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Metal-insulator transition in a two-dimensional system of chiral unitary class
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We perform a numerical investigation of Anderson metal-insulator transition (MIT) in a two-dimensional
system of chiral symmetry class AIII by combining finite-size scaling, transport, density of states, and multifrac-
tality studies. The results are in agreement with the σ -model renormalization-group theory where MIT is driven
by proliferation of vortices. We determine the phase diagram and find an apparent nonuniversality of several
parameters on the critical line of MIT, which is consistent with the analytically predicted slow renormalization
towards the ultimate fixed point of the MIT. The localization-length exponent ν is estimated as ν = 1.55 ± 0.1.
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Introduction. Anderson transitions (ATs) in disordered
systems—which include metal-insulator transitions (MITs)
as well as transitions between topologically distinct insu-
lating phases—remain a dynamic field of research [1]. In
this context, two-dimensional (2D) systems attract particu-
lar attention. On the experimental side, there is a variety of
realizations of 2D electronic disordered systems, including
semiconductor heterostructures, graphene, and other 2D mate-
rials, oxide heterostructures, as well as surfaces of topological
insulators and superconductors. Furthermore, investigation of
2D-disordered systems in photonic structures is an emerging
research area [2].

For the most conventional setting of a quantum particle
in a random potential (Wigner-Dyson orthogonal symmetry
class AI), d = 2 is a lower critical dimensionality as for
conventional second-order phase transitions with continuous
symmetry. This implies that there is no AT in 2D systems of
this symmetry class, and all states are localized (although the
localization length is exponentially large for weak disorder).
At the same time, it was realized that there is a number
of mechanisms generating ATs in 2D-disordered systems of
other symmetry classes. Although field theories of ATs are
nonlinear σ models with a continuous non-Abelian symmetry,
the existence of metallic (symmetry-broken) phases in 2D ge-
ometry is not in conflict with the Mermin-Wagner theorem, in
view of an unconventional character of the symmetry groups
(involving supersymmetry and noncompactness or replica
limit, depending on the formulation).

The 2D ATs include, in particular, MITs in classes AII,
D, and DIII with broken spin-rotation invariance playing a
crucial role as well as quantum-Hall transitions in classes A,
C, and D that are governed by topology. Whereas ATs of
these types have been studied in a rather detailed fashion,
there is one more type of 2D ATs that has received much less
attention: MITs in chiral classes AIII, BDI, and CII. In fact,
early studies demonstrated a resilience of chiral systems to

Anderson localization, leading to a suggestion that 2D and
three-dimensional (3D) systems of chiral symmetry classes
do not exhibit AT at all, remaining always in a delocalized
phase [3]. This has received an apparent support from the
renormalization-group (RG) analysis of the corresponding σ

models performed in pioneering works of Gade and Weg-
ner [4] and Gade [5], which yielded no quantum corrections
to conductivity (and, thus, no localization) to all orders in
perturbation theory. The Gade-Wegner RG implies that 2D
systems of chiral classes possess a metallic phase with a
line of infrared-stable fixed points with different values of
conductivity. The special character of RG in chiral classes is
related to the fact that the corresponding σ -model manifolds
contain an additional U (1) degree of freedom.

More recently, numerical studies of suitably designed 2D
models of chiral classes have provided evidence of Anderson
MITs [6,7]. An analytical theory of 2D ATs in chiral classes
was developed in Ref. [8]. It was pointed out in Ref. [8]
that, since the σ -model manifolds for chiral classes are not
simply connected [due to the U (1) degree of freedom], they
allow for topological excitations—vortices. Inclusion of the
vortices in the RG analysis leads to a metal-insulator phase
transition [8], in an analogy with the famous Berezinskii-
Kosterlitz-Thouless (BKT) transition in the XY model. The
analysis of the resulting RG flow showed, however, that there
is an essential difference: The transition happens at a finite
fugacity y > 0 at variance with the fixed point value y = 0 for
the BKT transition. This hinders a fully controllable analytical
calculation of critical exponents at MITs in chiral classes,
thus, making numerical studies of these transitions even more
important. The central goal of this paper is a numerical study
of the 2D MIT in the chiral unitary class AIII.

Chiral classes. The special character of disordered systems
of chiral symmetry classes has been understood since the pio-
neering work of Dyson who found a singularity of the density
of states in one-dimensional (1D) harmonic chains at zero
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energy (chiral symmetry point) [9]. Further works extended
the analysis to localization properties and to quasi-1D sys-
tems. It was found that an N-channel quasi-1D system of the
chiral class has N topological phases. At transitions between
these phases, the density of states exhibits the Dyson singu-
larity [10,11], and the localization length diverges [12–20].
Critical points of these transitions have infinite-randomness
character with critical wave functions showing very strong
fluctuations [15,21].

For 2D chiral-class systems, most of the past research
focused on properties of the metallic phase. The Gade-Wegner
σ model was re-derived and analyzed in many works [22–25].
Particular attention was paid to the asymptotic infrared be-
havior, which is of infinite-randomness character, exhibiting a
very strong divergence of the density of states and a “freezing”
of the multifractality spectrum [6,26–28]. On the numerical
side, most papers showed critical properties of the metallic
phase that are characterized by nonuniversal exponents for
various observables (such as multifractality, density of states,
and localization length at finite energy) [29–34] and are essen-
tially different from those expected in the infinite-randomness
infrared limit. This is not surprising: the Gade-Wegner flow
towards the line of infrared fixed points is logarithmically
slow so that in a typical situation the infrared limiting behavior
can likely be out of reach on any realistic length scale. In
several works [35–37], evidence of the asymptotic behavior
of the lowest Lyapunov exponents in the quasi-1D geometry
has been reported.

Apart from realizations in disordered electronic systems,
the interest to models in the chiral classes is due to their
relation to models of Dirac fermions coupled to fluctuating
gauge fields that are discussed in the context of quantum
chromodynamics (QCD) [38]. It was proposed that ATs in
such models may be connected to QCD phase transitions [39].
It is also worth mentioning that chiral-class models can be
experimentally realized in microwave setups based on coupled
resonators [40]. Recently, MITs in 3D chiral-class systems
were studied in Refs. [41,42]. Furthermore, chiral models are
closely related [43–45] to non-Hermitian Anderson transitions
attracting much interest [45–48].

Field theory of 2D chiral AT. In the fermionic replica for-
malism, the σ -model manifolds for classes AIII, BDI, and CII
are U (n), U (2n)/Sp(2n), and U (n)/O(n), respectively. In the
analytical and numerical analysis below, we focus on the class
AIII. The Gade-Wegner σ -model action has the form [4,5]

S[Q] = −
∫

d2r

[
σ

8π
Tr(U −1∇U )2 + κ

8π
(Tr U −1∇U )2

]
.

Here U (r) ∈ U (n) (with the replica limit n → 0 to be taken
at the end of the calculation), σ is the conductivity in units of
e2/πh; the second term (known as “the Gade term”) couples
only to the U (1) degree of freedom and is specific for chiral
classes. To describe the transition, one has to include also
vortices with a fugacity y [8]. The RG equations for three
couplings σ , κ , and y read

∂K/∂ ln L = 1/4 − 2Ky2, (1)

∂y/∂ ln L = (2 − K )y, (2)

∂σ/∂ ln L = −σy2, (3)

FIG. 1. Schematic of the RG flow implied by Eqs. (1)–(3). The
starting value y0 of the fugacity is taken to be the critical one y0 = 1

4
and the resulting flow is projected to the σ -κ plane.

where K = (σ + κ )/4. Equations (1) and (2) form a closed
system with a fixed point at K = 2 and y = 1

4 . In the
three-dimensional parameter space (σ , κ , y), this corresponds
to a critical line of MITs, σ + κ = 8, y = 1

4 . Along this line,
there is a flow according to Eq. (3) towards the ultimate
fixed point σ = 0, κ = 8, and y = 1

4 . This flow is, however,
very slow: σ (L)=σ0L−1/16. Therefore, whereas in the strict
infrared limit the transition is described by the ultimate
fixed point, on realistic scales one expects to see a transition
described by some point on the critical line. This is expected
to lead to an apparent nonuniversality of some of critical
properties as discussed below.

The RG flow that follows from Eqs. (1)–(3) is illustrated
in Fig. 1. The overall flow is three dimensional and is, thus,
difficult to display. What is shown is the projection of the flow
on the σ -κ plane with all RG trajectories having an initial
value of the fugacity y0 = 1

4 . The fixed points of the flow
are as follows. First, there is an infrared-stable line of fixed
points describing the metallic phase with σ being an arbitrary
constant, κ → ∞, y → 0. Second, there is an infrared-stable
fixed point describing the insulating phase: σ, κ → 0 and
y → ∞. Finally, there is a fixed point σ = 0, κ = 8, y = 1

4 ,
describing the MIT. It has one unstable direction so that there
is a two-dimensional critical surface with a flow towards this
point. A cross section of this surface with the plane y = 1

4 is
the critical line σ + κ = 8 shown in Fig. 1.

Linearizing the RG Eqs. (1) and (2) near the transition
point, we get the critical exponent of the localization length
ν = 1.54 and the irrelevant exponent yirr = 0.77. In addi-
tion, there is a very slow flow towards the fixed point along
the critical line described by Eq. (3); it yields an exponent
y′

irr = 1/16 � 0.06. The fact that the ultimate fixed point of
the transition is at σ = 0 implies very strong fluctuations
of critical eigenfunctions in the infrared limit (with freezing
of the multifractal spectrum). This is expected on physical
grounds: we know that eigenstates in the metallic phase pos-
sess this property, and it would be surprising if eigenstates at
the transition would be “less localized” than in the metal.

Let us reiterate that the RG equations are only controllable
at y � 1. Since the fixed point of the transition is at y = 1

4
that is not parametrically small, all quantitative conclusions
about the transition should be taken with caution. A plausible
assumption is that the obtained flow is qualitatively correct but
numbers describing the transition may differ substantially. It
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FIG. 2. Finite-size scaling analysis. Ratio ξM/M as a function of
staggering δ for disorder W = 0.5 and M = 12, . . . , 256. The inset:
data collapse ξM/M = F (dνM ) with d = δ − δc, critical staggering
δc = 1.22, and the exponent ν = 1.55.

is, thus, crucially important to explore the transition numeri-
cally, which is performed below.

Model. We study the bipartite Hamiltonian defined on a
square lattice,

H =
∑
i, j

[
c†

i, jt
(x)
i, j ci+1, j + c†

i. jt
(y)
i, j ci, j+1 + H.c.

]
, (4)

with hoppings,

t (x)
i, j = [1 + 1

2 (e−δ − 1)[(−1)i + 1]](1 + vi, j ),

t (y)
i, j = [1 + 1

2 (e−δ − 1)[(−1) j + 1]](1 + wi, j ). (5)

Disorder is introduced via random vi, j and wi, j , whose
real and imaginary parts are drawn independently from box
distributions on [−W/2,W/2]. Since the matrix elements are
complex, the time-reversal symmetry is broken, which puts
H in the chiral unitary class AIII. The real parameter δ con-
trols the degree of staggering, which is absent for δ = 0 and
maximal for δ → ±∞, when the system decouples into 2×2
plaquettes.

Finite-size scaling. To locate the MIT, we use the transfer-
matrix method for a quasi-1D strip of width M = 12, . . . , 256
and large length L = 105 with periodic boundary conditions
in the transverse (M) direction. The extracted Lyapunov ex-
ponents λk,M become self-averaging at large L. The inverse
of the smallest Lyapunov exponent yields the quasi-1D lo-
calization length ξM = λ−1

0,M . In the localized phase, ξM is
determined, for large M, by the 2D localization length ξ2D so
that ξM/M → 0 at M → ∞. In contrast, in the metallic phase,
the large-M limit of ξM/M is nonzero. Note that this limit is
finite (at variance with conventional MITs), which reflects a
peculiar critical nature of the metallic phase in 2D chiral-class
systems.

In Fig. 2, we show the ratio ξM/M for various M’s as
a function of δ for W = 0.5. The plot clearly shows an
MIT at δc � 1.2. The same analysis is carried out for W =
0.3, 1.0, 2.0, 3.0, see the Supplemental Material (SM) [49].
The resulting phase diagram is shown in Fig. 3. Applying a

0.5 1.0 1.5 2.0 2.5 3.0W

0.5

1.0

1.5

0
0.25
0.50
0.75
1.00
1.25
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1.75

FIG. 3. Phase diagram of MIT on the (W , δ) plane. Red sym-
bols: MIT critical values δc(W ) obtained by transfer-matrix analysis,
see Fig. 2. Color code: Inverse participation ratio (IPR) exponent,
τ2(L) = −∂ ln P2(L)/∂ ln L for largest available L’s.

scaling fit (see the inset of Fig. 2), ξM/M = F (dνM ) with
d = δ − δc, we find the exponent of the localization length
ν = 1.55 ± 0.1 in remarkable agreement with the value ν =
1.54 obtained from the RG Eqs. (1) and (2). A very close result
for ν was obtained very recently for a related non-Hermitian
model [45].

Let us emphasize an apparent nonuniversality of the ratio
ξM/M at criticality, see Table I. This is consistent with a
very slow RG flow along the critical line σ + κ = 8 predicted
analytically.

IPR. A complementary approach is to study directly prop-
erties of eigenstates ψ (r) of a 2D system. We performed the
exact diagonalization of L×L systems with L = 24, . . . , 768
and periodic boundary conditions, averaging over N = 500
disorder realizations and over all L2 points r = (i, j) in
the system. Detailed results for the averaged IPR P2 =
L2〈|ψ (r)|4〉 of an eigenstate with the energy closest to zero
are presented in the SM [49]. In the localized phase, P2

quickly saturates when L exceeds ξ2D. On the other hand,
in the metallic phase, P2 decreases with increasing L. In
Fig. 3, we show by a color code the IPR exponent τ2(L) =
−∂ ln P2(L)/∂ ln L calculated in the range of our largest L.
A nice agreement with the phase boundary obtained from the
finite-size scaling analysis is observed.

Density of states. In Fig. 4, we show the exponent αν (W, δ)
characterizing the scaling of the density of states (DOS)
ν(ε) ∝ εαν across the transition for various W ’s. In the metal-
lic phase, |δ| < δc(W ), the RG predicts αν → −1 at L → ∞.
The RG flow to this (infinite-randomness) fixed point is,
however, logarithmically slow, which explains the observed
nonuniversal values strongly different from −1, see Table II.
We also show there the related exponent xν = 2αν/(1 +
αν ) controlling the L scaling of the DOS, ν(L) ∼ L−xν . An

TABLE I. Critical parameters on the MIT line.

W δc ξM/M αν σ 1/[2π (α0 − 2 + xν )]

0.3 1.64 0.72 0.015 3.3 0.70
0.5 1.22 0.73 −0.004 3.6 0.71
1.0 0.73 0.41 −0.025 2.9 0.44
2.0 0.33 0.45 −0.09 2.7 0.45
3.0 0.22 0.42 −0.11 2.6 0.40
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FIG. 4. Exponent αν (W, δ) of the DOS scaling, ν(ε) ∝ εαν

across the MIT at W = 0.3, 0.5, 1, 2, 3. Positions of the MIT critical
points δc(W ) and the corresponding values αν (W, δc(W )) are marked
by dots.

apparent non-universality is observed also at criticality, δ =
δc, see Table I; it is analogous to the corresponding property
of critical ξM/M (discussed above) and σ . When the system is
driven into the localized phase by increasing δ, we observe a
power-law behavior with an exponent αν growing and becom-
ing positive, in consistency with previous fundings [6,7].

Conductivity. We have further studied the conductivity
σ (L) at the transition and deep in the metallic phase. For this
purpose, we evaluated the conductance g(L, M ) (measured in
units of e2/h) of a wide sample (width M considerably ex-
ceeding the length L) using the KWANT software package [50],
see the SM [49] for details. The conductivity is then obtained
as σ (L) = πg(L, M )L/M. In the metallic phase, σ (L) for suf-
ficiently large L is independent on L; the corresponding values
for δ = 0 are given in Table II. The L independence of σ (L)
holds also at criticality, δ = δc; these values are presented in
Table I.

Multifractality. Moments of critical eigenfunctions exhibit
multifractality, L2〈|ψ (r)|2q〉 ∼ L−�q . Equivalently, one can
study multifractality of the local DOS, 〈νq(r)〉 ∼ L−xq ; the
two sets of exponents are related via xq = �q + qxν . For a
chiral class (bipartite lattice), one can also define moments
involving wave functions on nearby sites r and r′ belonging
to different sublattices: L2〈|ψ (r)|2q|ψ (r′)|2q′ 〉 ∼ L−�q,q′ and
〈νq(r)νq′

(r′)〉 ∼ L−xq,q′ with xq,q′ = �q,q′ + (q + q′)xν . In the
metallic phase, the multifractal exponents can be obtained in
one-loop approximation controllable for large σ . In particular,

TABLE II. Properties of the metallic phase (δ = 0, various W ’s).
Exponents αν and xν of the DOS scaling, the conductivity σ from
transport calculation, and couplings b, σ1, and κ1 from a one-loop
parabolic fit to the multifractality spectrum.

W αν xν σ b σ1 κ1

0.3 ∼ −0.001 ∼ −0.002 48.6 0.022 41.5 ∼4
0.5 −0.005 −0.01 25.8 0.036 27.8 7.7
1.0 −0.017 −0.035 9.8 0.10 9.1 2.8
2.0 −0.10 −0.22 4.4 0.24 4.2 3.2
3.0 −0.12 −0.27 3.6 0.30 3.3 2.4

FIG. 5. Small symbols: ratio ξM/M from transfer-matrix analysis
of a quasi-1D system with W = 0.3, 0.5, 1, and 3 (cf. Fig. 2). Large
symbols: 1/[2π (α0 − 2 + xν )] obtained by multifractal analysis of a
2D system with L � 96 (blue) and L � 768 (red). The relation (8) is
fulfilled in the metallic phase and at criticality, see also Table I.

one-loop results for xq and for sublattice-symmetric exponents
xq/2,q/2 read

xq � bq(1 − q) + xνq2; �q � (b − xν )q(1 − q), (6)

xq/2,q/2 � bq(1 − q/2), (7)

with b = 1/σ and xν = −κ/σ 2. Our numerical results for the
exponents �q and xq/2,q/2 in the metallic phase and at the
MIT are presented in the SM [49]. In the metallic phase, the
data are well described by the one-loop form (6) and (7). The
corresponding one-loop fit parameters b, σ1 = 1/b, and κ1

are shown in Table II. We emphasize an excellent agreement
between σ1 and Landauer conductivity σ .

At the MIT, the numerically obtained multifractality spec-
tra deviate strongly from the parabolic form, which indicates
violation (at least, partial) of the conformal invariance as was
also found for other 2D Anderson-transition points [51–53].
Furthermore, parameters of the multifractal spectra turn out
to vary substantially along the critical line, which is an-
other manifestation of the apparent nonuniversality discussed
above.

Quasi-1D to 2D conformal mapping. An exponential
map establishes a correspondence between quasi-1D (infi-
nite cylinder) and 2D (complex plane) geometries. Under
the assumption of invariance of the critical theory under this
conformal transformation, one can derive [54] a relation (gen-
eralizing an earlier result of Ref. [55]),

M/ξM = 2π (α0 − 2 + xν ), (8)

where α0 = dxq/dq|q=0. As shown in Fig. 5 and in Table I,
this relation indeed holds with a very good accuracy in our
class-AIII model both in the metallic phase and at the MIT.

Summary and outlook. We have numerically studied the
highly peculiar MIT in a 2D tight-binding system of class
AIII by supplementing a quasi-1D finite-size scaling analysis
with investigation of 2D conductivity, multifractality, and the
DOS. The obtained phase diagram in the parameter plane of
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disorder W and staggering δ is displayed in Fig. 3. Our find-
ings agree with the σ -model RG theory with vortices driving a
transition to the insulating phase [8], yielding the flow shown
in Fig. 1. We find ν = 1.55 ± 0.1 for the localization-length
exponent, in agreement with the analytical estimate. Critical
parameters at the MIT show an apparent nonuniversality, con-
sistent with the analytically predicted slow renormalization
along the critical line towards the ultimate σ = 0 fixed point
of the MIT. Nonparabolicity of the multifractal spectrum im-
plies a violation of conformal invariance at the MIT. At the
same time, our results support invariance with respect to the

exponential conformal map between the cylinder and the
plane geometries.

We foresee that future works will extend this investigation
to (i) other models (e.g., on the hexagonal lattice) that are
expected to provide access to strong-randomness fixed point
of the MIT, (ii) other chiral classes (BDI and CII), (iii) closely
related non-Hermitian ATs, and (iv) generalized multifractal-
ity in the chiral classes.
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