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Abstract

We discuss aspects of the global topology of moduli spaces of hyperkähler met-
rics. If the second Betti number is larger than 4, we show that each connected
component of these moduli spaces is not contractible. Moreover, in certain cases,
we show that the components are simply connected and determine the second
rational homotopy group. By that, we prove that the rank of the second homo-
topy group is bounded from below by the number of orbits of MBM-classes in
the integral cohomology.

An explicit description of the moduli space of these hyperkähler metrics in
terms of Torelli theorems will be given. We also provide such a description for
the moduli space of Einstein metrics on the Enriques manifold. For the En-
riques manifold, we also give an example of a desingularization process similar
to the Kummer construction of Ricci-flat metrics on a Kummer K3 surface.

We will use these theorems to provide topological statements for moduli spaces
of Ricci-flat and Einstein metrics in any dimension larger than 3. For a compact
simply connected manifold N we show that the moduli space of Ricci flat met-
rics on N × T k splits homeomorphically into a product of the moduli space of
Ricci flat metrics on N and the moduli of sectional curvature flat metrics on the
torus T k.
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If I have seen farther than others, it is because I

have stood on the shoulders of giants.

Isaac Newton

If I have not seen as far as others, it is because

there were giants standing on my shoulders.

Hal Abelson

0
Motivation

The purpose of this chapter is to provide an informal motivation for the work

presented in this thesis. The results and an introduction of the thesis are then

the content of the next chapter.

Question 1. What is the ‘best’ Riemannian metric on a compact manifold?
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The question has been raised by various authors like Yau, Hopf, and Thom.

A general reference for this question and some of the following material is the

chapter ‘Best Metric’ in [18], see also [64].

One way to conceptualize Question 1 is to consider the space of Riemannian

metrics R(M) on a compact manifold M . The best metrics are then the critical,

or minimal, points of a given functional F : R(M) → R. Examples are

• FCurv(g) :=
∫
M |Rg|d/2dvol(g) and

• FScal(g) :=
∫
M scal(g)dvol(g).

Both functionals measure the total curvature of a Riemannian metric g, the first

with respect to the norm of the curvature tensor Rg and the second with re-

spect to the scalar curvature. In dimension 2 the classical Gauss-Bonnet theo-

rem states that FScal(g) = 4πχ(M), where χ(M) is the Euler characteristic of

the manifold M . In particular FScal(g) is constant. Thus, from now on we as-

sume the dimension to be larger than 2.

First, let us consider the functional FCurv(g) =
∫
M |Rg|d/2dvol(g) on a 4-

dimensional manifold M . If the Euler characteristic χ(M) is non-negative, the

generalized Gauss-Bonnet theorem (see [18, 15.7.8])

1
8π2

∫
M

(
|Rg|2 − |Ricg − scal(g)

4
g|2
)

dvolg(g) = χ(M),

provides a lower bound FCurv(g) ≥ χ(M). Equality holds if and only if

Ricg − scal(g)
dim(M)

g = 0. (1)
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This equation is famous in physics, as for Lorentzian metrics it is the field equa-

tion in general relativity of vacuum spacetime, see for instance [19, Chapter 3].

For this reason Riemannian metrics solving (1) will be called Einstein metrics.

The scalar curvature of such a metric turns out to be constant, and λ := scal(g)
dim(M)

is known as the Einstein constant. The global minima of the functional FCurv of

a 4-dimensional manifold M with χ(M) ≥ 0 are thus the Einstein metrics.

For higher dimensional manifolds the functional FCurv provides more chal-

lenges, see for instance [19, 4.H]. The total scalar curvature functional FScal

turns out to be practical in every dimension. However, in contrast to FCurv the

functional FScal never admits a global minimum [19, 4.32 Theorem] and we are

thus interested in its critical points.

Let us now explain what being a critical point actually means. The space

R(M) is an open cone in the vector space of smooth and symmetric 2-tensors

Γ(M,S2TM) endowed with the topology of smooth convergence, see [19, 4.2].

One may think of R(M) as a smooth manifold where the tangent space at a

point g is naturally identified with Γ(M,S2TM), similar to the case of an open

subspace in Rn but now the dimensions are infinite. A critical point g for a

functional F is one where all the directional derivatives are zero, i.e.

DgF · h = lim
t→0

F(g + th) − F(g)
t

= 0

for every h ∈ Γ(M,S2TM).

Also motivated by physics, David Hilbert was the first to compute the deriva-
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tive of FScal in 1915 [70], see also [19, 4.C]. He showed

DgFScal · h =
∫
M

〈Ricg − scal(g)
2

g,−h〉dvol(g).

One deduces that the critical metrics are exactly those where Ricg = 0. Such

metrics are called Ricci-flat. They are Einstein metrics with Einstein constant

λ = 0. In fact, if one considers the functional FScal to be defined on metrics

with fixed volume, the critical points are again Einstein metrics, compare [18,

Chapter 11].

The discussion suggests that Einstein or Ricci-flat metrics are natural candi-

dates for being ‘best metrics’. This is supported by various applications, most

notably with respect to the Ricci flow. For this flow Einstein metrics are the

stationary points and thus play a fundamental role in Perelman’s and Hamil-

ton’s solution to Thurston’s geometrization conjecture, see [8].

Having a notion of best metrics, a priori seems to provide us with a natural

choice of metric on every manifold. However, determining Einstein and espe-

cially Ricci-flat metrics in practice can be challenging. Let us say what some of

the problems are and what makes them mysterious.

In dimensions 3 and 4 there are obstructions for a manifold to admit Ein-

stein metrics, see for instance [9, Section 4]. In higher dimension it is an open

question whether every compact manifold admits an Einstein metric. For Ricci-

flat metrics on the other hand there are known obstructions, for instance every

such manifold is finitely covered by a product M × T k, where M is simply con-

nected and T k a torus, see [50]. Aside of some results on the existence of Ricci-
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flat metrics, constructing explicit examples which are not sectional curvature

flat seems out of reach. Only for some cases there are approximate solutions.

Furthermore, if they exist on a manifold M , Ricci-flat metrics are usually not

unique and thus choosing a ‘best metric’ on M requires further clarifications.

To solve some of these issues it is natural to study the space of Einstein, re-

spectively Ricci-flat metrics, as a subset of R(M). However, since passing from

a metric to an isomorphic metric provides no new information on the geometry,

it is often more natural and interesting to consider the space of isomorphism

classes of metrics. This is known as the moduli space of Riemannian metrics. It

is defined as the quotient space

M(M) := R(M)/Diff(M),

with respect to the pullback action of Diff(M) on R(M). The moduli spaces of

Einstein metrics E(M) and of Ricci-flat metrics MRic=0(M) are the subspaces

of M(M) which consist of isomorphism classes of Einstein, respectively Ricci-

flat, metrics. Now that we have established a notion of ‘best metrics’ our next

question is the following.

Question 2. What do E(M) and MRic=0(M) look like as topological spaces?

To provide answers for Question 2 is challenging and the main goal of this

thesis. It turns out to be fruitful to go back to Question 1 before going into

more depths on Question 2.

Aside from describing best metrics on a compact manifold as minimal or crit-
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ical points of a functional, one may say that a metric g is ‘better’ than another

metric g′ if g is compatible with more structures than g′. Here, by structure we

mean any quantity which is given by a globally defined tensor s, like certain

forms, endomorphisms etc. We call s compatible with a metric g if ∇s = 0,

where ∇ denotes the Levi-Civita connection of g. A tensor s for which ∇s = 0

is often called parallel or constant.

A standard example of a compatible structure can be found on a Kähler man-

ifold X. Such a manifold has an atlas of holomorphic charts, called complex

structure, and is endowed with a Riemannian metric g so that the complex

structure is compatible with the metric. The complex structure can be viewed

as a globally defined (1, 1)-tensor. Indeed, since X is a complex manifold, each

tangent space TpX is a complex vector space and multiplication by i induces an

R-linear endomorphism I on TpX. Such an endomorphism is a tensor of type

(1, 1). If X is Kähler, this is an isometry with respect to g. One can prove that

∇I = 0 in this case. On the other hand, by a corollary [108, Theorem 5.5] of the

Newlander-Nirenberg theorem, any parallel endomorphism I of the tangent bun-

dle with I2 = −Id is induced by a complex structure. Thus, to endow a smooth

Riemannian manifold (M, g) with a Kähler structure, one needs to find a cer-

tain parallel tensor on M . We often identify the complex structure with the in-

duced endomorphism I and view a Kähler manifold as a triple X = (M, g, I).

The additional structures on Kähler manifolds have led to a rich theory that

extends the standard theory of Riemannian geometry.

To every Riemannian manifold (M, g) there is an associated group which de-
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termines the parallel tensors. The group is known as the holonomy group and

is denoted Hol(M, g). It is the group of parallel transports on a tangent space

TpM induced by loops at a point p ∈ M . It acts naturally on TpM and, with

respect to a chosen isomorphism TpM ∼= Rn, the group can be viewed as a sub-

group of O(n) with its natural representation on Rn. For the induced represen-

tation of Hol(g) on tensors ⊗r
k=1 Rn ⊗ ⊗s

l=1(Rn)∗ one finds that invariant ele-

ments of this representation are in a 1-to-1 correspondence with globally defined

parallel tensors on M . This is known as the holonomy principle, see [85, Propo-

sition 2.5.2]. In terms of this principle, the smaller Hol(g) is, the more parallel

tensors exist on (M, g). For Question 1 we may thus say that g is ‘better’ than

g′ if Hol(g) ⊂ Hol(g′).

A priori, there could be a lot of possible subgroups of O(n) which can arise

as holonomy groups. Surprisingly, this is not the case. For simply connected

manifolds which are neither a product nor a symmetric space, the list of possi-

ble holonomy groups is the following by a fundamental theorem of Berger [19,

10.92].

Berger’s List of Holonomy Groups

Holonomy

Group

dim Associated Structure Comment

SO(n) n Generic Case Orientable

U(n) 2n Kähler Manifold Kähler

SU(n) 2n Calabi-Yau Ricci-Flat-Kähler

Sp(n) 4n Hyperkähler Ricci-Flat-

Hyperkähler

Sp(1) · Sp(n) 4n Quaternionic Kähler-Einstein

G2 7 G2-manifold Ricci-flat

Spin(7) 8 Spin(7)-manifold Ricci-flat
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For a compact and simply connected n-dimensional Riemannian manifold (M, g),

having holonomy other than SO(n) and U(n2 ) imposes strong curvature con-

strains on the metric. Note that for Hol(g) = U(n2 ) the dimension needs to

be even. For the next cases we assume that n = 4k. The quaternionic case

Sp(1) · Sp(k) is Einstein but never Ricci-flat and the cases G2 and Spin(7) imply

Ricci-flatness but are restricted to dimension 7 and 8, see [85] for these metrics.

We are mostly interested in metrics with holonomy Sp(k). In our heuristic

they would be considered best metrics, since one has the inclusions

Sp (k) ⊂ SU (2k) ⊂ U (2k) ⊂ SO(4k).

A metric with Hol(g) = Sp(k) is Ricci-flat. This condition already holds for

metrics with Hol(g) ⊂ SU(2k), see [108, Theorem 11.5]. A Riemannian metric

with holonomy Sp(k) is said to be hyperkähler. The name comes from the fact

that there are three compatible complex structures I, J,K with respect to g so

that

I2 = J2 = K2 = IJK = −Id.

In particular, (M, g) is Kähler in at least three different ways. The complex

structures I, J,K are furthermore special in the sense that each admits a unique

holomorphic symplectic form up to some constant in C∗. For the complex struc-

ture I this form is given by

g(J ·, ·) + ig(K·, ·).

10



Simply connected Kähler manifolds with such a holomorphic form are known as

irreducible holomorphic symplectic manifolds (IHSM). They serve as the algebro

geometric counterpart of hyperkähler manifolds. Finding examples of hyper-

kähler manifolds often results in providing examples of irreducible holomorphic

symplectic manifolds. The most basic example of a manifold admitting a hy-

perkähler metric is the K3-manifold M . The corresponding complex structures

modeled on M are known as K3-surfaces. These are the complex 2-dimensional

versions of IHS-manifolds. K3-surfaces have been a popular research topic for

many years, not just as examples of hyperkähler manifolds but also in many

other areas. For instance, they played a central role in the solutions to the Weil

conjectures as well as in mirror symmetry, see [39], [83], respectively [14, 13, 12].

Hyperkähler metrics, just like Ricci-flat metrics, often come in families. We

are thus interested in the space of hyperkähler metrics RHK(M) and in particu-

lar in the moduli space of hyperkähler metrics

MHK(M) := RHK(M)/Diff(M),

as the hyperkähler condition is preserved under isomorphisms.

The two notions of ‘best metric’, i.e. the one given by critical points of the

functionals FScal or FCurv in dim = 4, and the one provided by the condition

Hol(g) ⊂ Hol(g′), now neatly come together. Since hyperkähler metrics are

Ricci-flat there are natural inclusions

MHK(M) ⊂ MRic=0(M) ⊂ E(M). (2)
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In general it is not clear when these inclusions are strict, in fact, it is a famous

open question whether there are any Ricci-flat metrics with holonomy SO(n).

But in dimension 4, where the K3-manifold is the only manifold that admits

hyperkähler metrics, it is known by a result of Hitchin [72] that

MHK(K3) = MRic=0(K3) = E(K3).

For higher dimensional manifolds the inclusions (2) are simply given by possibly

adding connected components, see Lemma 7.1.1.

Like in Question 2 we ask the following.

Question 3. What does MHK(M) look like as a topological space?

In this thesis we are mainly concerned with partially giving answers to Ques-

tion 2 and 3. In the next section we put this into a wider context.

12



Le but de cette thèse est de munir son auteur

du titre de Docteur.

Adrien Douady

1
Introduction

The main goal of this thesis is to compute homotopy groups of the moduli space

of hyperkähler metrics on a hyperkählerian manifold. A hyperkähler manifold

here means a 4n-dimensional compact Riemannian manifold (M, g) with holon-

omy Hol(g) = Sp(n), while by a hyperkählerian manifold we refer to a differen-

tiable manifold which can be endowed with a hyperkähler metric. The moduli
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space of hyperkähler metrics is defined as the quotient space

MHK(M) := { g ∈ R(M) | g is a hyperkähler metric }/Diff(M),

where R(M) is the space of Riemannian metrics on which the group of diffeo-

morphisms Diff(M) acts by pullback. We endow it with the topology of smooth

convergence.

1.1 Backgrounds and State of the Art

We begin by introducing backgrounds on the space MHK(M) and put it into

context with other results on moduli spaces with Ricci curvature constraints.

The space of all Riemannian metrics R(M) is an infinite dimensional convex

cone inside the space of smooth symmetric 2-tensors [122]. The moduli space

MHK(M) on the other hand is significantly smaller, more precisely, it is known

to be an orbifold of dimension 3(b2(M) − 3) + 1, see for instance [19, 12.88

Theorem] respectively [19, 12.98 Proposition].

The space can be encountered in mathematical physics, most notably in the

context of Mirror Symmetry, see [80, 131, 136] and for K3-surfaces [12, 13], [14,

Chapter VIII.22]. In general the moduli space MHK(M) provides a good frame-

work for the question: How many hyperkähler metrics does a hyperkählerian

manifold M admit? Determining its homotopy groups then provides insights to

the relaxed question: How many hyperkähler metrics does M admit up to defor-

mations of these metrics in MHK(M)?
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This point of view naturally lends itself to an active research program, which

considers questions on the topology of moduli spaces of Riemannian metrics

with various curvature constraints, like positive scalar curvature, non-negative

Ricci curvature, zero sectional curvature, Einstein. For an introduction see [130,

128]. The following works are concerned with non-negative and positive Ricci

curved metrics [94, 40, 41, 140, 58, 139, 129, 25, 26]. For negative Ricci curva-

ture see [97]. Theorems on the moduli space of sectional curvature flat metrics

can be found in [129, 54]. For other spaces of Riemannian metrics we refer to

[129] and the references there in.

Since the Ricci curvature of hyperkähler manifolds vanishes, we are natu-

rally interested in the moduli space of Ricci-flat metrics MRic=0(M), respec-

tively the moduli space of Einstein metrics E(M). In particular, for the moduli

space of Einstein metrics E(M) there has been an intensive research interest

for many years, see for instance the survey [9] and [19, Chapter 12]. See also

[124, 115, 116] for interesting results on compactifications of the moduli space of

hyperkähler metrics on the K3-manifold.

However, insights into their homotopy groups remain scarce. For Einstein

metrics with positive Einstein constant there are examples of metrics that are

isolated points in E(M), for instance, the standard metric on S4 [19, Chapter

12.H]. It is unknown if there are also isolated Ricci-flat metrics. In fact, even

the basic question whether there exists a compact and simply connected mani-

fold M for which the components MHK(M) and MRic=0(M) of E(M) are con-

tractible or not seems not to be answered in the literature.
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The only results in that direction we are aware of are by Giansiracusa on the

Nielsen Realization Problem [55, 56] and the related work by Giansiracusa, Ku-

pers and Tshishiku [57] from 2021. They contain results on the (co)-homology

of the Teichmüller space of Einstein metrics T Met(K3) of the K3-manifold as

well as a non-vanishing result of the 4th-Betti number for the related homotopy

moduli space. Their results are based on the following classical theorem [19,

12.K], [125, 99].

Theorem 1.1.1 (Metric-Torelli-Type-Theorem). The moduli space of unit

volume Einstein metrics on the K3-manifold is homeomorphic to an open and

dense subspace of

Γ⧹O(3, 19)⧸(O(3) × O(19)),

where Γ is a discrete subgroup of O(3, 19).

In fact, by a result of Hitchin [72], Einstein metrics on the K3-manifold are

the sames as hyperkähler metrics. In a general setting, understanding hyper-

kähler metrics seems to be a more feasible task than understanding the general

case of Einstein metrics. One major reason for this is that hyperkähler mani-

folds can be studied using algebraic geometry. The algebro geometric analogues

are known as irreducible holomorphic symplectic manifolds (IHSM), which in

the case of the K3-manifold are just the K3-surfaces.

Theorem 1.1.1 is based on Torelli theorems for K3-surfaces which have been

generalized to IHS-manifolds by Huybrechts, Markman and Verbitsky, see [82,

132, 135, 42]. We refer to theorems which are proven by Torelli theorems, like

16



Theorem 1.1.1, as metric Torelli theorems to distinguish them from original

Torelli theorems which are concerned with questions on complex structures.

Using these Torelli theorems Amerik and Verbitsky [2] gave a partial gen-

eralization of Theorem 1.1.1 to higher dimensional hyperkähler manifolds, see

also the recent work by Looijenga [100] and Section 1.3. There are also metric

Torelli type theorems for non-compact hyperkähler manifolds, more precisely for

so called gravitational instantons [95, 34, 35, 37, 36]. However, in this work we

focus on the compact case.

The aim of this work is to answer some of the open question stated above.

More precisely, to provide insights on the global topology of MHK(M), MRic=0(M),

and E(M) in terms of their homotopy groups and metric Torelli theorems.

1.2 Homotopy Groups of Moduli Spaces of Hyperkähler Metrics

We now turn to a discussion of the main results of this thesis.

Concerning contractibility of the moduli space of hyperkähler metrics we

prove the following.

Theorem A. Let M be a hyperkählerian manifold with b2(M) > 4 and let

MHK
o (M) be a connected component of the moduli space of hyperkähler metrics

MHK(M). Then MHK
o (M) is not contractible.

It is an open question if a hyperkählerian manifold N with second Betti num-

ber b2(N) = 3 or b2(N) = 4 exists. The discussion below shows that when

b2(N) = 3 the space MHK(N) would be a finite union of points.
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For a general hyperkählerian manifold M we cannot say anything about the

number of connected components of MHK(M) other than that they are finite,

by a result of Huybrechts [78]. In case of the K3-manifold however, it is known

that this space is connected. Here we obtain a result on the full moduli space of

Einstein metrics.

Theorem B. Let M be the K3-manifold. Then the moduli space of Einstein

metrics E(M) is simply connected and the second rational homotopy group is

π2(E(M)) ⊗ Q ∼= H2(Γ,Q) ⊕ Q,

where Γ is an arithmetic subgroup of O(3, 19), given by the automorphism group

of the lattice H2(M,Z) with its cup-pairing.

Higher dimensional examples of hyperkählerian manifolds are difficult to con-

struct. In each dimension 4n there are only two known examples [15], except for

two further examples in dimensions 12 and 20, see [117] and [1]. One of the two

families is given by constructing so called Hilbert schemes or Douady spaces of

length n defined over complex K3-surfaces. These are irreducible holomorphic

symplectic manifolds and they exist in each dimension 4n. Their Betti number

is b2 = 23 for n ≥ 2 and for n = 1 the underlying manifold is just the K3-

manifold which has b2 = 22.

Theorem C. Let M be the underlying manifold of a Douady space of length n,

denoted X [n], on a K3-surface X. Then the connected component of MHK(M)

which contains a metric which is Kähler with respect to X [n] is simply connected.
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Moreover, the rank of the second homotopy group can be bounded from below.

For X [n] the rank is at least 1, for X [2] at least 3 and for X [3] at least 5.

Since the inclusions MHK(M) ⊂ MRic=0(M) ⊂ E(M) are given by adding

connected components (Lemma 7.1.1), the above results on MHK(M) also pro-

vide information on the topology of the moduli spaces MRic=0(M) and E(M).

By considering products with tori T k we can use these results to provide fur-

ther statements on moduli spaces of Ricci-flat metrics in every dimension larger

than 3. For instance, inspired by the work of Tuschmann and Wiemeler [129] on

the moduli space of non-negative Ricci curvature metrics MRic≥0(N × T k), we

will prove the following.

Theorem D. Let N be a simply connected compact manifold admitting a Ricci

flat metric and let T k be the k-dimensional torus. Then there is a homeomor-

phism

MRic=0(N × T k) ∼= MRic=0(N) × Msec=0(T k),

where Msec=0(T k) is the moduli space of sectional curvature flat metrics on T k.

If N is hyperkählerian we can combine our work with the result [129, Propo-

sition 5.5] on the rational homotopy groups of the space Msec=0(T k). Moreover,

for hyperkählerian N we will see that

MRic≥0(N × T k) = MRic=0(N × T k).
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1.3 Metric Torelli Theorems

In this section we turn to the discussion on generalizations of Theorem 1.1.1.

The second cohomology group H2(M,Z) of a hyperkählerian manifold M is

torsion free. Moreover, H2(M,R) is naturally endowed with a non-degenerate

bilinear pairing qM of signature (3, b2(M) − 3). When restricted to integral

classes H2(M,Z) the pairing qM is integer valued and is known as the Beauville-

Bogomolov form.

Consider the Grassmann space of positive definite 3-dimensional linear sub-

spaces in H2(M,R) and denote it by Gr+(3,H2(M,R)). The metric period map

PMet takes this as its target space by associating to a hyperkähler metric g the

3-dimensional space

PMet(g) := span{[ωI ], [ωJ ], [ωK ]} ∈ Gr+(3,H2(M,R))

spanned by the Kähler classes [ωI ], [ωJ ], [ωK ] associated to a hyperkähler triple

(I, J,K) with respect to g.

From now on we restrict to the case of metrics with unit volume. This does

not change the homotopy type of the moduli spaces.

The metric Teichmüller space is defined as

T Met(M) := { g ∈ RHK(M) | g unit volume }/Diff0(M),

where Diff0(M) is the group of diffeomorphisms isotopic to the identity. We will
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show that PMet induces an injection on each connected component of the Teich-

müller space T Met
o (M). Furthermore, we will explicitly determine the image of

this map while giving a detailed proof of the following theorem by Amerik and

Verbitsky, which already appeared in 2015 [2, Theorem 4.9], see also [100].

Theorem 1.3.1. Let T Met
o (M) be a connected component of the metric Teich-

müller space. Then there is a subset S0 ⊂ H2(M,Z) so that the metric Period

map induces a homeomorphism

T Met
o (M) ∼= Gr+(3,H2(M,R)) −

⋃
z∈So

Gr+(3, z⊥).

Here z⊥ denotes the orthogonal complement of z in H2(M,R) with respect

to qM . The set S0 is the set of so called MBM-classes. Roughly speaking these

classes are induced by ’minimal’ rational curves which determine the Kähler

cone of an irreducible holomorphic symplectic manifold (IHSM), more details

will be given later.

For a connected component MHK
o (M) of the moduli space of unit volume hy-

perkähler metrics we will then obtain the following corollary.

Corollary A. For the connected component MHK
o (M) there is a discrete sub-

group Γ ⊂ O(3, b2(M) − 3) so that

MHK
o (M) ∼= Γ \

(
Gr+(3,H2(M,R)) − ⋃

z∈So
Gr+(3, z⊥)

)
. (1.1)

The group Γ is determined by an IHS-structure compatible with a metric in

21



MHK
o (M).

We refer to Definition 4.4.4 respectively Theorem 4.4.2 for the definition of

the group Γ and to Theorem 5.4.1 for a more detailed version of Corollary A.

The corollary yields that MHK
o (M) is homeomorphic to an open and dense sub-

set of the bi-quotient

Γ⧹O(3, b2(M) − 3)⧸(O(3) × O(b2(M) − 3)). (1.2)

These descriptions of the moduli space are our base for analyzing the global

topology of the moduli space of hyperkähler metrics. Corollary A, respectively

equation (1.2) generalize Theorem 1.1.1.

If M is the K3-manifold one can say even more. Points in (1.2) which are not

associated to a smooth Einstein metric are known to correspond naturally to

certain Ricci-flat orbifold metrics. Moreover, the space (1.2) is isomorphic to the

completion E(K3)L
2

of E(K3) with respect to the L2-metric, a naturally defined

metric on E(K3), see [90] and [7].

Theorem E. The moduli space of unit volume Einstein metrics, including orb-

ifold metrics, E(K3)L
2

is simply connected and b4

(
E(K3)L

2)
is non-zero.

Closely related to the K3-manifold is the Enriques manifold S. It is a Z2 quo-

tient of the K3-manifold and is known to admit Ricci-flat metrics. While these

metrics are never hyperkähler, we will prove that every Einstein metric g on S

is locally hyperkähler, and thus that g is Ricci-flat. Furthermore, we show that

g is Kähler with respect to a unique complex structure, see Lemma 7.3.4.
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We will use this fact and Torelli theorems for K3-surfaces to provide an ex-

plicit description of the moduli space E(S) similar to the one described above

for hyperkähler metrics. This is closely related to the moduli space of Enriques

surfaces MEnr, see [110, 74, 14]. See [62] for a result on the topology of MEnr.

Moreover, we will show that the famous Kummer construction, which approx-

imates Ricci-flat metrics on a Kummer K3-surface by gluing Eguchi-Hanson

spaces with a singular flat K3-surface, also works for a related Enriques surface.

1.4 Structure

Chapter 2 is a preliminary chapter where we collect statements we use through-

out the text. First, we discuss Riemannian holonomy groups, for which we also

recommend [85, 19]. We provide backgrounds on Grassmann spaces as they ap-

pear in equation (1.1). Moreover, in Section 2.4 we discuss lattices in the con-

text of an abelian group endowed with an integral bilinear pairing as they natu-

rally appear on H2(M,Z) for hyperkählerian manifolds.

What we have not included are backgrounds in complex algebraic and Kähler

geometry. Here we generally refer to books like [60, 75, 108, 85, 14]

In Chapter 3 we give an introduction to the theory of hyperkähler manifolds.

We start this chapter by introducing the group Sp(n). We introduce hyper-

kähler manifolds and the closely irreducible holomorphic symplectic manifolds

(IHSM) and state fundamental topological properties. In the remaining sections

we are concerned with examples. Moreover, in the case of the K3-surface we

discuss how Hodge structures can be used to study IHS-structures and state
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some of the related Torelli theorems for K3-surfaces. Standard references for

this chapter are [65, 76, 77, 19, 85, 83].

The discussion on Hodge structures will be generalized and described in more

detail in Chapter 4 for IHS-manifolds. In this chapter we also introduce and

discuss the complex period map which is defined on the Teichmüller space of

IHS-structures.

Based on the results on Teichmüller spaces and period maps, Theorem 1.3.1

and Corollary A will be proven in Chapter 5.

In Chapter 6 we will discuss the global topology of moduli spaces of hyper-

kähler metrics proving Theorems A, B, C while also providing more detailed

versions of them.

Chapter 7 is about generalizing the results from hyperkählerian manifolds to

other types of manifolds. Here we consider Ricci-flat manifolds and their mod-

uli spaces and prove Theorem D. For the Enriques manifold we state a metric

Torelli type theorem and discuss a desingularization process of a Ricci-flat orb-

ifold metric. In this context we will also prove Theorem E.
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Oh, he seems like an okay person, except for be-

ing a little strange in some ways. All day he sits

at his desk and scribbles, scribbles, scribbles.

Then, at the end of the day, he takes the sheets

of paper he’s scribbled on, scrunches them all

up, and throws them in the trash can.

John von Neumann’s housekeeper

2
Preliminaries

We recall basic facts and discuss some preliminary results which will be used

throughout the text. In the first section the notion of holonomy for Riemannian

manifolds is introduced. Here we discuss the holonomy principle and Berger’s

classification Theorem. The second section is about vector spaces endowed with

a non-degenerate bilinear pairing (V, q). We will then consider Grassmann spaces
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in the third section. In the last section we discuss lattice theory, the integral

version of (V, q).

2.1 Riemannian Holonomy Groups

Consider a connected Riemannian manifold (M, g) and its Levi-Civita connec-

tion ∇. For a smooth path γ : I → M on a closed interval I there exists the

notion of parallel transport which we now recall. Let a, b ∈ I be the boundary

points of I and fix a vector v in the tangent space Tγ(a)M . The Picard-Lindelöf

theorem ensures the existence and uniqueness of a vector field V along γ so that

the following is true

• V (a) = v and

• ∇ d
dt
γ(t)V (t) = 0 for all t ∈ I.

The second condition says that V is parallel. The parallel transport of v = V (a)

along γ is Pa,b
γ (v) := V (b) ∈ Tγ(b)M . Every such γ with boundary points a, b

thus determines a map

Pa,b
γ : Tγ(a)M → Tγ(b)M

which turns out to be a linear isometry with respect to the Riemannian metric

on the tangent spaces.

Instead of considering only smooth paths, the above notion readily generalizes

to piecewise smooth (p.w.s) paths. Considering only loops, that is paths with

the same start and end point, gives rise to the notion of holonomy.

Definition 2.1.1. For a Riemannian manifold (M, g) the holonomy group at a
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point p ∈ M is defined as the group of isometries induced by parallel transports

along loops, i.e.

Hol(M, g, p) :=
{

P0,1
γ ∈ O (TpM) | γ : [0, 1] → M p.w.s with γ(0) = γ(1) = p

}
.

The reduced holonomy group is the subgroup Hol0(M, g, p) consisting of isome-

tries induced by contractible loops.

The group Hol(M, g, p) comes with a natural representation on TpM . By

choosing an isomorphism TpM ∼= Rn the group Hol(M, g, p) also acts on eu-

clidean space Rn. Thus, we may identify Hol(M, g, p) with a subgroup of O(n).

In fact, it is a Lie subgroup, which in addition is closed and connected if M is

compact and simply connected [85, Theorem 3.2.8]. When changing the base

point p to some other point q the two holonomy groups will turn out to be con-

jugate to one another in O(n). Thus, the notion of holonomy without prescrib-

ing a base point exists only up to conjugation. In the following we can always

choose a base point freely and we often simply write Hol(g) ignoring the base

point.

One of the main features of the holonomy group is that it tells us which ten-

sorial structures on the tangent space TpM , like certain forms, endomorphisms

etc., can be extended to global objects on the manifold. To make this more pre-

cise, note that the holonomy representation Hol(g) on TpM naturally extends to

a representation on T r,s(TpM) := ⊗r
i=1 TpM ⊗ ⊗s

i=1 TpM
∗. On the other hand

the Levi-Civita connection induces a connection, also denoted ∇, on the vector
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bundle ⊗r
i=1 TM ⊗ ⊗s

i=1 TM
∗. A globally defined tensor s is then a section of

this bundle and is said to be parallel if ∇s = 0.

Theorem 2.1.1 (Holonomy Principle). For a parallel tensor s the holonomy

representation Hol(M, g, p) at a point p leaves the corresponding element sp ∈

T r,s(TpM) invariant. On the other hand, if sp ∈ T r,s(TpM) is an invariant

element under the holonomy representation, then sp extends to a globally defined

parallel tensor on M .

See [85, Proposition 2.5.2] for a proof of this theorem. Using this principle

one can show that a Riemannian manifold of dimension 2n is a Kähler manifold

if and only if Hol(g) ⊂ U(n). While a priori the list of possible holonomy groups

might be extremely large, it turns out that there are strong constraints.

Theorem 2.1.2 (Berger’s Classification Theorem). Let (M, g) be a simply con-

nected compact n-dimensional Riemannian manifold that is not a symmetric

space and whose holonomy representation is irreducible. Then one of the follow-

ing is the case:

(i) Hol(g) ∼= SO(n)

(ii) n = 2m with m ≥ 2 and Hol(g) ∼= U(m) in SO(2m)

(iii) n = 2m with m ≥ 2 and Hol(g) ∼= SU(m) in SO(2m)

(iv) n = 4m with m ≥ 2 and Hol(g) ∼= Sp(m) in SO(4m)

(v) n = 4m with m ≥ 2 and Hol(g) ∼= Sp(m)Sp(1) in SO(4m)

(vi) n = 7 with Hol(g) ∼= G2 in SO(7)

(vii) n = 8 with Hol(g) ∼= Spin(7) in SO(8).
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For a reference see for instance [19, 10.92] and [85, Theorem 3.4.1]. Let us

make some comments on the assumptions of Theorem 2.1.2. First, if M is not

simply connected then the theorem still holds if one replaces Hol(g) with Hol0(g).

For symmetric Riemannian manifolds there is a separate list classifying the pos-

sible groups for Hol0(g). Since Ricci-flat symmetric spaces are already sectional

curvature flat by [19, 7.61 Theorem], we will not focus on this case and refer

to [19, §10.K]. The assumption on irreducible holonomy representation can be

dealt with in terms of the following theorem, see [85, Theorem 3.2.7] for in-

stance.

Theorem 2.1.3 (De Rham Decomposition). Let (M, g) be a complete, simply

connected Riemannian manifold. Then there exist complete simply connected

Riemannian manifolds (M1, g1), · · · , (Mk, gk) and an isometry

(M, g) → (M1 × · · · ×Mk × Rl, g1 + · · · + gk + gF ),

where g1 + · · ·+gk +gF is the Riemannian product metric and gF is a flat metric

on Rl. Furthermore, Hol(g) = Hol(g1) × · · · × Hol(gk) and the representation of

each Hol(gi) is irreducible.

Proving the existence of compact manifolds admitting metrics with holonomy

in the list of Theorem 2.1.2 is difficult except for the cases (i), (ii), (v). The case

(i) is the generic case for Riemannian manifolds, while (ii) is the generic case

for Kähler manifolds. An example for case (v) is provided by the quaternionic

projective space PHn endowed with a Riemannian metric similar to the Fubini-
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Study metric. Finding an example for Hol(g) = SU(m) is already much more

challenging. The key to finding such examples is provided by Yau’s solution to

the Calabi conjecture [141]. We state the theorem in the form in which we will

need it, but remark that there are more detailed and general versions.

Theorem 2.1.4 (Calabi-Yau Theorem). Let X be a compact Kähler manifold

with vanishing first real Chern class. Then each Kähler class [α] is represented

by a unique Kähler form ω whose corresponding Riemannian metric is Ricci-

flat.

One can now construct an example with Hol(g) = SU(m) as follows. Let X

be a hypersurface of CP n with n ≥ 3 given as the zero set of a degree n + 1

homogeneous polynomial. From the adjunction formula [75, Corollary 2.4.9] it

follows that the canonical bundle is trivial so that the first Chern class vanishes.

The Calabi-Yau theorem shows that X admits a Ricci-flat Kähler metric g. The

proof of the following theorem is relatively straightforward, see [108, Theorem

11.5] for instance.

Theorem 2.1.5. A Kähler manifold (M, g) of real dimension 2m is Ricci-flat if

and only if Hol(g) ⊂ SU(m).

For the Ricci-flat metric g on X we now show that Hol(g) = SU(m). This will

follow from the classification Theorem 2.1.2 if we show that X does not split as

a product as in Theorem 2.1.3. The Lefschetz hyperplane theorem [24] shows,

for n ≥ 3, that X is simply connected. In addition, for n ≥ 4 it shows that the

second Betti number is b2(X) = 1. By Poincaré duality we conclude that the

30



Betti numbers bi(X) are 0 in odd degrees. If X is the product of two odd di-

mensional manifolds they would generate a non-vanishing Betti number in odd

degrees, so we can exclude this case. In case that X is the Riemannian prod-

uct of two even dimensional manifolds (X1, g1) and (X2, g2) then each Hol(gi)

is contained in SU(dimC(Xi)). The Xi are therefore also Kähler manifolds. If

n ≥ 4 we arrive at a contradiction since b2(X) = b2(X1) + b2(X2) ≥ 2. In the

case n = 3 the manifold X would be a product of two 2-dimensional manifolds,

each of which would be flat and simply connected, a contradiction. Therefore,

by Theorem 2.1.2 we have Hol(g) = SU(n− 1).

In fact, for n = 3 we have Hol(g) = Sp(1) since SU(2) = Sp(1), see Sec-

tion 3.1. In this case X is a so called K3-surface. These and their higher di-

mensional analogs, which are NOT the examples X with n ≥ 4, but the ones

with Hol(g) = Sp(m), will be called hyperkähler manifolds and are at the cen-

ter of our interest. Higher dimensional examples were found by Beauville and

O’Grady for which we refer to Section 3.5.

The remaining two groups G2 and Spin(7) also imply Ricci-flatness and the

first compact examples were given by Joyce, see [85].

The groups SU(m), Sp(m),G2, Spin(7) are called the Ricci-flat holonomy

groups.

Let us end this section by mentioning that metrics whose holonomy is one of

the above groups are in general not unique on a fixed manifold. It is thus nat-

ural to study the space of all metrics having fixed holonomy group RHol=G(M)

and related spaces. Sometimes one can construct ’coordinates’ on these spaces
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in the following way. From the holonomy principle it is clear that the dimension

of the space of parallel forms P (g) does not change as one varies the metric g in

RHol=G(M). But the space P (g) viewed as a subspace in cohomology H∗(M,R)

is not fixed and can be used as a parameter for the metric g. In this way certain

Grassmann spaces of H∗(M,R) are natural parameter spaces for RHol=G(M).

For the case Hol(g) = Sp(n) we will see that the second cohomology is naturally

endowed with an integral valued and indefinite bilinear form qM . The relative

position of P (g) to the integral structure (H∗(M,Z), qM) can provide a lot of

information on RHol=G(M) and the metric itself.

2.2 Pseudo Euclidean Geometry

Euclidean geometry is often understood as the study of a finite dimensional R-

vector space V endowed with a positive definite scalar product. In this section

we consider the case when we drop the assumption of positive definiteness.

Definition 2.2.1. A pseudo euclidean space is a finite dimensional R-vector

space V endowed with a symmetric and non-degenerate bilinear pairing q : V ×

V → R, which we will also call a scalar product.

By an inner product space we will more generally mean a vector space defined

over a field with a symmetric non-degenerate bilinear pairing. We will often de-

note the scalar product with (·, ·) or q(·, ·). For v ∈ V we set v2 := (v, v) and

call it the length of v. Like in the euclidean case one can also take the orthogo-
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nal complement of a subset U ⊂ V defined by

U⊥ := { v ∈ V | (v, u) = 0 for all u ∈ U }.

If U is a subspace one checks that (U⊥)⊥ = U and dim(U)+dim(U⊥) = dim(V ),

since (·, ·) is non-degenerate. However, not all statements from Euclidean geom-

etry on orthogonal complements carry over to the indefinite case. Usually one

needs to be aware to which regions of V the subset U belongs, in the sense that

a pseudo euclidean space is naturally separated into the following cones

• the positive cone Pos(V ) := {v ∈ V | v2 > 0},

• the negative cone Neg(V ) := {v ∈ V | v2 < 0},

• the isotropic cone V 0 := {v ∈ V | v2 = 0}.

In case U is a subspace of V with U ∩ V 0 = 0 we have U ∩ U⊥ = 0. Whenever

the latter is the case one obtains an orthogonal decomposition

V = U ⊕ U⊥.

On the other hand, if U ∩ U⊥ 6= 0, then U + U⊥ does not need to be equal

to V . Also note that if (r, s) denotes the signature of the bilinear pairing (·, ·),

then r is the dimension of a maximal subspace in Pos(V ) and s the dimension

of a maximal subspace in Neg(V ). For a subspace U of maximal dimension in

Pos(V ) one then has U⊥ ⊂ Neg(V ).

Orthogonal transformations are defined as in the Euclidean case, i.e. an in-

vertible linear map g : V → V is orthogonal if (gv, gv) = (v, v) for all v ∈ V .
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Definition 2.2.2. The orthogonal group O(V, q) of a pseudo Euclidean space

(V, q) is the group of orthogonal transformations.

The group O(V, q) is a Lie group, and non-compact if and only if q is indef-

inite. In case of the standard space Rr+s with scalar product given by qst =

x2
1 + · · · + x2

r − x2
r+1 · · · − x2

r+s we also write O(r, s) for the orthogonal group.

Note that each orthogonal group is isomorphic to one of the O(r, s) according to

the sign, for more details see for instance [68].

Among all orthogonal transformations reflections are of particular impor-

tance. This is not only true for Euclidean geometry, but also for the indefinite

case. A reflection ra along a vector a, with a2 6= 0, in a pseudo euclidean space

(V, q) is a map of the following form. Let Ha := a⊥ be what is called the reflec-

tion hyperplane, then

V = a · R ⊕Ha.

Thus, for each v ∈ V there exist unique s ∈ R and b ∈ Ha such that v = sa + b.

Then define ra(v) = −sa+ b. Equivalently, a reflection is a map of the form

v 7→ v − 2(v, a)
(a, a)

a.

In the euclidean case it is not too hard to prove that the orthogonal group is

generated by reflections. For the indefinite case this is much more difficult, but

well known, see [53] for a constructive proof and some of the history.

Theorem 2.2.1 (Cartan-Dieudonné). Every orthogonal transformation in a

n-dimensional inner product space is the composition of at most n reflections.
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There are two natural and continuous homomorphisms defined on O(r, s)

with values in {±1}. One is given by the determinant, which does not need

any further introduction. The other is given by the spinor norm which is less

known. This notion exists for more general cases than we will define it. Here we

are only interested in the real case. We set R∗ := R\ {0} and (R∗)2 := { x2 | x ∈

R∗ }.

Definition 2.2.3. The spinor norm on the inner product space (V, q) is the

homomorphism

spn: O(V, q) → R∗/(R∗)2 ∼= {±1, ·}

induced by sending a reflection ra to −q(a, a) in R∗/(R∗)2. We denote by O+(V )

the kernel of spn.

Often one finds the spinor norm to be defined by the term q(a, a) instead of

−q(a, a) for a reflection ra. However, in our situation it turns out to be more

convenient to work with −q(a, a). Thus, if g ∈ O(V, q) is generated by reflec-

tions g = ra1 · · · ran , then spn(g) = 1 if and only if the number of reflections

along a vector of positive length in (ra1 , · · · , ran) is even. Aside from this the

spinor norm has many more applications. A rather obvious one is that it can

be used to distinguish between connected components of O(r, s). For that, we

recall the following well known fact from [68, p.131].

Proposition 2.2.1. Let r, s > 0. Then O(r) × O(s) is a maximal compact

subgroup of O(r, s). In particular O(r) × O(s) is homotopy equivalent to O(r, s).
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As an immediate consequence we find that O(r, s) has 4 connected compo-

nents. Now the determinant and the spinor norm can be used to distinguish

between these components, since both are continuous maps into the discrete

space {1,−1}. In the next section on Grassmann manifolds we will see another

interpretation of the spinor norm.

2.3 Grassmann Spaces

Grassmann spaces parametrize certain linear subspaces in a fixed vector space.

In this section we recall basic facts about these spaces. We are particularly in-

terested in the case when these Grassmann spaces are defined over a pseudo

Euclidean space (V, q).

Definition 2.3.1. Let V be an n-dimensional R-vector space. The Grassmann

space of k-dimensional subspaces and the one of oriented k-dimensional sub-

spaces are defined as

• Gr(k, V ) := {H ⊂ V | H a k-dimensional linear subspace},

• Gro(k, V ) := {H ⊂ V | H a k-dimensional oriented linear subspace}.

The general linear group Gl(V ) acts transitively on Gr(k, V ). Thus, if S de-

notes the stabilizer of this action, one has Gr(k, V ) ∼= Gl(V )/S. In this way we

endow Gr(k, V ) with a topology. Then Gr(k, V ) has the structure of a compact

manifold, as we will see below.

If V is endowed with an indefinite scalar product, we define the following

Grassmann spaces.
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Definition 2.3.2. Let (V, q) be a pseudo Euclidean space. The Grassmann space

of positive k-dimensional subspaces Gr+(k, V ) is the subspace of Gr(k, V ) con-

sisting of elements on which q is positive definite. The Grassmann space of pos-

itive oriented k-dimensional subspaces Gr+,o(k, V ) is the subspace of Gro(k, V )

consisting of oriented positive definite subspaces.

It is not hard to see that Gr+(k, V ) as well as Gr+,o(k, V ) are open subspaces

in Gr(k, V ) and Gro(k, V ) respectively. Hence, both spaces are non-compact

manifolds. Furthermore, they can also be described as homogeneous spaces.

Lemma 2.3.1. Let (V, q) be an inner product space of dimension n with q hav-

ing signature (r, s). Then we have the following descriptions

• Gr(k, V ) ∼= O(n)/ (O(k) × O(n− k)),

• Gro(k, V ) ∼= O(n)/ (SO(k) × O(n− k)).

If k = r, we have

• Gr+(k, V ) ∼= O(r, s)/ (O(r) × O(s)),

• Gr+,o(k, V ) ∼= O(r, s)/ (SO(r) × O(s)).

If k < r, we have

• Gr+(k, V ) ∼= O(r, s)/ (O(k) × O(r − k, s)),

• Gr+,o(k, V ) ∼= O(r, s)/ (SO(k) × O(r − k, s)).

Proof. It is enough to consider the standard space (Rr+s, qst) with the stan-

dard basis {ei}. The group O(r, s) acts smoothly and transitively on each of

the Grassmann spaces. Depending on which structure should be preserved the

stabilizer of span{e1, · · · , ek} is then easily identified.
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As a consequence we get the following.

Lemma 2.3.2. Let (V, q) be an inner product space of dimension n and signa-

ture (r, s) with r, s > 0. Then there is a homeomorphism Gr+(r, V ) ∼= Rr(n−r).

Proof. By the previous lemma Gr+(r, V ) is the homogeneous space given by a

non-compact Lie group modulo its maximal compact subgroup and thus homeo-

morphic to some RN by [71, Theorem 14.3.11].

At the end of this section we will prove this fact by constructing a global

chart.

The forgetful map Gr+,o(k, V ) → Gr+(k, V ) is a 2-sheeted covering. In case

that the positive definite subspaces are of maximal dimension, we find that the

covering is trivial by Lemma 2.3.2. In particular Gr+,o(k, V ) consists of 2 con-

nected components. We can use this to give another interpretation of the spinor

norm.

Lemma 2.3.3. Let (V, q) be a pseudo Euclidean space with sgn(q) = (r, s).

If k = r an orthogonal transformation g ∈ O(V, q) preserves the connected

components of Gr+,o(k, V ) if and only if spn(g) = 1.

Proof. Since spn is a continuous function it is enough to check the statement for

a single element in each connected component of O(r, s).

Next, we show how to construct coordinate charts for the Grassmann spaces.

Let U1 be a k-dimensional linear subspace of V and U2 a subspace such that
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V = U1 ⊕ U2. Then consider the map Hom(U1, U2) → Gr(k, V ) with

f 7→ Graph(f) := {w + f(w) | w ∈ U1}.

By choosing a basis, one may identify Hom(U1, U2) with the space of matrices

Matr((n − k) × k) which then again can be thought of as Rk(n−k). Choosing U1

and U2 appropriately one can construct an atlas on Gr(k, V ) using the above

function. One checks that the transition functions are given by quotients of

polynomials. Consequently, Gr(k, V ) is not just a manifold, but also an alge-

braic variety. As a side remark, this can also be seen in terms of the famous

Plücker embedding [60, p.209], which realizes Gr(k, V ) as a projective variety.

Using the above charts we can construct a global chart for Gr+(k, V ) if k is

the maximal dimension of a positive definite subspace. Consider the standard

space (Rk+s, qstd) with W1 = span{e1, · · · , ek} and W2 = span{ek+1, · · · , ek+s}.

Then every positive k-space is the graph of a map A : W1 → W2. If this were

not the case, we would find a space H ∈ Gr+(k, V ) whose projection onto W1

would not be surjective. But then W1 + H is a positive definite subspace of V

with dim(W1 + H) > dim(H). However, this is not possible since H is of maxi-

mal dimension. Now note that x+ Ax is in the positive cone if and only if

k∑
i=1

x2
i −

k+s∑
i=k+1

(Ax)2
i > 0.

For the map A this just means that the operator norm with respect to the stan-
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dard euclidean norm satisfies ‖A‖ < 1. Thus, we have found a global chart

{A ∈ Matr((n− k) × k) | ‖A‖ < 1}
∼=−→ Gr+(k, V ).

2.4 Lattice Theory

Lattice theory can be viewed as a variation of the theory of pseudo Euclidean

spaces, by replacing the R-vector space V by a free Z-module Λ and the scalar

product by an integer valued bilinear pairing. Lattices have their roots in num-

ber theory, but they have become an important ingredient in various geometric

applications. We give a brief overview of lattice theory. Standard sources are

[113], [120], [44]. A good survey can be found in [83, Chapter 14].

A lattice will mean the following to us.

Definition 2.4.1. A lattice Λ is a free abelian group of finite rank, together

with a symmetric, non-degenerate bilinear pairing (·, ·) : Λ × Λ → Z. A lattice is

even if the so called length λ2 := (λ, λ) is even for all λ ∈ Λ, otherwise it is odd.

Note, that the above notion of lattice differs from the one given in the theory

of Lie groups as a discrete subgroup with finite co-volume.

Just like in the case of inner product spaces one can take orthogonal comple-

ments. For λ ∈ Λ we define

λ⊥ := { λ′ ∈ Λ | (λ, λ′) = 0 }.

Clearly, if λ1 = nλ2 for λ1, λ2 ∈ Λ and n ∈ Z then λ⊥
1 = λ⊥

2 . We say that an
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element λ ∈ Λ is primitive if λ = nλ′ implies that n = ±1. More generally, a

sublattice Λ′ ⊂ Λ is a primitive sublattice if Λ/Λ′ is torsion free.

Closely related to the notion of a lattice is that of a quadratic module.

Definition 2.4.2. Let V denote a module over a commutative ring R. A func-

tion q : V → R with

• q(av) = a2q(v) for all v ∈ V and a ∈ R,

• (x, y) 7→ q(x+ y) − q(x) − q(y) a bilinear pairing on V ,

is called a quadratic form, and the tupel (V, q) a quadratic module. Furthermore,

if R = Z and q takes values in 2Z we say that (V, q) is an even quadratic mod-

ule.

If (V, q) is an even quadratic module we endow V with the bilinear pairing

(x, y) := 1
2

(q(x+ y) − q(x) − q(y)) .

On the other hand, if Λ is a lattice, then setting q(x) := (x, x) defines a quadratic

form on Λ. In case that R = F is a field of characteristic not equal to 2, the no-

tion of a quadratic module over F and that of an inner product space (dropping

any assumptions on definiteness) defined over F are in bijective correspondence

[120, p.27].

Every lattice Λ determines an inner product space over F by extending (·, ·)

F-linearly to Λ ⊗Z F. Consider the case when F = Q or F = R, then there is a

natural embedding Λ ↪→ Λ ⊗ F which preserves the bilinear pairing. Thus, we

may view Λ as a sublattice of the inner product space Λ ⊗ Q.
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Definition 2.4.3. Let Λ be a lattice. The dual lattice Λ∗ is the sublattice of

Λ ⊗ Q consisting of those elements x ∈ Λ ⊗ Q for which (x, λ) is an integer for

every λ ∈ Λ.

Note that the dual lattice is in general not really a lattice, since the bilinear

pairing extended to Λ∗ takes values in Q instead of Z.

Definition 2.4.4. A lattice Λ is unimodular if the dual lattice Λ∗ is a lattice

and equal to Λ.

It is not too hard to see, that Λ is a unimodular lattice if and only if

Λ → Hom(Λ,Z) with λ 7→ (·, λ)

is an isomorphism of groups. Then, if A denotes the intersection matrix ((ei, ej))i,j
of Λ for some basis {ei}, one checks that unimodularity of Λ is equivalent to

det(A) = ±1.

Next, let us define some invariants of lattices. We start with those coming

from the induced pseudo Euclidean space.

Definition 2.4.5. Let (Λ, (·, ·)) be a lattice and ΛR = (Λ ⊗ R, (·, ·)) the R-linear

extension. Then we define

• rank(Λ) := dim(ΛR) the rank,

• sgn(Λ) := (r, s) where (r, s) is the signature of ΛR,

• τ(Λ) := r − s the index of Λ.

The next invariants capture more of the integral structure.
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Definition 2.4.6. The discriminant group of a lattice Λ is the group DΛ :=

Λ∗/Λ. The discriminant form qD is the quadratic form on DΛ defined by

• qD([x]) := (x, x) mod Z if Λ is odd,

• qD([x]) := (x, x) mod 2Z if Λ is even.

Furthermore, if A denotes the intersection matrix of Λ in some basis, the dis-

criminant of Λ is defined as disc(Λ) := det(A).

First note that disc(Λ) is well defined. To see this recall that if A′ = XAXT

is the intersection matrix obtained by a base change one has X ∈ Gl(n,Z) and

hence detA′ = detA · (detX)2 = detA. By computations in a basis of Λ it is

also not hard to prove that DΛ is a finite group. In fact, |disc(Λ)| is equal to the

number of elements of DΛ.

Let us give some examples.

Example 2.4.1. By Is,r we denote the lattice Zr+s with intersection matrix

given by the diagonal matrix with 1’s in the first r entries and −1’s in the re-

maining s entries of the diagonal.

Example 2.4.2. The hyperbolic lattice, denoted U , is the lattice with intersec-

tion matrix 0 1

1 0

 .
It is even and unimodular with sgn(U) = (1, 1) and disc(U) = −1.
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Example 2.4.3. The E8 lattice is given by the intersection matrix



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 −1

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 0 0 −1 0 0 2



.

It is even and unimodular with disc(E8) = 1 and sgn(E8) = (8, 0).

One can obtain other examples by taking direct sums. Another important

construction is given by the twist Λ(m) of a given lattice Λ, which is obtained

when changing the scalar product of Λ by multiplying it with an integer m ∈ Z,

i.e. (·, ·)Λ(m) := m · (·, ·)Λ. Here is a classification result.

Theorem 2.4.1. [83, Corollary 1.3 Chapter 14] Let Λ be an indefinite unimodu-

lar lattice of signature (r, s) and τ := r − s the index.

• If Λ is even, then τ ≡ 0 mod 8 and according to the sign of τ

Λ ∼= E
⊕ τ

8
8 ⊕ U⊕s or Λ ∼= E8(−1)⊕ −τ

8 ⊕ U⊕r.

• If Λ is odd, then Λ ∼= Ir,s.

We will also be interested in the automorphisms of lattices.
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Definition 2.4.7. Let Λ be a lattice. The orthogonal group, or automorphism

group of Λ is defined as the group of isomorphisms, i.e.

O(Λ, (·, ·)) :=
{
g : Λ

∼=−→ Λ | (gλ, gλ′) = (λ, λ′) for all λ, λ′ ∈ Λ
}
.

We will often write O(Λ) for this group if it is clear what the bilinear pairing is.

Note that O(Λ) can be viewed as a discrete subgroup of O(Λ ⊗ R) ∼= O(r, s),

where (r, s) is the sign of Λ. If O(r, s) is semisimple, which is the case if r + s ≥

3 [109, Apendix A], then O(Λ) is an arithmetic subgroup by [109, 5.1.11].

Just like for O(r, s) reflections play an important role for O(Λ). However,

O(Λ) is in general not generated by reflections, but the subgroup generated by

those is a large subgroup of O(Λ). To see this one notes that it is a normal sub-

group and of finite index by Margulis normal subgroup theorem, see [96] and

[104, Chapter IV]. We are particularly interested in the subgroup of O(Λ) gen-

erated by reflections along (−2)-classes, i.e. along those classes c ∈ Λ with

c2 = −2. We will need the following notion.

Definition 2.4.8. The stable orthogonal group Õ(Λ) is the kernel of the natural

homomorphism ρ : O(Λ) → O(DΛ, qD).

It often happens that ρ is surjective. This is for example the case whenever

Λ is an even indefinite lattice such that the number of generators l(DΛ) of DΛ

satisfies l(DΛ) + 2 ≤ rank(Λ), see [113, Thm. 1.14.2]. If rc is a reflection along a

(−2)-class c ∈ Λ, then rc = idΛ + (·.c)c. Since (x, c) ∈ Z for all x ∈ Λ∗ one finds

that ρ(rc)(x) = x mod Λ for all x ∈ Λ∗. Thus, rc ∈ Õ(Λ) and spn(rc) = 1.
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Definition 2.4.9. Let O+(Λ) := O(Λ) ∩ O+(Λ ⊗ R), the subgroup of O(Λ) of

elements with trivial spinor norm. Moreover, let Õ+(Λ) be the stable orthogonal

subgroup with trivial spinor norm, i.e. Õ+(Λ) := Õ(Λ) ∩ O+(Λ).

Sometimes it happens that Õ+(Λ) determines the group generated by reflec-

tions along (−2)-classes. The following result is due to Kneser [87, Satz 4], see

also [62, Theorem 1.1].

Theorem 2.4.2. Let Λ be a lattice of signature (r, s) with r, s ≥ 2. Assume that

there exists a sublattice Λ′ of rank at least 5 with disc(Λ′) not a multiple of 3.

Furthermore, assume there is another sublattice Λ′′ of rank at least 6 such that

disc(Λ′′) is not even. Then the group generated by reflections along (−2)-classes

is Õ+(Λ).

Proof. In [87, Satz 4] the above theorem is stated for pairs of reflections along

classes of length 2, i.e. so that the lattice generated by rc · rb with c2 = b2 = 2

is equal to SO(Λ) ∩ Õ+(Λ). However, by changing Λ with Λ(−1) we obtain the

same statement for (−2)-classes. Furthermore, since rc · g changes the determi-

nant of every element g in O(Λ), we get the statement stated above.

Theorem 2.4.2 applies for instance for the lattice Λ ∼= E8(−1)⊕ −τ
8 ⊕ U⊕r as

in Theorem 2.4.1 with r, s ≥ 3. Since Λ is unimodular we get that the group

generated by reflections along (−2)-classes is exactly the subgroup O+(Λ) in

that case. For r = 3 and s = 19 this lattice is known as the K3-lattice, which

we will come across in the next chapter.
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Let us end this chapter with a statement about orbits of the O(Λ) action on

Λ. To state the theorem we need the following notion for a non-zero element λ

in Λ. The divisibility of λ, denoted div(λ), is the positive integer generating the

subgroup (λ,Λ) ⊂ Z. Note that 1
div(λ) · λ is an element of Λ∗. The following is a

result due to Eichler, see [44, Paragraph 10] or [61, Lemma 5.3].

Theorem 2.4.3 (Eichler Criterion). Let Λ be a lattice containing U ⊕ U as a

sublattice. Then the Õ(Λ)-orbit of a primitive element λ ∈ Λ is determined by

the length λ2 and its image [ 1
div(λ)λ] in DΛ.

47



i2 = j2 = k2 = ijk = −1

Sir William Rowan Hamilton

3
Hyperkähler Manifolds

The goal of this chapter is to introduce backgrounds on hyperkähler manifolds.

We focus on the case of compact hyperkähler manifolds as they appear in Berger’s

classification theorem. Closely related to these are so called irreducible holomor-

phic symplectic manifolds. They can be studied in terms of algebraic geometry.

The most basic examples of these are the so called K3-surfaces, which we will
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introduce among related higher dimensional examples. Furthermore, we state

Torelli theorems for K3-surfaces.

3.1 The Group Sp(n)

We start by introducing the notion of an H-Hermitian inner product space. For

that recall that the skew field of quaternions is defined as

H := { x0 + x1i+ x2j + x3k : x0, x1, x2, x3 ∈ R },

where the i, j, k satisfy i2 = j2 = k2 = ijk = −1. On H there is a conjugate map

given by x̄ := x0 + x1i+ x2j + x3k := x0 − x1i − x2j − x3k and the real part of

x = x0 + x1i+ x2j + x3k is defined as <(x) := x0.

Let V be an H-vector space, that is V is a right H-module. An H-Hermitian

inner product on V is a positive definite pairing 〈·, ·〉 : V × V → H, which is

additive in both entries such that for λ in H and v, w in V

〈vλ, w〉 = λ̄〈v, w〉 with 〈v, wλ〉 = 〈v, w〉λ and 〈v, w〉 = 〈w, v〉.

For the standard space Hn the standard Hermitian inner product is ∑ v̄i · wi.

Definition 3.1.1. The unitary quaternionic group of an H-Hermitian vector

space (V, 〈·, ·〉) is the group of H-linear isomorphisms of V which preserve 〈·, ·〉,

Sp (V ) := {G ∈ GL (V,H) | 〈Gv,Gw〉 = 〈v, w〉 for all v, w ∈ V } .
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For the standard Hermitian inner product space we set Sp(n) := Sp(Hn).

The group Sp(V ) is often called the compact symplectic group. In the follow-

ing we will see why that is. First note that one can reduce scalars to view the

H-module V as an R-vector space as well as a C-vector space. However, the

complex numbers C embed in several ways into H. For that let c := (x1, x2, x3) ∈

R3 such that x2
1 +x2

2 +x2
3 = 1 and set ic := x1i+x2j+x3k. Then the map C → H

given by a+ ib 7→ a+ icb is an injective homomorphism of rings and each such c

induces a complex vector space structure on V .

A complex vector space can also be viewed as an R-vector space endowed

with an endomorphism I such that I2 = −Id. The endomorphism is then called

an almost complex structure. The space of associated almost complex structures

on V is then given by

C(V ) :=
{
x1I + x2J + x3K : x2

1 + x2
2 + x2

3 = 1
}

⊂ Gl(V,R),

where the maps I, J,K are induced by multiplication with i, j, k respectively.

For c ∈ R3 of unit length, the induced almost complex structure Ic in C(V )

is an isometry for an H-Hermitian inner product. Moreover, Ic induces a C-

Hermitian inner product 〈·, ·〉Ic on V . For instance, if c = (1, 0, 0), one has

〈v, w〉Ic = x0 + ix1 when 〈v, w〉 = x0 + x1i + x2j + x3k. We also obtain a

euclidean metric 〈·, ·〉R on V by taking the real part 〈v, w〉R := <(〈v, w〉). Then

〈·, ·〉Ic
:= 〈·, ·〉R + i〈Ic·, ·〉R is a C-Hermitian inner product with respect to Ic. On

the other hand, for any euclidean metric, for which I, J,K are isometries, one
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gets an induced H-Hermitian metric on V provided by

〈v, w〉 := 〈v, w〉R + i〈Iv, w〉R + j〈Jv, w〉R + k〈Kv,w〉R.

This is a straightforward computation, but one needs to take care of the order

of operations. For a complex structure Ic ∈ C(V ) we thus find embeddings

Sp(V ) ⊂ U(V ) ⊂ O(V ). Furthermore, let Jc = hJh−1 and Kc = hKh−1 where

h ∈ Sp(1) is some unitary quaternion such that Ic = hIh−1. Then the form

σ(v, w) := 〈Jcv, w〉R + i〈Kcv, w〉R.

defines a complex symplectic form on V with respect to the complex structure

Ic. Recall that a symplectic form is a non-degenerate alternating bilinear pair-

ing. The form σ is preserved by Sp(V ). In general, the group of complex linear

automorphisms V that preserve a complex symplectic form is denoted Sp(V,C)

and called the complex symplectic group.

Proposition 3.1.1. Let V be an H-Hermitian vector space. Then for each as-

sociated C-Hermitian structure on V one has

Sp(V ) = Sp(V,C) ∩ SU(V ).

Proof. We have seen that Sp(V ) ⊂ Sp(V,C) ∩ U(V ). Since σ is non-degenerate

the form σdimC V is a volume form. The volume form is preserved under Sp(V,C),

thus every element in Sp(V,C) has determinant 1 and therefore also every ele-
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ment in Sp(V ). On the other hand, let G ∈ Sp(V,C) ∩ SU(V ). Then G preserves

the Hermitian metric and the symplectic form

σ = 〈Jc·, ·〉R + i〈Kc·, ·〉R

and hence also the forms 〈Jc·, ·〉R and 〈Kc·, ·〉R. As G is an isometry for 〈·, ·〉R

it will also preserve the complex structures Jc, Kc and Ic = JcKc. Thus G pre-

serves

〈v, w〉 = 〈v, w〉R + i〈Icv, w〉R + j〈Jcv, w〉R + k〈Kcv, w〉R

the H-Hermitian form.

Example 3.1.2. Consider the case n = 1 and recall, for example from [68,

p.57], that

SU(2) =


 a b

−b̄ ā

 : a, b ∈ C and |a|2 + |b|2 = 1

 .

Now the group Sp(1) is isomorphic to the group of quaternions of unit length.

Then the map

x0 + x1i+ x2j + x3k 7→

 x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

 .

induces an isomorphism Sp(1) ∼= SU(2).

From [16] respectively [28, Ch.VIII § 13] we obtain the following statement on
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the complex representation of Sp(n) on complex forms.

Theorem 3.1.1. Let V be a C-Hermitian vector space of complex dimension

2n and σ a complex symplectic form. Then the representation of Sp(V ) on ∧k V
decomposes as follows

k∧
V ∼= Pk ⊕ Pk−2 ∧ σ ⊕ Pk−4 ∧ σ2 ⊕ · · · ,

with 0 ≤ l ≤ n and Pl being irreducible and non-trivial representations for l > 0.

Furthermore, the σ l
2 are up to complex constants the unique invariant forms in

their respective degree.

3.2 Hyperkähler Manifolds

There are different definitions for a Riemannian manifold (M4n, g) to be hyper-

kähler. What they usually have in common is the requirement that the holon-

omy group Hol(g) is contained in Sp(n). Here we focus on the strong case.

Definition 3.2.1. A hyperkähler manifold is a simply connected Riemannian

manifold (M, g) of dimension 4n such that Hol(g) = Sp(n). We say that a man-

ifold M is hyperkählerian if there exists a hyperkähler metric on M .

Later we will see that a compact manifold with holonomy Hol(g) = Sp(n) is

automatically simply connected.

We are mostly interested in compact hyperkähler manifolds. Only in the late

Sections 7.5 and 7.6 we will come across a non-compact example. Thus, from
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now on we will assume that M is compact. One of our main interests for study-

ing hyperkähler manifolds comes from the following.

Theorem 3.2.1. A hyperkähler manifold has vanishing Ricci-curvature.

Proof. Already the condition Hol(g) ⊂ SU(2n) implies Ricci-flatness, see [75,

Proposition 4.A.18] or Theorem 2.1.5.

The name hyperkähler comes from the following very useful fact.

Proposition 3.2.1. Let (M, g) be a 4n-dimensional Riemannian manifold.

Then Hol(g) ⊂ Sp(n) if and only if there are parallel complex structures I, J,K ∈

End(TM) satisfying the quaternionic multiplication relations

I2 = J2 = K2 = IJK = −Id.

In particular, g is a Kähler metric with respect to each I, J,K.

Proof. If such complex structures exist the holonomy must be contained in

Sp(n), as it acts trivially on the H-Hermitian inner product

gp(·, ·) + igp(Ip·, ·) + jgp(Jp·, ·) + kgp(Kp·, ·).

On the other hand, assume that Holp(M, g) at a point p in M is isomorphic to

a subgroup of Sp(n). Since Sp(1) is a subgroup of Sp(n) the elements i, j, k ∈

Sp(1) induce complex structures Ip, Jp, Kp on TpM . By the holonomy princi-

ple we can extend these complex structures to parallel almost complex struc-
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tures on TM . But any parallel almost complex structure is integrable and thus

a complex structure [108, Theorem 5.5].

A triple of complex structures (I, J,K) as in the above proposition will often

be called a hyperkähler triple. Associated to such a triple one obtains a triple of

Kähler forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

However, note that if a2 + b2 + c2 = 1 for real numbers a, b, c then

Ia,b,c := aI + bJ + cK

is also a parallel almost complex structure. We find that a hyperkähler manifold

(M, g) admits a whole 2-sphere of complex structures, each of which is Kähler

with respect to g. One can enhance this fact as follows:

The Twistor Space: For a hyperkähler manifold (M, g) let Ia,b,c be a paral-

lel complex structure as described above. Then we identify the space

Tw :=
{
Ia,b,c ∈ End(M) | a2 + b2 + c2 = 1

}

with CP 1 to endow it with a complex structure ICP 1 . The space Tw is called the

twistor line.

For X := M × Tw we define a complex structure as follows. At
(
p, Ia,b,c

)
we

define the almost complex structure I(p,Ia,b,c) := Ia,b,cp ⊕ICP 1 on the tangent space

T(p,Ia,b,c)X = TpM ⊕ TIa,b,cTw. Then by the Newlander-Nirenberg theorem [111]
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one can show that I is an integrable almost complex structure on X. Therefore,

X is given the structure of a complex manifold so that the projection π : X →

Tw is a holomorphic proper surjection. In other words π is a family of complex

manifolds and has fiber X = (M, Ia,b,c) over the point Ia,b,c. The space X is

called the twistor space. Sometimes we write X(g) and Tw(g) to emphasise the

dependence on the metric.

3.3 Irreducible Holomorphic Symplectic Manifolds

The algebro geometric counterpart of hyperkähler manifolds are the so called

irreducible holomorphic symplectic manifolds which are defined as follows:

Definition 3.3.1. A simply connected compact complex manifold X = (M, I)

is called an irreducible holomorphic symplectic manifold (IHSM) if X is Kähler

and if, up to some constant in C∗, there is a unique non-degenerate holomorphic

2-form.

A non-degenerate holomorphic 2-form σ is also called a holomorphic sym-

plectic form. For n = dimR(X) we find that σ n
2 is a holomorphic volume form.

Therefore, it induces a trivialization for the canonical bundle KX of X and

henceforth c1(X) = c1(KX) = 0, by [108, Proposition 10.4]. The following result

is taken from [16], see also [19, 14.20 Theorem].

Theorem 3.3.1. Every complex structure I in the twistor line Tw of a hyper-

kähler manifold (M, g) admits up to a constant a unique holomorphic symplectic-

form, i.e. X = (M, I) is irreducible holomorphic symplectic.
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Proof. From Proposition 3.1.1 we know that Hol(g) ∼= Sp(n,C) ∩ SU(2n) pre-

serves a complex symplectic form. By the holonomy principle this gives rise to

a globally defined holomorphic symplectic form. From Theorem 3.1.1 we know

that this form is unique if the holonomy is exactly Sp(n).

Thus, every hyperkähler manifold gives rise to a family of IHS-manifolds pa-

rameterized by Tw ∼= CP 1. On the other hand, the next theorem shows that

each Kähler class on an IHSM gives rise to a hyperkähler manifold.

Theorem 3.3.2. Let X = (M, I) be an IHS-manifold. Then each Kähler class

[ωI ] is represented by a Kähler form ωI whose corresponding Riemannian metric

is hyperkähler.

Proof. From the Calabi-Yau theorem 2.1.4 we know that [ωI ] can be represented

by a Kähler form of a Ricci-flat Kähler metric g. By [19, 14.17 Lemma] every

holomorphic tensor field is parallel. In particular, this is the case for the holo-

morphic symplectic form σ. Thus, the holonomy group is contained in Sp(n).

Berger’s classification theorem 2.1.2 then implies equality Hol(g) = Sp(n).

The IHS-manifolds can be understood as irreducible components of compact

Kähler manifolds with vanishing first real Chern class in terms of a splitting

theorem due to Beauville [16, Théorème 1].

Theorem 3.3.3 (Beauville-Bogomolov Decomposition). Let X be a compact

complex Kähler manifold with Ricci-flat Kähler metric. Then the universal cover

X̃ is biholomorphic and isometric to the product ΠiXi × ΠjYj × Ck, where the

metric on Ck is flat and Xi, Yj are simply connected compact manifolds with
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• Xi are irreducible holomorphic symplectic with Hol(Xi) = Sp(1
2 dimC(Xi)),

• Yi are Calabi-Yau, i.e. Hol(Yj) = SU(dimC(Yj)).

Furthermore, there exists a finite cover X ′ of X such that X ′ is isometric and

biholomorphic to ΠiXi × ΠjYj × T where T is a flat torus.

It appears that a version of the above theorem can already be attributed to

Calabi from 1957, see [31]. By considering IHS-manifolds we can now show that

the assumption of simply connectedness in our definition of hyperkähler man-

ifolds is superfluous. For the statement below see also [19, 14.21 Lemma] and

[16].

Proposition 3.3.1. Let (M, g) be a compact 4n-dimensional Riemannian man-

ifold with Hol(g) = Sp(n). Then M is simply connected. Furthermore, the holo-

morphic Euler characteristic for every IHS-manifold X of real dimension 4n is

χ(X,OX) = n+ 1.

Proof. Endow M with some parallel complex structure I so that X = (M, I, g)

is a Kähler manifold. From [19, 14.17 Lemma] we know that every holomorphic

k-form on X is parallel. On the other hand from Theorem 3.1.1 we know that

up to a constant there is only one such k-form. Henceforth, the dimension hk,0

of the space of holomorphic k-forms H0(X,Ωk) is 1 if k is even and 0 when k is

odd for 0 ≤ k ≤ 2n. Since Ω0 = OX we find by the Hodge symmetries that

χ(X,OX) =
∑
k

(−1)k dim(Hk(X,OX)) =
∑
k

(−1)k dim(H0(X,Ωk)) = n+ 1.

Next, consider the universal cover (X̃, g̃). From [19, p.281 10.16.] we know that
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Hol(g̃) = Hol0(g). As Hol0(g) is the connected component of Hol(g) = Sp(n) we

have Hol(g̃) = Sp(n). Theorem 3.3.3 now shows that the universal covering is

finite. Therefore, X̃ is compact and IHSM. From the above it follows that also

χ(X̃,OX̃) = n + 1. If s denotes the number of sheets of the universal covering

X̃ → X the Hirzebruch-Riemann-Roch theorem [75, Theorem 5.1.1] implies that

χ(X̃,OX̃) = s · χ(X,OX). In our case s must therefore be 1.

3.4 The Beauville-Bogomolov Form

Maybe the most important invariant of a hyperkähler manifold (M, g) is the

second cohomology. We first note that H2(M,Z) is torsion free, since M is sim-

ply connected. The second Betti number b2(M) of M is at least 3. This follows

from the fact that H2(M,R) contains the subspace generated by the Kähler

classes [ωI ], [ωJ ], [ωK ]. If we now consider an IHS-manifold X = (M, I) asso-

ciated to (M, g) then the second cohomology is endowed with a quadratic form.

Definition 3.4.1. Let X be an IHS-manifold of complex dimension 2n. Denote

by σ the holomorphic symplectic form, scaled such that
∫
σ ∧ σ̄ = 1. Then there

is a quadratic form fX : H2(M,R) → R, called Beauville-Bogomolov form (BB-

form) which is defined by

fX(α) := n

2

∫
X
α∧α∧(σ∧σ)n−1+(1−n)

(∫
X
α ∧ σn−1 ∧ σn

)(∫
X
α ∧ σn ∧ σn−1

)
.
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The associated bilinear pairing is also called BB-pairing, and is defined as

qX(α, β) := 1
2

(fX(α + β) − fX(α) − fX(β)).

First we note that the BB-pairing behaves well with respect to the Hodge

decomposition. That is, for an IHS-manifold X we are interested in the space

(H2,0(X) ⊕ H0,2(X))R := (H2,0(X) ⊕ H0,2(X)) ∩ H2(M,R)

and the space of real (1, 1)-classes H1,1(M,R) := H1,1(M) ∩ H2(M,R).

Lemma 3.4.1. Let X be an IHSM, then the space H1,1(M,R) is orthogonal to

(H2,0(X) ⊕ H0,2(X))R with respect to the BB-pairing qX .

Proof. This is a straightforward calculation. First one can use the fact that any

element in (H2,0(X) ⊕ H0,2(X))R is of the form λσ + λ̄σ̄, since it is the invariant

part of σC ⊕ σ̄C with respect to conjugation. For the computation of some of

the integrals one uses the fact that an integral of a form which is not of type

(2n, 2n) is 0, see [60, p.32].

The following theorem now shows that the BB-form endows H2(X,Z) with

the structure of a lattice. The statement goes back to [16, 47, 52], see also [65,

p.184 Proposition 23.14].

Theorem 3.4.2. For an IHS-manifold X there exists a positive constant cX

such that cX · qX endows H2(X,Z) with the structure of a primitive lattice. Fur-

thermore, the sign of this lattice is (3, b2(X) − 3).
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In the spirit of the above theorem we will rescale the BB-form to obtain a

lattice structure on H2(X,Z) without changing the notation qX .

The definition of the BB-form strongly depends on the holomorphic symplec-

tic form and thus on the complex structure. However, from [65, p.212] and [65,

Corollary 23.17] we know that there is a positive constant cn depending only on

the dimension such that for α ∈ H2(X,R) one has

qX(α, α) = cn

∫
X
α2
√
td(X),

where
√
td(X) denotes the square root of the Todd class of X. From [73] for

instance we know that
√
Â(X) =

√
td(X) and furthermore that the Â-genus of

X is dimRX
4 + 1. The important thing to note is that

√
Â(X) is a polynomial in

the Pontryagin classes which only depend on the smooth structure of X. Thus,

we have that the BB-form is in fact independent of any complex structure.

Corollary 3.4.1. For a hyperkählerian manifold M the second cohomology

H2(M,Z) is naturally endowed with an integral valued bilinear pairing of sig-

nature (3, b2(M) − 3).

Note that in real dimension 4 this is just the cup pairing.

3.5 Examples of Hyperkähler Manifolds

The first examples of IHS-manifolds are the K3-surfaces which are the only ex-

amples in dimension 4.
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Definition 3.5.1. A K3-surface is a simply connected compact complex surface

that admits a nowhere vanishing holomorphic 2-form.

In a way IHS-manifolds are the higher dimensional analogs of K3-surfaces.

An example of such a K3-surface is given by the Fermat quartic

F :=
{
[z1 : z2 : z3 : z4] ∈ CP 3 | z4

1 + z4
2 + z4

3 + z4
4 = 0

}

or more generally any hypersurface of degree 4 in CP 3, we have seen this exam-

ple already in Section 2.1. One can construct other examples by the so called

Kummer construction.

Example 3.5.1 (Kummer Surfaces). Let Λ be a rank 4 lattice in R4 and let

T 4 be the torus C2/Λ. Then on T 4 the group Z2 is acting by taking (z1, z2) to

(−z1,−z2). The resulting orbit space, X := T 4/Z2, is a complex orbifold with 16

singular points. Each singularity has a neighborhood which is diffeomorphic to

C2/ ± 1. For such a singularity there exists a resolution π : T ∗CP 1 → C2/ ± 1,

i.e. a map which is a biholomorphism away from the singular point 0 in C2/ ± 1

and its fiber π−1(0) ∼= CP 1. Thus, for each singular point s in X there exists a

neighborhood Us which can be cut out and a copy of T ∗CP 1 can be glued in ac-

cordingly, thus replacing the singular point s with a CP 1. The resulting space

Kum(T 4) is the blow up of X at the 16 singular points and is known as a Kum-

mer surface.

One can verify that Kum(T 4) is a K3-surface by noting that the 2-form σ =

dz1 ∧ dz2 on C2 descents to a form on (C2 − {0}) / ± 1. Lifted to T ∗CP 1 one
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can show by direct computations in local charts that the lift extends to T ∗CP 1

defining a holomorphic symplectic form. Then σ descents also to X and can be

lifted to a holomorphic symplectic form on Kum(T 4). For simply connectedness

we refer to [123].

It is interesting to note that the Fermat quartic is isomorphic to a Kummer

surface, see [83, Example 3.18]. However, not every Kummer surface is a hyper-

surface, they might not even be algebraic and in general there is an abundance

of different types of K3-surfaces. But when one forgets about complex struc-

tures and considers the underlying differentiable manifolds only, one has the

following well known theorem [14, (8.6) Corollary].

Theorem 3.5.1. Any two K3-surfaces are diffeomorphic.

Thus, a manifold diffeomorphic to a K3-surface will be called K3-manifold.

Proposition 3.5.2. Let M be the K3-manifold. Then the Euler number is

χ(M) = 24 and the second homology group with its cup pairing is isomorphic

as a lattice to the so called K3-lattice ΛK3 := E8(−1) ⊕E8(−1) ⊕U ⊕U ⊕U , i.e.

the unimodular and even lattice of sign (3, 19).

Proof. Let X be a complex K3-surface. From Proposition 3.3.1 we have χ(X,OX) =

2. The second Chern class c2(X) can now be computed by Noether’s formula

[60, p.472]

2 = χ(X,OX) = 1
12

(c1(X)2 + c2(X)) = c2(X)
12

.

Since the second Chern class is the Euler class of the tangent bundle we get for

the topological Euler characteristic χ(X) = 24 and thus b2(X) = 22. The second
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Stiefel Withney class ω2 is just the image of the first Chern class in H2(X,Z2) =

0. Furthermore, by Wu’s formula [107, p.132] we know

(x, x) = 〈x ∪ x, [X]〉 = (Sq2(x), [X]) = (ω2, x) mod 2.

Since ω2 = 0 we have that the cup pairing is even. On the other hand by Poincaré

duality we know that the pairing is unimodular. The sign of X can be com-

puted by the Thom-Hirzebruch index theorem [14, I 3.1 Theorem] which yields

τ(H2(X,Z)) = p1(X)
3

= c1(X)2 − c2(X)
3

= −16.

By the classification theorem of even unimodular lattices, Theorem 2.4.1, we

know that H2(M,Z) is isomorphic to the lattice ΛK3.

The Fermat quartic F is a complex submanifold of CP 3 and therefore Kähler.

Thus F is an example of an IHS-manifold. Since the first Betti number is even,

as it vanishes, we know by [14, (3.1) Theorem p. 144] that in fact every K3-

surface admits a Kähler metric and thus all of them are IHS. K3-surfaces were

the first manifolds for which one could apply the Calabi-Yau Theorem 2.1.4 pro-

ducing hyperkähler manifolds and also the first examples of non-flat Ricci-flat

metrics. In fact, hyperkähler metrics are the only type of Ricci-flat metrics that

can occur on M . For the following see [19, 6.40] and [72].

Theorem 3.5.2. Let M be the K3-manifold and g a Riemannian metric on M .

Then the following are equivalent:
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• g is Einstein

• g is Ricci-flat

• g has zero scalar curvature

• g has non-negative scalar curvature

• g is hyperkähler.

Higher Dimensional Examples

We first give the 2 examples found in dimensions 4k by Beauville. For that we

need the notion of the Douady space of length n. A complex manifold X can

be viewed as a ringed space (X,OX) where OX is the structure sheaf, i.e. the

sheaf of holomorphic functions on X. For a complex subspace (A,OA) in the

category of ringed spaces, the length is then defined as ∑a∈A dim(OA,a), where

OA,a denotes the stalk of OA at a. The Douady space of length n, denoted X [n],

is the space which parametrizes all 0-dimensional subspaces of length n in X. It

can be described more readily as follows:

Let Xn := X × · · · × X be the n-fold product of X on which the symmet-

ric group Sn acts by permutations. The nth-symmetric product is the quotient

space X(n) := Xn/Sn which is a complex orbifold. The singular set of X(n) is

given by

∆ =
⋃
i 6=j

{ (x1, · · · , xn) ∈ Xn | xi = xj } .

Consider the map ρ : X [n] → X(n) which takes a 0-dimensional subspace (A,OA)

of length n to (a1, · · · , a1, · · · , ak, · · · , ak) in X(n) where each aj ∈ A appears

exactly dim(OA,aj
) times. Fogarty proves in [51] that X [n] is a smooth complex
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manifold and ρ induces a biholomorphism X [n] − ρ−1(∆) ∼= X(n) − ∆. Thus,

one may think of ρ as a desingularization of X(n). For n = 2 the space X [n]

is obtained by the blow up along ∆. If the space X is projective the Douady

space agrees with the Hilbert scheme Hilbn(X) which parametrizes subschemes

of length n. The following two examples are due to Beauville, see [16] and [15].

Hyperkähler Manifold of K3[n]-type: For a K3-surface X the Hilbert

Scheme X [n] := Hilbn(X) is an IHS-manifold. More precisely, in case X is not

projective one should speak of the Douady space described above. The second

cohomology lattice of X [n] is isomorphic to

ΛK3[n] := E8(−1) ⊕ E8(−1) ⊕ U ⊕ U ⊕ U ⊕ I1,0(−2(n− 1)),

see [65] and [16, Proposition 6]. For the following see also [85, p.166].

Generalized Kummer Variety: Let Y := T 4 be a 2-dimensional com-

plex torus which we consider as an abelian Lie group. Let Y (m) be its symmet-

ric product and σ : Y (m) → Y the natural map given by summing the m-points.

Denote by Km−1(Y ) the kernel of the composition Hilbm(Y ) → Y (m) → Y .

Then Km−1(Y ) is a (2m − 2)-dimensional complex submanifold of Hilb(m)(Y )

and is moreover IHSM by [16, Prop. 8] with b2 = 7.

There are certain methods to construct new examples out of old ones. One is

given by deforming an IHS-manifold X ( see also next chapter ), e.g. one con-

structs a smooth proper morphism π : X → S between connected complex

spaces X and S so that X is the fiber of a designated point s0 ∈ S. One can

then show that the fiber Y = π−1(t), the deformation of X, is also an IHS-
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manifold if t is sufficiently close to s0, see [65, Proposition 22.7] and in gen-

eral [65, Section 22.1] for more details. A smooth deformation is one where the

spaces X and S are smooth. For a brief overview on deformation theory see [19,

Chapter I Section 10], [85, 4.9.2] and [75, Chapter 6]. In the case of deforming

Hilbn(X) we introduce the following notion.

Definition 3.5.2. An IHS-manifold Y will be said to be of type K3[n] if there is

a K3-surface X such that Y is a smooth deformation of Hilbn(X).

If X is an IHS-manifold sometimes a birational IHS-manifolds can be con-

structed by the so called Mukai flop for which we refer to [65, Example 21.7]

and [65, Example 21.8]. Without going into details on birationality let us make

the following comment to that notion. The condition of birationality for IHS-

manifolds is rather strong compared to the general case. For instance, from

[65, Proposition 21.6] we obtain that for IHS-manifolds X,X ′ a birational map

f : X 99K X ′ can be described as follows. There exists open subspaces U and U ′

of X and X ′ respectively with codimC(X \U) ≥ 2 and codimC(X ′ \U ′) ≥ 2 such

that f induces an isomorphism U → U ′. Let us mention that when X is not

projective one should in fact use the term bimeromorphic instead of birational.

However, we will also use the term birational and mean bimeromorphic in the

non-projective case.

Lemma 3.5.3. For birational IHS-manifolds X and X ′ there exists a natural

isometry (H2(X ′,Z), qX′) → (H2(X,Z), qX) which preserves the Hodge decompo-

sition. Furthermore, X ′ is a smooth deformation of X.
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Proof. The first statement is [76, Lemma 2.6] and the second [65, Proposition

27.8], see also [79].

Up until now all known examples of IHS-manifolds are smooth deformations

of a manifold of type K3[n] or a generalized Kummer variety, except for two

exceptional examples in complex dimension 10 [1] and 6 [117] both found by

O’Grady. Now it is important to note that a smooth deformation f : X → S

is a surjective proper holomorphic map between smooth spaces X and S. The

Ehresmann fibration theorem, see for instance [75, Corollary 6.2.3], states that

f is a differentiable fiber bundle. Henceforth, although the fibers are not neces-

sarily isomorphic as complex manifolds, they are all diffeomorphic. Therefore,

there are only two known examples of hyperkählerian manifolds in dimensions

4n, except for the two examples given by O’Grady in real dimensions 12 and 20.

3.6 Torelli Theorems for K3-Surfaces

Let us now briefly explain how one can study and distinguish non-isomorphic

K3-surfaces.

Since a K3-surface X = (M, I) is Kähler we may consider the weight 2 Hodge

decomposition

H2(X;C) = H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X)

and its relative position to the lattice H2(M,Z). For instance consider the so

called Neron Severi lattice NS(X) := H1,1(X) ∩ H2(M,Z) and Y = Kum(T 4)

a Kummer surface. Let ei for i = 1, · · · , 16 denote the Poincaré duals of the

68



16 classes Ei provided by the CP 1 we glued in to replace the singular points in

the Kummer constructions 3.5.1. The Kummer lattice ΛK is then the smallest

primitive sublattice of H2(Y,Z) that contains all ei. A K3-surface X is then a

Kummer surface if and only if there exists a primitive embedding ΛK → NS(X),

see [83, Section 14 Theorem 3.17] and [112].

The Hodge structure therefore provides a lot of information. In general, the

Torelli problems ask to which extent the Hodge structure determine a K3-surface.

Also, whether every Hodge structure is induced by one. That is, given a decom-

position H2(M,C) = H2,0 ⊕ H1,1 ⊕ H0,2 with dim H2,0 = 1 and H2,0 = H0,2, then is

there a K3-surface which has this as its Hodge structure. These questions have

been answered affirmatively by various authors, see [30], [101], [119], [121] and

[81] for a modern survey. For the following theorem see for instance [14, p.332

(11.1) Theorem] and was formulated in this form by Burns and Rapoport [30].

Theorem 3.6.1 (Strong Torelli Theorem for K3-Surfaces). Let X and X ′ be

K3-surfaces so that there exists an isometry φ : H2(X,Z) → H2(X ′,Z) such that

• φ is an isomorphism of Hodge structures

• φ takes some Kähler class of X to a Kähler class of X ′.

Then there exists a unique biholomorphism f : X ′ → X such that f ∗ = φ.

One can translate the above theorem into a statement about injectivity of

a map which is known as a period map. See also [85, Section 7.3.2] for a brief

discussion and the chapter on K3-surfaces in [14] or [83] for a detailed treat-

ment of the following. We use the language of marked spaces to make this more

precise. A marked K3-surface is a pair (X,φ) where X is a K3-surface and
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φ : H2(X,Z) → ΛK3 an isomorphism of lattices. The moduli space of marked

K3-surfaces is then the set

Mm
K3 := {(X,φ) marked K3-surfaces }/ ∼

where isomorphic marked spaces are identified, i.e. (X,φ) ∼ (X ′, φ′) if there is

a biholomorphism f : X → X ′ such that in cohomology φ ◦ f ∗ = φ′. Although

it is not clear from the definition, Mm
K3 has a natural topology which makes it

a non-Hausdorff complex manifold. The definition of this topology is not triv-

ial, uses deformation theory and the period map defined below, we refer to [14,

Section VIII] for details. Define the period domain as the complex manifold

Per := {σ ∈ PC(ΛK3) | (σ, σ̄) > 0 and (σ, σ) = 0}.

In the next section we will see that Per parametrizes the Hodge structures which

arise by K3-surfaces. The period map P : Mm
K3 → Per is then defined by map-

ping (X,φ) to the so called period point φC(H2,0(X)). The local Torelli theorem

now states that P is a local isomorphism of complex manifolds and is attributed

to Andreotti and Weil, see [92, Thm 17]. The surjectivity of this map gives a

positive answer to the question whether every possible Hodge structure is in-

duced by a K3-surface and was proven by Todorov [126]. To phrase the second

statement of Theorem 3.6.1 in terms of an injectivity result, we need to refine

the period map and the period domain. For that we use the following very use-

ful description of the Kähler cone. Recall that the Kähler cone of a Kähler man-
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ifold X is the set of Kähler classes Käh(X) in H2
DR(X).

Theorem 3.6.2. For a K3-surface X let ∆ := {c ∈ H2(X,Z) ∩ H1,1(X) | c2 =

(c, c) = −2}. Then

Käh(X) =
{
x ∈ H2(X,R) ∩ H1,1(X) | (x, c) > 0 for all c ∈ ∆

}
.

In the next section we will see that x ∈ H2(X,C) is of type (1, 1) if and only

if x is orthogonal to H2,0(X). Motivated by Theorem 3.6.2 we define ∆(Π) :=

{c ∈ Λ ∩ Π⊥ | c2 = −2} for a point Π in Per. A Kähler chamber of Π in ΛK3 ⊗R

is a connected component of the set

{
x ∈ (ΛK3 ⊗ R) ∩ Π⊥ | (x, c) 6= 0 for all c ∈ ∆(Π)

}
.

Let KC(Π) denote the set of Kähler chambers determined by Π. The refined

period space is then the space

P̃er := {(Π, C) | Π ∈ Per and C ∈ KC(π)}.

We also obtain a refined period map P̃ : Mm
K3 → P̃er by associating to a marked

space (X,φ) the pair (φC(H2,0(X)), φC(Käh(X))). The strong Torelli theorem

for K3-surfaces can then be refined to the statement that the refined period

map is bijective, which is a consequence of a result due to Looijenga [98].
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The Weyl group of a K3-surface X is the group

W(X) := {rc ∈ O
(
H2(X,R)

)
| rc a reflection along c ∈ ∆},

i.e. the group of reflections along (−2)-classes of type (1, 1). The group acts

transitively on the set of Kähler chambers while preserving the Hodge structure,

see [83, Proposition 5.5]. From this and the Strong Torelli theorem it follows

that two marked K3-surfaces (X,φ) and (X ′, φ′) are biholomorphic if P(X,φ) =

P(X ′, φ′), see also [14, p.333 (11.2) Theorem]. This is known as the Weak Torelli

Theorem.

Recall that a hyperkähler metric g defined on the K3-manifold M induces a

2-sphere of complex structures on M . A complex structure obtained in this way

endows M with the structure of a complex K3-surface. Thus, the Torelli theo-

rems provide an extremely useful tool when studying hyperkähler metrics and

can be used to prove the following theorem on the moduli space of hyperkähler

metrics, which is originally due to Todorov [125] and Looijenga [99].

Theorem 3.6.3. The moduli space of hyperkähler metrics of unit volume on the

K3-manifold is homeomorphic to

O(ΛK3) \

Gr+(3,Λ ⊗ R) −
⋃

z (−2)−classes
Gr+(3, z⊥))

 .
Note, by Theorem 3.5.2 the above is also a description for the moduli space of

unit volume Einstein metrics on the K3-manifold.

In the following sections we will see analogous results on period maps for gen-
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eral IHS-manifolds. However, instead of working with marked spaces we will

introduce and use the notion of Teichmüller spaces. In doing so we will recover

a description of the Teichmüller space of hyperkähler metrics due to Amerik and

Verbistky [3] and generalize the above theorem to higher dimensional hyperkäh-

lerian manifolds.

Before ending this chapter note that points in ⋃z Gr+(3, z⊥) do not corre-

spond to any hyperkähler metrics according to Theorem 3.6.3. A natural ques-

tion is if these points still represent geometrically meaning full objects. This

has been answered in the case of the K3-manifold by Kobayashi and Todorov,

see [90], and [7] for a different approach. They show that if one allows not only

smooth hyperkähler metrics but also metrics having certain singularities, then

points in the above space naturally correspond to these singular metrics. For

more details to this we refer to [90] and [7], see also Sections 7.5 and 7.6.
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Was eine Kurve ist, glaubt jeder Mensch zu

wissen, bis er so viel Mathematik gelernt hat,

daß ihn die unzähligen möglichen Abnormitäten

verwirrt gemacht haben.

Felix Klein

4
Teichmüller Spaces of Irreducible

Holomorphic Symplectic Structures

We consider the space of complex structures on a fixed hyperkählerian manifold

M and discuss the Teichmüller space T Cpl(M) of irreducible holomorphic sym-

plectic structures on M . The Teichmüller space can be understood as a type of
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moduli space, parametrizing the complex structures up to special isomorphisms.

We then explain how IHS-structures can be studied in terms of their induced

Hodge structure and introduce the notions of a period domain and the complex

period map. The main goal of this chapter is then to state a surjectivity result

of Huybrechts [76], and discuss injectivity statements by the work of Verbitsky

[132, 135] and Markman [42]. See also [65] for some backgrounds.

4.1 Teichmüller Space and Deformations

We introduce the complex Teichmüller space on a compact smooth manifold

M of even dimension. Furthermore, we briefly discuss deformation theory and

its relation to the Teichmüller space. For more details we refer to [32], see also

[122].

Recall that an almost complex structure on M is a section

I : M → End(TM)

of the endomorphism bundle End(TM), such that I2 = −Id. The space of

all almost complex structures on M , denoted AComp(M), is endowed with the

topology of smooth convergence. With this choice of topology AComp(M) has

the structure of an infinite dimensional Fréchet manifold.

Almost complex structures are of particular interest if they are induced by a

complex structure. It is well known that I is induced in such a way if and only

if I is integrable, see [111]. Recall that integrablity means that the Lie bracket
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of vector fields preserves the splitting TMC = TM1,0 ⊕ TM0,1 into eigensubbun-

dles of I, i.e. integrability is the condition

[V,W ] ∈ TM1,0,

for all vector fields V,W in TM1,0. In this way we may view the space of all

complex structures on M , denoted Comp(M), as a closed subspace of AComp(M).

Let us also state that by a complex structure we often mean its associated inte-

grable almost complex structure and vice versa. A complex manifold X is in

this sense a tuple X = (M, I).

It turns out to be convenient for us not to consider the space of all complex

structures, but restrict to those which are Kähler and admit, up to a constant,

a unique holomorphic symplectic form, i.e. irreducible holomorphic symplectic

structures. Thus, we define CompIHS(M) to be the subspace of Comp(M) con-

sisting of complex structures which are IHS.

The space CompIHS(M), as all the others above, comes with an action by the

diffeomorphism group Diff(M) provided by

φ∗I := dφ−1 ◦ I ◦ dφ,

for φ in Diff(M). Naturally one would be interested in studying the orbit space,

also known as the moduli space of complex structures. However, this space is

often very ill behaved, see [134] for the case that M is hyperkählerian. A more

fruitful notion is provided by the Teichmüller space.
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Definition 4.1.1. The full Teichmüller space of complex structures is

T Cpl
Full (M) := Comp(M)/Diff0(M),

where Diff0(M) denotes the identity component of Diff(M).

Since T Cpl
Full (M) possibly also contains elements which are not induced by hy-

perkähler metrics we are more interested in the following subspace of T Cpl
Full (M).

Definition 4.1.2. The Teichmüller space of irreducible holomorphic symplectic

structures is

T Cpl(M) := CompIHS(M)/Diff0(M)

and will be called the complex Teichmüller space.

The Teichmüller spaces above can be studied in terms of deformation theory

of complex manifolds. A deformation of X = (M, I), in this context, is a holo-

morphic submersion f : X → S between complex spaces X ,S, possibly singular

and non-reduced, such that f−1(0) ∼= X, where 0 is some base point of S. The

deformation f is also called a family over S if each fiber gives rise to a smooth

complex manifold. However, we will mostly not need this general version, but

consider the case when X and S are complex manifolds only. Of particular im-

portance is then the notion of deformation equivalence, which we define now.

Given two complex manifolds X = (M, I) and X ′ = (M, I ′). Then X and X ′

are disk deformation equivalent, denoted X ∼disk X
′, if and only if the following

holds. There is a proper holomorphic submersion π : X → ∆, with connected

fibers over the unit disk ∆ ⊂ C satisfying the following property:
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There exists t1, t2 ∈ ∆ with

• π−1(t1) is biholomorphic to X,

• π−1(t2) is biholomorphic to X ′.

Two complex manifolds Y = (M,J) and Y ′ = (M,J ′) are deformation equiv-

alent, if there is a sequence X1, · · · , Xn of disk deformation equivalent spaces

such that

Y ∼disk X1 ∼disk X2 ∼ · · · ∼ Xn ∼disk Y
′.

From [32, Corollary 6] we get the following theorem.

Theorem 4.1.1. Two complex manifolds X and X ′ are in the same connected

component of T Cpl
Full (M) if and only if they are deformation equivalent.

For T Cpl(M) one can say more. The Kuranishi space B(X) is the germ, in

the sense of complex spaces, which parametrizes all small deformations of the

complex manifold X = (M, I). This means that there is a family π : F → B(X)

such that any deformation f : X → S of X is induced by a pullback of π in a

small neighborhood of the base point 0 ∈ S.

There exists a surjective map B(X) → UI , where UI is some neighborhood

of I in T Cpl
Full (M). In general this map is not a homeomorphism. However, for

Kähler manifolds with trivial canonical bundle one obtains that this map is

indeed an isomorphism [32, Prop.15]. In particular, this is the case for IHS-

manifolds. Furthermore, by [19, 14.31 Theorem] respectively [20] we get that

B(X) is smooth. This implies the following proposition.

Proposition 4.1.1. The complex Teichmüller space T Cpl(M) is locally homeo-
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morphic to some Cn.

Later we will see that T Cpl(M) is not Hausdorff.

4.2 The Complex Period Domain

Our goal is to study the Teichmüller space T Cpl(M) by using Hodge decom-

positions. For IHS-manifolds these Hodge decompositions are parametrized by

what is called a period domain. In this section we introduce the weight 2 Hodge

structures of IHS-manifolds and the corresponding period domain. We will al-

ways mean the weight 2 Hodge structures of an IHS-manifold when we speak of

its Hodge structure, ignoring the ones in other degrees.

Let X = (M, I) be an IHS-manifold. By definition X is Kähler, and thus we

get an induced Hodge structure on H2(M,C), i.e. a decomposition of complex

vector spaces

H2(M,C) = H2,0(I) ⊕ H0,2(I) ⊕ H1,1(I).

Recall that this decomposition only depends on the complex structure I and not

on any Kähler metric. We also recall, for instance from [75, Corollary 2.6.21],

that H2,0(I) is isomorphic to H0(X,Ω2), the space of holomorphic 2-forms. For

an IHSM this space is spanned by a unique holomorphic 2-form σ and thus we

have

H2,0(I) = σ · C and H0,2(I) = σ̄ · C.

With respect to the BB-form q recall from Lemma 3.4.1 that the space of (1, 1)-

classes H1,1(I) is orthogonal to H2,0(I) ⊕ H0,2(I). Another straightforward com-

79



putation shows that

q(σ, σ) = 0 and q(σ, σ̄) > 0.

We find that the Hodge decomposition of an IHSM is completely determined by

the holomorphic 2-form σ. On the other hand, any vector v in H2(M,C) satis-

fying q(v, v) = 0 and q(v, v̄) > 0 determines a Hodge structure on H2(M,C) by

setting

H2,0 := v · C, H2,0 := v̄ · C, H1,1 := (v · C ⊕ v̄ · C)⊥.

Clearly, if v′ is a scalar multiple of v the induced Hodge structures are the same.

A Hodge decomposition like above is said to be of IHSM-type.

Definition 4.2.1. The complex period domain is defined as the projectivization

Per(M) := P
(
{v ∈ H2(M,C) | q(v, v) = 0 and q(v, v̄) > 0}

)
.

The complex period domain is an open subspace of the quadric {q(v, v) = 0}

in P(H2(M,C)). In particular, Per(M) has the structure of a complex manifold.

By the previous discussion we may think of Per(M) as the space of Hodge

structures of IHSM-type. There is another way to think about Per(M) which

turns out to be very convenient for us. See also [65, Section 25.4] for the follow-

ing statements.
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Lemma 4.2.1. The following map is a diffeomorphism,

Per(M) → Gr+,o(2,H2(M,R))

[v] 7→ spanR (Re(v), Im(v)) ,

with orientation provided by the basis (Re(v), Im(v)).

Proof. An inverse of the above map can be defined as follows. For a positive

oriented 2-space P we choose an oriented orthonormal basis (v1, v2). Then we

set [v] to be the line generated by v = v1 + iv2.

The Grassmann space Gr+,o(2,H2(M,R)) gives another way to view Per(M),

namely in terms of a homogeneous space as it follows from Lemma 2.3.1 and

Theorem 3.4.2.

Lemma 4.2.2. The Grassmann space Gr+,o(2,H2(M,R)) is homeomorphic to

O(3, b2 − 3)/ (SO(2) × O(1, b2 − 3)) ,

where b2 is the second Betti number of M .

Overall we obtain the following topological description of Per(M).

Corollary 4.2.3. The complex period domain Per(M) is a connected and simply

connected complex manifold of complex dimension b2 − 2.

Proof. The only thing left to be proved is connectedness and simply connected-

ness. Recall that O(3, b2 − 3) and O(1, b2 − 3) have 4 connected components,
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which can be distinguished by the determinant and the spinor norm. The inclu-

sion O(1, b2 − 3) ↪→ O(3, b2 − 3) respects these and thus it also respects the

connected components. We conclude that

O(3, b2 − 3)/ (SO(2) × O(1, b2 − 3))

is connected.

Let SOo(3, b2−3) denote the connected component of the identity in O(3, b2−

3) and SOo(1, b2 − 3) the corresponding one for O(1, b2 − 3). Then Per(M) is

homeomorphic to

SOo(3, b2 − 3)/ (SO(2) × SOo(1, b2 − 3)) .

The quotient map SOo(3, b2 − 3) → SOo(3, b2 − 3)/ (SO(2) × SOo(1, b2 − 3))

is a fiber bundle with fiber SO(2) × SOo(1, b2 − 3). By i denote the inclusion

SO(2) × SOo(1, b2 − 3) ↪→ SOo(3, b2 − 3). From the long exact sequence on

homotopy groups we get the exact sequence

· · · → π1(SO(2) × SOo(1, b2 − 3)) i∗−→ π1(SOo(3, b2 − 3)) → π1(Per(M))) → 0.

We show that i∗ is surjective which then implies that π1(Per(M))) = 0.

Recall that SO(p) × SO(q) is a maximal subgroup of SOo(p, q), in particular

they are homotopy equivalent. Now consider the following commutative dia-
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gram:

π1(SO(2)) × π1(SO(b2 − 3)) π1(SO(2)) × π1(SOo(1, b2 − 3))

π1(SO(3)) × π1(SO(b2 − 3)) π1(SOo(3, b2 − 3))

i∗

All maps are induced by inclusions, furthermore, the horizontal maps are iso-

morphisms. The inclusion SO(2) ↪→ SO(3) is surjective on the level of funda-

mental groups. This can be seen by the long exact sequence of homotopy groups

associated to the fibration SO(3) → SO(3)/SO(2) ∼= S2. Thus, we conclude that

i∗ is surjective as well.

4.3 The Complex Period Map Part I

We define the complex period map and state a surjectivity theorem of Huy-

brechts in [76]. Furthermore, we introduce the birational Teichmüller space and

give first statements about the fibers of the complex period map based on the

work of Verbitsky [132, 135], see also [82].

Definition 4.3.1. The complex period map on a hyperkählerian manifold M is

PCpl : T Cpl(M) → Per(M),

defined by mapping the complex structure I to [σ], where σ is the nowhere van-

ishing holomorphic 2-form of the IHS-manifold (M, I).

Recall that H2,0(I) is spanned by [σ] and thus PCpl(I) is the complex line
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H2,0(I), when considered as a point in Per(M). Huybrechts proved that the

complex period is surjective. More precisely he showed the following theorem,

see [76, Section 8],[77].

Theorem 4.3.1. Let T Cpl
o (M) be a connected component of T Cpl(M). Then the

period map restricted to the connected component

PCpl : T Cpl
o (M) → Per(M),

is surjective.

In general the map PCpl fails to be injective, even when restricted to con-

nected components. However, Verbitsky proves that the complex period map

is generically injective on connected components. In [132, 135] (see also [82]), he

constructs a Hausdorff version of T Cpl(M) over which the period map factorizes.

Let us explain what this means.

Definition 4.3.2. Let X be a topological space which is not Hausdorff. Two

points x, y in X are inseparable, sometimes also called non-Hausdorff, if for all

open neighborhoods Ux of x and Uy of y one has

Ux ∩ Uy 6= ∅.

The notion of inseparability is in the general case not an equivalence relation,

as it fails to be transitive. However, by studying the period map with lots of

insights into the Teichmüller space, Verbitsky proved that inseparability turns
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out to be an equivalence relation for the space T Cpl(M).

Definition 4.3.3. The birational Teichmüller space T Cpl
b (M) is defined as

T Cpl
b (M) := T Cpl(M)/ ∼,

where two points are identified if they are inseparable.

The choice for the name will come apparent by the following two theorems

also proven by Verbitsky in [132, 135], see also [82].

Theorem 4.3.2. The period map PCpl is a local isomorphism which factors

through

PCpl
b : T Cpl

b (M) → Per(M).

The map PCpl
b is a trivial covering, i.e. a homeomorphism on connected compo-

nents.

From the same work [132, 135] we get a description of the fibers of PCpl.

Theorem 4.3.3. Let T Cpl
o (M) be a connected component of T Cpl(M) and con-

sider the period map PCpl restricted to T Cpl
o (M). Then each fiber of PCpl in

T Cpl
o (M) is finite. Furthermore, the fibers with more than one point correspond

exactly to the non-Hausdorff points of T Cpl
o (M). If I and I ′ are contained in the

same fiber in T Cpl
o (M), then I is birational to I ′.

Note that the theorem does not say that if I and I ′ are birational that they

also belong to the same fiber.
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Later we will provide an even more detailed picture of the fibers of PCpl. This

will be done once we have introduced the notion of MBM-classes and Kähler

chambers.

4.4 The Kähler Cone of an IHS-manifold

Recall that a Kähler class on a complex manifold X := (M, I) is a class [ω] in

the de Rham cohomology H2
DR(M) for which there exists a Kähler form ω, with

respect to I, representing [ω]. By de Rham’s theorem we will identify de Rham

cohomology with singular cohomology H2(M,R). In the following we will be

interested in the set of Kähler classes as the complex structure I may vary while

M is fixed. Recall the definition:

Definition 4.4.1. The Kähler cone Käh(I) is defined as the set of Kähler classes

in H2(M,R).

On a compact Kähler manifold every Kähler class [ω] is real and of type (1, 1),

meaning [ω] ∈ H1,1(I) ∩ H2(M,R). If X is furthermore assumed to be IHSM,

then the second cohomology group is endowed with the BB-form q. For a Käh-

ler form ω, one then finds

q([ω], [ω]) = c
∫
ω2 ∧ (σ ∧ σ̄)n−1 > 0,

with c a positive constant. Thus, Käh(I) is contained in the following cone:

Definition 4.4.2. The positive cone of X = (M, I) is the cone of positive (1, 1)
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classes which contains a Kähler class, i.e. Pos(I) is the connected component of

{v ∈ H2(M,R) | q(v, v) > 0} ∩ H1,1(I),

which contains Käh(I).

Recall that a cone in a R-vector space V is a subset K such that R>0 ·K = K.

A convex cone is then a cone K if for every v, w ∈ K also t1v + t2w is contained

in K whenever t1, t2 > 0. Clearly Pos(I) is a convex cone. From [75, Cor. 3.1.8]

we get that the same is true for the Kähler cone, more precisely we get:

Lemma 4.4.1. The Kähler cone Käh(I) on a compact complex Kähler manifold

is a connected convex cone, which furthermore is open in H1,1(I) ∩ H2(M,R).

Note that connected cones are contractible and so is Käh(I). Also note that

the boundary of a convex cone is in principle enough to recover the cone itself.

Definition 4.4.3. A wall or face of a cone K ⊂ V is a subset F of the bound-

ary ∂K, for which there exists a codimension 1 subspace H of V with ∂K ∩H =

F so that F is has non-empty interior in H.

It is not true that the boundary ∂Käh(I) is entirely decomposed into faces.

This is most easily seen in the extreme case when Käh(I) = Pos(I), in which

case Käh(I) has no faces at all. However, for IHS-manifolds the boundary of

the Kähler cone is decomposed into a so called round part, which will turn out

to be part of the boundary of the positive cone, and into faces. The faces can

be determined in terms of rational curves, which we will explain now. First we
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recall that by a rational curve we mean a generically injective holomorphic map

f : CP 1 → X.

The image of f defines a class C in H2(M,Z). The bilinear pairing q induces an

isomorphism between rational homology and cohomology

H2(M,Q) ∼= H2(M,Q).

With this identification in mind, we may view C as rational cohomology class.

The following theorem is due to Huybrechts and Bouckson, see [79] and [27].

Theorem 4.4.1. Let X = (M, I) be an IHS-manifold. Then the Kähler cone

Käh(I) is the subcone of Pos(I) which is given by those elements which are

strictly positive on all rational curves, i.e.

Käh(I) = {ω ∈ Pos(I) | q(ω,C) > 0 for all rational curves C}.

A face of Käh(I) is therefore of the form Pos(I) ∩ C⊥, where C⊥ is the or-

thogonal complement of the rational curve C in H2(M,R). In other words, the

above theorem states that the Kähler cone is a connected component of

Pos(I) −
⋃

C rational curve
C⊥.

Also note that a connected component K of Pos(I) − ⋃
C rational curve C

⊥ is deter-
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mined by the sequence of plus and minus signs q(K,C) as C ranges over the set

of all rational curves and Käh(I) is the one with only positive signs.

An important question now is to which extent one can determine the cone

Käh(I) from data induced by the period PCpl(I). Note, that for the positive

cone this is easy since

Pos(I) = PCpl(I)⊥ ∩ {v ∈ H2(M,R) | q(v, v) > 0}.

For the Kähler cone this is much more difficult. A problem one faces is that de-

termining rational curves is very hard and in full generality they furthermore

behave badly under deformations. However, there is a partial solution to this

problem due to Amerik and Verbitsky, see [49] for a survey. We first need the

following definition, which will also be of interest at other parts.

Definition 4.4.4. The monodromy group Mon2(I) of an IHS-manifold X =

(M, I) is the subgroup of O(H2(M,Z), q) induced by the monodromy action of

Gauss-Manin local systems, for all deformations of X over a connected complex

analytic base.

For the notion of local systems and Gauss-Manin connections see for instance

[46], and [43] for more on the monodromy group. We will mostly not use Defini-

tion 4.4.4 but think of the monodromy group like it is presented in the following

theorem, which is [132, 135, Thm. 7.2].

Theorem 4.4.2. Let X = (M, I) be an IHS-manifold and let T Cpl
o (M) be the

connected component of T Cpl(M) containing I. Furthermore, let DiffI(M) de-
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note the subgroup of Diff(M) which preserves the connected component T Cpl
o (M).

Then Mon2(I) is the group generated by all isometries φ∗ : H2(M,Z) → H2(M,Z)

with φ ∈ DiffI(M).

Note that Mon2(I) only depends on the connected component T Cpl
o (M). We

can now introduce the notion of MBM-classes, short for minimal birational

monodromy.

Definition 4.4.5. A class z ∈ H2(M,Z) with z2 < 0 of type (1, 1) is an MBM-

class if and only if there exists some γ ∈ Mon2(I) and a complex structure I ′

birational to I such that γ(z)⊥ ∩ ∂Käh(I ′) is a face of the Kähler cone Käh(I ′).

The name minimal in MBM comes from the notion of special rational curves

on (M, I) which are minimal in the following sense. They cannot be bend and

broken, see [38, Chapter 3] for this notion, behave well under deformation and

are sufficient to determine the Kähler cone. Amerik and Verbitsky were able to

prove the following important theorem, see [2, Thm 6.2] which improves Theo-

rem 4.4.1.

Theorem 4.4.3. Let S denote the subset of MBM-classes in H2(M,Z). Then

the Kähler cone is a connected component of

Pos(I) −
⋃
z∈S

z⊥.

Although the definition of MBM-classes still depends on the complex struc-

ture, i.e. they are not determined by the period point in any obvious way, Amerik
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and Verbitsky showed that it only depends on the deformation type, see [2, Cor.

5.13].

Theorem 4.4.4. Let X = (M, I) and X ′ = (M, I ′) be deformation equivalent

and z an MBM-class with respect to I. If z is also of type (1, 1) with respect to

I ′, then z is MBM with respect to I ′.

As a consequence, we find that MBM-classes only depend on the connected

components of the Teichmüller space. To be more precise, if z is MBM for one

complex structure I in T Cpl
o (M), then z is MBM for all I ′ ∈ T Cpl

o (M) for which

z is of type (1, 1). Thus, when a connected component of T Cpl(M) is fixed, we

define the set of MBM classes as MBM(T Cpl
o (M)) to be the set of those z ∈

H2(M,Z) which are MBM for some I ′ in T Cpl
o (M). A class z ∈ MBM(T Cpl

o (M))

is then MBM with respect to I if and only if z is in PCpl(I)⊥. Thus, in the fol-

lowing we will often call a class MBM if it is MBM for some IHS-structure on

M . For a IHS-manifold X = (M, I) we then also often say that a MBM-class c

is of type (1, 1) to emphasize that c is MBM with respect to I.

In general it is still difficult to determine which classes are of MBM-type. For

the K3-surface however, these are precisely the (−2)-classes in H2(M,Z), recall

Theorem 3.6.2.

4.5 The Complex Period Map Part II

The main goal of this section is to discuss the fibers of the complex period map.

For that we consider PCpl restricted to a connected component T Cpl
o (M) of the

complex Teichmüller space.
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From the previous section we know that the Kähler cone of an IHSM X =

(M, I) is a connected component of Pos(I) − ⋃
z z

⊥ with z running through the

set of MBM-classes of type (1, 1).

Definition 4.5.1. A connected component of Pos(I) − ⋃
z z

⊥ is called a Kähler

chamber.

Let I ′ be a complex structure in T Cpl
o (M) such that I ′ is in the fiber of PCpl(I).

Since I ′ is deformation equivalent to I with H1,1(I) = H1,1(I ′), the two complex

structures share the same MBM-classes. Thus, the Kähler cone of I ′ is possibly

another connected component of

Pos(I) −
⋃
z

z⊥.

From Theorem 4.4.3 it follows that if Käh(I) ∩ Käh(I ′) 6= ∅, then Käh(I) =

Käh(I ′).

Let Mon2
Hdg(I) be the subgroup of Mon2(I) which consists of those orthogonal

transformations of H2(M,Z) which preserve the Hodge structure induced by I.

This group acts on the set of Kähler chambers, i.e. it takes Kähler chambers to

Kähler chambers. Markman makes the following definition, compare [42].

Definition 4.5.2. A Kähler type chamber is a subcone of Pos(I) of the form

g[f ∗Käh(I ′)],

where f is a bimeromorphisms of I with I ′ and g ∈ Mon2
Hdg(I).
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We want to show that Kähler-type chambers and Kähler chambers are the

same. For that we need the following definition.

Definition 4.5.3. A class α ∈ Pos(I) is very general if

α⊥ ∩ H1,1(I,Z) = 0.

By [42, Lemma 5.11, Page 278] we have the following lemma.

Lemma 4.5.1. Every very general class is contained in some Kähler type cham-

ber.

We can now prove our claim.

Corollary 4.5.2. Let K be a Kähler chamber. Then K is a Kähler type cham-

ber and vice versa.

Proof. It is clear that a Kähler type chamber is a Kähler chamber. The set of

very general elements is given by the complement of all c⊥ in Pos(I) where c

runs through all intergral classes of type (1, 1) except 0. Thus, it is an open

and dense subset of Pos(I). The Kähler chamber K is also open, and thus it

contains a very general class α. By the previous lemma α is contained in some

g[f ∗Käh(I ′)]. Therefore, g−1α ∈ f ∗Käh(I ′). Since Mon2
Hdg(I) acts on the set of

Kähler chambers, g[f ∗Käh(I ′)] = K.

One might wonder about the terminology chosen here. Markman however

defined the notion of Kähler type chambers before the notion of MBM-classes

were introduced.
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The following theorem on the set of Kähler chambers KC(I) is also due to

Markman, see [42, Theorem 5.16, Page 281].

Theorem 4.5.1. Let X = (M, I) be an IHSM and PCpl be the complex period

map restricted to the connected component T Cpl
o (M) containing I. Then there is

a Mon2
Hdg(I)-equivariant bijection

p : PCpl−1 (
PCpl(I)

)
→ KC(I)

given by sending I ′ to its Kähler cone Käh(I ′).

Thus, a Kähler chamber is a Kähler cone for some complex structure in the

fiber of PCpl(I). Furthermore, we find that the period map is injective on the

subspace of T Cpl
o (M) consisting of those complex structures for which Pos(I) =

Käh(I ′).

We can now conclude this chapter by the following theorem.

Theorem 4.5.2 (Global Torellli Theorem of IHS-manifolds). Let T Cpl
o (M) be a

connected component of the Teichmüller space of IHS-structures on a hyperkäh-

lerian manifold M . The complex period map

PCpl : T Cpl
o (M) → Per(M)

is surjective. Furthermore, the elements of a fiber PCpl−1
(I) consist of birational

IHS-manifolds which are in a one-to-one correspondence with the set of Kähler

chambers KC(I).
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Global Torelli type theorems as they exist for K3-surfaces are however known

to be wrong for general IHS-manifolds, see [65, section 25.5].
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The shortest path between two truths in the

real domain passes through the complex domain

Jacques Hadamard

5
Teichmüller and Moduli Spaces of

Hyperkähler Metrics

By replacing the complex structures from the previous chapter with hyperkäh-

ler metrics we introduce the notion of the metric Teichmüller space T Met(M).

For that we fix a hyperkählerian manifold M throughout this chapter. We con-
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sider the relation between the complex and metric Teichmüller spaces T Cpl(M)

and T Met(M). Furthermore, we define a metric period on T Met(M) for which

we prove injectivity and determine the image. By that we recover a theorem of

Amerik and Verbitsky [3, Thm 4.9]. We then pass to the moduli space of unit

volume hyperkähler metrics for which we provide an explicit description.

5.1 The Metric Period Map Part I

Let R(M) denote the space of Riemannian metrics. We view it as a subspace of

the space of smooth symmetric 2-tensors on M and endow it with the topology

of smooth convergence. In R(M) we consider the subspace of hyperkähler met-

rics. It turns out to be convenient to also fix a scaling, for example by consid-

ering metrics of unit volume or unit diameter only. Both versions work equally

well for our purpose. We make the following definition.

Definition 5.1.1. Let RHK(M) denote the subspace of R(M) consisting of hy-

perkähler metrics of unit volume, i.e. g ∈ RHK(M) if and only if

Hol(g) = Sp
(
n

4

)
and vol(g) = 1,

where n is the dimension of M .

Note that RHK(M) × R>0 can be interpreted as the space of hyperkähler met-

rics without any restriction on the volume. All that follows can then easily be

generalized to this space by adding the factor R>0.
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Recall that a differential form α is parallel or g-parallel with respect to a met-

ric g if ∇α = 0, where ∇ is the extension of the Levi-Civita connection to ten-

sors. We will use these forms to distinguish elements in RHK(M). This will then

ultimately result in a period map similar to the one for complex structures.

Lemma 5.1.1. Let g be a hyperkähler metric on M . A 2-form ω on M is g-

parallel if and only if there exists a complex structure I on M such that

g(I·, ·) = λω(·, ·)

for some λ ∈ R.

Proof. From [137] we know that the parallel 2-forms are spanned by the Kähler

classes [ωI ], [ωJ ], [ωK ] corresponding to a hyperkähler triple (I, J,K). Let ω]g

be the g parallel endomorphism obtained by raising the index of ω with respect

to g. Thus, there exist a, b, c ∈ R such that ω]g = aI + bJ + cK. Set λ :=

1/
√
a2 + b2 + c2 and define the complex structure

Ĩ := λ(aI + bJ + cK).

Then λω = g(Ĩ·, ·).

Therefore, the g-parallel 2-forms are spanned by the Kähler forms associated

to the metric g. Next, note that a parallel form α is harmonic. This can be seen

by noting that the Hodge-dual ?α is also parallel. Since parallel forms are closed
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one finds for a parallel k-form α and l = n(k − 1) + 1 that

∆Hdgα = d((−1)l ?d?)α + ((−1)l ?d?)dα = 0.

Hodge theory states that a harmonic 2-form can be viewed as an element of

H2
DR(M). Furthermore, with respect to de Rham’s isomorphism theorem we

identify de Rham cohomology with singular cohomology H2(M,R). Thus, for

a metric g we may identify parallel forms with their corresponding classes in

H2(M,R).

Definition 5.1.2. Given a hyperkähler metric g we denote the space of g-parallel

2-forms by Hg. We view it as a subspace in H2(M,R).

With respect to the BB-form q on M we have.

Lemma 5.1.2. The Beauville-Bogomolv form is positive definite on Hg.

Proof. Let α ∈ Hg. Then there exists a complex structure I in the twistor space

of g and a non-zero constant c such that α = cωI , where ωI is the Kähler form

of g. If σ denotes the nowhere vanishing holomorphic 2-form of X = (M, I) we

get

q(α, α) = n

2

∫
c2ω2

I ∧ (σ ∧ σ̄)n−1 > 0.

The metric g also induces an orientation on Hg. To see this pick a hyperkäh-

ler triple (I, J,K) for g and consider the basis (ωI , ωJ , ωK) of associated Kähler
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forms. The orientation induced by this basis is independent of the choice of hy-

perkähler triple, since for another choice (I ′, J ′, K ′) one has

I ′ = hIh−1, J ′ = hJh−1, K ′ = hKh−1,

with h a unitary quaternionic transformation in Sp(1).

We can now define a first version of the metric period map.

Definition 5.1.3. The metric period map

PMet : RHK(M) → Gr+,o(3,H2(M,R)),

is defined by sending a metric g to Hg = span{ωI , ωJ , ωK}.

We now have the following lemma.

Lemma 5.1.3. The metric period map PMet : RHK(M) → Gr+,o(3,H2(M,R)) is

continuous.

Proof. By the holonomy principle we may identify the space Hg with the Hol(g)

invariant subspace of TpM∗∧TpM∗, where the point p is fixed. Let (e1(g), · · · , en(g))

be an orthonormal basis of (TpM, gp), which by the Gram-Schmidt process can

be chosen in such a way that the corresponding map

R(M) → TpM × · · · × TpM

g 7→ (e1(g), · · · , en(g))
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is continuous. We get an induced basis {ei(g) ∧ ej(g)} of TpM∗ ∧ TpM
∗ which

depends continuously on g. For the space of Hol(g)-invariant 2-forms we get a

basis (b1(g), b2(g), b3(g)) by

bi(g) =
∑

bikle
k(g) ∧ el(g),

where (bikl) are induced by a basis of the invariant subspace of the standard

Sp(n/4) action on ∧2 Rn. By extending the bi(g) to global 2-forms we find

span{b1(g), b2(g), b3(g)} = Hg.

The bi(g) define continuous functions on RHK(M) which then proves the claim.

5.2 Metric Teichmüller Space vs Complex Teichmüller Space

The diffeomorphism group Diff(M) acts on RHK(M) by pullbacks. It also acts

on Gr+,o(3,H2(M,R)) induced by the natural action on H2(M,R). For a diffeo-

morphism φ one computes

φ∗Hg = Hφ∗g,

i.e. that the metric period map PMet is Diff(M)-equivariant. We now want to

compare the complex period map with the metric one. Recall that Diff0(M)

denotes the connected component of Diff(M) which contains the identity.
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Definition 5.2.1. The metric Teichmüller space on M is defined as

T Met(M) := RHK(M)/Diff0(M).

A diffeomorphism φ in Diff0(M) induces the identity in cohomology. Thus,

PMet induces a well defined map

PMet : T Met(M) → Gr+,o(3,H2(M,R)),

which we still call the metric period map. Recall that the complex period map

can be understood as a map

PCpl : T Cpl(M) → Gr+,o(2,H2(M,R)).

The two period maps are related in the following way. Let g be a hyperkähler

metric and I a compatible complex structure. Then PCpl(I) ⊂ PMet(g). More-

over, every 2-dimensional subspace of PMet(g) is the image of some compatible

complex structure. More precisely one has the following lemma.

Lemma 5.2.1. Let g be a hyperkähler metric and I a compatible complex struc-

ture. Furthermore, let J,K be complex structures such that (I, J,K) is a g com-

patible hyperkähler triple. Then PCpl(I) = span{ωJ , ωK} and

PMet(g) = PCpl(I) ⊕ ωI · R.
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The sum is orthogonal with respect to the BB-pairing.

Proof. For the first claim we show that σ := ωJ + iωK is holomorphic and sym-

plectic. Clearly the form is non-degenerate. Next, let X,Y be vector fields of

TMC. Then we compute

σ(IX, Y ) = ωJ(IX, Y ) + iωK(IX, Y )

= g(IJX, Y ) + ig(KIX, Y )

= g(−KX,Y ) + ig(JX, Y )

= iσ(X,Y ).

This proves that σ is of type (2, 0). Since dσ = 0 we also get ∂̄σ = 0 and thus σ

is holomorphic. By uniqueness of such forms, we get PCpl(I) = span{Re(σ), Im(σ)}.

Since ωI is of type (1, 1) and σ of type (2, 0) the statement of orthogonality also

follows.

The two Teichmüller spaces T Cpl(M) and T Met(M) are related by a third Te-

ichmüller space as we now explain.

Definition 5.2.2. The Teichmüller space of Kähler-Einstein metrics is given by

T Met,Cpl(M) := {(I, ω) ∈ T Cpl(M) × H2(M,R) | ω ∈ Käh(I)}.

The space T Met,Cpl(M) comes with two naturally defined maps. One is given

by the projection

πCpl : T Met,Cpl(M) → T Cpl(M),
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whose fiber over I ∈ T Cpl(M) is the Kähler cone Käh(I). The other map is de-

fined by associating to (I, [ω]) the unique hyperkähler metric inside the Kähler

class [ω] by means of the Calabi-Yau theorem. This yields a locally trivial S2-

fiber bundle

πMet : T Met,Cpl(M) → T Met(M).

The fiber F (g) of πMet at a point g may then be identified with the twistor line

Tw(g), since πCpl is injective on F (g) with πCpl(F (g)) = Tw(g).

We now use T Met,Cpl(M) to show that there is a one-to-one relation between

the connected components of T Cpl(M) and T Met(M).

Lemma 5.2.2. Let g0, g1 be two metrics contained in the same connected com-

ponent T Met
o (M) of T Met(M). Suppose I0 is a compatible complex structure with

respect to g0 and I1 compatible with g1. Then I0 and I1 are contained in the

same connected component of T Cpl
o (M). On the other hand, if I0 and I1 belong

to the same connected component, then any two hyperkähler metrics g0, g1 which

are Kähler with respect to I0 and I1 respectively, belong to the same connected

component of T Met(M).

Proof. We prove the more general fact that the domain of a surjective open

map is connected if the fibers and the codomain are connected. The statement

will then follow by applying this claim to πMet and πCpl when restricted to the

respective preimages of connected components in T Met(M) and T Cpl(M). Let A

and B be topological spaces with B being connected. Furthermore, let π : A →

B be open and surjective with connected fibers. If U ∪ V = A for open subsets
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U and V then π(U) ∪ π(V ) is an open cover of B. Since B is connected, there

exists p ∈ π(U) ∩ π(V ). Thus, π−1(p) ∩ U 6= ∅ and π−1(p) ∩ V 6= ∅. Then

(π−1(p) ∩ U) ∪ (π−1(p) ∩ V ) is an open cover of π−1(p). By assumption π−1(p) is

connected and thus U ∩ V 6= ∅.

Recall that the set of MBM-classes So of an IHS-manifold (M, I) only de-

pends on the connected component of the complex Teichmüller space containing

I. By Lemma 5.2.2 we obtain that also the corresponding connected component

T Met
o (M) determines the set of MBM classes So.

5.3 The Metric Torelli Theorem

Before computing the image of the metric period map, recall that the Grass-

mann space Gr+,o(3,H2(M,R)) consists of 2 connected components, both home-

omorphic to Gr+(3,H2(M,R)) ∼= R3(n−3). The tautological bundle

{(v,H) ∈ H2(M,R) × Gr+,o(3,H2(M,R)) | v ∈ H} → Gr+,o(3,H2(M,R))

is therefore trivial. Thus, choosing an orientation for one H in Gr+(3,H2(M,R))

induces a natural orientation for all the other subspaces. Henceforth, each com-

ponent T Met
o (M) gives rise to a preferred choice of orientation on all spaces in

Gr+(3,H2(M,R)), induced by the orientation coming from PMet(g) for some

g ∈ T Met
o (M).

Theorem 5.3.1. Let M be hyperkählerian. Fix a connected component T Met
o (M)

of the metric Teichmüller space and let S be the set of MBM-classes associated
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to T Met
o (M). Then H ∈ Gr+(3,H2(M,R)) is in the image of the metric period

map if and only if H is not orthogonal to any MBM-class in S.

Proof. For a hyperkähler metric g we have

PMet(g) = Hg = PCpl(I) ⊕ ωI · R,

for some complex structure I. Any class c in H2(M,Z) orthogonal to Hg is in

particular orthogonal to PCpl(I) and thus of type (1, 1). Since MBM-classes of

type (1, 1) cannot be orthogonal to a Kähler class we obtain that Hg is also not

orthogonal to any MBM-class.

On the other hand, let H be a 3-dimensional positive subspace in H2(M,R)

not orthogonal to any MBM-class. Let P be a 2-dimensional subspace of H and

[w] a class in H such that

H = P ⊕ [w] · R.

We endow P with the orientation, such that the above expression induces the

same orientation of H. By surjectivity of the complex period map there is a

complex structure I such that PCpl(I) = P . Furthermore, we have that

[ω] ∈ Pos(I) −
⋃

z−MBM
z⊥,

where z runs through the set of MBM-classes of type (1, 1). By Theorem 4.5.1

each connected component of Pos(I) − ⋃
z−MBM z⊥ is the Kähler cone for some

I ′ ∈ PCpl−1
(P ). Therefore, [ω] is a Kähler class with respect to I ′. By the
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Calabi-Yau theorem there exists a hyperkähler metric g with Kähler form ωI′ =

[ω] and

PMet(g) = PCpl(I ′) ⊕ ωI′ · R = H

which proves the claim.

The above theorem is equivalent to the surjectivity of the metric period map

PMet : T Met
o (M) → Gr+(3,H2(M,R)) −

⋃
z−MBM

Gr+(3, z⊥),

with an adjusted codomain. We can also show injectivity for this map. We need

the following lemma.

Lemma 5.3.1. Let g be a hyperkähler metric. Then in the twistor line Tw(g)

there is a complex structure I such that the Kähler cone is equal to the positive

cone, i.e.

Käh(I) = Pos(I).

To prove this lemma we remind ourselves of the following fact first.

Remark 5.3.2. Let V be a finite dimensional R-vector space and {Vi} a count-

able collection of subspaces of V . Then V = ⋃
i Vi if and only if V is contained

in one of the Vi.

Proof. If V is contained in one of the Vi then the statement is trivial. Thus as-

sume that the Vi are proper subspaces and V ⊂ ⋃
Vi. Let λn be the dim(V ) =
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n-dimensional Lebesgue measure on V . Then

∞ = λn(V ) ≤
∑
i

λn(Vi) = 0,

a contradiction.

We can now prove the lemma.

Proof of Lemma 5.3.1. We show that there is a complex structure inside the

twistor line that does not admit any MBM-class of type (1, 1). Since the Kähler

cone is cut out of the positive cone by orthogonal complements of MBM-classes

of type (1, 1), the statement will follow. From surjectivity of the complex period

map we find for every 2-dimensional subspace P in Hg = PHK(g) a complex

structure I ∈ Tw(g) with PCpl(I) = P . Furthermore, a class z is of type (1, 1)

with respect to I if and only if P ⊂ z⊥. Assume that for every 2-dimensional

subspace P in Hg there is an MBM-class z such that P ⊂ z⊥. We get

Hg =
⋃

z−MBM
z⊥ ∩Hg.

However, z⊥ ∩ Hg must be an honest subspace of Hg by Theorem 5.3.1. But Hg

cannot be the union of a countable collection of subspaces of smaller dimension,

by Remark 5.3.2. Thus, there is at least one complex structure in the twistor

space for which no MBM-class is of type (1, 1).

Theorem 5.3.2. Let g and g′ be metrics contained in the same connected com-

ponent T Met
o (M). Then PMet(g) = PMet(g′) if and only if there is a diffeomor-
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phism φ ∈ Diff0(M) such that φ∗g′ = g.

Proof. Assume that Hg = Hg′ . Pick an I in the twistor space of g such that

Käh(I) = Pos(I) and put P = PCpl(I), a 2-dimensional subspace in Hg′ . Let I ′

be in the twistor space of g′ such that PCpl(I ′) = P . Since Käh(I) = Pos(I), the

fiber PCpl−1
(P ) is unique by Theorem 4.5.1. Hence, [I] = [I ′] in T Cpl(M), i.e.

there is a diffeomorphism φ such that φ∗I ′ = I. Let ωI be the Kähler form of g

with respect to I and correspondingly ω′
I′ the one for g′ and I ′. From Hg = Hg′

we get

PCpl(I) ⊕ [ωI ] · R = PCpl(I ′) ⊕ [ω′
I′ ] · R.

Since the orientations of Hg and Hg′ are the same and since vol(g) = vol(g′) = 1

we get for the cohomology classes [ωI ] = [ω′
I′ ]. Now g′ is a Ricci-flat metric and

thus also φ∗g′. Furthermore, φ∗g′ is Kähler with respect to I and the Kähler

class of φ∗g′ is [φ∗ω′
I′ ]. But

[φ∗g′(I ′·, ·)] = φ∗[ω′
I′ ] = φ∗[ωI ] = [ωI ],

since φ acts trivial on cohomology. Therefore, the Kähler class of φ∗g′ with

respect to I is the same for the Kähler class of ωI . By the uniqueness of the

Calabi-Yau theorem we have g = φ∗g′.

Putting everything together we proved the following corollary.

Corollary 5.3.3 (Metric Torelli Theorem). Let T Met
o (M) be a connected compo-

nent of the metric Teichmüller space and So the associated set of MBM-classes.
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Then the metric period map induces a homeomorphism

PMet : T Met
o (M) → Gr+(3,H2(M,R)) −

⋃
z∈So

Gr+(3, z⊥).

The above corollary was first proven by Amerik and Verbistky [3, Thm 4.9]

with basically the same methods. See also [100].

5.4 The Moduli Space of Hyperkähler Metrics

While the metric Teichmüller space is interesting in its own right, we are mostly

interested in the moduli space of hyperkähler metrics. Which is the space of

hyperkähler metrics up to isometry. The formal definition is the following:

Definition 5.4.1. Let M be hyperkählerian. Then the moduli space of unit vol-

ume hyperkähler metrics on M is defined as

MHK(M) := RHK(M)/Diff(M).

The group of isotopy classes, defined below, will tell us how to obtain the

moduli space from the Teichmüller space.

Definition 5.4.2. The mapping class group of M is defined as

MCG(M) := Diff(M)/Diff0(M).

It is straight forward to check that MHK(M) ∼= T Met(M)/MCG(M). Further-
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more, if MCGo(M) denotes the largest subgroup preserving T Met
o (M), then

MHK
o (M) := T Met

o (M)/MCGo(M)

is homeomorphic to a connected component of MHK(M).

Our next step is to express the metric Torelli theorem for connected compo-

nents of MHK(M). In order to state the theorem, recall from Definition 4.4.4

and Theorem 4.4.2 that Mon2(I) ⊂ O(H2(M,Z)) denotes the monodromy group

of an IHS-manifold (M, I) and that this group only depends on the component

T Cpl
o (M) containing I.

Theorem 5.4.1. Let M be hyperkählerian and MHK
o (M) a connected compo-

nent of the moduli space of hyperkähler metrics on M . Then MHK
o (M) is home-

omorphic to

Mon2(I) \

Gr+(3,H2(M,R)) −
⋃
z∈So

Gr+(3, z⊥)

 ,
where I is some complex structure compatible with a metric in MHK

o (M) and S0

the set of associated MBM-classes.

Proof. The metric period map PMet is Diff(M)-equivariant. Since Diff0(M) acts

trivially on T Met(M) as well as on the Grassmann space, we get that

T Met(M) → Gr+(3,H2(M,R))

is MCG(M)-equivariant. Therefore, we get an induced isomorphism by Corol-
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lary 5.3.3

MHK
o (M) → Γ2

o(M) \

Gr+(3,H2(M,R)) −
⋃
z∈So

Gr+(3, z⊥)

 ,
where Γ2

o(M) is the image of the natural action MCGo(M) → O(H2(M,Z)).

From Lemma 5.2.2 it follows that the group MCGo(M) is also the largest sub-

group acting trivially on T Cpl
o (M). Then by Theorem 4.4.2 we get

Γ2
o(M) = Mon2(I),

for some complex structure I in T Cpl
o (M).

Note that Mon2(I) is a subgroup of the arithmetic group O(H2(M,Z)) ⊂

O(3, b2(M) − 3). As an immediate consequence we get that each connected com-

ponent of MHK(M) is homeomorphic to an open and dense subspace of

Γ⧹O(3, b2(M) − 3)⧸O(3) × O(b2(M) − 3), (5.1)

with Γ a discrete subgroup of O(3, b2(M) − 3). From the unpublished [133, The-

orem 2.6] we get that Mon2(I) is always an arithmetic subgroup. Independent

of this statement we find:

Corollary 5.4.1. The moduli space of unit volume hyperkähler metrics MHK(M)

is a non-compact 3(b2(M) − 3)-dimensional orbifold.

Proof. The space O(3, b2(M) − 3)/ (O(3) × O(b2(M) − 3)) is the associated
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symmetric space to O(3, b2(M) − 3). The group Γ is contained in the arithmetic

subgroup O(H2(M,Z)), which acts properly and discontinuously on its associ-

ated symmetric space, see [22, 2.1 p.139]. The orbit space of such an action on a

smooth manifold is an orbifold.

The orbifold statement can be proven by purely local considerations, see [19,

Thm 12.88] and [93]. However, the above statement shows that MHK(M) is

what some people call a good orbifold, i.e. a global quotient.

Another consequence of the above result is, that MHK(M) is Hausdorff. This

stands in contrast to the moduli space of complex structures and even to the

complex Teichmüller space which are neither Hausdorff. In fact MHK(M) can

be endowed with a metric naturally, namely the Gromov-Hausdorff metric.

We recall that the Gromov Hausdorff distance defines a metric on the space

of isomorphism classes of compact metric spaces. Since elements of MHK(M)

correspond to such classes we may also endow MHK(M) with the Gromov Haus-

dorff metric. By [86, Prop. 5.10] we find that the topology induced by the Gro-

mov Hausdorff metric agrees with the original one.
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Groups, as men, will be known by their actions

Guillermo Moreno

6
Topological Aspects of the Moduli Space

of Hyperkähler Metrics

We show that the topologies of the Teichmüller space as well as the correspond-

ing moduli space are not trivial in case b2(M) > 4. For instance, we will prove

that the components of the Teichmüller space is simply connected and that the
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second homotopy group is induced by the set of primitive MBM-classes. More-

over, we show that in certain cases the connected components of the moduli

space are simply connected as well. For the simply connected components we

prove that the rank of the second rational homotopy group is bounded from be-

low by the number of MBM-classes up to monodromy.

6.1 Topological Aspects of the Metric Teichmüller Space

First, we note that if there exists a hyperkählerian manifold with b2(M) = 3 the

moduli space is just a union of points by Theorem 5.4.1. From now on we will

restrict to the case b2(M) ≥ 4.

Recall that the metric Teichmüller space T Met(M) on a hyperkählerian mani-

fold M is the space of hyperkähler metrics on M up to diffeomorphisms isotopic

to the identity. The metric Torelli Theorem 5.3.3 established that a connected

component T Met
o (M) is homeomorphic to

Gr+(3,H2(M,R)) −
⋃
z∈So

Gr+(3, z⊥), (6.1)

with So ⊂ H2(M,Z) being the set of MBM-classes associated to T Met
o (M). For

an MBM-class z the class −z is also MBM and we only need one of the two to

describe (6.1). Furthermore, it is enough to reduce the case to primitive MBM-

classes.

Definition 6.1.1. Denote by S+ a set of primitive MBM-classes associated to

T Met
o (M) so that if z is a primitive MBM-class either z ∈ S+ or −z ∈ S+ but

115



not both.

The set of primitive MBM-classes is then given by S+ ∪ −S+ and the space

(6.1) does not change if we replace So by S+.

In Section 2.3 we introduced affine charts for the Grassmann spaces by in-

terpreting a linear subspace H ∈ Gr(k, V ) as a graph of a (n − k) × k matrix

A = (ai,j). In our situation, where k = 3, this means that the space H can be

considered as the span of the column vectors in the following n× 3 matrix



I3×3

a1,1 a1,2 a1,3

... ... ...

a(n−3),1 a(n−3),2 a(n−3),3


.

Here, I3×3 denotes the 3 × 3 identity matrix.

Definition 6.1.2. Let A3(n−3) denote the real affine space formed by the above

matrices. Furthermore, let B be the image of Gr+(3,H2(M,R)) of some affine

chart Gr(3,H2(M,R)) ⊃ U → A3(n−3) for which Gr+(3,H2(M,R)) ⊂ U .

From Section 2.3 recall that B is isomorphic to an open unit ball in A3(n−3).

Now a subspace of the form Gr(3, z⊥) in the above chart is given by the affine

linear subspace in A3(n−3) consisting of those matrices where each column is or-

thogonal to z ∈ Rn. Let us denote such an affine linear subspace of A3(n−3) by

Az. The Metric Torelli theorem can now be read as follows.
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Lemma 6.1.1. The component T Met
o (M) is homeomorphic to

A3(n−3) −
⋃
z∈S+

Az

 ∩ B.

Furthermore, if K is a compact subset of B only finitely many of the Az inter-

sect K and the codimension of finite intersections of the Az is a multiple of 3.

Before proving the above lemma let us make the following comment. The

homeomorphism statement is an immediate consequence of the discussion above.

The fact that

codim
(
Azi1

∩ · · · ∩ Azik

)
= 3k,

for distinct zi1 , · · · , zik ∈ S+ and 0 ≤ k ≤ (n − 3) follows by noting that

Azi1
∩ · · · ∩ Azik

are given by the set of matrices in Matr(n × 3) for which each

column is orthogonal to all of the zi.

The difficult part is the statement about locally finite intersections, as this

requires more information on the set of primitive MBM-classes S+ ∪ −S+. What

we need is boundedness of this set with respect to the BB-form. Fortunately,

this was proven in [4, Theorem 3.17] and we can prove our claim.

Proof of Lemma 6.1.1. Assume that Gr+(3, z⊥
1 ) and Gr+(3, z⊥

2 ) intersect with

H being an element in the intersection. Then z1 and z2 are in the orthogonal

complement H⊥. Since H is positive definite and of maximal dimension, the

complement H⊥ is a negative definite subspace. Thus, the sphere S(−r) of

constant radius −r in H2(M,R) intersected with H⊥ is compact and therefore

S(−r) ∩ H⊥ ∩ H2(M,Z) finite. One concludes that only finitely many of the
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Gr+(3, z⊥), with z constant length −r, contain the subspace H. Now define the

space

X := {(H,ω) | ω ∈ S(−r) ∩H⊥} ⊂ Gr+(3,H2(M,R)) × H2(M,R).

The projection πGr : X → Gr+(3,H2(M,R)) is closed and the preimage of

H with respect to πGr is compact. Since X is also Hausdorff the map πGr is

proper, i.e. preimages of compact sets are compact. Let πH2 denote the pro-

jection X → H2(M,R) and define SK := πH2(π−1
Gr(K)) for a compact set

K. Then SK is compact and therefore SK ∩ H2(M,Z) finite. Let z2 = −r

and assume Gr+(k, z⊥) to intersects K. Then z is in SK ∩ H2(M,Z). Thus,

there can only be finitely many Gr+(3, z⊥), with z2 = −r, which intersect K.

But then there exists also only finitely many Gr+(3, z⊥) intersecting K with

z ∈ ⋃N
r=1 S(−r)∩H2(M,Z). By [4, Theorem 3.7] there exists an N > 0 such that

−N < z2 < 0 for all primitive MBM-classes z ∈ S+ ∪ −S+.

6.2 First and Second Homotopy Group of the Metric Teichmüller

Space

We have seen that each component of the metric Teichmüller space can be de-

scribed as the complement of an arrangement of codimension 3 smooth subman-

ifolds. As we will see in the proof of the following theorem, taking such comple-

ments does not have an effect on the fundamental group.

Theorem 6.2.1. Each connected component of the metric Teichmüller space is
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simply connected.

Proof. We prove that the inclusion
(
A3(n−3) − ⋃

z∈S+ Az

)
∩B ↪→ B is 2-connected.

Since B is contractible we only need to show injectivity for π0(·) and π1(·). Let

k = 0, 1 and assume h : Sk × [0, 1] → B to be a homotopy such that hi(Sk) does

not intersect any of the Az for i = 0, 1. We can also assume that h is smooth

and furthermore by the transversality theorem, see for instance [66, section 2],

that h is transversal to ⋃Az. One can arrange this without changing h at the

boundary Sk × {0, 1}. We obtain that

dim(Image(dhp)) + dim(Th(p)Az) < dim(Th(p)B)

and thus h−1(⋃Az) is empty. This proves the claim.

Next, we want to describe the second homotopy group of T Met
o (M). Since

T Met
o (M) is simply connected we do not need to worry about base points and

can identify the group of free homotopies [S2, T Met
o (M)] with π2(T Met

o (M)). Re-

call that for the definition of π2 one usually works in the category of pointed

spaces.

We now construct a 2-sphere around each Az. The set of these will turn to

provide us with a generating set of π2(T Met
o (M)).

Consider the space B − Az for a fixed z ∈ S+. Let Hp be some 3-dimensional

affine subspace in A3(n−3) which intersects Az transversely in p. Endow Hp with

some Euclidean metric and let S2
z denote the 2-sphere of radius ε centered at

p in Hp. We can choose ε small enough so that S2
z ⊂ B − Az. Clearly, S2

z is a
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generator of π2(B − Az) since S2
z is homotopy equivalent to B − Az. We can

do this for every z ∈ S+. Since the intersection of the Az is locally finite by

Lemma 6.1.1, a compact disk D ⊂ B only intersects finitely many of the Az. For

an Az intersecting D we can assume, by possibly changing p and ε, that S2
z is a

subset of D ∩ (B − ⋃Az). By doing this we can in general assume that each S2
z

is contained in B − ⋃
z∈S+ Az.

Each S2
z induces a non-trivial element in π2(B−⋃Az), since if there was a ho-

motopy contracting S2
z it would also contract S2

z in B−Az which is not possible.

Moreover, S2
z1 cannot be deformed by a homotopy to S2

z2 for distinct z1, z2 ∈ S+.

Therefore, there is a surjective map

π2

B −
⋃
z∈S+

Az

 →
⊕
z∈S+

Z. (6.2)

We want to prove that this is an isomorphism. Since the space is simply con-

nected it suffices to compute the second homology group. Now the work on

stratified Morse theory [59] gives a way to compute the homology of the com-

plement of a finite collection of affine subspaces in Rn. When computing the ho-

mology of the metric Teichmüller space in case of the K3-surface, Giansiracusa

notes in [55, 56, Lemma 5.3] that the computations can be extended to more

general situations. With Lemma 6.1.1 we can use the same argument of Giansir-

acusa to extend his result on K3-surfaces to general hyperkählerian manifolds.

To state the theorem we introduce the following notions. Let

P := {
(
Azi1

∩ · · · ∩ Azik

)
∩ B | i1 < · · · < ik for k ∈ N}
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be partially ordered by inclusion. Furthermore, define recursively on P ∪{B} the

function µ by setting µ(B) = 1 and µ(x) := −∑
v⫌x µ(v) for x ∈ P .

Theorem 6.2.2. The integral homology of T Met
o (M) is torsion free. For the

second homology group one has H2
(
T Met
o (M),Z

) ∼=
⊕

S+ Z. Furthermore, the

Poincaré polynomial, with coefficients in N0 ∪ {∞}, is given by

1 +
∑
v∈P

tf(v)|µ(v)|,

where f(v) = 2
3 (3(n− 3) − dim(v)).

Proof. We essentially follow the argument of Giansiracus in [55, Lemma 5.3]. In

[59, 1.6 Theorem B P.239] we find a way to compute the homology of a comple-

ment of a finite affine subspace arrangements of fixed codimension c in RN , with

the additional property that the intersections have codimension a multiple of c.

Then the theorem states that the integral homology is torsion free and that the

Poincaré polynomial is given by

1 +
∑
v∈P

tf(v)|µ(v)|,

with f(v) = c−1
c

(N − dim(v)), P being the partially ordered set induced by the

intersections of the affine subspaces and µ defined just like above. The theorem

is proved by considering stratified Morse theory and the Morse function they

use is given by the distance function dist(·, p)2 for a generic point p. We want to

apply the same argument to B − ⋃
z∈S+ Az.
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Recall that we can consider B as a unit ball in Euclidean space Rk(n−k). Af-

ter possibly moving some of the Az by a small homotopy we may assume that

its center p is not contained in ⋃z∈S+ Az. Let Br(p) denote the ball of radius r

around p in B. The closure of Br(p), for 0 < r < 1, is compact and therefore

there are only finitely many of the Az intersecting Br(p) by Lemma 6.1.1. The

computations in [59, 1.6 Theorem B P.239] carry over to

B −
⋃
z∈S+

Az

 ∩Br(p).

Taking the colimit for r → 1 then produces the desired result.

As a corollary we obtain the second homotopy group, and can also determine

the induced action of O(H2(M,Z)) on this group.

Corollary 6.2.3. For a connected component T Met
o (M) of the metric Teich-

müller space we have

π2
(
T Met
o (M)

) ∼=
⊕
z∈S+

Z.

Furthermore, the action of O(H2(M,Z)) on π2(T Met
o (M)) is determined by the

action on the set of primitive MBM-classes.

Proof. From 6.2.2 we know that the map 6.2 is an isomorphism by the Hurewicz

isomorphism theorem. The claim on the action is clear when one considers the

basis {[S2
z ]} of π2 (B − ⋃

z∈So
Az) described earlier.
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6.3 The Fundamental Group of the Moduli Space of Hyperkähler

Metrics of K3[n]-type

We discuss the topology of the connected components of the moduli space of

hyperkähler metrics MHK(M) which by Theorem 5.4.1 are of the form

Mon2(I) \

Gr+(3,H2(M,R)) −
⋃
z∈S+

Gr+(3, z⊥)

 .
Having understood some of the topology of T Met

o (M) we thus want to under-

stand the effects of the action of Mon2(I) on this space.

Lemma 6.3.1. Let Γ be a discrete subgroup of O(H2(M,Z)). If Γ is generated

by reflections ra and −rb along elements a, b ∈ H2(M,Z) of non-zero length,

then

Γ \

Gr+(3,H2(M,R)) −
⋃
z∈S+

Gr+(3, z⊥)


is simply connected.

Proof. By the work of Armstrong on the fundamental group of orbit spaces [10]

the fundamental group is isomorphic to Γ modulo the subgroup ΓF generated

by elements which have a fixed point. For a reflection ra along a ∈ H2(M,R)

let Ha denote the reflection hyperplane in H2(M,R). Let v be some positive

vector in Ha and x a positive vector not orthogonal to any class in So. Then

span{x, ra(x), v} corresponds to an element in T Met
o (M) and is fixed by ra. Since

−Id acts trivial on the Grassmann space also the elements of the form −ra have

a fixed point. Thus, Γ = ΓF which proves the claim.
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For an IHS-manifold X = (M, I) computing the group Mon2(I) is in general

difficult. However, in case of the K3-surface it is well known that Mon2(I) =

O+(H2(X,Z)), see [21]. By Theorem 2.4.2 we know that in this case Mon2(I) is

generated by reflections along (−2)-classes. In [105] Markman generalized this

result to IHS-manifolds of K3[n]-type, see also [43, Section 9 p. 302]. He proves

that if X = (M, I) is of K3[n]-type, then Mon2(I) is generated by elements of

the form ra and −ra, where ra is a reflection along a (±2)-class a, see [105, The-

orem 1.2]. Furthermore, he shows that Mon2(I) is given by the inverse image of

{Id,−Id} with respect to the natural map

O+(H2(M,Z)) → O(DH2(M,Z)),

[105, Lemma 4.2]. For n = 2 or in case n − 1 is a prime power, it is noted

that Mon2(I) = O+(H2(M,Z)). In this case we know from Theorem 2.4.2 that

Mon2(I) is generated by reflections along (−2)-classes. Regardless of this case

as an immediate corollary from Markman’s work and Lemma 6.3.1 we get the

following.

Corollary 6.3.2. Let M be the underlying manifold of a K3[n]-type IHSM X.

Then the connected component of the moduli space of hyperkähler metrics corre-

sponding to X is simply connected.

We cannot tell if all components of MHK(M) are simply connected. How-

ever, this is the case if all IHS-structures on M are deformations of some Hilbert

scheme over a K3-surface.
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6.4 On the Homotopy Groups of the Moduli Space of Hyperkähler

Metrics

In this section we prove that all connected components of MHK(M) have non-

trivial homotopy groups. In case that MHK
o (M) is simply connected we can

determine certain factors in the second homotopy group generated by MBM-

classes. If MHK
o (M) is not simply connected we are done.

Fix a connected component MHK
o (M) and set

T := T Met
o (M), and Γ := Mon2(I).

Thus, MHK
o (M) ∼= Γ \ T . Recall that the action of Γ on T is in general not

free. We can overcome this problem by the so called Borel construction. Let B Γ

denote the classifying space of Γ, i.e. B Γ is the connected CW -complex with

fundamental group isomorphic to Γ and vanishing higher homotopy groups. The

space B Γ is unique only up to homotopy. The universal cover of B Γ will be

denoted by E Γ. Then Γ acts freely via deck transformations on E Γ. Since B Γ

has vanishing higher homotopy groups, it follows from [29, 11.14. Corollary]

that E Γ is contractible.

Definition 6.4.1. The homotopy quotient of the group action of Γ on T is de-

fined as Mh := T ×Γ E Γ := (T × E Γ)/Γ.

The space T × E Γ is homotopy equivalent to T and has a free Γ action, but

the homotopy quotient is in general not homotopy equivalent to Γ \ T . The

rational cohomology, however, turns out not to be effected by this construction.
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Lemma 6.4.1. Let X be a smooth manifold and Γ a discrete group acting prop-

erly discontinuously with finite stabilizers on X. Then Hi(X ×Γ E Γ;Q) ∼=

Hi(X/Γ;Q).

This lemma seems to be well known. However, for completeness we include a

proof here.

Proof. Consider the induced map f : X ×Γ E Γ → X/Γ and the commuting

diagram
X × E Γ X ×Γ E Γ

X X/Γ.

p

π̃

f

π

We compute that the fiber f−1([x]) over [x] ∈ X/Γ is isomorphic to E Γ/Γx,

with Γx being the stabilizer of x ∈ X. By assumption Γx is finite and since

Γx acts freely on E Γ we further know that E Γ/Γx is a classifying space for the

group Γx, i.e. E Γ/Γx ∼= B Γx. From [48, Corollary 4.3.2] we know that the

group cohomology of a finite group is torsion. Thus, for i > 0 we get

Hi(f−1([x]),Q) ∼= Hi(Γx,Z) ⊗ Q ∼= 0. (6.3)

As a consequence, we find that the higher direct image Rif(Q) is trivial for

every i > 0. For that, recall that Rif(Q) is the sheafification of the presheaf

U 7→ Hi(f−1(U),Q) whose stalks are given by (6.3). The E**
2 page of the Leray

spectral sequence of f is now readily computed to be Ep,0
2 = Hp(X/Γ,Q) and

Ep,q
2 = 0 if q > 0. By the structure of the 2-page we immediately find Ep,q

∞ =
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Ep,q
2 . This spectral sequence converges to Hi(X ×Γ E Γ,Q), see [60, p.462] for

instance, and we conclude the claim.

Another way to think about the homotopy quotient T ×ΓE Γ is by noting that

it is the associated bundle to the universal covering E Γ → B Γ. Thus, the map

T ×Γ E Γ → B Γ is a fiber bundle with fiber T . From the long exact sequence of

homotopy groups we get

• π1(Mh) ∼= Γ,

• π2(Mh) ∼= π2(T ) ∼=
⊕

S+ Z.

Now, if MHK
o (M) is simply connected, then by Lemma 6.4.1 we find

π2(MHK
o (M)) ⊗ Q ∼= H2(Mh,Q). (6.4)

Our goal is to compute the right-hand side. This can be done by using a classi-

cal theorem due to Eilenberg and Mac Lane [45]. The theorem states that the

second cohomology is determined by the action of the fundamental group on the

second homotopy group and an invariant whose definition we now recall.

The k3-invariant: Let X be a topological space and ω1, ω2, ω3 : [0, 1] → X

be continuous maps representing loops in π1(X, x), i.e. ωi(0) = ωi(1) = x for i =

1, 2, 3. Let ∆ denote the standard 3-simplex with ordered vertices v0, v1, v2, v3.

On the 1-skeleton define a map κ as follows. The edge [v0, v1] gets mapped

according to ω1, the edge [v1, v2] according to ω2 and [v0, v2] according to the

product ω1 ∗ ω2. Similarly, we define the map for the other edges, i.e. we map

[v1, v3] along ω2 ∗ ω3, [v0, v3] along ω1 ∗ ω2 ∗ ω3, and [v2, v3] along ω3. Note that
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κ can be extended to each face of the simplex ∆, and thus on the full 2 skeleton

of ∆, which is a 2-sphere. We obtain a continuous map k3(ω1, ω2, ω3) : S2 → X.

Choosing representatives for each class in π1(X, x) defines a function

k3 : π1(X) × π1(X) × π1(X) → π2(X).

Eilenberg and Mac Lane proved that this defines a cohomology class, denoted

k3, in the group cohomology H3(π1(X); π2(X)) independent of the chosen repre-

sentatives.

Lemma 6.4.1. Let Γ be a discrete group acting on a simply connected space T .

Then the k3-invariant for the homotopy quotient X := T ×Γ E Γ is trivial.

Proof. Let ∆ denote the standard 3-simplex and let ω1, ω2, ω3 be loops repre-

senting classes in π1(X, x). Furthermore, let p : X → B Γ be the projection and

correspondingly p∗(ω1), p∗(ω2), p∗(ω3) the induced loops in B Γ. Note that the

universal covering E Γ → B Γ factors as

E Γ ↪→ T × E Γ → T ×Γ E Γ → B Γ. (6.5)

The k3-invariant induces a map k := k3 (p∗(ω1), p∗(ω2), p∗(ω3)) : S2 → B Γ, by

precomposing with p. Then k can be lifted to the universal covering k̃ : S2 →

E Γ. By composition with respect to (6.5) we get an induced map S2 → T ×Γ

E Γ. This map can be chosen to represent k3([ω1], [ω2], [ω3]) ∈ π2(X), since p in-

duces an isomorphism on the fundamental group. The space E Γ is contractible

and thus k3([ω1], [ω2], [ω3]) = 0.
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We can now compute the second rational homotopy group of the moduli space

MHK
o (M) in case it is simply connected.

Theorem 6.4.2. Let M be hyperkählerian and MHK
o (M) be a connected com-

ponent of the moduli space of unit volume hyperkähler metrics. Let S+ denote

the associated set of primitive MBM-classes up to sign and S+/Γ the orbit space

with Γ = Mon2(I). If MHK
o (M) is simply connected then there is an isomor-

phism

π2(MHK
o (M),Z) ∼= H2(Γ,Q) ⊕

⊕
S+/Γ

Q.

If b2(M) ≥ 5 then the set S+/Γ is finite.

The finiteness of the set S+/Γ was proven by Amerik and Verbitsky and is

stated in [49, p.91 section 5] see also [4, Corollary 1.4].

Proof. By (6.4) we need to compute H2(Mh,Q). From Lemma 6.4.1 we know

that the k3-invariant of Mh = T ×Γ E Γ vanishes. The work of Eilenberg and

Mac Lane [45, p.280] now states that

H2(Mh,Q) ∼= H2(Γ,Q) ⊕ Hom(π2(Mh)/π0
2,Q),

with π0
2 := 〈α − ωα | α ∈ π2 and ω ∈ π1〉. From Corollary 6.2.3 we know the

group action on π2(T ) ∼= π2(Mh) by which we conclude

π2(Mh)/π0
2

∼=
⊕
S+/Γ

Z.
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The above theorem applies for M being of K3[n]-type. When n = 1 or 2 we

can say more about S+/Γ. For n = 1 this is just a K3-surface and the set of

MBM-classes are precisely the (−2)-classes. Since O+(H2(M,Z)) is an index 2

subgroup of O(H2(M,Z)) which does not contain (−id) we know by Eichlers

Criterion Theorem 2.4.3 that there is just a single orbit. For n = 2 the set of

MBM-classes can also be determined up to Mon2(I) in which case S+/Γ consists

of 3 elements, see [49, p.91 section 5] and [5]. From [5, Corollary ] we know that

there are 5 different types of MBM-classes on an IHSM of type K3[3]. Thus, we

obtain as a corollary

Corollary 6.4.2. For K3[n] := (M, I) being of type K3[n] we have MHK
o (K3[n])

is simply connected and the dimension of the second rational homotopy group

has at least the number of orbits of MBM-classes under the monodromy action.

For n = 1, 2, 3 we furthermore have

• π2(MHK
o (K3)) ⊗ Q ∼= Q ⊕ H2(O+(ΛK3),Q),

• π2(MHK
o (K3[2])) ⊗ Q ∼= Q ⊕ Q ⊕ Q ⊕ H2(O+(ΛK3[2]),Q),

• π2(MHK
o (K3[3])) ⊗ Q ∼=

⊕5
k=1 Q ⊕ H2(O+(ΛK3[2]),Q).

We cannot say anything about the group H2(Γ,Q), not even in the K3[n]-

case. The only thing we can say about the group cohomology of Γ is that the

first Betti number vanishes, i.e. b1(Γ) = 0 which follows from Kazhdan’s Prop-

erty (T) and b4(X) ≥ 1, we refer to Corollary 6.4.4 for the precise statement.

Theorem 6.4.2 shows that a connected component of the moduli space of hy-

perkähler metrics has a non-trivial homotopy group if it possesses an MBM-

class. All known examples of IHS-manifolds admit such classes, but it is an
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open question if this is true in general, compare [49]. To also cover the situa-

tion where no such classes exist, we are let to study the space Γ \ Gr+(3,Λ ⊗ R)

for some non-degenerate lattice Λ of signature (3, b2(M) − 3). Recall that this

space is isomorphic to the bi-quotient

Γ⧹SOo(3, b2(M) − 3)⧸(SO(3) × SO(b2(M) − 3)).

Before computing some of the topology let us mention that there is another rea-

son to study this space even when M admits MBM-classes. The reason for that

is that elements of Gr+(3,H2(M,R)) might still represent geometrical meaning-

ful objects, even when they are orthogonal to an MBM-class. This is classically

known in case of the K3-surface, where these objects correspond to metrics with

certain orbifold type singularities, see Sections 7.5, 7.6 for a further discussion.

The following lemma is largely due to Giansiracusa, Kupers and Tshishiku

[57, Proposition 11].

Lemma 6.4.3. Let Γ be a lattice in SOo(p, q), defined over Q with p + q > 4,

and

X = Γ⧹SOo(p, q)⧸SO(p) × SO(q).

Then the 4th-Betti number of X is non-trivial.

Proof. Consider G a connected semisimple linear algebraic group defined over

Q. Let K be the maximal compact subgroup of G(R) and U the maximal com-

pact subgroup of G(C). Then Y := G(R)/K is a symmetric space and Xu :=

G(C)/U the compact dual symmetric space. For any lattice Γ ⊂ G(Q) there is a
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homomorphism

µ : H∗(Xu,C) → H∗(Γ \ Y,C),

known as the Borel-Matsushima homomorphism see [106] and [23]. In [57, Propo-

sition 11] it is shown that for G = SOo(p, q) the map is injective in degrees

less than p + q − 1. In this case the compact dual symmetric space is Xu =

SO(p + q)/SO(p) × SO(q) for which we now compute some of its cohomology.

Consider the fiber bundle SO(p + q) → SO(p + q)/SO(p) × SO(q) and the

induced long exact sequence

· · · → πk(SO(p+ q)) → πk(Xu) → πk−1(SO(p)) × πk−1(SO(q)) → · · · .

We find that Xu is simply connected. Since tensoring with Q preserves exact-

ness we find by using Bott periodicity [29, p.467] that πi(Xu) ⊗ Q = 0 for

i = 1, 2, 3 and get the exact sequence 0 → π4(Xu) → Q × Q → Q → 0.

Thus, π4(Xu) ⊗ Q ∼= Q and hence H4(Xu,Q) ∼= Q.

This shows that if X in Lemma 6.4.3 is simply connected then a higher ratio-

nal homotopy group does not vanish. Using this lemma we find the statement

on the 4th-Betti number b4(Γ) as mentioned earlier.

Corollary 6.4.4. If Γ is a lattice in SOo(p, q) with p+ q > 4, then the 4th-Betti

number of Γ is non-trivial. Furthermore, for q ≥ p ≥ 3 the first Betti number of

Γ vanishes.

Proof. The space SOo(p, q)/SO(p) × SO(q) is a model for the classifying space
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of proper Γ-actions, denoted EFIN Γ, see [102, Theorem 4.4]. It further follows

that there is, up to Γ-homotopy, a unique Γ-map ET RΓ → EFIN Γ, where

ET RΓ = EΓ. By [103, Lemma 4.14] the induced map on the orbit spaces,

Γ\EΓ → Γ\EFIN Γ, yields an isomorphism in rational cohomology and thus

H∗(X,Q) ∼= H∗(Γ,Q).

Compare the above to the proof of [129, Proposition 5.5].

For the first Betti number we note that SOo(p, q) has Kazhdan’s Property (T)

in the case q ≥ p ≥ 3. This follows from [17, Theorem 3.5.4] since SOo(p, q)

is simple and the Lie algebra so(p, q) is not isomorphic to so(n, 1) or su(n, 1),

see [109, §A.2]. The group Γ is a lattice in SOo(p, q) and by [17, Theorem 1.7.1]

also has Kazhdan’s Property (T). From [17, Theorem 1.3.1] we know that Γ is

finitely generated and by [17, Theorem 3.2.1] it follows that H1(Γ,R) = 0.

Everything put together we proved the following.

Corollary 6.4.5. Let M be hyperkählerian with b2(M) > 4. Then every con-

nected component of the moduli space of hyperkähler metrics has non-trivial

topology. Furthermore, if the connected component is simply connected, then

the second Betti number is at least the number of MBM-classes up to the mon-

odromy action. If the connected component does not support any MBM-classes

then the 4th-betti number is non-trivial.
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The introduction of numbers as coordinates is

an act of violence.

Hermann Weyl

7
Moduli Spaces of Ricci-flat Metrics

In this chapter we discuss applications to other moduli spaces. Moreover, we

study Ricci-flat metrics on torus products N × T k as well as Einstein metrics on

the Enriques manifold. For the Enriques manifold we provide a metric Torelli

theorem and a smoothing process of a singular Ricci-flat orbifold metric.
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7.1 Hyperkähler Metrics in the Moduli Space of Einstein Metrics

Our first goal is to show that the moduli space of hyperkähler metrics provides

information on the moduli space of Ricci-flat metrics, which is defined as

MRic=0(M) := { g ∈ R(M) | g is Ricci-flat and of unit volume } /Diff(M).

More general than Ricci-flat metrics, one may also consider Einstein metrics.

Recall that a Riemannian metric g is Einstein if there is a constant λ ∈ R such

that

Ricg = λg.

The moduli space of Einstein metrics is defined as the quotient space

E(M) := { g ∈ R(M) | g is Einstein and of unit volume } /Diff(M).

As in Section 5.1 the assumptions on the volume are not important for the ho-

motopy type. The natural inclusions

MHK(M) ⊂ MRic=0(M) ⊂ E(M). (7.1)

turn out to preserve the connected components in the following sense:

Lemma 7.1.1. The moduli space of hyperkähler metrics MHK(M) is a union

of connected components in MRic=0(M). The same is true for MRic=0(M) in

E(M).
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Proof. It is known that E(M) is a union of path connected components on which

the scalar curvature function is constant [19, 12.52 Corollary]. Henceforth, the

space MRic=0(M) is a union of connected components in E(M). From [85, Corol-

lary 3.6.3] we know that every hyperkähler metric admits a parallel spinor. By

[138, Theorem 3.1] we know that the space of metrics with parallel spinors is a

union of connected components in the moduli space of Einstein metrics. Accord-

ing to [6] the holonomy of a metric defines a constant function, up to conjuga-

tion, on the connected components of the space of Riemann metrics admitting

a parallel spinor. Thus, if g is a hyperkähler metric, then every other metric in

the connected component of the moduli space of Einstein metrics is also hyper-

kähler. Since all hyperkähler metrics are Ricci-flat we proved our claim.

One can now apply our results from Chapter 6 to the moduli space of Ein-

stein metrics. For instance, from Corollary 6.4.5 we find the following state-

ment.

Corollary 7.1.2. If M is hyperkählerian, then every connected component of

E(M) which contains a hyperkähler metric has non-trivial topology.

In dimension 4, where M is the K3-manifold, we already know from Theorem

3.5.2 that MHK(M) = MRic=0(M) = E(M).

Corollary 7.1.3. Let M be the K3-manifold. Then E(M) is connected and sim-

ply connected with b2(E(M)) ≥ 1.

Proof. This follows from the discussion above and Corollary 6.4.2.

In general, it is an open question if the inclusions in (7.1) are strict.
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7.2 Moduli Spaces of Ricci-Flat Metrics on Products with Tori

For a simply connected compact manifold N we consider Ricci-flat metrics on

the product N × T k where T k denotes a k-dimensional torus. The structure

theorem of compact Ricci-flat manifolds (M, g) states that there is a finite Rie-

mannian cover

(N × T k, g̃) → (M, g),

with g̃ a product metric of a Ricci-flat metric gN on N and a sectional curva-

ture flat metric gT on T k, see [50]. This also follows from the Cheeger-Gromoll

splitting theorem [33]. Following the proof of the structure theorem in [50] our

first goal is to show that a Ricci-flat metric g on N × T k is already isometric to

a product metric. We need the following lemma on the isometry group I(M, g)

taken from [19, 1.84], see also [50].

Lemma 7.2.1. Let (M, g) be a Ricci-flat manifold and let I(M, g)◦ be the con-

nected component of I(M, g) which contains the identity. Then I(M, g)◦ is a

torus group of rank b1(M).

The Lie algebra of Killing vector fields is known to agree with the Lie algebra

of I(M, g)◦ [91, Theorem 3.4]. By compactness of I(M, g)◦ we know that the

exponential map is surjective, thus every point in I(M, g)◦ is connected with the

identity element by a one parameter subgroup. We conclude that every isometry

in I(M, g)◦ is induced by a Killing vector field. Using this fact and the de Rham

Decomposition Theorem 2.1.3 we will prove our first claim.
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Lemma 7.2.2. Let M = N × T k be the topological product of a compact and

simply connected manifold N and a k-dimensional torus T k. Then for a Ricci-

flat metric g on M there is a Ricci-flat metric gN on N and a sectional curva-

ture flat metric gT on T k such that g is isometric to the product metric gN + gT .

Proof. The metric g lifts to a Ricci-flat metric g̃ on the universal cover M̃ =

N × Rk. By de Rham Decomposition Theorem 2.1.3 we find that g̃ is isometric

to a product metric gN +gF , with gN Ricci-flat on N and gF a flat metric on Rk.

Let X be a Killing vector field on M and denote by X̃ the Killing vector field

obtained by lifting X to the universal cover M̃ . Since M̃ is a product we have

a natural splitting TM̃ = TN ⊕ TRk. For X̃N , the factor of X̃ on TN , it is

by [19, 1.81 Theorem c)] straightforward to prove that it is a Killing field with

respect to gN . Since b1(N) = 0 we know from Lemma 7.2.1 that N does not

possess any non-trivial Killing fields so that X̃N = 0. We find that the space

of Killing vector fields KV(M) acts by translations on the (Rk, gF ) factor of M̃

and an orbit of a point (n, t) ∈ M̃ is given by {n} × Rk.

Denote by Γ the decktransformation group which acts by isometries on (N ×

T k, gN + gF ). Note that the action of Γ commutes with the action of KV(M) on

M̃ , as this action is induced by lifts, i.e. γX̃(p) = X̃(pγ) for a point p ∈ M̃ and

γ ∈ Γ. We may view Γ and KV(M) as subgroups of the isometry group I(M̃, g)

so that

KV(M)/KV(M) ∩ Γ = I(M, g)◦.

Since I(M, g)◦ is compact we find that KV(M) ∩ Γ is a lattice in KV(M) ∼= Rk.

Furthermore, as Γ is a free abelian group of rank k we know that Γ is contained
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in KV(M). Thus, we have proven that Γ acts by translations on the factor of M̃

leaving invariant the first. The de Rham splitting therefore preserves the action

of the decktransformation group and thus the splitting descends to N × T k.

The above Lemma proves the existence of an inverse F−1 to the map

F : MRic=0(N) × Msec=0(T k) → MRic=0(N × T k)

which takes a pair (gN , gT ) to the product metric gN+gT . While F is easily seen

to be continuous, proving that F−1 is continuous is more involved. However, we

can conclude continuity by relying on the work of Tuschmann and Wiemeler

[129]. There they consider a non-negatively Ricci-curved manifold (M, g) with

π1(M) = Zn. By the Cheeger and Gromoll splitting theorem [33] (M, g) is iso-

metric to a bundle with simply connected non-negative Ricci curved fiber (N, h)

over a flat n-dimensional torus (T n, h′). They prove that the maps

• MRic≥0(M) → MRic≥0(N), g 7→ h

• MRic≥0(M) → Msec=0(T k), g 7→ h′

are continuous [129, Theorem 5.1]. In fact, they show that these maps are re-

tractions if dimM ≥ 5, [129, Corollary 5.3] and [129, Theorem 5.4]. Since

MRic=0(M) embeds continuously into MRic≥0(M) we find that F is continuous

as well. Thus, we have proven the following.

Corollary 7.2.3. Let N be a compact simply connected manifold and T k the

k-dimensional torus. Then the splitting of Ricci-flat metrics on N × T k into
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Ricci-flat and sectional curvature flat factors induces a homeomorphism

MRic=0(N × T k) ∼= MRic=0(N) × Msec=0(T k).

Before drawing consequences on the topology of MRic=0(N × T k) let us make

the following remark.

Proposition 7.2.4. Let M be hyperkählerian and T k the k-dimensional torus.

For a Riemannian metric g on M × T k the following are equivalent:

• g has zero scalar curvature,

• g has non-negative scalar curvature,

• g has non-negative Ricci curvature,

• g is Ricci-flat.

Proof. For a 4n-dimensional hyperkählerian manifold M the Â-genus is equal

to n + 1, see [73, p.614]. The projection π : M × T k → T k thus has fiber a

manifold which has non-trivial Â-genus over every point in T k. This means that

π is a surjective map onto an enlargeable manifold with non-zero Â-degree. By

[63, Theorem B] the space M × T k does not admit a positive scalar curvature

metric and furthermore any metric with non-negative scalar curvature is Ricci-

flat. Clearly non-negative Ricci curvature implies non-negative scalar curvature

and so does zero scalar curvature.

As a consequence of the above proposition we have.
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Corollary 7.2.5. Let N be hyperkählerian. Then

MRic≥0(N × T k) = MRic=0(N × T k) ∼= MRic=0(N) × Msec=0(T k).

Tuschmann and Wiemeler proved in the already mentioned work [129, Propo-

sition 5.5] the following theorem.

Theorem 7.2.6. If T k is a k-dimensional torus, then the following holds:

• The moduli space of flat metrics Msec=0(T k) on T k is simply connected.

• If k = 1, 2, 3, then Msec=0(T k) is contractible.

• If k = 4, then π3(Msec=0(T k)) ⊗ Q ∼= Q.

• If k > 4, and k 6= 8, 9, 10, then π5(Msec=0(T k)) ⊗ Q ∼= Q.

By the splitting in Corollary 7.2.3 one can now easily combine the above re-

sults on Msec=0(T k) with our results of Section 6.4. For instance:

Corollary 7.2.7. Let N be compact, simply connected and T k a torus with k ≥

0. Then every connected component which contains a hyperkähler metric of the

moduli space of Ricci-flat metrics MRic=0(N × T k) is not contractible.

The connected components which contain a hyperkähler metric, induced by a

Hilbert scheme of length n over a K3-surface, are simply connected and the sec-

ond rational homotopy group of these is not 0. If M is a Ricci-flat manifold,

possibly not hyperkählerian, we know that MRic=0(M ×T k) has non-trivial topol-

ogy if k ≥ 4 and k 6= 8, 9, 10.
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7.3 Einstein Metrics on the Enriques Manifold

We discuss Einstein metrics on the Enriques manifold M and prove a metric

Torelli theorem for the moduli space of Einstein metrics on M . We begin by

recalling basic facts on the theory of Enriques surfaces.

7.3.1 Enriques Surfaces

There are several definitions of Enriques surfaces, all equivalent. We choose the

following.

Definition 7.3.1. An Enriques surface is a compact complex surface S with

π1(S) = Z2 and trivial real first Chern class.

These surfaces belong to the family of irreducible compact complex surfaces

for which the Calabi-Yau theorem provides non-flat but Ricci-flat Kähler met-

rics. The universal cover of an Enriques surface is a K3-surface. From [72] we

know that the only other manifold, aside from the K3-manifold, admitting non-

flat Ricci-flat Kähler metrics is a Z2 × Z2 quotient of the K3-manifold.

Much of the theory on Enriques surfaces can be traced back to the theory of

K3-surfaces, such as Torelli theorems, see [110], [74], [14] for example. A con-

sequence of the Torelli theorems is that any two Enriques surfaces are deforma-

tion equivalent [74, Theorem 4.3] and hence diffeomorphic. Thus, the underlying

smooth manifold of an Enriques surface will be called the Enriques manifold.

Like in the case of K3-surface, every Enriques surface admits a Kähler metric
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[14, (3.1)Theorem p.144]. This also follows from the fact that every Enriques

surface is projective [14, V Sect. 23], which is not true for K3-surfaces.

Since the universal cover of the Enriques manifold is the K3-manifold, we

also get some of the topological invariants like the topological Euler number

χ(S) = 12 and the second Betti number b2(S) = 10. The universal coefficient

theorem then implies

H2(S,Z) ∼= Hom(H2(M),Z) ⊕ Ext(Z2,Z) ∼= Z10 ⊕ Z2.

The Z2-factor is generated by the first Chern class. This can be seen as follows.

First we note that c1(S) is torsion as the real Chern class vanishes by defini-

tion. Now the irregularity of S is h0,1 = 0 and thus the vanishing of c1(S) would

imply that the canonical bundle is trivial, in which case S admits a holomorphic

symplectic form. This would imply that χ(S,OS) = 2. Similar to the proof of

Proposition 3.3.1 this contradicts the fact that the universal cover S̃ also has

holomorphic Euler characteristic χ(S̃,OS̃) = 2.

Next, note that for a torsion element t ∈ H2(S,Z) one has (c, t) = 0 for every

class c ∈ H2(S,Z). The intersection paring is thus well defined on the free part

H2(S,Z)0 := H2(S,Z)/Z2.

Lemma 7.3.1. The cup-pairing on H2(S,Z)0 is isomorphic to the so called En-

riques lattice ΛE := E8(−1) ⊕ U .

Proof. Since S admits no nowhere vanishing holomorphic 2-form we know h2,0 =

0 and h0,2 = 0. Therefore, h1,1 = 10, the rank of H2(S,Z). Thus every class
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in H2(S,Z)0 is of type (1, 1). By the Lefschetz theorem on (1, 1)-classes every

element d ∈ H2(S,Z)0 is represented by a divisor D. From Riemann-Roch for

surfaces and divisors [67, V Theorem 1.6] we find

d2 = D ·D = 2χ(S,OS(D)) − 2χ(S,OS) +D ·KS.

Since c1(S) is torsion we have D · KS = (d, c1(S)) = 0 and thus d2 is even.

The Hodge index theorem [75, Corollary 3.3.16] then yields the signature to be

(1, 9). From the classification Theorem 2.4.1 of unimodular lattices we conclude

the claim.

The following example is closely related to the Kummer construction from

Example 3.5.1, see also [118, p.193].

Example 7.3.2. Let T1 = C/Γ1 and T2 = C/Γ2 be complex 1-dimensional tori

and let T2 = T1 × T2 be their product. Define an involution on T2 by

i : T2 → T2 (z1, z2) 7→ (−z1, z2).

Recall that the action of Z2 on T2 given by (z1, z2) 7→ (−z1,−z2) gives rise to a

complex orbifold T2/ ± 1 and the blow up Kum(T2) of the 16-singular points in

T2/ ± 1 is called the Kummer surface. On Kum(T2) the map i induces a holo-

morphic involution Kum(T2) → Kum(T2) which however is not fixed point

free, since it acts trivial on (0, z2). To obtain a free involution we introduce

another involution. Let s = (s1, s2) be a singular point in T2/ ± 1 with nei-
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ther s1 nor s2 being represented by 0. Then the translation by s, i.e. the map

τ : (z1, z2) 7→ (z1 + s1, z2 + s2) also gives rise to an involution on Kum(T2). The

composition ι := i ◦ τ induces then a fixed point free holomorphic involution on

Kum(T2). The quotient

Kum(T2)/ < ι >

is thus an Enriques surface.

Finding fixed point free involutions is in general an effective tool to construct

Enriques surfaces. One can reduce the problem of finding such to a question of

lattice theory, which we will now explain, more details of this are given in [110].

For a fixed point free holomorphic involution i on a K3-surface X the quo-

tient map p : X → X/ < i > is the universal covering of the Enriques surface

S := X/ < i >. The image ΛM := p∗(H2(S,Z)) is isomorphic to ΛE(2). It

is clear that ΛM is contained in the invariant part of i∗. But in fact equality is

true, i.e. ΛM = {x ∈ H2(X,Z)| i∗(x) = x }. Furthermore, one can show that the

orthogonal complement ΛN := Λ⊥
M is the sublattice on which i∗ acts by −1, i.e.

ΛN = {x ∈ H2(X,Z)| i∗(x) = −x }. Both lattices ΛM and ΛN are primitive with

ΛN
∼= E8(−2) ⊕ U(2) ⊕ U and we have an orthogonal splitting

H2(X,R) ∼= (ΛM ⊗ R) ⊕ (ΛN ⊗ R) ,

compare [110]. The above question is now answered as follows.

Lemma 7.3.3. For a K3-surface X there is a 1-to-1 relation between fixed

point free involutions i : X → X and involutions i∗ : H2(X,Z) → H2(X,Z)
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preserving the Kähler cone such that

(i) the invariant part ΛM := { x | i∗(x) = x } is isomorphic to ΛE(2),

(ii) ΛM ⊂ H1,1(X) and ΛM is not orthogonal to any (−2)-class of type (1, 1).

Proof. Let i be a fixed point free involution on X. Part (i) follows from the pre-

vious discussion. The second statement can be seen as follows. Assume that c

is a (−2)-class of type (1, 1) orthogonal to ΛM . By the Lefschetz theorem on

(1, 1)-classes c is represented by a divisor C. Furthermore, Riemann-Roch for

line bundles on surfaces [60, p.472] implies that either h0(C) or h0(−C) is pos-

itive and hence C or −C effective. We can assume that C is effective. Since

i is a biholomorphism i(C) is also effective and [C] + [i(C)] is contained in

ΛM ∩ ΛN = {0}, hence [C] = −[i(C)]. This contradicts effectiveness of C and

i(C).

Now let i∗ be an involution of H2(X,Z) satisfying (i) and (ii). By the global

Torelli theorem 3.6.1 there is a unique holomorphic involution i whose induced

map in cohomology is i∗. That i is fixed point free follows from [114, Theorem

4.2.2], see also the proof of [110, Theorem 7.2].

7.3.2 Einstein Metrics

An Enriques surface S is Kähler and thus by the Calabi-Yau Theorem 2.1.4 ad-

mits a Ricci-flat Kähler metric, as the first real Chern class vanishes. We can

show that every Einstein metric is of this form.

Lemma 7.3.4. Let M be the Enriques manifold and g a Riemannian metric

defined on M . Then the following are equivalent:
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• g is Einstein.

• g is Ricci-flat and Kähler with respect to a unique complex structure.

• Hol(g) ∼= SU(2) ⋊ Z2 and is contained in U(2).

Proof. The lift g̃ of an Einstein metric g to the universal cover M̃ is also Ein-

stein. Since M̃ is the K3-manifold we know that g̃ is Ricci-flat by Theorem

3.5.2 and hence g as well. Furthermore, we also know from the same result that

Hol(g̃) ∼= SU(2) and thus Hol0(g) ∼= SU(2). By [19, 10.112] and [19, 10.114

Proposition] we find that Hol(g) is a subgroup of U(2). Furthermore, the canon-

ical homomorphism h : π1(M) → Hol(g)/Hol0(g) is surjective [85, Proposition

2.2.6]. From Proposition 3.3.1 we know that Hol0(g) is a proper subgroup of

Hol(g) and thus h is an isomorphism. By Berger’s classification theorem [19,

10.92] the identity component of Hol(g), which is Hol0(g), is identified with

SU(2) in U(2). Thus, Hol(g) is isomorphic to a Z2-extension G of SU(2) in

U(2). Since G/SU(2) ∼= Z2 there is an element t ∈ G − SU(2) and an element

h ∈ SU(2) such that t2h is the identity. Thus, det t = ±1 and hence

Hol(g) ∼= { A ∈ U(2) | detA = ±1 }.

Therefore, there is at least one complex structure for which g is Kähler. Let

I be such a compatible complex structure, then g(I·, ·) is invariant under the

Hol(g) action. On the other hand a Hol(g)-invariant 2-form gives rise to a com-

plex structure after possibly rescaling. Thus, we need to find the dimension of

Hol(g)-invariant 2-forms. It suffices to consider the standard representation for
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which

{e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 + e2 ∧ e3}

is a basis of SU(2) invariant 2-forms. The element ( 1 0
0 −1 ) ∈ U(2) only preserves

e1 ∧ e2 + e3 ∧ e4 and thus the space spanned by parallel complex structures has

dimension 1. Henceforth, the complex structure is unique.

Note that an Einstein metric on the Enriques manifold is never hyperkähler,

but locally it always is.

7.4 Torelli Theorem For Einstein Metrics on the Enriques Manifold

Inspired by the proof of the global Torelli theorem for Enriques surfaces [110],

[74] the goal of this section is to give a description of the moduli space of Einstein-

Metrics in terms of a Torelli type theorem similar to the one for hyperkähler

metrics. That is, we will define a period map on the moduli space of Einstein

metrics, prove injectivity and determine the image of this map. Other than in

the case of hyperkähler metrics we will not use any Teichmüller space but use

the language of marked spaces instead. Recall:

Definition 7.4.1. A marked space is a tuple (X,φ), where X = (M, I) is a

complex manifold and

φ : H2(X,Z) → Λ,

an isomorphism called marking to a fixed lattice Λ. A marked Einstein mani-

fold is a triple (M, g, φ) where M is a smooth manifold, φ a marking and g an

Einstein metric of unit volume on M .
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For a marked K3-surface we always choose the K3-lattice ΛK3 = E8(−1)⊕2 ⊕

U⊕3 and for Enriques surfaces the Enriques lattice ΛE = E8(−1) ⊕ U in the

respective isomorphism class for the markings. Associated to the marked spaces

we introduce the following moduli space.

Definition 7.4.2. Let M be the Enriques manifold. Then the moduli space of

marked Einstein metrics on M is the set

Em(M) := {(N, g, φ) | (N, g, φ) marked Einstein manifold }/ ∼

where N is diffeomorphic to M and (N1, g2, φ1) is equivalent to (N2, g2, φ2) if

there is a diffeomorphism ψ : N2 → N1 with ψ∗g1 = g2 and such that

H2(N1,Z) H2(N2,Z)

ΛE

ψ∗

φ1

φ1

commutes.

Note that Em(M) is not endowed with any topology. However, there is a bi-

jection E(M) → Em(M)/O(ΛE) by taking g to the triple (M, g, φ) with φ being

some marking for M .

The next step is to define a period map on Em(M) by reducing it to the case

of K3-surfaces. For that we want to relate marked Enriques surfaces with marked

K3-surfaces. We fix once and for all an involution on the K3-lattice ΛK3 =
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E8(−1) ⊕ E8(−1) ⊕ U ⊕ U ⊕ U given by

i : E8(−1) ⊕ E8(−1) ⊕ U ⊕ U ⊕ U → E8(−1) ⊕ E8(−1) ⊕ U ⊕ U ⊕ U

(x1, x2, u1, u2, u3) 7→ (x2, x1, u2, u1,−u3).

By ΛM denote the eigenlattice to the eigenvalue 1 and by ΛN respectively the

one for (−1), then ΛM is isomorphic to the twist of the Enriques lattice ΛE by

2, i.e. ΛM
∼= ΛE(2) and furthermore ΛN

∼= ΛE(2) ⊕ U . We also fix a primitive

embedding ι of ΛE(2) = E8(−2) ⊕ U(2) into ΛK3 given by (x, u) 7→ (x, x, u, u, 0).

The following theorem is proven in [110, Theorem (1.4)].

Theorem 7.4.1. Let j1, j2 : ΛE(2) → ΛK3 be two primitive embeddings. Then

any isometry φ : ΛE → ΛE extends to an isometry φ̃ : ΛK3 → ΛK3 such that

φ̃ ◦ j1 = j2 ◦ φ.

For a marked Enriques surface (S, φ) let p : S̃ → S denote the universal cov-

ering. Then by the above theorem there exists a marking φ̃ on S̃ such that the

following diagram commutes

H2(S,Z) ΛE ΛE(2)

H2(S̃,Z) ΛK3.

φ

p∗

id

ι

φ̃

The marking φ̃ is unique only up to the action of O(ΛN).

Recall that the metric period map PMet for a hyperkähler manifold maps a

hyperkähler metric g to the space Hg = span{[ωI ], [ωJ ], [ωK ]} given by the span
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of the associated Kähler classes.

Definition 7.4.3. The metric period map on the Enriques manifold is

PMet
E : Em(M) → (O(ΛM) × O(ΛN)) \

(
Gr+(3,ΛK3 ⊗ R)

)

defined by taking (N, g, φ) to φ̃R(Hg̃), where φ̃R is the R-linear extension of φ̃.

Now we want to show that the metric period map PMet
E is an injection. This

will follow once we have proven the following theorem.

Theorem 7.4.2. Let (S1, g1, φ1) and (S2, g2, φ2) be marked Enriques Einstein

manifolds. Then PMet
E (S1, g1, φ1) = PMet

E (S2, g2, φ2) if and only if g1 is isometric

to g2.

Proof. For marked Enriques Einstein spaces (S1, g1, φ1) and (S2, g2, ψ2) assume

that PMet
E (S1, g1, φ1) = PMet

E (S2, g2, ψ2). Then there exists (γ1, γ2) ∈ (O(ΛM) × O(ΛN))

such that φ̃R,1(Hg̃1) = (γ1, γ2) · ψ̃R,2(Hg̃2). We put φ̃2 := γ1 ◦ γ2 ◦ ψ̃2 and get an-

other marking φ2 for (S2, g2) with PMet
E (S1, g1, φ1) = PMet

E (S2, g2, φ2). Now let J1

and J2 denote (by Lemma 7.3.4) the unique complex structures associated to g1

and g2, furthermore let J̃1, J̃2 be their respective lifts to the universal covering.

Denote by ω1, ω2 the Kähler forms and by ω̃1, ω̃2 their lifts. Then

Hg̃1 = PCpl(J̃1) ⊕ [ω̃1] · R and Hg̃2 = PCpl(J̃2) ⊕ [ω̃2] · R.
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and since the markings are isometries we get

φ̃R,i(Hg̃i
) = φ̃R,i(PCpl(J̃i)) ⊕ φ̃R,i([ω̃i]) · R,

for i = 1, 2. Now let f1 and f2 be the non-trivial decktransformations of S1 and

S2 respectively. Then ω̃i is in the invariant part of f ∗
i in H2(Si,R) and φ̃i(ω̃i) ∈

ΛM ⊗R. On the other hand, the 2-plane φ̃R,i(PCpl(Ji)) is contained in ΛN ⊗R as

f ∗
i changes the sign of the nowhere vanishing holomorphic 2-form on Si. Hence-

forth φ̃R,1([ω̃1]) · R = φ̃R,2([ω̃2]) · R. After possibly changing the markings

with an element in O(ΛM) × O(ΛN) we can assume φR,1([ω̃1]) = φR,2([ω̃2]) and

φ̃R,1(PCpl(J1)) = φ̃R,2(PCpl(J2)) as oriented 2-planes. By the global Torelli the-

orem for K3-surfaces 3.6.1 there exists a biholomorphism b : (S̃2, J̃2) → (S̃1, J̃1)

such that φ̃1 = b∗ ◦ φ̃2. Furthermore, we know that b∗(ω̃1) = b∗(ω̃2).

We need to show that b ◦ f2 = f1 ◦ b. The map f ∗−1
2 ◦ b∗ ◦ f ∗

1 is a Hodge

isometry on H2(M,C) which takes [ω̃1] to [ω̃2]. Again from the global Torelli

theorem 3.6.1 we find that f ∗−1
2 ◦ b∗ ◦ f ∗

1 is induced by a unique biholomorphic

map and thus b = f1 ◦ b ◦ f−1
2 . Therefore, b is an isometry between g̃1 and g̃2

which preserves the deck transformations. Hence, g1 is isomorphic to g2.

Our next goal is to determine the image of PMet
E . For that we recall the defi-

nition of the Weyl group of a K3-surface.

Definition 7.4.4. For a K3-surface X let W (X) be the subgroup of O(H2(X,Z))

generated by reflections along (−2)-classes of type (1, 1).

If X ′ = (M, I ′) is another K3-surface with the same period point PCpl(X ′) as
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the K3-surface X, then W (X) = W (X ′) as they share the same (−2)-classes.

Furthermore, the action of W (X) leaves invariant the period PCpl(X) as it acts

by the identity on H2,0(I) ⊕ H0,2(I). On the other hand, it acts transitively

on the set of Kähler chambers, i.e. the closure of a connected component of

Pos(X) − ⋃
z (−2)−class of type−(1,1) z

⊥. In fact, it is a fundamental domain of the

action on the positive cone of (1, 1)-classes Pos(X) which contains the Kähler

cone, see [83, Proposition 5.5]. We can now determine the image of PMet
E .

Theorem 7.4.3. A positive definite 3-plane H ∈ Gr+(3,ΛK3 ⊗ R) is contained

in the image of PMet
E if and only if the following conditions are satisfied

(i) dim(H ∩ (ΛN ⊗ R)) = 2,

(ii) H ∩ (ΛN ⊗ R) is not orthogonal to any (−2)-class in ΛN ,

(iii) H is not orthogonal to any (−2)-class in ΛK3.

Proof. For a marked Enriques Einstein manifold (S, g, φ) we know that the lift

g̃ is a hyperkähler metric and Hg̃ = PCpl(J̃) ⊕ [ω̃] · R where J̃ is the lift of the

unique complex structure for which g is Kähler and [ω̃] the corresponding Käh-

ler class. Then PMet
E (S, g, φ) = φ̃R(PCpl(J̃)) ⊕ φ̃R([ω̃]) · R and PCpl(J̃) ⊂ ΛN ⊗ R.

On the other hand, ω̃ is contained in the invariant part and hence (i) is satis-

fied. The second condition follows from Lemma 7.3.3. Since φ̃−1
R (PMet

E (S, g, φ)) =

PMet(g̃) we know that H cannot be orthogonal to any (−2)-class.

Now let H be such that (i), (ii) and (iii) are satisfied. Define P := H ∩ (ΛN ⊗

R). By the surjectivity of the complex period map there exists a marked K3-
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surface (S̃, φ̃) with φ̃R(PCpl(S̃))) = P . By assumption

(H ∩ (ΛM ⊗ R)) ∩ φ̃

Pos(S̃) −
⋃

(−2)−class orthogonal to P
z⊥

 6= ∅.

Pick some ω in the above intersection. Then φ̃−1(ω) is contained in a Kähler

chamber of S̃. Choose γ in the Weyl group W (S̃) so that γ−1 ◦ φ̃−1(ω) is con-

tained in the Kähler cone Käh(S̃) and define a new marking ψ := φ ◦ γ of S̃.

By the Calabi-Yau theorem ψ−1(ω) is represented by a unique Einstein metric h

with ψR(PMet(h)) = H. We need to show that there is a fixed point free involu-

tion for which h is an isometry. Consider the commutative diagram

H2(S̃,Z) H2(S̃,Z)

ΛK3 ΛK3,

j

ψ ψ

ι

where j := ψ−1 ◦ ι ◦ ψ. Then j is induced by a fixed point free holomorphic

involution on i : S̃ → S̃ by Lemma 7.3.3 and as i fixes the Kähler-form of h it

is an isometry with respect to h. Thus, h descents to an Einstein metric on the

Enriques surface S := S̃/ < i >.

As a corollary we obtain the following.

Corollary 7.4.4. The moduli space of unit volume Einstein metrics on the

Enriques manifold is homeomorphic to the subspace of (O(ΛM) × O(ΛN)) \

(Gr+(3,ΛK3 ⊗ R)) where the image is given by those 3-planes H with

(i) dim(H ∩ (ΛN ⊗ R)) = 2,
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(ii) H ∩ ΛN ⊗ R is not orthogonal to any (−2)-class in ΛN ,

(iii) H is not orthogonal to any (−2)-class in ΛK3.

Proof. Let M be the Enriques manifold and M̃ its universal covering. Fix some

marking φ for M and let φ̃ : H2(M̃,Z) → ΛK3 be a lifted marking. Let REin(M)

denote the space of Einstein-metrics of unit volume on M . Then consider the

following commutative diagram

REin(M) RHK(M̃)

E(M) Em(M)/O(ΛE) (O(ΛM) × O(ΛN)) \ (Gr+(3,ΛK3 ⊗ R)) .

L

φ̃R◦PMet

Φ PMet
E

Where L is the map which lifts a metric to its universal cover and Φ: E(M) →

Em(M)/O(ΛE) the bijection induced by the map which takes g to the marked

Einstein manifold (M, g, φ). The composed map φ̃R ◦ PMet ◦ L is continuous.

Thus, if we endow Em(M)/O(ΛE) with the topology induced by Φ we get that

also PMet
E is continuous. The claim then follows by Theorems 7.4.2 and 7.4.3.

7.5 Desingularization of a Flat Orbifold Metric on an Enriques Sur-

face

Recall the Kummer type construction of an Enriques surface in Example 7.3.2.

Given a torus T2 = C/Γ1 × C/Γ2 we constructed a fixed point free involution ι

on the singular space X := T2/± 1.

The Kummer construction 3.5.1 produces a K3-surface S̃ = Kum(T2) by re-
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placing small neighborhoods of each singular point in X with a copy of T ∗CP 1.

The Example 7.3.2 shows that if one does the same for the 8 singularities in

Y := X/ < ι > one finds an Enriques surface S so that

S̃ S = S̃/〈ι〉

X Y

commutes with the horizontal maps being universal coverings and the vertical

resolution maps.

The standard flat metric on C2 descends to a flat orbifold metric on X as well

as on Y . By gluing Eguchi-Hanson metrics, which are defined on T ∗CP 1, with

the flat metric on X away from the singular points one obtains an approximated

Ricci flat metric on X. The metric can then be perturbed inside its Kähler class

to obtain a Ricci-flat metric close to the glued one. Furthermore, in this way

one can construct a whole sequence of such metrics which then converges to

the flat metric on X in the Gromov-Hausdorff sense. This construction is well

known, see [88] and [85, Example 7.3.14] for instance. By following [88] we now

show that essentially the same is true for the Enriques surface S and Y .

Eguchi-Hanson Metric

We begin by recalling some facts on the Eguchi-Hanson metric, for more details

we refer to [88, p. 293], see also [127].

The Eguchi-Hanson-Metric is a non-compact hyperkähler metric on T ∗CP 1
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which belongs to the family of so called ALE metrics, short for asymptotically

locally Euclidean. Roughly speaking the ALE-condition means that on the com-

plement T ∗CP 1 \ BR of a large ball BR the metric locally approximates the flat

4-dimensional Euclidean metric as the radius R increases.

There is a map p : T ∗CP 1 → C2/ ± 1 which is a biholomorphism away from

the singular point and its fiber, i.e. there is an isomorphism

(
C2 − 0

)
/± 1 ∼= T∗CP 1 − E,

where E := p−1(0). The map p is then called a resolution of the singularity in

C2/ ± 1. Moreover, the subspace E is called exceptional divisor. It is the zero

section of T ∗CP 1. Therefore, E ∼= CP 1 and the self-intersection number is E2 =

−2, see [84, Theorem 7.5.1] for more on resolutions of quotient singularities.

On (C2 − 0) /±1 the Eguchi-Hanson metric can be written in the form
√

−1∂∂̄φ.

More precisely, the Kähler-potential φ is given by

φ = φEH,a(ρ) = ρ2

√
1 + a2

ρ4 + a log ρ2
√
ρ4 + a2 + a

,

where ρ =
√

|z1|2 + |z2|2 for some positive number a > 0. Note that for differ-

ent a one obtains different metrics, which all go under the label Eguchi-Hanson

metric. For a = 0 we remark that the function φEH,a is the Kähler potential for

the flat metric on (C2 − {0}) /±1. One can show that the Eguchi Hanson spaces

converge to the flat orbifold metric on C2/ ± 1 in the Gromov-Hausdorff topol-

ogy as a goes to 0. On the exceptional divisor E this has the following effect.
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For each a > 0 the space E is a totally geodesic submanifold with constant cur-

vature 1
a

and V ol(E) = 4πa, i.e. it is a scaled version of the Fubini-Study metric

on CP 1. Thus as a approaches 0 the curvature on T ∗CP 1 starts to concentrate

around E.

Glueing Eguchi-Hanson Space with Flat Metric

Our goal is to replace small neighborhoods around each of the eight singular

points in Y with an Eguchi-Hanson space. To make this gluing possible, we

need to match the flat metric on Y . This whole process is done as follows.

For fixed δ > 0, let Ui denote the metric ball of radius 1 + δ in Y with center

the singular point si. By possibly rescaling the metric on Y in the first place,

we may assume that the Ui are pairwise disjoint and thus isomorphic to B1+δ

the metric ball of radius 1 + δ in C2/± centered at 0. Choose a smooth function

f : R → R with the following properties

f(ρ) = 1 for ρ ≤ 1 − δ, f(ρ) = 0 for ρ ≥ 1, and |f ′(ρ)| ≤ 2
δ
.

For ai > 0 sufficiently small, we define

Fi(ρ) := (1 − f(ρ))ρ2 + f(ρ)φEH,ai
(ρ).

Then Fi gives rise to a Kähler potential on B1+δ with
√

−1∂∂̄Fi being the Eguchi-

Hanson metric on B1−δ′ − {0}, where δ < δ′ < 1 and being the flat metric on

B1+δ − B1. For an open neighborhood V in T ∗CP 1 containing E we then have
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isomorphisms Ui − {si} ∼= B1+δ − {0} ∼= V − E. For each Fi we get a metric

defined on Vi := (V, ωi) which is the Eguchi-Hanson metric in a small neighbor-

hood of E.

We can thus replace each Ui with Vi to obtain a metric denoted ωa on the

Enriques Surface

S = Y ∪
8⋃
i=1

Vi,

where a = (a1, · · · , a8) and each ai corresponds to the parameter of the Eguchi-

Hanson metric on Vi. Thus producing a flat metric on Y − ⋃8
i=1 Vi and a Ricci-

flat metric close to the exceptional divisors E. However, the metric is not Ricci-

flat in the regions where we interpolate between the flat metrics and the Eguchi-

Hanson metrics.

Perturbing the Metric ωa

The next step is to find a metric close to ωa being Ricci-flat on the whole of

S. For that, let σ denote the nowhere vanishing holomorphic 2-form on S̃. The

volume form σ ∧ σ̄ descends to a volume form on S, and we define the function

F := log σ∧σ̄
ω2

a
on S. Due to Yau’s solution to the Calabi-conjecture [141] there is

a smooth function φa defined on S such that

(ωa +
√

−1∂∂̄φa)2 = eFω2
a,

and furthermore, µa := ωa +
√

−1∂∂̄φa defining a Kähler form. Now consider

the universal covering S̃ → S. The lift ω̃a of the glued metric ωa, can also be
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understood by basically the same gluing procedure namely by replacing Ũi ∼=

Ui t Ui with Ṽi ∼= Vi t Vi. Furthermore, we can lift the functions F and φa to S̃

so that

ω̃2 = (ω̃a +
√

−1∂∂̄φ̃a)2 = σ ∧ σ̄.

From [75, Corollary 4.B.23] we know that ω̃ is Ricci-flat. The apriori estimates

for φ̃a are the same for φa and have been carried out in [88, Theorem 18], see

also [142, 69, 11, 89]. In particular, for µa := ωa +
√

−1∂∂̄φa we find from [88,

p.302] that

(1 − C|a|
1
2 )ωa ≤ µa ≤ (1 + C|a|

1
2 )ωa,

for some positive constant C. As in [88, p.303] it follows that µa converges to

the flat orbifold metric on Y in the Gromov-Hausdorff sense with smooth con-

vergence outside the singular set as |a| → 0.

The Period Point of µa

Now consider the case as |a| → 0, where a = (a1, · · · , a8) and ai the parameter

for an Eguchi-Hanson space glued in Y . Denote by µ̃a the lift of the metric µa

constructed in the previous section to the K3-surface S̃.

Let π : S → X be the resolution of X, i.e. the map which is a biholomorphism

π : S −
⋃
Ei → X − {Xs},

where the Ei ∼= CP 1 are the exceptional divisors and Xs the singular points

in X. Denote by κ a flat orbifold-Kähler form on X. Then by [90, Theorem 1]
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the singular form π∗κ defines a closed current, and thus a cohomology class in

H2(S̃,R). From [88] we find that the cohomology class of the lift µa is given by

[µa] = [π∗κ] −
8∑
i

ai PD[Ei] −
8∑
i

ai PD[E ′
i],

where PD[Ei] and PD[E ′
i] are the Poincaré-duals of the exceptional divisors

Ei, E
′
i, where Ei + E ′

i is the lift of an exceptional divisor on the Enriques sur-

face. Recall that each PD[Ei] defines a (−2)-class of type (1, 1) and we compute

([µa], PD[Ei]) = −2ai.

Thus, the limit [µ0] := limai→0([ma]) is contained in the boundary of the Kähler

cone of S̃.

The period point PMet(µa) = PCpl(S̃) ⊕ [µa] · R converges to a 3-space H

in ⋂i Gr+(3,PD[Ei]⊥). For the space H we have dim(H ∩ (ΛN ⊗ R)) = 2 and

H∩(ΛN ⊗R) is not orthogonal to any (−2)-class in ΛN , where ΛN the sublattice

of H2(S̃,Z) on which the involution i acts by multiplication with −1. But H is

now orthogonal to the (−2)-classes provided by the exceptional divisors.

7.6 Holes In the Moduli Space of Hyperkähler Metrics

For a compact hyperkähler manifold, recall that the moduli space of unit vol-

ume hyperkähler metrics MHK(M) is homeomorphic to a subspace of Γ\Gr+(3,H2(M,R)

obtained by ’cutting out’ subspaces of the form Gr+(3, z⊥) where z is an MBM-

class.
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We have seen that sometimes these subspaces, which we refer to as holes, in-

duce non-trivial elements in the second rational homotopy group of MHK(M),

e.g. M being of type K3[n].

In case of the K3-manifold, Kobayashi and Todorov [90] prove by generalizing

the gluing construction for Kummer surfaces to generalized K3-surfaces that

elements in the holes can naturally be described in terms of certain Ricci-flat

orbifold metrics, see also [88].

Definition 7.6.1. A generalized K3-surface is a compact complex surface X

with at worst isolated singularities of the form C2/G where G is a finite sub-

group of SU(2), so that its minimal resolution X̃ is a K3-surface.

Now a positive definite 3-space H in H2(M,R), possibly orthogonal to a (−2)-

class, corresponds to a Ricci-flat orbifold metric in the following way. For any

2-plane P ⊂ H there exists a generalized K3-surface X and a Ricci-flat Kähler

orbifold metric g on X. The metric only depends on H and so does the underly-

ing smooth orbifold structure of X. Furthermore, on X̃ there exists a sequence

of Ricci-flat Kähler metrics converging in the Gromov-Hausdorff topology to the

orbifold (X, g). Away from the singular points the convergence is also smooth.

The space

MO := O(ΛK3)⧹O(3, 19)⧸O(3) × O(19)

can then be understood as the moduli space of Ricci-flat metrics including these

singular metrics [90]. By a result of Anderson [7], this space can also be inter-

preted as the completion of MHK(M) when endowed with the L2-metric. For
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that we first note that MO has a natural metric induced by the symmetric met-

ric on O(3, 19)/O(3) × O(19). The L2-metric is a Diff(M)-equivariant metric

defined on the space of Einstein metrics REin(M). For the definition we refer to

[7]. Anderson proves that the metric period map

PMet : MHK(M) → O(ΛK3)⧹O(3, 19)⧸O(3) × O(19)

extends to an isometry on the completion MHK(M)L
2

. For the topology of this

space we can say the following.

Corollary 7.6.1. The moduli space of Ricci-flat metrics, including orbifold met-

rics, on the K3-manifold is simply connected and the 4th-Betti number is at

least 1.

Proof. The moduli space is by the above discussion identified with MO and

Lemma 6.4.3 shows that the 4th-Betti number does not vanish.

The space MO is homeomorphic to O(ΛK3) \ Gr+(3,ΛK3 ⊗ R). From Theo-

rem 2.4.2 we know that Õ+(ΛK3) is generated by reflections along (−2)-classes.

Since ΛK3 is unimodular Õ+(ΛK3) is just the index 2-subgroup of O(ΛK3) with

spinor norm 1, i.e. Õ+(ΛK3) = O+(ΛK3). As −Id ∈ O(ΛK3) \ O+(ΛK3) acts

trivially on Gr+(3,ΛK3 ⊗ R) there is a homeomorphism

MO ∼= O+(ΛK3) \ Gr+(3,ΛK3 ⊗ R).

Lemma 6.3.1 shows that MO is simply connected.
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It is natural to ask if points in the ’holes’ of other moduli spaces also corre-

spond to geometric objects. For the Enriques manifold we expect that the pic-

ture is similar to the K3-case. For instance, we make the following conjecture.

Conjecture: Let H ∈ Gr+(3,ΛK3 ⊗ R) and P := H ∩ (ΛN ⊗ R) such

that dimP = 2. Furthermore, assume that P is not orthogonal to any (−2)-

class in ΛN . Let X denote the generalized K3-surface endowed with the Ricci-

flat orbifold metric g associated to H and P . Then on X there exists a fixed

point free biholomorphic involution i which is also an orbifold isometry for the

metric g. Furthermore, if S̃ is the minimal resolution of X and S the minimal

resolution of Y := X/〈i〉 then

S̃ S = S̃/〈i〉

X Y

commutes, with the vertical arrows being universal coverings and the horizontal

resolutions.
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Symbols

FCurv Total Curvature Functional
FScal Total Scalar Curvature Functional
R Riemann Curvature Tensor
Ric Ricci Curvature Tensor
scal Scalar Curvature
dvol Volume Form
Gl General Linear Group
O Orthogonal Group
SO Special Orthogonal Group
U Unitary Group
SU Special Unitary Group
Sp Unitary Quaternionic Group
T Cpl Complex Teichmüller Space/ of IHS-structures
T Cpl

Full Teichmüller Space of complex structures
T Cpl
b Birational Complex Teichmüller Space

T Cpl
o Connected component of Complex Teichmüller

Space
PCpl Complex Period Map
PCpl
b Birational Period Map

AComp Space of Almost Complex Structures
Comp Space of Complex Structures
Per Complex Period Domain
CompIHS Space of IHS-Structures
CompK Space of Complex Structures which are Kähler
Käh Kähler Cone
Pos Positive Cone
B Kuranishi Space
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Diff Group of orientation preserving diffeomor-
phisms

DiffI Group of Diffeormorphisms preserving a con-
nected component of complex Teichmüller space

Diff0 Identity component of Diff(M)
∆ Unit Disk in C
Ω2 Sheaf of Holomorphic 2-Forms
Mon2 Monodromy Group
Mon2

Hdg Hodge Monodromy Group
KC Set of Kähler Chambers
R Space of Riemannian Metrics
RHK Space of Hyperkähler Metrics
PMet Metric Period Map
T Met Metric Teichmüller Space
T Met
o Connected Component of Metric Teichmüller

Space
T Met,Cpl Teichmüller Space of Hyperkähler Structures
MHK Moduli Space of Hyperkähler Metrics
MHK

o Component of Moduli Space of Hyperkähler
Metrics

MCG Mapping Class Group
MCGo Subgroup of the Mapping Class Group
Tw Twistor Line
X Twistor Space
Kum Kummer Surface
spn Spinor norm
Gr Grassmann Space
Gro Grassmann Space of Oriented Subspaces
Gr+,o Grassmann Space of Positive definite and Ori-

ented Subspaces
Gr+ Grassmann Space of positive definite subspaces
DΛ Discriminant group
qD Discriminant form
disc(Λ) Discriminant
Õ Stable Orthogonal Group
O+ Orthogonal transformation with spinor norm 1
Õ+ Subgroup of stable Orthogonal Group with

trivial spinor norm
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P Poset induced by affine subspaces
B Γ Classifying Space of the Group Γ
E Γ Universal Cover of BΓ
MRic=0 Moduli Space of Ricci flat metrics
Msec=0 Moduli Space of Sectional Curvature Flat Met-

rics
E Moduli Space of Einstein Metrics
I(M, g)◦ Connected Component of the Isometry Group
I(M, g) Isometry Group
KV(M) Space of Killing Vector Fields
ΛK3 K3-Lattice
ΛE Enrique’s-Lattice
Em Moduli-Space of Marked Einstein metrics
PMet
E Metric Period Map on the Enrique’s manifold

H Quaternions
OX Structure Sheaf
Ωk Sheaf of Holomorphic k Forms
Hol Holonomy Group
Hol0 Reduced Holonomy Group
Mm

K3 Moduli Space of Marked K3 Surfaces
P̃er Refined Period Domain
b Betti Number
h Hodge Number
H Cohomology Group
End Endomorphisms
Hilb Hilbert Scheme
MBM MBM-classes
IHSM Irreducible holomorphic symplectic manifold
IHS Irreducible holomorphic symplectic
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