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Abstract

Cosmic rays are messengers from outer space holding the answer to the Universe’s deepest
mysteries: What are they exactly? Where do they come from? How do they accelerate to such
energies, and how are the laws governing their interactions? At the highest energies, these
unubiquitous particles can only be detected through the showers of secondary particles that
they generate in their interactions with the Earth’s atmosphere. Large ground-based obser-
vatories, like the Pierre Auger Observatory, detect these extensive air showers and attempt
to reconstruct as much information of the primary cosmic ray as possible. In particular, the
number of secondary muons is a key observable because it is directly related to the atomic
mass number of the primary that generated them. Understanding the mass composition
as a function of the energy would shed light on various open questions strongly linked to
the origin of cosmic rays. The Pierre Auger Observatory has dedicated scintillators buried
underground to directly detect muons, the Underground Muon Detector (UMD).

This thesis is devoted to the accurate determination of the muon content of air showers
and to the study of its composition implications. We analyze direct muon measurements of
air showers with energies between 1017.22 eV and 1019.46 eV from two experiments. At lower
energies we extensively analyze UMD data, which we complement at higher energies with
measurements from the Akeno Giant Air Shower Array (AGASA). For the UMD data, we
develop new methods that significantly improve the estimation of the muon number. These
methods also allow for the reconstruction of the muon signal as a function of time with an
unprecedented time resolution, opening the door to the reconstruction of new composition-
sensitive observables. As a direct application, we study the measured lateral distribution of
muons and the models that attempt to describe it.

Furthermore, we analyze the mass composition implications of the UMD and AGASA
data. The composition interpretation of the data can only be inferred by a comparison against
air-shower simulations. We therefore simulate single-proton, single-iron, and mixed com-
position scenarios based on the three newest-generation high-energy hadronic interaction
models. To better compare the results against those of other experiments, we compute the
so called z-values, a scale of the muon content in data relative to that of proton and iron
simulations. The combined results offer a picture consistent with other experiments: the
unexpectedly heavy composition constitutes evidence of a muon deficit in air-shower sim-
ulations that increases with the energy. These results can help to improve the high-energy
hadronic interaction models, which in turn would improve the precision of the inferred
mass composition.
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Resumen

Los rayos cósmicos son mensajeros del espacio que contienen la respuesta a los misterios
más profundos del Universo: ¿Qué son exactamente? ¿De dónde vienen? ¿Cómo se aceleran
hasta tales energías, y cómo son las leyes que rigen sus interacciones? A las energías más
altas, estas escasas partículas sólo pueden detectarse a través de las lluvias de partículas
secundarias que son generadas en sus interacciones con la atmósfera terrestre. Grandes
observatorios, como el Observatorio Pierre Auger, detectan estas lluvias atmosféricas e in-
tentan reconstruir la mayor información posible del rayo cósmico primario. En particular,
el número de muones secundarios es un observable clave porque está directamente rela-
cionado con la composición química del primario que los generó. La comprensión de la
composición química en función de la energía arrojaría luz sobre diversas preguntas no
resueltas fuertemente vinculadas al origen de los rayos cósmicos. El Observatorio Pierre
Auger dispone de detectores de centelleo bajo tierra para detectar los muones de forma
directa, el “Underground Muon Detector” (UMD).

Esta tesis está dedicada a la determinación precisa del contenido de muones de las
lluvias atmosféricas y al estudio de sus implicaciones sobre la composición química del
primario. Analizamos mediciones directas de muones de lluvias atmosféricas con energías
comprendidas entre 1017,22 eV y 1019,46 eV realizadas por dos experimentos. A las energías
más bajas analizamos extensamente los datos del UMD, que complementamos a las energías
más altas con mediciones de “Akeno Giant Air Shower Array” (AGASA). Para los datos
del UMD, desarrollamos nuevos métodos que mejoran significativamente la estimación
del número de muones. Estos métodos también permiten la reconstrucción de la señal de
muones en función del tiempo con una resolución temporal sin precedentes, abriendo la
puerta a la reconstrucción de nuevos observables sensibles a la composición química. Como
aplicación, estudiamos la distribución lateral de muones medida con el UMD, así como los
modelos que intentan describirla.

Además, analizamos las implicaciones de los datos del UMD y de AGASA con respecto
a la composición química. La interpretación de la composición de los datos sólo puede
inferirse mediante una comparación contra simulaciones de lluvias atmosféricas. Por lo
tanto, simulamos escenarios de protón puro, hierro puro y de composición mixta, basados
en los tres modelos de última generación de las interacciones hadrónicas de alta energía.
Para comparar mejor los resultados con los de otros experimentos, calculamos los llamados
valores z, una escala del contenido de muones en los datos respecto del de simulaciones
de protón y hierro. Los resultados combinados ofrecen una imagen coherente con la de
otros experimentos: la composición inesperadamente pesada constituye evidencia de un
déficit de muones en las simulaciones de lluvias atmosféricas que aumenta con la energía.
Estos resultados pueden ayudar a mejorar los modelos de interacciones hadrónicas de altas
energías, lo que a su vez mejoraría la precisión de las inferencias de composición química.
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Zusammenfassung

Die Teilchen der kosmischen Strahlung sind Boten aus dem Weltraum, die die Antworten
auf die tiefsten Geheimnisse des Universums enthalten: Was sind sie? Woher kommen sie?
Wie werden sie auf solche Energien beschleunigt, und was sind die Gesetze, die ihre Wech-
selwirkungen bestimmen? Bei den höchsten Energien können diese seltenen Teilchen nur
durch die Schauer von Sekundärteilchen nachgewiesen werden, die sie in der Erdatmosphä-
re erzeugen. Große bodengestützte Observatorien wie das Pierre-Auger-Observatorium
erfassen diese Luftschauer und versuchen, so viele Informationen über das Primärteilchen
wie möglich zu rekonstruieren. Insbesondere die Anzahl der Myonen ist eine wichtige Grö-
ße, da sie direkt mit der Masse des Primärteilchens zusammenhängt. Ein Verständnis der
Massenzusammensetzung in Abhängigkeit der Energie würde Aufschluss über offene Fra-
gen geben, die eng mit dem Ursprung der kosmischen Strahlung zusammenhängen. Das
Pierre-Auger-Observatorium verfügt zur direkten Messung der Myonen über vergrabene
Szintillatoren, den “Underground Muon Detector” (UMD).

Diese Arbeit widmet sich der genauen Bestimmung des Myonengehalts von Luftschau-
ern und den Implikationen desselben für die chemische Zusammensetzung der kosmischen
Strahlung. Wir analysieren direkte Myonenmessungen von Luftschauern mit Energien zwi-
schen 1017,22 eV und 1019,46 eV von zwei Observatorien. Bei niedrigeren Energien analysie-
ren wir detailliert UMD-Daten, die wir bei höheren Energien durch Messungen des “Akeno
Giant Air Shower Array” (AGASA) ergänzen. Für die UMD-Daten entwickeln wir neue
Methoden, die die Präzision der gemessenen Myonenzahl deutlich verbessern. Diese ermög-
lichen auch die Rekonstruktion des Myonensignals als Funktion der Zeit mit einer noch
nie dagewesenen Zeitauflösung, was die Rekonstruktion neuer sensitiveren Messgrößen
ermöglicht. Als direkte Anwendung untersuchen wir die gemessene laterale Verteilung von
Myonen und vergleichen sie mit Modellen.

Außerdem analysieren wir die Implikationen der UMD- und AGASA-Daten für die Mas-
senzusammensetzung. Die Interpretation der Daten hinsichtlich der chemischen Zusam-
mensetzung lässt sich nur durch einen Vergleich mit Simulationen ableiten. Wir simulieren
daher Szenarien mit Protonen, Eisenkernen und einer gemischten Zusammensetzung auf
der Grundlage der drei Modelle für hochenergetische hadronische Wechselwirkungen der
neuesten Generation. Um die Ergebnisse besser mit denen anderer Experimente verglei-
chen zu können, berechnen wir die so genannten z-Werte, die eine Skala des Myonenge-
halts in den Daten im Verhältnis zu dem von Protonen- und Eisensimulationen bilden. Die
kombinierten Ergebnisse ergeben stimmen mit denen anderer Experimente überein: Die
unerwartet schwere chemische Zusammensetzung ist ein Beweis für ein Myonendefizit in
Luftschauer-Simulationen, das mit der Energie zunimmt. Diese Ergebnisse können dazu
beitragen, die Modelle der hadronischen Wechselwirkung zu verbessern, was wiederum die
Genauigkeit der abgeleiteten Massenzusammensetzung erhöhen würde.
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Chapter 1
Introduction

Cosmic rays are particles that arrive from outer space carrying incredibly high, macroscopic
energies, orders of magnitude beyond what can be achieved in human-made accelerators.
Despite decades of extensive research, the nature, sources, and acceleration mechanisms of
cosmic rays are still not clear. To unravel these mysteries, cosmic rays are studied mainly
through their mass, energy spectrum, and arrival directions. The spectrum drops steeply
with energy, thus cosmic rays with energies above ∼ 1015 eV can only be detected indirectly.
For this, large ground-based observatories study the cascades of secondary particles, known
as extensive air showers, that the ultra-high energy cosmic rays produce in their interactions
with the atmosphere. Among the various kinds of secondary particles, muons are of special
relevance. Since they almost always reach ground before decaying, they are tracers of the
hadronic interactions, which are the “backbone” of the air shower. The number of muons
of an air shower is strongly related to the composition of the cosmic ray that originated it:
lighter primaries produce less secondary muons than heavier primaries.

Knowing the mass composition as a function of the energy is essential to understanding
key aspects of cosmic rays. Identifying their mass could help in determining their sources
[1], in understanding the transition energy between galactic and extragalactic cosmic rays
[2], or in ruling out models of the flux suppression at the highest energies [3] (more details
in Chapter 2). Currently, composition identification is hampered by the limitations of the
high-energy hadronic interaction models that have to be used to interpret the data. These
models necessarily extrapolate lower-energy accelerator data to the ultra-high energies of
cosmic rays. To test these models, the consistency of the composition implications of different
observables is typically analyzed. There are two main composition-sensitive observables:
the depth-of-the-shower maximum Xmax and, as already mentioned, the number of muons
Nµ. The former, Xmax, is typically subject to smaller systematic uncertainties [4], and is thus
taken as a reference in composition interpretations. If two observables offer inconsistent
interpretations under a same model, it is understood that there is a problem in the model.

A muon deficit in air-shower simulations increasing with the energy (& 1016 eV) was
reported by several experiments [5]. At ultra-high energies, the muon deficit can be consid-
erably large. For example, the Pierre Auger Collaboration reports a deficit of 30 % to 80 %
at 1019 eV [6]. It is still not known whether the muon deficit originates from new physics at
the highest energies or by a partial mismodelling of hadronic collisions [7]. Characterizing
the muon deficit would help to understand the aspects of hadronic interactions that can
cause these deviations [5]. In this sense, composition studies can help to improve the high-
energy hadronic interaction models, which in turn improve the precision of the inferred
mass composition [8, 9].
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2 CHAPTER 1. INTRODUCTION

Muons can be detected directly or indirectly. Indirect detection can be achieved by com-
bining the responses of detectors with different relative sensitivity to the different air-shower
components [10]. Another method of indirect detection relies on inclined events [8]. In con-
trast, direct detection can be achieved by using shielding material or by burying the detectors
underground. For the latter, and for inclined events, most of the electromagnetic component
of air showers is absorbed by the shielding material or by the atmosphere respectively, leav-
ing essentially the muonic component to be detected. Among the different kinds of particle
detectors, segmented scintillation detectors are the most widely used for muon detection.
These kind of detectors can be designed to operate as calorimeters or as counters. For the
former, a number of muons is estimated by transforming the integral of the output signal
to a total deposited energy, which is then converted to a number of particles by knowing
the energy deposited by a single particle. For the latter, the output signal of a segment is
compared against a threshold, and the resulting binary signal is matched to a known muon
signal. In this work, we use data from two kinds of segmented detectors that achieve direct
muon detection: most prominently, from the Underground Muon Detector (UMD) of the
Pierre Auger Observatory [1, 11] (described extensively in Chapter 3), but also from the
muon detectors of the Akeno Giant Air Shower Array (AGASA) [12].

In this work, we study the muon content of air showers and its composition implications
at energies between 1017.22 eV and 1019.46 eV using UMD and AGASA data. In order to have
a high-quality UMD data set, we develop dedicated methods to accurately determine the
number of muons. We show that the statistical problem of counting muons in a segmented
detector is inherently difficult: If not considered in the design of the counting strategy, time-
unresolved particles can cause severe under-counting biases [13, 14]. We explain how the
problem of counting muons on a scintillation detector is equivalent to the problem of count-
ing “balls in boxes”. Applying this idea in a smart way, we develop a new method that
exploits the full time resolution of the detector. With possible applications beyond muon
counting, a great advantage of the presented strategy is that it provides estimates of the
number of muons as a function of time as seen by the detector to a single time-bin resolution.
In the future, this could be used to reconstruct another prominent composition-sensitive
observable: the maximum of the muon production depth distribution Xµ

max. Moreover, to
obtain an unbiased estimate of the number of muons, muons that transverse two neighbor
scintillation bars have to be considered too. These tend to deposit enough signal in both
scintillation bars so as to be counted twice, causing an over-counting bias. With detailed de-
tector simulations, we parameterize the overall bias as a function of air-shower observables,
including the reconstructed number of muons itself. In turn, we use the parameterization
for correcting the reconstructed number of muons, thus obtaining reliable estimates accurate
to ±4 %.

Having an unbiased estimate of the number of muons from UMD data, we continue
with a study of the muon lateral distribution function (muon LDF) as measured by the
UMD. The muon LDF is interesting in itself because it holds composition information both
in its size and shape. We analyze the goodness-of-fit of different muon LDF models and pro-
vide parameterizations of the measured muon LDF. These can be useful for low-multiplicity
event-wise fits, for building toy models, or as a reference for the design of future muon
detectors. Furthermore, we analyze the composition interpretation from the muon content
in UMD data by comparing it against single-proton and single-iron simulations, as well
as against mixed composition scenarios derived from the fits to the Xmax distributions. We
study the evolution of the muon content as a function of the distance to the shower axis, of
the zenith angle, and of the energy (between 1017.22 eV and 1018.42 eV), and we also compute
the so-called z-values [5], a muon scale of data relative to simulations that enables com-
parisons between different experiments. To complement these results with measurements
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at higher energies (between 1018.83 eV and 1019.46 eV), we use the muon measurements per-
formed by the AGASA collaboration. Finally, we put in perspective the results of this work
by comparing them to further estimations from nine different analyses of six experiments
[5, 15].
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Chapter 2
Cosmic rays and extensive air showers

Cosmic rays were discovered in the early 20th century. Scientists observed that there was a
source of ionizing radiation causing electroscopes to discharge. At that time, the dominant
hypothesis was that they came from radioactive elements in the ground. Victor F. Hess tried
to test this hypothesis by ascending in a hot air balloon to 5300 m with three electroscopes.
To his surprise, the electroscopes did not discharge slower, but four times faster at that
altitude. He also repeated the experiment during a solar eclipse re-obtaining the same result,
ruling out the sun as the main source of this ionizing radiation [16]. He concluded that the
ionizing radiation had to come “from above”. In 1938, P. Auger, R. Maze, and T. Grivet-
Meyer discovered that this ionizing radiation arrived as “air showers”, as they observed
coincidences between counters 5 m apart from each other [17, 18].

Years have passed and our knowledge of cosmic rays has evolved. In this chapter, we
summarize the basic current information about cosmic rays and the extensive air showers
that they produce. In Sec. 2.1 we give a brief introduction to what cosmic rays are. In Sec. 2.2
we describe air showers, its components, and the Heitler and Heitler-Matthews models of
the evolution of a particle cascade. In Sec. 2.3 we describe different principles of detection
of cosmic rays or air showers. In Sec. 2.4 we detail different possible sources, acceleration
mechanisms, and the propagation of cosmic rays. In Sec. 2.5 we give an overview of the
estimated mass composition of cosmic rays, and we discuss the existing problem of a muon
deficit in air-shower simulations. Finally, in Sec. 2.6 we provide a brief summary.

2.1 Cosmic rays

Cosmic rays are known to be predominantly ionized nuclei ranging from hydrogen (light)
to iron (heavy) [16]. There are also electrons, photons, and neutrinos, but not nearly as
abundant as the ionized nuclei. Nuclei with an atomic mass number A larger than that of
iron are less stable and thus, in their long journey to Earth, disintegrate to smaller nuclei.

The cosmic ray energies cover a very wide range of energies, from 109 eV to a few 1020 eV.
Figure 2.1 shows the cosmic ray energy spectrum (multiplied by E2.6 to enhance its features)
as measured by different experiments. For reference, the equivalent laboratory energy of the
Large Hadron Collider (LHC) is at about 1017 eV. Futhermore, above ∼ 1015 eV, the flux is so
small that cosmic rays can only be detected indirectly through the extensive air showers they
produce. Above 1013 eV, the cosmic ray spectrum can be very well modeled by a power-law
J ∼ E−α, where α ∼ 3 is the so-called spectral index. It is remarkable that α changes only
very little in the eight decades of energy. Nevertheless, there are four important features at
which the spectral index changes: the “knee”, the “second knee”, the “ankle”, and the flux

5
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suppression. The knee is at ∼ 1015.6 eV, after which the flux steepens. The second knee is at
∼ 1017 eV, after which the flux steepens even more. The ankle is at ∼ 1018.7 eV, after which
the flux becomes less steep. And finally the flux suppression occurs above∼ 1019.7 eV, where
the flux drops very steeply.

Figure 2.1: Differential energy spectrum of cosmic rays, multiplied by the energy to the power of
2.6, as a function of the energy (in logarithmic scale). The different experiments that contribute
to the measurements are detailed in different markers. Figure extracted from Ref. [19].

It is also known that cosmic rays can be divided into a less energetic galactic component
and a more energetic extra-galactic component [20]. However, the transition energy between
these two is still not well determined [16].

2.2 Extensive air showers

When a primary cosmic ray interacts with the molecules of Earth’s atmosphere, it produces
a cascade of billions of secondary particles that conform an “extensive air shower” (EAS).
These secondary particles can be divided into three components: the hadronic, the electro-
magnetic, and the muonic. The hadronic component is sometimes referred to as the back-
bone of the air shower. It is mainly comprised of charged pions, protons, antiprotons, and
neutrons, which in their interaction and decays feed the muonic and electromagnetic com-
ponents. The electromagnetic component is composed by electrons, positrons, and photons,
and is the dominant component as it carries most of the energy of the shower. Finally, the
muonic component, comprised of muons and antimuons, originates mainly from the decay
of hadrons (only a very small fraction is produced from the electromagnetic component
through photo-nuclear interactions). Since most of the muons reach ground before decaying,
they operate as a tracer of the hadronic component.

In the electromagnetic component, the dominant interactions are pair creation (γ →
e+ + e−) and Bremsstrahlung (e → e + γ), although photo-nuclear interactions are also
present. Neglecting the latter, the Heitler [21] model provides a simple understanding of the
electromagnetic component of a gamma-initiated air shower. The basic idea is illustrated
in the left panel of Fig. 2.2. There we can see that a photon creates a e+e− pair, or an e±

creates a photon, after one splitting length lem = ln 2 X0, being X0 ∼ 37 g cm−2 the radiation
length in air. In one splitting length, the e± looses half of its energy, while the energy of the
photon is assumed to be equally split between the e+e− pair. Furthermore, the number of
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particles duplicate after one splitting length. The multiplication process continues until the
energy of the secondary particles reaches the critical energy ξem

c = 85 MeV, where ionization
and interactions with electrons of air molecules become dominant. We can estimate the
maximum number of particles simply as Nmax = E0/ξem

c , being E0 the energy of the primary.
It also holds true that the maximum number of particles is Nmax = 2nc , where nc is the
number of splitting lengths that the cascade needs until reaching critical energy. It follows
that nc = ln(E0/ξem

c )/ ln 2. Finally, we can estimate the depth at which the number of
particles is maximum as [16]

Xem
max = lemnc = X0 ln

(
E0

ξem
c

)
. (2.1)

Although this simple model does not describe correctly the relative amounts of photons and
electrons (there are much more photons than electrons in reality), the linearity between Nmax
and E0 holds very well. Moreover, if we define the elongation rate Λ = dXmax/d log10(E0),
the rate of increase of Xmax per decade of primary energy, we obtain from the Heitler model
in air Λem ∼ 85g cm−2, which is also a realistic value [22].

Figure 2.2: Schemes of an electromagnetic (left panel) and hadronic (right panel) air shower. In
the electromagnetic air shower, photons produce pairs and electrons produce a photon through
Bremsstrahlung after every splitting length. In the hadronic air shower, a proton produces sev-
eral charged pions, which continue to interact in every splitting length, and several neutral pions
that decay to photons (not depicted in the illustration). Figure adapted from Ref. [22].

The Heitler-Matthews model (see Ref. [22] and references therein) extends the Heitler
model to hadron-initiated air showers. A sketch of this model can be seen on the right panel
of Fig. 2.2. The basic idea is that particles interact in steps of one splitting length l = ln 2 λπ,
being λπ ∼ 120 g cm−2 the interaction length of a pion in air. After each interaction, Ntot = 15
particles are created, Nch = 10 charged pions, and 5 neutral pions. Each neutral pion is
assumed to immediately decay into two photons, feeding the electromagnetic component.
The charged pions propagate another splitting length and interact. The process continues
until the pions reach their critical energy ξπ

c , that occurs when the decay length to a muon
is shorter than the splitting length. We can estimate the depth of the shower maximum, at
which the number of photons and electrons are maximum, by focusing on the first generation
of photons. For the purpose of the explanation, let us take the simplest primary: a proton. The
first interaction occurs when the proton goes through X1 = ln 2λp, being λp the interaction
length of a proton. After the first interaction, Ntot/3 neutral pions are generated, which
decay to 2Ntot/3 photons. Each of these photons, with an energy of E0/2Ntot, generates an
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electromagnetic sub-shower. Then, using Eq. (2.1), the depth of the maximum for a proton
shower is [16]

Xp
max = X1 + X0 ln

(
E0

2Ntotξem
c

)
. (2.2)

Moreover, the number of muons of such an air shower is equal to the number of charged
pions that reach critical energy Nµ = (Ntot2/3)nc . Since nc = ln(E0/ξem

c )/ ln(Ntot), it follows
that [16]

ln Nµ = nc ln(Ntot2/3),

=
ln(E0/ξem

c )

ln(Ntot)
ln(Ntot2/3),

= β ln(E0/ξem
c ), (2.3)

where in the last equation we grouped β = ln(Ntot2/3)/ ln(Ntot). The Heitler-Matthews
model yields β = 0.85, while air-shower simulations fit better a β between 0.85 to 0.92 [22].

To model heavier hadron-initiated air showers we can apply the superposition principle.
The idea is that the air shower generated by a nucleus of atomic mass number A and energy
E0 is equivalent to the sum of A proton-initiated air showers of energy E0/A. We can easily
see how Xmax is smaller (shallower) for a heavier primary by replacing E0 with E0/A in
Eq. (2.2). The difference between the depth-of-the-shower maximum of a primary of mass
number A and a proton primary of identical energy is [16]

XA
max − Xp

max = −X0 ln A. (2.4)

Regarding the number of muons, we have to consider that there are A times more pions at
critical energy, but starting from an energy of E0/A. This yields [16]

ln Nµ = (1− β) ln A + β ln(E0/ξem
c ). (2.5)

Apart from this simple, analytical models, the cosmic ray community profits from open
software to simulate Monte Carlo air showers. The most prominent are CORSIKA [23],
AIRES [24], and CONEX [25]. These implement the particle interactions following different
hadronic interaction models. The most widely used high-energy hadronic interaction models
are EPOS-LHC [26], QGSJetII-04 [27], and Sibyll2.3c [28]. These are referred to as post-LHC
models due to their tuning to LHC data, which are extrapolated to higher energies. The
most prominent low-energy hadronic interaction models are GEISHA [29], Fluka [30, 31],
and UrQMD [32, 33].

2.3 Detection of cosmic rays

The way in which cosmic rays are detected depends on their energy. Up to some 1014 eV or
1015 eV, the cosmic ray flux is large enough to allow for the direct detection of cosmic rays.
In this case, the typical detectors consist of spectrometers or calorimeters, which are put on
balloons or satellites. Both can directly identify the primary, but spectrometers can measure
energy much more accurately at the cost of measuring lower energy events (up to∼ 1012 eV).
This is because their maximum detectable energy is directly related to the maximum radius
of curvature measurable by the tracker, as well as by the fiducial region of the magnetic
field. The calorimeters (which do not put the particles through a magnetic field) measure
energy with less precision because of shower-to-shower fluctuations in the development of
the cascades in the calorimeter and due to the punch-through of particles at the bottom of
the calorimeter. Some examples of such detectors are: the Alpha Magnetic Spectrometer-02
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(AMS-02), which is inside the International Space Station [34]; CREAM [35], which has been
carried on balloons; and DAMPE [36] and PAMELA [37], which are satellites.

Cosmic rays with energies above 1015 eV have such a low flux that they can only be
detected through the EASs they produce. Large ground based observatories use the atmo-
sphere as a calorimeter and detect either the secondary particles of the EAS, or the radiation
produced by the interaction of the secondary particles with the atmosphere. Among the
latter, detectors like the Pierre Auger Observatory [38] and Telescope Array [39] measure
with dedicated telescopes the UV fluorescence light emitted by nitrogen molecules as they
de-excite from the interactions with secondary particles. This technique is described in more
depth in Sec. 3.2. Detectors like HESS [40] or TUNKA [41] use the Cherenkov light emitted
by charged secondaries, although this technique is mostly used in gamma-ray astronomy.
There are also radio detectors, a relatively new detection principle, which measure the radio
pulses emitted by electrons as they deflect in the geo-magnetic field and due to the charge
anisotropy in the development of the air-shower [42]. These are further described in Sec. 3.3.2.
Examples of such detectors can be found in the Pierre Auger Observatory [38], Yakutsk array
[43], TUNKA [41], and LOFAR [44]. For detecting particles at ground there are two kinds of
detectors that are typically used: water Cherenkov detectors, and scintillators. The former
measure the Cherenkov light of the charged secondaries as they interact with the water of
the detector. The latter measure the scintillation light emitted by the secondary particles as
they transverse the scintillation material (as minimum ionizing particles). These techniques
are further described in Sec. 3.1 and Sec. 3.3.6 respectively. The Pierre Auger Observatory
counts both with water Cherenkov detectors and scintillators [38]. Other experiments with
scintillators are, for example, Telescope Array [39] and AGASA [45].

2.4 Acceleration mechanisms, propagation, and possible sources

The most supported mechanism through which cosmic rays reach non-thermal energies
is the Fermi mechanism [46]. The basic idea is that a magnetized plasma would transfer
macroscopic kinetic energy to charged particles in successive scattering encounters. In each
encounter, the increase of energy ∆E is proportional to the energy E. Then, if the particle
was injected with an energy E0, after n encounters its energy is [16]

En = E0(1 + ξ)n, (2.6)

where ξ is the factor of proportionality. In the second-order Fermi mechanism, a magnetized
plasma cloud moving at velocity v accelerates the charged particle as [16]

En = E0

(
1 +

4
3

β2
)n

, (2.7)

where β = v/c. On the other hand, in the first-order Fermi mechanism, the plasma clouds
are replaced by a shock front (like the ones produced by supernova explosions) with which
the particle interacts multiple times, and here [16]

En = E0

(
1 +

4
3

β

)n

. (2.8)

The crucial difference between the two mechanisms is that in the interactions with the shock
front, the particle always exits the shock in the upstream direction, hence there is always an
energy gain. This makes the first-order Fermi mechanism more efficient.
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It is interesting to analyze the spectrum implications of these mechanisms. From Eq. (2.6),
the number of encounters needed to reach energy En is

n =
ln(En/E0)

ln(1 + ξ)
. (2.9)

If the probability of escaping in one encounter is a constant pesc, the probability of remaining
is 1 − pesc, and the probability of remaining after m encounters is (1 − pesc)m. Then, the
number of particles escaping with an energy E ≥ En is [16]

N(E ≥ En) ∝
∞

∑
m=n

(1− pesc)
m,

=
(1− pesc)n

pesc
, (2.10)

=
1

pesc

(
En

E0

)−γ

, (2.11)

where in Eq. (2.10) we replaced Eq. (2.9). In Eq. (2.11), γ = − ln(1 − pesc)/ ln(1 + ξ). It
is remarkable that the Fermi acceleration mechanism predicts a power-law spectrum of
energies.

Moreover, on their journey from the source to the Earth, charged cosmic rays can be
deflected by magnetic fields. Knowing that the Larmor radius (r = p/(qB)) is inversely
proportional to the charge q, we can understand that lighter, less charged nuclei are less
deflected than heavier nuclei, and that more energetic nuclei (with larger momentum p)
also deflect less [47]. Furthermore, extra-galactic cosmic rays can interact, most notably,
with photons of the radiation field present in the Universe (like the cosmic microwave
background and the extragalactic background light). For a light cosmic ray, e.g. a proton, the
dominant effect is photo-pion production (p+γ→ p+π0). This process is endothermic and
thus makes the proton loose energy. The effect is known as the Greisen, Zatsepin, Kuzmin
(GZK) supression, since it limits the maximum energy that a cosmic ray can have. The steep
fall of the spectrum after ∼ 5.5× 1019 eV could be explained by the GZK cutoff [48], and/or
by a limit in the power of the sources. Moreover, electron positron pair production (known
as Bethe-Heitler pairs) with photons of the radiation field is also possible and endothermic,
but the loss of energy is considerably smaller and is thus not the dominant effect. For heavier
nuclei, photo pion production is possible but the dominant effect is photo-disintegration
[49].

Regarding cosmic ray sources, there are conditions on their size and magnetic field such
that they can accelerate cosmic rays to ultra-high energies. The Hillas condition [50], derived
from equating the Larmor radius of the accelerated particle to the size R of the acceleration
region, can be used to estimate the maximum energy a candidate source can produce

Emax ∝ βZeBR, (2.12)

where Z is the charge number of the accelerated particle, e is the absolute value of the electron
charge, and B is the magnetic field of the source. This is a necessary (but not sufficient)
condition that a possible source has to fulfill. Figure 2.3 shows a so-called Hillas plot, a
diagram of possible cosmic ray sources according to their magnetic field and characteristic
distance. Any object above and to the right of the red dashed lines are able to confine a
proton in the acceleration region up to the corresponding marked energy.

From Fig. 2.3 we can see that there is not one clear and unique candidate as a source
of ultra-high energy cosmic rays (UHECRs, E ≥ 1018 eV). The prime candidates of galactic
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Figure 2.3: Hillas plot: Possible cosmic ray sources classified according to their size and magnetic
field. The red dashed lines mark the regions above which a source would be able to accelerate a
proton to the corresponding energy (knee, ankle, or GZK), assuming β = 1. The dotted gray line
marks an upper limit from interactions with the microwave background and due to synchrotron
losses in the source. Figure extracted from Ref. [51].

cosmic-rays are supernova remnants (SNRs), while the prime candidates for extra-galactic
cosmic rays are gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and starburst galax-
ies [20]. There is ongoing research dedicated to identifying possible concrete sources. On
one hand, neutrinos, and also photons to some degree, would be great tracers of UHECR
sources as they propagate unaffected by the intergalactic magnetic field in their journey
to Earth. However, at ultra-high energies their fluxes are extremely low [52, 53]. Photons
are also more likely to interact with the radiation field. An alternative would be to use the
light component of UHECRs, which, as mentioned before, deflect less than heavier (and less
energetic) cosmic rays [1]. However, the latter requires an event-by-event classification of
the primary mass, which is still a challenge.

2.5 Mass composition and muon deficit in air-shower simulations

We understand for mass or chemical composition the identity of the primary cosmic ray.
Understanding the mass composition of cosmic rays is one of the keys to solving the long
standing mystery of their origin. On the one hand, as mentioned in Sec. 2.4, the light compo-
nent of ultra-energetic cosmic rays could be used to trace back sources [1]. On the other hand,
the transition between galactic and extragalactic sources is expected to be directly related
to a change in composition as a function of the energy. This is because it is believed that
the galactic sources reach lower acceleration limits than extragalactic sources. At the end
of their capabilities, the galactic sources accelerate heavier, more charged nuclei to higher
energies than lighter nuclei. Therefore, we expect to see a transition from the highest-energy
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galactic heavy component to the lowest-energy extragalactic light component [2]. In a simi-
lar way, knowing the mass composition of cosmic rays would help constrain models of the
suppression, as it is expected that the highest-energy cosmic rays are mainly extragalactic
intermediate mass or even heavy nuclei [3].

Furthermore, above the highest (laboratory) energy reachable by the Large Hadron Col-
lider (∼ 1017 eV), cosmic rays (or rather the EASs they produce) are the only way to test
high-energy hadronic interaction models [54]. These models are typically tested by ana-
lyzing the consistency of the composition implications of different EAS observables [54].
Composition studies help to improve these models, which in turn improve the precision of
the inferred mass composition [8, 9].

From Eqs. (2.4) and (2.5) we can see that the depth-of-the-shower maximum Xmax and the
muon content Nµ are parameters sensitive to the mass composition, as they depend on the
mean logarithmic mass number ln A. In fact, Xmax and Nµ (or other measures of the muon
content) are the most sensitive observables to the mass composition [55]. There are other
composition-sensitive observables, like the slope of the lateral distribution function, the rise
time of the signals at ground, and the maximum of the muon production depth distribution,
but they do not significantly improve the discrimination power of the Xmax and Nµ combina-
tion [56]. Moreover, not only the mean values of Xmax and Nµ carry composition information,
but also their fluctuations do. The first one, Xmax, is typically inferred from the longitudinal
development of air showers measured with optical detectors, like fluorescence detectors or
non-imaging Cherenkov detectors, but it can also be indirectly reconstructed using radio
measurements [56]. The method for reconstructing Xmax from fluorescence measurements
is further explained in Sec. 3.2. The second one, the muon content, can be measured directly
using shielded or buried detectors, or indirectly using inclined events [8]. In both cases, the
much more abundant electromagnetic component has to be absorbed, either by the earth or
shielding material, or by the atmosphere. After measuring samples of the muon lateral dis-
tribution function, the muon number or density at a specific distance to the shower axis can
be estimated by evaluating a fitted function. This procedure is further described in Sec. 3.3.6.

The composition fractions fA can be estimated from measurements of the Xmax distri-
butions by fitting it, at each energy, via a weighted sum of the single-primary distributions
[57]

P(Xmax|E) = ∑
A

fA(E)P(Xmax|A, E), (2.13)

where ∑A fA(E) = 1. Evidently, the inferred fractions depend on the assumed hadronic
interaction model that provides the single-primary Xmax distributions.

Figure 2.4 shows the comparison of measurements of 〈Xmax〉 (top panel) and σ[Xmax]
(bottom panel) from different experiments against proton and iron simulations of the three
leading high-energy hadronic interaction models. There are evident differences between
the predictions of different experiments (most notably at lower energies), implying that the
estimations suffer from important systematic uncertainties. Nevertheless, the top panel of
Fig. 2.4 suggests that there is a shift to a heavier composition that starts at ∼ 1016 eV, and
another one at ∼ 1018.5 eV. The latter can also be observed in the bottom panel of Fig. 2.4.
Between∼ 1017.5 eV and 1018.5 eV the measurements are compatible with a light composition.
Notice that a change in the slope of 〈Xmax〉 (a change in the elongation rate) is a clear
evidence of a change in composition, as it can be derived from Eq. (2.4).

Moreover, the composition implications are typically expressed in terms of the mean-
logarithmic mass 〈ln A〉. By using Eq. (2.4) for a primary of mass number A and for iron
(A = 56), and by taking the average, we can derive that [56]

〈ln A〉 = 〈Xmax〉 −
〈

Xp
max
〉

〈XFe
max〉 −

〈
Xp

max
〉 ln 56. (2.14)
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Figure 2.4: Average depth-of-the-shower maximum (top panel) and fluctuations in the depth-of-
the-shower maximum (bottom panel) as a function of the logarithmic energy. Different detectors
are identified with different markers (FD stands for fluorescence detectors, SD for surface de-
tectors, R for radio detectors, and Ch for Cherenkov detectors). The predictions of EPOS-LHC,
QGSJetII-04, and Sibyll2.3d for proton (red) and iron (blue) generated air showers are shown in
dashed, dotted, and solid lines respectively. Figures extracted from Ref. [56].

Figure 2.5 shows 〈ln A〉 (as inferred from Xmax measurements) as a function of the logarith-
mic energy. The observations are equivalent as for the top panel of Fig. 2.4. It is relevant to
add that the differences of 〈ln A〉 between the different models are within ∼ ±0.8, and fairly
constant with energy.

As it can be seen in Figs. 2.4 and 2.5, air-shower simulations reproduce to a good extent
the behavior of Xmax (at least for post-LHC models), and the difference between models
is relatively small. Moreover, the theoretical uncertainties of Xmax are relatively small com-
pared to those of Nµ (or ρµ) [4, 58]. Nevertheless, recent studies suggest that a shift in Xmax
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Figure 2.5: Mean-logarithmic mass inferred from Xmax measurements (c.f. Eq. (2.14)) as a func-
tion of the logarithmic energy. The data are the same as of the top panel of Fig. 2.4. The top
panel corresponds to the high-energy hadronic interaction model Sibyll2.3d, the middle panel
to QGSJetII-04, and the bottom panel to EPOS-LHC. Figure extracted from Ref. [56].

in simulations may also be necessary to reproduce the observed behavior in data [56]. In
spite of this, other EAS observables are typically tested by comparing their composition
interpretation to the one obtained from Xmax. An inconsistent interpretation would imply
that the models do not correctly reproduce all EAS observables.

Muon density measurements of different experiments cannot be directly compared be-
cause they greatly depend on the energy, zenith angles, altitude of observation, distance
to the shower axis, and muon energy threshold. One way to compare them is through the
calculation of a so-called z-value, defined as [5]

z :=
ln Ndet

µ, data − ln Ndet
µ, p

ln Ndet
µ, Fe − ln Ndet

µ, p
, (2.15)

where the suffix “det” indicates that the proton and iron muon contents derive from full-
detector simulations. At least to first order, detector effects and the effects of the specific
conditions in which the measurements were taken should cancel out. The properties and un-
certainties of this z-scale, as well as concrete formulas for its calculation in averaged data are
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extensively discussed in Secs. 7.1.4 and 8.2.4. Moreover, by replacing Eq. (2.5) into Eq. (2.15),
we can see that the z-values should map to 〈ln A〉/ ln 56. This enables the comparison of the
composition implications of measurements of the muon content to those of measurements
of Xmax.

Figure 2.6 shows the comparison of the z-values of eight experiments: EAS-MSU, Ice-
Cube Neutrino Observatory, KASCADE-Grande, NEVOD-DECOR, Pierre Auger Observa-
tory, SUGAR, Telescope Array, and Yakutsk. We can see that data and simulations are con-
sistent up to 1016 eV [5, 59]. Above this energy, there is a discrepancy between data and
simulations, suggesting a deficit in simulations that increases with the energy. Additionally,
the Pierre Auger Collaboration reported that the muon deficit is greater for larger values of
the zenith angle [7], and Telescope Array observed a larger muon deficit at larger distances
to the shower axis [60].
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Figure 2.6: Values of z (c.f. Eq. (2.15)) as a function of the logarithmic energy, for EPOS-LHC
(left panel) and QGSJetII-04 (right panel). Different markers denote different detectors. In gray
dashed lines, the expected z-values from the Global Spline Fit composition model [61], and in a
gray shaded area those expected from the Pierre Auger fits to Xmax distributions [57]. Adapted
from Refs. [5, 59].

It is still not understood whether the muon deficit is caused by a new phenomenon at
high energies or by a partial mismodeling of hadronic interactions at high or low energies
[7]. Understanding in which part of the phase-space the muon deficit is, can help model
builders improve the high-energy hadronic interaction models until they reproduce the
behavior of the muon content. If this was achieved, the muon content could be used to
reduce the systematic uncertainties of mass composition analyses, opening the possibility of
a better understanding of the origin of cosmic rays.

2.6 Summary

In this chapter we summarized the key aspects of cosmic ray and air-shower physics relevant
to this work. We started with the description of what we know cosmic rays are: particles,
mostly nuclei ranging from proton to iron, with non-thermal energies that come from outer
space. We showed how the cosmic ray spectrum can be well described by a power-law with
small changes in the spectral-index throughout almost 8 decades of energy. We explained
how a cosmic ray generates an extensive air shower, which is a cascade of secondary par-
ticles, as it interacts with the Earth’s atmosphere. We discussed the different components
of an air shower (hadronic, electromagnetic, and muonic), and presented the Heitler and
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Heitler-Matthews models of an electromagnetic and hadronic air shower (respectively). In
particular, we analyzed the implications of the latter in the behavior of the depth-of-the-
shower maximum Xmax and Nµ with energy and primary mass.

Moreover, we presented the different cosmic ray and air-shower detection techniques.
We then explained the Fermi acceleration mechanism and showed how the first-order Fermi
mechanism predicts a power-law spectrum. As the cosmic rays propagate in the intergalactic
medium, the interactions with the cosmic microwave background can be shown to predict
a flux suppression at the highest energies. Moreover, we presented the Hillas criterion, a
condition on the size and magnetic field that a possible source has to fulfill to be considered
as a candidate source.

Finally, we discussed how knowing the mass composition of cosmic rays would help
elucidate their origin, as well as improve hadronic interaction models. We explained that
Xmax and Nµ are the most sensitive composition observables, and show current results on
their composition implications. In particular, we justified why inconsistent composition
implications of Nµ measurements with respect to those of Xmax are typically interpreted as a
muon deficit in air-shower simulations. The muon deficit, starting at ∼1016 eV, is observed
to increase with energy, zenith angle, and distance to the shower axis.



Chapter 3
The Pierre Auger Observatory

The Pierre Auger Observatory is the largest cosmic-ray observatory of the world. Situated in
the southern hemisphere, in Malargüe, Argentina, it covers an area of ∼3000 km2 [38]. Such
large areas are necessary to measure with sufficient statistics the low flux of high-energy
cosmic rays.

The observatory is designed as a hybrid detector: It combines fluorescence detectors
(FD) with the surface detectors (SD). In Fig. 3.1 we show a map of the Observatory, where
it can be noticed that the fluorescence telescopes, grouped in four sites, overlook the area
covered by the SD. The fluorescence telescopes have a low duty-cycle (∼ 15 % [38]), but
set the energy scale of the Observatory by measuring calorimetrically the electromagnetic
component of air showers. On the other hand, the surface array has a duty-cycle of almost
100 % [38], hence providing very large statistics, measuring the muonic and electromagnetic
components of the air showers shortly after the shower maximum [62]. The energy of the SD
is then cross-calibrated to the scale set by the FD [63]. In this way, the combined detectors
provide measurements of extensive air showers (EASs) with low systematic uncertainties
and high statistics.

In this chapter we explain the different detectors that compose the Pierre Auger Obser-
vatory. We describe the SD, the FD, as well as the detectors that integrate the upgrade of the
Observatory (Auger Prime). These are the Surface Scintillator Detector (SSD), the Radio De-
tector (RD), and the Underground Muon Detector (UMD) (also referred to as Auger Muons
and Infill for the Ground Array (AMIGA)). The latter is explained particularly in depth, as
it is extensively used in this work.

3.1 The surface detector

The SD was designed to operate with a 100 % duty-cycle, to measure the time structure of
the signals from EASs, to measure vertical as well as inclined events, and to have an aperture
independent of the energy above 1018.5 eV [38]. These design goals have been met, with more
than 1600 water Cherenkov detectors (WCDs) deployed which cover an area of ∼3000 km2.
The aperture achieved considering events with zenith angles below 60◦ is of 7350 km2sr [65].
The stations have elevations ranging between 1300 m and 1600 m above sea level [66]. They
are arranged in an isometric triangular grid of side 1500 m. A subset of the stations within
the 1500 m array (usually referred to as SD-1500) are arranged more densely: one subset
covers 28 km2 with stations spaced by 750 m (SD-750), while the other one covers 1 km2

with stations spaced by 433 m (SD-433). The objective of these denser arrays is to extend the
sensitivity of the Observatory to lower energies [66].

17
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Figure 3.1: Layout of the Pierre Auger Observatory. On the right, a scale in kilometers can be
seen. The surface detector stations (black dots) cover an area of ∼3000 km2. The fields of view
of the fluorescence telescopes (blue lines) overlap with said area. The position of other detection
systems, including the UMD (alias AMIGA), can also be seen (red dots and lines). Image taken
from Ref. [64].

A picture of an SD-station can be appreciated in Fig. 3.2, showing its main components.
The station consists of a cylindrical water tank of 3.6 m in diameter and 1.2 m in height. The
tank is made of polyethylene, and contains a sealed multi-layered liner with a reflective
inner surface. Inside the liner 12, 000 l of ultra-pure water are stored. The liner has also
three windows of clear polyethylene at its top part, through which three photomultiplier
tubes (PMTs) measure the Cherenkov photons produced by high-energy charged secondary
particles as they pass through the water. The height of the WCD allows also to measure
high-energy photons through the electron-positron pairs they produce inside the tank (or
rather, by the Cherenkov light emitted by the latter). The PMTs (Photonis XP1805/D1) are
9 in. in diameter and are placed 1.2 m apart from the central axis of the tank.

Two signals are obtained from each PMT, which are tagged with a GPS time stamp
thanks to the GPS antenna (see Fig. 3.2). The low-gain signal is taken from the anode of
the PMT, while the high-gain signal is taken from the last dynode and amplified to be 32
times larger than the low-gain signal [66]. The signals are digitized using 10 bit 40 MHz semi-
flash analog-to-digital converters (FADCs) [38]. These are then clocked into a programmable
logic device (PLD) which implements the firmware that evaluates the trigger conditions on
the FADC traces, stores the traces in a buffer memory, and communicates with the station
microcontroller when there is a local or station trigger [38]. The station controller is an IBM
PowerPC 403 GCX-80 MHz and lays together with the slow-control microprocessor in the
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unified board (UB)1. The station controller runs the data acquisition, transmitting through
the communications antenna (visible in Fig. 3.2) the time stamps of the (level two) local
triggers to the central data acquisition system (CDAS) and replying to the data requests
from CDAS array-level triggers. On the other hand, the slow-control consists of DACs and
ADCs that monitor voltages, currents, and temperatures that are used for calibration [38].
The electronics lie inside an enclosure which seals and protects them from dust, light, and
water [67], and that can be seen in Fig. 3.2.

The data acquisition system is a hierarchical system consisting of local- and array-level
triggers. The first two levels, T1 and T2, are local-level triggers formed at each station. The
signals that pass the T2 trigger-level are sent to the CDAS. The CDAS searches for spatial-
temporal coincidences among the T2 data in at least 3 neighbor stations. If the geometry and
timing of the coincidences is compatible with a shower-front propagating at the speed of
light, then a T3 array-level trigger is raised. When this happens, CDAS requests the signals,
as well as calibration and monitoring data, of all stations lying within 6 crowns around the
station with largest signal that had a T1 or T2 within 30 µs [65, 68].

The SD stations were purposefully designed to be self-powered. For this reason, they
count with two solar panels as well as a battery box (see Fig. 3.2) that provide an average of
10 W, sufficient for powering all the components.

Figure 3.2: A picture of an SD-station showing its main components. Image taken from Ref. [67].

After understanding how the SD stations work, we summarize the main aspects of the
SD event reconstruction, as it is used in the next chapters. A detailed explanation can be
found in Ref. [66]. The SD events can be reconstructed to obtain mainly the shower geometry
(arrival direction and impact position) and the shower size. The latter is then converted to
an energy using a cross-calibration with FD measurements.

The first step is to obtain the signal at each station out of the FADC traces. The high-gain
FADC traces are used if there is no saturation, and if not the low-gain FADC traces are used.
The procedure consists of selecting the window with signal (the same for the three traces of

1At the moment of writing this thesis, the electronics of the Pierre Auger Observatory are also undergoing an
upgrade. The unified boards (UBs) are being replaced by upgraded unified boards (UUBs). More information in
Sec. 3.3.4.
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an SD station), and integrating the ADC counts of the traces as a function of time to obtain
the signal charge measured by each PMT. Then the average of the three charges is taken. The
average charge is converted to units of Vertical Equivalent Muons (VEMs) by means of the
detector calibration. The charge of one VEM is obtained from the fit to the charge histogram
of background particles (which has a distinguishable muon contribution) [66].

The geometry is determined in an iterative procedure. A first estimate of the impact
position is given by the signal barycenter, this is, the signal-weighted center-of-mass of the
stations participating in the event. Then the first estimate of the direction of the shower
axis (anchored at the barycenter) and barycenter time are obtained by assuming a plane
shower-front propagating at the speed of light, solving for the three neighbor stations with
highest average signals. With this initial values, a time model including curvature is fitted
to data to determine the shower axis direction, the impact time of the shower core, and (if
there are more than 5 stations) the radius of curvature. The fitting procedure consists of a
chi-square minimization of predicted vs measured start-times, contemplating uncertainties
in the measured start-times (typically dominated by sampling fluctuations) [66].

Knowing the shower geometry, the shower size is estimated from the fit to data of the
lateral distribution function (LDF), i.e., the average signal as a function of the distance to the
shower axis S(r). The shower size is the expected average signal size at an optimal distance
ropt, defined as the distance that minimizes systematic uncertainties due to the unknown
shape of the LDF. Its value depends almost exclusively on the spacing and shape of the
array [69], and for the SD-1500 array of the Pierre Auger Observatory it is ∼ 1000 m, hence
adopting ropt = 1000 m. The model of the signal as a function of the distance is

S(r) = S(ropt) fLDF(r), (3.1)

where S(ropt) is the shower size estimator, and fLDF(r) is the LDF model, normalized such
that fLDF(ropt) = 1. There is no analytical solution to hadronic-cascade equations, but there
are different empirical LDF models. The one used in Offline [70], the collaboration soft-
ware for simulating the detector and reconstructing data and simulations, is a modified
Nishimura-Kamata-Greisen (NKG) function (see Ref. [66] and references therein)

fLDF(r) =
(

r
ropt

)β ( r + r0

ropt + r0

)β+γ

, (3.2)

where r0 = 700 m. For events with "sufficient sampling" of the LDF around 1000 m, β is
fitted. The criterium is that there have to be at least 2, 3, or more stations within a distance
to the shower core on the shower plane of 400 m < r < 1600 m, separated by at least 900 m,
800 m, or 700 m respectively. If the criterium for fitting β is not met, β is fixed to a value
parameterized from events with good LDF sampling (high multiplicity and good spatial
distribution). On the other hand, γ is very difficult to fit event-by-event because it is strongly
correlated to β. For this reason, γ is always fixed to the value of a parameterization obtained
from good LDF-quality events. The only difference is that this subset of good events are
requested to sample well the tail, modifying the condition on the distances to the shower
axis to be within 1000 m < r < 2000 m. This is because γ modifies the standard NKG (a
simple power-law) at large distances to the shower axis. Both parameterizations of β and γ
are functions of the zenith angle and of the shower size [66].

With the signal model, the shower size S(ropt) and position of impact xc are obtained by
minimizing a log-likelihood

lnL = ∑
i

ln P(S(ropt), xc|Si, xi), (3.3)
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where the sum runs over the stations that belong to the event, Si is the signal of the i-th
station, and xi its position. In Offline, the model of P depends on the type of signal of the
station [66]:

• For small signals of candidate stations (Si < 20 VEM), P is modelled as a Poissonian.

• For large signals of candidate stations or recovered saturated stations2 (Si ≥ 20 VEM),
P is approximated as a Gaussian.

• For unrecoverable saturated stations, the signal Si is taken as a lower limit, and thus P
is the probability of detecting a signal larger than Si, and approximated as the integral
of a Gaussian from Si to infinity.

• For non-triggered stations, P is the complement of the trigger probability.

Accidental stations, which trigger within the time window of an air-shower event but have
no time and geometric correlation with the rest of the stations, are excluded from the likeli-
hood reconstruction.

Figure 3.3 shows an example of an LDF fit performed using Offline.

Figure 3.3: Measured signals (in VEM) as a function of the distance to the shower axis on the
shower plane, for different types of stations (different markers), and the Offline fit (solid line)
that uses a modified-NKG model (see text for details). Taken from Ref. [38].

3.2 The fluorescence detector

The fluorescence detector consists of 24 air fluorescence telescopes that are grouped in 4 sites:
Coihueco, Loma Amarilla, Los Morados, and Los Leones, as shown in Fig. 3.1. A picture
of and FD building can be seen in the left panel of Fig. 3.4. The FD was designed to detect
all showers with energies above 3× 1018 eV that fall within the observatory during its data-
taking time, i.e., clear moonless nights. Each telescope covers an elevation range from 1.5◦

to 30◦, as well as 30◦ in azimuth. In combination, the 6 telescopes of each site cover 180◦

in azimuth facing towards the interior of the array. The fluorescence telescopes detect the
fluorescence emission of the nitrogen in the atmosphere (in the ultra-violet (UV) range),

2Saturated signals are recovered by using the fact that the undershoot in the low-gain channel of the PMTs is
proportional to the size of the signal itself.
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which happens as a consequence of the excitation due to the interaction with the charged
particles of air showers. The number of emitted photons is linearly related to the deposited
energy of said charged particles. Overall, these electromagnetic energy losses amount to
∼ 90 % of the energy of the primary, making the fluorescence detector an ideal tool for
estimating the energy of cosmic rays [71].

At one of the sites there are also three high-elevation auger telescopes (HEAT) that cover
an elevation range from 30◦ to 58◦. A picture of HEAT can be seen in the right panel of
Fig. 3.4. The design is very similar to that of the standard FD telescopes, but lie in individual
inclined housings. The site where it lies (Coihueco) is the closest to the SD-750 array, allowing
the detection of hybrid, lower energy events. By detecting these air showers that develop
higher in the atmosphere, HEAT extends the range of the FD to lower energy air showers
down to ≥ 1017 eV [72].

Figure 3.4: Left: Picture of the FD building at Los Leones. Right: Picture of HEAT. Images
retrieved from Ref. [38].

The different parts of a fluorescence telescope can be seen in Fig. 3.5. Fluorescence tele-
scopes are formed by: a 13 m2 segmented mirror, a PMT-camera at the focus surface with
440 pixels, a large UV-passing filter, and a Schmidt optics corrector ring. The mirror was
designed to be segmented to reduce weight and costs. The PMT camera consists of a matrix
of 440 PMTs of the model XP3062 and light collectors (22 rows by 20 columns). The camera
provides a field of view of 30◦ in azimuth and 28.1◦ in elevation. The UV filter is made
of a Schott MUG-6 glass, transmitting more than 80 % of the light of interest (∼ 300 nm to
380 nm), and filtering out visible photons that would otherwise make impossible the mea-
surement of the UV photons. The corrector ring serves to double the aperture of the FD,
while keeping it light and minimizing costs, and it is the circumferential part of the correc-
tor plate of a classical Schmidt camera. It can be added that each telescope counts with an
automatic shutter system to protect it from harsh climate conditions, such as strong winds,
as well as from too intense light sources that could saturate the electronics. The buildings
where the telescopes stand are climate-controlled [71].

The FD electronics performs anti-alias filtering, and digitizes (every 100 ns) and stores
the signals of the PMT cameras. Similar to the SD (see Sec. 3.1), the triggering system is
also hierarchical. There are three levels of triggers at the detector. A level 1 trigger is a
pixel threshold trigger implemented in firmware, a level 2 trigger is a track-shape over many
pixels also implemented in firmware, and a level 3 trigger is at software level and it identifies
non-lightning events. If an event passes the level 3 trigger, the event is merged by the PC of
the telescope building. If the event passes high-quality cuts and is thus a candidate for an
air shower, a hybrid T3 trigger is sent to CDAS, which requests the data at the SD stations
that are expected to have signals from the same air shower [71].
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Figure 3.5: Scheme of a fluorescence telescope. The different parts are identified and a person is
drawn for perspective. Image extracted from Ref. [38].

Knowing how the detector works, we now summarize the main aspects of the recon-
struction of hybrid (SD-FD) events. For more details, see Ref. [71]. An air shower event
appears on the PMT cameras as a line of activated pixels with a clear time sequence and in
a track-like pattern. The geometry of the air shower can be determined by identifying the
shower-detector plane, which is the plane that includes the eye and the line to the shower
axis, and by using the timing information of the pixels. If there are SD stations participating
in the event, which is mostly the case, the shower core is even more constrained, obtaining
a better reconstructed geometry. The achieved resolution in hybrid reconstructions is of
50 m in the shower core and 0.6◦ in arrival direction. Furthermore, the depth of the shower
maximum Xmax can be also reconstructed using the FD. Knowing the geometry, the char-
acteristics of the atmosphere, and the fluorescence yield (the number of photons emitted
per unit of energy loss), the collected light as a function of time can be converted to energy
deposit as a function of slant depth dE/dX(X). Such a profile is fitted using a Gaiser-Hillas
function [73, 74]

fGH(X) =

(
dE
dX

)

max

(
X− X0

Xmax − X0

)(Xmax−X0)/λ

e(Xmax−X)/λ, (3.4)

where X0 and λ determine the shape of the function, and together with Xmax are the param-
eters of the fit. As suggested by the notation, ( dE

dX )max is the energy deposit per slant depth
at the maximum. An example of the fit to the shower profile can be seen in Fig. 3.6.

Finally, the total energy is estimated by integrating the profile, and by correcting by the
so-called “invisible energy” carried by neutrinos and by high-energy muons. The energy
estimated in this way has a resolution ≤ 10 % [71].
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Figure 3.6: Energy deposit per slant depth as a function of the slant depth for an example event.
The measured data points are in markers, and the fit of a Gaisser-Hillas function (see Eq. (3.4))
can be seen as a solid line. Figure extracted from Ref. [38].

3.3 Auger Prime

As stated in Chapter 2, there are several unresolved questions in the field of ultra-high energy
cosmic rays. Their origin, nature, and the acceleration mechanisms that allow them to reach
such high energies are still not completely understood. One of the key elements that would
allow major steps forward is identifying event-wise the mass composition of the cosmic rays.
To fulfill this purpose, the Pierre Auger Observatory is being upgraded by incorporating:
the scintillator surface detector (SSD), the radio detector (RD), the extension of the range of
the SD with a small PMT, the incorporation of new electronics or upgraded unified boards
(UUBs), the extension of the up-time of the FD, and the underground muon detector (UMD).
A scheme of an upgraded SD station can be seen in Fig. 3.7. The radio antenna and the SSD
can be seen at the top of the tank.

Below, we summarize the main characteristics of the elements of the upgrade, and focus
on the UMD as it is extensively used in this work.

3.3.1 Scintillator surface detector

The scintillator surface detectors (SSDs), which will lie on top of each SD station of the
array, were designed to distinguish the different components of an air shower together
with the SD. While the SSD is approximately equally sensitive to the electromagnetic and
muonic components of air showers, the SD is more sensitive to the muonic component.
The difference in sensitivity can be exploited to decompose the two measured signals, thus
isolating the muonic part that is mass sensitive [75].

Each SSD module consists of 48 scintillator strips distributed in two equal panels, that
add up to a total area of 3.8 m2. Each strip is 1.6 m long, 5 cm wide, and 1 cm thick. Each strip
has two straight extruded holes, inside which wavelength shifting (WLS) optical fibers lie.
Each fiber threads two scintillator bars acquiring a “U” shape, and the ends of all fibers are
bundled and collected in a cookie that connects them optically with a PMT. More information
on the principle of detection of plastic scintillators and WLS fibers is given in Sec. 3.3.6.
The data acquisition takes place simultaneously with the corresponding SD station, which
triggers the SSD [76, 77].
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Figure 3.7: Scheme of an upgraded SD station. On top, the radio antenna and the SSD can be
seen. Figure extracted from Ref. [10].

3.3.2 Radio detector

The Auger engineering radio array (AERA), a prototype radio array preceding the radio
detector (RD), proved the capability of radio detection to separate the muonic and electro-
magnetic components of air showers, principally in very inclined air showers. The RD, with
a ∼ 100 % duty cycle, will provide mass sensitivity in the zenith range of 65◦ to 85◦, which
can be useful for anisotropy studies. The expected capabilities of separating proton from
iron air showers is a ∼ 90 % purity at an efficiency of 80 % [78].

The RD will consist of a dual-polarized Short Aperiodic Loaded Loop Antennas (SAL-
LAs) installed on top of each SD station. Like the SSD, it will be triggered by its paired SD
station [78].

3.3.3 Small photomultiplier tubes

Apart from the three PMTs of each SD station, a new small PMT (SPMT) will be installed
in each SD station. The purpose is to extend the dynamic range of the SD stations, by being
able to measure larger signals that saturate the standard PMTs, thus enabling measurements
closer to the shower axis.

The SPMT are of the model Hamamatsu R8619-22, and are 30 mm in diameter, signifi-
cantly small in comparison to the 9 in-diameter (∼ 23 cm) standard PMTs [10].

3.3.4 Upgraded unified board

The incorporation of new detectors requires new electronics, because the unified board (UB)
is only prepared to process 6 signals, which are the high- and low- gain outputs of the SD
PMTs. The new electronics, dubbed upgraded unified board (UUB), allows to process the
signals of all the detectors of the upgrade because it counts with 10 channels. It also increases
the dynamic range and time resolution with respect to the previous electronics, by digitizing
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the signals at 120 MHz (instead of 40 MHz) with a 12-bit analog-to-digital converter (ADC)
(instead of a 10-bit one) [79].

3.3.5 Extension of the fluorescence detector uptime

To acquire more data and increase statistics of hybrid events, the FD will have an additional
new operation modality that allows to extend its duty cycle up to ∼ 29 %. This will be
achieved by reducing the gain of the PMT cameras of the FD telescopes, enabling them
to operate under more intense light conditions, starting earlier and ending later each data-
taking night [10].

3.3.6 The underground muon detector

The underground muon detector (UMD) consists of plastic scintillation detectors buried
2.25 m underground. Because the other components of the air showers are largely absorbed
in the matter above the detectors (atmosphere and earth), the UMD provides a direct mea-
surement of the muonic component of air showers with energies between 1016.5 eV and
1019 eV. The depth at which the detectors are and the density of the soil determine the mass
overburden that the muons have to go through to reach the detector, of 540 g/cm2, implying
a vertical muon energy threshold of ∼ 1 GeV. Furthermore, with the developments of this
work (see Chapter 4) the UMD can be used to measure the time structure of the muon signal,
which allows to reconstruct mass-sensitive parameters.

The UMD will consist of 219 scintillation modules located at 73 positions: 61 locations
in the SD-750 array, and 12 in the SD-433 array [80]. A scheme of an SD station together
with its three UMD modules can be seen in Fig. 3.8. The set of three UMD modules that
correspond to the same SD station are referred to as UMD counter. The modules will lie
close to its paired SD station (within 20 m) to probe approximately the same shower density
as the corresponding SD station, with its RD, and SSD. The multi-hybrid detection can be
used to validate the estimation of the muon component from the rest of the detectors which
always measure multiple shower components.

Figure 3.8: Scheme of an SD station and its three UMD modules buried underground. The
different parts are identified. Image adapted from Ref. [81].
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A UMD module consists of 64 strips of scintillation material (polystyrene doped with
fluor) covering an area of 10 m2. Each module is divided into two identical panels of 32
strips each. Every strip is 4 m long, 4.1 cm wide, and 1.1 cm thick, covered in the outside
with a refractive titanium dioxide (TiO2) layer. Inside each strip, there is a straight extruded
hole with a WLS optical fiber. The optical fiber guides the photons towards a cookie, which
makes the optical connection to a silicon photo-multiplier (SiPM). It can be added that a
previous design of the detector used multipixel photo-multipliers instead of SiPMs [80, 82].
A picture of a UMD module during assembly can be seen in Fig. 3.9. There the scintillation
bars (white on the outside) as well as the WLS optical fibers (shining in green) can be seen.
The ends of the optical fibers are already placed in the cookie.

Figure 3.9: Picture of a UMD module under construction. Image extracted from Ref. [83].

The principle of detection of the scintillator detector with WLS fibers is trough fluores-
cence. The impinging muons excite the electrons of the scintillation material, which de-excite
by emitting fluorescence photons. To be more precise, there is a chain of excitation and de-
excitations in the scintillator: First, the polystyrene base (Dow Styron 663W) absorbs the
incoming radiation and emits photons in the UV spectrum. These photons would attenuate
very shortly if they were not absorbed by a first dopant (2,5-diphenyloxazole or PPO), which
emits other UV photons with larger attenuation length. Finally the latter are absorbed by
a second dopant (1,4-bis(5-phenyloxazol-2-yl) benzene or POPOP) that emits photons of
blue color (∼ 420 nm). The mean attenuation length of these fluorescence photons in the
scintillator material is between 5 cm and 25 cm. Since the scintillator strips are 4 m long, it is
necessary to introduce the WLS optical fiber to conduct the signal to the electronics of the
detector. Trying to use a standard optical fiber would be futile, because no photons outside
of it could be transported through the fiber. That is why the Saint-Gobain BCF-99-29AMC
multi-clad WLS fiber has a scintillation core that absorbs the blue fluorescence photons of
the scintillation material and emits green photons. Some of the latter (∼ 10 %) remain inside
of the fiber thanks to the two layers of transparent cladding material outside of it with lower
refractive indexes than the core. These green photons propagate through the fiber core (by
total internal reflection), and the ones that do not suffer attenuation reach the SiPM [81].
Fig. 3.10 shows a scheme of the scintillation strip with the WLS optical fiber (left panel),
and a scheme of the fiber (right panel). In the latter, the refractive indexes of the core and
claddings are indicated.
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Figure 3.10: Left: Scheme of a scintillator strip. Right: Scheme of the WLS optical fiber. Images
extracted from Ref. [83] and Ref. [81] respectively.

The SiPM is a solid state photodetector consisting of an array of avalanche photo-diodes
implemented on common silicon substrate operated in Geiger mode. The model used in the
UMD is HAMAMATSU S13361-2050NE-08. Each SiPM contains 1584 cells of photo-diodes
to which a reverse voltage is applied. This voltage is larger than the breakdown voltage of
the diodes to operate in Geiger mode. In this mode, the impinging photons can generate a
multiplication of carriers with infinite gain (avalanche), constituting an electric current. The
multiplication process eventually stops due to a resistor that quenches the otherwise self-
sustaining avalanche process. It is relevant to add that we refer to the number of triggered
cells in a SiPM as the number of photon-equivalents [81]. Fig. 3.11 shows a scheme and a
picture of the cookie (left panel) and of the SiPM array (right panel).

Figure 3.11: Left: Scheme and picture of the cookie or optical connector. Right: Scheme and
picture of the SiPM array. Images extracted from Ref. [81].

The electric current produced by the SiPMs is processed with the readout electronics of
the UMD. The readout electronics consists of two modes: the counter and the integrator modes.
In combination, they achieve a broad dynamic range, being the counter mode appropriate
for small signals (down to single muons), while the integrator mode can process large signals
(hundreds of muons). Both modes work simultaneously measuring the very same muons.
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In the counter mode, the signal of the 64 SiPMs are processed independently by a pre-
amplifier, a fast-shaper, a discriminator, and a field programmable gate array (FPGA). The
first three are built within each channel of two 32-channel application-specific integrated
circuits (ASICs), model CITIROC from WEEROC. The latter, the FPGA, samples the 64
signals independently every 3.125 ns and converts them into 2048-bit long traces (i.e. 6.4 µs).
Every bit of the trace can be a “1” or a “0” depending on whether the signal passes the
2.5 PE (77.5 mV) threshold. A muon then appears as a sequence of 1s in the trance of a
channel. Fig. 3.12 shows the simulated response of the electronics to one impinging muon.
The muon generates several photon-equivalents that appear as spikes in the top panel. The
input current is amplified and inverted by the pre-amplifier (second to top panel). Then it
is further amplified, and inverted by the fast shaper (second to bottom panel). Finally, it is
digitized by the FPGA (bottom panel).

In the integrator mode, the 64 signals are analogically added and the sum is amplified
with low- and high- gain amplifiers. The two resulting signals are sampled every 6.25 ns by
two analog-to-digital converters (ADCs) that output two 1024-bit long traces (i.e. also 6.4 µs).
In this mode, the signal charge (the sum of the ADC counts in a time window of the trace) is
divided by the mean charge of a muon to convert it to a number of muons [81]. In this work,
we focus on the counter mode of the UMD.
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Figure 3.12: Simulation of the response of the electronics to one muon impinging on a scintilla-
tion bar. The muon generates photon-equivalents (top panel). The signal is then amplified and
inverted by the pre-amplifier (second to top panel). Afterwards, the fast shaper further amplifies
and inverts again the signal (second to bottom panel). Finally, the FPGA digitizes the signal
(bottom panel).

Having understood how the UMD works, we discuss the UMD event reconstruction for
the counter mode, to which a substantial part of this work is devoted. We can retrieve the
binary traces of every active channel of the UMD modules that participate in an event. These
binary signals are matched to a single-muon pattern of 0s and 1s of the form “1111xxxxxxxx”,
where x can take the values 0 or 1 [1, 80]. This pattern maximizes the signal-to-noise ratio,
and was the subject of the study of Ref. [81]. Fig. 3.13 presents a module-level simulated
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event, showing the impinging muons as a function of time, the binary traces, and the pattern
matches for the channels with non-null signal.

1200 1220 1240 1260 1280 1300
t/3.125 ns

7
15
17
22
38
41
42
43
45
47
49
50
52
53
60
62
63

C
ha

nn
el

Impinging muons
Binary trace
Pattern Match

Figure 3.13: Simulation of an air shower event at module level. The muons (red circles) impinge
on the different segments of the detector at a certain time (x-axis), which correspond to a given
channel (y-axis). The muons generate binary signals on their corresponding channel (blue lines),
which are matched to a pattern of the kind “1111xxxxxxxx” (green rectangles).

Obtaining an estimated number of muons from the number of pattern matches is done
through a counting strategy. The number of pattern matches cannot be directly used as an
estimate of the counts due to the pile-up effect. This happens when two or more particles hit
one scintillator strip almost simultaneously, such that they are read out as only one particle. It
constitutes an under-counting effect. In Fig.3.13 we can see an example of pile-up in channel
7, where the signal of two impinging muons is matched to only one pattern. The way to
obtain a number of counts accounting for the effect of pile-up is treated in Chapter 4.

Even having a nearly pile-up-unbiased estimate of the number of muons impinging on
a UMD module, the estimate can still suffer from biases due to the effect of corner-clipping
muons. These are muons that transverse two neighboring scintillator strips and deposit
enough signal in both strips such that one particle is read out as two, constituting an over-
counting effect. The way to correct for this effect, as well as for other sources of bias, in
treated in Chapter 5.

After having an unbiased estimate of the number of muons, an estimate of the muon
density at each module is obtained simply by dividing the reconstructed counts by the
effective area of the detector. Incorporating the geometry reconstructed using the SD, the
distance to the shower axis on the shower plane can be known for each module. Each event
provides a sample of the lateral distribution function (LDF) of muons, this is, the muon
densities as a function of the distance to the shower axis. Typically the sampled distribution
is fitted, and the fitted function is evaluated at a fixed distance to the shower axis (450 m for
the UMDs in the SD-750 array), providing an event-wise estimate of the muonic component
size which can be used for further analyses. A critical point to obtain reliable estimates of
the muonic size is to use events that sample “well” the muon LDF around the fixed distance.
To select such events in the Offline framework, we developed a tool that is described in
Appendix A. An example of a muon LDF fit to an event can be seen in the left panel of
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Fig. 3.14. The event identification number is 180685784700, and it was detected on March
10th, 2018. For visualization, the average muon density of the three modules of a counter
are displayed (instead of that of each module). The fitting function used here is a modified
NKG (see Eq. 3.2) with fixed α = 1, γ = 1.85, rs = 150 m, and ropt = 450 m. There are
different functions that can be used to describe the muon LDF, but we delay that discussion
to Chapter 6.

As mentioned at the beginning of this section, the developments of this work allow to
reconstruct the time structure of the muon signal (see Chapter 4). We show as an example
in the right panel of Fig. 3.14 the reconstructed number of muons (as seen by the detector)
as a function of time for one module of the counter with largest signal of the event shown in
the left panel.
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Figure 3.14: Left: Muon density as a function of the distance to the shower axis for an example
event. On a solid line, the fit of a muon LDF. Right: Reconstructed muon density as a function of
time for counter 1622 (the closest to the shower core), module 111 of the same event.

3.4 Summary

In this chapter we introduced the Pierre Auger Observatory and the detectors that conform
it: The surface detector, the fluorescence detector, and within the upgrade of the observatory,
known as Auger Prime, the scintillator surface detector, the radio detector, and the under-
ground muon detector. We also described the upgraded electronics, the incorporated small
photomultiplier tubes, and the extension of the fluorescence detector uptime, which are also
part of the upgrade of the observatory.

We explained how the surface detector is an array of water Cherenkov detectors (the
largest of its kind), and explained how the energy and geometry are reconstructed from the
measured signals. With respect to the fluorescence detector, we explained that the telescopes
measure the fluorescence light emitted by the de-excitation of the nitrogen in air, after the
excitation due to interactions with the particles of air showers. We also described how the
energy can be reconstructed from the measured light.

Moreover, we described with particular detail the underground muon detector. We dis-
cussed the principle of detection of scintillation detectors and detailed the parts of its mod-
ules and of its electronics. Finally, we explained the method used for the reconstruction of
the muon content of measured air showers, which is directly relevant for Chapters 4 and 5.
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Chapter 4
Muon counting strategy

As discussed in Sec. 3.3.6, when reconstructing the muon densities measured by the Under-
ground Muon Detector (UMD) in the counter mode, the first step is to identify the single-
muon pattern matches in each channel of each module that takes part of an event. Sub-
sequently, the number of pattern matches are converted to an estimate of the number of
muons via a counting strategy. The most trivial strategy would consist of taking the number
of pattern matches as the estimate of the number of impinging muons. However, such an
estimate would be biased by the effect of pile-up. This occurs when two or more muons
transverse the same scintillator strip almost simultaneously, creating signals that cannot be
resolved. Consequently, these muons are identified as only one pattern match, which can
lead to under-counting. It follows that any reasonable counting strategy should consider the
pile-up effect in its design, by understanding that one pattern match should account for one
to infinite impinging muons.

In this chapter we show the development of a new counting strategy for the UMD. The
motivation behind it is that the estimated number of muons in the Offline UMD recon-
struction was reported to have a significant bias which increased with the input number
of muons [84]. Although a correction of this bias was proposed for the reconstruction of
detector simulations, the same correction could not be applied to the reconstruction of data.
This is because the correction was based on knowing the impinging time of the muons,
information that is unknown for real data.

Figure 4.1 shows the relative bias of the reconstructed number of muons against the input
(Monte-Carlo truth) number of muons, where the counting algorithm was the one used in
Offline before this work. The bias is computed by simulating impinging muons from the
signals of proton EPOS-LHC [26] air shower simulations with 18.0 ≤ log10(E/eV) ≤ 18.2
and 33◦ . θ . 39◦ (0.30 ≤ sin2 θ ≤ 0.40). The details of how this algorithm works and
how the simulations are performed are delayed to the following sections. At this point it is
important to notice that the relative bias is significant, tending to more negative values for
larger input number of muons. In this example we observe almost a ∼−40 % bias for 200
input muons.

The developed strategy for counting muons in the UMD is actually an application of
a solution to the more general problem of counting particles in segmented counters as
a function of time. In other words, the new strategy could be used in other particle or
astroparticle detectors. Furthermore, and most remarkably, it allows to reconstruct the muon
signal as a function of time as seen by the detector to a single time-bin resolution. This can
be used to reconstruct mass-sensitive observables from the timing information of the muon
signal, opening the door to new analyses.

33
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Figure 4.1: Relative bias in the reconstructed number of muons with respect to the input (Monte-
Carlo truth) number of muons, as a function of the input number of muons, for the strategy
that was implemented in Offline before this work. The bias is calculated from different random
samples generated from the average muon density as a function of time and distance to the
shower axis of proton EPOS-LHC showers of 18.0 ≤ log10(E/eV) ≤ 18.2 and 33◦ . θ . 39◦

(0.30 ≤ sin2 θ ≤ 0.40). A gray horizontal line marks null bias.

In this chapter, we test and compare the performance of the new muon counting al-
gorithm against three other methods, including the one previously used in Offline. The
structure of the chapter is as follows. We explain the various statistical models or algorithms
that provide estimates of the impinging number of muons in Sec. 4.1. In Sec. 4.2, we explain
how we generate the air shower library and how we simulate the detector response. We
compare the performance of the various methods in Sec. 4.3, where we also show an exam-
ple of the reconstructed muon signal as a function of time. Finally, we summarize the results
and provide an outlook in Sec. 4.4.

It is relevant to add that in the analysis of this chapter we do not consider corner-clipping
muons as they are an independent source of bias, with an effect that can be (and is) corrected
after the counting strategy is applied. This is the subject of study of Chapter 5.

The analysis shown in this chapter is largely based on the publication:

• Estimation of the number of counts on a particle counter detector with full time resolution,
F. Gesualdi, A.D. Supanitsky, Eur. Phys. J. C 82, 925 (2022) (Ref. [85]),

and on the Pierre Auger internal publication:

• A new pile-up correction strategy for the Underground Muon Detector, F. Gesualdi, A.D. Su-
panitsky, GAP 2022− 001 (Ref. [86]).

4.1 Counting strategies

On a first approximation, the problem of counting muons (or particles in general) on a
segmented muon counter like the UMD (or in a segmented detector in general) is analogous
to the statistical problem of counting balls in boxes. The terms “classical occupancy problem”
and “classical shot problem” are also used to describe said statistical problem [87]. In this
problem, a finite number of balls (the impinging particles) are allocated uniformly in a finite
number of boxes (the segments of the detector). After one realization of the experiment, each
box may have zero balls (no pattern match) or one or more balls (with pattern match or
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occupied). We define as occupancy the number of occupied boxes after one realization of
the experiment.

Applied to the UMD counter, the balls would be the number of impinging muons Nµ. If
we think of an air shower as a stochastic process, Nµ, a property of the event, would be the
result of one realization of a Poisson distribution of mean µ, the mean number of particles
expected at the UMD module for that air shower, which is a property of the air shower. The
cosmic ray primary, energy, zenith angle, and the distance of the module to the shower axis
on the shower plane determine µ. It can be expressed as µ = ρµ A cos θ, being ρµ the mean
muon density of an air shower on the shower plane, A the active area of the UMD module,
and θ the zenith angle of the air shower. Understanding the distinction between Nµ and
µ is important: Nµ is the number of muons actually impinging the detector, while µ is the
mean number. As discussed in Chapter 6, the muon lateral distribution function can be
reconstructed using either one of them [13, 14, 55].

There are two questions that the counting strategies aim to answer: (1) What is the esti-
mated number of impinging muons Nµ, given that we know the occupancy? (2) What is the
estimated mean number of particles µ, given that Nµ is a realization of the Poisson distribu-
tion with mean µ? The counting strategies address these questions using the information of
the pattern matches in an event trace, and as a result provide estimates of Nµ and µ.

In the following we describe the four counting different strategies considered in this
analysis.

4.1.1 Infinite window strategy

This strategy was employed by the AGASA collaboration (see for example Ref. [12]). It is the
simplest strategy because it does not use the timing information of the muon trace (hence
its name). Instead, it only uses the occupancy k, which is computed as [13, 55, 88]

k =
ns

∑
i=1

Θ(mi), (4.1)

where ns is the number of active segments of the detector, Θ is the Heaviside step function,
and mi is the number of starting pattern matches of the i-th channel. If mi = 0, Θ(mi) = 0,
otherwise Θ(mi) = 1. For this strategy, k is equivalent to the number of channels with at
least one pattern match.

The number of impinging muons on a scintillator strip follows a Poisson distribution
of parameter µ/ns. Therefore, the probability of a channel being empty is q = exp(−µ/ns),
and the probability of a channel being occupied is p = 1− q [13, 14]. The probability of
having k occupied channels (successes) out of ns channels (trials) given µ (which determines
the success probability) follows a binomial distribution [13, 14]

B(k| µ) =
(

ns

k

)
pkqns−k =

(
ns

k

)
e−µ(eµ/ns − 1)k. (4.2)

The expression for the likelihood of µ given k occupied channels is identical to Eq. (4.2). For
k < ns, the maximum likelihood estimator of µ is given by [13, 14]

µ̂ = −ns ln
(

1− k
ns

)
. (4.3)
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Furthermore, the probability of k channels being occupied given that Nµ muons im-
pinged the detector and that there are ns scintillation bars follows the occupancy distribution
[88]

Occ (k|Nµ, ns) =

(
ns

k

)
S(Nµ, k)

nNµ
s

∀ k ∈ Z | 1 ≤ k ≤ ns,

where S(Nµ, k) are the Stirling numbers of the second kind (see also Ref. [87]). As shown in
Refs. [55, 88], the maximum likelihood estimator of Nµ can be approximated as

N̂µ =

ln
(

1− k
ns

)

ln
(

1− 1
ns

) . (4.4)

Eq.(4.3) and Eq.(4.4) are evidently very similar, and in the limit when ns tends to infinity,
N̂µ tends to µ̂.

It can be added that a module is said to be saturated when k = ns. In such case, both µ̂
and N̂µ tend to infinity.

4.1.2 N-bin window strategy

This is the strategy that was implemented in the standard reconstructions in Offline before
this work 1, and it is the one used in Fig. 4.1. It was first described in Ref. [14] and has been
used for analyses of UMD PMT data in Refs. [89, 90]2.

In this strategy, the event trace is partitioned into N-bin-long time windows, where N
is equal to the number of bins in a single-muon pattern (12 time-bins of 3.125 ns for the
UMD with SiPMs). The last window can actually be shorter if N is not an exact divider of
the number of bins of the trace. This is the case for the UMD, where the trace is 2048-bins
long. In such case, the last window is nonetheless taken into account in the calculation. We
then compute for each j-th window the number of occupied channels, k j, and use Eqs. (4.1),
(4.3) and (4.4) to compute for each window the estimated number of muons, N̂µ,j, and the
estimated mean muon number, µ̂j. The total N̂µ and µ̂ are calculated by adding the estimates
of each window:

N̂µ =
nw

∑
j=1

N̂µ,j, (4.5)

µ̂ =
nw

∑
j=1

µ̂j, (4.6)

where j runs over the nw number of windows of the trace, 171 in this case.
Saturation is flagged if at any window j the condition k j = ns is fulfilled.

1In the Offline framework, the standard application for reconstructing UMD data is MdDataReconstruc-

tion, and the standard applications for reconstructing detector simulations are MdSdSSdReconstruction, and
MdSdFdReconstruction.

2As shown in the introduction to this chapter, or in Sec. 4.3, this strategy introduces significant biases. These
are compensated in the analyses of Refs. [89, 90], at least to first order, by correcting against simulations, using a
method very similar to the one presented in Chapter 5.
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4.1.3 N-bin centered window strategy

This method is utilized in this study to understand the causes of the biases produced by
the N-bin window strategy. It is also very similar to the original correction attempting to
address those biases that was developed for the reconstruction of simulations [84].

It is very similar to the N-bin strategy, but it positions the windows such that one is
centered at the peak of the signal. The idea is that there exists at least one 12 time-bin window
j∗ where the occupancy k j is maximum. If there are multiple of them, we take the one that
starts earliest. To locate it, we slide a 12 time-bin window over all the trace, computing
k j for every j-th possible window. The earliest window that fulfills k j∗ = maxj(k j) is the
“centered” window. The way to complete the partition of the trace into 12 time-bin windows
is determined by this centered window. Since the event signal in the trace normally begins
at around 3300 ns or 3800 ns [81], we ignore the first bins of the trace that do not complete a
full 12-bin window, but keep the last bins in this condition. This approach is generalizable
for different time window sizes, with the option to keep or not incomplete windows.

Having partitioned the trace into windows, we use Eqs. (4.5) and (4.6) to compute N̂µ

and µ̂, respectively. Depending on the partition, the number of windows nw can be 170 or
171.

Just like for the N-bin strategy, saturation is given if k j = ns for any 1 ≤ j ≤ nw .

4.1.4 1-bin window strategy

This strategy is the one developed in this work. This approach exploits the entire time
structure of the signal rather than in many-bin windows (like the N-bin or N-bin centered
strategies) or as a whole (like the infinite window strategy). The idea is to determine for
each j-th time-bin of the trace, not just the number of occupied channels k j, but also the
number of inhibited channels ninhib,j. The latter represents the number of channels with a
pattern match that began in an earlier time-bin. These are treated as inhibited channels since
it would be impossible to measure or resolve a muon that fell within the inhibition window
(i.e., the single-muon pattern match); in other words, inhibited channels are effectively dead
channels. In the analogy with the balls in boxes problem, having channels that are inhibited
is equivalent to having fewer boxes. The number of non-inhibited channels is equal to ns −
ninhib,j.

Additionally, as the number of available (non-inhibited) channels decreases, so does the
size of the detector, resulting in a fewer number of detectable muons. Evidently, the detection
area changes from bin to bin. In order to determine the number of muons that would be
observed for a constant detector area equal to the active area, we multiply by the number
of active segments ns and divide by the number of non-inhibited segments ns − ninhib,j. We
then compute for each j-th bin of the trace

µ̂j =− (ns − ninhib,j) ln
(

1− k j

ns − ninhib,j

)
× ns

ns − ninhib,j

=− ns ln
(

1− k j

ns − ninhib,j

)
, (4.7)

and

N̂µ,j =

ln
(

1− k j

ns − ninhib,j

)

ln
(

1− 1
ns − ninhib,j

) × ns

ns − ninhib,j
. (4.8)
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The total N̂µ and µ̂ are computed as their sum across all the bins of the trace, i.e., as in
Eqs. (4.5) and (4.6), taking the number of windows nw equal to the trace length (2048).

In this strategy, the detector is said to be saturated if, at any time bin, the occupancy
equals the number of available channels: k j = ns − ninhib,j for any 1 ≤ j ≤ nw.

4.1.5 Summary of the counting strategies

The characteristics of the four strategies are summarized in Table 4.1. Although the number
of windows nw for each method are specific to SiPM UMD signals, the methods can be used
to process the signals of other segmented counters mutatis mutandis.

Strategy µ̂ N̂µ nw Centered

Infinite −ns ln
(

1− k
ns

) ln
(

1− k
ns

)

ln
(

1− 1
ns

) 1 -

N-bin −
nw

∑
j=1

ns ln
(

1− k j

ns

) nw

∑
j=1

ln
(

1− k j
ns

)

ln
(

1− 1
ns

) 171 No

N-bin
centered

−
nw

∑
j=1

ns ln
(

1− k j

ns

) nw

∑
j=1

ln
(

1− k j
ns

)

ln
(

1− 1
ns

) 170-

171

Yes

1-bin −
nw

∑
j=1

ns ln
(

1− k j

ns − ninhib,j

) nw

∑
j=1

ns

ns − ninhib,j

ln
(

1− k j
ns−ninhib,j

)

ln
(

1− 1
ns−ninhib,j

) 2048 -

Table 4.1: List of the formulas and characteristics of the four counting strategies considered. The
number of windows for each method nw is calculated considering the length of the SiPM UMD
trace and of a single-muon pattern. It is specified in the column “Centered” if the windows are
positioned so that the center of one aligns with the signal peak.

It can be added that the performance of the different methods for the reconstruction of
Nµ or µ in real data could possibly be optimized by selecting a window within the trace
where the signal lies or is expected to lie. This could help improve the signal-to-noise ratio.
However, defining the edges of such a window for all events is not trivial, and is a subject
of future work. Moreover, if a variable window-size is used, background rates should be
accounted for also with care. For the analysis of this chapter, where we do not simulate noise,
this is unnecessary and we thus keep the whole trace. Furthermore, we also keep the full
trace for the analysis of real data because the general bias correction described in Chapter 5
can easily account for the extra counts caused by background muons as long as the window
is mostly of the same length for all traces (i.e. constant background rate). In the 1-bin strategy,
the variation of the analyzed trace length are below 1 %, and thus we can well approximate
the background rate as constant.



4.2. SIMULATION OF THE RESPONSE OF THE UMD TO AIR SHOWERS 39

4.2 Simulation of the response of the underground muon detector
to air showers

In order to compare the different counting strategies in a realistic scenario, we generate a
library of Monte-Carlo air shower simulations, and we also simulate the response of the
UMD to said air showers. In the following we first describe how the detector is modelled.
We also dedicate a special subsection to showing the effects of the detector that influence
the biases discussed in Sec. 4.3. Furthermore, we explain how the air shower library is
generated, and how it is used in combination with the detector simulations. Finally, we
show a validation of the simulation chain by studying the expected and observed saturation
fraction.

4.2.1 Simulation of the detector response

In this subsection we describe the simulation of the counter mode of the UMD with SiPMs.
The detector simulations take as input the number of impinging muons and their imping-
ing times with respect to the beginning of the signal. With this information, the detector
simulation outputs the event trace of the module, i.e., the digital signals of the 64 channels.
The model of the detector follows Ref. [81, 91]. Assuming the given model, we derive an
analytical solution for the detector response to one or more muons.

For deriving such analytical solution, we neglect noise, which is irrelevant for evaluating
the effectiveness of the counting strategies. Taking into account all sources, background noise
is estimated to produce ∼ 5.5 % of the counts in a module trace. The optimal single-muon
pattern is affected by the background muon and noise count rates, which are inherent to the
environment and the detector, and which is already optimized to such conditions. However,
because the counting strategies use already-matched patterns as input, the background is
irrelevant when evaluating them. Even if noise had any net effect in the estimation of the
number of muons, it would be corrected in the general bias correction of Chapter 5. As a
reminder, we reiterate that we also do not consider corner-clipping muons as it is a separate
source of bias that can be also corrected for at the mentioned later step (c.f. Chapter 5).

We start with assigning the start-time of the UMD signal by sampling it from its distri-
bution. The start-time of the UMD signal is not given at a fixed time-bin, but rather it is
determined by the trigger time of the SD station. The latter is given by the timing of both the
electromagnetic and muonic shower front, while the start-time of the UMD signal is only
related to the muonic shower front, and additionally both are subject to Poission fluctuations.
Furthermore, the effective delay between the SD trigger and the start-time of the SD signal
is different for different types of triggers, because their sensitivity with respect to the dif-
ferent shower components is different. We sample the start-time of the UMD signal from a
double Gaussian distribution 0.27×N (3337 ns, 91 ns) + 0.73×N (3757 ns, 70 ns) [81]. The
first Gaussian corresponds to the delay with respect to a T2 time-over-threshold trigger in
the paired SD station, whereas the second Gaussian corresponds to that of a T2 threshold
trigger.

Having defined the start-time of the signal, we introduce now the impinging muons of
which we know the impinging time with respect to the start-time. Then, for each muon we
assign a scintillator strip and the corresponding channel by sampling a discrete uniform
distribution U{1, 64}. We also assign an impinging position in the scintillator strip l by sam-
pling a continuous uniform distribution U{0 m, 4.01 m}. We compute the average number
of photo-electrons 〈NPE〉 produced by said muon at position l that reach the SiPM as [81]

〈NPE〉 (l) = 17.4 e−l/4.16 m + (1.0− 17.4) e−l/0.037 m. (4.9)
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The actual number of photo-electrons reaching the SiPM produced by said muon NPE is
computed by sampling a Poisson distribution of mean 〈NPE〉.

To compute the time delay of the photo-electron with respect to the impinging time of the
muon, we calculate the time it takes the photon to propagate from the impinging position
in the optical fiber to the SiPM. For this we divide the distance l by the speed of light in
the optical fiber (0.60 c). The photo-electron has two other sources of time delay: the time
delays due to the excitation and de-excitation of the scintillator and of the core of the optical
fiber. These are sampled from two exponential distributions of parameters 3.7 ns and 3.5 ns
respectively [81]. The resulting time of the photo-electron tPE is the addition of the signal
start time, the impinging time of the muon (measured with respect to the signal start time),
the propagation time, and the scintillator and fiber delays.

Additionally, we analytically model the electronics response to each photo-electron. The
electronics consist of: a pre-amplifier, a fast shaper, a discriminator, and a Field-Programmable
Gate Array (FPGA). Whereas the mathematical models for the photo-electron pulse as well
as for each component of the electronics are taken from Ref. [81], we provide the analytical
solution of the electronics response to a photo-electron signal. For this we neglect baseline
noise.

The input signal in the electronics as a function of time caused by a photo-electron, VPE(t),
is modelled as [91]

VPE(t) =0.29 mV
(

1− e−
t−tPE
3.82 ns

) [
23.22 e−

t−tPE
1.187 ns + 1.609 e−

t−tPE
23.44 ns + e−

t−tPE
0.221 ns

]
×Θ(t− tPE),

=
6

∑
i=1

Ai e−
t−tPE

τi Θ(t− tPE). (4.10)

The next element is the pre-amplifier, which we model as a low-pass filter [81, 91]. The
amplified signal Vamp(t) is obtained by first Fourier transforming VPE(t), multiplying by the
low-pass filter transfer function HI(ω), and then inverse transforming. As a result

Vamp(t) =
√

2πF−1 [F [VPE(t)]× HI(ω)] ,

=
√

2π
6

∑
i=1
F−1

[
Ai√
2π

e−itPEω

(1/τi + iω)

k I√
2π(1 + iωτI)

]
,

=
6

∑
i=1

k I Aiτi

τi − τI

(
e−

t−tPE
τi − e−

t−tPE
τI

)
Θ(t− tPE),

=
6

∑
i=1

2

∑
j=1

Ãi,je
− t−tPE

τi,j Θ(t− tPE), (4.11)

where k I = −17.5 and τI = 17 ns [91]. For deriving Eq. (4.11) we used that the Fourier
transform commutes with the sum. In the last equation we group the coefficients such that
Ãi,1 = k I Aiτi/(τi − τI), Ãi,2 = −Ãi,1, τi,1 = τi, and τi,2 = τI . Notice that the functional form
of Vamp(t) is identical to that of VPE(t).

A fast-shaper processes the signal after the pre-amplifier. The former is modelled as
a practical differentiator [81, 91]. To obtain the signal after the fast-shaper Vfs(t), we first
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transform Laplace Vamp(t), multiply by the transfer function of the practical differentiator
HI I(s), and inverse transform:

Vfs(t) =L−1 {L[Vamp(t)]× HI I(s)
}

,

=
6

∑
i=1

2

∑
j=1
L−1





Ãi,je
tPE
τi,j

s + 1/τi,j
×
[
Θ(tPE) e−tPE(s+1/τi,j) + Θ(−tPE)

]
× (−s)k I IτI I

(1 + sτI I)2





,

=
6

∑
i=1

2

∑
j=1

−Ãi,jk I Iτi,j

τI I(τi,j − τI I)2 ×
{

e−
t−tPE

τI I
[
(t− tPE)(τi,j − τI I) + τ2

I I
]
− e
− t−tPE

τi,j τ2
I I

}
Θ(t− tPE),

(4.12)

where k I I = 47.1 and τI I = 2.4 ns.
By adding the contribution to Vfs(t) of all the photo-electron pulses caused by each

muon impinging in the same scintillator strip, we may finally simulate the response of the
discriminator and FPGA, yielding the output signal or binary trace Vout(t) for each channel.
If Vfs(t) exceeds the threshold (77.5 mV) for more than 1.51 ns, the FPGA output is a 1 in
the binary trace. Additionally, the FPGA samples the signal every 3.125 ns. By repeating the
process for all the channels, we obtain the final event trace for a module.

We can see an example of the input, pre-amplified, after fast-shaper, and output signals
as a function of time for one simulated muon in Fig. 4.2. The single photo-electron pulses
can be recognized in the input signal.
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Figure 4.2: Model of the pulse generated by one muon impinging on a scintillator strip. The
input signal (top) passes a pre-amplifier (second to top), a fast shaper (second to bottom), and a
discriminator and FPGA (bottom). The FPGA digitizes the output signal in 3.125 ns-wide time
bins.

After simulating the response of every channel of the UMD module to the given input
muons, the binary signal of each channel is matched to the single-muon pattern (as men-
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tioned before, “1111xxxxxxxx”). An example of a simulated module-level event is shown in
Fig. 4.3. There we can see the impinging muons, the binary traces, and the matched patterns
for all channels participating of the event. In this example, the effect of pile-up can be seen
in channels 17 and 23, where the signal of two and three impinging muons respectively is
matched only to one pattern.
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Figure 4.3: Simulated response of a module to the muons of an air shower simulation. Muons
(circles) impinge at a given time (x-axis) on the different scintillator strips of the detector. They
generate a binary signal (lines) in the corresponding channels (y-axis), which are matched to a
single-muon pattern “1111xxxxxxxx” (rectangles).

4.2.2 Detector effects in the counting strategies

The µ̂ and N̂µ estimates, computed as discussed in Sec. 4.1 are prone to two sources of bias
that are neither inherent to the counting strategies nor connected to the pile-up effect.

The first one is a detector and pattern-matching inefficiency that results in under-counting,
and equally impacts all counting strategies. It occurs when one muon fails to generate an
output signal that is strong or long enough to match the single-muon pattern.

The second one is caused by an undershoot of the signal after the fast-shaper, as visible
in the third panel of Fig. 4.2. This produces an under-counting effect which is a result of
the design of the electronics. It occurs when a later muon signal mounts on an undershoot
caused by earlier muons in the same channel. The later muon may not be matched to the
single-muon pattern if either the amplitude of its signal is too small or the absolute value of
the amplitude of the undershoot is very large (the amplitude is very negative). The infinite
window strategy is the only one that is insensitive to this effect because it suffices to match
the early muons in the channel to tag it as occupied over the whole trace. All other strategies
are equally affected by the under-counting due to undershoot.

We quantify the number of pattern matches lost as a result of the undershoot and of
“small signals” to better understand their effects. In order to do this, we determine for each
channel whether the muon signal would match a pattern if it were the only muon signal in
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it. If not, the muon is in principle lost due to its small signal. This would result in a loss of
∼ 3.6 % pattern matches, independent of the energy or zenith angle of the cosmic ray that
caused it. However, we consider the muon recovered if the pattern match that the muon
would have produced3 overlaps with that of another muon of the channel. The latter occurs
more frequently in more vertical and energetic air showers, which are associated with greater
muon rates. The top left panel of Fig. 4.4 shows the net loss of pattern matches as a result of
small signals. To obtain this, we employ proton initiated air showers with the typical signals
present in an hexagonal array like the SD-750 (see Sec. 4.2.4). For higher-energy and more
vertical air showers, the net loss is, as predicted, smaller. The net effect is less than 4 % lost
pattern matches.

Moreover, we continue analyzing the signal of a single muon in a channel. If the muon
would generate a pattern match were the only muon signal in the channel, we analyze
whether that pattern match overlaps with the pattern matches of the total signal of the
channel. If this is not the case, the muon is lost due to undershoot. The results are shown in
the top right panel of Fig. 4.4. The muons lost because of the undershoot can amount from
0.1 % for low-energetic, inclined air showers, to 3.3 % for high-energetic, vertical air showers.

The lower panel of Fig. 4.4 displays the total detector effects, which are simply the sum
of the two contributions (i.e., what is displayed in the top and middle panels of the figure).
We can observe that the undershoot has a dominant effect, and more pattern matches are
lost in high-energy, more vertical air showers. The total number of pattern matches lost as a
result of detector effects range from 2.6 % to 5.0 %, reaching up to 5.3 % for iron-initiated air
showers. We repeat that in the case of the infinite window strategy, the total detector effects
are only the ones of the top panel, as undershoot does not affect this strategy.
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Figure 4.4: Mean percentage of lost pattern matches due to small signals (upper panel), to un-
dershoot (middle panel), and the sum (bottom panel), as a function of logarithmic energy and
the sine square of the zenith angle. We employ simulations of proton-initiated air showers using
the distance distribution like the ones of the UMD array.

3We use the time of the maximum of the fast-shaper signal as the time of the beginning of the pattern that
the muon would have produced.
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4.2.3 Air shower simulations

In order to proceed with our goal of simulating a realistic scenario, we generated a library of
∼ 7600 air showers of proton and iron primaries using the high- and low-energy hadronic
interaction models EPOS-LHC [26] and UrQMD [32, 33], respectively. The air shower sim-
ulations were produced using CORSIKA v7.7402 [23]. Their arrival directions follow an
isotropic distribution with zenith angles in 0◦ ≤ θ ≤ 48◦, and they have a uniformly dis-
tributed logarithm of primary energy between 17.2 ≤ log10(E/eV) ≤ 18.4.

We separate the simulations by primary, into log10(E/eV)-bins with widths of 0.2 cen-
tered at 17.3, 17.5,..., 18.3, and in sin2 θ-bins of width 0.10 centered at 0.05, 0.15,..., 0.45. We
subsequently compute an average profile of the number of muons as a function of the log-
arithmic distance to the shower plane and of the time dµ/dt×∆t for each primary and
(log10(E/eV), sin2 θ)-bin. To do this, we first compute the profile of each air shower by ex-
tracting, for each muon that has sufficient energy to reach the ground, the distance to the
shower axis on the shower plane and the time at which it arrives at the shower plane. Next,
we calculate a weighted mean of the dµ/dt×∆t profiles, for all showers that fall into a same
(log10(E/eV), sin2 θ)-bin, being the weight of the i-th shower its energy Ei times the cosmic
ray flux evaluated at that energy J(Ei). In this way we get the average profile that would be
observed for air showers with energies following the distribution given by the cosmic ray
flux. The model of the flux follows Ref. [92]. As an example, we show in Fig. 4.5 the mean
profile dµ/dt×∆t obtained from proton air showers with 17.8 ≤ log10(E/eV) ≤ 18.0 and
27◦ . θ . 33◦ (0.20 ≤ sin2 θ ≤ 0.30).
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Figure 4.5: Mean number of muons per time-bin as a function of the shower plane arrival time
and of the logarithmic distance to the shower axis on the shower plane. The average takes proton
air showers with 17.8 ≤ log10(E/eV) ≤ 18.0 and 27◦ . θ . 33◦ (0.20 ≤ sin2 θ ≤ 0.30).

4.2.4 End-to-end simulation chain

Using the air shower library described in Sec. 4.2.3 as the input for the detector simulations
described in Sec. 4.2.1, we generate two detector simulations sets.

The first detector-simulation set is obtained in the following way: For each primary
and (log10(E/eV), sin2 θ)-bin, the profile dµ/dt×∆t is evaluated 10, 000 times at a random
logarithmic distance log10(r

∗/m) which we sample from a continuous uniform distribu-
tion U{1.0, 3.5}. This determines the mean input number of muons as a function of time
dµ/dt×∆t | r=r∗ (which integrates to µ = µ (log10(r/m)) | r=r∗). Next, we sample a Poisson
distribution of mean µ to generate the number of impinging muons Nµ. Afterwards, the
times of the Nµ muons are sampled from dµ/dt×∆t | r=r∗ . This information is the input to
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the detector simulation, which, as described in Sec. 4.2.1, allocates the muons randomly in
the scintillator strips, simulates the electronics response, and outputs the 64 binary signals
of the module channels. The binary signals are then matched to the pattern “1111xxxxxxxx”.
With this, we estimate µ̂ and N̂µ for each of the four strategies described in Sec. 4.1 (see Table
4.1).

The second detector simulations set is identical to the first one, except for the distribution
of the logarithmic distances log10(r

∗/m) to the shower axis. In this set we want this distribu-
tion to be realistic. For this purpose, we simulate an hexagonal array of 750 m spacing, like
that of the SD-750 array where the UMD lies, and throw random event-core positions. From
this we can calculate the distribution of distances to the shower axis. However, triggering
has to be considered, because there would be increasingly more UMD modules at large dis-
tances otherwise. Using the previously parameterized muon profiles integrated in time for
the different primaries, energies, and zenith angles, µ(log10(r/m)), we estimate the number
of muons at the detector. By requiring the impinging number of muons to be ≥ 3 we simu-
late the triggering conditions. In this way we obtain the realistic distribution of the distances
to the shower axis, as seen from the shower plane. We find that the distributions of the same
energy at various zenith angles are indistinguishable from one another. However, there is a
dependence on the energy and on the primary. This is because more energetic air showers
produce more muons, and some of them still reach large distances from the shower axis
with sufficient energy to trigger the detector. Additionally, stations that are farther from the
shower axis can be still be triggered by air showers produced by heavier primaries because
they produce more muons than lighter primaries of the same energy. In Fig. 4.6 we show
the distribution of distances for the considered log10(E/eV)-bins, for a 50 %− 50 % mixture
of proton and iron, for the mentioned hexagonal array. From Fig. 4.6 we can see that the
distribution first rises linearly, peaks, and then decreases softly with distance, as expected.
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Figure 4.6: Normalized distributions of station distances to the shower axis in a simulated hexag-
onal array with 750 m spacing (like the one where the UMD lies), for the considered log10(E/eV)-
bins, for a 50 %− 50 % mixture of proton and iron, and for zenith angles below 48◦.

4.2.5 Validation of end-to-end simulations via the saturation fraction

For the purpose of validating our simulations, we estimate the expected fraction of saturated
events and compare it to the fraction that we find in simulations.
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Using our statistical model (c.f. Sec. 4.1), we are able to estimate the expected saturation
fraction as a function of µ and Nµ for the infinite window method. For any other strategy,
we would have to introduce a model or hypothesis on how µ evolves with time.

The expected saturation fraction as a function of µ follows a binomial distribution where
the condition of saturation is met, this is, the number of successes (k) is equal to the number
of trials (ns)

B(ns| µ) = e−µ(eµ/ns − 1)ns . (4.13)

Moreover, the expected saturation fraction as a function of Nµ follows the occupancy dis-
tribution as described in Ref. [88] (see Eq. (4.4)), also evaluated at the condition of saturation
(k = ns)

Occ (ns|Nµ, ns) =
S(Nµ, ns)

nNµ
s

. (4.14)

We repeat that S(Nµ, k) are the Stirling numbers of the second kind.
We reiterate that the UMD module is considered to be saturated in an event if, for any

window j, all channels are occupied (infinite window, N-bin, and N-bin centered methods) or
all channels are either occupied or inhibited (1-bin strategy). In this case there is no estimate
of µ̂ and N̂µ as they tend to infinity. Notice that a module can be saturated for the infinite
window strategy (if every channel has at least one pattern match), but it is not necessarily
saturated for the other strategies (if the timing of the muons is sufficiently spread in time).

We employ the first set of simulations, which consists of detector simulations with a
uniform distribution of the logarithmic distance from the shower axis (see Sec. 4.2.4). Then,
we compute the fraction of saturated events as a function of µ and as a function of Nµ for
all air showers of a same (log10(E/eV), sin2 θ)-bin. Fig. 4.7 shows the predicted saturation
fraction and the one found in simulations for each of the four counting strategies. Proton
air showers with 18.0 ≤ log10(E/eV) ≤ 18.2 and 18◦ . θ . 27◦ (0.10 ≤ sin2 θ ≤ 0.20) were
used in this example. The general behavior is the same for other energies and zenith angles;
the saturation model is exactly the same, but the range of values that µ or Nµ reach changes.
We see that the saturation fraction of the infinite window strategy follows the models closely,
while the 1-bin and N-bin centered methods follow them approximately, showing smaller
saturation fractions than the infinite window strategy. It is expected that the N-bin centered
strategy behaves in this way since a big part of the signal can be contained in a single
window, making the strategy function almost as the infinite window for average air-shower
signals. We can also see in Fig. 4.7 that the N-bin strategy reaches saturation at larger µ
and Nµ values. This, however, is only an artifact caused by the strategy due to not taking
inhibited channels into consideration.

4.3 Analysis of the performance of the counting strategies

In this section we present the evaluation of the performance of the presented counting
strategies.

We present the results only for Nµ for simplicity, but the general trends are also valid for
µ. The main difference is that the Poisson fluctuations in the number of injected muons affect
the resolution in the estimation of µ. These play a dominant role when Nµ is much smaller
than the number of segments ns. In contrast, when Nµ is large, the detector segmentation
predominantly determines the resolution in the estimators of Nµ and µ, which are thus
similar [13].
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Figure 4.7: Saturation fraction for each of the four strategies under consideration, as a function
of Nµ (left panel) and as a function of µ (right panel), as modeled (dotted line) and as calculated
from simulations (markers). The detector simulations use proton air showers with a uniform
distribution in the logarithmic distance to the shower axis, with 18.0 ≤ log10(E/eV) ≤ 18.2 and
18◦ . θ . 27◦ (0.10 ≤ sin2 θ ≤ 0.20).

4.3.1 Bias as a function of the number of impinging muons

As a first step, we define the relative difference between the estimated and Monte-Carlo true
number of muons as

ε =
N̂µ − Nµ

Nµ
. (4.15)

In Fig. 4.8 we show ε as a function of the number of true impinging muons Nµ. This
is an example computed from proton air showers with 18.0 ≤ log10(E/eV) ≤ 18.2 and
33◦ . θ . 39◦ (0.3 ≤ sin2 θ ≤ 0.4). We signal with a small black line the average for each
distribution. The saturated modules are excluded. When saturation is significant, at large
Nµ values, the distributions appear as multi-modal. We observe a larger variance in the
case of the N-bin strategy. This is because of the random placement of the signal in the
partition of the trace: a set of otherwise identical binary signals with different start times
will be reconstructed as different numbers of muons just because the signals are partitioned
in different ways. In Fig. 4.9 we compare the relative bias 〈ε〉 (left panel) and the relative
resolution σ(ε) (right panel) of each strategy, which summarizes the information presented
in Fig. 4.8. The error bars in 〈ε〉 are the standard deviation of the mean. The error bars in
σ(ε) were calculated using bootstrap. Compared to the other strategies, the N-bin strategy
immediately stands out for having a substantially larger relative bias (to negative values)
and larger standard deviation. Additionally, the N-bin centered, infinite window, and 1-
bin strategies all perform roughly similarly in terms of mean relative bias: for an input
of Nµ . 200, they all have a small negative bias (contained within ±10 %) dominated by
detector effects, while the bias increases above that as the detector begins to saturate. In
addition, because of not considering inhibited channels, the mean relative bias of the N-bin
centered strategy tends to negative values, similar to the N-bin strategy. The 1-bin strategy
behaves like the infinite window strategy with a smaller detector, but suffering of slightly
more negative biases due to the undershoot effects. The bias in the infinite window strategy
is the least, yet it is still non-zero. We notice that the precision of the 1-bin strategy is similar
to or greater than that of the other strategies when we compare the standard deviations.
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Figure 4.8: Relative difference of the estimated vs Monte-Carlo true number of muons (c.f.
Eq. (4.15)) as a function of the Monte-Carlo true number of muons. The different panels show the
different strategies: The 1-bin strategy is at the top left panel, the infinite window strategy is at
the top right panel, the N-bin centered strategy is at the bottom left panel, and the N-bin strategy
is at the bottom right panel. We used the first simulations set (uniform in log10(r/m)) taking
proton air showers with 18.0 ≤ log10(E/eV) ≤ 18.2 and 33◦ . θ . 39◦ (0.30 ≤ sin2 θ ≤ 0.40).

It is relevant to add that using iron simulations or other (log10(E/eV), sin2 θ)-bins results
in a comparable bias behavior as a function of the Monte-Carlo true number of muons for
all strategies.

4.3.2 Average performance in an underground muon detector-like array

In this section we study how the average relative bias ε behaves in a UMD-like array, for the
four considered strategies, and for different energies and zenith angles. This complements
the analysis described in Sec. 4.3.1. The idea is that, in data, large values of impinging number
of muons Nµ are not as frequent as low numbers, and they are only given at distances close
to the core. For this analysis, we use the second detector-simulations set, that provide a
realistic distribution of the logarithmic distances to the shower axis log10(r

∗/m), i.e., like
that of the SD-750 array.

In Fig. 4.10 we show an example of the distribution of ε (c.f. Eq. (4.15)) computed from
1000 proton air showers with 18.0 ≤ log10(E/eV) ≤ 18.2 and 27◦ . θ . 33◦ (0.20 ≤ sin2 θ ≤
0.30), for the four strategies considered, for an array like the SD-750. For other energies and



49

0 100 200 300 400
Nµ

−0.6

−0.4

−0.2

0.0
〈ε

(N
µ
)〉

1-bin
Infinite
N-bin centered
N-bin

Figure 4.9: Relative bias (left) and relative standard deviation (right) in the reconstructed num-
ber of muons, as a function of the Monte-Carlo true number of muons, for the four strategies
considered (in different markers). The detector simulations that we used are the same as those
used for Fig. 4.8.

zenith angles the results are similar. The contributions to each bin of the histograms of the
simulated module-level events that would not pass the distance cut r > rmin, being rmin the
farthest distance to the shower core at which there is saturation for the considered strategy,
are differentiated using gray hatching patterns. In a light shaded area we mark the standard
deviation and in a dark shaded area the standard deviation of the mean, both centered at
the mean and calculated considering the distance cut. We can observe that, in this case, the
N-bin strategy presents the largest biases. The mean ε is generally slightly more negative for
all strategies when the distance cuts are ignored.

In Fig. 4.11 we summarize and compare the mean ε as a function of log10(E/eV) and
sin2 θ for the four strategies, using the second detector-simulations set, with proton air show-
ers and including the distance cut. In Fig. 4.12 we show the same but for iron-initiated air
showers. We can observe that the bias is contained within ±3.9 % for the infinite window
strategy, within ±4.2 % for the 1-bin strategy, within 4.9 % for the N-bin centered strategy,
and within ±5.4 % for the N-bin strategy. Since most measurements take place at larger
distances from the shower axis, as was previously indicated, there are often fewer input
muons, which have small biases. As a result, the average biases are generally small. The bias
is dominated by the detector effects mentioned in Sec. 4.2.2. We reiterate that the undershoot
does not affect the infinite window strategy, which is only susceptible to the effects of the
detector and pattern matching efficiency. On the contrary, the other three strategies are sub-
ject to both effects. From Fig. 4.12 we see that, for iron air showers, the biases are generally
slightly larger than for proton air showers for all strategies. In both cases, the distance cut
has only a very small effect: it can influence the mean bias in a (log10(E/eV), sin2 θ)-bin at
most by 0.2 %.

4.3.3 Performance under large or double-bump-like input signals

It was thought before that the underestimation of the number of muons using the N-bin
strategy arose from the signal being “split” into two windows. The idea was that two parts
of the signal were wrongly mathematically treated as independent, while they should be
treated as simultaneous by containing (most of) the signal in one window. However, if this
were the problem, the solution should be to center the window around the signal, as it is
done in the N-bin centered strategy.
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Figure 4.10: Histograms of ε (c.f. Eq. (4.15)) for the four strategies under consideration. The stan-
dard deviation of the mean is shown as a vertical dark shaded area centered at the mean, while
the standard deviation is shown as a light shaded area. Null bias is indicated with a white dashed
vertical line. The events that fail to pass the distance cut r > rmin are represented in hatched
patterns (see text for details). We use the second detector-simulations set (i.e. distribution of
the logarithmic distances to the shower axis as in the SD-750 array, c.f. Fig. 4.6), taking as input
proton air showers with 18.0 ≤ log10(E/eV) ≤ 18.2 and 27◦ . θ . 33◦ (0.20 ≤ sin2 θ ≤ 0.30).

In this section we test this hypothesis and throw light on the origin of the biases in the
estimators of the N-bin strategy. For this purpose, we design two different input signals.
These can be seen in Fig. 4.13. The first input signal (top panel) is a log-normal

dµ(t)
dt

=Θ((t− t0)/ns)
A

((t− t0)/ns) σ
√

2π
×

exp
(
− (ln((t− t0)/ns)−m)2

2σ2

)
, (4.16)

with the amplitude A equal to its integral µ ≈ 337, and being the scale, shape, and location
parameters m ≈ 3, σ ≈ 1, and t0 ≈ 0.6 ns respectively. To put it in perspective, the average
proton air shower of log10(E/eV) = 18.1 and θ ≈ 30◦ (sin2 θ = 0.25) has a scale parameter
that is 4 times larger and an amplitude that is 25 times smaller than those of this input signal.
Notice that it would be equivalent to consider an input signal of standard width while taking
narrower windows (i.e. a shorter single-muon pattern). This implies that another detector



51

17.3 17.5 17.7 17.9 18.1 18.3
log10(E/eV)

0.05

0.15

0.25

0.35

0.45
si

n2
θ

−3.7

−2.9

−3.2

−2.7

−2.6

−4.0

−3.0

−3.1

−2.8

−2.5

−3.3

−2.9

−2.9

−2.6

−2.8

−3.6

−3.4

−3.3

−2.7

−2.1

−3.9

−3.3

−3.5

−3.2

−2.8

−3.7

−3.0

−3.2

−2.6

−3.5

−6

−4

−2

0

〈ε
(N

µ
)〉

[%
]

17.3 17.5 17.7 17.9 18.1 18.3
log10(E/eV)

0.05

0.15

0.25

0.35

0.45

si
n2

θ

−3.4

−2.9

−3.2

−2.7

−2.6

−3.9

−2.8

−3.0

−2.7

−2.5

−3.3

−2.5

−2.5

−2.5

−2.7

−3.1

−3.2

−3.2

−2.4

−2.1

−3.5

−3.0

−3.2

−3.0

−2.4

−3.1

−2.4

−3.0

−2.4

−3.4

−6

−4

−2

0

〈ε
(N

µ
)〉

[%
]

17.3 17.5 17.7 17.9 18.1 18.3
log10(E/eV)

0.05

0.15

0.25

0.35

0.45

si
n2

θ

−4.0

−3.2

−3.4

−2.9

−2.7

−4.4

−3.4

−3.4

−3.0

−2.6

−3.8

−3.3

−3.3

−2.9

−3.0

−4.2

−3.9

−3.7

−3.1

−2.4

−4.5

−3.9

−4.1

−3.7

−3.2

−4.4

−3.8

−3.9

−3.2

−4.1

−6

−4

−2

0

〈ε
(N

µ
)〉

[%
]

17.3 17.5 17.7 17.9 18.1 18.3
log10(E/eV)

0.05

0.15

0.25

0.35

0.45

si
n2

θ
−4.6

−3.8

−3.9

−3.4

−3.0

−5.1

−4.1

−4.0

−3.6

−3.1

−4.6

−3.9

−4.2

−3.4

−3.5

−4.9

−4.8

−4.3

−3.8

−3.2

−5.0

−4.6

−4.6

−4.5

−3.7

−4.7

−4.3

−4.5

−4.0

−4.7

−6

−4

−2

0

〈ε
(N

µ
)〉

[%
]

Figure 4.11: Mean ε as a function of the logarithmic energy (x-axis) and the sine square of the
zenith angle (y-axis), for the 1-bin (top left), the infinite window (top right), the N-bin centered
(bottom left), and the N-bin (bottom right) strategies. We use proton showers in an SD-750-like
array, considering distance cuts (see details in text).

17.3 17.5 17.7 17.9 18.1 18.3
log10(E/eV)

0.05

0.15

0.25

0.35

0.45

si
n2

θ

−2.9

−3.1

−2.8

−2.7

−2.4

−2.9

−2.9

−2.5

−2.7

−2.1

−3.1

−2.7

−3.2

−2.7

−2.6

−2.7

−3.0

−3.2

−2.6

−2.4

−3.5

−3.0

−3.6

−3.0

−3.2

−4.0

−3.8

−3.4

−4.2

−3.0

−6

−4

−2

0

〈ε
(N

µ
)〉

[%
]

17.3 17.5 17.7 17.9 18.1 18.3
log10(E/eV)

0.05

0.15

0.25

0.35

0.45

si
n2

θ

−2.8

−2.8

−2.7

−2.5

−2.4

−2.6

−2.7

−2.1

−2.6

−2.0

−2.7

−2.5

−2.9

−2.4

−2.5

−2.4

−2.6

−3.0

−2.4

−2.1

−2.8

−2.5

−3.3

−2.5

−3.3

−3.7

−3.4

−2.6

−3.9

−2.6

−6

−4

−2

0

〈ε
(N

µ
)〉

[%
]

17.3 17.5 17.7 17.9 18.1 18.3
log10(E/eV)

0.05

0.15

0.25

0.35

0.45

si
n2

θ

−3.2

−3.4

−3.0

−2.8

−2.5

−3.4

−3.3

−2.8

−2.9

−2.3

−3.7

−3.1

−3.7

−3.0

−2.9

−3.3

−3.7

−3.7

−3.0

−2.7

−4.3

−3.7

−4.2

−3.6

−3.6

−4.9

−4.5

−4.1

−4.9

−3.6

−6

−4

−2

0

〈ε
(N

µ
)〉

[%
]

17.3 17.5 17.7 17.9 18.1 18.3
log10(E/eV)

0.05

0.15

0.25

0.35

0.45

si
n2

θ

−3.8

−4.2

−3.4

−3.3

−2.8

−4.1

−4.0

−3.3

−3.5

−2.7

−4.1

−3.8

−4.5

−3.6

−3.4

−4.0

−4.4

−4.6

−3.8

−3.3

−4.9

−4.2

−4.7

−4.2

−4.1

−5.3

−5.0

−4.8

−5.4

−4.1

−6

−4

−2

0

〈ε
(N

µ
)〉

[%
]

Figure 4.12: Same as Fig. 4.11, but using iron-initiated air showers.

with different electronics that has a shorter muon pattern would have a response to average
air-shower signals similar to the response of the UMD to this wide signal.

The second input signal, shown in the bottom panel of Fig. 4.13, is a double-bump like
signal. It is composed of two log-normals separated by a time interval of our choosing, ∆t,
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which is equal to the difference between the two location parameters, t0,2 − t0,1. Both log-
normals have a proton air shower’s shape and scale parameters of log10(E/eV) = 18.1 and
θ ≈ 30◦ (sin2 θ = 0.25), but the second log-normal has a smaller amplitude than the first one
by 25 %. It integrates in total to µ ≈ 300.
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Figure 4.13: Signals used as input for testing the counting strategies. The left panel displays
a wide log-normal signal with a scale, shape, and location parameters of m ≈ 3, σ ≈ 1, and
t0 ≈ 0.6 ns respectively. The right panel displays two log-normals, one with location parameter
t0,1 ≈ 0.6 ns and the other with t0,2 ≈ 2019.35 ns, with the second one having an amplitude 25 %
smaller than the first one, and both with the shape and scale parameters of a proton air shower
of log10(E/eV) = 18.1 and θ ≈ 30◦.

We proceed to generate 1048 events randomly sampling the wide signal, and 1300 events
randomly sampling the double-bump signal. For the latter, we set ∆t 100 times to each of
the following values: 2000.000 ns, 2003.125 ns,..., 2037.500 ns. In greater detail, we set the
number of impinging muons by sampling Nµ from a Poisson distribution of mean µ. Then
we sample the timings of the Nµ muons from the discussed input signals dµ(t)/dt.

Figure 4.14 shows the distribution of ε for each strategy, and for the two input signals.
In the left panel (wide log-normal), we see that the infinite window strategy performs the
best, in spite of suffering from significant saturation, and is followed closely by the 1-bin
strategy. In the right panel (double log-normal), the 1-bin strategy is the best performing one.
As mentioned before, the infinite window strategy is not affected by undershoot, only by the
detector inefficiencies. It is also more prone to saturation under such kind of signals. These
two effects explain its bias. Moreover, the 1-bin strategy is subject to detector inefficiencies
and to the effect of undershoot. In both cases, the N-bin centered and the N-bin strategies
have larger biases, as expected. This demonstrates that the N-bin centered strategy under-
performs in the UMD when the signal is wide or when there are a substantial number of late
particles. It also implies that the N-bin centered strategy would have large biases in average
signals in other detectors where the muon pattern is shorter.

Since we observe that the biases of the N-bin strategy are not sufficiently solved by
centering the window around the signal maximum, this analysis demonstrates that these
biases cannot be explained from the signal being split in two windows. In Sec. 4.3 and
Sec. 4.3.2 we observed that the bias of the N-bin centered strategy is relatively small for
average signals. The reason is that a big percentage of the signal can be contained within one
12 time-bin window in many cases. This causes the N-bin centered strategy to effectively
perform as the infinite window strategy. This strategy is subject to biases under wider signals
or shorter single-muon patterns. This analysis proves that the actual reason of the biases in
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Figure 4.14: Distributions of ε (c.f. Eq. (4.15)) for each strategy, for a wide input signal (left) and
a double-bump input signal (right). A vertical dark shaded area centered at the mean marks the
standard deviation of the mean, while the standard deviation is included in the lighter shaded
area. The percentage of saturated events for each strategy and input signal is indicated in each
panel.

the N-bin and N-bin centered strategies is that they do not model the detector properly by
not accounting for inhibited channels.

4.3.4 Reconstruction of the muon signal as a function of time

As mentioned before, a great advantage of the 1-bin strategy developed in this work is that it
uses the complete timing information of the measured signals. This allows to reconstruct the
number of muons as a function of time as seen by the detector to a single time-bin resolution
(i.e. 3.125 ns).

Figure 4.15 shows an example of such reconstructed signal. There are three curves that
represent the input muons as a function of time, the average input muons as a function
of time as seen by the detector (i.e. adding the time delays of the detector to the arrival
times of the muons), and the number of muons as a function of time estimated using the
1-bin strategy. In this example, the input number of muons as a function of time are taken
from the average of proton air shower simulations with 18.0 ≤ log10(E/eV) ≤ 18.2 and
θ . 18◦ (sin2 θ ≤ 0.10), at 450 m from the core. The timing of the reconstructed muon signal
is consistent with that of the muon signal as seen by the detector. They are both affected by
the time delays introduced by the detector, i.e. the propagation in the optical fibers and the
de-excitation times of the scintillator and optical fiber core.

4.4 Summary and outlook

In this chapter we studied how to estimate the number of muons impinging on the UMD
modules. The analyzed counting strategies directly generalize to the more general problem
of estimating the number of impinging particles in a segmented detector. The main effect that
has to be taken into account in any counting strategy is pile-up, which happens when two
muons impinge a scintillator bar almost simultaneously such that they cannot be resolved
in time.
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Figure 4.15: Average number of muons reconstructed using the 1-bin strategy (solid line), av-
erage input number of muons as detected (dashed line), and average input number of muons
(dotted line), all as a function of time. The average number of muons as observed by the detec-
tor is calculated by accounting for the detector’s time delays in the input muons. The average
muon profile of proton air shower simulations with 18.0 ≤ log10(E/eV) ≤ 18.2 and θ . 18◦

(sin2 θ ≤ 0.10) at 450 m from the core is used as the input number of muons as a function of time.
Shaded areas represent 1 σ uncertainties.

We described and compared four counting strategies: the infinite window, the N-bin, the
N-bin centered, and the 1-bin strategies, the latter being the one developed in this work. We
explained how they are all founded on the solution to the “classical occupancy problem”,
also referred to as the “balls in boxes problem”. In our case, the balls represent the muons
and the boxes represent the segments of the UMD module. The primary distinction between
the strategies is the length of the window during which the single-muon pattern matches
are regarded as simultaneous. For the infinite window strategy, this is the complete trace;
for the N-bin and N-bin centered strategies, it is a window of the length of the single-muon
pattern; and for the 1-bin strategy, it is a single time bin. The positioning of the windows is
optimized for the N-bin centered strategy, in comparison to the N-bin strategy, making it
so that the center of the output signal coincides with the center of a particular window. The
1-bin strategy’s main distinction from the others is its consideration of inhibited segments.

We demonstrated that all strategies, aside from the N-bin one, perform well (within
±10 %) for typical air shower muon signals in a detector like the Auger UMD. The infinite
window strategy is the one with the smallest bias, but the 1-bin strategy has an only slightly
larger bias. The 1-bin strategy had the smallest standard deviation in the predicted number
of muons, specially at high input muon levels, while the N-bin strategy had the largest. The
bias of each strategy for each (log10(E/eV), sin2 θ)-bin considering the typical distribution
of input number of muons is observed to be contained within ±5.4 %, being the largest
(more negative) for the N-bin strategy. Detector effects are the dominant cause of the bias:
the signal undershoot causes up to a −3.3 % bias, while the detector and pattern matching
inefficiencies account for up to −3.6 % of the bias.

To understand the origin of the biases in the N-bin strategy we analyzed the performance
of the different counting strategies under a wide and a double-bump-like input signals. Un-
der these conditions, we observed that the infinite window and 1-bin strategy were the best
performing strategies. The results proved that the biases in the N-bin strategy, which extend
to the N-bin centered strategy, are inherent to the methods, which do not treat inhibited
channels as such.
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We demonstrated that the 1-bin strategy may be used to reconstruct the time structure
of the muon signal as observed by the detector down to a single time-bin resolution. No
other strategy provides comparable opportunities. Studies on the temporal structure of the
muon signal can now be performed thanks to the 1-bin counting strategy developed in this
work. Future work will be devoted to deconvolving the detector effects in the reconstructed
average muon signal to estimate the input muons as a function of time. This is a necessary
step for one of the most prominent analysis that this strategy will allow: the reconstruction of
the depth-of-the-shower maximum of muons, Xµ max [93]. This parameter is highly sensitive
to composition. In this way, this work constitutes a first big step towards new composition
analyses using Xµ max.

Finally, we can generalize the conditions under which the counting strategy developed in
this work is applicable: (1) There is a counter with sub-units, (2) in each sub-unit, the signal is
processed with a discrimination threshold (counter-mode), and not by using the amplitude
or deposited charge (integrator-mode), (3) a sub-set (larger than one) of counting sub-units
expect the same particle rate, and (4) not all the sub-units have signal simultaneously (no sat-
uration). One case in which this could possibly be applied is for counting photons produced
in liquid scintillators with photo-multiplier tubes (PMTs), a typical design of neutrino stud-
ies. In this case, the energy of a neutrino event can be estimated by counting the produced
scintillation photons [94]. More specifically, the counting strategy may be applied to each set
of PMTs that are equidistant from the interaction vertex, which expect the same scintillation
photon rate. In spherical detectors, like the Sudbury Neutrino Observatory + (SNO+) [95],
and of the Jiangmen Underground Neutrino Observatory (JUNO) [96], the set of PMTs that
expect the same rates lie in rings which represent the intersection of spheres centered in the
vertex with the PMT spherical array. In cylindrical detectors, the set of PMTs that expect the
same rates follow more complex curves given by the intersection of a sphere centered at the
vertex of interaction with the PMT cylindrical array.
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Chapter 5
Correction of the biases in the
reconstructed number of muons

In Chapter 4 we showed a new counting strategy (the 1-bin counting strategy) that applied
to the binary channel of the UMD provides useful estimates of the number or density of
muons in air showers. In said analysis, we did not simulate all effects that affect the real
reconstructed number of muons. It is of our interest to obtain an unbiased estimator of
the reconstructed number of muons Nµ rec that takes into account all effects, in order to
use it for data reconstruction. In reality, the dominating bias in Nµ rec is a double-counting
effect caused by “corner-clipping muons”, which are muons that transverse two neighbor
scintillator strips. The double-counting effect is given when the muon, or its secondary
electrons, produce enough signal in both scintillator strips such that the muon is counted
in both strips1. Double counting is more likely when the impinging muon is more inclined
(larger zenith angle θµ) and more perpendicular to the scintillator strips. The latter is given
when the azimuth of the module, φmod, and the azimuth of the muon, φµ, have a difference
∆φµ = φmod − φµ close to 90◦ or 270◦.

One method for correcting the biases is against detector simulations, comparing module-
wise the number of reconstructed muons Nµ rec to the number of injected muons Ninj (see
for example Ref. [97]). In said approach, the bias (Nµ rec/Nµ inj − 1) can be parameterized,
and then the parameterization can be used to correct Nµ rec. Such method has the advantage
that if Nµ rec has biases from several sources, it corrects for them all, at least to the extent
in which simulations reproduce the real behavior. This method fulfills the goal of having a
final unbiased estimator.

In contrast, data-driven methods are limited by the impossibility of knowing the true
number of injected muons Ninj. Trying to estimate the latter from the measured data to
correct Nµ rec is in essence equal to knowing the correction, which is evidently a problem.

In this chapter, we describe a new parameterization of the bias in the estimator of the
number of reconstructed muons Nµ rec derived from simulations. We propose that the bias
can be parameterized as a function of the zenith angle of the shower θ and of the difference
in azimuth between the module and the shower ∆φ = φmod − φ (similar to what was done
for PMT UMD data in Refs. [90, 97]), and additionally on Nµ rec.

In Sec. 5.1 we outline the designed method, in Sec. 5.2 we show our estimates of the bias
as well as its parameterization, and in Sec. 5.3 we show that the remaining dependencies in

1There is also the possibility that the muon or its secondary electrons produce enough signal in three or more
neighbor scintillator strips, but this is so infrequent (< 0.4 %) that the effect is negligible.
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the bias of the corrected number of muons are small. Finally, in Sec. 5.4 we summarize the
conclusions.

5.1 Method

The objective of the method is to obtain a parameterization of the bias in the reconstructed
number of muons Nµ rec. Ideally, we would make such parameterization a function of the
impinging zenith angle of the muon θµ, of the difference between the module and the muon
azimuth angles ∆φµ = φmod−φµ, and of the number of injected muons Nµ inj. However, these
quantities cannot be reconstructed from the detector information. We therefore approximate
the angles of the muon to those of the shower: θµ ≈ θ and φµ ≈ φ (hence ∆φµ ≈ ∆φ).
Additionally we parameterize in the reconstructed number of muons Nµ rec instead of in the
injected ones Nµ inj.

For each module, we estimate the relative difference between the reconstructed and
injected number of muons as

ε(θ, ∆φ, Nµ rec) =
Nµ rec

Nµ inj
− 1. (5.1)

Notice that since only module-level events with Nµ inj > 0 are relevant, the fraction in
Eq.(5.1) never takes infinite values. The bias is then the average ε over a certain bin over the
parameters.

The proposed parameterization of the bias is the function

fbias(θ, ∆φ, Nµ rec) = a(θ) + b(θ) | sin(∆φ)|+ c(θ) log10 Nµ rec, (5.2)

where a(θ), b(θ), and c(θ) are modeled phenomenologically as

a(θ) = a0 + a1 sin2 θ, (5.3)
b(θ) = b0 + b1 sec θ, (5.4)

c(θ) = c0 + c1 sin2 θ, (5.5)

being a0, a1, b0, b1, c0, and c1 parameters of the fit. The function of Eq. (5.2) reflects the
nature of the phenomenon, which is mostly related to the geometrical projection of the
impulse of the muon on the scintillator, and hence it is linear in | sin(∆φ)|, allowing the
intercept a(θ) and slope b(θ) to vary with θ. The last term of Eq. (5.2), linear in Nµ rec, is
introduced after noticing that for fixed θ and ∆φ, the bias depends on the number of injected
or reconstructed muons (see Sec. 5.2). The need for this term can be understood from the
fact that the probability of double-counting a corner-clipping muon depends on the number
of available scintillator bars. If a corner-clipping muon transverses two scintillator bars, and
either is already occupied by the pattern match of another muon that impinged it, the corner-
clipping muon will not be counted twice. Furthermore, this last term can also account for
the biases intrinsic to the estimation of Nµ rec.

A similar parameterization to Eq. (5.2) was used in Refs. [90, 97], without the correction
term in Nµ rec, and using other models of a(θ) and b(θ). We keep the expressions of Eqs. (5.3-
5.4) since they are comparably simpler and we find no significant improvement in the fit by
using the expressions of Refs. [90, 97].

Finally, the corrected muon density Nµ corr is computed as

Nµ corr =
Nµ rec

1 + fbias(θ, ∆φ, Nµ rec)
. (5.6)
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The reconstructed and injected number of muons per module are retrieved from detec-
tor simulations. To obtain these simulations, we employ a library of 3000 proton- and 3000
iron-initiated air-shower simulations, that use EPOS-LHC and UrQMD as the high- and low-
energy hadronic interaction models respectively, ran using Corsika v7.7402 [23]. The loga-
rithmic energy of the primary is uniformly distributed in 17.2 . log10(E/eV) . 18.7 and the
arrival directions correspond to an isotropic distribution with zenith angles in 0◦ . θ . 48◦.
Each of these Monte Carlo simulations is thrown five times on the detector array, simulat-
ing and reconstructing the response of the UMD SiPM modules, using Offline (git version
eb5cd9ad2) [70]. The energy, core position, and geometry of the shower are reconstructed
using the SD array. The module-wise estimates of the reconstructed number of muons Nµ rec
are obtained using the 1-bin strategy (see Chapter 4).

It is important to understand the difference between the detector simulations developed
in Chapter 4 and those ran using Offline for this chapter. The differences are that Offline
simulates the corner-clipping effect, background muons, and digital noise. Due to the latter,
the solution to the response of the electronics to the signal caused by the photo-electrons
and the noise is computed numerically.

The fit is performed as follows. We first select only modules with 1.01 < Nµ rec ≤ 170.
The upper cut is set at the number of muons at which the expected saturation fraction of
events is 1 % (in the data analysis of Chapter 6 we use an equivalent cut). The lower cut
is explained from the formula for counting muons with the 1-bin counting strategy (c.f.
Eq. (4.8)): we see that if there is only one pattern match (k = 1), the reconstructed number
of muons is also 1. In such case there is no bias to correct. We set the cut at 1.01 to allow
for numerical inaccuracies. We then proceed to group the module-wise estimates of ε (c.f.
Eq. (5.1)) in (sin2 θ, ∆φ, log10 Nµ rec)-bins, and in each bin the mean and standard deviation
of the mean of ε is computed. Then we build a global χ2 function

χ2 = ∑
i,j,k

(
〈ε〉 (θi, ∆φj, Nµ rec k)− fbias(θi, ∆φj, Nµ rec k)

)2

σ
[
〈ε〉 (θi, ∆φj, Nµ rec k)

]2 (5.7)

which we minimize using Minuit/Migrad in the software ROOT [98] to obtain the parame-
ters of Eqs. (5.3-5.5).

It is relevant to add that the parameters in Eq. (5.2) will not necessarily result the same
if other counting strategies, that provide different estimators of the number of muons, and
therefore are subject to other intrinsic biases. We remind the reader that we use the 1-bin
counting strategy (c.f. Chapter 4).

5.2 Parameterization of the bias

We show the results of the global fit in two-dimensional plots for an easier visualization. To
achieve this, we plot the bias as a function of one variable, in bins of a second variable in
different colors, and for a given bin of the third variable.

Figure 5.1 shows the dependence of the bias of Eq. (5.1) as a function of | sin ∆φ|, for
different sin2 θ bins, at small Nµ rec values on the left panel (1.01 < Nµ rec ≤ 10), and at larger
values on the right panel (100 < Nµ rec ≤ 125). We also show the result of the global fit using
the parameterization of Eqs. (5.2-5.5), which describes the observed biases to a good degree.
As expected, the bias grows with | sin ∆φ|, and grows more steeply the larger θ is. This is
a purely geometrical consequence of clipping corner muons impinging on the modules.

2The used version incorporates separately the contents of commit bfecb9af, which fixes a bug in the recon-
structed distances to the shower axis measured on the shower plane: before the fix, said distances were not
properly projected onto the shower plane.
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Figure 5.1: Bias in the reconstructed number of muons against the injected ones (see Eq. (5.1)) as a
function of | sin ∆φ|, for different sin2 θ bins in different colors. In the left panel 1.01 < Nµ rec ≤ 10,
while in the right panel 100 < Nµ rec ≤ 125. The global fit is superimposed.
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Figure 5.2: Bias in the reconstructed number of muons against the injected ones (see Eq. (5.1))
as a function of the logarithm of the reconstructed number of muons, for different sin2 θ bins in
different colors, and for two ∆φ bins: 7◦ . ∆φ . 14◦ in the left panel, and 76◦ . ∆φ . 83◦ in the
right panel. The global fit is superimposed.

The fact that the intercept is not zero can be attributed to the distribution of the zenith and
azimuth angles of the muons around those of the shower. Therefore, even at θ = 0 or ∆φ = 0,
some muons can still transverse two bars.

Figure 5.2 shows the dependence of the bias (c.f. Eq. (5.1)) with log10 Nµ rec for different
sin2 θ bins (in different colors), and for 7◦ . ∆φ . 14◦ (left panel) and 76◦ . ∆φ . 83◦

(right panel). Superimposed, the result of the global fit using the parameterization, which,
once again, we see that it describes the biases to a good degree. It can be seen that the bias is
positive for small Nµ rec values, dominated by the double counting of corner-clipping muons.
The bias decreases with Nµ rec, as the probability of double-counting becomes smaller as more
scintillator bars are occupied. As expected, the biases are larger for larger ∆φ values. This
figure evidences the need of including the linear term in log10 Nµ rec in the parameterization
of the bias (c.f. Eq. (5.1)).

Finally, Fig. 5.3 shows the dependence of the bias (see Eq. (5.1)) with log10 Nµ rec for
different | sin ∆φ| bins (in different colors), for 0.10 < sin2 θ ≤ 0.20 (left panel), and for
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Figure 5.3: Bias in the reconstructed number of muons against the injected ones (c.f. Eq. (5.1)) as
a function of the logarithm of the reconstructed number of muons, for different | sin ∆φ| bins in
different colors, and for two sin2 θ bins: 0.10 < sin2 θ ≤ 0.20 (left panel), and 0.40 < sin2 θ ≤ 0.50
(right panel). The global fit is superimposed.

0.40 < sin2 θ ≤ 0.50 (right panel). Superimposed, the global fit. We observe the same as in
Fig. 5.2 but highlighting a different dependency.

A list of the values of the fitted parameters can be found in Table 5.1.

a0 a1 b0 b1 c0 c1

0.094± 0.004 −0.021± 0.014 −0.34± 0.02 0.34± 0.02 −0.038± 0.002 0.002± 0.009

Table 5.1: Resulting parameters of the global fit to the bias in the reconstructed number of muons
(see Eqs. (5.2-5.5)).

It is relevant to add that the results of Ref. [97] are not comparable to the ones of this
work, not only for the extra correction term on Nµ rec that we introduced, but because of
several differences: (1) The analysis of Ref. [97] is of PMT simulations, while this analysis
uses SiPM simulations. (2) The estimator of Nµ rec is different to the one used in this work
(for more information see Chapter 4), yielding different intrinsic biases. And (3) the module
azimuths of said analysis were incorrect, artificially rising the estimated bias for azimuths
close to 0◦ and 180◦ and lowering it for azimuths close to 90◦ and 270◦.

5.3 Analysis of the remaining bias

Having the parameterization of the bias described in Sec. 5.2, we use it to correct the recon-
structed number of muons via Eq. (5.6). In the following we analyze the dependencies of the
remaining bias, i.e., the bias in the corrected number of muons, estimated from the mean of
the relative difference between the corrected and injected number of muons:

ε∗ =
Nµ corr

Nµ inj
− 1. (5.8)

Figure 5.4 shows the remaining bias as a function of sin2 θ (top left), of | sin ∆φ| (top right),
of log10 Nµ rec (bottom). The points represent the bias (mean of ε∗) in the corrected number of
muons for the bin in the x-axis variable, and the error bars represent the standard deviation
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Figure 5.4: Bias in the corrected number of muons against the injected one (see Eq. (5.8)) as
a function of sin2 θ (top left), of | sin ∆φ| (top right), and of log10 Nµ rec (bottom). The points
represent the mean of ε∗ and the error bars the standard deviation of ε∗. The gray band marks
±4 %.

(not the standard deviation of the mean) of ε∗. In almost all cases, the standard deviation of
the mean is contained in the marker. All figures have a gray band enclosing ±4 % bias. We
observe that the remaining bias has negligible dependencies with the variables in which the
bias is parameterized (sin2 θ, | sin ∆φ| and log10 Nµ rec).

Furthermore, in Fig. 5.5 we analyze the dependence of the remaining bias as a function
of the logarithmic reconstructed energy (top left), of the logarithmic distance to the shower
core (top right), of the logarithmic number of injected muons log10 Nµ inj (bottom left), and
as a function of the primary (bottom right). The remaining bias as a function of log10 Nµ inj is,
as expected, not null, but it is well contained within ±4 %. The largest bias is given at short
distances from the shower core, but it is also still contained within ±4 %. The remaining
bias as a function of the primary is remarkably small. We therefore can expect that the
parameterization of the bias is, to a good approximation, independent of the chosen high-
energy hadronic interaction model. This is because the difference between proton and iron
air-shower simulations of a same high-energy hadronic interaction model are much larger
than the difference between air-shower simulations of a same primary using different high-
energy hadronic interaction models.

It is expected that there are spurious dependencies of the corrected number of muons.
This is because the chosen model (Eqs. (5.2-5.5)), linear in the parameters, is a good approx-
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Figure 5.5: Bias in the corrected number of muons against the injected one (see Eq. (5.8)) as a
function of log10(E/eV) (top left), of log10(r/m) (top right), of log10 Nµ inj (bottom left), and of
the primary type (bottom right). Like for Fig. 5.4, the points represent the mean of ε∗, the error
bars the standard deviation of ε∗, and the gray band encloses ±4 %.

imation but may not describe the full complexity of the dependencies of the bias. At this
point we can add that we attempted to add a quadratic term in log10 Nµ rec which did not
significantly improve the performance of the fit nor the remaining dependencies. The other
reason to expect spurious dependencies is that the assumptions that the zenith and relative
azimuth of the shower can be used in place of those of the muon are only approximately
met. Nevertheless, it is remarkable that the remaining dependencies can be contained within
only ±4 %. Hence, we find the performed parameterization sufficiently precise.

5.4 Summary

In this chapter we parameterized the bias in the reconstructed number of muons against
the injected ones for the UMD (SiPM) using detector simulations (Offline) of Monte Carlo
air showers. We saw that the bias in Nµ rec relative to the injected number of muons Nµ inj
is clearly dominated by the double-counting of corner-clipping muons, i.e., muons that de-
posit enough signal in two neighbor scintillator bars such that they are counted twice. We
proposed that the bias can be described as a function of the zenith angle of the shower θ, of
the difference in azimuth between the module and the shower ∆φ = φmod − φ, and also of
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the reconstructed number of muons Nµ rec. The first two variables, θ and ∆φ, are expected to
be required, since the major source of bias in Nµ rec is the (geometrically dependent) effect of
corner-clipping muons. We showed that the last variable, Nµ rec, is also required, which is ex-
plained because the probability of double counting a corner-clipping muon depends on how
many available scintillator bars there are. Furthermore, the last term of the parameterization
can also account for intrinsic biases of Nµ rec.

The chosen parameterization proved to reproduce the dependencies of the bias to a good
degree. Furthermore, we used the parameterization of the bias to correct the reconstructed
number of muons, and we analyzed the remaining dependencies of the bias in the corrected
number of muons. We found that the remaining dependencies are small. The largest one
is with respect to the logarithmic distance to the shower core, specially very close to the
core (below 100 m). On the contrary, we found that the dependence with the primary is
remarkably small. All in all, the remaining dependencies are well contained within ±4 %.



Chapter 6
Characterization of the muon lateral
distribution function

In Chapters 4 and 5 we developed a new counting strategy and corrected for the total bias,
to obtain an unbiased estimate of the number of muons impinging on a module of the
Underground Muon Detector (UMD) of the Pierre Auger Observatory.

In this chapter we use the direct measurements of the muons of air showers in order to
characterize the muon lateral distribution function (muon LDF). The latter is a great tool
for composition analyses, as both its size and slope carry information of the primary mass.
We compute the average muon LDF from UMD data at different energies and zenith angles.
We then study different muon LDF models by fitting them to the data, and analyzing the
goodness-of-fit. We also provide parameterizations of the measured muon LDF that can be
useful, for example, for building a toy model, for event-wise fits of the muon LDF, or as a
reference for the design of future muon detectors.

The chapter is organized as follows: Sec. 6.1 discusses different muon LDF models found
in literature, as well as previous parameterizations of UMD data. In Sec. 6.2 we analyze a
particular muon LDF model. In Sec. 6.3 we show the method through which we select the
data used in this work, which includes a selection of the energy and zenith angle of the
events, as well as cuts in distance to the shower axis, and an outlier detection procedure.
Furthermore, in Sec. 6.4 we describe the fitting procedure, the information criteria used to
analyze the goodness-of-fit, and the test we use to analyze the uniformity of the residuals.
Sec. 6.5 shows the results of the measured and fitted muon LDF, comparing different models.
In Sec. 6.5.2 we compare the overall goodness-of-fit of the different models to find which
muon LDF model best describes the data. In Sec. 6.6 we provide a parameterization of the
muon LDF of data as a function of the energy and zenith angle, which can be useful for
making realistic toy models. In Sec. 6.7 we use the aforementioned parameterization and
make a toy model of the muon LDF to analyze the systematic uncertainties in the fitted muon
LDFs introduced by the fitting procedure used in the work. Finally, Sec. 6.9 summarizes the
key findings.

6.1 Previous studies and parameterizations of the lateral distribu-
tion of muons

There is no analytical derivation of the muon LDF from first principles. Instead, the most
widely used model is the one derived by Greisen [99], adapting the analytical approximation

65
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of the electromagnetic LDF, a Nishimura-Kamata-Greisen (NKG) function, to the muon LDF.
The NKG function can be expressed as

ρNKG(r, s, Ne) =
Ne

r2
M

Γ(4.5− s)
2πΓ(s)Γ(4.5− 2s)

(
r

rM

)s−2 (
1 +

r
rM

)s−4.5

, (6.1)

where rM is the Moliere radius (the radius of a cylinder containing on average 90 % of an
the energy deposition of an electromagnetic shower), s is the shower age, Ne is the number
of electrons, and Γ is the gamma function. Greisen’s adaptation of the NKG function to the
muon LDF is as follows [99]:

ρNKG
µ (r, Eth) =

14.4 (r/m)−0.75

(1 + r/320 m)2.5

(
Nµ

106

)0.75 51 GeV
Eth + 50 GeV

(
3 GeV

Eth + 2 GeV

)0.14 (r/m)0.37

, (6.2)

where Nµ is the total number of muons, and Eth is the vertical energy threshold of the muons.
For the UMD, we can replace Eth with 1 GeV. Then, reordering the terms conveniently:

ρNKG
µ (r) = 14.4

(
Nµ

106

)0.75

(r/m)−0.75
(

1 +
r

320 m

)−2.5

We can further introduce some additional terms such that the last two factors, which encap-
sulate the dependence with r, equal 1 when evaluated at r = 450 m:

ρNKG
µ (r) = 14.4 (450)−0.75

(
Nµ

106

)0.75 ( r
450 m

)−0.75
(

1 + r/320 m
1 + 450 m/320 m

)−2.5

Finally, we can rewrite the last expression in the more general form:

ρNKG
µ (r) = ρrref

(
r

rref

)−α ( 1 + r/r0

1 + rref/r0

)−β

, (6.3)

where we introduce the reference distance rref, the distance r0, and the exponents α and β.
The KASCADE-Grande Collaboration, in their analyses of the muon LDF [100], added

an additional term to the NKG to make the muon LDF smaller at larger distances. This
function, originally proposed by Lagutin and Raikin for the lateral distribution of electrons
[101, 102], is dubbed modified-NKG (mNKG):

ρmNKG
µ (r) = ρrref

(
r

rref

)−α ( 1 + r/r0

1 + rref/r0

)−β
(

1 + (r/10r0)
2

1 + (rref/10r0)
2

)−γ

. (6.4)

KASCADE-Grande reported that the best-fit values of the parameterization to their mea-
sured data were α = 0.69, β = 2.39, and γ = 1.0, with r0 = 320 m, letting the size of the
shower as a free parameter to fit all their measured showers. In said case the vertical muon
energy threshold is of Eth = 230 MeV. They also reported that the function has problems in
fitting data below 100 m [100].

Furthermore, several studies used Eq. (6.4) to fit event-wise the muon LDF computed
from UMD Monte-Carlo simulations. In Refs. [13, 103], the exponent α was fixed to 0.75,
using r0 = 320 m, and ρ450, β and γ were left as free parameters of the fit. In Ref. [14] the
parameter γ is not let free but fixed to 2.95.

In another study, UMD PMT data were event-wise fitted using r0 = 280 m, and fixing α =
0.3 and γ = 4.6. The mentioned parameters were optimized from simulations. Here, β was
parameterized from the average of data as β = β(θ) = 4.4− 1.1 sec(θ) [104]. Another study
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on UMD SiPM data used the same fixed parameters but obtained another parameterization
of β, namely β(θ) = 7.65− 6.62 sec(θ) + 2.25 sec2(θ) [105]. However, in Sec. 6.5, we observe
that the exponent β depends also on the energy.

It is important to mention at this point that the parameters of the modified-NKG are
correlated, and in particular, the exponents are strongly correlated. For this reason, fixing
the parameters to very different values does not necessarily imply that the functional shapes
are very different.

For the UMD, the reference distance of 450 m was proved to be the optimal distance. This
means that ρrref fluctuates the least at rref = 450 m, compared to other reference distances,
for different samples of the same simulated muon LDF [13, 14]. Nevertheless, fluctuations in
the reconstruction of the core position were not considered in the derivation of such optimal
distance.

Other experiments use a function with an exponential factor. This was initially proposed
by Hillas [106] in a phenomenological attempt to parameterize the muon LDF:

ρHillas
µ (r) = A

(
r
r0

)−α

exp
(
− r

r0

)
. (6.5)

In his work he fixed r0 = 600 m, and by fitting the function to the measured muon LDFs he
found α ∈ [1.40, 1.54] and A ∈ [0.00441, 31.2] for air showers with energies between 1015 eV
and 1019 eV, with a vertical muon energy threshold of 1 GeV.

For example, Tien-Shan data was fitted using the Hillas function, obtaining ρ(r) = 5.95×
10−4r−0.7 exp

(
− r

80 m

)
(see Ref. [107] and references therein).

We propose a change in Eq. (6.5) to normalize the dependence with r such that it is 1 at
rref, to simplify the interpretation of the shower size:

ρHillas
µ (r) = ρrref

(
r

rref

)−α

exp
(
− r− rref

r0

)
, (6.6)

The parameter rref would be fixed for each experiment to minimize fluctuations in the muon
density. The parameter ρrref of Eq. (6.6) can be expressed as a function of the parameters of
Eq. (6.5) as A(rref/r0)−α exp(−rref/r0).

KASCADE also tried to fit muon density measurements with the semiempirical formula
proposed by Linsley [108]:

ρ
Linsley
µ (r) =

N
r2

0

(
η − 2

2π

)(
r
r0

)−1 (
1 +

r
r0

)−(η−1)

(6.7)

with η = 3.3 + 1.3 cos
(
0.4 sec(θ) + 0.9− 0.4 log10(N/108)

)
. This can be matched to Eq. (6.3)

with a specific parameterization of β and ρrref derived from that of η.
Finally, we introduce a function that was not found in literature. We believe it is worth

attempting to fit it to UMD data due to its simplicity, as well as its application to electro-
magnetic LDFs. This is the log-log parabola, or more generally, a polynomial of degree D in
ln(r):

ρ
log-log
µ = ρrref exp

(
D

∑
i=1

ci lni
(

r
rref

))
, (6.8)

where ci is the coefficient preceding the logarithm to the i-th power.
In this analysis of the muon LDF from SiPM UMD data, we evaluate the functions of

Eq. (6.3), Eq. (6.4), Eq. (6.6), and Eq. (6.8).
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6.2 Considerations on the functional form of the modified NKG

In this section we analyze the functional form of the modified NKG or KASCADE-Grande
function (c.f. Eq. (6.4)), since it is the most widely used model of the muon LDF. The purpose
is to understand to which extent the parameters α, β, and γ influence the shape of the
function.

We first start by grouping the factors of Eq. (6.4) according to their exponent:

ρmNKG
µ (r) = ρrref

(
r

rref

)−α

︸ ︷︷ ︸
fα(r)

(
1 + r/r0

1 + rref/r0

)−β

︸ ︷︷ ︸
fβ(r)

(
1 + (r/10r0)

2

1 + (rref/10r0)
2

)−γ

︸ ︷︷ ︸
fγ(r)

. (6.9)

Notice that the evaluation of any of the factors with an exponent equal to zero yields one
( fx(r)|x=0 = 1), which is equivalent to excluding the factor from the product. For the purpose
of this simple analysis, we set rref = 450 m r0 = 320 m, α = 0.75, β = 2.6, and γ = 3.0. The
effects that we describe then correspond to this specific set of values of the parameters, but
since they are close to the fixed and fitted values in Sec. 6.5, they provide a useful picture of
the behavior of the function.

The left panel of Fig. 6.1 shows a comparison between a modified NKG function with all
its factors (black) and with the removal of the α (blue), β (orange) and γ (green) factors. We
notice that removing fα(r) has a very large impact at r < rref, removing fγ(r) only impacts
after r > 1000 m, and removing fβ(r) has a large impact in the whole distance range. Of
course, by the design of the modified NKG, the value of the function at r = rref (450 m in
this case) is ρrref independently of the removal of any fx(r) factor. The right panel of Fig. 6.1
evidences the difference in the logarithm of the muon density between the partial and full
muon LDFs. The deviations can be significant, larger than one order of magnitude, especially
very close or very far from the core. In this plot it is easier to see that the fγ(r) factor only
impacts at large distances from the shower core.
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Figure 6.1: Left panel: Modified NKG muon LDF (Eq. (6.9)) with all its factors (black) compared
to the same function removing the α (blue), β (orange), or γ (green) factor, in double logarithmic
scale. The inset shows that all the plotted functions equal the same at r = 450 m, as by design
the ρ(r = 450 m) = ρrref . Right panel: Deviation in the logarithmic muon density with respect to
the full modified NKG as a function of the distance (logarithmic scale), by removing the α (blue),
β (orange), or γ (green) factor.

Furthermore, we want to know how much a change in one of the parameters (α, β, and
γ) impacts the muon LDF. For this we plot in Fig. 6.2 the absolute value of the derivative of
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the muon density with respect to the parameter divided by the muon density as a function
of the distance to the shower axis, evaluated at the aforementioned reference values. Notice
that the derivatives are all positive-valued at r < rref and negative-valued at r > rref; thus
at r = rref the derivatives are zero which in log-scale drop to −∞. This is because the
parameterization at r = rref evaluates to ρrref irrespective of the values of α, β, and γ. We see
that |dρµ(r)/dα|/ρµ has the largest values, followed closely by |dρµ(r)/dβ|/ρµ, and lastly
by |dρµ(r)/dγ|/ρµ.
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Figure 6.2: Absolute value of the derivative of the muon density with respect to α (blue), β
(orange), and γ (green), divided by the muon density, as a function of the distance to the shower
axis r, in double logarithmic scale.

We are now interested in knowing in which r range each factor is dominant for the
slope of the muon LDF dρmNKG(r)/dr. The left panel of Fig. 6.3 shows a comparison of the
(negative of the) slope of the modified NKG. The slope with all its factors is in black, the
slope evaluated at α = 0 is in blue, at β = 0 in orange, and at γ = 0 in green. The right
panel of Fig. 6.3 evidences the deviation of the slope with one factor removed with respect
to the slope with all the factors. For this we plot the absolute value of the difference between
the slope without the different factors and the slope with all its factors. Close to the core
all differences are negative, while far from the core the differences are positive. When the
absolute value of the difference is equal to zero the log-scale shows a drop to −∞. Similar to
what we see in the left panel of Fig. 6.1 for the logarithmic muon density, the α and β factors
have approximately the same impact, in this case on the slope, except at distances above
1000 m where the β factor dominates. In comparison, the γ factor has a very small impact.

Moreover, we analyze how much a change in one of the parameters (α, β, and γ) impacts
the slope of the muon LDF. Figure 6.4 shows a comparison of d2ρmNKG(r)/drdx with x =
{α, β, γ}. We can see that d2ρmNKG(r)/dr dα dominates up to r ∼ 1000 m, followed by the
d2ρmNKG(r)/dr dβ, and above r ∼ 1000 m the latter is the dominant.

It is interesting to notice that in general fα(r) is a significant factor. However α is in
practice usually fixed to one value for all events in a wide range of energies and zenith
angles. This is normally done because α and β are so strongly correlated that it would be
very difficult to fit both. Nevertheless, the modified NKG function can still be well tuned at
a fixed α by varying β. This point is illustrated in Fig. 6.5, where we plot a modified NKG
with β taking the values 0, 1, 2, and 3.

Finally, we show how different values of r0 affect the modified NKG in Fig. 6.6. Here
we show the modified NKG with the reference parameters, and three values of r0 found in
different parameterizations from literature. From Fig. 6.6 we can see that the effect in the
shape of the modified NKG is not large. With respect to fits to data, an analysis showed that a
change in r0 changes mostly the exact optimal values of the rest of the parameters as well as
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Figure 6.3: Left panel: Slope of the modified NKG muon LDF (Eq. (6.9)) with all its factors (black)
compared to the same removing the α (blue), β (orange) or γ (green) factor, in double logarithmic
scale. Right panel: Deviation in the slope of the muon density of the modified NKG muon LDF
as a function of the distance (logarithmic scale), with respect to the slope of the slope including
all factors, by removing the α (blue), β (orange) or γ (green) factor.
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Figure 6.4: Second derivative of the muon density with respect to the distance to the shower axis
r, and to α (blue), β (orange), or γ (green), as a function of r in double logarithmic scale.
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Figure 6.5: Muon density of a modified NKG muon LDF as a function of the distance to the
shower axis. Different values of β are shown in different colors.

their correlation coefficient, but that it does not significantly change the quality of the fit (i.e.



6.3. DATA SELECTION 71

the goodness-of-fit is very similar) [109]. This suggests that the rest of the parameters can
“accomodate” to a specific value of r0. Because of this, and because of the limited capability
of fitting many parameters to data, we fix r0 = 320 m in the rest of this work. This value was
found to be optimal in fits to UMD simulations in Refs. [13, 103].
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Figure 6.6: Muon density of a modified NKG muon LDF as a function of the distance to the
shower axis. Different values of r0 are shown in different colors.

6.3 Data selection

In this section we describe how the data is selected and prepared before the physics analyses
are performed. The dataset consists of the reconstructed data acquired within the period
from January 2018 to December 2021 by the UMD modules instrumented with SiPMs. For
the reconstruction we use Offline (git version eb5cd9ad, see Sec. 5.1). The muon counting
strategy is the 1-bin strategy (see Chapter 4) used with a 12-bin (37.5 ns) single-muon pattern.
We use the estimator of the mean number of muons µ (see Chapter 4). Additionally, the muon
densities are also bias-corrected against simulations as described in Chapter 5.

Since the trigger of the UMD modules is subordinate to the trigger of its paired SD
station, every event is a hybrid UMD-SD event. Nevertheless, the reconstruction of the
UMD events could be performed independently of the SD event reconstruction. However,
at the moment of writing this thesis, the geometry reconstruction is not implemented for
SiPM data. Therefore, the distances from the UMD modules to the shower axis are inferred
from the SD geometry reconstruction.

It is relevant to add that the reconstruction already excludes ill-behaving data (“bad
periods”) as described in Ref. [105]. Additionally, we exclude module 103 from counter 1764
in the period from 16.05.2020 to 01.06.2020 due to firmware problems [110]. Finally, we also
exclude counter 1622 because, at the moment of writing this thesis, the azimuth angles of the
modules have not yet been measured on the field, which are crucial for the bias correction
(c.f. Chapter 5).

6.3.1 Minimum energy and zenith angle selection for full trigger efficiency

It is important to select events within the full trigger efficiency regime to ensure an unbi-
ased muon density sample. If we selected events below full efficiency, the muon density
distributions would be biased towards upward fluctuations.

Because the UMD is subject to the SD trigger, the trigger efficiency is determined by the
latter. One of the most pessimistic estimates of the T4 efficiency of the 750 m array including
TOTd/MoPS triggers (as this work does) is the parameterization provided in Ref. [111].
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Figure 6.7: Constant differential T4 trigger efficiency (contours) as a function of log10(E/eV)

and sin2 θ, for simulations of proton (solid lines) and iron (dashed lines) primaries, performed
with the high-energy hadronic interactions model EPOS-LHC (left panel) and QGSJetII-04 (right
panel). These are parameterizations extracted from Ref. [111]. A label and a color identify each
constant efficiency contour. Two gray dashed lines identify the minimum energy and maximum
zenith angle of the selected data, which lie in the gray shaded area.

Figure 6.7 shows a contour plot of the efficiency as a function of log10(E/eV) and sin2 θ, for
proton and iron simulations, for the hadronic models EPOS-LHC and QGSJetII-04, following
said parameterization.

Selecting an energy and zenith angle range within full trigger efficiency is rather arbi-
trary. However, it is convenient not to choose very high zenith angles θ. This is because the
effective detection area is proportional to cos θ (Aeff = A cos θ), leading to larger statistical
uncertainties for larger zenith angles. Therefore, we select events in the zenith angle range
0◦ ≤ θ ≤ 45◦. With this zenith angle selection, we can see that requesting log10(E/eV) ≥ 17.2
ensures that the T4 efficiency is above 98 %. The selected data lie in the gray shaded area of
Fig. 6.7.

It is relevant to add that we find artifacts in the SD geometry reconstruction for energies
below the full T4-efficiency threshold. The artifact consists in less reconstructed cores on
the imaginary lines that connect the counters. This constitutes another important reason to
work only in the full efficiency regime. Since we do so, this artifact is not a problem in the
selected data.

6.3.2 Outlier detection: Candidate counters with null and small signal

When analyzing the muon density as a function of the distance to the shower axis, outliers
are clearly revealed. If not removed, they can bias the mean muon density, which can spoil
the convergence of the fit.

Since the UMD trigger is subordinate to the SD trigger, it is possible that a candidate
counter measures zero signal. In Sec. 6.3.3 we explain a very general outlier detection
method, which is based on the logarithm of the measured muon density. However, because
we cannot use the logarithm of a null value, we have to treat this case separately.

For the purpose of being conservative, we apply this outlier detection method (as well
as the one in Sec. 6.3.3) on bias-uncorrected counter muon densities. Nevertheless, we af-
terwards repeat the procedures on bias-corrected module muon densities, which yield very
few extra outliers.
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A healthy counter with null signal should be paired to a small SD signal. In Fig. 6.8 we
plot the muon density in non-null (blue) and null (orange) candidate counters as a function
of the signal of the paired SD station. We find counters with null or small muon densities that
have a paired SD counter with large signal. We exclude them with two conditions: the first
one requires ρµ ≤ 2.0 m−2 and SSD ≥ 1000 VEM, and the second one requires ρµ ≤ 0.25 m−2

and SSD ≥ 150 VEM. These two conditions are shown as gray-shaded areas in Fig. 6.8.

Figure 6.8: Muon density of non-null (blue) and null (orange) candidate counters as a function
of the signal of the paired SD station. The inset highlights small muon densities and SD signals.
The points that lie within the gray-shaded areas are tagged as outliers.

We detect a total of 34 outliers in uncorrected counter muon densities in this way, a
small number compared to the total number of healthy counter muon densities, which is
larger than 170, 000. Applying the method to bias-corrected module densities yields no extra
outliers.

6.3.3 Outlier detection: Candidate counters with positive signal

To identify outliers in positive muon signals, several methods were attempted. The best
results were obtained by using a modified z-score based on the logarithmic muon density.
For every candidate counter with positive signal i, its z-score is computed as:

z-scorei =
log10(ρµ,i)−median[log10(ρµ)]

1.48 MAD[log10(ρµ)]
, (6.10)

where the median and the median absolute deviation (MAD) are computed over the muon
densities, for each candidate counter with positive signal, within a (log10(E/eV), sin2 θ,
log10(r/m))-bin. The bin widths are ∆ log10(E/eV) = 0.2, ∆ sin2 θ = 0.1, and ∆ log10(r/m) =
0.1. The denominator, 1.48 MAD[log10(ρµ)], constitutes a robust estimate of the standard de-
viation.

The method for detecting outliers consists of three steps:

1. The median and the MAD are computed for each (log10(E/eV), sin2 θ, log10(r/m))
bin, using all data points that are not already tagged as outliers.

2. The z-score is computed for each data point that is not already an outlier.

3. Data points that have a z-score such that |z-scorei| > 5 are tagged as outliers.
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For self-consistency, all steps are repeated until no outliers are detected in step 3. For our com-
plete dataset we needed four iterations, although after the first one very few extra outliers
are found (< 10).

Figure 6.9 shows an example of the outlier detection procedure in the first iteration,
corresponding to events with energies in 17.8 ≤ log10(E/eV) ≤ 18.0 and zenith angles
below 18◦ (0.00 ≤ sin2 θ ≤ 0.10). On the left panel we show the z-scores, and on the right
panel we show the muon LDF. On the right panel, the profile corresponds to the median
logarithmic muon density on a given logarithmic distance bin, and the error bars are its
corresponding MAD. Note that these points map to (0± 1) in the z-score of the left panel.
In both figures, the gray circles represent non-outliers. The green stars are the data points
that fulfill the exclusion criterium and are therefore tagged as outliers. It is evident that the
points constitute outliers and that the procedure correctly identifies them.

Figure 6.9: Z-score (c.f. Eq. (6.10)) (left panel) and logarithmic muon density (right panel) as a
function of the distance to the shower axis, for all data points with 17.8 ≤ log10(E/eV) ≤ 18.0
and zenith angles below 18◦ (0.00 ≤ sin2 θ ≤ 0.10). Non-outliers are depicted with gray circles.
Green stars represent points that fulfill |z-scorei| > 5, and are therefore tagged as outliers.

We tag a total of 1389 uncorrected counter muon densities as outliers with this proce-
dure, which is still very small compared to the number of healthy counter measurements
(> 170, 000), constituting less than 1 % of the total counter measurements. Repeating the pro-
cedure on bias-corrected module densities yields 43 extra outliers, out of more than 500, 000
total module-level measurements.

As a final remark regarding outliers, it would be desirable that faulty counters or modules
were identified using monitoring data, instead of using the data itself. Nevertheless, finding
these outliers can help identify problems in the functioning of the detectors that were not
evident in monitoring data. The cause of these ill-behaved counters or modules is subject of
further investigations in future work.

6.3.4 Upper energy cut and final event selection

Figure 6.10 shows the number of reconstructed events per bin of logarithmic reconstructed
energy (log10(E/eV)) and sine square of the zenith angle (sin2 θ). The color scale represents
the number of events, which is also written in each bin.

From Fig. 6.10 we can see that for log10(E/eV) ≥ 18.4 there is not enough statistics.
We thus set this value as an upper energy cut. The selected events can be seen in Fig. 6.10
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enclosed by a yellow rectangle. From a total of 42646 events, 18332 pass the selection criteria
(43 %).

Figure 6.10: Number of events (color scale and labels) as a function of the logarithmic energy
and sine-square zenith angle bin. A yellow rectangle encloses the selected events.

6.3.5 Distance cut: Saturation

At close distances from the shower axis, saturation becomes more likely. In this condition,
the non-saturated muon densities are downward fluctuations of the true muon density
distribution. In other words, when saturation is very likely, the muon density distribution is
biased.

For this reason, we impose a minimum distance of the modules to the shower core, to
take into account their measured muon densities. In Sec. 4.2.5 we observed that at 170 input
muons the saturation probability is below 1 %. For a 10 m2 module, this corresponds to
a muon density on the shower plane of 170/(10 m2 cos θ). If we imposed a cut on muon
density, we would bias the muon density distributions. Instead, we impose a cut at the
distance at which the muon density is expected to reach 170/(10 m2 cos θ). To compute the
expected value, we divide the measured distances in (log10(E/eV), sin2 θ)-bins, and we fit
a simple power-law to the logarithmic mean muon densities as a function of the distance to
the shower axis (measured on the shower plane)

log10(ρµ/m−2) = log10 ρ450 − α log10(r/450 m), (6.11)

where the intercept log10 ρ450 and slope α are the fitted parameters. We can solve Eq. (6.11)
for r by setting ρµ = 170/(10 m2 cos θ), where cos θ =

√
1− sin2 θ and sin2 θ is the bin-center

value. Because the power law function overestimates the expected muon density at short
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distances to the shower axis, it also overestimates the distance r at which the saturation
probability is expected to be 1 %. In this way, we provide a conservative estimate of r.

Figure 6.11 shows an example muon LDF for events with reconstructed energy in 17.6 ≤
log10(E/eV) ≤ 17.8 and reconstructed zenith angles in 27◦ . θ . 33◦ (0.20 ≤ sin2 θ ≤
0.30). The orange squares represent the mean, and the standard deviation of the mean is
contained within the marker. In gray circles we can see the candidate (bias-corrected) module
densities. In this example the limit muon density on the shower plane is ρµ = 19.63 m−2

(log10(ρµ/m−2) = 1.29), and yields a distance cut at r = 95.3 m (log10(r/m) = 1.98). This is
illustrated in purple lines.

Figure 6.11: Logarithmic muon density as a function of the logarithmic distance to the shower
axis. The data corresponds to reconstructed events with energies in 17.6 ≤ log10(E/eV) ≤ 17.8
and zenith angles in 27◦ . θ . 33◦ (0.20 ≤ sin2 θ ≤ 0.30). In gray circles all candidate module
densities can be seen, in orange squares their mean, which contains the standard deviation of
the mean, and in a blue line the power-law fit. The purple lines illustrate how the distance cut is
determined.

Figure 6.12 shows the distances that are used as lower cuts, where the saturation proba-
bility is equal or below 1 %.

6.3.6 Distance cut: Lateral trigger probability of the surface detector

The last cut we impose is a maximum distance cut, related to the fact that at large distances
from the shower axis, the trigger probability decreases. Just as the trigger efficiency depends
on the energy and zenith angle (c.f. Sec. 6.3.1), the trigger probability also decreases with the
distance to the shower axis, where the secondary particles rate becomes smaller. The muon
densities at large distances to the shower axis constitute upper fluctuations of the true muon
density distribution, which cannot be unbiassedly sampled.

Following Ref. [112], we model the SD-array lateral trigger probability LTP(r) as

LTP(r; E, θ) =





(
1 + exp

[
− r−R0(E,θ)

∆R(E,θ)

])−1
, if r ≤ R0.

(
1 + 2 exp

[
− r−R0(E,θ)

2∆R(E,θ)

])−1
, if r > R0.

(6.12)
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Figure 6.12: Lower cut distances at which the saturation probability is equal or below 1 %, as a
function of the logarithmic energy, and for different zenith angles (different colors).

where R0 and ∆R are parameterized as a function of the energy and zenith angle as in
Ref. [112] (including all trigger types). This parameterization was done using hybrid SD-FD
data. Fig. 6.13 shows the lateral trigger probability as a function of the distance, for different
energies at sin2 θ = 0.25 on the left panel, and for different zenith angles at log10(E/eV) =
17.9 on the right panel. A gray dashed line marks 90 % lateral trigger probability.
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Figure 6.13: Lateral trigger probability (LTP) as a function of the distance to the shower axis,
as parameterized in Ref. [112]. The left panels shows said curves for different energies at fixed
sin2 θ = 0.25, while the right panel shows them for different zenith angles at log10(E/eV) = 17.9.
Gray dashed lines mark 90 % lateral trigger probability.

Finally, Fig. 6.14 shows the distances that are used as upper cuts, where the lateral trigger
probability equals 90 %.

6.4 Methods

In this section we describe the statistical method that we use for fitting the data, as well as
for assessing the goodness-of-fit and the uniformity of the residuals.
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Figure 6.14: Upper cut distances at which the lateral trigger probability (LTP) equals 90 %, as a
function of the logarithmic energy, and for different zenith angles (different colors).

6.4.1 Weighted least squares fit

We start by binning the data in logarithmic energy, in steps of ∆ log10(E/eV) = 0.2. Since the
muon density depends on the energy as ∼ Eβ, the muon densities in an energy bin have a
contribution on the fluctuations due to the contribution of the different energies. Since there
are more data at lower than at higher energies, this can also bias the mean muon densities if
not accounted for. For this reason, we normalize the muon densities ρµ, with corresponding
reconstructed energy E, to the center of the reconstructed energy bin Enorm, by computing

ρµ,norm = ρµ

(
Enorm

E

)β

, (6.13)

with β = 0.9 [5]. In any case, the normalization has a small effect on average. Although it
can change individual densities in up to ∼ 20 %, the average muon densities change in less
than 2 %.

Moreover, we bin the data also in the sine-square of the reconstructed zenith angle,
and in logarithmic distance to the shower axis. Then, for every (log10(E/eV), sin2 θ)-bin,
we fit the logarithm of the mean normalized muon density as a function of the center of
the logarithmic distance bin, via a weighted least-squares. The weights correspond to the
standard deviation of the normalized mean. We use the different models discussed in Sec. 6.1,
also varying which parameters are fixed or freed. For clarity, we provide the expression of
the χ2 [113]:

χ2 =
N

∑
i=1

[
log10

〈
ρµ i/m−2〉− log10

(
ρmodel

µ (ri; p)/m−2
)]2

σ2
[
log10

〈
ρµ i/m−2

〉] , (6.14)

where i runs over the different log10(r/m) bins, and log10 ρmodel
µ (ri; p) is the predicted log-

arithmic muon density by a given model, evaluated at the same distance bin, and with a
parameter vector p.

The weighted least-squares fits rely on Gaussian assumptions. In our case, most of the
calculated points of the logarithm of the mean muon density are the result of an average over
a large number of measurements. Thus, the central limit theorem allows us to approximate
Gaussian errors in the mean muon density. Furthermore, we approximate that the errors in
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the logarithm of the mean muon densities are also Gaussian. Under these conditions, the χ2

is a statistically accurate model [113].
It is relevant to add that, to achieve convergence consistently, we found necessary to

follow four steps: (1) Use the data set with no outliers, (2) fit the mean of the muon densities,
(3) express the models as linear in their parameters where possible, and (4) set accurate
initial values. For the latter, we first fit a power-law function (c.f. Eq. (6.11)) to the data
of each (log10(E/eV), sin2 θ)-bin. The resulting values for the parameters log10 ρ450 and α
were used to determine initial values of the parameters of the tested muon LDFs for each
(log10(E/eV), sin2 θ)-bin.

6.4.2 Goodness of fit: Penalized likelihood approach

One of the most customary ways to evaluate the goodness of fit of a least-squares fitted
model is analyzing the χ2 value (or its value divided by the number of degrees of freedom
χ2/Ndof). More specifically, the χ2 can be tested against its expected distribution to obtain
a p-value that can serve as a measure of the goodness of fit. Sometimes this step is skipped
and χ2/Ndof is directly used as a measure of goodness of fit, typically interpreting that the
model over-fits if χ2/Ndof � 1, under-fits if χ2/Ndof � 1, and is appropriate if χ2/Ndof ∼ 1.
However, the χ2 does not provide a clear procedure for comparing the goodness of fit of
different models. In particular, it is not clear how to use χ2 to distinguish between the
goodness-of-fit of a same model fitted with one or two free parameters.

In contrast, there are likelihood-based approaches that can be used for making such
comparisons. At this point it is relevant to notice that the χ2 (c.f. Eq. (6.14)) can be expressed
as a Gaussian likelihood L [113] in the following way:

χ2 = −2 ln L +
N

∑
i=1

ln

[
1√

2πσ
[
log10

〈
ρµ i/m−2

〉]
]

, (6.15)

where the sum of the last term is simply a constant value for each (log10(E/eV), sin2 θ)-bin.
The problem we are interested in is testing how different functional forms fit to data, as

well as comparing one same functional form fixing or freeing some of its parameters. The
latter is an example of a nested model. The model M1 is said to be nested in M2, if some
coordinates of the parameter vector p1 are fixed. Taking the Hillas function (c.f. Eq. (6.6))
as example, the parameter vector p2 is (log10 ρ450, α, r−1

0 ), while p1 is (log10 ρ450, α, r−1
0 fix),

where r−1
0 fix is a fixed value. Then, the comparison of the models M1 and M2 can be viewed as

a classical hypothesis testing problem of the null hypothesis H0: r−1
0 = r−1

0 fix. If M1 is nested
in M2, then the largest likelihood achievable by M2 will always be larger than that of M1.
Adding a penalty on models with more parameters would balance between over-fitting and
under-fitting. This leads to the so called “penalized likelihood approach”.

To compare different models fitted using a penalized likelihood function, we use the
Bayesian or Schwarz Information Criterion (BIC) [114] and the Akaike Information Criterion
(AIC) [115]. The idea behind both AIC and BIC is that every model loses some information
of the real process that it intends to represent. These information criteria quantify the rel-
ative amount of information lost by a model. The higher the quality of a model, the less
information it looses, and hence the AIC and BIC values are smaller. With AIC or BIC, both
model estimation and selection can be simultaneously accomplished.

The definition of the AIC is

AIC = 2Npar − 2 ln(L̂), (6.16)

and of the BIC is
BIC = Npar ln(Nobs)− 2 ln(L̂), (6.17)
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where Nobs is the number of data points or observations in the data set, L̂ is the maximized
value of the likelihood function of the model M, and Npar is the number of parameters of
the model.

Both serve as a goodness-of-fit measure as they are proportional to the log-likelihood.
Since the likelihood can be increased by the addition of parameters, which might result
in over-fitting, both criteria have a penalty term for the number of parameters. The main
difference is that the penalty is larger in BIC than in AIC.

It is useful to notice that a constant factor C in the likelihood translates to a constant
additive term −2 ln(C) in the AIC/BIC; such a constant term is irrelevant in the comparison
of two models.

In the case of a χ2 fit, the AIC and BIC take the following form:

AIC = 2Npar + χ̂2, (6.18)

and of the BIC is
BIC = Npar ln(Nobs) + χ̂2, (6.19)

where χ̂2 is the minimized value of the χ2, and where we neglect a constant additive term
in both cases.

6.4.3 Uniformity of the residuals

Like the χ2, the AIC and BIC are insensitive to the sign of the deviation of the data points with
respect to the fitted function, as the three quantities are a function of the squared deviations.
For this reason, it is necessary to test for the uniformity of the residuals separately. This
is important to rule out models that consistently under-estimate the muon LDF at short
distances from the core while they over-estimate it at large distances from the core, or that
behave in the exact opposite way.

For this purpose we employ the Wald-Wolfowitz “runs” test [116]. This non-parametric
test that can be applied to test the randomness of the signs of the residuals. Essentially, it tests
the hypothesis that the signs of the residuals in a sequence are independent and identically
distributed.

A “run” is a sequence of equal signs. The length of the run is the number of elements
in it. For example, let us suppose that we analyze a fit where there are N = 10 distance
bins where the residuals have the signs +++−+++−−−. In this example there are
R = 4 runs, with n+ = 6 positive values and n− = 4 negative values in the sequence. The
Wald-Wolfowitz test statistic is then defined as

Z =
R− R̂

σR
, (6.20)

where R is the number of observed runs, R̂ is the number of expected runs, and σR is the
standard deviation of R. The two latter are computed as

R̂ =
2n+n−

n+ + n−
+ 1, (6.21)

σ 2
R =

(R̂− 1)(R̂− 2)
n+ + n− − 1

. (6.22)

The distribution of Z is tabulated for small number of runs, while if n+ > 10 and n− > 10
it can be approximated to a standard normal distribution. In particular we compute the
probability to observe |Z| > |Zobs|. If the probability is close to zero, this supports rejecting
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the null-hypothesis that the signs of the residuals are a sample of a random sequence. In
other words, if this probability is small, the model does not reproduce data well.

To combine the p-values of the Wald-Wolfowitz test of each (log10(E/eV), sin2 θ)-bin,
we use the Fisher combined probability test or Fisher method [117]. In this method, a χ2 test
statistic is built from the p-values pi of each bin:

χ2 = −2
k

∑
i=1

ln(pi), (6.23)

where k is the number of p-values to combine (in this case it is the number of bins, 30). The
resulting test statistic is distributed as a χ2 with 2k degrees of freedom. Knowing this, we
can compute a unique p-value from the probability to observe |χ2| > |χ2

obs|.

6.5 Results

In this section we present the fits of the different models to data, and compare their goodness
of fit.

6.5.1 Fits to data

In the following we show how the different models fit the events with 17.6 ≤ log10(E/eV) ≤
17.8 and zenith angles in 27◦ . θ . 33◦ (0.20 ≤ sin2 θ ≤ 0.30) as an example. In all applicable
cases we set rref = 450 m, as this is the distance at which fluctuations in the muon density
are minimized for the SD-750 m array [14]. Figure 6.15 shows how the modified NKG or the
NKG fit the aforementioned data. The positive muon densities are shown in gray circles, the
null muon densities are shown in triangles at an arbitrary logarithmic density value, and the
logarithm of the mean muon densities per log10(r/m)-bin are shown in orange squares. In
all displayed fits we use r0 = 320 m, as we do not see an improvement in the fit from fixing r0
to other values. The top left panel is a modified NKG (c.f. Eq. (6.4)) with α = 0.75 (as initially
proposed by Greisen [99]), and γ = 3.00 (very similar to the parameters used in Ref. [14]).
For comparison, the top right panel is an NKG with α = 0.75 (equivalently, a modified NKG
with the same α and γ = 0). The bottom left panel uses the values of the standard Offline
event-wise muon LDF reconstruction, α = 1.0 and γ = 1.85. Once again, for comparison,
the bottom right panel uses an NKG with α = 1.0. A priori, all four fitted functions seem
to model the muon LDF reasonably well. A detailed comparison of the goodness of fit is
described in Sec. 6.5.2.

It can be added that we also attempted freeing different parameters of the modified
NKG, or fixing them to other values, but we observed no evident improvement in the fits. In
particular, when α and β are both let free, the absolute value of their correlation coefficient is
above 0.96 in most fits, and the values to which they converge vary widely and depend on
their assigned initial values. Furthermore, when let free, the fitted values of γ vary greatly
too (from ∼ 0 to ∼ 7). This is because there is no (unbiased) statistics very close and very
far from the shower core, which would offer a leverage for fitting α and γ respectively. For
these reasons, it is not feasible to fit α and γ.

Figure 6.16 shows the same as Fig. 6.15, but fitting the data with log-log polynomials
(c.f. Eq.(6.8)) of second (left panel) and third (right panel) degrees. They both exhibit an
unphysical behavior: the second-order log-log polynomial predicts that the muon density
decreases close to the core, while the third-order log-log polynomial presents an unjustifiable
change in curvature. Four and five degree polynomials exhibit the same problems.

Finally, Fig. 6.17 displays the same data as Figs. 6.15 and 6.16, but fitted with a Hillas
function (c.f. Eq. (6.6)). On the left panel we set all three parameters free (log10 ρ450, α, and
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Figure 6.15: Logarithm of the muon density as a function of the logarithm of the distance to the
shower axis on the shower plane. Candidate counters are represented with gray circles, saturated
counters with gray upside triangles, null signal counters with gray downside triangles (at an
arbitrary value of log10(ρµ/m−2), the mean is represented with orange squares, and the fit with
a blue line. The data points have energies in 17.6 ≤ log10(E/eV) ≤ 17.8, and zenith angles in
27◦ . θ . 33◦ (0.20 ≤ sin2 θ ≤ 0.30). The fitted functions are modified NKGs (c.f. Eq. (6.4)) with
r0 = 320 m, and the following fixed parameters: (Top left) α = 0.75 and γ = 3.00, (top right)
α = 0.75 and γ = 0, (bottom left) α = 1.0 and γ = 1.85, and (bottom right) α = 1.0 and γ = 0.

r−1
0 ), while on the right panel we fix r0 = 750 m. A priori, this exponential function fits

reasonably well the data, both with r0 fixed or free.

6.5.2 Comparison of the goodness-of-fit

In order to assess which is the best model of the muon LDF, for all the fits presented
in Sec. 6.5.1 we compare the AIC, and BIC (see Sec. 6.4.2), and the p-value of the Wald-
Wolfowitz runs test (c.f. Sec. 6.4.3). Since there are actually as many muon LDF fits as
(log10(E/eV), sin2 θ)-bins (30), we report on the sum of the individual values of AIC and
BIC, and the p-value of the Fisher test that combines those of the individual Wald-Wolfowitz
tests.

Figure 6.18 shows a comparison of the aforementioned quantities, for the models shown
in Sec. 6.5.1. We include two additional models for comparison: the power law, and a modi-
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Figure 6.16: Same as Fig. 6.15, but the fitted functions are log-log polynomials (c.f. Eq.(6.8)) of
second degree (left panel) or third degree (right panel).

Figure 6.17: Same as Figs. 6.15 and 6.16, but the fitted functions are Hillas functions (c.f. Eq. (6.6))
with log10 ρ450, α, and r−1

0 as free parameters in the left panel, while in the right panel we fix
r0 = 750 m.

fied NKG with α, β, and γ as free parameters. It is easy to see that the power law does not
model appropriately the muon LDF, as the signs of the residuals are highly not random (the
p-value of the Wald-Wolfowitz test is close to 0), and also the AIC and BIC are comparably
very high. Although the next two models, the log-log polynomials of degree 2 and 3, have
good goodness-of-fit indicators, we know from Sec. 6.5.1 that they yield unphysical results.
We then consider only the different variations of the Hillas and modified NKG (or NKG).
Except for the Hillas function with fixed r0, which has comparably bad goodness-of-fit indi-
cators, the performance of these models is not very different from one another. The NKG,
modified NKG, and Hillas (with free r0) functions evidently constitute reasonable models
of the muon LDF. It is interesting to notice that the modified NKG with α, β, and γ as free
parameters does not have a better AIC and BIC than the modified NKG with fixed param-
eters α = 0.75 and γ = 3.0. It has a p-value of the Fisher test of almost 1 (like the log-log
polynomials), suggesting that it can be over-fitting data. In fact, the fitted modified NKGs
with all its parameters free have a slope close to the core that changes significantly from bin
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to bin with no clear energy or zenith angle trend. Moreover, we observe that the p-value of
the Fisher test is minimal for the NKG with α = 1, and the AIC and BIC take larger values
than for the other models and/or combinations of fixed parameters. Without considering
the unphysical log-log polynomial models, the best AIC and BIC is achieved with a modified
NKG of fixed parameters α = 0.75 and γ = 3.0. In this case, the p-value of the Fisher test is
reasonably good, not being too high or too low.
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Figure 6.18: P-value of the Fisher test (squares, left scale), and AIC and BIC (circles and diamonds
respectively, right scale), for the different tested models of the muon LDF (see text for details).
The gray dashed lines mark p-values of the Fisher test of 0 and 1.

It is relevant to add that we scanned over the values to fix for α and γ. We allowed α to
take the values {0.0, 0.5, 0.75, 1.0, 1.5}while we allowed γ to take the values {0.00, 1.00, 1.85,
2.00, 3.00, 3.50}. We observed that, of all possible combinations, the one that minimized the
AIC and BIC was α = 0.75 and γ = 3.0.

We conclude that the Hillas, NKG, or modified NKG are all good models of the muon
LDF. The model that best fits our data (in terms of AIC and BIC) is a modified NKG with
fixed parameters α = 0.75 and γ = 3.0. The modified NKG with all its parameters free has
a similar AIC and BIC but tends to over-fit the data. Given this result, and the fact that the
modified NKG is a physically motivated model, we adhere to this model for the rest of the
analysis.

It is relevant to add that, in the future, the muon densities from the integrator mode of
the UMD will complement the measurements of the counter mode reaching distances much
closer to the core. With these muon densities, the evaluation of fitting or fixing the parameter
α should be revisited.

6.6 Useful parameterizations of the muon LDF

In this section we provide two parameterizations of the muon LDF based on the fits that
use the modified NKG with α = 0.75 and γ = 3.0. Both of them provide a data-like muon
density as a function of the distance to the shower axis, primary energy, and primary zenith
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angle. These parameterizations can be useful for making realistic toy models that make use
of the muon LDF, for example, as used in Sec. 6.7.1.

Both parameterizations consist of expressing the two free parameters of the modified
NKG, log10 ρ450 and β, as a biquadratic functions of two variables, which in the first case are
log10(E/eV) and sin2 θ:

log10 ρ450 = aρ + bρ(log10(E/eV)− 17.3) + cρ(log10(E/eV)− 17.3)2, (6.24)

β = aβ + bβ(log10(E/eV)− 17.3) + cβ(log10(E/eV)− 17.3)2, (6.25)

where the parameters aρ, bρ, cρ, aβ, bβ, and cβ (generically xρ and xβ) are themselves quadratic
functions of sin2 θ:

xρ = xρ,0 + xρ,1(sin2 θ/0.5) + xρ,2(sin2 θ/0.5)2, (6.26)

xβ = xβ,0 + xβ,1(sin2 θ/0.5) + xβ,2(sin2 θ/0.5)2. (6.27)

In fact, as we see later in this section, the quadratic term in log10(E/eV) is not necessary for
the case of log10 ρ450, in which case we fix cρ,i = 0 (for i = {0, 1, 2}).

The second parameterization is almost identical. The difference is that β is modelled as
a biquadratic function of log10 ρ450 and sin2 θ:

β = ãβ + b̃β(log10 ρ450) + c̃β(log10 ρ450)
2, (6.28)

where its parameters ãβ, b̃β, and c̃β (generically x̃β) follow the function

x̃β = x̃β,0 + x̃β,1(sin2 θ/0.5) + x̃β,2(sin2 θ/0.5)2. (6.29)

The parameterization of β can also be used for fixing its value in event-wise fits of the
muon LDF where the sampling of distances to the shower core is not very good. Typically,
in such cases only the shower size log10 ρ450 is fitted. In that scenario it is recommendable
to use the second parameterization, i.e., β(log10 ρ450, sin2 θ). This is because the size of the
shower log10 ρ450 depends not only on the energy and zenith angle of the primary, but also
on the primary mass. A set of showers of a same log10 ρ450 are expected to have more similar
muon LDFs than a set of showers of a same energy, which can vastly differ due to shower-
to-shower fluctuations.

Figure 6.19 shows the parameterization of log10 ρ450 as a biquadratic function of the
logarithmic energy and the sine-square of the zenith angle. The points represent the values
obtained from each fit of the muon LDF at each (log10(E/eV), sin2 θ)-bin with the modified
NKG function, while the surface and lines represent the fit of log10 ρ450 with the biquadratic
function (c.f. Eqs. (6.24) and (6.26)). The upper left panel is a 3-dimensional plot, while the
upper right panel is a 2-dimensional projection. The bottom left panel shows log10 ρ450 as a
function of log10(E/eV), with the different sin2 θ-bins in different colors, while the bottom
right panel shows log10 ρ450 as a function of sin2 θ, with the different log10(E/eV)-bins in
different colors. A linear function sufficiently describes the dependence of log10 ρ450 with
log10(E/eV). It is easy to see that log10 ρ450 monotonously increases with log10(E/eV), and
monotonously decreases with sin2 θ, as expected. The former we expect from the simple
argument that a higher-energy air shower produces more particles, in particular muons. The
latter we expect because of attenuation: although the atmosphere does not play a significant
role in attenuating muons, the energy Eµ that the muons need to go through the soil on top of
the UMD depends on the zenith angle of the shower (Eµ > 1 GeV/ cos θ) [97]. Furthermore,
the biquadratic fit is clearly a good model.

Figure 6.20 shows the parameterization of β as a biquadratic function of log10(E/eV) and
sin2 θ (first parameterization, c.f. Eqs. (6.25) and (6.27)). The figure is equivalent to Fig. 6.19
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Figure 6.19: Parameter log10 ρ450 of the modified-NKG fits to data (see text for details), as a
function of the log10(E/eV) and sin2 θ bins. The surface and lines are the result of the biquadratic
fit (c.f. Eqs. (6.24) and (6.26)). Top left: 3-dimensional plot. Top right: 2-dimensional projection.
Bottom left: log10 ρ450 as a function of log10(E/eV), with the different sin2 θ-bins in different
colors. Bottom right: log10 ρ450 as a function of sin2 θ, with the different log10(E/eV)-bins in
different colors.

but plotting the parameter β. We can observe that β clearly decreases with the zenith angle.
This means that the muon LDF is flatter the larger the zenith angle. This is because the
maximum muon production depth (Xµ max) recedes for more inclined showers [118]. It is
also clear that β increases with the energy, which can be understood from the deeper Xµ max.

Figure 6.21 shows the parameterization of β as a biquadratic function of the parameter
log10 ρ450 and the sin2 θ-bin (c.f. Eqs. (6.28) and (6.29)). There is a tendency of β to increase
with log10 ρ450, implying that air showers with larger size tend to have also steeper muon
LDFs, as expected from the associated deeper Xµ max.

Finally, the values of the parameters of the biquadratic fits are presented in Table 6.1.

6.7 Analysis of the systematic uncertainties of the fits

A controlled experiment is necessary to quantify the systematic uncertainties that arise from
the fitting procedure. We therefore develop a toy model to generate mock data from a user-
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Figure 6.20: Same as Fig. 6.19 but for the parameter β. The parameterization is that of Eqs. (6.25)
and (6.27).

defined muon LDF. These mock data is then fitted in the same way as real data. Comparing
the generating and fitted muon LDFs we can understand the systematic uncertainties intro-
duced by fixing parameters, while simultaneously accounting for all the characteristics of the
fitting procedure that could also introduce systematic uncertainties (for instance, applying
distance cuts, binning in log10(r/m), and fitting the mean instead of all the data points).

6.7.1 Toy model

The toy model allows us to obtain a mock sampled muon LDF from a user-defined, “true”
muon LDF. It consists, in first place, of an infill-like array of 10 m2 muon detector modules. A
random position of the core is assigned, following a uniform distribution in the area between
three neighboring detectors.

From the user-defined muon LDF and zenith angle, the true muon density is computed at
every detector. Array trigger effects are not necessary to simulate since the whole analysis is
performed above an energy that ensures full-efficiency. In contrast, the station trigger effect
has to be simulated. Therefore, a detector is kept as part of the event randomly, following
the lateral trigger probability described in Sec. 6.3.6.
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Figure 6.21: Parameter β of the modified-NKG fits to data (see text for details), as a function of
the fitted parameter log10 ρ450 and the sin2 θ-bin. The biquadratic fit of β is that of Eqs. (6.28)
and (6.29). The left panel is a 3-dimensional plot, while the right panel shows β as a function of
log10 ρ450 for the different sin2 θ-bins in different colors.

The probability that a muon detector saturates is not simulated, but we apply the same
minimum distance cuts as for data (c.f. Sec. 6.3.5) which ensure a probability of saturation
below 1 %.

The true number of muons in each detector is sampled from a Poisson distribution with
its parameter equal to the true number of muons, obtaining in this way the number of
impinging muons. Then the mock muon density is computed by dividing the impinging
number of muons by the effective detector area. To simulate a mis-reconstructed position of
the core, the true position of the core is randomly fluctuated following an isotropic bivariate
Gaussian distribution with a mean equal to the true position of the core and a width equal
to the infill core resolution σcore. The latter is parameterized as:

σcore(E, θ)/m = a(θ) + b(θ)(log10(E/eV)− 16.5) + c(θ)(log10(E/eV)− 16.5)2, (6.30)

where a(θ) = 93.53+ 94.32 sin4 θ, b(θ) = −92.52− 13.87 sin2 θ, and c(θ) = 31.63+ 2.88 sin2 θ.
This parameterization was obtained using QGSJetII-04 proton showers with energies in
16.5 ≤ log10(E/eV) ≤ 18.0 and zenith angles 0◦ ≤ θ ≤ 60◦ [119]. Figure 6.22 shows said
parameterization of the core resolution as a function of the energy and for different zenith
angles. Although we extrapolate the parameterization to the energies of this work, we do not
expect that a small change in the parameterization of the dependence of the core resolution
to greatly affect the toy model. What is important is to include this effect to replicate the
dispersion of data, specially close to the core.

The left panel of Fig. 6.23 shows the muon density as a function of the distance to the
shower axis on the shower plane for real data at energies in 17.6 ≤ log10(E/eV) ≤ 17.8 and
zenith angles in 0.2 ≤ sin2 θ ≤ 0.3. The muon LDF fitted to the data in Fig. 6.23 is the one
used to generate the mock data of the right panel of Fig. 6.23. This muon LDF is a modified
NKG with fixed parameters r0 = 320 m, α = 0.75, and γ = 3.0, (as mentioned in Sec. 6.5.2),
and fitted parameters log10 ρ450 = −0.64 and β = 2.72. We generate 442 mock events, which
is the number of events in real data. The dashed vertical lines are the distance cuts that we
set to data (see Secs. 6.3.5 and 6.3.6). It can be seen that the mock data reproduces very well
most features of real data. At low muon densities there is a slight difference in the discrete
values that the muon densities take for the mock data. In the latter case we assume a constant
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Figure 6.22: Resolution in the reconstructed position of the shower core as a function of the
logarithmic energy, for different zenith angles in different colors. The parameterization, de-
scribed in Ref. [119], uses QGSJetII-04 proton air-shower simulations with energies in 16.5 ≤
log10(E/eV) ≤ 18.0 and zenith angles in 0◦ ≤ θ ≤ 60◦.

Figure 6.23: Muon density as a function of the distance to the shower axis for real (left panel)
and mock (right panel) data. The muon LDF that is fitted to real data is the one used to generate
the mock data, which is a modified NKG with parameters log10 ρ450 = −0.12 and β = 2.70 (and
the fixed parameters described in Sec. 6.5.2). The real data are events with reconstructed energies
in 17.6 ≤ log10(E/eV) ≤ 17.8 and zenith angles in 0.2 ≤ sin2 θ ≤ 0.3. The dashed vertical lines
are the minimum and maximum distance cuts that are used in data (see Secs. 6.3.5 and 6.3.6).

module area of 10 m2; the muon density for real detectors is computed using the effective
area, which can vary depending on the amount of working scintillation strips of each module.
Furthermore, the bias correction makes the reconstructed muon densities of real data take
continuous values. We already assessed the remaining biases in the reconstructed muons
after the bias correction in Sec. 5.3. Hence, and for the purpose of this analysis, we deem our
toy model sufficient.
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6.7.2 Analysis of the bias from fixing the parameter α of the modified Nishimura-
Kamata-Greisen function

As mentioned in Sec. 6.5.1, the parameters α and β from the modified NKG are largely
correlated (with a correlation coefficient ≥ 0.96). Additionally, the saturation of the binary
channel prevents us from having more information about the muon density close to the
core which would constrain α better. Hence, if both α and β are let free, the values of the
fitted parameters depend strongly on the initial values.We therefore decide to fix α in the
reconstruction to a value of αrec = 0.75, as we show in Sec. 6.5.2 that it minimizes the overall
AIC and BIC (in combination with fixing γ = 3.0). Nevertheless, fixing αrec = 0.75 does not
restrict greatly the shape of the muon LDF if β is left as a free parameter of the fit, as shown
in Sec. 6.2. In this section we study the bias that arises from fixing αrec = 0.75, given that the
true α has a certain value αtrue.

At the same time, we are studying the biases introduced from the chosen fitting method.
In particular, we can estimate the bias that arises from fitting the logarithm of the mean
muon density as a function of the logarithmic distance, with the chosen logarithmic distance
binning (∆ log10(r/m) = 0.1), and with the imposed distance cuts at short distances (to
exclude bins where the probability of saturation is > 1 %) and at long distances (where the
lateral trigger probability falls below 90 %).

We generate mock data as follows: For each value of αtrue in {0.6, 0.675, 0.75, 0.825, 0.9},
we generate Nevents = 442 mock events from a modified NKG with parameters that corre-
spond to realistic values and statistics for 17.6 ≤ log10(E/eV) ≤ 17.8 and zenith angles in
0.2 ≤ sin2 θ ≤ 0.3, of values log10(ρ450/m2) = −0.12, α = αtrue, β = 2.70, γ = 3.0. These
mock data are treated exactly as real data. The logarithm of the mean muon density as a
function of the logarithmic distance is fitted letting log10(ρ450/m2) and β free, and fixing
αrec = 0.75 and γrec = 3.0. This constitutes the fit result of one experiment. We repeat 20
experiments for each value of αtrue, and compute the mean fitted muon LDF and the stan-
dard deviation. In this way we can get an idea of the expected bias (and its variability) from
fixing α in the fits to real data.

The left panel of Fig. 6.24 shows the relative error of the fitted muon LDF as a function of
the logarithmic distance to the shower axis. Different colors represent muon LDFs generated
from different values of αtrue. The thick lines represent the average over the fitted muon
LDFs of all experiments, and the shaded areas represent the standard deviation. The latter
give an idea of how the bias could fluctuate in different realizations of the experiment. A
gray dashed line locates r = 450 m. A gray square encloses the inset that is plotted on the
right panel. In the latter, we find the same variable plotted as a function of the distance to
the shower axis.

From the left panel of Fig. 6.24 we can see that a bias of +20 % (−20 %) in the fixed value
of α translates into a bias in the muon LDF of at most (−3.2± 0.4)% ((+6.0± 0.4)%) within
the distance cuts. The uncertainties in the reported biases are computed from the plotted
standard deviation, divided by the square root of the number of simulated experiments. The
largest biases are attained at the smallest and largest distances from the shower axis. For the
case αtrue = αrec = 0.75, the bias comes from the fitting method, and it is considerably small,
of at most (1.0± 0.4)%, overlapping zero. From the right panel of Fig. 6.24 we can see that
the bias in the muon LDF at r = 450 m is of at most (+1.4± 0.2)% or (−0.9± 0.2), implying
that r = 450 m is still an optimal distance considering systematics in the fit of the average
muon LDF.
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Figure 6.24: Left panel: Relative error of the fitted muon LDF as a function of the logarithmic
distance to the shower axis. Right panel: An inset of the figure on the left panel around r = 450 m
in linear scale. Different colors represent different values of the parameter α = αtrue of the
generating muon LDF. In all cases, the muon LDF was fitted fixing αrec = 0.75. The gray dashed
lines locate r = 450 m, as well as the upper and lower distance cuts, and a gray rectangle on the
left panel shows the inset that is plotted on the right panel.

6.7.3 Analysis of the bias from fixing the parameter γ of the modified Nishimura-
Kamata-Greisen function

In Sec. 6.5.1 we observed that there is not enough sensitivity to fit γ, since the lateral trig-
ger probability drops before or at the distances where this parameter becomes relevant
(see Sec. 6.2). This prevents us from having (unbiased) statistics at large distances from the
shower axis, making it unfeasible to fit γ. As a consequence, we have to fix γ in the recon-
struction. We choose to fix it to γrec = 3.0, which minimizes the overall AIC and BIC (in
combination with fixing α = 0.75), as shown in Sec. 6.5.2. As for α (c.f. Sec. 6.7.2), we study
the bias that arises from fixing γrec = 3.0, considering that the true γ has a value γtrue.

For this parameter, the distance at which the lateral trigger probability drops below 90 %
(dLTP=90 %) plays an important role. Because this distance varies greatly within our dataset,
we test how the bias in the muon LDF that arises from fixing γ depends on this distance.

In this case, we let γtrue take the values in {2.4, 2.7, 3.0, 3.3, 3.6}. For each γtrue, we test
three realistic scenarios varying dLTP=90 %:

1. dLTP=90 % = 667 m, Nevents = 1598, log10(ρ450/m2) = −0.50, β = 2.34 (this corresponds
to realistic values and statistics for 17.2 ≤ log10(E/eV) ≤ 17.4 and zenith angles in
0.4 ≤ sin2 θ ≤ 0.5),

2. dLTP=90 % = 932 m, Nevents = 442, log10(ρ450/m2) = −0.12, β = 2.70 (this corresponds
to realistic values and statistics for 17.6 ≤ log10(E/eV) ≤ 17.8 and zenith angles in
0.2 ≤ sin2 θ ≤ 0.3),

3. dLTP=90 % = 1172 m, Nevents = 22, log10(ρ450/m2) = 0.40, β = 3.01 (this corresponds
to realistic values and statistics for 18.2 ≤ log10(E/eV) ≤ 18.4 and zenith angles in
0.0 ≤ sin2 θ ≤ 0.1).

In every case, the generating muon LDF has parameters α = 0.75 and γ = γtrue. Once again,
these mock data are treated exactly as real data. The average muon LDF is fitted letting
log10(ρ450/m2) and β free, and fixing αrec = 0.75 and γrec = 3.0. This constitutes the fit
result of one experiment. We repeat 20 experiments for each value of γtrue and each dLTP=90 %
scenario, and for each of these we compute the mean fitted muon LDF and the standard
deviation.
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Figure 6.25: Relative error of the fitted muon LDF as a function of the (logarithmic) distance to
the shower axis, for a distance where the lateral trigger probability falls below 90 % (dLTP=90 %) of
667 m (top left panel), 932 m (top right panel), and 1172 m (bottom left and right panels). Different
colors represent different values of the parameter γ = γtrue of the generating muon LDF. In all
cases, the muon LDF was fitted fixing γrec = 3.0. The gray dashed lines locate r = 450 m, and a
gray square on the bottom left panel shows the inset that is plotted on the bottom right panel.

Fig. 6.25 shows the relative error of the fitted muon LDF as a function of the (logarithmic)
distance to the shower axis, for different values of dLTP=90 %: 667 m (top left panel), 932 m
(top right panel), and 1172 m (bottom left and right panels). Different colors represent muon
LDFs generated from different values of γtrue. The thick lines represent the average over the
fitted muon LDFs of all experiments, and the shaded areas represent the standard deviation.
A gray dashed line locates r = 450 m. A gray square encloses the inset that is plotted on
the bottom right panel. In the latter, we find the same variable plotted as a function of the
distance to the shower axis.

The top panels and left bottom panel of Fig. 6.25 show that a +20 % (−20 %) bias in the
fixed value of γ translates into a bias in the muon LDF of at most (+4.5± 1.3)% ((−2.3±
1.3)%) within the distance cuts. Once again, the largest biases are attained at the smallest
and largest distances from the shower axis. The case where γtrue = γrec = 3.0 shows that the
biases from the method itself are small (within ≤ 3 %). In the bottom left panel of Fig. 6.25,
we can see large standard deviations that result from the low number of events that appear in
a realistic high-energy scenario (where dLTP = 1172 m), and remains practically unchanged
when considering more experiment repetitions. Finally, the bottom right panel of Fig. 6.25
shows that the bias of the muon LDF at r = 450 m is (in the worst case, dLTP = 1172 m) of
at most (−0.9± 0.8)%. This implies that r = 450 m is still an optimal distance considering
systematics in the fit of the average muon LDF.
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Figure 6.26: Relative error of the fitted muon LDF against the true one as a function of the
(logarithmic) distance to the shower axis, for a distance where the lateral trigger probability falls
below 90 % (dLTP=90 %) of 667 m (top left panel), 932 m (top right panel), and 1172 m (bottom left
and right panels). In all cases, the true parameter of the muon LDF is γtrue = 3.0 and it is fitted
fixing γrec = 3.0. The gray dashed lines locate r = 450 m, and a gray square on the bottom left
panel shows the inset that is plotted on the bottom right panel.

In Sec. 6.2 we found that the term with γ does not have a large impact on the muon LDF
in comparison to α and β. However, in Sec. 6.5.2 we showed that the modified NKG fits data
significantly better than the NKG (or, equivalently, a modified NKG with γ = 0). This can be
understood with a simple toy experiment: let us assume that the true underlying function
is a modified NKG, generate mock data from it, and fit it with an NKG. We want to know
what is the bias in the fitted muon density with respect to the true one, as a function of the
distance to the shower axis. For this, we repeat the experiment of Fig. 6.25, for a γtrue = 3.0
and γrec = 0. The result is shown in Fig. 6.26. We can see that the mean bias can be as high
as 11 %, and it can reach 15 % considering fluctuations (bottom left panel). In this case, the
bias arises because the fitted parameters, log10 ρ450 and β, compensate for the absence of the
γ term (or equivalently, for γ = 0). In conclusion, despite there is not enough sensibility to
fit the value of γ, removing this term introduces a bias. Considering the latter, and the fact
that we observed that a modified NKG with γ = 3.0 fits data better than with γ = 0 (c.f.
Sec. 6.5.2), we find that it is better to keep this term of the modified NKG with a fixed value
of γ = 3.0.

6.7.4 Analysis of the bias from cutting at different lateral trigger probabilities

As mentioned in Sec. 6.7.3, the cut at large distances from the shower axis due to the drop in
the lateral trigger probability is necessary for keeping only unbiased samples of the muon
density. In this section, we quantify and compare the biases introduced by applying this cut
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at different lateral trigger probabilities. The method is analogous to the one described in
Sec. 6.7.3, only that both the γtrue and γrec are fixed to 3.0. In this case, for each of the three
realistic scenarios, we generate a mock sample from a given modified NKG (with the same
parameters as those described in Sec. 6.7.3). We then cut the mock samples at the distances
at which the lateral trigger probability equals 90 %, 80 %, 50 %, 25 %, and 0 % (i.e., no cut).
The samples with the distance cuts are fitted with a modified NKG letting log10 ρ450 and β
free.

The corresponding distance cuts are:

1. dLTP=90 % = 667 m, dLTP=80 % = 748 m, dLTP=50 % = 885 m, and dLTP=25 % = 1022 m, for
17.2 ≤ log10(E/eV) ≤ 17.4 and 0.4 ≤ sin2 θ ≤ 0.5,

2. dLTP=90 % = 932 m, dLTP=80 % = 1009 m, dLTP=50 % = 1142 m, and dLTP=25 % = 1275 m,
for 17.6 ≤ log10(E/eV) ≤ 17.8 and 0.2 ≤ sin2 θ ≤ 0.3,

3. dLTP=90 % = 1172 m, dLTP=80 % = 1267 m, dLTP=50 % = 1429 m, and dLTP=25 % = 1592 m,
for 18.2 ≤ log10(E/eV) ≤ 18.4 and 0.0 ≤ sin2 θ ≤ 0.1.

Fig. 6.27 shows the relative error of the fitted muon LDF as a function of the (logarithmic)
distance to the shower axis, for different values of dLTP, for different realistic scenarios: 17.2 ≤
log10(E/eV) ≤ 17.4 and 0.4 ≤ sin2 θ ≤ 0.5 (top left panel), 17.6 ≤ log10(E/eV) ≤ 17.8 and
0.2 ≤ sin2 θ ≤ 0.3 (top right panel), and 18.2 ≤ log10(E/eV) ≤ 18.4 and 0.0 ≤ sin2 θ ≤ 0.1
(bottom left and right panels). Different colors represent muon LDFs fitted considering
different distance cuts at different lateral trigger probabilities. The thick lines represent the
average over the fitted muon LDFs of all experiments, and the shaded areas represent the
standard deviation. Gray dashed lines mark the minimum distance cut, r = 450 m, and the
different maximum distance cuts. On the bottom right panel, a gray square encloses the inset
that is plotted on the bottom right panel. In the latter, we find the same variable plotted as a
function of the distance to the shower axis.

In the left and right top panels of Fig. 6.27, we can see that the biases are below 5 %, and
there is not a significant difference between the different considered cuts. However, in the
bottom left panel, the biases are larger, and also the difference in the biases from cutting at
different lateral trigger probabilities is larger. We thus focus on this case. We can see that at
higher energies, where the distances at which the lateral trigger probability drops below the
considered values are larger, a more conservative cut is beneficial. We find the behavior that
we expected: if the data are cut at larger distances from the shower axis (or not cut at all),
the densities are positively biased, and so is the fit. Because the model is not flexible enough,
in order to fit the positively biased densities at large distances, it underestimates the muon
densities at short distances. By choosing to cut at a 90 % lateral trigger probability, the bias
is of at most (+1± 1)% or (−1± 4)%. From the bottom right panel of Fig. 6.27, we can see
that the more conservative cut at 90 % also helps reduce the bias at 450 m, which in this case
is of only (−0.4± 1.1)%.

6.8 Comparison to previous studies

In this section we compare the muon LDF found in this work with that of a previous data
analysis [97] of the prototype array of the UMD, where the modules were instrumented
with PMTs instead of SIPMs. It is important to note that a direct comparison of the muon
content or the muon LDF of different experiments is not possible. This is because the muon
content greatly depends on: the muon vertical energy threshold, the atmospheric depth of
the experiment, the primary energies and zenith angles, and the distances to the shower axis,
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Figure 6.27: Relative error of the fitted muon LDF as a function of the (logarithmic) distance
to the shower axis, applying a distance cut where the lateral trigger probability falls below
90 % (purple lines), 80 % (blue lines), and 50 % (green lines), for different realistic scenarios:
17.2 ≤ log10(E/eV) ≤ 17.4 and 0.4 ≤ sin2 θ ≤ 0.5 (top left panel), 17.6 ≤ log10(E/eV) ≤ 17.8
and 0.2 ≤ sin2 θ ≤ 0.3 (top right panel), and 18.2 ≤ log10(E/eV) ≤ 18.4 and 0.0 ≤ sin2 θ ≤ 0.1
(bottom left and right panels). The gray dashed lines locate the minimum and maximum distance
cuts, as well as r = 450 m. A gray square on the bottom left panel shows the inset that is plotted
on the bottom right panel.

apart from being subject to different uncertainties from the different methods with which
it is determined. Since the muon content depends almost linearly on the energy, systematic
uncertainties in the energy can also greatly affect any comparison between experiments.
Future studies could try to parameterize these dependencies using simulations, allowing
for the comparison of the muon content of different experiments at least to the extent in
which the simulations reproduce the actual behavior of air showers. Alternatively, one could
define a scale of the muon content relative to simulations. This is in fact what is done in
Chapters 7 and 8 to compare the muon content of different experiments. In this analysis, we
limit the comparison to the previous instrumentation of the same experiment. This implies
that the phase space for the UMD PMT and UMD SiPM data is the same, and the only
difference arises from the response of the electronics of the detector, and from the method
for the determination of the muon content.

The aforementioned study [97] determines the muon content using the N-bin strategy
(see Chapter 4) and applies a correction of the overall biases based on detector simulations
in a similar procedure as in Chapter 5. As mentioned there, there are several differences:
at its moment, the dependence of the bias with the number of muons was not know, and
so the parameterization of the bias of Ref. [97] does not include such a term. The analysis
also suffered from errors in the assumed module azimuth angles. Furthermore, the response
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Figure 6.28: Comparison between the muon LDFs determined in this work (solid lines) and
those from the analysis of UMD PMT data of Ref. [97] (dashed lines). Different colors identify
different energies (see text for details).

and characteristics of the electronics of the SiPMs and PMTs are different. In particular, the
efficiency of the modules instrumented with PMTs could possibly have been mismodelled,
which could cause too large muon densities. Lastly, there are also concerns on whether the
correction of the bias was applied with the correct sign. The bias correction should make
the uncorrected muon densities smaller, but if wrongly applied, it would make them higher.
The there calculated bias, and therefore the size of the correction, ranged between ∼ 0 % to
∼ 30 %.

Figure 6.28 shows the comparison between the muon LDF as parameterized in this work
against the one of Ref. [97]. The left panel shows the parameterized average muon LDFs
from this work at different logarithmic energies, as well as the fitted muon LDFs to PMT
data. Different logarithmic energies are shown in different colors. The PMT muon LDFs are
fits to binned data, where the centers of the logarithmic energy bins are the ones indicated in
the plot, with a bin width of ∆ log10(E/eV) = 0.11, and with zenith angles in 0◦θ ≤ 24.62◦

(0 ≤ sin2 θ ≤ 0.17). The UMD muon LDFs use the parameterization of the modified NKG
of Eqs. (6.24) and (6.25) evaluated at the energies of the centers of the bins and at the mean
sin2 θ of the considered interval. The right panel shows the relative difference between the
muon LDFs of PMT and those of UMD for the same cases. From Fig. 6.28 we can see that
the muon content of both analysis is compatible at short distances from the shower axis
(between ∼ 100 m to ∼ 160 m), but that at larger distances the PMT muon densities are
larger than the ones found in this work by up to ∼ 25 %. At 450 m, the difference is between
∼ 20 % to ∼ 25 %.

Furthermore, in Ref. [97] a modified NKG is event-wise fitted to PMT data, obtaining
estimates of ρ450 for each selected event. The shape of the fitted modified NKG is determined
by its parameters, which are optimized for simulations: r0 = 280 m, α = 0.3, γ = 4.6 (like
in this analysis, rref = 450 m). For low-multiplicity events, the parameter β is fixed by the
following parameterization, also optimized for simulations:

β = b0 + b1 sec(θ), (6.31)

where b0 = 4.4 and b1 = −1.1. The obtained values of ρ450 at different zenith angles are then
normalized to 35◦ via a constant intensity cut. This is a procedure that uses the fact that the
expected rate of events is isotropic to estimate the zenith angle dependence of ρ450 (for more
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Figure 6.29: Left panel: Comparison between the parameterization of log10 ρ450 of this work
(c.f. Eq. (6.24)) evaluated at θ = 35◦ as a function of the logarithmic energy (solid line), and the
parameterization of log10 ρ35 from the UMD PMT data analysis (c.f. Eq. (6.32), dashed line). Right
panel: Comparison between the parameterization of β from this work (c.f. Eq. (6.25)) evaluated
at different energies (different colors, solid lines) as a function of the sine square of the zenith
angle, and the one of the UMD PMT data analysis (c.f. Eq. (6.31), dashed lines).

information see for example Refs. [92, 120]). The values of ρ35 are fitted with a power-law in
energy

ρ35 = A
(

E
1018

)b

, (6.32)

and the reported values of the parameters are A = (1.75± 0.05(stat.)± 0.05(syst.))m−2 and
B = 0.89± 0.04 (stat.)± 0.04 (syst.) [90].

The left panel of Fig. 6.29 shows the comparison of the parameterization of log10 ρ450 of
this work (c.f. Eq. (6.24)) evaluated at θ = 35◦ as a function of the logarithmic energy, against
the parameterization of log10 ρ35 reported in Ref. [97]. The right panel of Fig. 6.29 shows, for
completeness, the comparison of the parameterization of β from this work (c.f. Eq. (6.25))
evaluated at different energies as a function of the sine square of the zenith angle, against
the one of the UMD PMT data analysis (c.f. Eq. (6.31)). However, the difference in the rest
of the parameters of the modified NKG between the two analyses (in particular the large
difference in α) makes the comparison of β meaningless. Despite the muon LDFs from the
PMT data analysis are less steep (see Fig. 6.28), the values of β are larger than those of this
work, which are necessary to compensate the smaller value of α.

In the left panel of Fig. 6.29 we observe differences between the logarithmic muon densi-
ties ranging between 0.11 and 0.07. The latter translate to differences of 28 % to 17 % in muon
density (respectively). A previous study of UMD SiPM data [121], reported that the UMD
PMT muon densities were ∼ 18 % larger than those of the UMD SiPM data determined in
that work. In other words, an independent analysis found differences compatible with the
ones found in this work. Although we detailed the differences between the UMD PMT data
analysis and the one of UMD SiPM data of this work, the exact cause of the difference is not
yet known, and is subject of further investigations.
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6.9 Summary

In this Chapter we analyzed the muon Lateral Distribution Function (muon LDF) estimated
from the muon densities measured with the Underground Muon Detector of the Pierre
Auger Observatory.

We started by introducing the different models of the muon LDF found in literature: the
NKG, the modified NKG, and the Hillas functions; and we also introduced a simple log-log
polynomial function. We particularly analyzed the shape of the modified NKG to understand
how it depends on its parameters. We observed that the term with α is comparably important,
but that the shape can still vary widely only by varying the β factor. We also observed that
the term with γ affects the shape of the muon LDF only at large distances from the shower
axis.

We then presented the way in which we select the data. On one hand, we showed that
the array trigger efficiency imposes a minimum energy and maximum zenith angle of the
events. On the other hand, we saw that the maximum energy that we can select is limited
by statistics. With the selected ranges, we binned the data in logarithmic energy and sine-
square of the zenith angle, and implemented an outlier detection procedure. For null muon
densities we based the outlier detection method on the measured signal at the paired water-
Cherenkov detector (WCD), flagging as outliers the points where the UMD muon density
was null or very small, and the WCD signal was very large. For positive muon densities
we used a robust iterative procedure based on the z-score computed from the median and
median absolute deviation of the logarithmic muon density. Finally, it was also necessary to
introduce cuts in the distance of the module to the shower axis to avoid sampling biases. We
implemented a minimum distance cut based on the expected muon density, which ensures
a probability of saturation below 1 %. At large distances, the distance cut is related to the
decreasing lateral trigger probability, which, with the cut we introduce, lays above 90 %.

Furthermore, we described the fitting procedure, in which we group the data in bins
of logarithmic energy, sine-square of the zenith angle, and also in logarithmic distance. We
normalized the muon densities to the energy of the center of the bin to avoid spurious fluctu-
ations or biases. We then computed in each bin the logarithm of the mean and standard devia-
tion of the normalized muon densities. We inserted these in a χ2 function which we minimize
for each (log10(E/eV), sin2 θ)-bin. Moreover, we introduced the information criteria used
to analyze the goodness-of-fit, the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC). We also showed how we can use the Wald-Wolfowitz test to
analyze the randomness of the signs of the residuals of a fit, which constitutes a goodness-
of-fit criterion that is complementary to the AIC and BIC. We combined the p-values of the
Wald Wolfowitz test for each (log10(E/eV), sin2 θ)-bin using the Fisher method.

We computed the muon LDF from data and compared how the different analyzed models
fit it. We observed that fitting the parameters α and γ of the modified NKG is unfeasible due
to the lack of unbiased statistics very close and very far from the shower core, respectively.
We compared the AIC, BIC, and p-value of the Wald-Wolfowitz test for the different models
and found that a modified NKG with fixed parameters r0 = 320 m, α = 0.75, and γ =
3.0 is the best overall fitting function. Moreover, based on the latter fits, we provided two
parameterizations of the muon LDF of data as a function of the energy and zenith angle,
or shower size and zenith angle, which can be useful for fitting event-wise measurements
of the muon LDF, for making realistic toy models, or as a reference for the design of other
muon detectors.

Moreover, we use the aforementioned toy model of the muon LDF to analyze the sys-
tematic uncertainties in the fitted muon LDFs introduced by fixing the parameters α and
γ, and also by the overall characteristics of the fitting procedure used in the work. We ob-
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served that a +20 % (−20 %) bias in the fixed value of α translates into a bias in the muon
LDF of at most (−3.2± 0.4)% ((+6.0± 0.4)%), and that a +20 % (−20 %) bias in the fixed
value of γ translates into a bias in the muon LDF of at most (+4.5± 1.3)% ((−2.3± 1.3)%)
considering distance cuts. We also showed that, despite not having enough statistics to fit
γ, fixing it to the value γ = 3.0 introduces less biases than removing the factor from the
modified NKG function. We proved that applying a maximum distance cut at a 90 % lateral
trigger probability is conservative and helps keep biases small, specially at high energies.
Since fixing these parameters and applying the aforementioned distance cut biases in less
than±2 % the muon density at 450 m, this distance proves to be the optimal one to minimize
the uncertainties in the muon LDF, even when considering the systematics introduced by
the fit of the average muon LDF.

Finally, we compared the muon LDF as determined in this work from UMD SiPM data
to the one reported in Ref. [97] computed from UMD PMT data. We found that the muon
content at 450 m from the shower axis and at a zenith angle of 35◦ of the PMT analysis is
higher by 17 % to 28 % than the one determined in this work, in agreement with the results
of an independent analysis of SiPM data [121]. Although the differences between the two
analyses were explained, the exact cause of the discrepancy is not yet known and is subject
of future investigations.
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Chapter 7
Comparison of the muon content of
underground muon detector data and
simulations

As discussed in Chapter 2, it is a known fact that current air-shower simulations fail to re-
produce the muon content found in data. This is obtained from analyzing the consistency of
the mass composition implications of Xmax and of the number of muons Nµ (or equivalently
the muon density ρµ). By understanding where the deficit is (i.e. in which part of the phase
space), the hadronic interaction models can be improved, and conversely, the new hadronic
interaction models can be used to provide better mass composition estimates.

In this chapter we compare the muon densities estimated from measurements of the
Underground Muon Detector of the Pierre Auger Observatory (as described in Chapters 4
and 5) to muon densities obtained from simulations, both for single proton and single iron
primaries, as well as for mixed compositions scenarios, for the high-energy hadronic inter-
action models EPOS-LHC, QGSJetII-04, and Sibyll2.3c. The aim is to understand whether
the UMD data are consistent with a muon deficit in air shower simulations, and if so, to
quantify it. In particular, we study how the difference between the muon content of data
and simulations depends on the energy, zenith angle, and distance to the shower axis.

The structure of the chapter is as follows. In Sec. 7.1 we describe the analysis, including
the analytical computation of energy resolution effects in the simulated muon densities, the
transformation to the reference energy scale introduced by the Spectrum Working Group [122],
the computation of the muon density (divided by the reconstructed energy) for pure proton,
pure iron, and mixed composition scenarios, and the computation of a z-value. In Sec. 7.2 we
show the comparisons on the muon denisty as a function of the distance, and as a function
of the reconstructed energy, for different zenith angles. We also show the computed z-values
and how they compare to the expected values predicted by the mixed composition models,
as well as to those of other analyses of Pierre Auger data. Finally, in Sec. 7.3 we summarize
the main conclusions.

It is important to mention that the methods used in this chapter are strongly based on
the ones used in the following publications:

• Muon deficit in air shower simulations estimated from AGASA muon measurements,
F. Gesualdi, A. D. Supanitsky, and A. Etchegoyen, Phys. Rev. D 101, 083025, 2020 [123],

• Muon deficit in simulations of air showers inferred from AGASA data, F. Gesualdi, A. D.
Supanitsky, and A. Etchegoyen, Proc. 37th Int. Cosmic Ray Conf., 2021 [124],
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• On the muon scale of air showers and its application to the AGASA data, F. Gesualdi, H.
Dembinski, K. Shinozaki, A.D. Supanitsky, T. Pierog, L. Cazon, D. Soldin, and R. Con-
ceição on behalf of the Working group on Hadronic Interactions and Shower Physics
(WHISP), Proc. 37th Int. Cosmic Ray Conf., 2021 [125].

7.1 Analysis

In this section we describe how we analytically compute the detector effects in the simulated
muon densities. We also introduce the reference energy scale. We show how we compute the
muon density (divided by the reconstructed energy) for pure proton, pure iron, and mixed
composition scenarios. Finally we describe the computation of a z-value.

7.1.1 Simulating detector effects in the muon density

In this analysis we do not use Offline [70] detector simulations because, at the time of writing,
they were not in a production-ready state. There are concerns regarding the normalization of
the muon flux in the detector. More specifically, the number of muons injected in the detector
seem to differ from the ones expected from the CORSIKA [23] simulations. Nevertheless, this
does not affect (at least to a first order) detector-specific corrections like the one described in
Chapter 5, where the reconstructed number of muons is corrected against the ones injected in
the Offline simulations, being the correct normalization of the simulations not crucial. This
is not the case for this analysis, and for this reason we mimic the detector effects analytically.

When comparing the muon content of data against simulations, it is important to con-
sider the effects of the energy reconstructions in simulations. This is because the number of
muons is proportional to Eβ, where β ∼ 0.9. While the muon content of data is a function
of the reconstructed energy ER, that of simulations is a function of the Monte-Carlo or true
energy E. These two cannot be directly compared, even if ER estimates E with no bias [126].

To account for the energy reconstruction effects, we compute the average muon density
at a distance r divided by the reconstructed energy to the power of α, in the ith reconstructed
energy bin, as [123]

〈
ρµ r

Eα
R

〉
(ERi) =

∫ E+
Ri

E−Ri

∫ ∞

0
〈ρ̃µ r〉(E) E−α

R J(E) G(ER|E) ε(E)dE dER

∫ E+
Ri

E−Ri

∫ ∞

0
J(E) G(ER|E) ε(E)dE dER

, (7.1)

where E−Ri and E+
Ri are the lower and upper limits of the reconstructed energy bin of center

ERi. Notice that if α is zero we obtain the mean value of ρµ r. Furthermore,

• 〈ρ̃µ r〉(E) is the average muon density at distance r from the shower axis (measured
on the shower plane) as a function of the Monte Carlo true energy of the simulation 1,
which is obtained from power-law fits to air-shower simulations performed by using
CORSIKA [23],

• J(E) is the cosmic ray flux, which is obtained from the fit to the Pierre Auger cosmic
ray flux presented in Ref. [92],

• G(ER|E) is the conditional probability distribution of ER conditioned to E, which is
modelled as a log-normal distribution with a standard deviation taken from Ref. [127],

1The tilde in 〈ρ̃µ〉(E) emphasizes that this quantity cannot be directly compared to the average muon density
computed from data.
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• ε(E) is the trigger efficiency as a function of the Monte Carlo true energy, modelled as
an error function [128].

We first explain the rationale behind Eq. (7.1) and afterwards the details of each of the
functions involved. The idea is as follows [123]. The true energy of a real or simulated air
shower, E, is reconstructed to a value ER, which constitutes a fluctuation around E according
to G(ER|E). Moreover, the cosmic ray flux J(E) determines the natural distribution of the
true energy E (normalized within a certain energy range). The product of the efficiency and
the cosmic ray flux, J(E)ε(E) gives the observed distribution of the energy E at the detector.
Then, the product G(ER|E)J(E)ε(E) constitutes the joint probability distribution of E and
ER.

Let us first examine what happens when we calculate the mean muon density at the
reconstructed energy ER, 〈ρµ r〉(ER), using Eq. (7.1) with α = 0 and in the limit in which the
reconstructed energy bin width tends to zero, at high and at low energies. In the former case,
the efficiency is ∼ 1. While G(ER|E) is roughly symmetric with respect to the energy, J(E)
is highly asymmetric as it drops steeply with energy. Then, the product J(E)G(ER|E) is also
asymmetric, taking larger values for lower energies. This means that an event with recon-
structed energy ER comes, most likely, from an event with energy E < ER. Then, 〈ρµ r〉(ER)
is calculated as the integration of the contributions of 〈ρ̃µ r〉(E) weighted by the product
J(E)G(ER|E) (normalized within a certain energy range). We know that 〈ρ̃µ r〉(E) can be
modelled a power law in energy, i.e. ∝ Eβ, with β ∼ 0.9. This means that 〈ρ̃µ r〉(E) is smaller
for lower energies, which weigh more in the integration. Therefore, evaluated at a specific nu-
merical value E∗, 〈ρµ r〉(ER = E∗) < 〈ρ̃µ r〉(E = E∗). The difference increases where the flux
J(E) is steeper and where the energy resolution function G(ER|E) is broader. We now intro-
duce the integration in a reconstructed energy bin, taking it into account in the normalization
as well. This has the additional (smaller) effect of making the convolved muon density even
smaller: at a bin centered at ERi, 〈ρµ r〉(ERi = E∗) < 〈ρµ r〉(ER = E∗). Furthermore, for lower
energies, the efficiency ε(E) can play a significant role. Going from higher to lower ener-
gies, the efficiency can drop more steeply than what the flux increases, making the product
G(ER|E)J(E)ε(E) asymmetric in the opposite way as for higher energies, i.e., taking smaller
values for lower energies. Following the same steps as before, mutatis mutandis, we can
conclude that, evaluated at a specific numerical value E∗, 〈ρµ r〉(ER = E∗) > 〈ρ̃µ r〉(E = E∗),
and also 〈ρµ r〉(ERi = E∗) > 〈ρµ r〉(ER = E∗) in a bin centered at ERi.

We now detail the functions used in Eq. (7.1). In first place, for every model, primary,
and distance bin, we fit 〈ρ̃µ r〉(E) with the equation

〈ρ̃µ r〉(E) = ρµ r(19)

(
E

1019 eV

)β

, (7.2)

where ρµ r(19) is the muon density at distance r and at energy 1019 eV, and where β is the
exponent. Both are left as free parameters of the fit.

The muon flux J(E) follows the parameterization [92]

J(E) = J0

(
E

1018.5 eV

)−γ1 3

∏
i=1

[
1 +

(
E
Eij

)1/ωij
](γi−γj)ωij

, (7.3)

where j = i + 1, and the parameters take the values J0 = 1.315× 10−18km−2sr−1yr−1eV−1,
E12 = 5.0× 1018eV, E23 = 13× 1018eV, E34 = 46× 1018eV, γ1 = 3.29, γ2 = 2.51,γ3 = 3.05,
γ4 = 5.1, and ωij = 0.05. An explanation of the shape of the parameterization can be found
in Ref. [92].
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In Ref. [127], the energy resolution function G(ER|E) is modelled as a Gaussian distribu-
tion of mean µ(E) = E and standard deviation σ(E)

σ(E) = E

[
0.06 + 0.05

(
E

1018 eV

)− 1
2
]

. (7.4)

However, we model the detector resolution as a log-normal distribution. On one hand, this
is what is expected from first principles, as the signal arises from a multiplicative process.
Hence, it is natural that the signal at 450 m from the shower axis (the energy estimator of the
SD-750 array) and therefore the SD energy follows a log-normal distribution. For example,
in Ref. [120] such model is used for the parameterization of the energy resolution for the
SD-1500 array. On the other hand, the log-normal distribution is, in this case, more simple
to use than the Gaussian, because it is analytically integrable even when it is divided by ER.
In any case, since the energy resolution is considerably good, the impact of the choice of the
specific resolution function is negligible. The log-normal distribution is defined as

G(ER|E) =
1√

2π σl(E)ER
exp

[
−1

2

(
ln ER − µl(E)

σl(E)

)2
]

, (7.5)

where µl(E) and σl(E) are the parameters of the distribution. These are determined by
requiring that the mean of the log-normal distribution matches the mean µ(E) = E and
variance σ2(E) of the Gaussian distribution:

exp
[

µl(E) +
σl(E)2

2

]
= µ, (7.6)

[
exp(σl(E)2)− 1

]
exp

[
2µl(E) + σl(E)2] = σ2(E). (7.7)

Solving the system of equations for µl(E) and σl(E) we find

µl(E) = ln µ(E)− 1
2

ln

[
1 +

(
σ(E)
µ(E)

)2
]

, (7.8)

σl(E) =

√√√√ln

[
1 +

(
σ(E)
µ(E)

)2
]

. (7.9)

Finally, the 6T5 trigger efficiency is parameterized as [128]

ε(E) =
1
2
+

1
2

erf
[

3.71 log10

(
E

1016.93 eV

)(
1. + 0.187 log10

(
E

1016.93 eV

))]
, (7.10)

which is very similar to the parameterization derived in Ref. [129] but for events with zenith
angles θ ≤ 47◦.

Figure 7.1 shows a comparison between 〈ρ̃µ r/E〉(E) and 〈ρµ r/ER〉(ERi) as a function
of the corresponding energy for pure proton and pure iron EPOS-LHC simulations at
450 m from the shower axis. We can see that the difference between the curves is not large.
〈ρµ r/ER〉(ERi) can be up to 5 % smaller and up to 14 % larger (at the lowest energies) than
〈ρ̃µ r/E〉(E) in the analyzed energy range (from 1016.8 eV to 1018.6 eV). As explained before,
at the lowest energies, the dominant effect is the steeply decreasing trigger efficiency, while
at higher energies the resolution in the reconstructed energy dominates. Binning in recon-
structed energy with a bin width of ∆ log10(ER/eV) = 0.2 has in comparison only a small
effect.
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Figure 7.1: Average muon density at 450 m from the shower axis, divided by the energy, as a
function of the logarithm of the Monte Carlo energy E (dashed lines) and average muon density
at 450 m from the shower axis, divided by the reconstructed energy, as a function of the logarithm
of the reconstructed energy bin ERi (solid lines). We used a bin width of ∆ log10(E/eV) = 0.2.
The high-energy hadronic interaction model used to generate the air showers is EPOS-LHC, and
the primaries are proton (red) and iron (blue).

It is relevant to mention the fact that none of the functions in Eq. (7.1) are defined from
0 to ∞ in E. We restrict the integration range to 16.8 ≤ log10(E/eV) ≤ 18.7. With this
energy interval we ensure to contain ≥ 97.5 % of the true energies E that are mapped to
reconstructed energies ER in the boundaries of the studied interval, log10(ER/eV) = 17.22
and log10(ER/eV) = 18.42. The impact of using a finite integration range as opposed to an
infinite one is estimated to be∼0.1 % in this energy range, which is negligible in comparison
with other sources uncertainties. The integrals are computed numerically using ROOT [98].

7.1.2 Transformation to the reference energy scale

When comparing the analysis of different air-shower experiments, it is crucial to use a unified
energy scale. On one hand, we want this analysis to be comparable to the analysis of AGASA
data performed in Chapter 8. On the other hand, we use both Pierre Auger and Telescope
Array mass composition fractions as a function of the energy, which is another good reason
to work on a unified scale. Because of these reasons we work with the so-called reference
energy scale introduced by the Spectrum Working Group [122].

Each experiment has its own energy scale, Edata, which has to be multiplied by a factor
fE = Eref/Edata to transform the energies to the cross-calibrated energy scale Eref. The factors
fE are estimated by matching the characteristic features of the different flux measurements,
relying on the assumption that all experiments should observe the same cosmic ray flux
because of its isotropic nature.

The correction factor for the Pierre Auger experiment is reported to be fAuger = 1.052 [122],
while that of the Telescope Array experiment is reported to be fTA = 0.948 [122]. Further-
more, we take as systematic uncertainties of the Pierre Auger data in the reference energy
scale, the ones that they report on their energy scale, i.e., ±14 % [130].
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It is relevant to add that the energy in Eq. (7.4) is in the Auger energy scale. Expressing
the energy resolution as a function of the reference energy scale we obtain

σ(Eref) = Eref fAuger

[
0.06 + 0.05

(
Eref fAuger

1018 eV

)− 1
2
]

. (7.11)

7.1.3 Calculation of the muon density

Data

As mentioned in the introduction to this chapter, the muon densities are estimated from mea-
surements with the Underground Muon Detector of the Pierre Auger Observatory equipped
with SiPMs. The dataset is the same used in Chapter 6, i.e., they are measurements taken
between January 2018 and December 2021. For the reconstruction we use Offline (git ver-
sion 5e0048b4) [70]. The energy and geometry is reconstructed from the SD information.
The muon densities are reconstructed using the estimator of the mean number of muons µ
of the 1-bin counting strategy described in Chapter 4 with a 12-bin (37.5 ns) single-muon
pattern. The muon densities are also bias-corrected against simulations as described in
Chapter 5. After the data selection described in Chapter 6, the muon densities are grouped
in bins of logarithmic energy in the range 17.22 ≤ log10(ER/eV) ≤ 18.42 in bins of width
0.2, in zenith angles between 0◦ ≤ θ ≤ 45◦ (0 ≤ sin2 θ ≤ 0.5) in two bins, being the
bin edge 30◦ (sin2 θ = 0.25), and in logarithmic distance to the shower axis in the range
1.5 ≤ log10(r/m) ≤ 3.2 in bins of width 0.1 (but not all distance bins are populated for every
energy and zenith angle bin). We propagate the statistical uncertainty of the core, follow-
ing the model described in Sec. 6.7.1, into the muon density; we also take into account a
contribution from the distance bin width. Null measured muon densities are included in
the analysis. With respect to what is shown in Chapter 6, there is a difference of 0.02 in the
energy scale (log10 fAuger) because of using the reference energy scale in this case. Also, in
contrast to Chapter 6, we do not normalize the measured muon densities to the center of the
reconstructed energy bin, but rather take into account the effect of binning in reconstructed
energy in the simulated muon densities (c.f. Eq. (7.1)).

Simulations

We generated a library of proton, helium, nitrogen, and iron air showers using the high-
energy hadronic interaction models EPOS-LHC [26], QGSJetII-04 [27], and Sibyll2.3c [28],
and the low-energy hadronic interaction model UrQMD [32, 33], within CORSIKA v7.7402
[23]. The generated arrival directions were isotropically distributed in the range 0◦ ≤ θ ≤ 45◦

and with a uniform distribution in the logarithm of the (Monte Carlo) primary energy in
16.8 ≤ log10(E/eV) ≤ 18.7. We simulated 3000 air showers per primary and per high-energy
hadronic interaction model.

For each simulated air shower, the muon density at a given distance bin is calculated
by counting the muons that fall within the ring on the shower plane that the distance-
bin determines, which would reach ground with an energy Eµ ≥ 1GeV/ cos(θµ), being θµ

the zenith angle of the muon. Then the count is divided by the area of the shower-plane
ring. Furthermore, for each energy, zenith angle, and distance bin, the muon densities of
all showers that populate the bin are averaged. For each model, primary, zenith angle and
distance bin, the average muon densities as a function of the Monte Carlo energies are
fitted with the power law of Eq. (7.2). Finally, 〈ρµ r/Eα

R〉(ERi) is calculated via the numerical
evaluation of Eq. (7.1).
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Mixed composition scenarios

The muon densities for the mixed composition scenarios 〈ρ̃ mix
µ r 〉(E) are calculated as the

linear combination of the single primary (proton, helium, nitrogen, and iron) muon densities,
being the factors the mass fractions

〈ρ̃ mix
µ r 〉(E) = ∑

A
fA(E) 〈ρ̃A

µ r〉(E), (7.12)

where A = {p, He, N, Fe} and fA(E) is the mass fraction as a function of primary energy.
For energies above 1017.22 eV we use the mass fractions obtained from the fits to the Xmax
experimental distributions by the Pierre Auger Collaboration [57], while for lower energies
we use the mass fractions estimated also from fits to the Xmax distributions but by the
Telescope Array Collaboration [131]. The mass fractions as a function of each experiment’s
energy are transformed to the reference energy scale, and are linearly interpolated between
the discrete values in which they are given to obtain a continuous function. It is relevant
to add that the Telescope Array mass fractions are estimated for EPOS-LHC, but we use
them for QGSJetII-04 and Sibyll2.3c too considering an extra 10 % systematic uncertainties
in the mass fractions. The mass fractions of Telescope Array only play a secondary role in
this analysis, because they only partially influence the resulting convolved muon densities
at the lower reconstructed energies.

The convolved 〈ρmix
µ r /Eα

R〉(ERi) is calculated by introducing 〈ρ̃ mix
µ r 〉(E) (as defined in

Eq. (7.12)) through Eq. (7.1). Notice that 〈ρmix
µ r /Eα

R〉(ERi) is not equivalent to a linear combi-
nation of 〈ρA

µ r/Eα
R〉(ERi) because the mass fractions fA(E) depend on the energy E, that is

an integration variable.
We treat the statistical and systematic uncertainties of 〈ρmix

µ r /Eα
R〉(ERi) as follows: for

each model, and for each discrete energy value, we select the combination of mass frac-
tions within the boundaries of its uncertainties that maximize and minimize 〈ρ̃ mix

µ r 〉(E)
(this over-estimates the uncertainties, but given that the covariance matrices of the mass
fraction fits are not available this method is the best approach). In this way, we calculate
〈ρ̃ mix

µ r 〉(E)±σ[〈ρ̃ mix
µ r 〉](E) for each discrete energy value. Moreover, the values of 〈ρ̃ mix

µ r 〉(E)+
σ[〈ρ̃ mix

µ r 〉](E) and 〈ρ̃ mix
µ r 〉(E)− σ[〈ρ̃ mix

µ r 〉](E) are linearly interpolated in the energy range un-
der consideration. Finally, the uncertainties on 〈ρmix

µ r /Eα
R〉(ERi) are obtained by inserting

each interpolated function in the convolution of Eq. (7.1).

7.1.4 Computation of a z-scale

According to the Heitler-Matthews model (see Sec. 2.2), the muon content Nµ of an air
shower grows with the primary mass number A and with the primary energy E following

ln Nµ = (1− β) ln A + β ln(E/ξc), (7.13)

being β the power-law index (β ≈ 0.9), and ξc a critical energy constant [22].
As mentioned in Sec. 2.5, a muon scale to quantify the muon content measured by differ-

ent experiments was defined in Ref. [5] as

z :=
ln Ndet

µ, data − ln Ndet
µ, p

ln Ndet
µ, Fe − ln Ndet

µ, p
, (7.14)

where the suffix “det” indicates that the proton and iron muon contents derive from full-
detector simulations, which is useful to cancel first order detector effects. This muon scale has
desirable properties: (1) The differences in the logarithms are, to first order, independent of
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the experimental conditions in which the measurements were taken (distance to the shower
axis, zenith angle, etc...), at least to the extent to which the air shower simulations reproduce
them; (2) It is independent of the energy to first order (the remaining energy dependence is
only through the composition); (3) It should range between 0 and 1, being 0 for proton-like
data and 1 for iron-like data, given that simulations correctly reproduce the muon content
of real showers; (4) If the mass number A is known event-by-event, the Heitler-Matthews
model predicts a value of z of ln A/ ln 56. It is useful to add that z can be equivalently
computed from the muon densities instead of muon numbers mutatis mutandis.

Furthermore, to evaluate the muon deficit, we need to consider a reference z-value

zmass :=
ln Ndet

µ, mass − ln Ndet
µ, p

ln Ndet
µ, Fe − ln Ndet

µ, p
, (7.15)

where Ndet
µ, mass represents the muon content from detector simulations, evaluated using the

mass fractions of a given composition model.
To build an estimator of the muon scale z, it is necessary to introduce the mean within a

given energy bin. We define an estimator of the muon scale by taking the logarithm of the
mean of the muon number,

zln〈·〉 =
ln〈Ndet

µ, data〉 − ln〈Ndet
µ, p〉

ln〈Ndet
µ, Fe〉 − ln〈Ndet

µ, p〉
. (7.16)

For this analysis we take the muon densities at r ∼ 450 m from the shower axis, for
events with zenith angles in 0◦ ≤ θ < 45◦ 2.

As a reference with which to compare the aforementioned z-values, we define the esti-
mator of zmass as

z〈ln ·〉mass =
〈ln Ndet

µ, mass〉 − 〈ln Ndet
µ, p〉

〈ln Ndet
µ, Fe〉 − 〈ln Ndet

µ, p〉
. (7.17)

Notice that in this case we use the mean of the logarithm instead of the logarithm of the
mean. We delay the discussion of the effect of this difference to Sec. 8.2.4.

Moreover, an alternative expression to Eq. (7.17), which does not require to compute
detector simulations, can be obtained using the Heitler-Matthews model. For this we take the
average on both sides of Eq. (7.13), and evaluate it for proton, iron, and a mixed composition
scenario. Replacing these expressions in z〈ln ·〉mass we obtain

zHM
〈ln ·〉mass =

〈ln A〉
ln 56

. (7.18)

Finally, if the measured z-values follow zmass, then the simulations have no muon deficit.
Therefore, a scale of the muon deficit in simulations, ∆z, is defined as

∆z := z− zmass. (7.19)

We delay a detailed discussion and analysis on alternative ways to compute z-values to
Chapter 8. An alternative estimation of the z-values of the UMD SiPM data can be found in
Appendix B.2.

2For this analysis we do not perform a constant intensity cut to obtain the equivalent muon densities at a
given zenith angle, because ρµ 450 is almost independent of the zenith angle (see Sec. 6.6). Nevertheless, the
results could be improved by including the aforementioned method [97].
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7.2 Results

In this section we compare the muon content of air showers in data against proton, iron,
and mixed composition scenarios of the three high-energy hadronic interaction models
considered. We analyze the dependence with the distance to the shower axis and with the
energy. Finally, we show the computed z-values.

7.2.1 Muon content as a function of the distance

The muon density covers several orders of magnitude as it decreases with the distance to the
shower axis. For that reason, we take a reference muon density to facilitate the visualization
of the comparison of the dependence with the distance to the shower axis. Figure 7.2 shows
the average muon density divided by the average muon density of EPOS-LHC proton air
showers as a function of the distance to the shower axis, for data, proton, iron, and mixed
composition scenarios, at log10(ERi/eV) = 17.52. The results for other energies are included
in Appendix B.1. The muon densities from simulations and the mixed composition scenarios
are computed from Eq. (7.1) using α = 0. The left panels show the results for more vertical
zenith angles (θ < 30◦), while the right panels show the results for more inclined zenith
angles (30◦ ≤ θ < 45◦). The two upper panels show the comparison of data against EPOS-
LHC muon densities, the central panels against QGSJetII-04, and the bottom panels against
Sibyll2.3c. The error bars represent the statistical uncertainties, while the brackets represent
the systematic uncertainties. In the case of single-primary muon densities the uncertainties
are contained within the markers.

From the three right panels of Fig. 7.2 it is noticeable that the muon densities from
data at large zenith angles and short distances to the shower axis fall below the proton
predictions for the three considered models, although the data are mostly still consistent
with simulations within uncertainties. At short distances from the shower axis, the largest
source of statistical uncertainty is the propagated uncertainty in the position of the core.
Additionally, there might actually be another source of uncertainty not taken into account,
caused by the lack of correction of asymmetries in the data reconstruction. In inclined events,
the shower core tends to be reconstructed systematically more upstream. This leads to biases
in the reconstructed impinging point of the shower core. At shorter distances from the
shower axis, the impact of this bias in the relative error of the reconstructed distances is
larger. Estimating the introduced (systematic) uncertainty is far from trivial, but, as already
mentioned, it is only relevant at short distances from the shower axis [132]. We observe this
effect only at low energies, like in this case, where it is possible to measure muon densities
close to the shower core without saturation. We restrict the rest of the analysis to distances
above log10(r/m) > 2.40, where, from the right panels of Fig. 7.2, we observe that this bias
has no significant effect.

Furthermore, in Fig. 7.2, the slope of the muon LDF is not well reproduced at small zenith
angles, but it is approximately reproduced at large zenith angles (for log10(r/m) > 1.75) by
EPOS-LHC and Sibyll2.3c. This is approximately the trend at all energies. At higher energies
(log10(ER/eV) ≥ 18.12) it is also noticeable that the muon densities of data are generally
larger than those of the mixed composition scenarios for all models (see Appendix B.1).

From Fig. 7.2 we can conclude that the difference between simulations and data cannot
be solved by correcting the normalization of simulations with a unique factor. There is an
evident dependence with distance to the shower axis and with zenith angle. In the next
section, we show that there is also a clear trend with energy.



110 CHAPTER 7. THE MUON CONTENT OF UMD DATA AND SIMULATIONS

7.2.2 Muon content as a function of the energy

Because the muon density grows almost linearly with energy, it increases considerably
within the analyzed energy range (1017.32 eV to 1018.32 eV). For that reason, we compare the
average muon density divided by the reconstructed energy, which in the case of simulations
and the mixed composition scenarios is computed from Eq. (7.1) using α = 1. Figures 7.3, 7.4,
and 7.5 show the average muon density divided by the reconstructed energy, as a function
of the center of the reconstructed energy bin, for data, proton, iron, and mixed composition
scenarios, at different distances from the shower axis: r ∼ 280 m in Fig. 7.3, r ∼ 450 m in
Fig. 7.4, and r ∼ 710 m in Fig. 7.5.

The Figs. 7.3 to 7.5 show that the muon content of data is consistently above the predic-
tions from the mixed composition scenarios, although mostly not significantly. In most cases
the muon content of data is compatible with a heavier composition. This difference between
data and the mixed composition scenarios is larger closer to the shower core, where most
muons are produced by the high-energy hadronic interactions. The difference is slightly
larger at smaller zenith angles, but the trend is not as clear as it is with the energy or distance
to the shower axis. The difference is also smaller if the energy scale is increased considering
its systematic uncertainties. It is also noticeable that, of the three analyzed models, QGSJetII-
04 shows the largest discrepancies between data and the mixed composition predictions.

To further analyze the compatibility between data and simulations, we quantify the
average muon deficit as a function of the reconstructed energy by calculating a correction
factor F, defined as the ratio between the experimental average muon density divided by
the reconstructed energy and the one obtained from simulations,

F =
〈ρdata

µ r /ER〉
〈ρS

µ r/ER〉
, (7.20)

where S denotes the scenario under analysis, i.e. S={mix, p, Fe}. We derive the uncertainties
in F by propagating the uncertainties of 〈ρdata

µ r /ER〉 and 〈ρS
µ r/ER〉. Figures 7.6, 7.7, and 7.8

show the values of the correction factor F, for the three considered models, and for the single
nuclei and mixed composition scenarios, as a function of the logarithm of the reconstructed
energy bin center. The statistical uncertainties of F are represented with error bars while its
systematic uncertainties with brackets. The reconstructed energy bins in which the correction
factor F is larger than 1 by more than 1σ (considering total uncertainties) are highlighted in
gray and detail the significance.

The Figs. 7.6 to 7.8 show more clearly what was already seen in Figs. 7.3 to 7.5. The
correction factors F are all above 1 for the mixed composition scenarios, although in most
cases not significantly for EPOS-LHC and Sibyll2.3c. There is only in some cases a significant
difference at higher energies for the aforementioned models. In contrast, QGSJetII-04 has
in most cases correction factors F > 1 with a significance above 1σ. Although the values
of F are larger for the larger zenith angles, there is not a significant difference. As stated in
Ref. [123] (and references therein), it can be assumed that the composition model derived
from Xmax measurements are subject to smaller systematic uncertainties introduced by the
hadronic interaction models. Hence, the observed incompatibilities (where found) can be
interpreted as evidence of a muon deficit in air-shower simulations 3.

3Alternatively, if air-shower simulations had a deeper Xmax, the implied composition would be heavier, and
that would help alliviate the tension between data and simulations with respect to the number of muons [133].
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7.2.3 Computed z-values

Figure 7.9 shows the z-values computed from the UMD SiPM data, as explained in Sec. 7.1.4,
for the three considered models, as a function of the logarithm of the reconstructed energy
bin center. The z-values are computed from the average muon densities at 450 m from the
shower axis, measured on the shower plane, and for events with a zenith angle between
0◦ ≤ θ < 45◦. The gray shaded area corresponds to the predictions of the z-values using
the mass fractions of the fits to the Pierre Auger Xmax distributions [57], while the gray
dashed lines use the mass fractions of the GSF composition model [61]. Gray horizontal
lines mark z = 0 and z = 1, the expected values for a pure proton and pure iron composition
respectively. The systematic uncertainties of the energy scale are not depicted here. We can
see that the z-values of data are compatible within uncertainties with the predictions of both
composition models at lower energies, but that there is a difference that grows with energy
between the z-values from data and those expected from the mixed composition scenarios.
This is consistent with what is shown in Fig. 7.7 for the mass composition model of the Pierre
Auger Collaboration. Like in Fig. 7.7, the difference is the largest for QGSJetII-04, followed
by Sibyll2.3c, and the smallest is for EPOS-LHC.

Considering total uncertainties, the z-values of the two highest energy bins (centered
at log10(ERi/eV)=18.12 and log10(ERi/eV) = 18.32) do not overlap the expected values
from the GSF composition model, for the three high-energy hadronic interaction models. In
contrast, when considering the composition model derived from the fits to the Pierre Auger
Xmax distributions, only the z-value at log10(ERi/eV) = 18.32 for QGSJetII-04 is found incom-
patible. In all other cases, the computed z-values are compatible within total uncertainties
with both composition models.

As mentioned before, an alternative estimation of the z-values of the UMD SiPM data
can be found in Appendix B.2.

7.2.4 Comparison to other Pierre Auger z-values

Figure 7.10 shows a comparison of the z-values of different analyses of Pierre Auger data. In
this case, we only show the models EPOS-LHC and QGSJetII-04 since the other analyses do
not consider Sibyll2.3c. The z-values calculated in this work are shown in full purple stars.
Orange crosses show the values computed in an analysis of UMD PMT data (see Ref. [5]
and references therein). We show in an olive octagon the value computed from hybrid
measurements between the SD-750 array and the Heat-Coihueco fluorescence telescopes,
extracted from Ref. [15] 4. Although the latter has no computed error bars, it is a good
reference for comparison as it is in the same energy range. Finally, the red circles show
the Pierre Auger results at higher energies, from two different analyses: the first one is an
analysis on hybrid data of the SD-1500 array and the fluorescence detectors, while the second
one is an analysis of SD-1500 data at very inclined angles (62◦ ≤ θ ≤ 80◦), (see Ref. [5] and
references therein).

We can see from Fig. 7.10 that the z-values computed in this work are in tension with
those of the UMD PMT data (specially considering the common systematic uncertainties),
but are compatible with those of hybrid infill data within uncertainties. The points computed
from the UMD PMT data lie above those of this work. As shown in Sec. 6.8, the muon
densities of the UMD PMT data are larger than the ones of this work by 17 % to 28 %. Such
difference in the muon densities explains most of the difference between the two sets of
z-values. As mentioned there, the cause of the differences between the estimated muon
densities is not completely understood, and a deeper investigation should be undertaken.

4In Ref. [15], two types of z-values are computed considering different energy scale factors. We take for
comparison the points compatible with the energy rescaling factor of this work, fAuger = 1.052.
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It is relevant to add that we delay to Chapter 8 the comparison of these z-values to the
ones computed from AGASA data in this work, as well as to those of other experiments [5].

7.3 Summary and conclusions

The objective of this chapter was to analyze the compatibility between the muon content in
UMD SiPM data and single proton, single iron, and mixed composition scenarios computed
from three different high-energy hadronic interaction models: EPOS-LHC, QGSJetII-04, and
Sibyll2.3c. We used two different composition models, one derived from the fits to the Tele-
scope Array [131] and Pierre Auger [57] Xmax distributions, and another one derived from
the mass fractions of the Global Spline Fit composition model [61].

As first step, we showed a method to analytically compute the effects of the reconstruc-
tion in the average muon density (divided, or not, by the reconstructed energy), and by
binning in reconstructed energy. The detector effects proved to be mostly small (between
−5 % and +14 %, the latter only at the lowest energies), due to the very good energy res-
olution of the Pierre Auger Observatory. Furthermore, we used the reference energy scale
introduced by the Spectrum Working Group [122]. We also showed how to compute the so-
called z-values from the UMD data.

We compared the average muon density as a function of the logarithmic distance to the
shower axis between data and single proton, single iron, and mixed composition scenar-
ios. We observed that the slope of the muon LDF is not well reproduced at small zenith
angles, but that it is approximately reproduced by EPOS-LHC and Sibyll2.3c at large zenith
angles (and for log10(r/m) > 1.75). This showed that introducing a unique normalization
correcting factor would not solve the difference between data and simulations.

Furthermore, we compared the average muon density divided by the reconstructed
energy as a function of the logarithm of the reconstructed energy bin center between data
and the single proton, single iron, and mixed composition scenarios. We performed the
comparison for three distances to the shower axis, r ∼ 280 m, r ∼ 450 m, and r ∼ 710 m,
and for two zenith angle bins (0◦ ≤ θ < 30◦ and 30◦ ≤ θ < 45◦). We found the UMD data
in most cases compatible with a pure iron composition considering total uncertainties, and
consistently above the predictions from the mixed composition scenarios, but in most cases
compatible within uncertainties. This difference is larger if the energy scale is decreased, the
larger the energy, the smaller the distance to the shower core, the smaller the zenith angles,
and for the model QGSJetII-04.

Finally, we computed the z-values from the UMD data using the average muon densities
at r ∼ 450 m and taking the whole zenith angle range (0◦ ≤ θ < 45◦). Similarly, we observe
that the difference between the z-values from data and those of the mixed composition
scenarios increases with the reconstructed energy, but that in most cases the difference is not
significant. We did find incompatibilities for all models with the GSF composition model
in the two highest-energy bins (log10(ERi/eV) = 18.12 and log10(ERi/eV) = 18.32), while
only the highest-energy z-value of QGSJetII-04 is incompatible with the composition model
derived from the fits to the Pierre Auger Xmax distributions. These incompatibilities between
data and the mixed composition scenarios are interpreted as evidence of a muon deficit in
air-shower simulations. Finally, we compared the z-values computed in this work with those
of other analyses of Pierre Auger data. We found our z-values in tension with those of a UMD
PMT analysis (see Ref. [5] and references therein), but compatible with those of a hybrid
infill analysis [15]. In Chapter 8 we compare these z-values to those computed from AGASA
data at higher energies, as well as to those of other experiments.
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Figure 7.2: Average muon density divided by the average muon density of EPOS-LHC proton
air showers as a function of the distance to the shower axis, for the reconstructed energy bin
centered at log10(ERi/eV) = 17.52 with a bin width of ∆ log10(ER/eV) = 0.2. Square markers
represent data, down triangles iron, circles represent the mixed composition scenarios, and up
triangles proton. Error bars represent statistical uncertainties and brackets represent systematic
uncertainties. These are contained within the markers in the case of proton and iron simulated
densities. In the two upper panels the simulated muon densities and those of the mixed compo-
sition scenarios correspond to the model EPOS-LHC, in the central panels to QGSJetII-04, and in
the bottom panels to Sibyll2.3c. The three left panels show the comparison for the smaller zenith
angles (θ < 30◦), and the three right panels for the larger zenith angles (30◦ ≤ θ < 45◦).
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Figure 7.3: Average muon density divided by the reconstructed energy, as a function of the
center of the reconstructed energy bin, for 2.40 ≤ log10(r/m) < 2.50 (r ∼ 280 m). The consid-
ered bin width is ∆ log10(ER/eV) = 0.2. Square markers represent data, down triangles iron,
circles represent the mixed composition scenarios, and up triangles proton. Error bars represent
statistical uncertainties and brackets represent systematic uncertainties. These are contained
within the markers in the case of proton and iron simulated densities. In the two upper panels
the simulated muon densities and those of the mixed composition scenarios correspond to the
model EPOS-LHC, in the central panels to QGSJetII-04, and in the bottom panels to Sibyll2.3c.
The three left panels show the comparison for the smaller zenith angles (θ < 30◦), and the three
right panels for the larger zenith angles (30◦ ≤ θ < 45◦).
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Figure 7.4: Same as Fig. 7.3, but for 2.60 ≤ log10(r/m) < 2.70 (r ∼ 450 m).
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Figure 7.5: Same as Fig. 7.3, but for 2.80 ≤ log10(r/m) < 2.90 (r ∼ 710 m).
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Figure 7.6: Correction factor F (see Eq. (7.20)), as a function of the center of the reconstructed en-
ergy bin, for 2.40 ≤ log10(r/m) < 2.50 (r ∼ 280 m), considering a bin width of ∆ log10(ER/eV) =
0.2. Down triangles represent iron, circles represent the mixed composition scenarios, and up
triangles represent proton. Statistical uncertainties are shown with error bars and systematic
uncertainties with brackets. In the two upper panels the model is EPOS-LHC, in the central
panels it is QGSJetII-04, and in the bottom panels it is Sibyll2.3c. The three left panels show the
comparison for the smaller zenith angles (θ < 30◦), and the three right panels for the larger
zenith angles (30◦ ≤ θ < 45◦). Highlighted in gray are the reconstructed energy bins where the
correction factor F, that makes the mixed composition scenario match data, is larger than 1 with
a significance of more than 1σ; in these cases the significance is detailed in the same bin. A gray
horizontal line marks F = 1.
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Figure 7.7: Same as Fig. 7.6, but for 2.60 ≤ log10(r/m) < 2.70 (r ∼ 450 m).
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Figure 7.8: Same as Fig. 7.6, but for 2.80 ≤ log10(r/m) < 2.90 (r ∼ 710 m).
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Figure 7.9: Values of z as a function of the logarithm of the center of the reconstructed energy
bin for the three considered models. The left panel shows the values computed for EPOS-LHC,
the middle panel for QGSJetII-04, and the right panel for Sibyll2.3c. Gray horizontal lines mark
the expected values of z for pure proton and pure iron compositions (0 and 1 respectively).
Dashed lines shows the z-value expected from mixed composition scenarios considering the
mass fractions of the GSF model, while the gray shaded area represents the ones expected from
the fits to the Pierre Auger Xmax distributions. The computed z-values are shown in circles,
with its statistical uncertainties represented with error bars and its systematic uncertainties with
brackets.
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Figure 7.10: Same as Fig. 7.9, but comparing different analyses of Pierre Auger data. The models
shown are EPOS-LHC (left panel) and QGSJetII-04 (right panel). The z-values computed in this
work are shown in full purple stars, and the error bars represent total uncertainties. The orange
crosses correspond to the results of UMD PMT data, while the red circles correspond to analyses
of hybrid and inclined data (see Ref. [5] and references therein). The olive octagon corresponds
to an analysis of hybrid data in the infill [15].



Chapter 8
Muon deficit in air-shower simulations
estimated from AGASA data

In Chapter 7 we compared the muon content in UMD SiPM data of the Pierre Auger Ob-
servatory and in air-shower simulations at reconstructed energies in the range 17.22 ≤
log10(ER/eV) ≤ 18.42. It is of our interest to compare the muon content between data and
simulations also at higher energies. Since the UMD was not designed to measure higher
energy events given its spacing and exposure, it does not provide enough statistics above
the aforementioned energy.

For this reason, in this chapter we analyze direct measurements of the muon densities
at 1000 m from the shower axis performed by the Akeno Giant Air Shower Array (AGASA).
The AGASA data set is valuable and unique due to its ultra-high energies, only reached by
a couple of other experiments (the Pierre Auger Observatory, Telescope Array, and Yakutsk
Array). At the aforementioned energies, it is the only experiment that provides a direct de-
tection of muons, while simultaneously measuring the primary energy. The aforementioned
data set consists of events with zenith angles θ ≤ 36◦ and reconstructed energies in the range
18.83 ≤ log10(ER/eV) ≤ 19.46. We compare the muon content of these data to that of air-
shower simulations of proton, iron, and mixed composition scenarios, for three high-energy
hadronic interaction models: EPOS-LHC, QGSJetII-04, and Sibyll2.3c. The methods used in
this chapter are analogous to those of Chapter 7.

The structure of this chapter is as follows. We first start by describing AGASA in Sec. 8.1.
In Sec. 8.2 we describe the analytical computation of detector effects in the simulated muon
densities, the transformation of the AGASA energy scale to the reference energy scale, we
describe the used data set, and describe the way to compute the z-values from AGASA data.
In particular, we define two different estimators of the muon scale and muon deficit scale,
analyze their biases, and provide expressions to compute them for the case of AGASA. In
Sec. 8.3 we show the comparisons of the muon content as a function of the reconstructed
energy of data to single-proton and single-iron simulations, as well as to mixed composition
scenarios. Furthermore, we show the z-values computed from the two different estimators
and how they compare to the expected values predicted by the mixed composition models.
Moreover, in Sec. 8.4 we show how they compare to the z-values computed from UMD SiPM
measurements in this work (c.f. Chapter 7), as well as to those of other experiments. Finally,
in Sec. 8.5 we summarize the main conclusions.

This chapter is strongly based on the publications:

• Muon deficit in air shower simulations estimated from AGASA muon measurements,
F. Gesualdi, A. D. Supanitsky, and A. Etchegoyen, Phys. Rev. D 101, 083025, 2020 [123],
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• Muon deficit in simulations of air showers inferred from AGASA data, F. Gesualdi, A. D.
Supanitsky, and A. Etchegoyen, Proc. 37th Int. Cosmic Ray Conf., 2021 [124],

• On the muon scale of air showers and its application to the AGASA data, F. Gesualdi, H.
Dembinski, K. Shinozaki, A.D. Supanitsky, T. Pierog, L. Cazon, D. Soldin, and R. Con-
ceição on behalf of the Working group on Hadronic Interactions and Shower Physics
(WHISP), Proc. 37th Int. Cosmic Ray Conf., 2021 [125].

8.1 The Akeno Giant Air Shower Array

The Akeno Giant Air Shower Array (AGASA) experiment was located in Akeno (Hokuto
since 2004), Yamanashi, Japan. It was conformed by an array of 111 scintillation detectors
spread across ∼100 km2, as well as by 27 muon detectors. The experiment was able to mea-
sure events with energies above 3× 1016 eV and with zenith angles θ ≤ 45◦ [45]. The average
altitude of the detectors was 667 m above sea level. The detectors were decommissioned in
2004.

Similar to the Pierre Auger Observatory, AGASA counted with arrays of detectors sepa-
rated by different distances, to cover a wider energy range. The data that we use correspond
to the largest array, dubbed A100 as it covered ∼ 100 km2. Each position of the array was
instrumented with a 5 cm-thick scintillation counter with an area of 2.2 m2. Similar to the sur-
face scintillation detectors (SSDs) or the underground muon detectors (UMD) of the Pierre
Auger Observatory, the scintillation detectors had optic fibers and a photomultiplier tube
(PMT). The detectors had a broad dynamic range of 0.3 to 5× 104 particles per detector.
Data taking was triggered under the condition that 5 neighbor stations had a signal equal
or larger than 0.3 particles within 2.5 µs [134].

The muon detectors were deployed in the southern part of the array. Each muon detector
was formed by 50 proportional counters made of an iron pipe of dimensions 5 m× 10 cm×
10 cm, coated inside with zinc. They were filled with a gas mixture of 90 % argon and 10 %
methane at a pressure of 690 mmHg at 15 ◦C [135]. The muon detectors were shielded with
1 m of concrete or 30 cm of iron, implying a vertical muon energy threshold of 0.5 GeV [45].

Figure 8.1 shows a map of AGASA. The positions of the scintillation detectors can be
seen in circles, and those that have a square on top were also instrumented with the muon
detectors.

8.2 Analysis

In this section we describe the analytical computation of the detector effects in the simulated
muon densities. We also discuss the transformation to the reference energy scale. We describe
how we compute the muon density (divided by the reconstructed energy) for pure proton,
pure iron, and mixed composition scenarios. Finally, we discuss on two different estimators
of a z-value.

8.2.1 Simulating detector effects in the muon density

The way to mimic the detector effects is identical to what is described in Sec. 7.1.1. In particu-
lar, the way to obtain the average muon density at a distance r divided by the reconstructed
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Figure 8.1: Map of the Akeno Giant Air Shower Array. The positions of the stations are marked in
circles. Those that count with muon detectors have also a square. Image extracted from Ref. [136].

energy to the power of α, in the ith reconstructed energy bin,
〈

ρµ r
Eα

R

〉
(ERi), is as shown in

Eq. (7.1), which we repeat here for clarity [123]:

〈
ρµ r

Eα
R

〉
(ERi) =

∫ E+
Ri

E−Ri

∫ ∞

0
〈ρ̃µ r〉(E) E−α

R J(E) G(ER|E) ε(E)dE dER

∫ E+
Ri

E−Ri

∫ ∞

0
J(E) G(ER|E) ε(E)dE dER

, (8.1)

where E−Ri and E+
Ri are the lower and upper limits of the reconstructed energy bin of center

ERi, 〈ρ̃µ r〉(E) is the average muon density at distance r from the shower axis (measured on
the shower plane) as a function of the Monte Carlo true energy of the simulation, J(E) is
the cosmic ray flux, G(ER|E) is the conditional probability distribution of ER conditioned to
E, and ε(E) is the trigger efficiency as a function of the Monte Carlo true energy. Naturally,
since the AGASA muon detector is different from the UMD of the Pierre Auger Observatory,
the difference between the calculations of Sec. 7.1.1 and this section is the way we model the
aforementioned functions.

In first place, the simulated average muon densities at 1000 m from the shower axis,
〈ρ̃µ 1000〉(E), are fitted using a power law in energy (see Eq. (7.2)) for every primary and
hadronic interaction model.
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Futhermore, the cosmic ray flux (shifted to the reference energy scale as explained in
Sec. 8.2.2) is obtained by fitting the Telescope Array measurements [137] with the following
function [138]

J(E) = A





(
E
Ea

)−γ1
log E ≤ log Ea

(
E
Ea

)−γ2 1 + (Ea/Es)
δγ

1 + (E/Es)
δγ log E > log Ea

, (8.2)

where A, Ea, Es, γ1, γ2, and δγ are free fit parameters. The resulting values of the parameters
are given in Table 8.1 [123]. It is relevant to add that we also test the systematic uncertainties
introduced by choosing a specific flux parameterization by using instead the fit to the flux
measurements of the Pierre Auger Observatory as presented in Ref. [138].

Parameter Fitted Value

A [10−19eVkm2 yr sr] 3.5± 0.5
log10(Ea/eV) 18.71± 0.02
log10(Es/eV) 19.88± 0.09
γ1 3.248± 0.012
γ2 2.63± 0.06
δγ 2.4± 0.8

Table 8.1: Parameters of the fit to the UHECR flux measured by Telescope Array (see Eq. (8.2)).

The energy resolution function of AGASA, G(ER|E), is modelled as a log-normal distribu-
tion [139] (see Eq. (7.5)), where the parameter µl of the log-normal is ln E, and the parameter
σl is related to the standard deviation σ(E) through,

σl(E) =

√√√√ln

[
1
2
+

1
2

√
1 + 4

σ2(E)
E2

]
. (8.3)

The way to derive Eq. (8.3) is equivalent to that of Eq. (7.9) in Sec. 7.1.1. σ(E) is obtained from
the signal resolution σ[S600] as a function of log10 S600 by using the S600 to energy conversion
function, reported in Ref. [139], corrected to match the reference energy scale as explained
in Section 8.2.2

E = fAGASA × 2.21× 1017 S0(600)1.03 eV. (8.4)

The S600 resolution as a function of log10(S600), obtained from shower and detector simula-
tions, for showers with zenith angles in 33◦ ≤ θ ≤ 44◦, is taken from Ref. [136]. The resulting
values for σ(E) are then fitted using a second degree polynomial in log10(E/eV) given by

σ(E)/eV = (17± 3)− (1.59± 0.37) log10(ER/eV) + (0.039± 0.009) log2
10(ER/eV). (8.5)

Finally, we assume that the trigger efficiency is ∼ 1 within the integration range (18.0 <
log10(E/eV) < 19.8) since we did not find it reported in literature. Although this might not
be the most accurate assumption, specially at the lowest end of the integration range, it most
likely has a small effect in the analyzed reconstructed energy range (18.83 ≤ log10(ER/eV) ≤
19.46). It is relevant to add that the integration range is limited to the smallest definition
range of all functions, which is that of the air-shower simulation library.
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Figure 8.2 shows a comparison between 〈ρ̃µ/E〉(E) and 〈ρµ/ER〉(ERi). We observe that
〈ρµ/ER〉(ERi) can be 11 % to 22 % smaller than 〈ρ̃µ/E〉(E) in the analyzed energy range. At
low energies, this difference is explained by the large uncertainty in the reconstructed energy
(∼28 % at 1018.83 eV), while at high energies the dominant effect is the flux suppression. The
effect of binning in reconstructed energy with a bin width of ∆ log10(ER/eV) = 0.2 is in
comparison small.

Figure 8.2: Average muon density at 1000 m from the shower axis, divided by the energy, as
a function of the logarithm of the Monte Carlo energy E (dashed lines) and average muon
density at 1000 m from the shower axis, divided by the reconstructed energy, as a function
of the logarithm of the reconstructed energy bin ERi (solid lines). We used a bin width of
∆ log10(E/eV) = 0.2. The air-shower simulations use the model EPOS-LHC and the primaries
are proton (red) and iron (blue).

8.2.2 Transformation to the reference energy scale

As in Sec. 7.1.2, we work on the reference energy scale [122] to enable the comparison
of the AGASA data to that of other experiments, including the UMD of the Pierre Auger
Observatory. It is also fundamental since we use data from three different experiments in
this analysis: the muon densities as a function of the energy from AGASA, the cosmic ray
energy spectrum from Telescope Array, and the mass composition fractions as a function of
the primary energy, obtained from the fits to the Xmax experimental distributions, from the
Pierre Auger Observatory.

In Sec. 7.1.2 we presented the energy correction factors fTA of Telescope Array and fAuger
of Pierre Auger. In this section we compute the correction factor of AGASA. We remind
the reader that the correction factors are found by matching flux measurements under the
hypothesis that the cosmic ray flux is isotropic. The correction factor of AGASA is given by,

fAGASA =
Eref

ETA ×
ETA

EAGASA = 0.948× 0.72 = 0.68, (8.6)

where ETA/EAGASA is taken from Ref. [140]. The correction factor is considerably large,
compared to that of Telescope Array or Pierre Auger. Most of the difference between the
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AGASA and the reference energy scale arises from the muon deficit in the simulations used
to calibrate the AGASA energy scale. Those simulations made use of older-generation high-
energy hadronic interaction models.

The systematics in the reconstructed energy are computed as the sum in quadrature of
three contributions. The first one arises from a possible bias in the lateral distribution of
muons (from the used empirical function, the exclusion of zero-density data, and the ab-
sence of non-hit detectors), and amounts to a ±7 % systematic in energy [141]. The second
contribution arises from the constant intensity cut method in the zenith angle range of this
data set (0◦ ≤ θ ≤ 36◦), and it is estimated to contribute between 17 % to 20 % to the system-
atic uncertainties in the energy (estimated from Fig. 17 of Ref. [141]). The third contribution
comes from the exponent in the energy scale formula, and it contributes between 8 % and
10 %. This exponent is taken from simulations, and different high-energy hadronic interac-
tion models predict different values of it [142]. Finally, there is also a ∼ 10 % uncertainty
associated with the reference energy scale, which we treat separately as it is the same for
any experiment in this scale. The energy systematics are added in quadrature with a factor
β = 0.9 (see Eq. (7.2)) to the intrinsic systematics of the muon density, to obtain the total
systematics of the muon density. The latter range between 18 % to 21 % without including
the ±10 % systematic uncertainty of the reference energy scale, or between ±22 % to ±26 %
including the ±10 % systematic uncertainty of the reference energy scale.

8.2.3 Calculation of the muon density

The muon densities in the AGASA data set are determined using the infinite window strat-
egy (described in Sec. 4.1.1) [134]1. They report that this is a good estimator if the showers
are nearly-vertical (presumably to avoid double counting corner-clipping muons) and if the
muon densities are . 10 m−2 (such that the number of occupied segments is much smaller
than the available ones) [45, 134]. Then, the muon density at 1000 m from the shower axis
is determined from the fit of the measurements to a muon lateral distribution function [45];
its uncertainty is reported to be ∼40 % above 1019 eV (see Ref. [134] and references therein).
The muon density values of the analyzed events are extracted from Fig. 7 of Ref. [134] 2

and are shown in Fig. 8.3. A table with the values of the energy and muon densities can
also be found in Ref. [123]. The data set consists of events with zenith angles θ ≤ 36◦, and,
as mentioned before, with a vertical muon energy threshold of 0.5 GeV [134]. The events
with no muon detection, enclosed in a rectangle in Fig. 8.3, are included in the analysis. The
energy cut at log10(ER/eV) = 19.46 is set due to the sharp drop in statistics beyond that
energy.

Regarding simulations, we generated a library of proton, helium, nitrogen and iron ini-
tiated air showers, using the high-energy hadronic interaction models QGSJetII-04, EPOS-
LHC and Sibyll2.3c, and the low-energy hadronic interaction model Fluka version 2011.2x
[30, 31]. For each model and primary type, we simulated ∼ 20 showers (∼ 30 for proton
primaries) per input energy, in the energy range 18.0 ≤ log10(E/eV) ≤ 19.8 and in steps
of ∆ log10(E/eV) = 0.2. A larger number of proton-initiated showers (with respect to iron-
initiated showers) are simulated because shower-to-shower fluctuations are larger for lighter
primaries. We also simulated additional showers for proton and iron primaries of the models
QGSJetII-04 and EPOS-LHC extending the energy range to 19.8 ≤ log10(E/eV) ≤ 20.8 to
validate the performance of the integral in Eq. (8.1) in a finite energy range. The altitude
used for the simulations is the average altitude of the detectors, 667 m [139]. We set the x

1The AGASA collaboration refers to this way of computing the muon density as the “on-off density” [134].
2Previous versions of this data set can be found in Refs. [143, 144].
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Figure 8.3: Muon density (in logarithmic scale) as a function of the logarithm of the reconstructed
energy (in the reference scale). The gray dashed lines mark the analyzed interval of energies. For
the events enclosed by the rectangle no muons were measured in any muon detector. The data
points are extracted from Fig. 7 of Ref. [134].

and z components of the Earth’s magnetic field at Akeno to Bx = 30.13 µT and Bz = 35.45 µT
[145], where the coordinate system is that of CORSIKA [23].

For simulations and mixed composition scenarios, the way to compute the muon densi-
ties (divided by the reconstructed energy) at 1000 m from the shower axis is analogous to
what is described in Sec. 7.1.3.

8.2.4 Computation of a z-scale

Definition of two muon scale estimators

In Sec. 7.1.4 we introduced the definition of the muon scale [5],

z :=
ln Ndet

µ, data − ln Ndet
µ, p

ln Ndet
µ, Fe − ln Ndet

µ, p
. (8.7)

To build an estimator of the muon scale z, it is necessary to introduce the mean within a
given energy bin. We defined in Sec. 7.1.4 one estimator of z by taking the logarithm of the
mean of the muon number,

zln〈·〉 =
ln〈Ndet

µ, data〉 − ln〈Ndet
µ, p〉

ln〈Ndet
µ, Fe〉 − ln〈Ndet

µ, p〉
. (8.8)

In this section we introduce a second estimator of z, defined by taking the mean of the
logarithm of the muon number,

z〈ln ·〉 =
〈ln Ndet

µ, data〉 − 〈ln Ndet
µ, p〉

〈ln Ndet
µ, Fe〉 − 〈ln Ndet

µ, p〉
. (8.9)

At this point it is important to mention that any other estimator that “mixes” the logarithm
of the mean with the mean of the logarithm would suffer from undesired biases.

These two estimators are in principle different, since the logarithm of the mean and the
mean of the logarithm of the muon content are not the same. One can be expressed as a
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function of the other by using that Nµ = 〈Nµ〉(1 + ε), with ε = (Nµ − 〈Nµ〉)/〈Nµ〉 being the
event-wise relative error or deviation. Then

〈ln Nµ〉 = ln〈Nµ〉+ 〈ln (1 + ε)〉 = ln〈Nµ〉+
〈
ε− 1

2 ε2 +O(ε3)
〉

, (8.10)

≈ ln〈Nµ〉 − 1
2

(
RSDtot[Nµ]

)2 , (8.11)

where
〈
ε2〉 =

(
σtot(Nµ)/

〈
Nµ

〉)2
=
(
RSDtot[Nµ]

)2 is the square of the relative standard
deviation of Nµ [126]. The suffix “tot” marks that all sources of fluctuations have to be
considered. In the approximation we drop the higher-order terms.

Biases of the muon scale estimators

The estimators of the muon scale, zln〈·〉 and z〈ln ·〉 (Eq. (8.8) and Eq. (8.9) respectively), are
subject to several sources of bias. If the detector simulations mismodel the real detector
effects in 〈Ndet

µ,{p,Fe}〉, or if there is a composition bias in 〈Ndet
µ, data〉, both estimators will be

biased approximately to the same degree. These sources are already contemplated in the
systematic uncertainties.

The advantage of zln〈·〉 is that it does not explicitly depend on the detector resolution,
which makes it better for comparisons among different experiments. In contrast, z〈ln ·〉 suffers
from systematics from a possibly mis-modeled (“mm”) detector resolution. To understand
this effect, we assume that the mean values are not biased,

〈
Nmm

µ, p

〉
≈
〈

Nµ, p
〉
, since this

source of bias is already accounted for in the systematic uncertainties. The total detector
resolution depends on the muon number detector resolution RSDdet[Nµ], and on the energy
resolution RSDdet[E]. Both affect the measured Nµ(E). We can use Eq. (7.13) to propagate
the energy resolution and obtain an approximation of the total muon number resolution

RSDdet⊕[Nµ] ≈
√
(RSDdet[Nµ])2 + (β · RSDdet[E])2, (8.12)

where β ≈ 0.9. If the detector simulations mismodel the total detector resolution, the estima-
tor z〈ln ·〉 is also mismodeled:

zmm
〈ln ·〉 =

〈
ln Nµ, data

〉
−
〈

ln Nmm
µ, p

〉

〈
ln Nmm

µ, Fe

〉
−
〈

ln Nmm
µ, p

〉 . (8.13)

Using Eq. (8.11) we can approximate
〈

ln Nmm
µ, p

〉
≈ ln

〈
Nmm

µ, p

〉
− 1

2

(
RSDmm

tot [Nµ]
)2 and

〈
ln Nµ, p

〉
≈ ln

〈
Nµ, p

〉
− 1

2

(
RSDtot[Nµ]

)2. Equivalent expressions can be obtained, mutatis

mutandis, for iron-initiated showers. For this estimation, we assume that
〈

Nmm
µ, p

〉
≈
〈

Nµ, p
〉
,

since this source of bias is already accounted for in the systematic uncertainties. Under this
consideration we can approximate

〈
ln Nmm

µ, p

〉
≈
〈
ln Nµ, p

〉
+ 1

2

[(
RSDtot[Nµ]

)2 −
(
RSDmm

tot [Nµ]
)2
]

. (8.14)

Replacing the last expression in Eq. (8.13) we obtain

zmm
〈ln ·〉 ≈ z〈ln ·〉 −

1
2

[(
σtot(Nµ)

〈Nµ〉

)2
−
(

σmm
tot (Nµ)

〈Nµ〉

)2
]

〈
ln(Nµ, Fe)

〉
−
〈
ln(Nµ, p)

〉 , (8.15)
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where we grouped the terms with true number of muons in z〈ln ·〉. Note that the bias in the
denominator cancels out since it is a priori the same for proton and iron detector-simulated
showers. Finally, we use that 〈ln(Nµ, Fe)〉 − 〈ln(Nµ, p)〉 is expected to be (1− β) ln(56) by the
Heitler-Matthews model (see Eq. (7.13)). For convenience, we can write the bias in z〈ln ·〉 as a
function of the difference between the mismodeled and true detector resolution:

zmm
〈ln ·〉 − z〈ln ·〉 ≈

1
(1− β) ln(56)

[
RSDdet⊕[Nµ]

(
RSDmm

det⊕[Nµ]− RSDdet⊕[Nµ]
)

+ 1
2

(
RSDmm

det⊕[Nµ]− RSDdet⊕[Nµ]
)2
]

. (8.16)

Figure 8.4 shows zmm
〈ln ·〉 − z〈ln ·〉 (color scale and contours) as a function of the true total

detector resolution RSDdet⊕[Nµ] (x-axis) and as a function of the difference between the
mismodeled and true total detector resolutions RSDmm

det⊕[Nµ]− RSDdet⊕[Nµ] (y-axis). As ex-
pected, zmm

〈ln ·〉 − z〈ln ·〉 = 0 when the true and modelled resolution are identical. Shaded in
gray is the non-physical region where RSDmm

det⊕[Nµ] ≤ 0. The thick contours correspond to a
systematic uncertainty in z〈ln ·〉 of ±0.07. From the plot we can read, for example, that for a
true detector resolution of 30 %, z〈ln ·〉 suffers from a systematic of ±0.07 when the modelled
resolution is up to 12 % smaller or 8 % larger than the true one. It can be added that Ref. [9]
is a recent example in which the mismodelling of detector fluctuations was investigated.
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Figure 8.4: zmm
〈ln ·〉 − z〈ln ·〉 (contours and color scale) as a function of the true total detector resolu-

tion RSDtot[Nµ] (x-axis), and of the difference between the mismodeled and true total detector res-
olutions

(
RSDmm

tot [Nµ]− RSDtot[Nµ]
)

(y-axis). The non-physical region where RSDmm
det⊕[Nµ] ≤ 0

is shaded in gray. The thick countours mark |zmm
〈ln ·〉 − z〈ln ·〉| = 0.07.

Biases of the muon deficit estimators

As defined in Sec. 7.1.4, the muon deficit scale is

∆z := z− zmass. (8.17)
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In Sec. 7.1.4 we also showed that we can use the Heitler-Matthews model (c.f. Eq. (7.13)) to
estimate zmass as

zHM
〈ln ·〉mass =

〈ln A〉
ln 56

. (8.18)

The advantage of using zHM
〈ln ·〉mass as reference is that it allows a direct comparison of muon

measurements against the composition predictions (〈ln A〉) derived from other observables,
most importantly, from fits to the Xmax distributions.

We can define two estimators of the muon deficit scale ∆z by subtracting zHM
〈ln ·〉mass from

each of the two estimators of z, forming ∆zln〈·〉 and ∆z〈ln ·〉.
On one hand, the systematic uncertainties in ∆z〈ln ·〉 can be divided in two: the ones

that propagate from z〈ln ·〉, which are already understood (c.f. Sec. 8.2.4), and the ones that
propagate from zHM

〈ln ·〉mass. The latter suffers from a systematic uncertainty propagated from
that of the composition (like any estimator of zmass), and it has also an additional (smaller)
uncertainty due to the Heitler-Matthews model not reproducing simulations perfectly.

On the other hand, ∆zln〈·〉 suffers from all of the systematic uncertainties described above.
But in this case, zHM

〈ln ·〉mass introduces an additional systematic uncertainty, because it is the

predicted value of z〈ln ·〉mass = (〈ln Ndet
µ, mass〉 − 〈ln Ndet

µ, p〉)/(〈ln Ndet
µ, Fe〉 − 〈ln Ndet

µ, p〉) instead of
zln〈·〉mass = (ln〈Ndet

µ, mass〉 − ln〈Ndet
µ, p〉)/(ln〈Ndet

µ, Fe〉 − ln〈Ndet
µ, p〉). We can understand the differ-

ence between them by using Eq. (8.11) to approximate each term in z〈ln ·〉mass as

z〈ln ·〉mass ≈
ln〈Ndet

µ, mass〉 − ln〈Ndet
µ, p〉 − 1

2

[(
RSDsh-sh[Nµ, mass]

)2 −
(
RSDsh-sh[Nµ, p]

)2
]

ln〈Ndet
µ, Fe〉 − ln〈Ndet

µ, p〉 − 1
2

[(
RSDsh-sh[Nµ, Fe]

)2 −
(
RSDsh-sh[Nµ, p]

)2
] , (8.19)

where we used that only shower-to-shower fluctuations depend on the primary, and all other
sources of fluctuations cancel out. Note that the first two terms of the numerator divided by
the first two terms of the denominator conform zln〈·〉mass.

From Eq. (8.19) we see that z〈ln ·〉mass depends on the shower-to-shower fluctuations of the
muon content, while zln〈·〉mass does not. These fluctuations affect zHM

〈ln ·〉mass, which come in as

a bias in ∆zln〈·〉. This bias in ∆zln〈·〉 is largest when
(
RSDsh-sh[Nµ, mass]

)2 is maximum, which
is given approximately at a 50 % proton - 50 % iron mixture. It was reported to be of 0.07 in
the worst case scenario [126]. This bias should be compared to the systematic uncertainties
in ∆z〈ln ·〉 to understand which estimator provides the smaller systematic uncertainties for
a given experiment. Essentially, if the experiment’s resolution is very good and known in
good detail, the estimator ∆z〈ln ·〉 has smaller biases; otherwise ∆zln〈·〉 has smaller biases. It
is also relevant to add that this bias could be corrected using a parameterization of shower-
to-shower fluctuations for single primaries (e.g. like the one found in Ref. [126]), as well as
σ(ln A), typically predicted in composition models (e.g. by the Global Spline Fit [61] and by
the Pierre Auger [57] composition models).

Computation of the two z-value estimators from AGASA data

With the muon density obtained from the simulations using Eq. (8.1) and the data, we can
directly compute zln〈·〉 as described in Sec. 8.2.4 (c.f. Eq. (8.8)). It should be noted that all
equations of Sec. 8.2.4 are valid when Nµ is replaced with ρµ r.

In contrast, like it was discussed in Sec. 7.1.4, it is not possible to directly compute z〈ln ·〉
as defined in Sec. 8.2.4 (c.f. Eq. (8.9)). The reason is that the values of

〈
ln[ρµ {p,Fe}(ERi)]

〉

cannot be analytically computed (like in Eq. (8.1)) without a very detailed knowledge of
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the detector resolution. Nevertheless, we can use Eq. (8.11) to give an estimate of z〈ln ·〉. The
derivation is analogous to that of Sec. 7.1.4. The approximation yields

z〈ln ·〉 ≈

〈
ln ρdet

µ,data

〉
− ln

〈
ρµ,p

〉
+ 1

2

[(
RSDsh-sh[ρµ, p]

)2
+
(
RSDnot sh-sh[ρµ]

)2
]

ln
〈
ρµ,Fe

〉
− ln

〈
ρµ,p

〉
+ 1

2

[(
RSDsh-sh[ρµ, p]

)2 −
(
RSDsh-sh[ρµ, Fe]

)2
] , (8.20)

where we use in the denominator that all sources of fluctuations except shower-to-shower
cancel out. In the numerator, we also split the total relative variance of proton air showers
into shower-to-shower and not shower-to-shower fluctuations. The latter is computed as

(
RSDnot sh-sh[ρµ]

)2
=
(
RSDtot[ρµ, data]

)2 −
(
RSDsh-sh[ρµ, mass]

)2 , (8.21)

where RSDtot[ρµ, data] is computed from the data scatter within each reconstructed energy
bin, while RSDsh-sh[ρµ, mass] is computed from simulations assuming a mixed composition.
As in Sec. 7.1.4, RSDsh-sh[ρµ, mass] is obtained by fitting a normal distribution to the weighted
sum of the single-primary distributions of the simulated muon densities, where the weights
are the mass fractions given by the GSF model.

It is relevant to add that we propagate the uncertainties of the muon density into each
estimate of z.

8.3 Results

In this section we compare the muon content as a function of the reconstructed energy of
data to single-proton and single-iron simulations, as well as to mixed composition scenarios.
We also show the z-values computed from the two different estimators and a comparison
against the expected values predicted by the mixed composition models.

8.3.1 Muon content as a function of the energy

In Fig. 8.5 we plot the average muon density (at 1000 m from the shower axis) divided by
the reconstructed energy, as a function of the logarithm of center of the reconstructed en-
ergy bin (in the reference scale), 〈ρµ/ER〉(log10(ERi/eV)). We compare the values computed
from AGASA data, from proton and iron simulations, and from the mixed composition
scenarios. We group the data from the 120 events in three energy bins of a bin width of
∆ log10(ER/eV) = 0.2, which result in 67, 33, and 20 events from the lower to the higher en-
ergy bin. The systematic uncertainties of the AGASA data are represented in square brackets,
and they correspond to the energy (hence they are diagonal) and muon density systematics.
The square brackets corresponding to the mixed composition models account for the sys-
tematics in the energy, and also include the systematic uncertainties propagated from the
mass fractions, which are smaller than the former.

From Fig. 8.5 we can see that the AGASA data are more compatible with a pure iron
composition for all models, and that the data points lie above those of the mixed composi-
tion scenarios. In particular, the lowest energy data point is not compatible with the mixed
composition scenarios for all three models. This also holds for the highest-energy data point
in the case of QGSJetII-04. In contrast, the remaining data points are compatible with the
mixed composition scenarios within total uncertainties.

Furthermore, we summarize the information in a unique value by computing 〈ρµ/ER〉
taking the average in the whole energy range (18.83 ≤ log10(ER/eV) ≤ 19.46). Notice that
ρµ/ER is nearly constant within the analyzed energy range, hence it is reasonable to compute
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Figure 8.5: Average muon density (at 1000 m from the shower axis) divided by the reconstructed
energy, as a function of the logarithm of the reconstructed energy in the center of the i-th bin (in
the reference scale), 〈ρµ/ER〉(log10(ERi/eV)). The AGASA data points [134] are shown in black
squares, those of proton and iron simulations in upper red and lower blue triangles (respectively),
and those of the mixed composition scenarios in gray circles. The top left panel corresponds to
the model EPOS-LHC, the top right panel to QGSJetII-04 , and the bottom panel to Sibyll2.3c. In
square brackets we depict the systematic uncertainties. The gray dashed lines mark the edges of
the reconstructed energy bins.

such average. In Fig. 8.6 we show the values of the aforementioned average computed from
AGASA measurements, and for proton, iron, and mixed composition scenarios for the three
considered models.

From Fig. 8.6 we can see a similar behavior to what was seen in Fig. 8.5. Once again, the
composition inferred from 〈ρµ/ER〉 from AGASA data is compatible with heavy primaries,
for the three models considered. In this case, the values from AGASA data are larger than
those of the mixed composition scenarios, and are not compatible within total uncertainties.
Considering the upper uncertainties for the mixed composition models, and the lower un-
certainties for the AGASA data point, the discrepancies are of 1.9σ for QGSJetII-04, 1.6σ for
EPOS-LHC, and 1.7σ for Sibyll2.3c. Assuming that the mixed composition model is correct,
this implies that the AGASA data constitute evidence of a muon deficit in simulations.

Moreover, as in Sec. 7.2.2 we quantify the average muon deficit in the reconstructed en-
ergy range 18.83 ≤ log10(ER/eV) ≤ 19.46 with a correction factor F = 〈ρdata

µ /ER〉/〈ρS
µ/ER〉
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Figure 8.6: Average muon density (at 1000 m from the shower axis) divided by the reconstructed
energy, 〈ρµ/ER〉, for AGASA data and for proton, iron, and mixed composition scenarios, for
the three considered models. The average is taken in the energy range 18.83 ≤ log10(ER/eV) ≤
19.46. The values obtained are reported in the table (left) and are also plotted (right) on the same
row. The square brackets show the systematic uncertainties.

(i.e. Eq. (7.20)), being S the scenario under consideration (S={mix, p, Fe}). We propagate the
uncertainties of the numerator and denominator into F by standard uncertainty propagation.
In Fig. 8.7 we can see the computed values of F, together with their statistic and systematic
uncertainties, for the single nuclei and mixed composition scenarios, for the three considered
models. Similar to what we observed in Fig. 8.6, we can see that the correction factors of the
mixed composition scenarios do not overlap with 1 even considering total uncertainties.

Figure 8.7: Correction factor F (see text for details) corresponding to the single nuclei and mixed
composition scenarios, for the three considered models. The analyzed energy range is 18.83 ≤
log10(ER/eV) ≤ 19.46. The obtained values are reported in the table (left) and are also plotted
(right) on the same row. The systematic uncertainties are depicted with square brackets.

It is relevant to add that, when using the fit to the flux measurements of the Pierre Auger
Observatory [138] instead of that of Telescope Array [123, 137], the values of F and 〈ρS

µ/ER〉
vary less than ∼ 1 %. In other words, the results shown in Figs. 8.6 and 8.7 are basically
independent of the chosen flux parameterization.
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8.3.2 Computed z-values

Figure 8.8 shows the estimates of zln〈·〉 (computed using Eq. (8.8)) and z〈ln ·〉 (computed using
Eq. (8.20)) as a function of the logarithmic reconstructed energy (in the reference scale). The
relative difference of z〈ln ·〉 to zln〈·〉 ranges from−9 % to +10 %, and is written next to the z〈ln ·〉
values. We also show the values of zHM

mass from the GSF (gray dashed lines) and Pierre Auger
Xmax (gray shaded area) composition models. In this case, we do not include in the plotted
systematic uncertainties those of the reference energy scale, as these values are compared
(in Sec. 8.4) to those of other experiments that are subject to the same source of uncertainty.
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Figure 8.8: zln〈·〉 (squares) and z〈ln ·〉 (circles), for EPOS-LHC (left), QGSJetII-04 (center), and
Sibyll2.3c (right) as a function of the logarithmic reconstructed energy (in the reference energy
scale). For clarity, we introduce a horizontal displacement between the two sets of values. The
relative difference of z〈ln ·〉 to zln〈·〉 is written next to each pair of points. We also show the values
of zHM

mass from the GSF model (gray dashed lines) and from the Pierre Auger Xmax (gray shaded
area) composition models.

We can understand the difference between the zln〈·〉 and z〈ln ·〉 values from Sec. (8.2.4).
As mentioned there, z〈ln ·〉 is subject to systematic uncertainties due to mismodelling the
detector resolution. We can see it directly in Eq. (8.20), where the estimated total detec-
tor resolution is part of

(
RSDnot sh-sh[ρµ]

)
; the other contributions to it are all primary-

independent sources of fluctuations. We can obtain an estimate of the total detector res-
olution by normalizing the muon densities to the center of the reconstructed energy bin and
subtracting

(
RSDsh-sh[ρµ, mass]

)2. With that, we can estimate the total detector resolution as

RSDdet⊕[Nµ] ≈
√
(RSDdet[Nµ])2 + (β · RSDdet[E])2. The total detector resolution estimated

in this way ranges between 50 % to 84 %, depending on the energy. We can read from Fig. 8.4
that a total detector resolution of 50 % mismodeled in as little as∼±6 % translates into a sys-
tematic in z〈ln ·〉 and ∆z〈ln ·〉 of already±0.07. The estimate of the the total detector resolution
is not more precise than ±6 %. This implies that for the AGASA data analyzed in this work,
zln〈·〉 and ∆zln〈·〉 are better estimators of the muon scale and muon deficit, in comparison to
z〈ln ·〉 and ∆z〈ln ·〉.

At this point, it is relevant to add that this is also the case for the Pierre Auger data. We
can estimate the total detector resolution in an analogous way as for AGASA, which for
the Pierre Auger data ranges from 23 % to 54 %, depending on the energy. In this case we
can read from Fig. 8.4 that a total detector resolution of 23 % (resp. 54 %) mismodeled in
10 % (resp. ∼±5 %) translates into a systematic in z〈ln ·〉 and ∆z〈ln ·〉 of already ±0.07. The
resolution in the distance to the shower core, that we propagate into the resolution in ρµ 450,
is not known to such a good precision. Therefore, zln〈·〉 and ∆zln〈·〉 are the best estimators in
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this case too. Nevertheless, we show the comparison of the two z-values in Appendix B.2.
It is also worth mentioning that if the parameter of the muon LDF fit ρ450 was used instead
of the average of muon densities around an interval at 450 m, the detector resolution might
improve enough such that the estimators with least biases are then z〈ln ·〉 and ∆z〈ln ·〉.

8.4 Comparison with the z-values from other experiments

Figure 8.9 shows the muon scale (computed from zln〈·〉) and Fig. 8.10 shows the muon deficit
scale (computed from ∆zln〈·〉) of several experiments: from AGASA data (computed in this
work), from UMD SiPM data of the Pierre Auger Observatory (computed in this work in
Chapter 7), from the SD-750 (infill) array and Heat-Coihueco hybrid analysis also from Pierre
Auger Observatory data [15], from UMD PMT data also of the Pierre Auger Observatory
[5, 59, 146], from the IceCube data [5, 59, 146], from NEVOD-DECOR data [5, 59, 146], from
the SD-1500 array and FD hybrid measurements and from the SD-1500 inclined events at
higher energies of the Pierre Auger data [5, 59, 146], from SUGAR data [5, 59, 146], from
Yakutsk data [5, 59, 146], from the EAS-MSU data [5, 59, 146], and finally from the KASCADE-
Grande data [5, 59, 146]. We make the comparison for two high-energy hadronic interaction
models, EPOS-LHC and QGSJetII-04, as almost all experiments computed the z-values only
for the latter.
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Figure 8.9: Values of z computed from the UMD data (c.f. Chapter 7), from AGASA data (this
chapter), and from nine different data sets of seven experiments [5, 15, 59, 146], as a function
of the logarithm of the center of the reconstructed energy bin. The left panel shows the values
computed for EPOS-LHC, and the right panel for QGSJetII-04. Gray horizontal lines mark the
expected values of z for pure proton and pure iron compositions (0 and 1 respectively). Dashed
lines shows the z-value expected from mixed composition scenarios considering the mass frac-
tions of the GSF model, while the gray shaded area represents the ones expected from the fits to
the Xmax distributions. The error bars represent total uncertainties (excluding the uncertainty of
the reference energy scale).

Figures 8.9 and 8.10 show that the AGASA data presents a remarkable agreement with
the Pierre Auger data. Furthermore, the AGASA data lie above the Yakutsk Array data but
are compatible within total uncertainties. From the Fig. 8.10 we can also see that the ∆zln〈·〉
values from AGASA data support a muon deficit in simulations at the highest energies.
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Figure 8.10: Values of ∆z computed from the UMD data (c.f. Chapter 7), from AGASA data (this
chapter), and from nine different data sets of seven experiments [5, 15, 59, 146], as a function
of the logarithm of the center of the reconstructed energy bin. The left panel shows the values
computed for EPOS-LHC, and the right panel for QGSJetII-04. A gray horizontal lines marks
the expected value of ∆z if there was a complete agreement between measurements and the
expected values from the GSF model. The error bars represent total uncertainties (excluding the
uncertainty of the reference energy scale).

8.5 Summary and conclusions

In this chapter we analyzed the measurements of the muon density at 1000 m from the
shower axis reported by the AGASA experiment. We compared them to the muon con-
tent of air shower simulations generated with the high-energy hadronic interaction models
QGSJetII-04, EPOS-LHC, and Sibyll2.3c. We simulated single proton and single iron-initiated
air showers, as well as four-component mixed composition scenarios from two composition
models: from the fits to the Xmax distributions of the Pierre Auger Observatory, and from
the Global Spline Fit model. Moreover, we adopted the reference energy scale defined by
the Spectrum Working Group [122] to allow for the comparison with different experiments
results. In order to compare the data to simulations, we analytically computed the effects
introduced by the energy reconstruction and by binning in reconstructed energy.

We found that the AGASA measurements are compatible with a heavy composition for
all the considered models, lying above the predictions of the mixed composition scenarios
for the three considered interaction models. When analyzing the average throughout the
complete energy range (18.83 ≤ log10(ER/eV) ≤ 19.46), we found the estimate of 〈ρµ/E〉
from AGASA data is significantly larger than those of the mixed composition scenarios.
Furthermore, we computed a muon density correction factor F in the complete energy range
for the three models considered. We found that, for the mixed composition scenarios to be
in perfect agreement with AGASA measurements, the muon density should be incremented
by a factor of 1.49± 0.11 (stat)± 0.49

0.30 (syst) for EPOS-LHC, 1.54± 0.12 (stat)± 0.50
0.31 (syst) for

Sibyll2.3c, and 1.66± 0.13 (stat)±0.54
0.34 (syst) for QGSJetII-04.

Moreover, to compare the AGASA composition or muon deficit implications to that of
other experiments, we studied two estimators of the muon scale and computed their values
from the AGASA data. The first estimator, zln〈·〉, is computed from the logarithm of the mean
of the muon number/density in data and simulations, while the second estimator, z〈ln ·〉, is
computed from the mean of the logarithm of the muon number/density. To estimate the
muon deficit ∆zln〈·〉 or ∆z〈ln ·〉, we subtract zHM

mass = 〈ln A〉/ ln 56 from the corresponding
estimator of z.
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We showed that zln〈·〉 and z〈ln ·〉 are subject to different systematic uncertainties. On one
hand, z〈ln ·〉 (and hence ∆z〈ln ·〉) is subject to systematics from a mismodeled detector resolu-
tion. This systematic error depends on the total detector resolution and the degree to which
it is mismodeled. On the other hand, ∆zln〈·〉 is biased from the shower-to-shower fluctua-
tions in zHM

mass by at most ∼ 0.07. For the case of AGASA, and in general when the detector
resolution is not very good and/or known to a very good precision, ∆zln〈·〉 proves to be a
better estimator of the muon deficit, with less systematic uncertainties.

Finally, we compared the values of zln〈·〉 and ∆zln〈·〉 from the AGASA data to those of
other experiments, including the values computed from the UMD SiPM data (c.f. Chapter
7). We observed that the AGASA data are in very good agreement with the Pierre Auger
data, and are larger than the Yakutsk array values, but compatible within total uncertainties.
The AGASA data support a muon deficit in simulations. These estimates add a valuable
quantification of the muon scale, and constitute evidence of a muon deficit in simulations at
the highest energies.
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Chapter 9
Summary and outlook

This work is devoted to the precise determination of the muon content of air showers, and
to the analysis of their mass composition or muon deficit implications. The muon content is
a composition-sensitive observable par excellence, and knowing the mass composition as a
function of the energy would shed light on a wide range of unsolved astrophysical problems,
strongly linked to the still unknown origin of cosmic rays.

We first revisited the Heitler-Matthews model, a very simple yet powerful model of
hadronic air showers. We showed how it predicts that the number of muons in an air shower
is related to the atomic mass number of the cosmic ray that generated it. We also introduced
the Pierre Auger Observatory, the largest cosmic-ray observatory in existence, and its mul-
tiple detectors. We meticulously described the Underground Muon Detector (UMD), the
buried scintillation detectors of the Pierre Auger Observatory, the data of which we exten-
sively analyzed.

In our aim to obtain an unbiased estimate of the number of muons for the UMD, we
developed a novel muon counting strategy. It is based in the solution to the “balls in boxes
problem”, where the balls are the particles and the boxes are the scintillation bars. The
strategy accounts by design for the effect of unresolved particles, i.e., the effect of two or
more particles hitting the same scintillation bar almost simultaneously. We compared this
strategy to three others from literature, including the one used in the UMD until this work.
The key difference of the new strategy with respect to the rest is the consideration of inhibited
scintillation bars, which allows for the exploitation of the full time resolution of the detector.
Using realistic simulations of the detector response to air showers, we found that our strategy
performs with a comparably small bias in the non-saturation regime, and significantly better
than the previously used strategy. Moreover, it offers a unique possibility: to reconstruct
the time structure of the muon signal as seen by the detector to a single time-bin resolution.
Such a resolution is not achievable with any other known strategy.

Due to detector inefficiencies and an undershoot of the signal, we saw that the estimated
number of muons is not exempt from bias. Additionally, muons traversing two neighboring
scintillation bars are often a source of over-counting. Using full detector simulations, we
developed a method to correct for this and remaining biases of the muon number estimator.
We parameterized the bias as a function of the zenith angle of the shower, of the azimuth
of the module with respect to the azimuth of the shower, and of the uncorrected estimator
of the number of muons itself. The dependency on the number of muons was not reported
before, but we showed that it is physically expectable. After using the parameterization to
correct for the biases, the estimator of the number of muons was found to be accurate within
±4 %.
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With reliable estimates of the number of muons, we went on to investigate the muon
lateral distribution function (muon LDF) as measured with the UMD. The first step was
to define the phase space within which the observed muon densities constitute unbiased
samples. We applied distance cuts to avoid saturation of the muon detectors and to ensure
a high station-level (lateral) trigger probability. The selected energies and zenith angles
were determined by the array-level trigger probability and by the acquired statistics. A very
robust outlier detection technique, based on a z-score on the logarithmic muon density, was
implemented to exclude ill-behaving modules. With this, we binned the data in logarithmic
energy, sine-square of the zenith angle, and logarithmic distance to the shower axis. We
normalized the muon densities to the center of the corresponding reconstructed energy bins.
We then performed a weighted least-squares fit on the logarithmic average of the normalized
muon density, testing several models found in literature. To compare their goodness-of-
fit we used the Akaike and Bayesian information criteria, and we also performed a Wald
Wolfowitz test to check for the randomness of the signs of the residuals. We found that
the best fitting function is the so-called modified Nishimura-Kamata-Greisen function with
certain parameters fixed (r0 = 320 m, α = 0.75, γ = 3.0). Using this function, we provided
parameterizations of the muon LDF as measured with the UMD. These could be used, for
example, for fixing all parameters except the size of the muon LDF in low-multiplicity event-
wise fits, or as a reference for the design of future muon detectors, or for building realistic
toy models of the muon LDF, as we did. Using said toy model, we studied the systematic
uncertainties introduced in the fitted muon LDFs by fixing the parameters α and γ, and by
applying the distance cut at the chosen lateral trigger probability. A relevant conclusion of
this analysis is that, for the 750 m surface detector array of the Pierre Auger Observatory, the
distance that minimizes systematic uncertainties due to the lack of information of the muon
LDF is 450 m. The systematic uncertainties introduced at this optimal distance by the fits of
the muon LDF are within ±2 %.

In order to infer the composition interpretation of the UMD data, we compared its muon
content to that of single-proton and single-iron simulations, as well as against mixed com-
position scenarios derived from the fits to the distributions of the Pierre Auger [57] and
Telescope Array [131] depth-of-the-shower maximum. We used simulations of the three
newest-generation high-energy hadronic interaction models: EPOS-LHC, QGSJetII-04, and
Sibyll2.3c. We developed an analytical method to estimate the effects of energy reconstruc-
tion and energy binning (instead of normalizing the measured muon densities to the center
of the reconstructed energy bin). A positive shift of 5.2 % in energy was considered in this
analysis to work in the cross-calibrated energy scale described by the Spectrum Working
Group [122]. This enabled the correct combination and comparison of results from differ-
ent experiments. With this, we compared the muon content in data and simulations as a
function of the distance to the shower axis, of the zenith angle, and of the energy (between
1017.22 eV and 1018.42 eV). We found that the slope of the muon LDF is not well reproduced
by simulations for more vertical zenith angles (θ < 30◦). This showed that introducing a
unique normalization correcting factor would not suffice to solve the difference between
data and simulations. We also observed that the muon deficit in simulations was larger
at shorter distances to the shower core (r ∼ 280 m), where most muons are produced by
the high-energy interaction models. In agreement with previous Pierre Auger results [57],
QGSJetII-04 presents significantly larger disagreements than the other models. Although
in most cases the muon content of data was found compatible with the mixed composition
scenarios within total uncertainties, the difference between them was clearly increasing with
the energy. Furthermore, we computed the so-called z-values from these UMD data and
simulations. We found our values compatible within total uncertainties with those of the
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Figure 9.1: Difference between the computed z-values from UMD and AGASA data and the
expected z-values from the Global Spline Fit composition model [61], as a function of the loga-
rithmic reconstructed energy. The left panel corresponds to the high-energy hadronic interaction
model EPOS-LHC, the middle panel corresponds to QGSJetII-04, and the right panel to Sibyll2.3c.
A gray dashed line marks ∆z = 0. Error bars represent statistical uncertainties while brackets
represent systematic uncertainties.

UMD PMT data analysis [5] (although the latter are larger), as well as with those of a hybrid
analysis of surface and fluorescence detector data of the 750 m array [15].

Finally, to complement the results of the UMD, we used the public dataset of direct muon
measurements at 1000 m from the shower axis of the AGASA collaboration [134]. These hy-
brid data are complementary to the UMD data because they cover higher energies (between
1018.83 eV and 1019.46 eV). With analogue methods as the ones applied to the UMD data, we
estimated the detector effects, and corrected the energy by a factor of 0.68 to work in the
cross-calibrated energy scale. In this case, the energy correction factor was considerably
larger mostly because the AGASA energy calibration, being simulation driven, relied in
older hadronic interaction models which suffered from even greater muon deficits. We ob-
served that the muon content of AGASA data was significantly larger than that of the mixed
composition scenarios, being compatible with a heavier composition. The muon content in
air-shower simulations should be increased by 54 % to 66 % (depending on the model) to
match the muon content of data. This was interpreted as evidence of a muon deficit in air-
shower simulations. Moreover, we extensively discussed two possible ways to compute the
z-values and their uncertainties. We proved that, unless the detector resolution is very good
and known to a very good detail, it is better to compute z from the logarithm of the mean of
the muon densities (instead of from the mean of the logarithm of the muon densities).

Figure 9.1 shows the computed z-values from the direct muon measurements of the UMD
and of AGASA, with the expected value from the Global Spline Fit composition model
[61] subtracted. It can be seen that the ∆z-values increasingly deviate from zero, which
constitutes clear evidence of a muon deficit that increases with the energy. These results are
largely consistent with other nine estimations from different experiments or analyses [5, 15].

The precise estimations of the muon content of UMD data developed in this work are
now part of the standard reconstruction of UMD data and simulations. Future analyses of
these data will profit from the techniques here presented. The developed counting strategy
and the treatment of residual biases are general methods that can be applied to other count-
ing detectors with counting sub-units, with possible applications, for instance, to neutrino
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experiments. This work opens the door to new research into the temporal structure of the
muon component as a result of the here developed counting strategy. By deconvolving the
detector effects in the muon temporal signal, the maximum of the muon production depth
distribution Xµ

max could be reconstructed [93]. This great composition-sensitive observable
can be key for new mass composition analyses.

The analysis of the muon LDF of the UMD can be used as a point of comparison for
other estimations. The provided parameterizations can be employed for fixing the shape
of the muon LDF in low-multiplicity event-wise fits, or for building toy models as done in
this work. The detailed comparisons of the muon content in UMD and AGASA data and
simulations add valuable information of where the discrepancies appear, which can hint
model builders towards the origin of the muon deficit in simulations. If the cause were
found, the here computed z-values could be corrected by the difference in the muon content
in the new simulations. In this way, the deficit-corrected z-values would constitute mass
composition estimates that could reduce the overall uncertainties, ultimately contributing
to a better understanding of the origin of cosmic rays.



Appendix A
Selecting Muon Detector data with the
ADST event selection tool in Offline

The selectADSTEvents tool allows users to select reconstructed events from the Advanced
Data Summary Trees (ADSTs) produced by Offline [147]. It is designed to select events by
using ASCII files, which the users can customize as needed. Selecting events is simple when
using this tool, and so is comparing the criteria applied to different data sets. It also aids in
the standardization of quality cuts. For instance, the use of selectADSTEvents is widespread
for SD and FD, for which the ICRC ADST cut files are kept in record as the official cuts for
physics analyses. Futhermore, the functionality of selectADSTEvents was recently extended
for RD [148].

Since 29.06.20201, the functionality of the selectADSTEvents tool was also extended to
MD. Applying this tool to standardize analyses is desirable, especially considering the many
publications to come after years of stable data acquisition.

In Sec. A.1, we explain the available cuts for the MD. In Sec. A.2, we explain how to use
them independently of and in combination with the SD cuts. In Sec. A.3, we discuss the
application of cuts to obtain high-quality data sets for MD analyses. Finally, in Sec. A.4, we
summarize the main conclusions.

This chapter is largely based on the Pierre Auger internal publication:

• Selecting Muon Detector data with the ADST event selection tool in Offline, F. Gesualdi,
M. Roth, D. Schmidt, D. Veberič, GAP 2021− 013 (Ref. [149]).

A.1 Description of the implemented Muon Detector cuts

The MD cuts were designed to complement the SD cuts. This is because both detectors
are always used simulataneously as the MD trigger is subordinate to the SD trigger. The
allMD.cuts file contains the description of all available MD cuts. This is the content of said
file:

adst cuts version: 1.0

minRecLevel 1 # 0 = no Md event found, 1 = Md has triggered

# stations, 2 = has MLDF fit

minMdLDFStatus 1 # 0 = not reconstructed, 1 = reconstructed

1svn commit: r33637, revision: 3363.

143



144 APPENDIX A. SELECTING UMD DATA WITH SELECTADSTEVENTS

fixBeta # (bool) select events with fix beta

# (cut or anti-cut)

minCandidateCounters 5 # minimum number of candidate counters

maxCandidateCounters 20 # maximum number of candidate counters

minCounters 5 # minimum number of total counters

maxCounters 20 # maximum number of total counters

hasCounter 1764 # select events with counterId

minZenithMD 0. # minimum zenith angle [deg] from MD geometry

# reconstruction

# if there is no MD geometry reconstruction,

# the event is rejected

maxZenithMD 60. # maximum zenith angle [deg] from MD geometry

# reconstruction

# if there is no MD geometry reconstruction,

# the event is rejected

hottestStationHasCounter # (bool) select events where the hottest

# SD station is paired to a non-rejected

# MD counter (cut or anti-cut)

badPeriodsRejectionFromFile # reject bad periods defined in the file

# MDBadPeriodsFile in config

The functionality of the different cuts is the following:

• minRecLevel: Is a cut on the minimum reconstruction level of the MD event. Option 0
implies accepting every SD-MD event (even if the event contains no MD event), option
1 requires that at least one SD station that is paired to a non-rejected MD counter has
triggered for the event, and option 2 requires that the event has a fitted muon LDF (see
MdRecLevel.h).

• minMdLDFStatus: Is a cut on the minimum status of the muon LDF fit. Option 0 accepts
all events regardless of their muon LDF status, and option 1 requires that the event has
a fitted muon LDF. Notice that minRecLevel 2 and minMdLDFStatus 1 are equivalent.

• fixBeta: Is a boolean cut on the status of β, one of the parameters of the muon LDF fit.
β can be fixed or free during the muon LDF fit depending on the number of counters
that triggered within a distance around 450 m (see MdLDFFinder.xml.in). If the com-
mand fixBeta is excluded from the MD cuts file, all events are accepted regardless of
whether β was fitted or taken fixed to the value from its parameterization. If fixBeta
is included, only events with a fixed β are selected. If !fixBeta is included, only events
with β having been a free parameter are selected.

• minCandidateCounters: Is the minimum number of candidate counters that an event
needs to pass the selection.

• maxCandidateCounters: Is the maximum number of candidate counters that an event
may have to pass the selection.
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• minCounters: Is the minimum number of counters (saturated, candidate, silent2, or
rejected) that an event needs to pass the selection.

• maxCounters: Is the maximum number of counters (saturated, candidate, silent, or
rejected) that an event needs to pass the selection.

• hasCounter: Selects events that contain the specified counter number.

• minZenithMD: Selects events that have a zenith angle reconstructed by the MD geome-
try reconstruction with a value above the specified minimum (stated in degrees). If no
MD geometry reconstruction is available for the event, the event is rejected.

• maxZenithMD: Selects events that have a zenith angle reconstructed by the MD geom-
etry reconstruction with a value below the specified maximum (stated in degrees). If
no MD geometry reconstruction is available for the event, the event is rejected.

• hottestStationHasCounter: Is a boolean cut. The command hottestStationHas-

Counter selects events where the hottest SD station has a paired non-rejected MD
counter. Conversely, the command !hottestStationHasCounter selects events where
the hottest SD station is paired to a rejeced MD counter or not paired to any MD
counter. If the command is excluded, all events are accepted regardless of whether the
hottest SD station is paired or not to an MD counter.

• badPeriodsRejectionFromFile: Excludes all events from the bad periods that the
user specifies in a file. Its format is identical to that of the SD bad periods files (see,
for example, ADST/Analysis/cuts/ICRC2019/BadPeriods_sd750.txt). The MD bad
periods file has to be specified as the MDBadPeriodsFile in the .config file.

It is relevant to add that the implementation of the cuts can be found in the Offline ADST
trunk directory (ADST/Analysis/src/) in the files MDSelection.h and MDSelection.cc. The
codes there implemented have to be kept in synchronization with the file ADST/Analysis/

cuts/allMD.cuts. In other words, if a new cut is implemented, the latter three files should be
modified accordingly. Finally, in order to support MD cuts, it was also necessary to adapt the
following files: ADST/Analysis/src/Analysis.cc, ADST/Analysis/src/Analysis.h, ADST/
Analysis/CMakeLists.txt, and ADST/Analysis/examples/selectEvents.cc.

A.2 Usage of the Muon Detector cuts

The usage of this code is analogous to that of the SD or FD cuts. A detailed description of
how to use selectADSTEvents can be found in Refs. [150, 151]. Nevertheless, we explain the
steps for applying the MD cuts, both independently of the SD cuts and in combination with
them.

1. Start by having an ADST file of reconstructed SD-MD events, e.g., “myADST.root”.

2. Create a file, e.g., “mymdcuts.cuts”. This can be a customized version of the
allMD.cuts file.

2We are aware that the term “silent station” in early days referred to something completely different. We still
use the term since it has been widely used within the collaboration and, more importantly, within the Offline
framework. We refer to silent MD counters as the counters that are paired to untriggered SD stations. Silent
counters can hold zero or positive-valued signals, which cannot be accessed because their paired SD station did
not trigger. Notice that MD counters that measured zero signal are among the candidate counters, for they are
paired to SD stations that triggered.



146 APPENDIX A. SELECTING UMD DATA WITH SELECTADSTEVENTS

3. (Optionally) create a file, e.g., “mysdcuts.cuts”. This can be a customized version of
the allsdcuts.cuts file. This step is not necessary, but would be the most common
usage scenario.

4. (Optionally) create a file with the bad MD periods, e.g., “mybadmdperiods.dat”.

5. Create a file, e.g., “myanalysis.config” with the line MDCutFile mymdcuts.cuts. In a
simultaneous use of MD and SD cuts (step 3), add the line SDCutFile mysdcuts.cuts.
If a file with bad MD periods was created (step 4), add also the line MDBadPeriodsFile
mybadmdperiods.dat.

6. Open a terminal and run selectADSTEvents -c myanalysis.config myADST.root.
The absolute number and percentages of the events that pass each selection cut are
displayed in the output of the terminal. The output file “selected.root” contains the
selected events.

It is important to notice that the periods contained in a bad MD periods file will exclude
all SD-MD events belonging to that period. To exclude only a specific MD counter or a
specific module of an MD counter during a certain period, the user should employ the
MdModuleRejector.xml of the MdDataReconstruction application of Offline. Specifically,
the user should add a line in that file specifying the counter id, module(s) id(s), reason of
rejection, and period of rejection.

In normal usage, both SD and MD cuts have to be applied. For instance, the cuts in energy
can only be set in the SD cuts file because the energy is reconstructed from SD data (see
minLgEnergySD and maxLgEnergySD in the file allSD.cuts). Also, at the time of this GAP-
note, the MD geometry reconstruction is functional for PMT data but not for SiPM data.
(For this reason, in the ModuleSequence.xml of the MdDataReconstruction application, the
MdGeometryFitterAG can be included for PMT data, but should not be included for SiPM
data). Therefore, if the commands minZenithMD and maxZenithMD are included in the MD
cuts file, and the cuts are applied to events with no MD geometry reconstruction, all those
events will be rejected. To avoid this, the user simply has to exclude these commands from
the MD cuts file. The data can be selected using the zenith angle reconstructed from SD, via
the commands minZenithSD and maxZenithSD in the SD cuts file (see allSD.cuts).

A.3 Application to high-level analyses

As said in the previous section, the MD cuts should be used together with the standard SD
cuts. The SD cuts used in the ICRC of 2015, 2017, and 2019, request events to have the highest-
signal station surrounded by an hexagon of six active stations (i.e., a 6T5 trigger). This is
achieved by setting T5Trigger 2 in the SD cuts file. Said cut already ensures a good quality
of the MD events if the MD modules behave normally. Unhealthy MD modules should be
excluded from the analyses by having the MdModuleRejector.xml and the SD and MD bad
period files up to date. Having said this, the most essential MD cut is minRecLevel 1, which
ensures that there is at least one MD counter with information in the SD-MD event.

The latter strategy was used in the recently published analysis of the PMT data [90]. In
that analysis, the 6T5 cut was combined with a cut on SD-reconstructed zenith angle (θ ≤
45◦), to minimize attenuation effects and to have a large effective detection area, and with a
cut on the energy (E ≥ 2× 1017 eV), to ensure the full efficiency of the 750 m array [111].

An additional way of ensuring a high quality of the SD-MD events is by using the
command hottestStationHasCounter. It is desirable that the core of an event lies within
or in the direct vecinity of the region enclosed by the working detectors. Even if the SD



A.4. CONCLUSIONS AND SUMMARY 147

event qualifies as 6T5, its core could fall outside the area enclosed by the MD counters, and
still trigger some MD counters (more precisely, trigger their paired SD stations). Then, those
counters would only sample the tail of the muon LDF of said event, and the estimated muon
density at 450 m (ρ450) would be obtained by extrapolation, which could lead to biases. A
good way to avoid these cases is by requiring the hottest SD station to be paired to a non-
rejected MD counter. This ensures that the core is within the region enclosed by the working
MD counters, or in its direct vecinity, i.e., within an hexagonal cell which has in the center a
working MD counter.

More restrictive conditions can be applied to ensure an even better sampling of the
muon LDF. This could be relevant for studies of the muon LDF of individual events, or to
have a reliable event-by-event estimate of ρ450. One way to try to achieve this would be
by using a cut on minCandidateCounters. However, a high number of minimum candidate
counters can exclude entire periods of data acquisition. This can happen if that period is in
coincidence with that of a rejected counter in the MdModuleRejector.xml, especially if the
counter belongs to the inner unitary cell of the MD array. A more recommendable way to
achieve this is to select events were β was set free during the muon LDF reconstruction, by
setting !fixBeta in the MD cuts file. This implies a condition on the number of candidate
counters depending on their distance to 450 m, the minimum being three candidate counters.

A.4 Conclusions and summary

The tool selectADSTEvents is now fully functional and ready to be applied for the selection
of MD events. We provided a detailed description of the implemented cuts. We explained
how to use them with or without SD cuts. In the most common usage conditions, the MD
cuts are applied in combination with SD cuts, for example, to select on the SD-reconstructed
energy and zenith angle. We also discussed on how to apply quality cuts for high-level
physics analyses. For the latter, particularly relevant are the MD cuts: on MD event recon-
struction level, on whether the hottest SD station is paired to a non-rejected MD counter
(boolean cut), and on whether the slope of the muon LDF was free during the fit (boolean
cut). We believe that the extended functionality of the selectADSTEvents tool helps users to
apply cuts to MD data in a simpler way, and most importantly, facilitates the standardization
of the MD data sets used for physics analyses.
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Appendix B
Additional results of the muon deficit
inferred from measurements of the
Underground Muon Detector of the
Pierre Auger Observatory

B.1 Muon density as a function of the distance to the shower axis

Figures B.1 to B.5 show the average muon density divided by the average muon density
of EPOS-LHC proton air-showers as a function of the distance to the shower axis, for data,
proton, iron, and mixed composition scenarios, for the reconstructed energy bins centered
at log10(ERi/eV) = 17.32, log10(ERi/eV) = 17.72, log10(ERi/eV) = 17.92, log10(ERi/eV) =
18.12 and log10(ERi/eV) = 18.32. This is the same as what is shown in Fig. 7.2 but for the
mentioned energies instead of log10(ERi/eV) = 17.52.

B.2 An alternative estimation of the z-values from the underground
muon detector data

In Sec. 8.2.4 we defined an estimator of the muon scale by taking the mean of the logarithm
of the muon number,

z〈ln ·〉 =
〈ln Ndet

µ, data〉 − 〈ln Ndet
µ, p〉

〈ln Ndet
µ, Fe〉 − 〈ln Ndet

µ, p〉
. (B.1)

To be able to compute z〈ln ·〉 for the UMD SiPM data, we need further approximations, be-
cause we cannot analytically compute 〈ln Ndet

µ, {p,Fe}〉 using Eq. (7.1). We therefore approxi-
mate, in all terms

〈ln Nµ〉 ∼ ln〈Nµ〉 − 1
2

(
RSDtot[Nµ]

)2 , (B.2)

where RSDtot[Nµ] = σtot(Nµ)/
〈

Nµ

〉
, and where we drop O

(〈
RSD3

tot[Nµ]
〉)

terms. Then,
using the muon densities instead of the muon numbers, Eq. (B.1) can be approximated to

z〈ln ·〉 ≈
ln
〈

ρdet
µ r, data

〉
− ln

〈
ρµ r, p

〉
+ 1

2

[(
RSDsh-sh[ρµ r, p]

)2 −
(
RSDsh-sh[ρµ r, mass]

)2
]

ln
〈
ρµ r, Fe

〉
− ln

〈
ρµ r, p

〉
+ 1

2

[(
RSDsh-sh[ρµ r, p]

)2 −
(
RSDsh-sh[ρµ r, Fe]

)2
] , (B.3)
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Figure B.1: Same as Fig. 7.2 but for the reconstructed energy bin centered at log10(ERi/eV) =
17.32.

where we use in the numerator and denominator that all sources of fluctuations except
shower-to-shower cancel out. Although we could compute

〈
ln ρdet

µ r, data

〉
, this would require

neglecting null muon density measurements. In this case, the effect of excluding these mea-
surements introduces a considerable bias, and for this reason we compute ln

〈
ρdet

µ r, data

〉
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Figure B.2: Same as Fig. 7.2 but for the reconstructed energy bin centered at log10(ERi/eV) =
17.72.

instead, including the null density measurements. Like in Sec. 7.1.4, we take the muon den-
sities at r ∼ 450 m from the shower axis, for events with zenith angles in 0◦ ≤ θ < 45◦.
We compute RSDsh-sh[ρµ r, {p,Fe}] from the proton and iron Monte Carlo simulations of each
hadronic interaction model. Furthermore, we compute RSDsh-sh[ρµ r, mass] from simulations
assuming a mixed composition scenario, by fitting a normal distribution to the weighted
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Figure B.3: Same as Fig. 7.2 but for the reconstructed energy bin centered at log10(ERi/eV) =
17.92.

sum of the single-primary distributions of the simulated muon densities, where the weights
are the mass fractions given by the Global Spline Fit (GSF) model [61]. We use the aforemen-
tioned composition model to allow a consistent comparison of the here calculated z-values
with those of other experiments, as presented in Refs. [5, 59, 146].
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Figure B.4: Same as Fig. 7.2 but for the reconstructed energy bin centered at log10(ERi/eV) =
18.12.

Figure B.6 shows the comparison between z〈ln ·〉, as computed from Eq. B.3, and zln〈·〉, as
computed from Eq. 7.16. We can see that the difference between the two estimators is truly
small compared to the uncertainties. In all cases the absolute difference is below ±0.04 in
the z-scale, and in relative values, as it can be seen in the figure, below ±0.3 %.
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Figure B.5: Same as Fig. 7.2 but for the reconstructed energy bin centered at log10(ERi/eV) =
18.32.
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Figure B.6: zln〈·〉 (squares) and z〈ln ·〉 (circles), for EPOS-LHC (left), QGSJetII-04 (center), and
Sibyll2.3c (right) as a function of the logarithmic reconstructed energy (in the reference scale).
For clarity, we introduce a horizontal displacement between the two sets of values. The relative
difference of z〈ln ·〉 to zln〈·〉 is written on top of each pair of points. We also show the values of zHM

mass
from the GSF model (gray dashed lines) and from the Pierre Auger Xmax (gray shaded area). Gray
horizontal lines mark the expected values of z for pure proton and pure iron compositions (0
and 1 respectively). The statistic uncertainties are represented with error bars and the systematic
uncertainties with brackets.
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