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Spin-dependent coupling of supercurrent and nonequilibrium quasiparticles
in high-field superconductors
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We report on an experimental investigation of the combined effect of nonequilibrium quasiparticle injection
and supercurrent in superconducting aluminum wires. At low temperature, we observe the supercurrent-induced
coupling of energy and charge imbalance with spectral resolution. At high magnetic fields, in the presence of a
Zeeman splitting of the density of states, we find evidence for an additional spin-dependent coupling which has
been recently predicted theoretically.
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I. INTRODUCTION

Nonequilibrium transport in spin-degenerate superconduc-
tors has been investigated intensely in the 1970s and 80s
[1]. In the spin-degenerate case, the nonequilibrium distri-
bution function is characterized by the twofold particle-hole
degree of freedom, described by a longitudinal energy and
a transverse charge mode. Quasiparticles are coupled to the
superconducting condensate, and one of the most striking im-
plications is a conversion between energy and charge modes
induced by a supercurrent [2–5]. The energy-charge con-
version can be understood in terms of the Doppler shift
of the quasiparticle spectrum due to the superfluid velocity.
Experimentally, the conversion was observed by applying a
temperature gradient and a supercurrent simultaneously to a
superconducting wire [6–8].

Recently, the field of nonequilibrium superconductiv-
ity has been reinvigorated by the investigation of spin-
polarized quasiparticle transport [9–13]. The twofold spin
degree of freedom leads to additional spin and spin-energy
nonequilibrium modes [14]. Part of the motivation for
these investigations comes from the idea of using spin to
implement electronic functionality in the context of su-
perconducting spintronics [15,16], either via spin-polarized
supercurrents or nonequilibrium quasiparticles. For example,
spin-polarized quasiparticles can control spin-polarized super-
currents [17,18], and supercurrents can control spin-polarized
distributions [19].

In addition to spin-dependent distribution functions, thin
superconducting films in high magnetic fields have spin-
dependent spectral properties [20]. The spin splitting of the
density of states leads to long-range spin transport [13,21–
28] and large spin-dependent thermoelectric effects [29–32].
Recently, it has been predicted that the spin dependence of
the spectral supercurrent creates an additional coupling term
between supercurrent and quasiparticles in high-field super-
conductors, leading to conversion between spin-degenerate
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and spin-polarized nonequilibrium modes [33]. Here, we re-
port the experimental observation of this additional coupling
term via the conversion of energy nonequilibrium to charge
and spin-energy modes in high-field superconducting alu-
minum wires.

II. EXPERIMENT

Nonequilibrium quasiparticle transport was investigated in
two samples of similar design (labeled A and B). Figure 1
shows a false-color scanning electron microscopy (SEM) im-
age of sample B along with the measurement scheme. All
samples were fabricated by electron beam lithography and
shadow evaporation. The substrates are pieces of silicon wafer
with 1 µm silicon oxide. The structures consist of a long
(24–50 µm), thin (12–17 nm) aluminum strip with split end
sections and tunnel contacts with aluminum oxide barriers and
copper electrodes. The normal state tunnel resistances are in
the range of 1.5–4 k�. The tunnel contacts are arranged with
one in the center of the strip (α) for injection and the others
to one side as detectors. The small copper artifact left in the
split region is separated from the superconductor by the same
aluminum oxide barrier as the contacts, and therefore does not
affect the measurement.

The measurement setup consists of the local circuit (Iinj)
and the nonlocal circuit (Idet) plus the supercurrent circuit
(IS). The local (injector) circuit was used to measure the tun-
nel conductance spectra via low-frequency lock-in detection
with a small ac excitation Vex superimposed on a dc voltage
Vbias. The local conductance was measured in a three-point
configuration due to limitations of the cryostat wiring, and
the effect of the injector lead resistance was corrected during
data analysis. The nonlocal current Idet due to nonequilibrium
quasiparticle injection was measured simultaneously with the
local conductance. In addition, a supercurrent IS could be
passed through the wire using the split end sections of the
wire without disturbing the ac conductance measurements.

Similar results were obtained on both samples. All data
shown here were taken on sample A, except where otherwise
noted. The measurements were performed with excitation
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FIG. 1. False-color scanning electron microscopy image of sam-
ple B. All samples consist of an aluminum strip with several
copper wires attached by tunnel contacts. Contact α at the center of
the strip is used as the injector, the remaining ones as detectors.
The ends of the aluminum strip are split so a supercurrent IS can
be applied without affecting the conductance measurement. The im-
age is shortened and the total length of the aluminum strip between
the splits is about 24 µm.

voltage rms amplitudes of about 15 µV (sample A) and 6 µV
(sample B). Measurements were performed at 100 mK on
sample A and at 20 mK on sample B if not stated otherwise.
A magnetic field could be applied in plane along the direction
of the copper electrodes.

III. THEORY

In this section, we give a simplified description of the
theory of our experiment, focusing on the features relevant to
understand the experimental results. The full model used for
the numerical simulations is given in the Appendix.

We are mostly interested in the behavior at high magnetic
fields, where the quasiparticle energies acquire a Zeeman
splitting 2μBB. As a consequence, all spectral properties are
spin dependent and can be conveniently decomposed into a
spin-symmetric and spin-antisymmetric part. For example,
the spin-resolved density of states N↓(E ) and N↑(E ) can
be decomposed into N±(E ) = (N↓ ± N↑)/2, where E is the
quasiparticle energy and N is normalized to the density of
states at the Fermi energy in the normal state.

Figure 2(a) shows a sketch of the model geometry. The
sample is modeled as a quasi-one-dimensional wire along the
x axis, terminated at both ends by equilibrium reservoirs. An
injector junction is placed at the center (x = 0), and a detector
junction is placed at x = xdet. The total length of the wire is
2L. The magnetic field B is applied in plane, perpendicular to
the wire.

The nonequilibrium state of a spin-split dirty-limit super-
conductor can be described by four distribution functions, the
nonequilibrium modes fL, fT3, fT, and fL3. They describe
energy, spin, charge, and spin-energy imbalance of the quasi-
particle excitations, respectively [14,23,25]. Nonequilibrium
in our experiment is driven by tunnel injection. Figure 2(b)
shows the qualitative behavior of the four nonequilibrium
modes without applied supercurrent. The charge and spin-
dependent modes fT, fT3, and fL3 decay relatively fast due to
charge relaxation or spin flips. The charge relaxation length
is a few μm at zero field in our structures, but drops very
quickly upon increasing the magnetic field (or applying a

FIG. 2. Overview of the model. (a) Sketch of the sample ge-
ometry. A one-dimensional superconducting wire is placed between
two equilibrium reservoirs. Quasiparticles are injected via a tun-
nel junction at x = 0 and detected via a second junction at x =
xdet . In addition, a supercurrent IS can be passed through the wire.
(b) Nonequilibrium modes without supercurrent. The fL mode falls
linearly; all other modes decay rapidly. (c) Nonequilibrium modes
with supercurrent. Coupling to the supercurrent generates fT and fL3

proportional to the constant gradient of fL. (d) Nonlocal conductance
contributions. Without supercurrent, the injected fT mode creates
a symmetric contribution (dotted line). The supercurrent coupling
terms jE and jEs generate antisymmetric contributions. These contri-
butions have equal/opposite signs in the lower/upper Zeeman band.

supercurrent) [21,34–36] due to orbital depairing. More de-
tails on charge relaxation at low temperatures can be found in
Refs. [34,36,37]. The spin-relaxation length is typically a few
hundred nm in our structures [21,38], smaller than the contact
spacing of the present experiment. The fL mode relaxes only
via inelastic scattering, which is weak at the low temperatures
of our experiment. The electron-phonon relaxation length is
typically a few 100 μm in metal wires at temperatures far
below 1 K [39], much larger than the length of our wires.
Electron-electron scattering does not relax energy, but leads to
a thermalization of the nonequilibrium distribution. Previous
comparison of theory to similar experiments on high-field su-
perconductors have shown that neglecting inelastic scattering
is a reasonable assumption [23,32], with at most small de-
viations due to thermalization by electron-electron scattering
[32]. We therefore neglect inelastic scattering in the model.

Due to the weak relaxation, fL is the dominant mode cre-
ated by tunnel injection. Neglecting all other modes, fL is
given by

fL(x) = GinjR
N+ f inj

L (Vinj )

DL + GinjRN+

(
1 − x

L

)
, (1)

where Ginj is the normal-state injector conductance, R is
the normal-state resistance of the left and right branches of
the superconducting wire in parallel, and DL is the energy-
dependent diffusion constant of the fL mode (normalized to
the normal-state diffusion constant DN). f inj

L (Vinj ) is the injec-
tor distribution function [essentially a step at E = eVinj, see
Eq. (A18) in the Appendix for the definition]. fL falls linearly
toward the ends of the aluminum strip. Note that Fig. 2(b)
is not to scale but only illustrates the spatial dependence
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qualitatively. Actually, fL is orders of magnitude larger than
the other modes.

When a supercurrent is applied to the wire, transport of all
nonequilibrium modes is coupled. Far from the injector, the
part of the kinetic equation relevant for our experiment is

(
RT RL3

RL3 RT + SL3

)(
fT

fL3

)
=

(
jE∇φ

jEs∇φ

)
∇ fL. (2)

jE and jEs are the spin-symmetric and antisymmetric parts of
the spectral supercurrent and ∇φ is the superconducting phase
gradient. RT and RL3 describe charge relaxation and SL3 is the
spin relaxation rate. The historic experiments correspond to
B = 0, where jEs and RL3 are zero and only fT is generated.
Thus, we arrive at the qualitative picture that tunnel injection
drives fL, and then the gradient of fL in combination with
the supercurrent generates fT and fL3 along the wire. The
generation is balanced by charge and spin relaxation. The
qualitative behavior is shown in Fig. 2(c). For the constant
∇ fL following from the linear decay in Eq. (1), the generated
modes are independent of position. We would also like to
note that the generated modes are proportional to ∇φ, and
therefore odd functions of supercurrent. This property will be
used later in the data analysis.

The nonlocal differential conductance gnl = dIdet/dVinj de-
pends on the fT and fL3 modes at the detector contact via

Idet = −Gdet

2e

∫ ∞

−∞
dE (N+ fT + N− fL3). (3)

Here, Gdet is the normal-state detector conductance and e is
the elementary charge. fL and fT3 do not contribute since we
use spin-degenerate junctions.

Figure 2(d) qualitatively shows the different contributions
to the nonlocal conductance. Without supercurrent, the signal
comes mainly from the injected fT mode (and a small fL3

contribution). The injected contribution is even in bias and
decays quickly as a function of contact distance and increasing
magnetic field. jE and jEs generate contributions which are
odd in bias. These contributions have the same sign in the
lower Zeeman band but opposite signs at higher energy. In
the remainder of the paper, we will refer to the even and odd
contributions as the injected and generated signals.

IV. RESULTS

The sample parameters were obtained from the character-
ization measurements shown in Fig. 3. Figure 3(a) shows the
differential conductance of the injector contact. The spectra
were fitted to the standard model of the tunnel conductance,
with an additional series resistance to account for the three-
probe measurement. The resistance of the superconducting
wire was measured in a four-probe geometry using the split
ends to obtain the residual resistance R4K at liquid Helium
temperature. The critical temperature Tc and critical field
Bc(T ) shown in Fig. 3(b) were then measured by sweeping
the temperature or magnetic field and taking the midpoint of
the resistance of the superconducting transition. The pair po-
tential was calculated using the BCS relation �0 = 1.74kBTc,
where kB is the Boltzmann constant. The width and length

FIG. 3. Sample characterization: (a) Differential conductance g
of one of the tunnel contacts as a function of bias voltage Vbias for
different in-plane magnetic fields B. (b) Phase diagram of the super-
conducting wire as a function of magnetic field B and temperature T .
Symbols are obtained by measuring the resistive transition, the line
is a fit explained in the text.

of the aluminum strip as well as the detector distances were
extracted from the SEM images. The nominal thickness of the
aluminum wire obtained from a quartz microbalance during
fabrication does not reflect the metallic cross section rele-
vant for the transport properties due to the unknown oxide
thickness and surface roughness. Since the orbital depairing
rate, and therefore the critical field, depends strongly on film
thickness, we have instead determined the effective thickness
by fitting the temperature dependence of the critical field (see
Appendix for details). The sample parameters extracted from
the characterization measurements are summarized in Table I
in the Appendix.

All measurement-based input parameters for the numer-
ical simulation of the nonlocal conductance measurements
are gained from these characterization measurements plus the
applied supercurrent.

Figure 4 is an overview of the nonlocal differential con-
ductance gnl measured on sample A (symbols) and the
corresponding numerical simulations (lines). Measurements
were performed for B = 0 − 0.8 T, below the field where the
energy gap closes and up to about half of the theoretical
critical current of the samples, where superconductivity starts
to collapse from injection and noise of the applied current.
Figure 4(a) shows the signal as a function of bias voltage with-
out supercurrent for different detectors at fixed magnetic field.
The signal is even in bias and falls with increasing detector
distance as the injected charge imbalance relaxes. Figure 4(b)
shows the effect of the supercurrent on the signal. Above the
gap, an additional contribution appears, which is odd in both

TABLE I. Overview of sample parameters. Critical temperature
Tc, orbital critical field Bc,orb, pair potential �0, characteristic cur-
rent I0, coherence length ξ , injector conductance Ginj, and detector
conductance Gdet .

Sample Tc Bc,orb �0 I0 ξ Ginj Gdet

(K) (T) (μeV) (μA) (nm) (μS) (μS)

A 1.50 1.66 228 121 122 294 559–599
B 1.50 1.63 228 185 120 766 731–742
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FIG. 4. Overview of the nonlocal differential conductance gnl

as a function of bias voltage. Data taken on sample A. Signals in
(c) and (d) are offset vertically for better visibility. (a) gnl for different
detector distances without supercurrent. The signal is caused by
injected charge imbalance and decays with detector distance. (b) gnl

for different supercurrents at fixed distance and magnetic field. (c)
gnl for different detector distances. The signal from injected charge
imbalance decays with distance, the supercurrent-induced part is
independent of distance. (d) gnl for different magnetic fields.

bias and supercurrent. At higher bias, the additional signal
disappears. Figure 4(c) shows the nonlocal conductance for
different detectors with applied supercurrent, corresponding
to the data shown in Fig. 4(a). As in Fig. 4(a), the even
contribution from injected charge imbalance falls with de-
tector distance while the odd contribution generated by the
supercurrent is nearly independent of distance, indicating con-
tinuous creation of imbalance along the superconducting strip.
Figure 4(d) shows the evolution of the signal with increasing
magnetic field for a fixed detector distance. At zero field,
the odd contribution consists of relatively sharp peaks at the
gap. With increasing field, the signal broadens and develops a
Zeeman splitting [better resolved in the upper plot of Fig. 4(c),
where the data for B = 0.8 T are shown on a different scale].
Both the even and odd contributions decrease with increasing
field due to the increased charge relaxation rate.

To further analyze the supercurrent coupling, we use the
symmetry to extract only the supercurrent-induced part of
the signal, i.e., we calculate the antisymmetric part of the
conductance ga = (gnl(IS) − gnl(−IS))/2. We also normalize
the signal by Gdet to eliminate small variations of the detector
conductances. Figure 5 is an overview over the measured
and simulated ga. Figures 5(a) and 5(b) show the nonlocal
signal for different detector distances at B = 0 and B = 0.8 T,
respectively. In both cases, the signals are nearly independent
of contact distance, which confirms that nonequilibrium is
generated continuously along the superconducting strip by
supercurrent-quasiparticle coupling. Figure 5(c) shows the

FIG. 5. Overview of the antisymmetric part ga = (gnl(IS) −
gnl(−IS))/2 of the nonlocal conductance caused by quasiparticle
supercurrent coupling. The signals are offset vertically for better vis-
ibility. (a), (b) The signal at different detector distances. The signal
is nearly independent of distance, indicating a continuous generation
along the aluminum strip. (c), (d) Dependence of the signal on the
applied supercurrent.

signal at B = 0 for three different supercurrents. The sig-
nal is sharply peaked near the gap edge, with an increasing
broadening as the supercurrent is increased. This reflects
the increasing depairing by the supercurrent. Intuitively, one
would expect an increase of the peak height with supercur-
rent, but this is compensated by the increased broadening
for the differential signal shown here. The integrated signal,
however, increases monotonically with supercurrent as one
expects (not shown). Figure 5(d) shows the signal at B = 0.8 T
for different supercurrents. Here, the depairing due to the
magnetic field is much larger than the depairing by the super-
current, and the signal simply increases with supercurrent as
expected.

Figure 6 shows a detailed comparison of the nonlocal sig-
nal to the numerical simulations for samples A and B. Note
that all parameters were determined independently, with no
free parameters left to fit. The shaded regions indicate the
maximum errors determined by propagating the estimated
uncertainty in sample geometry, resistances, supercurrent, Bc,
and Tc to the simulation result. The measured signal (solid
lines) agrees with the simulation (dashed lines) within the
error bars. The slight shift of the signal to lower bias voltage
compared to the model can be explained by the reduction
of the energy gap by quasiparticle injection, which is not
included in the simulation. To test the effect of jEs, we have
repeated the simulation with jEs set to zero (dotted lines).
These simulations do not match the data, with a downward
deviation in the lower Zeeman band, and an upward deviation
in the upper Zeeman band, as expected from the schematic
view of signal contributions in Fig. 2(d).
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FIG. 6. Comparison of ga to the simulation for sample A (a) and
sample B (b). The solid lines are the measurement results, the dashed
lines are the full simulations, and the dotted lines are the simulations
with jEs set to zero. The shaded areas are the maximum error estimate
for the simulation, corresponding to the errors of the parameters.

V. DISCUSSION

First, we would like to discuss the results in zero field, i.e.,
jEs = 0 without Zeeman splitting. The supercurrent coupling
described by the term jE∇φ has been predicted [2–5] and
experimentally confirmed [6–8] in the 1970s and ’80s. The
historic experiments were made on cm-sized structures, much
larger than the inelastic relaxation length. In this case, the fL

mode is given by a local equilibrium distribution with a local
temperature T (x), and ∇ fL ∝ ∇T was created by heating one
end of the wire. Also, the historic experiments were focused
mainly on the temperature range close to the critical tempera-
ture, where the charge relaxation time diverges.

In contrast, the present experiments were performed on
μm-sized structures with tunnel injection at low temper-
ature, where the Fermi distribution has a relatively sharp
edge and inelastic scattering can be mostly neglected. As a
consequence, our experiments have spectral resolution and
provide an indirect measurement of the spectral supercurrent
jE. jE is not easily accessible to experiments. The spectral
supercurrent in superconductor/normal-metal/superconductor
Josephson junctions has been probed by controlling the
distribution function [40], but we are not aware of simi-

lar experiments in bulk superconducting wires. For weak
depairing, jE is sharply peaked above the gap and quickly
drops to zero at higher energy. This behavior is reflected in
the signal shown in Fig. 5(c).

The generated signals are nearly independent of contact
distance, as expected for a constant gradient of fL. The con-
stant gradient of fL in the model is the result of neglecting
inelastic scattering. Inelastic scattering will eventually lead
to a relaxation of fL, with a relaxation length of λL ≈ 5 −
10 μm found in our previous experiments on similar structures
[21,32,35]. In the present experiments, the contact distances
were xdet � λL, so neglecting inelastic relaxation is justified.
Also, in previous comparisons of our experiments to the
model the signals could be adequately described neglecting
inelastic scattering [23,32].

At high fields, the nonlocal signals broaden due to
depairing and a double-step structure is visible due to the
Zeeman splitting. Since the contributions generated by both jE
and jEs are odd functions of supercurrent and bias, they cannot
by distinguished by symmetry. Instead, we have compared
the signals to simulations including and excluding jEs, and
found that neglecting jEs does not describe the signal within
the error bars. In particular, the relative signal weight in the
upper and lower Zeeman band requires inclusion of jEs. This
follows from the opposite sign of the contribution of jEs in
the upper and lower Zeeman band as shown schematically in
Fig. 2(d), and is independent of any small errors in overall
signal magnitude due to inaccuracies of model parameters.

To conclude, we have experimentally investigated
supercurrent-induced coupling of nonequilibrium modes
in high-field superconductors, and found evidence for the
recently predicted spin-dependent coupling term jEs∇φ

[33]. The interplay of spin-dependent supercurrents and
quasiparticles may find applications in superconducting
spintronics, for example, by controlling spin supercurrents
with nonequilibrium quasiparticles or generating spin-
polarized quasiparticles using supercurrents.

APPENDIX

The samples are modeled using the quasiclassical model
for dirty superconductors, with two additional approxi-
mations. First, spectral properties are calculated for a
homogeneous wire in equilibrium and only the kinetic equa-
tions contain gradients and nonequilibrium distributions.
Second, inelastic scattering is neglected, as explained in the
main text.

In the following, all energies are in units of the pair po-
tential �0 at zero temperature and zero field, and lengths
are measured in units of the dirty-limit coherence length ξ =√

h̄DN/�0, where DN is the diffusion constant in the normal
state (DN ≈ 50 cm2/s for both samples). The spin index is
σ = ±1, and σ = +1 corresponds to spin down (↓), i.e.,
magnetic moment parallel to the applied magnetic field.

1. Spectral properties

The model for the spectral properties used is based on
Ref. [41]. The Usadel equation for a homogeneous supercon-
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ductor has the form

�Gσ + i(ε + σεz)Fσ + 
ζ + 
so = 0, (A1)

where Gσ and Fσ are the normal and anomalous Green’s
functions for spin σ , ε = E/�0 is the normalized energy,
and εz is the normalized spin splitting. � is the normalized
pair potential, which has to be determined self-consistently,
as explained below. The Green’s functions are normalized
by F 2

σ + G2
σ = 1, which we satisfy using the parametrization

Fσ = sin(�σ ) and Gσ = cos(�σ ) with the complex pairing
angle �σ .

The self-energy due to orbital pair breaking is given by


ζ = −ζFσ Gσ . (A2)

For a thin film, the pair breaking effects of a homogeneous
field and a uniform transport current are additive [42], and the
pair-breaking parameter ζ can be written as

ζ = 1

2

(
B

Bc,orb

)2

+ 1

2
(∇φ)2. (A3)

The first term is due to the applied in-plane magnetic field [41]
and the second term is due to the phase gradient ∇φ induced
by the supercurrent [42–44]. The effect of the magnetic field
is conveniently parametrized by the orbital critical field Bc,orb,
which is related to sample parameters by [45]

DNe2B2
c,orbt2

6h̄�0
y

(
π l

t

)
= 1

2
, (A4)

where t is the film thickness, l is the mean-free path, and

y(z) = 3

2

(1 + z2)arctan(z) − z

z3
(A5)

is a correction due to nonlocal electrodynamics. Note that the
actual critical field Bc is smaller than Bc,orb due to additional
depairing by the Zeeman splitting.

The self-energy due to spin-orbit scattering is


so = −σbso(F↑G↓ − F↓G↑), (A6)

where the spin-orbit scattering parameter is

bso = h̄

3τso�
, (A7)

and τso is the spin-orbit scattering time. bso cannot be deter-
mined accurately from our tunnel conductance measurement.
We have therefore assumed bso = 0.02, similar to the values
obtained from earlier nonlocal spin-valve experiments [21,38]
on our aluminum films.

The model is completed by the self-consistency equa-
tion for the pair potential � and the Zeeman splitting εz

including Fermi-liquid renormalization [46]:

ln

(
T

Tc

)
= ω

�

∑
ωn

(
Fs(iωn) − �

ωn

)
, (A8)

εz − (1 − Aa
0)

μBB

�0
= Aa

0ω1

∑
ωn

iGt (iωn), (A9)

FIG. 7. Spin-resolved density of states (a) and energy-dependent
diffusion constant DL (b) for sample A at B = 0.8 T.

where

Aa
0 = G0

G0 + 1
. (A10)

G0 is the Fermi liquid parameter, and ωn = (2n −
1)πkBT/�0 is the n-th Matsubara frequency. Fs =
(F↓ + F↑)/2 and Gt = (G↓ − G↑)/2 are the singlet
anomalous and triplet normal Green’s function, respectively.
Literature values for G0 range from 0.16 to 0.3 [46,47],
and we have assumed G0 = 0.2. The phase transition to
the normal state is always second order in our samples due
to the effect of orbital depairing, and for the fits of the
critical field, we have used the usual approximation of the
self-consistency equations for � → 0 (Eq. (85) of Ref. [46]).
As an illustration, we show the spin-resolved density of states
and diffusion coefficient DL for sample A at B = 0.8 T in
Fig. 7.

2. Kinetic equations

Quasiparticle transport is described by four distribution
functions fL, fT3, fT, and fL3, corresponding to energy, spin,
charge, and spin-energy currents je, js, jc, and jse, respec-
tively. In equilibrium, only fL is nonzero and given by

f0(ε) = tanh

(
ε

2θ

)
, (A11)

where θ = kBT/�0 is the normalized temperature. Figure 8
shows a schematic view of the four modes compared to the
equilibrium occupation.

In the following, we will only consider the deviation from
equilibrium, i.e., we implicitly subtract f0 from fL.

The distribution functions and currents are related by
[23,33,48]⎛

⎜⎜⎝
je
js
jc
jse

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

DL∇ DT3∇ jE∇φ jEs∇φ

DT3∇ DL∇ jEs∇φ jE∇φ

jE∇φ jEs∇φ DT∇ DL3∇
jEs∇φ jE∇φ DL3∇ DT∇

⎞
⎟⎟⎠

⎛
⎜⎜⎝

fL

fT3

fT

fL3

⎞
⎟⎟⎠.

(A12)
Here, the Dm are the spectral diffusion coefficients for mode
m. The spectral supercurrent densities are

jE = 1
2 Im

(
F 2

↓ + F 2
↑
)
, (A13)

jEs = 1
2 Im

(
F 2

↓ − F 2
↑
)
. (A14)
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FIG. 8. Schematic view of the four nonequilibrium modes for a
Zeeman-split quasiparticle dispersion near the Fermi momentum pF.
Quasiparticles for p > pF are electronlike, quasiparticles for p < pF

are holelike. The arrows indicate the quasiparticle spin. Open circles
represent the equilibrium distribution, closed circles the nonequilib-
rium distribution. The L mode corresponds to an overall excess of
quasiparticles (and energy), while the other three modes correspond
to an asymmetry in charge and/or spin [23].

Current densities are either driven by gradients of the distri-
bution functions or through their coupling to the supercurrent.
Measuring the off-diagonal coupling due to jEs is the goal of
this paper.

A simple schematic representation of the generation of
nonequilibrium in the presence of a supercurrent is shown
in Fig. 9 (for simplicity, we represent the quasiparticle dis-
persion in the clean limit here). The superfluid velocity vS

leads to a Doppler shift ±pFvS, while a gradient of fL

(represented as a temperature gradient ∇T in the scheme)
leads to different occupation of quasiparticles moving to the
right or left (positive or negative group velocity ∂E/∂ p).
As a result, nonequilibrium both in charge and spin is
created.

FIG. 9. Schematic view of the generation of nonequilibrium in
the presence of a temperature gradient ∇T and a superfluid velocity
vS. Open circles represent the equilibrium distribution, closed circles
the nonequilibrium distribution. The left movers from the hot end
have a larger occupation, while the right movers from the cold end
have a lower occupation. Together with the Doppler shift ±pFvS of
the quasiparticle spectrum, this leads to a nonequilibrium both in
charge and spin [33].

Relaxation of the nonequilibrium currents is given by

∇ je = 0,

∇ js = ST3 fT3,

∇ jc = RT fT + RL3 fL3,

∇ jse = (RT + SL3) fL3 + RL3 fT.

(A15)

ST3 and SL3 are spin relaxation rates due to spin-orbit scat-
tering (we neglect spin flips by magnetic impurities). The
coefficients RT and RL3 describe charge relaxation by coupling
to the superconducting condensate. As described above, we
neglect inelastic scattering, and therefore the relaxation rate
of je is zero.

The differential equations are supplemented by boundary
conditions. For a spin-degenerate injector at x = 0, these read

⎛
⎜⎜⎝

[ je]
[ js]
[ jc]
[ jse]

⎞
⎟⎟⎠ = κI

⎛
⎜⎜⎝

N+ N− 0 0
N− N+ 0 0
0 0 N+ N−
0 0 N− N+

⎞
⎟⎟⎠

⎛
⎜⎜⎝

[ fL]
[ fT3]
[ fT]
[ fL3]

⎞
⎟⎟⎠, (A16)

where [ jm] = jm(x = 0+) − jm(x = 0−) and [ fm] = fm(x =
0) − f inj

m . The effective injection rate is given by

κI = Ginj
ρNξ

A
, (A17)

where A is the cross section of the wire and ρN is the normal-
state resistivity. The distribution functions of the injector are
given by

f inj
L = 1

2 ( f0(ε + μ) + f0(ε − μ)) − f0(ε), (A18)

f inj
T = 1

2 ( f0(ε + μ) − f0(ε − μ)), (A19)

where μ = −eVinj/�0 is the electrochemical potential of the
injector. The T3 and L3 modes are zero in the injector. The
boundary conditions at the ends of the wire are fm(x = ±L) =
0.

When solving the kinetic equations, one finds that the
amplitude of each mode is proportional to GinjRλ, where
Rλ = ρNλ/A is the resistance of the wire on the scale of the
relaxation length λ for the given mode. For fL, there is no
relaxation, and the effective length scale is the entire length
L of the wire. The amplitude is then proportional to GinjR,
where R is the resistance of the left and right branches of
the wire in parallel, as stated, see Eq. (1). For our samples,
GinjR ≈ 0.05. Since the relaxation lengths for charge and spin
are much smaller than L, all other modes are much smaller
than fL.

The boundary condition Eq. (A16) also applies to the de-
tector junction (with bias voltage V = 0) and describes the
loss of quasiparticles in the detector. As for the injection
rate, the effect is largest for fL. Since GR is small, we have
neglected quasiparticle loss in the detector. Unused junctions
were kept floating in the experiment (zero current), so the
quasiparticle loss in unused junctions was even smaller.
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FIG. 10. Comparison of the measured (symbols) and theoretical
(line) critical current of sample A at T = 100 mK.

3. Observables

The spin-resolved density of states is Nσ = Re(Gσ ), which
gives the spin-symmetric and antisymmetric parts:

N± = N↓ ± N↑. (A20)

The differential tunnel conductance of the injector is

g = Ginj

2

∫ ∞

−∞
N+

∂ f0(ε − μ)

∂μ
dε. (A21)

The supercurrent is given by

IS = I0
∇φ

2

∫ ∞

−∞
f0(ε) jEdε, (A22)

with the characteristic current

I0 = �0A

eρNξ
. (A23)

The theoretical critical current at T = 0 and B = 0 is about
0.75I0. Figure 10 compares the measured critical current for
sample A to the model prediction. The measured critical cur-
rent is slightly smaller than predicted, probably as a result of
premature escape due to noise.

For the simulations, first the spectral properties were cal-
culated self-consistently for the applied field and temperature,
including ∇φ determined self-consistently from the applied
supercurrent. Then the kinetic equations were solved numeri-
cally on an equidistant position and energy grid with spacings
δx = L/80 and δε = 1/20, respectively.
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