact complex Kihler manifold

is a connected conver cone, which furthermore is open in H"'(I) N H*(M,R).

Note that connected cones are contractible and so is K&h(/). Also note that

the boundary of a convex cone is in principle enough to recover the cone itself.

Definition 4.4.3. A wall or face of a cone K C V is a subset F' of the bound-
ary OK, for which there exists a codimension 1 subspace H of V with 0K N H =

F so that F' is has non-empty interior in H.

It is not true that the boundary 0K&h([) is entirely decomposed into faces.
This is most easily seen in the extreme case when Kéh(/) = Pos(7), in which
case Kah(7) has no faces at all. However, for IHS-manifolds the boundary of
the Kéhler cone is decomposed into a so called round part, which will turn out
to be part of the boundary of the positive cone, and into faces. The faces can

be determined in terms of rational curves, which we will explain now. First we
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recall that by a rational curve we mean a generically injective holomorphic map

f:CP' - X.

The image of f defines a class C' in Hy(M, Z). The bilinear pairing ¢ induces an

isomorphism between rational homology and cohomology

H2(M7 @) = H2(M7 @)

With this identification in mind, we may view C' as rational cohomology class.

The following theorem is due to Huybrechts and Bouckson, see [79] and [27].

Theorem 4.4.1. Let X = (M, 1) be an IHS-manifold. Then the Kdhler cone
Kah(I) is the subcone of Pos(I) which is given by those elements which are

strictly positive on all rational curves, i.e.

K&h(I) = {w € Pos(I) | ¢(w,C) > 0 for all rational curves C'}.

A face of Kih(I) is therefore of the form Pos(/) N C*, where C* is the or-
thogonal complement of the rational curve C in H*(M,R). In other words, the

above theorem states that the Kéhler cone is a connected component of

Pos(I) — U c+.

C' rational curve

Also note that a connected component K of Pos([]) C+ is deter-

- UC rational curve
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mined by the sequence of plus and minus signs ¢(K, C) as C ranges over the set
of all rational curves and K&h(7) is the one with only positive signs.

An important question now is to which extent one can determine the cone
Kih(7) from data induced by the period PCPY(I). Note, that for the positive

cone this is easy since

Pos(I) = PPY(I)* n{v € H*(M,R) | g(v,v) > 0}.

For the Kéhler cone this is much more difficult. A problem one faces is that de-
termining rational curves is very hard and in full generality they furthermore
behave badly under deformations. However, there is a partial solution to this
problem due to Amerik and Verbitsky, see [49] for a survey. We first need the

following definition, which will also be of interest at other parts.

Definition 4.4.4. The monodromy group Mon?(I) of an THS-manifold X =
(M, 1) is the subgroup of O(H*(M,7Z),q) induced by the monodromy action of
Gauss-Manin local systems, for all deformations of X over a connected complex

analytic base.

For the notion of local systems and Gauss-Manin connections see for instance
[46], and [43] for more on the monodromy group. We will mostly not use Defini-
tion 4.4.4 but think of the monodromy group like it is presented in the following

theorem, which is [132, 135, Thm. 7.2].

Theorem 4.4.2. Let X = (M, 1) be an THS-manifold and let T.°P'(M) be the

connected component of TPY(M) containing I. Furthermore, let Diff (M) de-
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note the subgroup of Diff (M) which preserves the connected component T, °P'(M).
Then Mon?(I) is the group generated by all isometries ¢*: H*(M,Z) — H*(M, 7Z)

Note that Mon?(I) only depends on the connected component 7,°P!(M). We
can now introduce the notion of MBM-classes, short for minimal birational

monodromy.

Definition 4.4.5. A class z € H*(M,Z) with 2*> < 0 of type (1,1) is an MBM-
class if and only if there exists some v € Mon?(I) and a complex structure I’

birational to I such that v(z)* N OK&h(I") is a face of the Kihler cone Kah(I').

The name minimal in MBM comes from the notion of special rational curves
on (M, I) which are minimal in the following sense. They cannot be bend and
broken, see [38, Chapter 3] for this notion, behave well under deformation and
are sufficient to determine the Kahler cone. Amerik and Verbitsky were able to
prove the following important theorem, see [2, Thm 6.2] which improves Theo-

rem 4.4.1.

Theorem 4.4.3. Let S denote the subset of MBM-classes in H*(M,Z). Then

the Kdhler cone is a connected component of

Pos(I) — | J z*.

z€S

Although the definition of MBM-classes still depends on the complex struc-

ture, i.e. they are not determined by the period point in any obvious way, Amerik
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and Verbitsky showed that it only depends on the deformation type, see [2, Cor.
5.13].

Theorem 4.4.4. Let X = (M,I) and X' = (M, I') be deformation equivalent
and z an MBM-class with respect to 1. If z is also of type (1,1) with respect to

I, then z is MBM with respect to I'.

As a consequence, we find that MBM-classes only depend on the connected
components of the Teichmiiller space. To be more precise, if z is MBM for one
complex structure I in T,.CPY(M), then z is MBM for all I’ € T.°P'(M) for which
z is of type (1,1). Thus, when a connected component of TPY(M) is fixed, we
define the set of MBM classes as MBM(7,CPY(M)) to be the set of those z €
H?(M, Z) which are MBM for some I’ in T,°PY(M). A class z € MBM(T.“*(M))
is then MBM with respect to I if and only if z is in PCPY(1)+. Thus, in the fol-
lowing we will often call a class MBM if it is MBM for some IHS-structure on
M. For a IHS-manifold X = (M, I) we then also often say that a MBM-class ¢
is of type (1,1) to emphasize that ¢ is MBM with respect to I.

In general it is still difficult to determine which classes are of MBM-type. For
the K 3-surface however, these are precisely the (—2)-classes in H?(M, Z), recall
Theorem 3.6.2.

4.5 THE CoOMPLEX PERIOD MAP PART II

The main goal of this section is to discuss the fibers of the complex period map.
For that we consider PCP! restricted to a connected component 7,°P!(M) of the

complex Teichmiiller space.
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From the previous section we know that the Kéahler cone of an IHSM X =
(M, I) is a connected component of Pos(I) — |J, 2= with z running through the

set of MBM-classes of type (1, 1).

Definition 4.5.1. A connected component of Pos(I) — U, z* is called a Kdihler

chamber.

Let I’ be a complex structure in 7,.°P'(M) such that I’ is in the fiber of PP!(T).
Since I’ is deformation equivalent to I with H"'(1) = H"'(I"), the two complex
structures share the same MBM-classes. Thus, the Kéhler cone of I’ is possibly

another connected component of
Pos(I) — | Jz*.
z

From Theorem 4.4.3 it follows that if Kah(l) N K&h(I') # (), then K&h(I) =
K&h(I').

Let Mongy, (1) be the subgroup of Mon?(I) which consists of those orthogonal
transformations of H*(M, Z) which preserve the Hodge structure induced by 1.
This group acts on the set of Kéhler chambers, i.e. it takes Ké&hler chambers to

Kahler chambers. Markman makes the following definition, compare [42].

Definition 4.5.2. A Kdhler type chamber is a subcone of Pos(I) of the form
glf Kéh(I')],

where f is a bimeromorphisms of I with I' and g € Mongja, ().
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We want to show that Kéhler-type chambers and Kéhler chambers are the

same. For that we need the following definition.

Definition 4.5.3. A class « € Pos(I) is very general if

ot NH"(I,7Z) = 0.

By [42, Lemma 5.11, Page 278] we have the following lemma.

Lemma 4.5.1. Every very general class is contained in some Kdhler type cham-

ber.
We can now prove our claim.

Corollary 4.5.2. Let K be a Kdhler chamber. Then K is a Kdahler type cham-

ber and vice versa.

Proof. 1t is clear that a Kéahler type chamber is a Kéhler chamber. The set of
very general elements is given by the complement of all ¢+ in Pos(I) where c
runs through all intergral classes of type (1,1) except 0. Thus, it is an open

and dense subset of Pos(I). The Kéhler chamber K is also open, and thus it
contains a very general class a. By the previous lemma « is contained in some
glf*Kéh(I')]. Therefore, g~'av € f*Kah(I’). Since Mong, (1) acts on the set of
Kéhler chambers, g[f*K&h(I")] = K. O

One might wonder about the terminology chosen here. Markman however
defined the notion of Kéhler type chambers before the notion of MBM-classes

were introduced.
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The following theorem on the set of Kahler chambers KC(I) is also due to

Markman, see [42, Theorem 5.16, Page 281].

Theorem 4.5.1. Let X = (M, I) be an ITHSM and PP be the complex period
map restricted to the connected component TP (M) containing I. Then there is

a Mongyy, (I)-equivariant bijection
p: P (POR(D)) — KO(1)

given by sending 1" to its Kahler cone Kah(I").

Thus, a Kahler chamber is a Kahler cone for some complex structure in the
fiber of P°PY(I). Furthermore, we find that the period map is injective on the
subspace of T.°P!(M) consisting of those complex structures for which Pos(l) =
Kah(I").

We can now conclude this chapter by the following theorem.

Theorem 4.5.2 (Global Torellli Theorem of IHS-manifolds). Let T.CPY(M) be a
connected component of the Teichmiiller space of IHS-structures on a hyperkdh-

lerian manifold M. The complex period map
PO TP (M) — Per(