KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine learning methods in finance: Recent applications and prospects

Hoang, Daniel 1; Wiegratz, Kevin 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

We study how researchers can apply machine learning (ML) methods in finance. We first establish that the two major categories of ML (supervised and unsupervised learning) address fundamentally different problems than traditional econometric approaches. Then, we review the current state of research on ML in finance and identify three archetypes of applications: (i) the construction of superior and novel measures, (ii) the reduction of prediction error, and (iii) the extension of the standard econometric toolset. With this taxonomy, we give an outlook on potential future directions for both researchers and practitioners. Our results suggest many benefits of ML methods compared to traditional approaches and indicate that ML holds great potential for future research in finance.


Verlagsausgabe §
DOI: 10.5445/IR/1000155980
Veröffentlicht am 21.02.2023
Originalveröffentlichung
DOI: 10.1111/eufm.12408
Scopus
Zitationen: 13
Web of Science
Zitationen: 11
Dimensions
Zitationen: 26
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Finanzwirtschaft, Banken und Versicherungen (FBV)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1354-7798, 1468-036X
KITopen-ID: 1000155980
Erschienen in European Financial Management
Verlag John Wiley and Sons
Band 29
Heft 5
Seiten 1657-1701
Vorab online veröffentlicht am 17.12.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page