
A First Complete Algorithm for
Real Quanti�er Elimination in Isabelle/HOL

Katherine Kosaian
Carnegie Mellon University

Pittsburgh, PA, USA
kcordwel@cs.cmu.edu

Yong Kiam Tan
Carnegie Mellon University

Pittsburgh, PA, USA
yongkiat@alumni.cmu.edu

André Platzer
Karlsruhe Institute of Technology

Karlsruhe, Germany
platzer@kit.edu

Abstract

We formalize a multivariate quanti�er elimination (QE) algo-
rithm in the theorem prover Isabelle/HOL. Our algorithm is
complete, in that it is able to reduce any quanti�ed formula
in the �rst-order logic of real arithmetic to a logically equiv-
alent quanti�er-free formula. The algorithm we formalize is
a hybrid mixture of Tarski’s original QE algorithm and the
Ben-Or, Kozen, and Reif algorithm, and it is the �rst complete
multivariate QE algorithm formalized in Isabelle/HOL.

CCS Concepts: • Theory of computation→ Logic and

veri�cation.
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1 Introduction

Real arithmetic problems appear in many application do-
mains, including safety-critical application domains, such as
the veri�cation of cyber-physical systems (CPS). Very often,
these problems involve ∃ and ∀ quanti�ers, which pose the-
oretical and practical computational challenges [14, 35, 41].
The best known way of handling arbitrary quanti�ed state-
ments is with quanti�er elimination (QE), which transforms
quanti�ed statements into logically equivalent quanti�er-
free formulas, which are then evaluated. Alfred Tarski [40]
proved that the theory of real-closed �elds is decidable, by
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establishing that algorithms to perform quanti�er elimina-
tion on formulas in the �rst-order logic of real arithmetic
exist; in practice, these algorithms tend to be complicated.
Given the safety-critical nature of real arithmetic ques-

tions [34], it is not surprising that considerable attention has
been given to formally verifying algorithms for real QE [8,
12, 17, 19, 25, 27, 29–32, 35, 37]. However, while considerable
progress has been made on verifying univariate QE methods
(methods for QE problems that only involve one variable,
and so have at most one quanti�er) [12, 17, 25, 30, 31], and
while a variety of works have focused on verifying special-
purpose QE methods (that is, methods which target some
fragment of multivariate QE problems) [19, 32, 35, 37], only
limited progress has been made on verifying complete mul-
tivariate QE algorithms (i.e., algorithms that are capable of
resolving any real QE problem). Multivariate QE algorithms
are signi�cantly more challenging. Multivariate polynomials
are unlike univariate polynomials, because they may have
in�nitely many roots, their leading coe�cients are them-
selves polynomials and may have zeros, polynomial division
is not always unique, and ideal computations use Gröbner
bases instead of Euclidian division. Additionally, whereas
univariate QE problems only involve a single quanti�er and
always reduce to True or False, multivariate QE problems can
involve nested (alternating) quanti�ers and free variables.

To our knowledge, the main published progress on verify-
ing complete multivariate QE algorithms in theorem provers
is threefold: �rst, Mahboubi [27] implemented (but did not yet
verify) the fastest-known QE algorithm, cylindrical algebraic
decomposition (CAD) [9] in Coq; second, McLaughlin and
Harrison developed a proof-producing (but not veri�ed) pro-
cedure based on the Cohen-Hörmander algorithm in HOL
Light [29]; �nally, Cohen and Mahboubi veri�ed Tarski’s
original QE algorithm in Coq [6, 8]. Unfortunately, both
Tarski’s original QE algorithm and the Cohen-Hörmander
algorithm have non-elementary complexity (i.e. the complex-
ity is not bounded by any tower of powers of two). While
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McLaughlin and Harrison’s procedure can solve simple mi-
crobenchmarks, they acknowledge considerable experimen-
tal limitations [29].1 Similarly, Cohen andMahboubi consider
their work to be primarily a theoretical contribution [8].
The dearth of e�cient formally-veri�ed support for QE

is in part a consequence of the intricacy of QE algorithms.
There is arguably a tradeo� [37] between the computational
e�ciency of an algorithm and the tractability of veri�cation.
Most notably, the CAD algorithm is e�cient but complex and
tremendously di�cult to verify; only the signi�cantly sim-
pler univariate case has been fully veri�ed (independently,
in Isabelle/HOL [25] and PVS [30]). Further, in order for
CAD to realize its full potential for e�ciency, many further
insights [3, 10, 16, 28] beyond the original development [9]
are needed, and improving CAD and algorithms for real QE
at large is an active area of research.
The lack of e�cient veri�ed QE methods is also a con-

sequence of the challenge posed by veri�cation. Working
within the formal setting of a theorem prover adds both a
considerable layer of rigor but also intricacy, which is why
even small progress needs signi�cant e�ort. For example,
Mahboubi [27] discusses the many challenges involved in
implementing CAD in Coq—a signi�cantly more arduous
and involved task than implementing CAD in an unveri�ed
computer algebra system (which also took decades [4, 39]).
In our work, we target a potential sweet spot within the

tradeo� between complexity and veri�cation amenability
[37] by verifying a completemultivariate QE algorithm loosely
based on the Ben-Or, Kozen, and Reif (BKR) algorithm [2] (but
presently with less e�ciency). The BKR algorithm shares
some theoretical similarity to Tarski’s original QE algorithm
(in that it uses a matrix equation to store sign information
for polynomials), but it includes an additional reduction step
for greater e�ciency. Although the multivariate complexity
analysis in the paper describing BKR was �awed [5], ren-
dering its stated bounds inaccurate, this was nevertheless
an in�uential algorithm which was later extended into a
number of improved and/or generalized variants with highly
compelling parallel complexity bounds, including ones by
Renegar [36], Canny [5], and Cucker et al. [13]. As prior
work [21] has drawn a strong distinction between compu-
tational complexity and practical e�ciency (with particular
attention to Renegar [36]), these complexity bounds will
not necessarily translate into immediate practical e�ciency.
However, a followup work [20] argued for the potential of
algorithms with strong theoretical complexity bounds to re-
alize e�ciency on fragments of real arithmetic, and these
algorithms remain in�uential.
Our prior work [12] veri�ed the univariate case of BKR

in Isabelle/HOL; we argue there that BKR is likely more

1This is not only due to the complexity of the Cohen-Hörmander algorithm,
but also because proof-producing algorithms are not veri�ed once and for
all but, instead, have to produce a new proof of correctness per question,
which incurs signi�cant overhead compared to fully veri�ed ones [29, 35].

amenable to formalization than CAD, and potentially comple-
mentary to CAD. We now extend this development [11, 12]
into a multivariate QE algorithm. Our multivariate algorithm
is something of a hybrid: it is a mixture of Tarski’s original
QE algorithm [40] and BKR [2], with insights from Rene-
gar [36]. It currently does not exploit all of the reduction
from BKR, which limits its e�ciency. Thus, like Cohen and
Mahboubi [8], we view our contribution as being primarily
theoretical from the perspective of e�ciency. However, we
also view our algorithm as being a signi�cant stepping stone
towards the BKR algorithm and, eventually, its variants. In
particular, it would be of considerable interest to verify a
method that more closely realizes the parallel complexity
bounds of Renegar [36]. Such a method will naturally take
time to develop, and will likely only be realized in stages.
Contributions. (1) Our work is the �rst complete multi-

variate QE algorithm formalized in Isabelle/HOL. (2) To our
knowledge, it is the �rst formalized multivariate QE algo-
rithm to include insights from BKR, and it is a �rst step
towards a less complex veri�ed algorithm (e.g. in the style of
Renegar [36]), which could ideally complement an eventual
formalized algorithm based on CAD. (3) Because much of
the source material is either sparsely written (e.g. [2]) or
highly mathematical (e.g. [1, 36]), it was not a priori obvi-
ous what the formalized algorithm should look like (this
formalization barrier is discussed in Sec. 3.1). The rigorous
nature of veri�cation forced us to clearly identify the essen-
tial building blocks of the algorithm: In our formalization,
all de�nitions are mathematically precise and veri�able, and
all their correctness properties are identi�ed and proved.

The formalization is approximately 8500 lines of code and
is available on the Archive of Formal Proofs (AFP) [23]. It in-
cludes various advances to Isabelle/HOL’s existing libraries,
particularly the library for multivariate polynomials, which
could help pave the way for future multivariate QE algo-
rithms in Isabelle/HOL.

2 Quanti�er Elimination

Our QE algorithm works by eliminating one quanti�er at a
time. Hence, if we have polynomials in = + 1 variables, we
can consider them as univariate polynomials in a variable
of interest with coe�cient polynomials in = variables. For
example, if G is our variable of interest, then we can treat
3G~I2 + 6G2FE + 5G~ + 1 as the following polynomial in G :
(6FE)G2+(3~I2+5~)G+1. For clarity, andWLOG, we assume
throughout this section that our variable of interest is G .
The key component of both multivariate and univariate

BKR is a sign-determination algorithm which is concerned
with �nding all consistent sign assignments to a set of poly-
nomials {@1, . . . , @: }. A sign assignment is a mapping that
assigns each polynomial to a sign, i.e. positive, zero, or nega-
tive (represented by 1, 0, and −1). A sign assignment is called
consistent if it is actually realized at some real point.

212



A First Complete Algorithm for Real �antifier Elimination in Isabelle/HOL CPP ’23, January 16–17, 2023, Boston, MA, USA

Assuming: y2 > 0 

Signs to (y2x, x2 + y2):

(-, +), (0, +), (+, +)

Assuming: y2 = 0 

Signs to (y2x, x2 + y2):

(0, +), (0, 0)

Assuming: y2 < 0 

Signs to (y2x, x2 + y2):

(+, +), (-, -), (0, -) , (-, 0),      

(+, 0), (-, +), (+, -)

Output: ∃y. (y2 > 0) 

Input:

∃y.∀x. (xy2 > 0 ∨ y2 + x2 > 0) 

Polynomials of interest:

xy2, y2 + x2

Treat as univariate in x:

y2x, x2 + y2

Figure 1. A visual overview of the QE algorithm.

At the heart of the sign-determination algorithm that we
formalize is a matrix equation that is capable of storing sign
information for a set of polynomials in variables G,~1, . . . , ~= ,
under a set of assumptions on polynomials in ~1, . . . , ~= . Our
overall quanti�er elimination algorithm takes a formula and
identi�es the polynomials that occur in the formula. It then
generates a number of matrix equations, each of which cap-
tures some sign information for the polynomials, subject to
some list of assumptions. Collectively, it is important that the
generated matrix equations have exhaustive assumptions—
in the sense that for every possible set of assumptions, there
is at least one corresponding matrix equation. We call sets
of assumptions branches. Branches are re�ned throughout
the construction with additional assumptions until each mul-
tivariate matrix equation has assumptions that generate a
unique matrix equation. Initial branches, which are not fully
re�ned, may still have multiple associated matrix equations.

WLOG, we assume that we are eliminating a ∀ quanti�er
(because ∃ quanti�ers can be transformed into ∀ quanti�ers
with appropriate negations). We do some initial branching
(this is needed to guide the computations of the matrix equa-
tions), and for each branch, we check whether all of the
associated matrix equations describe a sign assignment on
our polynomials that satis�es the original formula. We �lter
our initial branches to pick out the ones that satisfy this
property. Finally, we return a disjunction of all assumptions
of the initial branches in this �ltered list.

Fig. 1 visualizes how this QE algorithm works on an exam-
ple. We begin with formula ∃~.∀G .(G~2 > 0 ∨ ~2 + G2 > 0),

where our focus is on eliminating the ∀G quanti�er. We �rst
identify the polynomials of interest in this formula and view
them as univariate polynomials in G (with coe�cients that
are polynomials in ~): these are ~2G and G2 + ~2. Next, we
determine all consistent sign assignments to these polyno-
mials of interest given all possible2 sign assumptions on ~2,

2Here, we di�er from the BKR algorithm, which would branch on all consis-
tent sign assumptions on ~2. That is, we consider a branch where ~2 < 0,

where ~2 is signi�cant because it is the leading coe�cient

of ~2G (technically our algorithm will do some additional
and unnecessary branching, but for the clarity of this ex-
ample we focus on the branch on ~2; see Sec. 2.1 for a more
in-depth discussion of the branching). Internally, our algo-
rithm performs sign determination using matrix equation
constructions (but this is not pictured in the �gure). We then
pick out the sign assignments that solve our original QE
problem—that is, we are looking for one of our polynomials
of interest,~2G or G2+~2, to be positive. Signs that satisfy this
condition are pictured in green. Then, we �lter our branches
to �nd the ones where every sign assignment satis�es the
original QE problem. This happens only in the branch where
~2 is assumed to be positive. This means that ~2 > 0 is logi-
cally equivalent to ∀G .(~2G > 0∨ G2 +~2 > 0), which means
that ∃~.∀G .(G~2 > 0 ∨ ~2 + G2 > 0) is logically equivalent to
∃~.(~2 > 0), whose quanti�er ∃~ can be eliminated further.

If our original QE question was instead ∃~.∀G .(G~2 ≥ 0∨

G2 + ~2 > 0), then both the branch with assumption ~2 > 0

and the branch with assumption ~2 = 0 would satisfy our
QE problem. This means that the disjunction ~2 > 0∨~2 = 0

is logically equivalent to ∀G .(~2G ≥ 0 ∨ G2 + ~2 > 0), and so
our output in this case would be ∃~.(~2 > 0 ∨ ~2 = 0).

Here it is important to note that there are many logically
equivalent outputs to any given QE problem. For example, if
our original QE question were ∀G .((G~2 = 0 ∧ G2 + ~2 = 0) ∨

(G~2 = 0 ∧ G2 + ~2 < 0)), then two possible correct outputs
that are logically equivalent are ~2 = 0, and ~2 < 0 ∨ ~2 = 0.
Here, ~2 = 0 is the simplest output. While the output of our
QE algorithm is always logically correct, it is not guaranteed
to be in the simplest form. In particular, assumptions for
branches that are inconsistent will often be included in the
�nal disjunction, which has no impact on logical correctness,
only formula complexity.
We now turn to more detailed descriptions of the sign

determination procedure, the multivariate matrix equation,
and the full quanti�er elimination procedure.

2.1 Sign Determination

Finding sign information for polynomials @1, . . . @: in vari-
ables G,~1, . . . , ~= is, on the surface, a continuous problem—
the most obvious way to determine the sign information
would be to evaluate (@1, . . . , @: ) on R: , which is clearly not
computationally viable. To account for this, BKR and Renegar
reduce the sign-determination problem to a problem with
the following format: �nd sign information for @1, . . . , @: at

the roots of some cleverly chosen polynomial ? . This problem
is clearly computationally viable for univariate polynomi-
als, because polynomials in one variable only have �nitely
many roots. It is a (non-obvious) key insight that it is also
computationally viable for multivariate polynomials [2, 36].

because this is a possible (but inconsistent) sign assumption: even though
~2 is never negative, our algorithm does not discern this when branching.
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Intuitively, the output of the univariate algorithm only de-
pends on the signs of the real polynomial coe�cients and not
on the actual values of those coe�cients. Thus, the algorithm
lifts to the multivariate case by making sign assumptions on
(multivariate) polynomial coe�cients in variables ~1, . . . , ~= .

In our multivariate setting, ? = (
∏

@8 ) ·
m
mG
(
∏

@8 ) is chosen
for ? . To see what makes this particular polynomial useful,
consider some valuation a on ~1, . . . , ~= (i.e., some assign-
ment of ~1, . . . , ~= to real values). Let a (5 ) denote the evalua-
tion of polynomial 5 in valuation a ; note that a (5 ) is univari-
ate in G . Now, the roots of a (?) = (

∏

a (@8 )) ·
m
mG
(
∏

a (@8 )) =

(
∏

a (@8 )) ·
3
3G

(
∏

a (@8 )) contain all of the roots of the a (@8 )’s
(since each a (@8 ) divides a (?)), as well as sample points from
intervals between the roots (by Rolle’s theorem [12]). Be-
cause these intervals are sign-invariant—that is, no a (@8 )

changes sign in any of these intervals, since no a (@8 ) can
change sign without passing through a root—sign informa-
tion at a single point within any of these intervals is repre-
sentative of sign information for the entire interval. So, we
see that the only intervals which the roots of a (?) do not
adequately cover are the extreme intervals—the leftmost and
rightmost, which lie beyond any of the roots of a (?)—for
which sign information can be computed with a limit calcu-
lation on the a (@8 )’s.3 So, this polynomial ? allows a natural
lifting from the univariate QE algorithm to the multivari-
ate case, but the correctness justi�cation needs an extensive
covering of the in�uence of all possibilities for valuation a .

This is visualized in Fig. 2. Here, we have polynomials @1 =
~2G +1 and @2 = ~G +1, so ? = (~2G +1) (~G +1) (2G~3+~2+~).
For the purposes of illustration, we consider two sample
valuations: in a1, we set ~ = 2, and in a2, we set ~ = −1. As
depicted, in both valuations, to �nd sign information for @1
and @2, it su�ces to �nd sign information for @1 and @2 at
the roots of ? and the limit points.

We formalize this procedure for sign determination in the
sign_determination function. The �rst input to this func-
tion is a list of polynomials qs of type rmpoly, where rmpoly

is our abbreviation for real mpoly poly. Here, poly is Is-
abelle/HOL’s type for univariate polynomials, mpoly is the
type for multivariate polynomials, and real is the type for
real numbers, so an rmpoly is a univariate polynomial whose
coe�cients are real multivariate polynomials. Say initially
we have polynomials in variables G,~1, . . . , ~= ; then type
rmpoly arises when we treat those polynomials as being uni-
variate in G with coe�cients in~1, . . . , ~= . Unlike in computer
algebra, these polynomials are not restricted to have any par-
ticular representation; rather, they are elements of the free
term algebra. The next input to sign_determination is a list

3In the formalization of the univariate case [12], the polynomial ? was
chosen so as to directly sample from these intervals by using the Cauchy
root bound, a mathematical quantity that bounds the roots of a set of
univariate polynomials. This followed BKR’s original work [2]. However,
since the Cauchy root bound is for univariate polynomials only, we must
work instead with limit computations as Renegar does [36].

Polynomials: q1 = y2x + 1, q2 = yx + 1

Variable of interest: x 

Compute:

p = (y2x + 1)(yx + 1)* (
'

'(
((y2x + 1)(yx + 1)))

= (y2x + 1)(yx + 1)(2xy3 + y2 + y)

Example valua8on, !1: y = 2

q1, q2 in !1 : 4x + 1, 2x + 1

p in !1 : (4x + 1)(2x + 1)(16x + 6)

Example valuation, !2: y = -1

q1, q2 in !2 : x + 1, -x + 1

p in !2 : (x + 1)(-x + 1)(-2x)

1−1

Lim at ∞Lim at −∞− "3 8

− "1 4− "1 2

Lim at ∞Lim at −∞

Roots of p only

Roots of q’s and of p

Limits

Legend

0

Figure 2. An example of sign determination.

of initial assumptions of type (real mpoly × rat) list,
which we abbreviate as assumps. Here, rat is Isabelle/HOL’s
type for rational numbers, and so each assumption in the
list pairs a real multivariate polynomial with an associated
rational number that indicates a sign condition on the poly-
nomial (0, 1, or -1). This type is useful in specifying any
known sign information on polynomials in ~1, . . . , ~= . The
output of sign_determination is a list of pairs of assumptions
and associated sign assignments to qs. Each sign assignment
has type rat list.4 The assumptions have type assumps (for
the same reason as before), and as each assumption may
have multiple associated sign assignments, each assump-
tion is paired with a list of associated sign assignments, as
demonstrated by the assumps × (rat list list) type. The
output, of type (assumps × (rat list list)) list, contains
an exhaustive set of assumptions (in order to capture all

consistent sign assignments for the @8 ’s).

fun sign_determination:: "rmpoly list ⇒ assumps ⇒

(assumps × rat list list) list"

where "sign_determination qs assumps =

(let branches =

lc_assump_generation_list qs assumps in

concat (map (_branch. let

poly_p_branch = poly_p_in_branch branch;

(pos_limit_branch, neg_limit_branch) =

limit_points_on_branch branch;

mat_eq_signs_on_branch = extract_signs

(calculate_data_assumps_M poly_p_branch

(snd branch) (fst branch)) in

map (_(a, signs).

(a, pos_limit_branch#neg_limit_branch#signs))

mat_eq_signs_on_branch) branches))"

Here, the lc_assump_generation_list function generates
an exhaustive list of possible branches, branches, that con-
tain assumptions on the signs of the leading coe�cients of
the input polynomials qs. An important subtlety is that the

4Technically, we could use int list for sign assignments, since each
member of the sign assignment list is 1, 0, or −1, but as noted elsewhere
[12], it is easier to work with rat list in thematrix equation construction.
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leading coe�cient of the polynomial @8 may be di�erent in
di�erent branches. For example, the leading coe�cient of
(~+1)G2+~G +2 is~+1 in a branch where~+1 is assumed to
be nonzero,~ in a branch where~+1 is zero and~ is assumed
to be nonzero, and 2 in a branch where both ~ + 1 and ~ are
assumed to be zero. To best account for this subtlety, each
element of branches contains both the generated assump-
tions (which determine the branch) and a list of polynomials
which contains a simpli�ed version of the qs: to be precise,
@8 = 21G

31 + · · · + 2<G
3< simpli�es to 2 9G3 9 + · · · + 2<G

3< i�
21, . . . , 2 9−1 are all assumed to be zero and 2 9 is assumed to
be nonzero. For example, given a list of input polynomials
[(~+1)G2+~G+2, ~2+(~+1)G5], an element of branches could
be: ( [(~+1, 0), (~, 1), (~2, 1)], [~G +2, ~2+ (~+1)G5]). The list
of assumptions [(~+1, 0), (~, 1), (~2, 1)] speci�es that, in this
branch,~+1 is assumed to be 0 and~ and~2 are assumed to be
positive. Under these assumptions, (~+1)G2+~G+2 simpli�es
to ~G + 2 and ~2 + (~ + 1)G5 simpli�es to ~2 + (~ + 1)G5 (as the
purpose of the simpli�cation is to determine the leading coef-
�cient, it is not mission critical to fully simplify~2+ (~+1)G5

to ~2, and our code is not optimized to do so).
Currently, lc_assump_generation_list naively generates

branches by branching on all possible sign assignments to the
leading coe�cients, rather than on all consistent ones as BKR
would. Thus, branches with inconsistent assumptions can be
generated: for example, the branch ( [(~+1, 0), (~, 1), (~2,−1)],
[~G + 2, ~2 + (~ + 1)G5]) could be generated by the func-
tion lc_assump_generation despite its inconsistent assump-
tions (~2 is assumed to be negative). Additionally, although
lc_assump_generation_list takes an input list of assump-
tions, assumps, as an argument, it does not enforce consis-
tency of the output branches with assumps; however, before
splitting on the sign of a polynomial 5 , it will check whether
assumps already contains sign information for 5 .
Branching on the signs of the leading coe�cients of the

qs provides important information for two reasons: First,
because these signs are relevant for the matrix equation
computation (Sec. 2.2); and second, because knowing the
sign of the �rst non-zero leading coe�cient for every @8
allows us to easily compute the signs at the limit points.5

The sign_determination functionmaps over branches, and
for each computes the polynomial ? = (

∏

@8 ) ·
m
mG
(
∏

@8 ),
stored in poly_p_branch (cross reference Fig. 2). Although it
would su�ce to compute ? beforehand, and then simplify it
appropriately on each branch given the associated assump-
tions (for example, in a branch where~ = 0, @1 = ~2G +1, and
@2 = ~G+1, the polynomial ? = (~2G+1) (~G+1) (2G~3+~2+~)

simpli�es to ? = 0), it is more direct to compute ? in each
branch.6 That is, given @1 = ~2G + 1, and @2 = ~G + 1, if

5The sign of @8 at∞ equals the sign of its leading coe�cient, whereas the
sign of@8 at −∞ is the sign of its leading coe�cient multiplied by (−1)deg@8 ,
where deg@8 is the degree of @8 .
6Our polynomials do not have any �xed representation, and equality check-
ing is a potentially costly operation. Further, even if two polynomials are

in a given branch we know that ~ = 0, we also know that
the leading coe�cient of @1 is 1 and the leading coe�cient
of @2 is 1, which means that @1 = 1 and @2 = 1, and so
? = (1 · 1) · ( m

mG
(1 · 1)) = 0.

Next, for each branch, sign_determination performs a cal-
culation (formalized in our limit_points_on_branch func-
tion) to �nd the signs of qs at∞ and −∞. These are stored
in pos_limit_branch and neg_limit_branch, respectively.
Then, it makes a call to our calculate_data_assumps_M

function (discussed in Sec. 2.2) to calculate a list of matrix
equations for each branch, each of which stores sign infor-
mation under some assumptions (assumptions in our for-
malization only accumulate, so the output assumptions con-
tain the original branch’s assumptions). It pulls out the as-
sumptions and sign conditions from the matrix equations
with the extract_signs function, which returns a list of type
(assumps × rat list list) list. This list is stored in
mat_eq_signs_on_branch.
Finally, the positive and negative limit sign conditions

pos_limit_branch and neg_limit_branch are preprended to
each list of sign conditions calculated with the matrix equa-
tions (the # operator in Isabelle/HOL prepends an element
to a list), and the resulting list of assumptions and associated
sign conditions is returned.
It is now time to discuss the matrix equation.

2.2 The Multivariate Matrix Equation

The multivariate matrix equation, like the univariate matrix
equation, is concerned with �nding sign information for a
set of polynomials @1, . . . , @= at the roots of an auxiliary poly-
nomial ? . One advantage of formalizing a multivariate QE
algorithm based on BKR and Tarski is that the construction
of the multivariate matrix equation is very similar to the
construction of the univariate matrix equation.

Thus, to understand the multivariate matrix equation, we
�rst need to consider the construction of the univariate ma-
trix equation. At its core, the univariate matrix equation
relies on computing Tarski queries, so we start there.

2.2.1 Computing Multivariate Tarski Queries. Tarski
queries are de�ned as follows:

De�nition 2.1. [12] Given univariate polynomials ?, @ with
? ≠ 0, the Tarski query # (?, @) is:

# (?, @) = #{G ∈ R | ? (G) = 0, @(G) > 0} −

#{G ∈ R | ? (G) = 0, @(G) < 0}.

These Tarski queries can be computed from the Euclidean
remainder sequence that starts with ? and ?′@:

Proposition 2.2. (Sturm-Tarski Theorem) Let ? ≠ 0 and @ be

real univariate polynomials. Let ?1 = ? , ?2 = ?′@, ?3, . . . , ?:

not identically equivalent, they may be so under a branch’s assumptions
(for example, ~2 + ~ + 1 is equivalent to ~2 if ~ + 1 is assumed to be 0).
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be the Euclidean remainder sequence of ? and ?′@, where

?8 = 28?8+1 − ?8+2,

for 28 ∈ R[G] and where deg(?8+2) < deg(?8+1). Let 08 be

the leading coe�cient of ?8 and let 38 := deg(?8 ). Let (
+ (?, @)

denote the number of sign changes in the sequence 01, . . . , 0: ,

and let (− (?, @) denote the number of sign changes in the

sequence (−1)3101 . . . , (−1)
3:0: . Then # (?, @) = (− (?, @) −

(+ (?, @).

This result is from the literature [36, Prop. 8.1] (with an
unnecessary assumption removed that is not included in
other references [1] or in Isabelle’s existing formalization
[24] of the Sturm-Tarski theorem). Critically, in the Sturm-
Tarski theorem, it is not the values of 01, . . . , 0: that matter;
rather, it is the signs that matter; this is what enables the
multivariate generalization [2].
Consider polynomials ? ≠ 0 and @ in G with polynomial

coe�cients in ~1, . . . , ~= (i.e., ?, @ ∈ R[~1, . . . , ~=] [G]). Then,
we can form Euclidean remainder sequences of ? and ?′@

with respect to G . The Euclidean remainder sequence is no
longer unique—instead, there are multiple sequences, each
depending on the signs of the coe�cients of ? and @ (as
coe�cients that are polynomials can have di�erent signs at
di�erent points). Once we �x a sequence and �nd the leading
coe�cients, we need to consider (by branching) all possible
sign assignments to those coe�cients,7 and output a list of
Tarski queries and the assumptions they are subject to.

For example, if we take polynomials ? = ~2G + 1 and
@ = ~G + 1, then if ~2 = 0, then ~ = 0 so ? = @ = 1, and the
Euclidean remainder sequence is just 1, and # (?, @) = 0.8

However, if ~ ≠ 0, then our Euclidean remainder sequence is
~2G +1, ~3G +~2,−(1−~), where we have calculated~2G +1 =
1
~
· (~3G + ~2) + (1 − ~), using assumption ~ ≠ 0 for 1

~
.

Now, continuing the computation of # (~2G +1, ~G +1), we
�nd that the leading coe�cients of our Euclidean remainder
sequence (assuming ~ ≠ 0) are ~2, ~3, and −(1 −~). Next, we
consider the possible sign assignments to~2, ~3, and −(1−~).
For example, (+, +,−) is one such sign assignment. So, we
have Tarski query # (?, @) = (− (?, @) −(+ (?, @) = 0− 1 = −1

under the assumptions that: ~ ≠ 0, ~2 > 0, ~3 > 0, and
−(1 − ~) < 0. Our output for # (~2G + 1, ~G + 1) would be a
list of all the Tarski queries under all possible assumptions.
This computation is visualized in Fig. 3 (where, for purposes
of space, only two output branches are shown explicitly).

Note that Euclidean remainder sequences for multivariate
polynomials sometimes contain fractions. While we could
have chosen to work with Euclidean remainder sequences in

7Full BKR would consider all consistent sign assignments instead. This
makes the algorithm highly recursive, which adds a considerable layer of
di�culty to its veri�cation.
8Technically, our formalization would do more branching than this for two
reasons: First, it will branch on ~2 = 0, ~2 > 0, and (unnecessarily) ~2 < 0;
and second, because it will not determine that ~2 = 0 implies ~ = 0—and so
it will not know that @ = 1 whenever ~2 = 0.

Assuming: y = 0

Remainder sequence:

1

Input:

y2x + 1, yx + 1

Assuming: y ≠ 0

Remainder sequence:

y2x + 1, y3x + y2, -(1 - y)

Leading coefficients:

a1 = y2, a2 = y3, a3 = -(1-y)

Degrees:

d1 = 1, d2 = 1, d3 = 0

S-(p, q) = 0, S+(p, q) = 0

N(p, q) = 0

Output: A list of Tarski queries and their assumptions, 

considering all possible sign assignments

Assuming: (a1: +, a2: +, a3: +)

S-(p, q) = 1, S+(p, q) = 0

N(p, q) = 1

Assuming: (a1: +, a2: +, a3: -)

S-(p, q) = 0, S+(p, q) = 1

N(p, q) = -1

. . .

Figure 3.Computing Tarski queries for ? = ~2G+1,@ = ~G+1.

a fraction �eld, this would require complicated type switch-
ing in the formalization. Instead, we use pseudo-remainder

sequences for multivariate polynomials. Pseudo-remainder
sequences are essentially Euclidean remainder sequences for
polynomials, but normalized so as not to contain fractions
(ours are additionally normalized so as not to a�ect the result
of the Sturm-Tarski computation [25]). We develop pseudo-
remainder sequences for multivariate polynomials of type
rmpoly (currently, our formalization naively branches on the
signs of the leading coe�cients of the relevant polynomi-
als). Here, we bene�t from prior work: The Sturm-Tarski
theorem was formalized in Isabelle/HOL by Wenda Li [24];
Li and Paulson later extended this to bivariate polynomials
[26] using pseudo-remainder sequences, and Li, Passmore,
and Paulson also developed univariate Tarski queries with
pseudo-remainder sequences [25].

Remark. For self-containedness, we brie�y describe pseudo-

remainder sequences. Polynomial pseudo-quotients (pquo)
and pseudo-remainders (prem) satisfy this property [15, 25]:

(lead_coe� @) (1+deg ?−deg @)? = pquo(?, @) · @ + prem(?, @),

where deg prem(?, @) < deg @ or @ = 0. For example, when

considering polynomials ? = ~G2 + 1 and @ = ~3G + 1 as

univariate polynomials in G , then pquo(?, @) = ~4G − ~ and

prem(?, @) = ~6 + ~, as (~3)2? = (~4G − ~)@ + (~6 + ~) and

deg(~6 +~) = 0 < deg @ = 1. Notice how there are no fractions

in pquo or prem, unlike the fractions in the usual Euclidean

remainder sequence (assuming ~ ≠ 0 for well-de�nedness).
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We use signed pseudo-remainder sequences, where ?1 = ? ,

?2 = ?′@, and ?3, . . . , ?: satisfy the following equation for a

special choice of coe�cients B8 , explained below:

?8+2 = B8 · prem(?8 , ?8+1)

This sequence is normalized so that, in any valuation, the

number of sign changes in the evaluated pseudo-remainder

sequence is the same as in the Euclidean remainder sequence

for the evaluated polynomials, so that the result of the Sturm-

Tarski computation is una�ected by the normalization. For

this, we follow the style of [25] and normalize as follows: if

(1 + deg ?8 − deg ?8+1) is even, we multiply prem(?8 , ?8+1) by

B8 = −1; else, by B8 = −lead_coe� ?8+1. To understand this intu-

itively, note that the pseudo-remainder prem(?, @) e�ectively

normalizes by (lead_coe� @) (1+deg ?−deg @) . Then, note that re-

mainder sequences in the Sturm-Tarski theorem always negate

prem (cross-reference Proposition 2.2). So, if (1+deg ? −deg @)

is even, we have not changed the sign of prem and we need

only negate it. However, if (1 + deg ? − deg @) is odd, we have

potentially changed the sign of prem—depending on the sign of

(lead_coe� @)—so we not only negate prem but also multiply

it by (lead_coe� @).

Since QE is concerned with sign information for multiple
polynomials simultaneously, it is useful to generalize the
notion of Tarski queries to sets of polynomials [12] as follows:

De�nition 2.3. Given a polynomial ? and a list of polyno-
mials @1, . . . , @= , let � and � be subsets of {1, . . . , =}. Then, the
Tarski query # (� , � ) with respect to ? is

# (� , � ) = # (?2 +
(

Σ8∈�@
2
8

)

,Π 9∈ � @ 9 ) =

#{G ∈ R | ? (G) = 0,∀8 ∈ � . @8 (G) = 0,Π 9∈ � @ 9 (G) > 0} −

#{G ∈ R | ? (G) = 0,∀8 ∈ � . @8 (G) = 0,Π 9∈ � @ 9 (G) < 0}.

The matrix equation determines the signs of @1, . . . , @= at
the zeros of ? by computing # (� , � ) for a representative set
of combinations of subsets � , � of @1, . . . , @= (see Sec. 2.2.2).

There are two key lemmas that we prove about multivari-
ate Tarski queries. The �rst is a soundness lemma showing
that the resulting multivariate Tarski queries agree, on every
point satisfying the associated assumptions, with what the
univariate Tarski query would have been:

lemma multiv_tarski_query_correct:

assumes inset: "(assumps, tarski_query) ∈

set (construct_NofI_M p acc I J)"

assumes val: "
∧

f n. (f,n) ∈ set assumps =⇒

satisfies_evaluation val f n"

shows "tarski_query = construct_NofI_R

(eval_mpoly_poly val p)

(eval_mpoly_poly_list val I)

(eval_mpoly_poly_list val J)"

Here, the construct_NofI_M function constructs a list of mul-
tivariate Tarski queries and the assumptions they are subject
to. As input, it takes a polynomial p, an initial set of assump-
tions acc, and two lists of polynomials I and J. Both p and

all of the polynomials in I and J have type rmpoly, i.e. they
are univariate polynomials in G with polynomial coe�cients
in some variables ~1, . . . , ~= . The inset assumption assumes
that we have some particular Tarski query tarski_query that
is subject to the assumptions assumps, which are assumptions
on polynomials in ~1, . . . , ~= . Now, the construct_NofI_R

function is the function to compute univariate Tarski queries
from our prior work [12], so the conclusion of the lemma is
that tarski_query is exactly the (unique) univariate Tarski
query that would be computed from evaluating p and all of
the polynomials in I, J on val (using the eval_mpoly_poly

and eval_mpoly_poly_list functions), where val is any as-
signment of real values to ~1, . . . ~= where the assumptions
assumps are realized.
The second key lemma is a completeness result:

lemma multiv_tarski_queries_complete:

assumes "
∧

f n. (f,n) ∈ set init_assumps =⇒

satisfies_evaluation val f n"

shows "∃ (assumps, tq) ∈

set (construct_NofI_M p init_assumps I J).

(∀(p,n)∈set assumps. satisfies_evaluation val p n)"

Here, this shows that if initial assumptions init_assumps

are satis�ed by valuation val, then there is some resulting
assumptions and Tarski query pair (assumps, tq) where all
�nal assumptions assumps are satis�ed by val.

Together, these two lemmas give a strong result: the sound-
ness lemma shows that the multivariate results coincide
with univariate results in all projections meeting the �nal
assumptions, and the completeness lemma shows that for
any projection meeting the initial assumptions, there is some
corresponding Tarski query whose associated (�nal) assump-
tions are met by the projection. Or, on a more intuitive level,
the completeness lemma shows that our function to compute
multivariate Tarski queries generates useful output when-
ever it is given useful input, and the soundness lemma shows
that useful output has the desired mathematical meaning.

2.2.2 Using Multivariate Tarski Queries. The matrix
equation connects a vector of information about possible sign
assignments for a set of multivariate polynomials—i.e., sign
assignments that are not necessarily consistent—on the LHS,
to a vector of multivariate Tarski queries on the RHS.

The univariatematrix equation is de�ned as follows, where
we closely follow the de�nition of the univariate matrix equa-
tion in our earlier work [12], but adapted to our purposes:9

De�nition 2.4. Fix univariate polynomials of interest ? and
@1, . . . , @: . Let Σ̃ = {f̃1, . . . , f̃<} be a set of possible sign as-
signments to @1, . . . , @: , and assume Σ̃ contains all consistent

9The univariate BKR paper [12] follows the matrix equation developed in
Ben-Or, Kozen, and Reif’s original paper [2], where ? is assumed to be
coprime with each @8 . Because this assumption no longer makes sense for
multivariate polynomials, we use the matrix equation developed by Renegar
[36]. While our prior work [12] formalized both styles of matrix equation
[11], only the former was discussed at length in the paper.
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sign assignments to @1, . . . , @: at the roots of ? . Let ( be a set
of pairs of subsets (�1, �1), . . . , (�; , �; ) where for all 1 ≤ 8 ≤ ; ,
�8 ⊆ {1, . . . , :} and �8 ⊆ {1, . . . , :}. Then the matrix equa-

tion for Σ̃ and ( is the relationship " · F = E between the
following three entities:

• " , the ;-by-< matrix with entries

"8, 9 =
(

Πℓ∈�8 (1 − (f̃ 9 (@ℓ ))
2)
)

·
(

Πℓ∈ �8 f̃ 9 (@ℓ )
)

∈ {−1, 0, 1}

for (�8 , �8 ) ∈ ( and f̃ 9 ∈ Σ̃,
• F , the length< vector whose entries count the num-
ber of roots of ? where @1, . . . , @: has sign assign-
ment f̃ , i.e., F8 = #{G ∈ R | ? (G) = 0, sgn(@ℓ (G)) =

f̃8 (@ℓ ) for all 1 ≤ ℓ ≤ :},
• E , the length ; vector consisting of Tarski queries for
the subsets, i.e., E8 = # (�8 , �8 ).

Intuitively, as noted by our prior work [12], the meaning
of a matrix equation is captured by its associated list of
signs and list of (pairs of) subsets. Both the matrix " and
the RHS vector E are fully computable from these two lists,
andF , which stores information about which possible sign
assignments are consistent (sign assignment f̃8 is consistent
i�F8 is nonzero), is calculated as"−1 · E .

For multivariate polynomials the situation is more compli-
cated. We can still construct a matrix equation for multivari-
ate polynomials—the de�nition of the matrix" is the same
as it was in the univariate setting, but the righthandside vec-
tor uses our function to construct a list of Tarski queries for
multivariate polynomials. Each RHS vector—and so each ma-
trix equation—comes with an associated list of assumptions
which were generated by the multivariate Tarski queries. So,
for an input list of multivariate polynomials ? and @1, . . . , @: ,
we construct a list of multivariate matrix equations that store
sign information for these polynomials, subject to certain
assumptions on polynomials in one fewer variable.

The overall construction is very similar to that in the uni-
variate case [12]. It proceeds by induction on the number
of @’s, so that the base case is for a single @. Smaller matrix
equations are successively combined and reduced to form
the matrix equation for @1, . . . , @= . The reduction is what dif-
ferentiates the matrix equation of BKR from that of Tarski:
information for inconsistent sign assignments is removed at
appropriate intervals, which decreases the size of the matrix
equation. In the univariate case, the size of the matrix equa-
tion is bounded by #{G . ? (G) = 0})2, where #{G . ? (G) = 0} is
the number of roots of the polynomial ? . The size of a multi-
variate matrix equation is bounded by the number of roots
of ? in a valuation satisfying the associated assumptions. As
the univariate reduction step mainly involves computations
on the matrix " , which is unchanged in the multivariate
setting, it generalizes quite naturally, and so our hybrid algo-
rithm essentially inherits reduction in the matrix equation
construction, thus incorporating insights from BKR into our
hybrid algorithm.

We formalize our multivariate matrix equation construc-
tion in the calculate_data_assumps_M function (cross refer-
ence Sec. 2.1), and prove the following two key lemmas:

lemma multivariate_calculate_data_correct:

assumes mat_eq: "(assumps, mat_eq) ∈

set (calculate_data_assumps_M p qs init_assumps)"

assumes "
∧

p n. (p,n) ∈ set assumps =⇒

satisfies_evaluation val p n"

assumes "eval_p = eval_mpoly_poly val p"

assumes "eval_qs = map (eval_mpoly_poly val) qs"

assumes p_nonzero: "eval_mpoly_poly val p ≠ 0"

shows "calculate_data_R eval_p eval_qs = mat_eq"

This �rst lemma connects the behavior of our multivariate
matrix equation constructor function to the Renegar-style
univariate matrix equation function (calculate_data_R) for-
malized in our prior work [12]. That is, on any valuation
val that satis�es the assumptions assumps, the associated
multivariate matrix equation mat_eq, which �nds the consis-
tent sign assignments for qs at the zeros of some p in the
valuation val, is equal to the univariate matrix equation that
�nd the consistent sign assignments for eval_qs at the zeros
of eval_p , where eval_p is p evaluated on val and eval_qs

is qs evaluated on val. This is a soundness lemma, since it
explains that whenever our output is useful, it has the correct
mathematical meaning.

lemma multivariate_calculate_data_complete:

assumes "
∧

p n. (p,n) ∈ set init_assumps =⇒

satisfies_evaluation val p n"

shows "∃ (assumps, mat_eq) ∈

set (calculate_data_assumps_M p qs init_assumps).

(∀ (p,n) ∈ set assumps.

satisfies_evaluation val p n)"

This second lemma shows that when we give logically
consistent input assumptions to calculate_data_assumps_M,
some output with logically consistent assumptions will be
generated (i.e., useful input generates useful output). These
lemmas are analogous to those discussed for multivariate
Tarski queries; taken together, they help us prove key correct-
ness properties of our elim_forall method, which serves to
eliminate a single universal quanti�er. We now turn to a dis-
cussion of our top-level QE methods, including elim_forall.

2.3 Overall Quanti�er Elimination Algorithm

To best explain our formalized QE algorithm, we must �rst
touch on the framework we are working with.
We build on our prior framework [37] that veri�ed (in

Isabelle/HOL) the virtual substitution algorithm, an e�cient
QE method that applies to a low-degree fragment of real
arithmetic. This prior development sets up a framework for
multivariate QE (including a type for real QE problems and
a function to evaluate QE problems at real-valued points);
by building on this, we are ultimately able to link together
our veri�ed (complete, ine�cient) QE method with veri�ed

218



A First Complete Algorithm for Real �antifier Elimination in Isabelle/HOL CPP ’23, January 16–17, 2023, Boston, MA, USA

virtual substitution [37], using this (incomplete but experi-
mentally promising) QE method as a preprocessing step.

Accordingly, we work with formulas of type atom fm [37],
which have the following grammar:

�,� ::= TrueF | FalseF | (Atom(Eq ?)) | (Atom(Less ?)) |

(Atom(Leq ?)) | (Atom(Neq ?)) | And � � | Or � � |

Neg � | ExQ � | AllQ � | ExN = � | AllN = �,

where ? is a real polynomial and = ∈ N. Here, (Atom(Eq ?))
captures the relationship ? = 0, (Atom(Less ?)) captures
? < 0, (Atom(Leq ?)) captures ? ≤ 0, and (Atom(Neq ?))

captures ? ≠ 0. Further, And � � captures the logical mean-
ing of � ∧� , Or � � captures � ∨� , and Neg � captures ¬� .
Finally, ExQ � indicates that formula � is quanti�ed by an
existential quanti�er, AllQ � indicates that � is quanti�ed by
a universal quanti�er, ExN = � indicates that � is quanti�ed
by a block of = existential quanti�ers, and AllN = � indicates
that � is quanti�ed by a block of = universal quanti�ers.

In these formulas, variables are represented with de Bruijn
indices; Var 0 is the variable quanti�ed by the innermost
quanti�er, Var 1 is the variable quanti�ed by the second
innermost quanti�er, and so on. We operate on quanti�ers
inside-out, i.e. we start with the quanti�er attached to Var 0.

Our elim_forall function is designed to eliminate a single
∀ quanti�er. It parallels the method visualized in Fig. 1.

fun elim_forall:: "atom fm ⇒ atom fm"

where "elim_forall F = (let

qs = extract_polys F;

univ_qs = univariate_in qs 0;

reindexed_univ_qs = map

(map_poly (lowerPoly 0 1)) univ_qs;

initial_data = sign_determination

reindexed_univ_qs [];

filtered_data = filter (_(assumps, signs_list).

list_all (_ signs.

lookup_sem_M F (zip qs signs) = (Some True))

signs_list

) initial_data

in create_disjunction filtered_data)"

Here, extract_polys �nds the polynomials qs in our formula
F, and univariate_in qs 0 transforms our polynomials qs to
have the rmpoly type (so that they are univariate polynomials
in Var 0, with coe�cients that are multivariate polynomials
in bigger variables). The resulting list of polynomials is called
univ_qs. Then, in reindexed_univ_qs, we transform the coef-
�cients of every polynomial in univ_qs (which do not contain
Var 0) by lowering every variable index by 1. This lowering
is crucial for �nding all possible signs/assumptions pairs
for our multivariate polynomial coe�cients (cross reference
Sec. 2.1), as sign_determination expects polynomials in Var

0. We then retain all the sign assignments that satisfy our
formula of interest, and return a disjunction of the associated
assumptions. If our original formula involved polynomials
in variables Var 0, Var 1, . . . , Var n, then, because of the

transformation and reindexing, these assumptions will be
polynomials in variables Var 0, . . . , Var (n - 1). Our new Var

0, which was previously Var 1, will correctly match to the
new innermost quanti�er, which was previously the second
innermost quanti�er, and so on.
Our top-level QE method, named qe, heavily relies on

elim_forall and elim_exist (where elim_exist F is de�ned
as Neg (elim_forall (Neg F))):

fun qe:: "atom fm ⇒ atom fm"

where

"qe TrueF = TrueF"

| "qe FalseF = FalseF"

| "qe (Atom a) = (Atom a)"

| "qe (And F1 F2) = And (qe F1) (qe F2)"

| "qe (Or F1 F2) = Or (qe F1) (qe F2)"

| "qe (Neg F) = Neg (qe F)"

| "qe (ExQ F) = elim_exist (qe F)"

| "qe (AllQ F) = elim_forall (qe F)"

| "qe (AllN n F) = (elim_forall ^^ n) (qe F)"

| "qe (ExN n F) = (elim_exist ^^ n) (qe F)"

Our top-level correctness theorem says that for any as-
signment a of the free variables in F to real numbers, our
original formula F has the same truth-value as qe F; or, in
other words, F and qe F are logically equivalent:

theorem qe_correct:

�xes F:: "atom fm"

shows "eval F a = eval (qe F) a"

Here, eval is the function formalized by Scharager et al. [37]
to evaluate formulas of type atom fm on valuations. This
function accounts for the reindexing of free variables that
naturally takes place during QE. For example, ∀G . G2~ ≤

0 is logically equivalent to ~ ≤ 0, but since variables are
represented with de Bruijn indices, where the innermost
quanti�er corresponds with Var 0,∀G . G2~ ≤ 0 is represented
in the atom fm type as AllQ (Leq ((Var 0)^2 · Var 1))

whereas ~ ≤ 0 is represented as Leq (Var 0). In eval, this
subtlety is handled by de�ning, e.g., eval (AllQ F) v as (∀
x. (eval F (x#v))), where x#v is the list with head x and tail
v. So, qe_correct shows that F evaluated on any mapping of
free variables to real numbers is equal to qe F evaluated on
that same mapping, which establishes that qe is sound.

We also show that qe fully removes quanti�ers in the fol-
lowing lemma, where countQuantifiers counts the number
of existential or universal quanti�ers in formula F:

theorem qe_complete:

shows "countQuantifiers (qe F) = 0"

This result shows that qe is complete.
To our knowledge, qe is the �rst sound and complete algo-

rithm for real QE to be formalized in Isabelle/HOL (previous
work [25, 32, 37] was sound but not complete). We now turn
to some further details regarding our formalization.
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3 Formalization Details

Isabelle/HOL is well-suited for us; we not only bene�t consid-
erably from thewell-developed libraries (including aforemen-
tioned prior work [12, 25, 37]), but also from Isabelle/HOL’s
support for automated proof search in Sledgehammer [33].
However, at the same time, working in the formal set-

ting of Isabelle/HOL poses considerable challenges. In this
section, we begin by discussing some of those challenges, fol-
lowed by some of the high-level proof techniques that helped
us succeed in our formalization. We then discuss some useful
low-level details regarding our extensions to Isabelle/HOL’s
multivariate polynomials library. Finally, we discuss our code
export and the performance of our algorithm.

3.1 Challenges

Many design decisions for the functions described in Sec. 2
were not initially evident. For example, the need to consis-
tently track assumptions and pass them in as an argument to
our functions throughout the calculation of the matrix equa-
tion was initially not obvious. At �rst, we wrote a function
that was nearly identical to calculate_data_assumps_M, with
the one major di�erence that we did not include assumps as
an argument to this function. While this function was fully
capable of generating a multivariate matrix equation, we
soon realized we had made a major mistake when we tried
to extend it into a larger QE algorithm. After this, we were
careful to always include an argument for assumptions in
our functions if it could possibly be applicable, regardless of
whether or not it seemed immediately relevant.

The challenge of correctly formalizing the algorithm in
Isabelle/HOL is heightened because the precision of formal-
ization sometimes identi�es details that were underspeci�ed
in the source material. Indeed, BKR’s discussion of the mul-
tivariate QE algorithm was limited to only two pages and
proceeds at a very high level [2]. Renegar [36] is considerably
more detailed, but is also written in the style of mathemat-
ics, which necessitates signi�cant translation to the level
of formalization. For example, the way in which the limit
point calculation should be formalized, while entirely obvi-
ous in retrospect, did not become clear to us until we �xed
a method of branching—and indeed, our initial method of
formalizing the limit point calculation, which was agnostic
to branching, did not make it into the �nal code for the al-
gorithm. Of this calculation, Renegar writes the following,
in which he uses the notation 68 where we use @8 , and 5

instead of ? [36]: “. . . each consistent sign vector of {68 }8
occurs at some real zero of 5 except, perhaps, for the sign
vectors of points to the right or left of all real zeros of

∏

8 68 .
However, the latter two consistent sign vectors are trivially
determined from the leading coe�cients of the polynomials
68 .” While this completely describes the mathematical use of
the limit point calculations, it took some time to translate it
into Isabelle/HOL de�nitions and proofs.

Finally, a last challenge is that even simple details can be-
come complex in the formalized setting of a theorem prover.
For example, working with multivariate polynomials in Is-
abelle/HOL poses a challenge, as the formal setting requires
rigor even for operations that are simple on paper but may
become much more involved when formalized. For example,
the transformation to treat a multivariate polynomial as uni-
variate in some variable of interest is immediate on paper,
but in Isabelle/HOL it is more subtle, precisely because the
type of our object is changing: 3G~I2 + 6G2FE + 5G~ + 1 has
type real mpoly, whereas (6FE)G2 + (3~I2 + 5~)G + 1 has
type rmpoly (see also Sec. 2.1).

3.2 High Level Proof Techniques

Though treating multivariate polynomials as univariate in
some variable of interest poses low-level challenges in our
formal setting, it a�ords signi�cant high-level simpli�ca-
tions. Many of our proofs rely on the technique of univer-
sal projection—we assume �xed real values for all variables
aside from a variable of interest, which lets us work with
truly univariate polynomials. Projection allows us to connect
functions in our multivariate construction to corresponding
functions in the univariate construction from our prior work
[12]. This works because the multivariate case of the BKR al-
gorithm builds rather directly on the univariate case, making
it amenable to formalization, as noted previously [12].
In consequence, each key function involved in the con-

struction of the multivariate matrix equation requires two
top-level associated lemmas. The �rst is a soundness lemma
which connects the behavior of the multivariate function
to a corresponding univariate function [12] through pro-
jection. The second is a completeness lemma which estab-
lishes that data for all possible projections is captured by
the function for some assumptions. Some examples of these
soundness and completeness lemmas are seen in Sec. 2.2 (e.g.
the soundness lemma multiv_tarski_query_correct and the
completeness lemma multiv_tarski_query_complete); there
are many more in the actual proof development. This proof
structure does not seek to closely mimic the (highly mathe-
matical) proofs in the source material [12, 36], but rather to
translate the key intuition into a shape which is amenable
to formalization.
Our construction and proofs are designed to be modular,

and we often rely on induction to prove key properties of
helper functions. In particular, we found it very helpful to
use custom induction theorems, supplementing those au-
tomatically generated by Isabelle/HOL. For example, the
spmods_multiv_aux function shown (abridged) below com-
putes a list of pseudo-remainder sequences for polynomials
p and q together with corresponding sign assumptions on
the leading coe�cients of the polynomials in each sequence.

function spmods_multiv_aux::

"rmpoly ⇒ rmpoly ⇒ assumps ⇒

(assumps × rmpoly list) list" where
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"spmods_multiv_aux p q assumps = (

if q = 0 then [(assumps, [p])]

else

case (lookup_assump_aux (lead_coeff q) assumps) of

None ⇒

let lcz = spmods_multiv_aux p (one_less_degree q)

((lead_coeff q, 0) # assumps) in

let lcp = spmods_multiv_aux q (mul_pseudo_mod p q)

((lead_coeff q, 1) # assumps) in

let lcn = spmods_multiv_aux q (mul_pseudo_mod p q)

((lead_coeff q, -1) # assumps) in

. . . /* combine lcz, lcp, lcn */

| (Some i) ⇒ . . . /* two recursive branches */ )"

The function branches depending on whether q is the zero
polynomial, otherwise, it recurses on the (possible) signs of
its leading coe�cient lead_coeff q. Here, assumps speci�es a
list of assumed input sign conditions, which are checked for
assumptions on lead_coeff q. Notably, spmods_multiv_aux
is not structurally recursive; its termination uses the fact
that, on each recursive call, the degree of the polynomial
arguments one_less_degree q or mul_pseudo_mod p q strictly
decreases. For such functions, Isabelle/HOL automatically
generates induction theorems, but these theorems lack the
usual case-splitting support for structurally recursive func-
tions [42]. The following snippet shows the Isabelle/HOL
subgoal (cases) structure that results from applying induc-
tion with the generated theorem for spmods_multiv_aux.

// apply (induct ... spmods_multiv_aux.induct)

Proof outline with cases:

case (1 p q assumps)

...

qed

Although spmods_multiv_aux.induct can, in principle, be
used to prove the aforementioned soundness and complete-
ness properties for spmods_multiv_aux, we found the proofs
tedious in practice because they lack the case structuring
bene�ts of Isabelle/HOL’s structured proof language [42].
Instead, we manually prove an alternative induction theorem
that mimics the branching structure of spmods_multiv_aux
(one base case, three branches with recursion). As before,
a snippet of the Isabelle/HOL subgoal (cases) structure is
shown below (comments illustrate the branching structure).

// apply (induct ... spmods_multiv_aux_induct)

Proof outline with cases:

case (Base p q assumps)

... // base case (q = 0)

next

case (Rec p q assumps)

... // lookup_assump_aux returns None

next

case (Lookup0 p q assumps)

... // lookup_assump_aux returns Some 0

next

case (LookupN0 p q assumps r)

... // otherwise

qed

Though some manual e�ort is needed to state and prove
spmods_multiv_aux_induct, our subsequent, repeated use of
this customized induction theorem makes it well worth the
initial investment. We expect similar induction theorems to
be broadly useful for structuring proofs about non-structural
recursive functions, including in other proof assistants. In-
deed, manual induction theorems are also used elsewhere in
the development, particularly to verify invariant properties
of the helper function that underlies the branching function
lc_assump_generation_list (see Sec. 2.1).

3.3 Library Extensions

We turn to some of our key results for multivariate polyno-
mials and the library extensions they prompted.

As seen in Sec. 3.1, we need a function to convert polyno-
mials of type real mpoly to polynomials of type real mpoly

poly. Eberl and Thiemann formalized one such way of doing
this in their mpoly_to_mpoly_poly de�nition [18]. We provide
the following alternate de�nition, which is executable:

de�nition mpoly_to_mpoly_poly_alt :: "nat ⇒

’a :: comm_ring_1 mpoly ⇒ ’a mpoly poly"

where "mpoly_to_mpoly_poly_alt x p =

(
∑

i∈{0..MPoly_Type.degree p x} .

monom (isolate_variable_sparse p x i) i)"

This de�nition applies to multivariate polynomials with co-
e�cients in a commutative ring with unity (denoted by
comm_ring_1). It relies on the isolate_variable_sparse func-
tion [38], where isolate_variable_sparse p x i �nds the
coe�cient of x^i in p. For each i from 0 to the degree of x in
p, we �nd this coe�cient and construct a monomial of type
poly with degree i and this coe�cient. Our �nal polynomial
is the sum of all of these monomials.

We connect our new de�nition to mpoly_to_mpoly_poly in
the following lemma:

lemma multivar_as_univar:

shows "mpoly_to_mpoly_poly_alt x p =

mpoly_to_mpoly_poly x p"

This enables a natural interface between Eberl and Thie-
mann’s work [18] and the large and powerful collection
of lemmas regarding isolate_variable_sparse [38], from
which we bene�t in the formalization.

We bene�t from Eberl and Thiemann’s lemmas regarding
mpoly_to_mpoly_poly in one of our main results regarding
polynomials, which is useful in our correctness proof for
elim_forall (cross reference Sec. 2.3):

lemma reindexed_univ_qs_eval:

assumes "univ_qs = univariate_in qs 0"

assumes "reindexed_univ_qs =

map (map_poly (lowerPoly 0 1)) univ_qs"

shows "map (eval_mpoly (x#xs)) qs =

(map (_p. (poly p x))

(map (_q. eval_mpoly_poly xs q) reindexed_univ_qs))"

This lemma relates the evaluation of multivariate poly-
nomials, of type real mpoly, and multivariate polynomials
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treated as univariate polynomials in the variable of interest
Var 0, of type rmpoly. To fully understand it, we must explain
a few Isabelle/HOL operators that manipulate multivariate
polynomials. Here, eval_mpoly is our name for the natural
de�nition of multivariate polynomial evaluation which sub-
stitutes real values for variables. Because variables are rep-
resented with de Bruijn indices, we can store the values to
substitute in a list L, where the element of L at position 0
is then substituted for Var 0, the element of L at position
1 is substituted for Var 1, and so on. If the length of L is
shorter than the number of variables, a default value of 0
is substituted for any variables that are not covered by L.
This de�nition was implicitly used in prior work [37], but
without being explicitly stated and named:

de�nition eval_mpoly:: "real list ⇒ real mpoly ⇒ real"

where "eval_mpoly L p = insertion (nth_default 0 L) p"

The eval_mpoly_poly function maps eval_mpoly over the co-
e�cients of a real mpoly poly.

Continuing to unpack the reindexed_univ_qs_eval lemma,
the lowerPoly function is from Scharager et al. [37]; here, it
serves to reindex variables in multivariate polynomials, so
that lowerPoly 0 1 q lowers every variable index in q by
1. The univariate_in operator is our function to perform
this multivariate to univariate transformation. Let @8 be the
polynomial at the 8th index of qs, and D@8 be the polyno-
mial at the 8th index of univ_qs—then the �rst assumption
of reindexed_univ_qs_eval says that D@8 is the polynomial
that we obtain by treating @8 as univariate in Var 0.
Next, the second assumption in reindexed_univ_qs_eval

says that reindexed_univ_qs is the list of polynomials ob-
tained by lowering all variable indices in the coe�cients of the
univ_qs by 1. Let us call AD@8 the polynomial at the 8th index
of reindexed_univ_qs. Then, lemma reindexed_univ_qs_eval
captures the mathematical equivalence of @8 and AD@8 by
showing that evaluating @8 on the valuation E = x#xs gives
the same result as evaluating the coe�cients of AD@8 on xs and
then evaluating the resulting univariate polynomial (which
now has constant coe�cients) on x.
The proof of this key lemma required that we �rst prove

the following fundamental extensionality result, which says
that if two polynomials p and q (in = variables) have identical
evaluations on R= , then they are themselves identical:

lemma same_evaluations_same_mpoly:

assumes "(
∧

L. eval_mpoly L p = eval_mpoly L q)"

shows "p = q"

Since real multivariate polynomials are fundamental to
many areas of mathematics, it is our hope that our library
developments will be useful to others, including in the for-
malization of other QE algorithms, but also more widely.

3.4 Code Export

We export our multivariate QE algorithm to SML code, which
removes overhead and allows us to better test our algorithm

on examples.10 Building on the framework of Scharager et al.
(by using the same type for QE formulas and the same evalu-
ation function for formulas) makes the connection with the
veri�ed virtual substitution algorithm [37] very easy.11 This
means that we are able to retain e�ciency [37] on examples
that are tractable for virtual substitution.
However, because virtual substitution is not a complete

QE method (i.e., it is not able to solve all QE problems), the
e�ciency, or lack thereof, of our (complete) algorithm is still
signi�cant. Unfortunately (but not unexpectedly), without
the link to virtual substitution, our hybrid multivariate algo-
rithm is not at all e�cient; it appears to hang on all but the
simplest univariate examples. However, we do not consider
our algorithm’s present ine�ciency to be a fatal �aw, since
we envision it as being a (major) stepping stone on the way
towards an optimized algorithm. As noted previously [37],
unveri�ed computer algebra systems have realized e�cient
QE in part because many have been extensively optimized
over several decades; thus, it is natural that optimized veri-
�ed algorithms will similarly take time to develop.

While ine�ciency is not unexpected given that even Rene-
gar may not realize practical e�ciency in its current state
[20, 21], at present, we suspect that part of the e�ciency
bottleneck for our algorithm is the untenable branching in
the computation of the multivariate Tarski queries; this can
be signi�cantly reduced in the future by implementing an al-
gorithm that more closely follows BKR. We also believe that
our algorithm’s lack of inherent optimizations is another
contributing factor; as one example, we currently branch
unnecessarily on the signs of constant coe�cients. Further,
we are not currently exploiting the algorithm’s inherent
parallelism. However, it does not make sense to focus on
optimizing our algorithm at this stage (optimizations may
be brittle). Once the branching re�ects the full reduction of
BKR, then ine�ciencies (such as the unnecessary branching
on constant coe�cients) should be identi�ed and handled
appropriately.

4 Related Work

From a theoretical standpoint, the most closely related work
is one by Cyril Cohen, who formalized a sign-determination
algorithm with reduction in Coq that, to our understanding,
uses the same matrix equation as our algorithm, although
the details of his formalization look quite di�erent from

10This step requires trusting Isabelle/HOL’s code generator in addition
to the theorem prover’s trusted core. Partial progress has been made on
verifying Isabelle’s code generator [22].
11The top-level correctness theorems for veri�ed virtual substitution [37]
have a very similar shape to qe_correct, as they state that for each top-
level formalized virtual substitution method V and valuation a , eval F a
equals eval (V F) a . This makes it easy to verify that, for any valuation
a , eval F a equals eval ((qe ◦ V) F) a .
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ours.12 To our knowledge, he has not yet used this improved
sign-determination algorithm for a QE algorithm, and this
work is unpublished, but a writeup is available on his web-
page [7]. Additionally, because the algorithm we verify is a
hybrid between Tarski’s QE algorithm and BKR, our work
shares some theoretical overlap with Cohen and Mahboubi’s
formalization of Tarski’s algorithm in Coq [6, 8].
From a practical standpoint, we bene�t from the well-

developed Isabelle/HOL libraries. This includes, of course,
our previous veri�cation of univariate BKR [12] and our
veri�cation of virtual substitution [37], which have already
been discussed at length. Additionally, we build on the for-
malization of pseudo-remainder sequences (recently made
available on the AFP [24]) described by Li, Passmore, and
Paulson [25]. Although we formalize our own functions to
generate pseudo-remainder sequences, which interface well
with our assumptions-based framework (and which are spe-
cialized to the rmpoly type), we derive insights from Li’s code
and mimic some of his structure in our functions, adapted
appropriately to our purposes. We also bene�t from proving
a connection between our functions and his.

5 Conclusion and Future Work

We develop and formalize Isabelle/HOL’s �rst complete mul-
tivariate quanti�er elimination (QE) algorithm for the �rst-
order logic of real arithmetic. Our algorithm mixes ideas
from Tarski’s original QE algorithm [40] and more e�cient
algorithms by BKR [2] and Renegar [36]; the formalization
requires rigorizing high-level mathematical insights [2, 36].
We realize a number of ideas suggested in our prior work by
extending a formalization of univariate BKR [12] to the mul-
tivariate case and by building on the framework of Scharager
et al. [37] in order to link our work with an e�cient veri�ed
virtual substitution QE algorithm. While our algorithm (on
its own) currently has prohibitive ine�ciency, its nontriv-
ial library extensions and theoretical interest (including its
potential to be extended into variant algorithms that have
promising parallel complexity [5, 13, 36]) make it a mean-
ingful contribution.
Future work includes �rst extending our algorithm to

one that realizes the full reduction of BKR [2]. After this, it
would be interesting to identify other areas of ine�ciency
and aggressively optimize. In addition to �ne-tuning the
branching to avoid splitting on trivial cases (most notably,
on constants), one very signi�cant (and challenging) task will
be to optimize the computation of the Tarski queries; this was
previously noted in the univariate case also [12]. Overall,
our contribution lays considerable groundwork for more
optimized veri�ed QE algorithms with inherent parallelism.

12This is in part because the setup is considerably di�erent: while we ex-
tended a univariate QE procedure with reduction into multivariate, Cohen
added reduction to an already multivariate sign-determination procedure.
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