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Abstract. This paper is concerned with the inverse dynamics of flexible mechanical systems
whose motion is governed by quasi-linear hyperbolic partial differential equations. Problems
that appear by applying classical solution strategies to the problem at hand, e.g. integrating
the problem at hand sequentially in space and time will be adressed in this work. Motivated
by the hyperbolic structure of the underlying initial boundary value problem, two methods that
are based on a simultaneous space-time integration will be presented. Special emphasize will be
given to the phenomena of wave propagation within geometrically exact beams and its relevance
regarding the inverse dynamics problem.

1 PROBLEM

The focus of this work lies on the inverse dynamics of spatially continuous (infinite dimen-
sional) mechanical systems where the motion is governed by partial differential equations of the
form

A∂2
t x− ∂s(B∂sx) = C. (1)

Since we are interested in quasi-linear equations, we explicitly allow the functions A, B and C

to depend on the solution x : Ω 7→ R
d itself, as well as on their first partial derivatives such that

A,B : Ω̄ 7→ R
d,d and C : Ω̄ 7→ R

d where Ω̄ = Ω ∪ {(x, ∂sx, ∂tx) : Ω 7→ R
d}.

Here, Ω = S×T denotes the space-time domain, where S ⊂ R represents the spatial and T ⊂ R
+

the temporal domain. Furthermore, the equation at hand is subjected to given initial conditions
on ∂Ω0 = S × {0}

x(∂Ω0) = x0, ∂tx(∂Ω0) = v0 (2)

and to Neumann boundary conditions on ∂Ωf = {0} × T

B∂sx(∂Ωf ) = f(t) (3)

and on ∂Ωh = {1} × T

B∂sx(∂Ωh) = h(∂2
t x(∂Ωh), ∂tx(∂Ωh),x(∂Ωh), t). (4)
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Note that h may denote an ordinary differential equation. For the inverse dynamics, the system
is additionaly subjected to the following time-varying Dirichlet boundary condition on ∂Ωh

x(∂Ωh) = γ(t). (5)

The task is to find the unknown functions f : ∂Ωf 7→ R
d and x : Ω 7→ R

d such that (1)-(5) are
satisfied.

Geometrically exact beam formulation. In the following, the classical equations of motion
of geometrically exact beams are briefly derived. Furthermore it will be shown, that these
equations indeed fit into the proposed framework introduced in the beginning of this Section.
Essentially, these derivations are based on the work published in [1], [2], [3] and [4].

Kinematics. The motion of every material point s ∈ S = [0, 1] ⊂ R of the beam for every
point in time t ∈ T = [0,∞) ⊂ R is defined by the deformation map 1

r : Ω ≡ S × T 7→ R
3

together with the moving orthonormal basis

di : Ω 7→ R
3 ∀i ∈ {1, 2, 3}.

Furthermore, we define in the reference configuration

R(s) ≡ r(∂Ω0) : ∂Ω0 7→ R
3 and Di(s) ≡ di(∂Ω0) : ∂Ω0 7→ R

3.

By introducing the proper-orthogonal tensor Λ ∈ SO(3), the rotation of the orthonormal basis
is given by

di = ΛDi. (6)

Note that the orthonormal basis di indicates the ’average orientation of the cross-section’,
whereby d3 is normal and d1 and d2 are tangential to the cross-section. It may be worth
to emphasize at this point, that planarity of the cross-section is assumed. Abandoning this as-
sumption would require a further spatial variable. A spatial differentiation of the moving frame
yields

∂sdi = (∂sΛ)Di +Λ∂sDi = (∂sΛ)ΛTdi +Λ(∂sΛ0)Λ
T
0 Λ

Tdi. (7)

Here, use of the product rule and Di = Λ0ei has been made. Introducing the skew-symmetric
curvature matrix 2

Sκ(Θ) = (∂sΛ(Θ))ΛT (Θ) =





0 −κ3 κ2
κ3 0 −κ1
−κ2 κ1 0



 (8)

equation (7) can be rewritten as

∂sdi = (Sκ(Θ) +ΛSκ(Θ0)Λ
T )di = S̄κ(Θ,Θ0)di (9)

1Note, that the deformation map r(Ω) must not necessarily coincides with the line of centroids of the beam.
2Orthogonality of Λ implies ΛΛ

T = I. Differentiation of this orthogonality condition with respect to s yields
∂s(Λ)ΛT +Λ∂s(Λ

T ) = 0 which indicates the skew-symmetry of ∂s(Λ)ΛT

2
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Note that assuming a straight reference configuration implies Sκ(Θ0) = 0. Introducing the axial
vector κ = κidi, equation (9) can be defined alternatively as

∂sdi = κ× di.

The same relations hold for the temporal change of the moving basis

∂tdi = Sω(Θ,Θ0)di = ω × di,

where Sω represents the skew symmetric angular velocity matrix. Following [1], we define the
strain variables γi = ∂sr · di and κi, where γ1 and γ2 measure shear, γ3 measures dilatation, κ1
and κ2 measure flexure and κ3 measures torsion.

Example 1.1 (Planar problem) Regarding planar motion, the rotation arround d2(s, t) ≡ D2(s)
for all t ∈ T can be described by the following proper orthogonal matrix

Λ =





cosΘ 0 − sinΘ
0 1 0

sinΘ 0 cosΘ



. (10)

For the axial vector it applies ω = ω2d2 = ω2e2. This can be shown by simply using (10) to
compute the angular velocity matrix Sω

Sω = ∂t(Λ)ΛT = ∂tΘ





− sinΘ 0 − cosΘ
0 0 0

cosΘ 0 − sinΘ









cosΘ 0 sinΘ
0 1 0

− sinΘ 0 cosΘ



 = ∂tΘ





0 0 −1
0 0 0
1 0 0



.

The same can be shown for the curvature κ = κ2d2 = κ2e2 by computing the curvature matrix
in (8) using (10)

Equilibrium. After having adressed the kinematics in the last Section, the corresponding
dynamics will be investigated in the following Section. The (material form of the) balance of
linear momentum on an interval S ⊃ I = [c, s] of the beam can be established as follows

n(s, t)− n(c, t) +

∫ s

c

n̄(ξ3) dξ3 = ∂tP (s, t). (11)

Herein we defined the contact force n : Ω 7→ R
3 , the external load n̄ : Ω 7→ R

3 and the linear
momentum of the considered beam segment P : Ω 7→ R

3 which can be stated for the center of
gravity rS = r + ξSαdα as

P (s, t) =

∫

∂trS dm

=

∫ s

c

(ρA)(s)∂tr + (ρSα)(s)∂tdα dξ3 ∀α ∈ {1, 2}

=

∫ s

c

p(s, t) dξ3.

(12)
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Here, we used the fact that the center of gravity of each cross-section is defined by the components
ξSα = A−1

∫

ξα dA = A−1Sα, where Sα∀α ∈ {1, 2} is the first moment of area with respect to
ξα. Time derivative of the linear momentum yields

∂tp(s, t) = (ρA)(s)∂2
t r + ∂2

t q. (13)

Herein, use has been made of the definition of the linear momentum relative to r(s, t)

∂tq(s, t) ≡ (ρSα)(s)∂tdα ∀α ∈ {1, 2}.

Obviously, the relative linear momentum vanishes by choosing r(s, t) accurate. Furthermore,
for the same beam segment, the material form of the balance of angular momentum can be
established in the form

m(s, t)−m(c, t) + (r(s, t)× n(s, t))− (r(c, t) × n(c, t))

+

∫ s

c

r(ξ)× n̄(ξ) dξ +

∫ s

c

m̄(ξ) dξ = ∂tL(s, t).
(14)

Herein, we introduced the contact torque m : Ω 7→ R
3, the external applied torques m̄ : Ω 7→ R

3

and the angular momentum (with respect to a fixed point in space) of the considered beam
segment L : Ω 7→ R

α which can be stated with rP = r + ξαdα as

L(s, t) =

∫

rP × ∂t(rP ) dm

=

∫ s

c

ρA(r × ∂tr) + ρSα(r × ∂tdα + dα × ∂tr) + ρIα(dα × ∂tdα) dξ3

=

∫ s

c

l(s, t) dξ3.

(15)

Herein, l(s, t) denotes the angular momentum density. Its time derivative is

∂tl(s, t) = ρA(r × ∂2
t r) + r × ∂2

t q + q × ∂2
t r + ∂th , (16)

where use has been made of the definition of the angular momentum relative to r(s, t),

h(t) ≡ ρIαβ(dα × ∂tdβ)

and the standard properties of the vector product a× b = −b× a and a× a = 0 Furthermore,
we have introduced the second moment of area Iαβ =

∫

ξαξβ dA. Differentiating (11) and (14)
with respect to the spatial variable s ∈ S, the balance equations can be written as

∂sn+ n̄ = ∂tp

∂sm+ (r × ∂sn) + (∂sr × n) + (r × n̄) + m̄ = ∂tl.
(17)

Using equation (17)1 together with (13) the following relation can be established

r × ∂tp = ρA(r × ∂2
t r) + r × ∂2

t q = r × ∂sn+ r × n̄
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to reformulate equation (17)2 as

∂sm+ ∂sr × n+ m̄ = ∂tl̂ , (18)

where ∂tl̂ = q × ∂2
t r + ∂th has been introduced. Equation (17)1 and (18) are the ’equations of

motion for (the classical form of Cosserat) rods’ (cf. [1]). In the following it will be shown, that
the classical equations of motion for Cosserat rods fits into the framework introduced in Section
1. For this, the contact forces and moments can be written alternatively as

n = Nidi = NiΛ̄ei and m = MiΛ̄ei.

Focusing on hyperelastic materials, the constitutive relations are governed by the stored energy
function Ψ = Ψ̂(γ,κ). We assume that

Ni = ∂γiΨ(γ,κ) = N̂i(γ,κ) = Fik(γ,κ)γk

Mi = ∂κi
Ψ(γ,κ) = M̂i(γ,κ) = Gik(γ,κ)κk

holds. Note that the fundamental conditions, regarding the limiting deformation cases, have to
be fullfilled. E.g. for γα → {±∞} the contact force Nα should tend to ±∞ and the contact
force N3 should tend to ±∞ for γ3 → {∞, 0}. The contact moments Mi should tend to ±∞
as the curvature κi tends to an upper or lower bound, where an intersection of neighboring
cross-sections is imminent. Taking the kinematical relations

γk = ∂sr · Λ̄ek and κk = ∂sΘ · Λ̄ek

into account, the contact force can be written as

n = Fik(γ)γk(Λ̄ei) = (Λ̄F T Λ̄
T
) · ∂sr.

Herein, F = Fik(γ)(ei ⊗ ek) has been introduced and use of Aej ⊗ Aei = A(ei ⊗ ej)A
T has

been made 3. For the contact moment, it follows similarly that m = (Λ̄GT Λ̄
T
) · ∂sΘ. With

∂2
t dα = S2

ωdα − dα × ∂tω

the time derivative of the linear momentum relative to r(s, t) can be written as

∂2
t q(s, t) = S2

ωq − Sq∂
2
tΘ ,

where S(·) denotes the skew symmetric matrtix

S(·) =





0 −(·)3 (·)2
(·)3 0 −(·)1

−(·)2 (·)1 0



 .

Hence, the balance of linear momentum (17)1 can be written as

(ρA)∂2
t r − Sq∂

2
tΘ− ∂s

(

ΛF TΛT∂sr
)

= n̄− S2
ωq.

3This property follows directly from the definition of the dyadic product (a · b)c = (c⊗ a)b

5
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Furthermore, by using the relation for the angular momentum relative to r(s, t) and its time
derivative

∂th(s, t) = ρIαβ∂t(dα × ∂tdβ) ,

equation (17)2 can be written by defining J ≡ IαβSdα
Sdβ

and k ≡ Iαβ(dα × S2
ωdβ + ω · (dα ×

dβ)ω) as
Sq∂

2
t r − ρJ∂2

tΘ+ΛGTΛT = ∂sr × n+ m̄− ρk.

By introducing the coefficients

A =

[

ρAI −Sq

Sq −ρJ

]

B =

[

Λ̄F T Λ̄
T

0

0 Λ̄GT Λ̄
T

]

C =

[

n̄− S2
ωq

(∂sr × n) + m̄− ρk

]

the problem fits into the framework presented in the beginning of this Section. Note that by
definition Sωω ≡ 0.

Example 1.2 (Planar problem) Assuming a straight reference configuration Sq = 0 and re-
garding the following strain energy function

Ψ =
1

2

(

EIκ22 +GAγ21 +
EA

2
(γ23 − 2 ln γ3 − 1)

)

(19)

the coefficients of the PDE at hand (1) can be identified as

A =





ρA 0 0
0 ρA 0
0 0 ρI



 ; C =





n̄1

n̄3

m̄2 + (∂sr3n1 − ∂sr1n3)



 (20)

and

B =
EA

2
(1−ν−2)





cos2Θ cosΘ sinΘ 0
cosΘ sinΘ sin2 Θ 0

0 0 0



+





GA sin2 Θ −GA cos Θ sin 2Θ 0
−GA cos Θ sin 2Θ GA cos2Θ 0

0 0 EI



 .

2 SEQUENTIAL SPACE-TIME INTEGRATION

Classically initial boundary value problems of the form (1) are solved sequentially in space and
time, e.g. after the underlying partial differential equation (1) is integrated in space by applying
common methods such as the finite element method, the semi-discrete system of equations can be
integrated in time by using appropriate time-stepping schemes that are commonly based on finite
difference approximations. Following this common procedure we show that the inverse dynamics
problem under consideration can be transferred to discrete equations of motion subjected to
servo constraints. For this we consider the pure Neumann problem, i.e. neclecting the Dirichlet
boundary conditions. An equivalent weak form of the boundary value problem at hand can be
accomplished by multiplying (1)1 by sufficiently smooth test functions, integrating subsequently
over the spatial domain S, applying integration by parts and taking finally the given Neumann
boundary conditions into account. A spatial discretization of the weak form by applying standard
finite element approxmations to the vector valued test and trial functions leads to the semi
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discrete equations of motion. Boundary conditions pertaining the configuration space may be
taken into account by imposing geometric constraints. The motion of the constrained mechanical
system is then governed by the following semi-explicit differential algebraic system of equations

Mq̈ + F (q̇, q, t) +GTf(t) = 0

g(t, q) = Hq − γ(t) = 0
(21)

where q : T 7→ R
d·nnodes denotes the nodal configuration vector that contains the nodal position

vectors at time t ∈ T of the discrete problem at hand. And f : T 7→ R
d are the Lagrange

multipliers enforcing the given constraints. In case of ordinary contact constraints the Lagrange
multipliers are orthogonal to the constraint manifold, e.g rank(HM−1GT ) = d · nnodes holds.
Such systems can be identified as DAEs in Hessenberg form of differentiation index 3 by intro-
ducing the velocity v ≡ q̇ (cf. [18], Chapter 4, p.172). The semi discrete equation of motion can
then be solved by integrating (21) subsequently in time by applying suitable finite difference
schemes (see, for example, [17]). In contrast to that, the DAEs governing the motion of discrete
mechanical systems subject to servo constraints have to be distinguished from those subjected
to ordinary contact constraints. Servo constraints often lead to a non-orthogonal constraint
realization, where rank(HM−1GT ) 6= d · nnodes holds in general. DAEs with non-orthogonal
constraint-realization are often characterised by differentiation index that are higher then 3 (cf.
[9], [10], [11]). We’ve recently shown in [8] that the sequential space-time discretization approach
to solve the inverse dynamics problem of flexible systems yields DAEs whose index tends to be
excessively high thus hindering a stable numerical solution. In addition to that, the demands
on the smoothness of the prescribed trajectory tend to be excessively high as well. In contrast
to the simultaneous integration, we could also show in [8], by means of a geometrically exact
rope formulation, that due to the hyperbolic nature of the underlying partial differential equa-
tion a simultaneous discretization in space and time is much better suited to successfully solve
the inverse dynamics problem under consideration. For this purpose, a brief repetition of the
simultaneous space-time discretization strategies for the inverse dynamics of spatially contin-
uous systems, introduced firstly in [8], is given in the subsequent Section 3. Herein, we will
adress the wave phenomena of hyperbolic equations such as (1) which intuitively motivates the
simultaneous space-time integration of the inverse dynamics problem at hand.

3 SIMULTANEOUS SPACE-TIME INTEGRATION

Due to the highly restrictive applicability of solving the control problem at hand sequentially
in time, two methods will be presented in this Section, that are based on a simultaneous space-
time integration. This will be motivated by the hyperbolic structure of the underlying initial
boundary value problem. For this, the classical method of characteristics will be introduced in
the subsequent Section.

Method of characteristics. The method of characteristics is based on a geometric interpre-
tation of quasi-linear partial differential equations (cf. [13, 16, 15, 12, 14]). For this the wave
equation for the control problem at hand (1) is transformed into a system of first order partial
differential equations by introducing the velocity v(s, t) = ∂tx(s, t) and the deformation gradient
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p(s, t) = ∂sx(s, t)

A∂tv − ∂s(Bp) = C (22)

B∂tp−B∂sv = 0. (23)

With B∂tp = ∂t(Bp)−∂tBp equation (23) can be written as ∂t(Bp)−B∂sv = ∂tBp. Together
with

∂tB(p(s, t)) = (∂p ⊗B) · ∂tp = gradp(B) · ∂tp

and by using the equality of mixed partials ∂tp = ∂sv it follows that

∂t(Bp)−B∂sv = (∂p ⊗B)p∂sv (24)

holds. Equation (22) is forming together with (24) and

B + (∂p ⊗B)p = H(p) : Ω̄ 7→ R
d,d (25)

a system of first order partial differential equations. Introducing z : Ω 7→ R
2d, F : Ω̄ 7→ R

2d,
D : Ω̄ 7→ R

2d,2d and E : Ω̄ 7→ R
2d,2d, this system can be written compactly as:

D∂tz +E∂sz = F . (26)

Assuming there exists a line s = k(t) along which a solution z = z(k(t), t) = z0(t) is given.
Then this line is called a characteristic line if the partial derivatives of the solution cannot be
uniquely determined through informations along this given line. This means that

(

E −D
d

dt
k(t)

)

∂sz = F −D
d

dt
z0(t) (27)

cannot be solved uniquely for the partial derivatives ∂sz and ∂tz. Hence, according to Cramers
rule

det(Q) = 0 and det
i
(Q) = 0 (28)

has to hold for the coefficient matrix Q = E −D d
dt
k(t) as well as for the matrix Qi, where the

i-th column is replaced by the right hand side F − D d
dt
z0(t). The wave equation could thus

be transformed into a system of ordinary differential equations along characteristic lines. This
system can be solved numerically by using e.g. appropriate finite difference schemes.

Example 3.1 (Planar problem - contd.) The wave propagation within the planar formulation
of the geometrically exact beam (cf. Example 1.2) can be analysed by evaluating

(∂p ⊗B)p =
EA

ν2





cos2Θ cosΘ sinΘ 0
cosΘ sinΘ cos2 Θ 0

0 0 0



 (29)

and

H =
EA

2
(1 + ν−2)





cos2Θ cosΘ sinΘ 0
cosΘ sinΘ sin2 Θ 0

0 0 0



+





GA sin2Θ −GA cosΘ sin 2Θ 0
−GA cosΘ sin 2Θ GA cos2 Θ 0

0 0 EI




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for the given coefficients. The directionality condition (28) leads then to

c1 = ±

(

EI

ρI

)
1

2

, c2 = ±

(

GA

ρA

)
1

2

and c3 = ±

(

1

2

EA

ρA

(

1 +
1

ν2

))
1

2

. (30)

Here, ci can be identified as the speed of wave propagation corresponding to bending (i = 1),
shear (i = 2) and elongation (i = 3), respectively. It is worth to mention, that the compatibility
condition (28)2 yields a system of ordinary differential equations along the characteristic lines
(28)1. Following [8] and references therein, this system of ODEs can be solved globally in the
space-time domain Ω.

Space-time finite element method. Due to the gained insights of the underlying wave
dominated problems, a space-time finite element method will be presented in this paragraph.
For further information we would like to refer to [8] as well as [5], [6] and [7]. By introducing
the velocity v(s, t) = ∂tx(s, t), the underlying partial differential equation at hand (1) can be
transformed into a system of partial differential equations, that is first order in time:

∂tx− v = 0

A∂tv − ∂s(B∂sx) = C.
(31)

Multiplying each equation in (31) with sufficiently smooth test functions w1(s, t) and w2(s, t),
integrating over the space-time domain Ω = S × T and applying integration by parts to the
second integral of (31)2 regarding the spatial variable

∫

Ω
w2 · ∂s(B∂sx) dΩ =

∫

T

[w2 ·B∂sx]
1
s=0 dt−

∫

Ω
∂sw2 ·B∂sx dΩ (32)

yields the following weak formulation:
∫

Ω
w1 · (∂tx− v) dΩ = 0

∫

Ω
w2 ·A∂tv dΩ−

∫

T

[w2 ·B∂sx]
1
s=0 dt+

∫

Ω
∂sw2 ·B∂sx dΩ =

∫

Ω
w2 ·C dΩ.

(33)

Additionally the servo-constraint gc(t) = x(s = 1, t) − γ(t) can be demanded weakly on the
boundary ∂Ωγ = {1} × T

∫

∂Ωγ

w3(t) · gc(t) dt = 0. (34)

The task is now to find the unknown functions

x(s, t) ∈ V1 =
{

x : Ω 7→ R
d |x(∂Ω0) = x0

}

v(s, t) ∈ V2 =
{

v : Ω 7→ R
d |v(∂Ω0) = v0

}

f(t) ∈ V3 =
{

f : ∂Ωf 7→ R
d |f(∂Ωf ∩ ∂Ω0) = f0

}

9
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such that for arbitrary but sufficiently smooth test functions

w1(s, t),w2(s, t) ∈ W1 =
{

w1,w2 : Ω 7→ R
d |w1(∂Ω0) = 0,w2(∂Ω0) = 0

}

w3(t) ∈ W2 =
{

w3 : ∂Ωγ 7→ R
d |w3(∂Ωγ ∩ ∂Ω0) = 0

}

the equations (33) and (34) are satisfied together with the given boundary and initial conditions.
The weak formulation consisting of (33) and (34) subjected to the given Neumann and Dirichlet
boundary conditions can then be solved numerically using the finite element method based on
a piecewise continuous approximation.

Example 3.2 (Numerical example) Regarding a beam with mass density ρ = 1 and axial-,
bending- and shear stiffness EA = 1, EI = 1 and GA = 1 respectively, the actuation f =
[

fx fy m
]T

acting at s = 0 is searched, such that the beam at s = L follows a prescribed
trajectory. Furthermore, the length of the beam is assumed to be L = 1 in a stress-free reference
configuration. A rest-to-rest maneuver starting at t0 = 2 and ending at tf = t0 + T = 4 is
choosen. The prescribed maneuver can therefore be defined by

γ =





1
0
0



 ∀t < t0 γ =





1− cos(ϕ · s(t))
sin(ϕ · s(t))

ϕ · s(t)



 ∀t ∈ [t0, t0 + T ] γ =





0
1
ϕ



 ∀t > tf . (35)

Here, ϕ denotes the angle of rotation. Furthermore, the function

s(t) = 1−
1

2

(

cos

(

π

2

(

sin

(

π
t− t0

T
−

π

2

)

+ 1

))

+ 1

)

has been introduced.

−0.5

0.5

0 2 4 6

f
i(
t)

t

fx(t)
fy(t)

−0.6

−0.2

0.2

0.6

0 2 4 6

m
(t
)

t

Figure 1: Components of the force (left) and torque (right) acting at s = 0 computed with the proposed
space-time finite element method such that the beam at s = L follows a prescribed circle from P0(1, 0)
to PT (0, 1)
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0

1

0 1

y

x

Figure 2: Snapshots of the circular rest-to-rest motion.

In Figure 1 the components of the actuating force fi (left) and the actuating torque m (right)
is depicted. Note, that also the delay time can be observed herein. This is due to the hyperbolic
structure of the underlying system mentioned earlier. In Figure 2 snapshots of the planar motion
of the beam satisfying the prescribed trajectory at s = L are shown.

4 CONCLUSION

This work deals with the inverse dynamics of flexible mechanical systems whose motion
is governed by quasi-linear partial differential equations of hyperbolic type. In Section 1 the
initial boundary value problem governing the inverse dynamics of flexible mechanical systems
could be introduced abstractly. Then, a brief overview of the basic derivation of the classical
equations of motion for the classical form of Cosserat rods, was given and it could be shown
that these equations fit into the proposed framework. In the subsequent Section 2, problems
that occure by solving the initial boundary value problem at hand by using classical sequential
space-time integration methods could be adressed. In particular, the role of the given servo-
constraints in causing these problems could be addressed by identifying crucial differences to
ordinary contact-constraints. In Section 3 simultaneous space-time integration methods could
be presented that are highly motivated by the wave phenomena within elastic media. For this
we identified characteristic lines in space-time along that information propagates. Inspired by
these insights we presented two methods, namely the method of characteristics and a space-time
finite element method, that are capable to solve the inverse dynamics of geometrically exact
ropes (cf. [8]) and beams. The abstract formulation of the underlying problem introduced in
Section 1 enables an extension of the presented simultaneous space-time integration methods to
other flexible mechanical systems such as geometrically exact shells or continua.
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