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Abstract
Ensembles of convolutional neural networks have shown remarkable results in learning discriminative semantic features for
image classification tasks. However, the models in the ensemble often concentrate on similar regions in images. This work
proposes a novel method that forces a set of base models to learn different features for a classification task. These models
are combined in an ensemble to make a collective classification. The key finding is that by forcing the models to concentrate
on different features, the classification accuracy is increased. To learn different feature concepts, a so-called feature distance
loss is implemented on the feature maps. The experiments on benchmark convolutional neural networks (VGG16, ResNet,
AlexNet), popular datasets (Cifar10, Cifar100, miniImageNet, NEU, BSD, TEX), and different training samples (3, 5, 10, 20,
50, 100 per class) show the effectiveness of the proposed feature loss. The proposed method outperforms classical ensemble
versions of the base models. The Class Activation Maps explicitly prove the ability to learn different feature concepts. The
code is available at: https://github.com/2Obe/Feature-Distance-Loss.git.

Keywords Deep learning · Convolutional neural network · Feature fusion model · Distance function · Semantic feature
concept

1 Introduction

Deep convolutional neural networks (CNNs) have recently
enabled considerable breakthroughs in many computer
vision tasks. It has been proved that CNNs with sufficient
depth can achieve remarkable performance in large-scale
image recognition tasks because they can extract more com-
plex and comprehensive semantic feature concepts from the
images [1–4]. The convolutional units act as visual concept
detectors due to learning to recognize various targets in this
process. They can automatically learn discriminative seman-
tic features and locate specific parts of the image responsible
for the classification (see Fig. 1). As a result, a convolu-
tional neural network can significantly outperform the best
traditional machine learning algorithm, which is based on
hand-crafted features [2].
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Ensemble learning is a powerful technique for machine
learning algorithms, which can achieve excellent perfor-
mance in various approaches. Therefore, ensemble learning
is also widely used in deep learning models [5–8], and large
ensembles of models achieve the best possible results on a
task. In general, a range of individual learners is combined
with appropriate strategies to enhance the final performance,
and the ensemble model has better generalization and dis-
crimination ability. To further improve the performance of
the ensemble model, the base models should have consider-
able diversity. The best ensemble is a set of models that are
as different as possible while having as much discriminative
power as possible [9].

It is also depicted in Fig. 1 that a single CNN can hardly
learn comprehensive semantic features. The CNN tends to
concentrate on the most discriminative feature according to
its learning capacity, while the model ignores some other
valuable features. Therefore, we propose ensemble learning
to integrate various complementary semantic features from
multiple models. However, different CNNs are probable to
learn similar feature concepts if the ensemble models are not
further specified. This is akin to a team of experts where each
expert shares the same skill set. Homogeneous models make
ensemble learning largely pointless [9].
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Fig. 1 Gradient-weighted Class Activation Mapping (Grad-CAM) of
Cifar10 (top), Cifar100 (middle), and miniImageNet (bottom)

Thus, we propose a novel method to force base models to
learn various discriminative features in an image to evaluate
a situation better. In our approach, a feature stance loss (fur-
ther: distance loss) is implemented to quantify the difference
between feature concepts learned by basemodels. On the one
hand, we construct feature representation from each model,
which can represent the semantic features extracted from an
image. On the other hand, we design a distance function to
measure the difference between semantic features embed-
ded in the feature representations. After training each base
model, a feature fusion model is proposed to integrate the
feature information from all base models to make predic-
tions. As a result, the hypothesis is that the combination of
adapted base models can achieve better classification perfor-
mance than an ensemble of models where no care has been
taken to learn different features.

To examine this issue, we test our method under vari-
ous conditions, including different datasets, different dataset
sizes, and different CNNs. Our main achievements are: (1)
We provide a novel distance loss to force CNNs to learn dif-
ferent features. (2) We construct a framework to train and
integrate base models with distance loss. (3) We show the
effectiveness and generalization ability of our method and
evaluate it in both numerical and visual forms. These results
also indicate our method’s advantageous intervals.

2 Related work

2.1 Problem setup

In the here proposed approach, the authorswant to address the
issue that an ensemble of unrestricted basemodels learns sim-
ilar image features for classification. The hypothesis, which
is based on that, is that an ensemble of models will produce
better results if they are explicitly forced to learn different
features for classification. In order to examine these hypothe-
ses, it is first necessary to understand the state of the art in

the field of interpretability of CNN model decisions in the
image domain. Based on this, approaches which form CNN
ensembles for classification are to be examined. In order to
investigate the proposed distance function in the image fea-
ture space, an overview of common distance functions in the
context of CNNwill be given next. The mentioned points are
further described in detail.

2.2 CNN interpretability

Image processing has been the most successful application
of deep learning algorithms, and CNNs have been devel-
oped a lot in competitions like ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). LeNet-5 [1] is one of the
most classical convolutional neural networks designed for
handwritten digit recognition and is regarded as one of the
most representative examples of early CNNs. AlexNet [2]
implements a deep convolutional neural network structure
on a large-scale image dataset for the first time and shows
the absolute predominance of deep learning models. VGG
[3] and ResNet [4] make it possible to train very deep CNNs
and show excellent performance in recognizing images. The
stacking of convolutional layers has been proved to be a
powerful method to extract more complex discriminative
features for recognition. However, while CNNs can achieve
remarkable performance at many vision tasks, it is not easy
to understand the nature of the learned representation and
why it works so well [10]. They have been treated as black
boxes for a long time, and their interpretability is limited
because of automatic feature extraction by convolutional lay-
ers. Therefore, many pieces of research have been developed
to understand CNNs.

All potential semantic features in CNNs can be classi-
fied into six types: objects, parts, scenes, textures, material,
and colors [11]. Objects and parts can generally be regarded
as part patterns, while other semantics belong to textural
patterns without explicit shapes. These semantic features
emerge in the intermediate convolutional layers and vary
through the layers. While beginning layers extract basic fea-
tures like lines, borders, and corners, deeper layers exhibit
high-level features, such as object parts, which are more
target-relevant. For example, part detectors emerge in object
classifiers [12], and object detectors emerge in scene classi-
fiers [10]. This indicates that CNNs decompose the target of
the classification task into multiple lower-level concepts in
an interpretable way, such as an object with many parts and
a scene with a set of objects. Therefore, it is beneficial that
CNNs learn more semantic feature detectors for recognition
tasks [11].

For an explicit representation, many methods are used to
interpret CNNs. Visualization of filters and feature maps is
commonly used to explain the semantic features in CNNs
[9]. It explicitly converts the intermediate results to images.
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Moreover, [13] introduces a deconvolutional network to
present pixel-wise responsible patterns, and [14] uses fully
connected layers to generate deep convolutional features.
[11] also implements Network Dissection to quantify the
interpretability of different networks and datasets in numeri-
cal values. Moreover, Class ActivationMapping (CAM) [15,
16] is another method to visualize semantic features, using
the weighted linear sum of the presence of the visual pat-
terns at different spatial locations. A heat map highlights the
discriminative regions that are most important to the classifi-
cation. Furthermore, it has been proved in [15–18] that CNNs
can retain location information of semantic features through
the layers and can be used in object localization without any
location annotation. This characteristic makes the semantic
features extracted by CNNs more interpretable. However, all
these methods are used to understand CNNs, and none of
them is used for further applications.

2.3 Ensemble learning

Ensemble learning aims to integrate multiple base models
to achieve better performance, and there are a wide vari-
ety of ensemble methods for machine learning. The voting
ensemblemethod [5] is a very commonly used one and can be
implemented in different kinds of base models, such as tradi-
tional machine learningmodels [5] and deep learningmodels
[6]. [7] uses bagging to train deep learning models in paral-
lel and integrate them for classification. Stacking is another
prevalent ensemble method, which trains a meta-learner to
best combine base models. [8] presents a novel ensemble of
deep learning models based on stacking.

For convolutional neural networks, the feature fusion
methods are mostly proposed in the image recognition task,
which integrates the information at the semantic feature level.
In this way, the diversity of features extracted from images
is augmented for the recognition task. [19–21] introduce
methods to fuse features frommultiple layers inside a convo-
lutional neural network, and enhance the global features for
the recognition task. [22] uses a depthwise convolutional and
pointwise convolutional layer to process the fused seman-
tic features to distillate information. At the same time, [23]
presents a two-stream CNN to integrate features extracted
from two inputs. Moreover, another strategy is handling the
data with multiple sizes and providing features with vari-
ous scales in the CNN models to enrich the feature diversity
[24]. The most similar work may be presented in [25], which
implements a training strategy to make two subnetworks to
learn complementary features. The two-stream features are
then fused for the overall classification. However, the two
networks are not explicitly forced to learn different features,
and possible similar features limit the improvement. There
is also no explicit evidence that the two networks learn vari-
ous complementary semantic features.Ourmethod integrates

several convolutional neural networks, which extract differ-
ent semantic feature concepts from the same image to collect
variant-rich features for classification.

2.4 Distance function

As semantic features can characterize the CNNmodel, many
works try to distinguish different image classes by quantify-
ing the difference between semantic features learned by the
CNNs. For example, cosine distance is used to calculate the
similarity between different images in the feature space of
the Siamese network [26], and the similarity values are used
for classification. In addition, [27] presents amethod tomake
predictions only with convolutional layers based on cosine
similarity between feature maps. Then, Euclidean distance
can measure the content difference in feature maps of dif-
ferent images [28]. Moreover, Structural Similarity (SSIM)
and Peak Signal to Noise Ratio (PSNR) are used to com-
pare every two feature maps of a layer, and the similarity is
an indicator to prune filters [29]. Finally, in [30], different
distance functions, such as Cityblock distance, Minkowski
distance, cosine distance, Euclidean distance, and correla-
tion distance, are investigated to measure feature similarity,
and cosine distance performs best. These works measure the
difference between semantic features inside the CNN, where
feature encoding is the same in the convolutional units. In
contrast, our method introduces a novel method to compare
the feature difference across different CNNs.

In conclusion, CNNs show a remarkable ability to extract
semantic features from images, and many works try to
enhance the discriminative power of semantic features to
improve recognition performance.Most of them fuse features
from multiple layers, and others use ensemble methods to
integrate multiple models. However, the feature information
extracted from base models is not guaranteed to be different,
and therefore homogeneous models limit the performance of
ensemble learning. Our method uses distance loss to force
base models to learn different features from an image.

3 Approach

In this section, we propose our distance loss in three main
components. The first component is the appropriate global
feature representation, and the second component is the dis-
tance function. Finally, the training strategy is presented to
implement distance loss and fuse various semantic features
for classification.

3.1 Global feature representation

The distance loss consists of the semantic feature repre-
sentation and distance function. Before implementing the
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Fig. 2 Integration of the feature maps through channel direction

distance function, we first construct feature representations
to interpret which semantic features the base CNN model
has learned. This step is the basis for calculating the distance
loss, which is described in the next section.

The activation output of the convolutional layers is widely
used to interpret semantic features learned from images [10,
11, 14, 15], which are also called feature maps. The feature
maps are sparse and distributed semantic feature representa-
tions. All semantic concepts are encoded in the distributed
convolutional units, and there is a many-to-many relation-
ship between feature concepts and convolutional units [31].
The alignment of disentangled feature representations with
convolutional units in a layer varies from CNN to CNN,
even with the same architectures [11]. Therefore, we can-
not directly compare feature vectors or feature maps as the
feature representations across different CNNs. Moreover,
one single feature map carries limited semantic information,
which is not always meaningful. Only if many feature maps
activate the same region can this region be considered to
contain practical semantic concepts [17].

Our method uses a simple way to integrate the feature
information embedded in the feature maps as the global fea-
ture representation. As shown in Fig. 2, the feature maps are
summed up pointwise through the channel direction, result-
ing in an aggregation map. As a result, the feature maps
with the shape of h × w × d (where h is the height of the
feature map, w is the width, and d is the channel number)
are integrated into the aggregation map with the shape of
h×w. Then, we can ignore the different feature concept dis-
tributions in convolutional units across the CNNs and retain
spatial information of semantic features.

We introduce a mask to remove noises and weak seman-
tic features to refine the aggregation map. A threshold τ is
implemented, and all pixel values above this threshold are
kept, while other values are set to zero.

Ã(x , y) =
{
A(x , y) if A(x , y) > τ

0 otherwise
(1)

In (1), Ã(x , y) refers to the value at position (x , y) in the
masked aggregation map, and A(x , y) refers to the value at
position (x , y) in the aggregation map. A threshold based on
the mean value of the aggregation map is used in our method,
i.e., τ = mean(A). This dynamic threshold can adapt to dif-
ferent aggregation maps. As a result, the most discriminative
semantic feature concepts are used to calculate the differ-
ence between feature representations across models, which
reduces the risk of forcing all base CNN models to learn
features on the margin. Otherwise, the base model’s perfor-
mance can be harmed.

In addition, convolutional units of higher layers extract
more meaningful semantic features, which show excellent
discrimination and generalization ability [11]. Therefore, we
only extract feature maps from the last convolutional layer
of each CNN model. Then, the masked aggregation maps
are generated as the global feature representations from base
CNN models, respectively, which are used to quantify the
difference in semantic features between models in the next
section. The process of generating global feature representa-
tion for a base CNNmodel in the ensemble model is depicted
in Fig. 3.

3.2 Distance function

Weuse a distance function to quantify the difference between
semantic features embedded in the global feature representa-
tions of different base CNNmodels. The distance function is
based on the combination of cosine and Euclidean distance.
On the one hand, cosine distance [26, 27, 30] can efficiently
measure the similarity between two feature vectors regard-
less of high dimensions and reflects the relative difference in
the direction of the vectors. Therefore, cosine distance pays
more attention to the locations of the feature concepts. On
the other hand, Euclidean distance interprets the content dif-
ference between global feature representations [28]. Unlike
cosine distance, Euclidean distance presents the absolute dif-
ference in numerical values and works like spatial attention
[32, 33], which increases the activation level of the critical
feature concepts. As a result, the CNNmodels learn different
semantic features in the feature space, and each CNN model
also activates its important feature concepts as much as pos-
sible. The effectiveness of these two parts is investigated in
the ablation study.

As the optimizer is constantly reducing the loss value,
and we need to increase the difference between feature rep-
resentations, the distance loss between any two base models
dlossi , j is modified in (2). vi and v j refer to two vectorized
global feature representations from different global feature
representations,whileα andβ are theweights of two distance
functions.
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Fig. 3 Pipeline to extract global feature representation for one of the base CNN models

dlossi , j = α ∗ vTi v j

vi ∗ v j
+ β ∗ exp

(
−vi − v2j

)
(2)

There are twomain parts to our distance loss. The first part
is cosine similarity, with a limited value between zero and
one because all values in the global feature representations
are positive. The value zero means very different between
these feature representations, and one refers to very similar
or the same. The second part is exponential Euclidean dis-
tance, and the minus operation ensures that the optimizer can
reduce the loss in the direction to increase the difference. In
addition, the gradient vanishes with the decrease of the value
because of the exponential operator. It ismore difficult for the
optimizer to reduce the value when it is already small. There-
fore, the whole distance loss is dynamically constrained and
cannot be minimized such that all models are forced to learn
meaningless features on the margins.

3.3 Training strategy

Our training strategy aims to implement the distance loss for
training base CNNmodels and integrate the feature informa-
tion in the ensemble model for classification.

We propose the joint training for five base CNN mod-
els with the same architecture, including input size, layer
structure, and output size. As shown in Fig. 4, every base
model is trained individually to perform classification with
the same training samples. As the multi-class classification
task is tested in our method, the softmax activation function
and cross entropy loss are implemented for every classifier.
On the other hand, the feature maps at the last convolutional
layers are extracted from theCNNmodels. The global feature
representations are generated to present the semantic features
learned by the base CNN models. The distance function is
then used to calculate the distance loss.

The whole training loss consists of classification loss and
distance loss. In (3), the first part is cross entropy loss for the
classification, where yik is the true label of the kth class of
the training sample and ŷik refers to the predicted probability

CNN 1

CNN 5

CNN 4

CNN 3

CNN 2

MLP 1 

MLP 5 

MLP 4 

MLP 3 

MLP 2 

a base models

Distance 
Loss

Input
Feature 
Extractor Feature Maps Classifier

Fig. 4 The main framework for training the base models

of the kth class in the ith base model.

loss =
m∑
i=1

(
−

n∑
k=1

yik log ŷ
i
k

)
+

∑
i , j , i �= j

dlossi , j (3)

Besides, m is the number of base models. i.e., five, and n
is the class number, which varies between different datasets.
The second part is the distance loss, which will be calculated
between every two different base models.

After training, all base models are integrated into an
ensemble model, maximizing the benefits of high feature
diversity and improving performance. In ourmethod,we pro-
pose one of the feature fusion models and make an ensemble
of the base models at the semantic feature level. Unlike many
traditional ensemblemethods that use the entire basemodels,
we only use the convolutional part of the CNN base models
as feature extractors and concatenate the feature maps in the
direction of the channel. Then, the fused feature maps are fed
into a single new classifier for classification. In other words,
we use the trained CNNmodels to construct a whole end-to-
end model at last. The base CNN models are frozen, and the
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Fig. 5 The images of Cifar10, Cifar100, miniImageNet, NEU, TEX,
and BSD

new fully connected layers with softmax activation and cat-
egorical cross entropy loss are trained for classification. The
final classificationmodel is a fully connectedmodel with one
hidden layer with relu activation and 128 nodes. The hidden
layer is followed by a dropout layer with 0.5 dropout and
an output layer with softmax activation. The final model is
trained for 50 epochswith batch-size of 10 and a learning rate
of 10-4. Therefore, all semantic features from the base CNN
models are processed together, increasing feature diversity
for classification (Fig. 4).

4 Experiments and results

In this section, we first introduce the datasets and the imple-
mentation details of the experiments. Then, we present our
method’s performance under different conditions to show
its effectiveness and generalization ability. Finally, the ini-
tialization strategies and effectiveness of different distance
functions are explored in the ablation study. The experiments
are also made to find the best ensemble methods to integrate
the semantic features.

4.1 Datasets and implementation details

We conduct our experiments on six datasets, including
Cifar10 [34], Cifar100 [34], miniImageNet [35], NEU [36],
TEX [37], and BSD [38]. As shown in Fig. 5, Cifar10 and
Cifar100 are well-known object classification datasets, and
each has 60,000 32 × 32 color images. There are ten classes
for Cifar10 and 100 classes for Cifar100. MiniImageNet has

a higher complexity due to the use of original ImageNet, but
requires much less resources, making it convenient for rapid
prototyping and experimentation. There are 100 classes with
600 84× 84 color images each. In addition,we also introduce
three technical datasets, which are different from the object-
based datasets. The NEU dataset is based on the metallic
surface defect and has 1800 200 × 200 grayscale images for
six classes. The TEX dataset (originally called fabric dataset)
shows five different types of failures in textiles and one good
class. Each class has 18,000 64 × 64 grayscale images, and
there are 108,000 samples. The last dataset is BSD, showing
failures on ball screw drives. This dataset has 21,835 150
× 150 color images, and all images are labeled with two
classes, i.e., defect and no defect, which are roughly equally
divided. As a result, we can evaluate our method on dif-
ferent datasets, including object-based and nonobject-based
datasets with different levels of semantic features. Generally,
we split these datasets randomly in 60% for training samples,
20% for validation samples, and 20% for testing samples.

In addition to different datasets, the base models in our
experiments are based on famous CNN architectures, includ-
ing VGG16 [3], ResNet12 [4, 39], and AlexNet [2]. The five
base models implement the same CNN architectures, which
are initialized by the He normal initializer with five differ-
ent random seeds, such as 1, 2, 3, 4, and 5. Therefore, we
can have relatively stable, but various initial states and the
effectiveness is investigated in the ablation study.

In the training phase, the base models are trained jointly
for 300 epochs with a learning rate of 10−4, and all training
samples are used once at each epoch.Meanwhile, we save the
entire model with the best performance during the training
phase, where the average accuracy of the base models is an
indicator. Besides, all images are randomly transformed by
combining image augmentation methods, including rotation,
horizontal and vertical flipping, Laplace noise, and transla-
tion, while training to generate different training samples
as many as possible. For evaluation, we use unseen testing
samples to calculate the classification accuracy and generate
CAMs to visualize the semantic features learned by the base
models.

4.2 Results

Using the proposed components, we test our method under
various conditions, including different datasets (Cifar10,
Cifar100, miniImageNet, NEU, TEX, and BSD), numbers of
training samples (3, 5, 10, 20, 50, 100, and 400), and CNN
architectures (VGG, ResNet, andAlexNet). On the one hand,
the classification accuracy of the ensemble model with and
without distance loss is listed in tables as numerical results.
On the other hand, CAMs are generated in figures to visualize
semantic features learned by the base models.
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Table 1 Classification accuracy (%)with different numbers of training samples inVGG, Resnet, andAlexnet for cifar10, cifar100, andminiimagenet

Architecture Dataset
size

Base
model

No
distance
loss

Distance
loss

Base
model

No
distance
loss

Distance
loss

Base
model

No
distance
loss

Distance
loss

Cifar10 Cifar100 miniImageNet

VGG 3 22.50 23.43 24.85 8.56 10.35 11.04 6.80 8.19 8.78

5 27.31 28.89 29.73 10.31 12.44 13.05 8.94 10.51 11.47

10 30.05 31.64 32.90 15.55 18.63 20.62 14.85 17.62 18.02

20 37.60 41.93 43.52 22.47 26.14 29.30 21.77 25.13 26.52

50 49.93 54.04 55.35 34.84 41.00 42.94 33.21 37.58 38.93

100 58.00 63.77 65.17 46.30 51.19 53.27 43.90 48.21 49.27

400 74.02 78.08 78.83 62.86 67.53 68.32 63.15 67.59 68.28

ResNet 3 22.54 22.13 23.29 7.29 10.18 11.03 6.42 8.94 10.06

5 26.45 28.85 29.66 9.01 12.81 13.38 7.87 12.42 13.75

10 28.45 31.48 32.95 14.19 20.42 22.18 11.85 19.32 21.00

20 36.38 42.27 43.61 19.80 28.52 30.08 16.55 27.27 29.10

50 45.77 53.76 55.23 32.97 43.05 44.74 28.28 38.45 42.26

100 55.63 62.75 63.78 43.56 52.54 54.16 38.17 49.47 53.41

400 71.91 78.29 78.69 62.01 69.04 69.43 57.51 67.61 69.78

AlexNet 3 22.20 22.63 23.04 8.92 10.12 10.55 6.97 7.61 8.36

5 26.51 26.71 27.46 10.47 12.03 12.46 8.89 10.21 10.55

10 31.67 32.72 33.10 14.68 17.56 18.09 12.20 15.73 15.93

20 38.57 40.76 42.17 20.87 24.78 25.60 16.52 20.42 21.01

50 47.06 50.53 51.51 30.84 36.05 36.71 24.42 30.37 30.98

100 53.90 58.94 60.51 38.94 45.63 46.57 31.48 38.08 38.62

400 67.59 72.64 73.31 54.46 61.00 61.34 45.67 52.59 52.73

The results for Cifar10, Cifar100, and miniImageNet are
shown in Table 1. It is obvious that the ensemble model with
distance loss can consistently outperform the base models
and the ensemble model without distance loss. The distance
loss always has a positive effect on the performance of the
ensemble model. For example, the distance loss can improve
the ensemble performance by 3.94% from 49.47 to 53.41%
for miniImagesNet with 100 training samples per class in
ResNet.

However, the improvement is not constant for all condi-
tions, and the distance loss has different performances with
different dataset sizes. As shown in Fig. 6, the method domi-
nates middle-scale datasets like 100 samples per class.When
thenumber of training samples is too small, it is not accessible
to learn precise semantic features, making the global feature
representation not interpretable. In contrast, the model can
learn more discriminative features with sufficient training
samples. As the total discriminative features in an image are
fixed, the potential to increase the feature diversity can be
reduced in this case.

Besides, the CNN architectures have a significant influ-
ence on the performance of the distance loss (see Fig. 9).
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Fig. 6 Effectiveness of the distance loss for various amounts of training
samples, including 3, 5, 10, 20, 50, 100, and 400 samples per class.
The values are calculated by averaging the accuracy differences (%)
between the ensemble model with and without distance loss. Cifar10,
Cifar100,miniImageNet, and various CNNarchitectures are considered

Generally speaking, the ResNet architecture achieves the
largest improvement, while the VGG and AlexNet archi-
tectures are in second and third place. The residual block
structures in the ResNet architecture make the integration of
multi-layer semantic features possible, which can increase
the representative ability of the featuremaps at the high layers
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Fig. 7 CAMs of the five base models without distance loss (left) and with distance loss (right) for Cifar10, Cifar100, and miniImageNet

[19]. More discriminative semantic features can be encoded
into our global feature representation, making the compari-
son between semantic features more meaningful.

Furthermore, we also present the effectiveness of the
distance loss in Fig. 7 for clear visualization. The base
CNN models without distance loss tend to concentrate on
a relatively constant part of the object in the image, indicat-
ing similar semantic feature concepts. In contrast, the base
CNN models with distance loss can have various options
for semantic feature concepts. The five base CNN models
focus on different object parts, i.e., various features. Conse-
quently, it can be concluded that the distance loss can increase
the feature diversity in the ensemble model and improve the
classification performance compared to the ensemble model
without distance loss.

In addition to object-based datasets, we also test our dis-
tance loss on technical datasets, i.e., NEU, TEX, and BSD,
which are not based on objects. As depicted in Table 2,
the performance of the distance loss with these technical
datasets is different from Cifar10, Cifar100, and miniIma-
geNet. The ensemble model without distance loss cannot
steadily achieve better performance than the ensemblemodel
without distance loss or the base models. In contrast, the

base models can also achieve an equivalent performance to
the ensemble model with distance loss. There is no explicit
tendency for the performance of the distance loss, and there-
fore, the distance loss does not work well on these technical
datasets for classification.

On the other hand, the visualization of the semantic fea-
tures is shown in Fig. 8, and we can see that the base models
with distance loss can also focus on the similar semantic fea-
tures in the images. The base models can even be forced to
learn nothing discriminative or much fewer features because
of the distance loss. In contrast, every basemodel can already
learn comprehensive features for classification. As a result,
we cannot increase the feature diversity by the ensemble
model with distance loss, and the distance loss can even
reduce the classification performance under some conditions
(Fig. 9).

As shown in Fig. 10, the ensemble model with distance
loss on Cifar10, Cifar100, and miniImageNet achieves much
better performance than on NEU, TEX, and BSD. On the
one hand, the technical datasets are based on textural patterns
without explicit shapes or locations, such as lines, corners,
and colors. These low-level features are simple and likely
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Table 2 Classification accuracy (%) with different numbers of training samples in VGG, ResNet, and AlexNet for NEU, TEX, and BSD

Architecture Dataset
size

Base
model

No
distance
loss

Distance
loss

Base
model

No
distance
loss

Distance
loss

Base
model

No
distance
loss

Distance
loss

NEU TEX BSD

VGG 3 44.17 43.61 44.44 21.09 26.22 28.14 69.11 63.14 73.70

5 52.78 51.94 51.94 23.43 26.43 29.53 73.09 68.47 69.89

10 69.44 67.78 69.17 34.22 37.02 37.17 81.56 75.69 79.74

20 77.50 71.39 78.89 39.81 41.77 41.11 88.65 84.95 83.10

50 88.89 83.06 90.28 50.96 51.37 52.61 94.30 93.17 94.06

100 96.11 94.44 96.67 56.09 58.00 59.36 92.90 92.61 92.88

ResNet 3 55.19 57.78 51.94 33.67 30.90 32.14 68.91 65.79 74.51

5 57.04 63.89 59.17 35.66 35.89 33.14 75.27 72.64 74.61

10 70.37 64.72 71.67 41.58 41.38 41.69 80.12 80.55 83.84

20 75.14 74.44 76.39 46.17 46.19 46.87 86.99 87.25 86.25

50 89.17 85.83 90.56 52.92 55.37 55.43 88.43 90.64 90.79

100 95.65 96.11 96.39 56.75 58.41 58.69 91.91 91.85 91.09

AlexNet 3 44.44 44.72 47.78 32.21 32.61 33.03 73.10 76.67 77.55

5 48.52 51.94 53.33 34.42 33.70 35.71 76.46 76.99 78.83

10 55.28 55.56 55.56 38.61 40.13 39.50 83.53 87.75 87.84

20 61.67 60.83 60.83 41.28 42.66 42.65 85.39 87.65 90.35

50 82.31 73.89 83.89 48.70 49.61 50.06 90.63 90.10 90.32

100 88.43 86.67 89.72 53.33 54.07 53.83 91.02 89.66 90.42

to be shared by different classes at lower layers [40], mak-
ing the feature representations less meaningful. Therefore,
the discriminative feature concepts in the datasets like NEU,
TEX, and BSD are limited, and redundant feature infor-
mation leads to overfitting in the ensemble model. On the
other hand, object-based datasets like Cifar10, Cifar100, and
miniImageNet havemuchmore part-level or object-level fea-
tures. These high-level features are more interpretable and
class-specific [40], making the feature representation more
representative. As a result, it is concluded that the ensemble
model with distance loss can improve the classification per-
formance on the datasets, which are rich in semantic features.
If there is only one or very few important features, forcing
the models to learn different features is misleading.

4.3 Ablation study

In order to study the effectiveness of the components in our
method, we make this ablation study. It aims to find the best
components and improve the model’s performance as much
as possible. Therefore, we set the baseline for the ablation
study: 100 samples per class of the Cifar10 dataset in the
VGG16 models, providing a stable and comparable condi-
tion, and the classification accuracy of the ensemble model
is presented as the final result.

4.3.1 Initialization strategy

We introduce three strategies to initialize the five base mod-
els. The first one is initializationwithout explicit random seed
(None), resulting in utterly random initialization. Then, we
initialize the five base models with random seeds, i.e., 1, 2,
3, 4, and 5, and it is guaranteed that the base models have
different start states. At last, the third strategy is initializing
the base models with the same random seed. The accuracy
averages the results of five tests, using random seeds 1, 2,
3, 4, and 5, respectively. As shown in Table 3, the three ini-
tialization strategies are implemented in our framework with
and without distance loss. Although the accuracy can only
be slightly affected by the initialization strategy, the distance
loss with the initialization strategy of different random seeds
can achieve much better performance. Obviously, the differ-
ent start states of the base models help our framework with
distance loss converge to a better solution during the train-
ing. Our method implements this initialization strategy for
all experiments.

4.3.2 Distance function

We test various distance functions in the distance loss,
which are widely used for feature comparison, including
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Fig. 8 CAMs of the five base models without distance loss (left) and with distance loss (right) for NEU, TEX, and BSD
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Fig. 9 Effectiveness of the distance loss for VGG, ResNet, and AlexNet
architectures. The values are calculated by averaging the accuracy dif-
ferences (%) between the ensemble model with and without distance
loss. Cifar10, Cifar100, miniImageNet, and various training samples
are considered

cosine distance, Euclidean distance, SSIM, and our Con-
sine&Euclidean distance function. In addition, the appropri-
ate weight for each distance loss is also investigated.

In Table 4, our Cosine and Euclidean distance function
with the loss weight of 1& 10 achieves the best accuracy. It is

4.51

6.00
6.35

0.92

1.65

1.02

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

a
c
c
u

ra
c
y

 d
if

fe
re

n
c
e
 (

%
)

Fig. 10 Average improvement of the ensemblemodel with distance loss
compared to the base models. Different CNN architectures and dataset
sizes are considered for each dataset

also interesting that the performance increases with increas-
ing loss weight at the beginning but decreases later. The
reason is that the larger loss weight can force the basemodels
to focus on more different semantic features and increase the
feature diversity for classification. However, the base mod-
els are proposed to learn features in the background if the

123



Discriminative feature learning through feature distance loss Page 11 of 12    25 

Table 3 Classification accuracy (%) using different initialization strate-
gies

Initialization strategy Final result

No distance loss None 63.24

Same 63.34

Different 63.49

Distance loss None 64.30

Same 64.07

Different 65.17

Table 4 Classification accuracy (%) using different distance functions
and weights

Distance function Loss weight Final result

None None 63.49

Cosine [26] 0.1 63.94

1 63.79

2 63.49

Euclidean [28] 1 64.25

10 64.04

20 63.78

SSIM [29] 1 64.27

5 64.66

10 64.98

20 64.77

Cosine + Euclidean distance 0.2 + 1 63.95

0.5 + 10 63.60

1 + 10 65.17

1 + 20 64.23

loss weight is too large, which leads to poor classification
performance of the base models.

4.3.3 Ensemble method

Last, the authors also investigate the effect of different ensem-
ble methods from related works. All ensemble methods are
implemented in our framework with and without distance
loss. It is depicted in Table 5 that the concatenation fusion
method consistently achieves the best performance in the
ensemble model. Interestingly, with or without distance loss,
our framework gives similar results, using the voting meth-
ods or stacking ensemble method with a similar base model
performance. In contrast, the feature fusionmodels can better
use high feature diversity and improve classification perfor-
mance.

Table 5 Classification accuracy (%) using different ensemble methods

Ensemble method Final
result

No distance loss No ensemble method 58.00

Hard voting method [5] 62.42

Soft voting method [5] 63.29

Stacking ensemble [8] 63.52

Pooling approach [14] 59.72

Trainable fusion method [22] 62.68

Addition fusion method [20] 62.56

Concatenation fusion method [20] 63.77

Distance loss No ensemble method 58.08

Hard voting method [5] 62.35

Soft voting method [5] 63.01

Stacking ensemble [8] 64.17

Pooling approach [14] 62.05

Trainable fusion method [22] 63.79

Addition fusion method [20] 63.56

Concatenation fusion method [20] 65.17

5 Conclusion

In this work, we proposed a novel method to make more
efficient ensemble learning of multiple base CNN models
without pretraining and transfer learning. The critical compo-
nent is a distance loss, which forces the base models to learn
different semantic features from images. The distance loss
first generates global feature representations from the base
models. The semantic features learned by the base model
are integrated into the masked aggregation map. Then, we
use a distance function to quantify the difference in feature
concepts of the global feature representations. This distance
function is implemented between every two basemodels, and
the sum is calculated as the distance loss. The experiments
show that the distance loss can enhance the feature diversity
and increase the classification performance in the ensemble
model for the datasets, such as Cifar10, Cifar100, and mini-
ImageNet, which have rich discriminative semantic features.

In the future, we will consider finding ways to automati-
cally determine if it is helpful for themodel to use the distance
loss with a specific dataset. Although we propose a fixed
weight for the distance loss, the best weight varies in dif-
ferent conditions, especially in different datasets. Therefore,
a learnable weight parameter is a possible solution, which
automatically learns how strong the distance loss should be
weighted. Then, the loss weight can adapt to the number of
features the dataset contains. Moreover, further study can
be made to increase the representative ability of the global
feature representation. A good idea comes from the residual
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structure, which integrates the multi-layer features. We can
thus usemore powerfulCNNarchitectures, such asDenseNet
[41], or directly encode the feature information from mul-
tiple layers into the global feature representation. Finally,
the number of the base models is also an exciting investiga-
tion direction. The heat maps above show that multiple base
models with distance loss concentrate on similar parts, indi-
cating redundant information. Some base models can then
be pruned to reduce resource consumption and prevent over-
fitting. Meanwhile, more base models can also be added to
enhance the feature diversity in the ensemble model when
the dataset contains more discriminative semantic features.
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