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Abstract

Next-generation lithium-ion batteries with silicon anodes have positive characteristics due to higher energy den-
sities compared to state-of-the-art graphite anodes. However, the large volume expansion of silicon anodes can cause
high mechanical stresses, especially if the battery active particle cannot expand freely. In this article, a thermodynam-
ically consistent continuum model for coupling chemical and mechanical effects of electrode particles is extended by
a change in the boundary condition for the displacement via a variational inequality. This switch represents a limited
enlargement of the particle swelling or shrinking due to lithium intercalation or deintercalation in the host material,
respectively. For inequality constraints as boundary condition a smaller time step size is need as well as a locally finer
mesh. The combination of a primal-dual active set algorithm, interpreted as semismooth Newton method, and a spatial
and temporal adaptive algorithm allows the efficient numerical investigation based on a finite element method. Using
the example of silicon, the chemical and mechanical behavior of one- and two-dimensional representative geometries
for a charge-discharge cycle is investigated. Furthermore, the efficiency of the adaptive algorithm is demonstrated. It
turns out that the size of the gap has an significant influence on the maximal stress value and the slope of the increase.
Especially in two dimension, the obstacle can cause an additional region with a lithium-poor phase.

Keywords: lithium-ion battery, finite deformation, obstacle problem, semismooth Newton method, finite elements,
numerical simulation
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1. Introduction

To overcome the challenges posed by climate change, lithium-ion batteries have turned out to be desirable in terms
of energy storage. The high energy density and long life time of the electrochemical storage system of lithium-ion
batteries is crucial for mobile applications [1]. Furthermore, batteries with silicon anodes have proved to be very
promising due to their nearly tenfold theoretical capacity [2–4]. However, the additional storage of lithium-ions can
lead to a volume expansion up to 300% [5]. The large mechanical stresses occurring as a consequence during the
lithiation and delithiation inside the host material can finally lead to particle fracture and therefore cause a undesired
shorter battery lifetime and faster aging process [6, 7]. Improving the understanding of the degradation mechanism
for lithium-ion batteries with new materials is important towards a sustainable future.

The coupling of chemical and mechanical effects inside the battery active particles is of great interest to understand
the occurrence of the mechanical and diffusion-induced stress inside the host material [8]. For example for phase
separating materials like lithium manganese oxide spinel LixMn2O4 (LMO), lithium iron phosphate LixFePO4 (LFP)
or sodium iron phosphate NaxFePO4 (NFP), the stresses are caused by a volume mismatch between lithium-poor and
lithium-rich phases during the intercalation and deintercalation process [7–11].

For the coupling of phase separating materials with elastic properties, the Cahn–Hilliard theory [12, 13] can
be extended with mechanical effects resulting in the Cahn–Larché approach [14–16] with small deformations and
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furthermore with finite deformations [11, 17–19]. There are many simulative investigation for the intercalation of
these models like for LixMn2O4 [11, 20, 21], LixFePO4 [17, 22–25], NaxFePO4 [24, 26, 27] or for silicon as host
particles [28–32] and the references therein.

All previous simulations of battery active particles have in common that the representative structures can freely
swell and are not limited in their volume enlargement. However, external conditions can change the boundary con-
dition for the displacement, such as environmental pressure changes or the contact with the battery case, the current
collector or other electrode particles. The limited volume increase is especially of great importance for the large
volume expansion of silicon. There are few different possibilities to capture such changes in boundary conditions
with various advantages and disadvantages like penalty formulation, augmented Lagrangian formulation or Dual La-
grange multipliers, compare [33, Section 17] and [34–37] and the references therein. The obstacle boundary condition
can be written as Karush–Kuhn–Tucker (KKT) complementary conditions. The equations are also called Signorini
conditions, because of their first formulation by Signorini [38, 39] for the unilateral normal contact. For this kind
of inequality constraints the primal-dual active set strategy is known to be very efficient and can be interpreted as
semismooth Newton method, compare [36, 40–45] and deal.II tutorial step-41 in [46]. An additional ansatz with
a direct approach for Signorini’s problem with small deformations and linear elasticity is investigated in [47]. In
case of time-dependent problems coupled with inequality boundary constraints there are several numerical solution
approaches [45, 48–51]. The dual Lagrange multiplier ansatz has the advantage that there is no need to change the
system size. Furthermore, this method fulfills the obstacle boundary inequality constraints in the weak integral sense
and the condition number of the system matrix does not change [35].

Due to the inequality constraints of the boundary obstacle condition for the limited swelling of an active particle
the numerical simulation is computationally challenging. In the area of the obstacle contact a higher grid resolution
is necessary, especially for new contact regions moving due to time dependency. Space and time adaptivity is crucial
to appropriately catch all relevant effects. Additionally, the switch from charging to discharging a lithium-ion battery
for long term cycle investigations needs a mechanism for space and time control.

In [28, 29], a phase separation ansatz is used to model the intercalation of silicon. Following [52], however, a
two-phase lithiation mechanism occurs only in the first half cycle of lithiation and therefore will not be considered in
this paper. In particular, in [31] a measured open circuit voltage (OCV) curve is used for the chemical energy density
in combination with an linear elastic approach to model the elastic deformation. A further possibility is the usage of
an Neo-Hookean ansatz as in [19] for the mechanical deformation.

In this article, we rely on the developed model approach by [31] for silicon with a finite deformation ansatz.
We combine the large volume expansion with the inequality constraints for an obstacle boundary problem to assume
limited space for the particle swelling. The primal-dual active set strategy is derived, applied as semismooth Newton
method and added to the spatial and temporal adaptive solution algorithm by [22, 23, 53] with higher finite element
order and a fully variable order, variable time step size time integration scheme. This makes it possible to consider
various parameter setups and multi-dimensional geometrical setups due to large computational savings introduced by
the adaptive algorithm.

The remaining paper is structured as follows: in Section 2, we present our model to characterize the chemical-
mechanical coupling with the obstacle boundary condition during one charging and discharging cycle. Next, we
derive the semismooth Newton method from the primal-dual active set algorithm and combine it with a space and
time adaptive algorithm. Section 4 discusses the simulation results for the developed model with obstacle contact.
Finally, we summarize our main findings in Section 5.

2. Theory

In this section, we review and summarize the theory from [22, 31, 35] to formulate the coupled chemical and
mechanical particle obstacle problem for battery active particles. For this we state a thermodynamically consistent
theory for the chemo-mechanical coupling for (de-)lithiation with inequality boundary constraints to an obstacle
problem. In a first step, we introduce the finite deformation theory for the particle and then couple the chemical and
mechanical effects with a common free energy density. After derivation of the equations for chemistry and mechanics,
we incorporate the boundary constraints for the representation of an obstacle hindering the particle to expand freely.
Since we consider the intercalation and deintercalation of lithium into and out of the host material, we simplify our
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Figure 1: The total deformation F can be multiplicatively decomposed into an elastic part Fel and a chemical part Fch, compare [32, Figure 1].

wording and combine lithiation and delithiation as well as charging and discharging in the word cycling. A selection
of abbreviations and symbols of our work is listed in Appendix A and some notation explanations notation are given
in Appendix B.

2.1. Finite Deformation

To model the particle deformation during cycling, we consider a motion x = χ(X0, t) with a mapping χ : Ω0 ×

R≥0 → Ω. Here, X0 ∈ Ω0 corresponds to an arbitrary point in the Lagrangian reference configuration Ω0 which is
mapped to a point x ∈ Ω in the current Eulerian configuration Ω. The reversible total deformation gradient tensor F is
defined as F = ∂χ/∂X0 [54, Chapter 2.4]. This results in the relation F = Id +∇0u with the identity matrix Id and the
gradient of the displacement ∇0u with respect to the spatial coordinates of the reference configuration, compare [55,
Chapter VI§1] and [54, Section 2.4]. We follow [31] and multiplicatively decompose the deformation gradient as F =

FchFel. A sketch of this decomposition is given in Figure 1. The elastic part Fel occurs due to mechanical stress,
whereas the chemical part results from the changes in the lithium concentration. With an isotropic and linear chemical
expansion of the active material the chemical part of the deformation gradient is given by Fch = λchId with λch =

3
√

1 + vpmvc, where vpmv defines the partial molar volume of the host material and c the lithium concentration [22].

2.2. Free Energy

Based on a free energy density ψ, we use a thermodynamically consistent model to guarantee a strictly positive
entropy production [31, 56–58]. Following [31], we define the free energy density ψ as

ψ(c,∇0u) = ψch(c) + ψel(c,∇0u), (1)

combining chemical and mechanical effects. Adding an interfacial part ψint(∇c) to Equation (1) for materials with
phase separation leads to the classical Cahn–Hilliard approach combined with elasticity [17, 22, 26, 59, 60].

For the definition of the chemical part ψch we use the experimentally obtained OCV curve UOCV [31, 56, 61–63]

ψch(c) = −

∫ c/cmax

0
F UOCV(z) dz (2)

with the Faraday constant F. For the elastic part ψel we use the linear elastic approach (Saint Venant–Kirchhoff model)
as in [54, Section 6.5], [55, Chapter VI §3] and [22, 31]

ψel =
1
2

Eel :C [Eel] with C [Eel] = λHtr(Eel)Id + 2GHEel, (3)

first and second Lamé constants λH = 2GHν/ (1 − 2ν) and GH = EH/ [1 (1 + 2ν)], Young’s modulus EH and Poisson’s
ratio ν. Furthermore, we define the elastic strain tensor Eel, also called Green–Lagrange strain tensor, in our model by

Eel =
1
2

(
FT

elFel − Id
)

=
1
2

(
λ−2

ch FTF − Id
)
. (4)
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2.3. Elastic Deformation

A momentum balance law governs the mechanical behavior for the deformation in the Lagrangian frame

0 = −∇0 ·P in (0, tend) ×Ω0 (5)

without considering any body or inertial forces [22, 31]. The first Piola–Kirchhoff stress tensor P and the Cauchy
stress σ in the Eulerian frame are coupled via P = det (F)σF−T [54, Section 3.1] using Nanson’s formula for a vector
element of infinitesimally small surface area [54, Section 2.4]. A thermodynamically consistent derivation specifies
the first Piola–Kirchhoff stress tensor P(c,∇0u) = ∂Fψ = λ−2

ch FC [Eel], compare [54, Section 6.1].

2.4. Chemistry

A continuity equation is used to describe the change of the lithium concentration inside the host material via

∂tc = −∇0 ·N in (0, tend) ×Ω0 (6)

with the lithium flux N B −m(c,∇0u)∇0µ = −D
(
∂cµ

)−1
∇0µ and the diffusion coefficient D for lithium atoms inside

the active material. The definition for the lithium flux N follows [31] to guarantee positive entropy production.
The chemical potential µ = ∂cψ is stated as the variational derivative of the Ginzburg–Landau free energy Ψ =∫

Ω0
ψ dX0 [64]. This leads to the definition of the chemical potential

µ = ∂cψ = −FUOCV −
v
3
λ−5

ch

(
FTF

)
:C [Eel] = −FUOCV −

v
3λ3

ch

P :F. (7)

The representative particle is cycled with a uniform and constant external flux Next with either positive or negative
sign. This external flux is applied at the boundary of Ω0 and measured in terms of the C-rate, for which we refer
to [22]. With this definition, the simulation time t and the state of charge (SOC) can be related by

SOC =
1

VΩ0

∫
Ω0

c
cmax

dX0 =
c0

cmax
+ Next [C] · t[h] (8)

with the volume VΩ0 of Ω0 and a constant initial condition c0 ∈ [0, cmax].

2.5. Obstacle Contact Problem

In the situation of a freely expanding particle during cycling, a stress-free boundary condition in normal direction
is assumed on the particle surface [22, 32]:

P · n0 = 0 on (0, tend) × ∂Ω0, (9)

where n0 is the outer unit vector of the reference configuration Ω0. However, if we consider a situation where the
particle can no longer expand freely, this boundary condition must be adapted. This means that we have to handle a
contact problem as restriction for the particle swelling.

A schematic sketch of a lithiation and delithiation cycle is shown in Figure 2: for example, the cross section
of a lithium-poor particle is surrounded by a square shaped obstacle. The particle increases until it gets in contact
with the obstacle. Now, the stress-free boundary condition in normal direction is replaced by a restriction of the
displacement and thus, nonzero stresses in normal direction are possible. During delithiation, the particle detaches
from the obstacle and shrinks again until it returns to a lithium-poor state. In the following, we replace the stress-free
boundary condition in Equation (9) by an appropriate condition to incorporate the obstacle contact. As in [36, 43] we
take the new boundary condition:


u ≤ g on (0, tend) × ∂Ω,

σ · n ≤ 0 on (0, tend) × ∂Ω,

[σ · n]
[
u − g

]
= 0 on (0, tend) × ∂Ω,

(10a)
(10b)
(10c)
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Figure 2: Schematic sketch of lithiation and following delithiation of a representative battery active particle with volume change, getting in contact
with the obstacle and detaching from the obstacle again.

understood componentwise as introduced in Appendix B, with outer unit vector n of the current configuration Ω.
ĝ (X0) is the position vector of the obstacle and therefore the distance vector g (X0,u), also called gap function, is
defined via g = ĝ − x = ĝ − (X0 + u). Equation (10a) thus means that the displacement u must componentwise be
smaller or equal to the distance g between the particle and the constant obstacle ĝ. Further Equation (10b) expresses
the fact that the Cauchy stress in normal direction is zero or less than zero indicating compressive stress. The last
Equation (10c) is the complementary condition and specifies that one of the two Equations (10a) or (10b) must be
zero, whereas the other condition can be nonzero. In short: if the particle is not in contact with the obstacle, there must
be zero stress in normal direction, or vice versa, if there are compressive stresses, the particle has to be in contact with
the obstacle. This kind of boundary obstacle problem is also known as Signorini problem or thin obstacle problem [65,
Section 1.11].

Since we formulate all constitutive equations in the Lagrangian domain, we use Nanson’s formula and it follows
for Equation (10): 

u − g ≤ 0 on (0, tend) × ∂Ω0,

−P · n0 ≥ 0 on (0, tend) × ∂Ω0,

[−P · n0]
[
u − g

]
= 0 on (0, tend) × ∂Ω0.

(11a)
(11b)
(11c)

To solve this type of inequality boundary constraints, we employ a primal-dual active set algorithm [35, 40]. This
algorithm is introduced in Section 3 and will be included in the numerical solution algorithm interpreted as semismooth
Newton algorithm [36].

3. Numerical Approach

This sections deals with the numerical treatment of the model equations. Firstly, the normalization and mathe-
matical problem is stated. Secondly, the steps for solving the initial boundary value problem are stated including a
formulation for the space discretization with finite elements, time discretization and the primal-dual active set algo-
rithm as semismooth Newton method. Finally, we incorporate the semismooth Newton method in the adaptive space
and time integration scheme [22] and propose the numerical solution algorithm for the obstacle problem.

3.1. Problem Formulation
First, we improve the numerical stability by introducing a nondimensionalization of the model equations. The

C-rate specifies the hours for the charging of the particle. We use the cycle time tcycle = 1/C-rate for the time scale,
the particle radius L0 in the Lagrangian frame for the spatial scale and the maximal concentration cmax as reference
concentration. All dimensionless variables are collected in Table 1. The dimensionless number ẼH is used to relate the
mechanical energy scale to the chemical energy scale, while the dimensionless Fourier number Fo is used to relate the
diffusion time scale to the process time scale. From now, these dimensionless quantities are considered for the model
equations, however, we neglect accentuation to improve readability.

Table 1: Dimensionless variables of the used model equations.

t̃ = t/tcycle X̃0 = X0/L0 ũ = u/L0 c̃ = c/cmax ṽ = vcmax
ŨOCV = FUOCV/RgasT ẼH = EH/RgasTcmax Ñext = Nexttcycle/L0cmax Fo = Dtcycle/L2

0
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For a general mathematical problem formulation, we follow the approach of [22] and solve our set of equations for
the concentration c, the chemical potential µ and the displacement u. The mixed formulation of the Cahn–Hilliard-
type equations would allow to easily integrate the interfacial energy density for accounting phase separation. The
deformation gradient F, the strain tensor Eel as well as the stress tensors P and σ are calculated via the concentration
c and the displacement u.

The dimensionless initial boundary value problem with inequality boundary conditions is given as: let tend > 0
be the final simulation time and Ω0 ⊂ Rd a representative bounded electrode particle as reference configuration with
dimension d = 3. Find the normalized concentration c : [0, tend] × Ω0 → [0, 1], the chemical potential µ : [0, tend] ×
Ω0 → R and the displacement u : [0, tend] ×Ω0 → Rd satisfying

∂tc = −∇0 ·N(c,∇0µ,∇0u) in (0, tend) ×Ω0,

µ = ∂cψ(c,∇0u) in (0, tend) ×Ω0,

0 = −∇0 ·P(c,∇0u) in (0, tend) ×Ω0,

N · n0 = Next on (0, tend) × ∂Ω0,

−P · n0 ≥ 0 on (0, tend) × ∂Ω0,

u − g ≤ 0 on (0, tend) × ∂Ω0,

[−P · n0]
[
u − g

]
= 0 on (0, tend) × ∂Ω0,

c(0, ·) = c0 in Ω0

(12a)
(12b)
(12c)
(12d)
(12e)
(12f)
(12g)
(12h)

and an initial condition c0 that is consistent with the boundary conditions. In case of lithiation we have a positive sign
for the external lithium flux Next and in case of delithiation a negative sign. With appropriate boundary conditions for
the displacement, rigid body motions are excluded. Note that the original formulation for the chemical deformation
gradient Fch is derived for the three-dimensional case, but all variables and equations are mathematically valid in
lower dimensions as well.

3.2. Numerical Solution Procedure

In this subsection, we present all details for the numerical solution of our model equations: the space and time
discretization of the initial boundary value problem (12), the interpretation of the primal-dual active set algorithm as
semismooth Newton method and finally the proposed adaptive solution algorithm.

3.2.1. Weak Formulation
For the spatial discrete formulation, we derive the weak formulation of Equation (12). We define the function

space V∗ B H1
∗ (Ω0;Rd) which includes appropriate boundary constraints for the displacement considering possible

boundary conditions without contact. These displacement boundary constraints are stated for the precise application
case in Section 4. Furthermore, we declare the boundary on Ω0 as ΓP B ∂Ω0 for the potential contact zone to be in
contact with the obstacle. For the definitions of the scalar products, see Appendix B.

The weak solution can be derived from a minimization problem on a convex set, compare, e.g., [66, Chapter 1.2]
or [47, 67, 68], or equivalently from a variational inequality, e.g. [65, Chapter 1.11], [69, Chapter 2.1], [70, Chap-
ter II.6], [66, Chapter 1.2] or [47]. Multiplying with test functions, integration over the reference domain Ω0 and
integration by parts, we state the weak formulation with a variational inequality in the third equation: find the solu-
tions c, µ,u with c, µ ∈ V B H1(Ω0), ∂tc ∈ L2(Ω0) and u ∈ V+ B {u ∈ V∗ : u ≤ g on ΓP} such that

(ϕ, ∂tc) = −
(
m(c,∇0u)∇0ϕ,∇0µ

)
− (ϕ,Next)ΓP

,

0 = − (ϕ, µ) +
(
ϕ, ∂cψch(c) + ∂cψel(c,∇0u)

)
,

0 ≤
(
∇0 (ξ − u) ,P(c,∇0u)

)
(13a)

(13b)
(13c)

for all test functions ϕ ∈ V and ξ ∈ V+. For the formulation as saddle point problem, we follow [40, 42], deal.II
tutorial step-41 in [46] and [44] and introduce the Lagrange multiplier λ B −σ · n = −P · n0.
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3.2.2. Space Discretization
For the spatial discretization we choose a computational domain Ωh that approximates the particle geometry Ω0 by

a polytop. To approximate the curved boundaries, we choose the isoparametric Lagrangian finite element method [55,
Chapter III §2] on an admissible mesh Tn. We define the finite dimensional Lagrangian finite element subspaces with
the basis functions

Vh = span{ϕi : i = 1, . . . ,N} ⊂ V, (14a)
V+

h = span{ξ j : j = 1, . . . , dN} ⊂ V+, (14b)
Λh = span{ζk : k = 1, . . . , dNΛ} ⊂ Λ, (14c)

where N denotes the number of degrees of freedom (DOFs) of the space Vh and NΛ denotes the total number of nodes
of the potential contact zone ΓP. For more details of the discretization, especially the discretization of the Lagrange
multiplier space Λh, we refer to [35, 68, 71–73] and the references therein.

We now seek the discrete solutions for the concentration ch : [0, tend] → {Vh : ch ∈ [0, 1]}, the chemical poten-
tial µh : [0, tend] → Vh, the displacement uh : [0, tend] → V∗h and the Lagrange multiplier λh : [0, tend] → Λh of the
spatial discrete saddle point problem of Equation (13).

In a next step, we want to add the finite element ansatz. Therefore, we represent the discrete solution variables
with the basis functions given by

ch(t, X0) =

N∑
i=1

ci(t)ϕi(X0), µh(t, X0) =

N∑
i=1

µi(t)ϕi(X0), (15a)

uh(t, X0) =

dN∑
j=1

u j(t)ξ j(X0), λh(t, X0) =

dNΛ∑
k=1

λk(t)ζk(X0). (15b)

For the vector valued finite dimensional subspace V+
h = span

{
ξ j : j = 1, . . . , dN

}
and equivalent for Λh, we note ξ j as

the scalar basis function, which is the nonzero entry of the basis function vector ξ j of node j. To simplify our notation,
we use the same symbol for a function in V+

h and Λh as for its algebraic representation in terms of the nodal basis. For
the concentration and the chemical potential, we use ch and µh for the algebraic representation.

Following [35, 40, 41] the biorthogonality of the basis functions has following property:∫
ΓP

ξ j · ζk dS0 = δ j,k

∫
ΓP

ξ j dS0 (16)

for all j = 1, . . . , dN and k = 1, . . . , dNΛ. For Equation (16) we suppose that the basis function ξ j and the basis
function ζ j with the same index j are associated to the same node on ΓP. The Kronecker symbol δ j,k can be interpreted
as follows [35]:

δ j,k =

 1, node j coincides with potential contact node k,

0, otherwise.
(17)

At the end of the spatial discretization process, we want to formulate our problem as a discrete nonlinear differ-
ential algebraic equation (DAE) before we perform the time discretization in the next Subsection 3.2.3. We therefore
have a closer look on the algebraic representation of our discrete weak formulation, in particular of the momentum
balance equation and of the displacement inequality at the boundary condition (12f).

Let uh and λh be the solution of the discrete variational inequality. Then, we have the algebraic representation of
the discrete weak formulation of Equation (12c) as

Ph(ch,∇0uh) + Bhλh = 0 (18)

with the nonlinear vector

Ph(ch,∇0uh) =

[∫
Ω0

∇0ξ j :P
(
ch,∇0uh

)
dX0

]
j=1,...,dN

(19)

7



and the matrix

Bh =

[∫
ΓP

ξ j · ζk dS0

]
j=1,...,dN, k=1,...,dNΛ

. (20)

With an appropriate node numbering, Bh can be written as Bh = (0,Dh)T. Due to the biorthogonality in Equation (16),
the diagonal matrix Dh has the entries

(Dh) j,k =

∫
ΓP

ξ j · ζk dS0 = δ j,k

∫
ΓP

ξk dS0 (21)

for all j, k = 1, . . . , dNΛ. Now, we define two sets of indices: all degrees of freedom on ΓP withP (all potential contact
nodes) and all other nodes with N .

Consider now the weaker integral condition for the strong pointwise non-penetration condition of Equation (12)
for the discrete contact conditions for all p ∈ P:∫

ΓP

uh · ζ p dS0 ≤

∫
ΓP

gh · ζ p dS0 C ĝp ⇐⇒

∫
ΓP

upξpζp dS0 ≤ ĝp, (22)

where up is the scalar coefficient of the discrete vector uh of DOF p and gh is an appropriate approximation of g
on ΓP. Next, we rewrite Equation (22) with the help of Equation (21) for the algebraic representation of the weak
non-penetration condition ûp B (Dh)p,p up ≤ ĝp for all p ∈ P. Then, we can rewrite the condition for the Lagrange
multiplier in the same way to get λ̂p B (Dh)p,p λp with the same definition for λp as for up for all nodes p ∈ P.

Finally, the discrete algebraic form of the contact problem of Equation (12) is given by:

Ph(ch,∇0uh) + Bhλh = 0, (23a)

ûp ≤ ĝp, λ̂p ≥ 0, λ̂p(ûp − ĝp) = 0 (23b)

for all nodes p ∈ P. Equation (23b) can also be identified as discrete KKT conditions of a constrained optimization
problem for inequality constraints [40].

Next, we use a reformulation of the three equations of Equation (23b) based on the nonlinear complementarity
problem (NCP) function

C(a, b) := b −max (b + αa, 0) , ∀a, b ∈ R, (24)

and α > 0 arbitrarily fixed [43]. The following equivalence is true [36, 43]:

C(a, b) = 0 ⇐⇒ a ≤ 0, b ≥ 0, ab = 0. (25)

Applied to Equation (23b) it follows:

C(ûp, λ̂p) = λ̂p −max
(
λ̂p + α

(
ûp − ĝp

)
, 0

)
= 0 (26)

for all p ∈ P and α > 0. In total we rewrite Equation (23) to

Ph(ch,∇0uh) + Bhλh = 0, (27a)
CP(uh, λh) = 0 (27b)

with the same definition for CP(·, ·) in each component as in Equation (26) for all p ∈ P, compare also Appendix B.
Considering for example an quarter shaped obstacle like in Figure 3, the physical boundary of Ω0 can be defined

as Γext. Γ0,y and Γ0,x are two artificial boundaries with appropriate Dirichlet boundary conditions for the displace-
ment u. Γext is the potential contact boundary ΓP and splits into two parts, the active contact boundary ΓA and the
inactive boundary ΓI.
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Collecting all time-dependent solution variables in a vector-valued function

y : [0, tend]→ R(2+d)N+dNΛ , t 7→ y(t) =


ch

µh
uh

λh,

 (28)

we can state our spatial discrete problem of the saddle point formulation of Equation (13) as general nonlinear DAE:
Find y : [0, tend]→ R(2+d)N+dNΛ satisfying

M∂t y = f (t, y) for t ∈ (0, tend], y(0) = y0. (29)

On the left side, the system mass matrix M has only one nonzero-block entry Mh =
[
(ϕi, ϕ j)

]
i j

and is therefore singular.

Mh identifies the mass matrix of the finite element space Vh. On the right side, f : [0, tend]×R(2+d)N+dNΛ → R(2+d)N+dNΛ

is given according to the algebraic formulation in Equation (27) by

f (t, y) B


−Km(ch,∇0uh)µh − Next

−Mhµh +Ψch(ch) +Ψel(ch,∇0uh)
Ph(ch,∇0uh) + Bhλh

CP(uh, λh)

 (30)

with the relation of y to the solution variables as in Equation (28). The quantities in the definition of f are given
by the mass matrix Mh, the stiffness matrix Km(ch,∇0uh) =

[(
m(ch,∇0uh)∇0ϕi,∇0ϕ j

)]
i, j

, the vectors for the non-
linearities Ψch(ch) =

[
(ϕi, ∂cψch(ch))

]
i and Ψel(ch,∇0u) =

[
(ϕi, ∂cψel(ch,∇0u))

]
i, as well as the boundary condi-

tion Next =
[
(ϕi,Next)Γext

]
i
. For the block mass matrix Bh, the nonlinear vector Ph(ch,∇0uh) and the vector CP(uh, λh),

we refer to the definitions in Equations (19), (20) and (27b), respectively.

3.2.3. Time Discretization
For the temporal discretization, we follow the approach in [22] by using a variable-step, variable-order algo-

rithm [74–77]. This approach seems reasonable since the DAE (29) can be treated in a similar way to a stiff ordinary
differential equation. The algorithm adaptively changes the time step size τn > 0 and the order by an error control.

This leads to the space and time discrete problem: find the discrete solution yn+1 ≈ y(tn+1) satisfying

αkn M
(
yn+1 −Φn

)
= τn f

(
tn+1, yn+1

)
(31)

to advance one time step from tn to tn+1 = tn + τn. Φn is defined by the solutions on the former time steps yn, . . . , yn−k

and a constant αkn > 0 depending on the selected order kn at time tn [75, Section 2.3]. Because of the time-dependent
Neumann boundary condition Next, the vector f does also explicitly depend on the time t.

Ω0

Γ0,y

Γ0,x

Γext = ΓP = ΓA ∪ ΓI

Figure 3: All boundary parts for the example of a two-dimensional quarter sphere domain Ω0 split up into two artificial boundaries Γ0,y and Γ0,x
with additional Dirichlet constraints for the displacement u and the potential contact boundary ΓP subdivided into the active contact boundary ΓA
and the inactive boundary ΓI.

9



3.2.4. The Primal-Dual Active Set Algorithm as Semismooth Newton Method
The next step is to use an appropriate iterative solution scheme to handle the NCP function in Equation (27b). The

primal-dual active set algorithm is the strategy of choice, since it is an iterative approach to deal with the condition in
Equation (27b) and to predict the next active and inactive setAn+1

k+1 and In+1
k+1 for each new time step tn+1 [35, 36, 40].

For the moment, we consider only Equation (27a) and Equation (27b), which are the relevant parts for the contact
inequality condition. To compute the new active and inactive setAn+1

k+1 and In+1
k+1 on the potential boundary ΓP in a new

time step tn+1 we will use the primal-dual active set algorithm, compare [35, 36, 40].
Since we have to linearize Equation (31) anyway to handle the nonlinear algebraic system via the Newton–

Raphson method, we can also use the interpretation of the primal-dual active set algorithm as semismooth Newton
method, compare [36, 43, 44] and deal.II tutorials step-41 and step-42 in [46]. The locally superlinear convergence
and global convergence results are shown in [36]. Since C(·, ·) in Equation (27b) is not differentiable, Newton tech-
niques for solving Equation (27) have to be applicable with generalizations of the derivative of a function. These
methods are named generalized Newton methods, see e.g. [43] and the references therein. In this paper we pro-
pose the semismooth Newton method following [36, 43]. The semismoothness characteristics of the max-operator in
Equation (27b) lead to local convergence properties of the semismooth Newton method.

So we need a linearization of a function C(·, ·), being not classically differentiable. As a replacement, we can use
the concept of slant differentiability, compare [43]. C(·, ·) is slantly differentiable with

∂

∂up
C(ûp, λ̂p) =

 −α (Dh)p,p , if λ̂p + α(ûp − ĝp) > 0,

0, if λ̂p + α(ûp − ĝp) ≤ 0,
(32a)

∂

∂λp
C(ûp, λ̂p) =

 0, if λ̂p + α(ûp − ĝp) > 0,

1, if λ̂p + α(ûp − ĝp) ≤ 0.
(32b)

Recall the definition of the potential contact nodes P = A ∪ I, the active and inactive sets, respectively, and the
remaining nodes N . The set of all nodes is defined via S = P ∪ N . Moreover, we define for the Jacobian matrix the
derivatives for the nonlinear part:

zAh =
[(
∇0ξk, ∂zP(ck

h,∇0uk
h)ϕi

)]
k,i
, GAh =

[(
∇0ξk, ∂GP(ck

h,∇0ξl)
)]

k,l
, (33)

for i = 1, . . . ,N and k, l = 1, . . . , dN, with the derivative regarding the first scalar valued quantity and the second
tensor valued quantity, respectively. With the partitions of the matrices zAh, GAh and Bh as well as the vectors uh and
λh for the different sets, a semismooth Newton step for Equation (27) has the form


zANS GANN GANIk GANAk 0 0
zAIkS GAIkN GAIkIk GAIkAk DIk 0
zAAkS GAAkN GAAkIk GAAkAk 0 DAk

0 0 0 0 IdIk 0
0 0 0 −αDAk 0 0





δcS
δuN
δuIk

δuAk

δλIk

δλAk


= −



PN (ck
h,∇0uk

h)
PIk (c

k
h,∇0uk

h) +
(
Bhλ

k
h

)
Ik

PAk (c
k
h,∇0uk

h) +
(
Bhλ

k
h

)
Ak

λk
Ik

−α
(
DAk uk

Ak
− gAk

)


(34)

with the definition of Equation (22) for all active points p ∈ Ak, for gAk and (Bh)N = 0. IdIk is the identity matrix of
dimension card (Ik).

As a next step we have a closer look at different subsystems of Equation (34). The fourth row provides

λk+1
Ik

= λk
Ik

+ δλIk = λk
Ik
− λk

Ik
= 0 (35)

and the last one implies

uk+1
Ak

= uk
Ak

+ δuAk = uk
Ak

+ D−1
Ak

gAk − uk
Ak

= D−1
Ak

gAk . (36)

Equation (35) and Equation (36) are exactly the conditions of the active and inactive sets in the primal-dual active set
algorithm. Considering now the subsystem of Equation (34) for the active set of the Lagrange multiplier, we have

λk+1
Ak

= λk
Ak

+ δλAk = −D−1
Ak

PAk (c
k
h,∇0uk

h) − D−1
Ak

(GAhδu)Ak
− D−1

Ak
(zAhδc)Ak

. (37)
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This means that the Lagrange multiplier only has to be computed on the active set with the solutions δc and δu.
Let us now consider for a moment the two sets N and I together as Ŝ since the subsystems of Equation (34) for

both sets are equal. The combination of the two sets results in(
zAŜ,S GA

Ŝ

) (δcS
δu
Ŝ

)
= −

(
P
Ŝ

(ck
h,∇0uk

h) + GA
Ŝ,Ak

δuAk

)
(38)

to compute uk+1
Ŝ

. In the end we solve the reduced system for the Newton update

 zANS GANN GANIk GANAk

zAIkS GAIkN GAIkIk GAIkAk

zAAkS GAAkN GAAkIk GAAkAk



δcS
δuN
δuIk

δuAk

 = −

PN (ck
h,∇0uk

h)
PIk (c

k
h,∇0uk

h)
PAk (c

k
h,∇0uk

h)

 , (39)

restricting the Newton update to zero for the degrees of freedom in the active set and providing the correct boundary
values to the new solution as inhomogeneous Dirichlet boundary values. This can be done via uk

h B PAk+1 (uk
h) with

the projection

PAk+1 (uh)p B

{
ûp, if p < Ak+1,
ĝp, if p ∈ Ak+1.

(40)

After solving the total Newton system and computing the new solutions, the Lagrange multiplier λk+1 can be
recovered via Equation (37) and Equation (35).

Following [35] we use

λk+1
Ak

= λk
Ak

+ δλAk = −D−1
Ak

PAk (c
k+1
h ,∇0uk+1

h ) (41)

which has the same linearization as Equation (37). This corresponds to an inexact strategy, compare Algorithm 3
in [35]. Further, it reduces the computational effort of a second nested loop compared to Algorithm 2 in [35]. However,
the inexact case is an additional simplification of the applied algorithm used in this paper. This means further that is
has not been clarified whether the superlinear convergence is retained [35].

Finally, we have to formulate a semismooth Newton algorithm in one time step. With the concept of the semis-
mooth Newton algorithm we can also update our DAE (29) and we can remove all parts related with the Lagrange
multiplier λ. This results in a new definition of ỹ, f̃ ∈ R(2+d)N . In the following, we consider only the updated system
and omit again the accentuation �̃. So we have to linearize the updated version of the DAE (31) to compute the
Newton update.

3.2.5. Adaptive Solution Algorithm
After the linearization of the updated version of the DAE (31) with the semismooth Newton method, the Newton

update is computed with a direct LU-decomposition. Keep in mind that the number of iteration steps during the
Newton method can be reduced with an appropriate initialization. The starting values for the first time step are given
in Subsection 4.1 whereas during time integration a predictor scheme is applied [75].

For the space and time adaptive solution algorithm we follow Algorithm 1 in [22]. Here, a temporal error esti-
mator [74–77] and a spacial error estimator are applied. A gradient recovery estimator is used for the spatial regular-
ity [78, Chapter 4]. To mark the cells for local coarsening and refinement, the parameters θc and θr are used with a
maximal strategy [79]. Finally, a mixed error control is applied using the parameters RelTolt, AbsTolt, RelTolx and
AbsTolx. Further details can be found in [22].

Combining the semismooth Newton method and the space and time adaptive algorithm by [22, Algorithm 1], we
propose the following concept:
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Algorithm 2 Semismooth Newton Method for Adaptive Obstacle Space Time Algorithm
1: InitializeA0

1 and I0
1 such that P0 = A0

1 ∪ I
0
1 andA0

1 ∩ I
0
1 = ∅

2: while tn < tend do
3: Given Tn, τn, kn and yn, . . . , yn−kn , set k = 1
4: Extrapolate yn, . . . , yn−kn to compute predictor y(0),n+1 in tn+1
5: while not converged do
6: Solve for Newton update δyk,n (introducing the contact condition as additional Dirichlet

boundary condition and set the Newton update to zero for DOFs in the active set)
7: Compute yk+1,n+1 = yk,n + δyk,n

8: Recover λk+1,n+1 and compute newAn+1
k+1 and In+1

k+1
9: Project yk,n+1 according toAn+1

k+1 and update constraints
10: if An+1

k+1 = An+1
k and the Newton update norm is reduced appropriately then

11: Exit inner while loop
12: else if Newton update norm is not reduced appropriately or maximal Newton iteration number is reached then
13: Reduce time step size and go to Line 3
14: else
15: Update k + 1→ k and go to Line 7
16: end if
17: end while
18: Advance time step via space and time algorithm [22, Algorithm 1]
19: end while

4. Numerical Studies

In this section we analyze our numerical results for the presented model of Section 2 with the adaptive finite
element solver from Section 3. Firstly, we introduce and specify the simulation setup in Subsection 4.1. Secondly,
we consider the numerical results in detail and discuss the physical effects as well as the numerical efficiency in
Subsection 4.2. For this, we split the analysis in a 1D spherical symmetric case and a 2D quarter sphere of a nanotube.

4.1. Simulation Setup
The derived model in Section 2 can be applied to cycle silicon as host material. The used model parameters as

well as the normalized values are listed in Table 2. We apply an external lithium flux of Next = 1 C for lithiation and
Next = −1 C for delithiation. During the simulations, the particles are cycled between Umax = 0.5 V and Umin = 0.05 V
unless otherwise specified [31]. This corresponds to an initial concentration of around c0 = 0.02 and a final time of
close to 0.9, thus we set tend = 1.8 for a total lithiation and delithiation cycle unless otherwise specified. At the
beginning of the delithiation process, what is half of tend, we continue with our adaptive algorithm, however, we
change the sign of the external lithium flux and enforce for two time steps a time step size τn = 1 × 10−6 as well as an
order of one for the temporal adaptivity. The OCV curve for silicon is chosen as [61]:

UOCV(z) =
−0.2453z3 − 0.00527z2 + 0.2477z + 0.006457

z + 0.002493
. (42)

In the next parts we specify our geometrical reference domain for the representative battery particle including some
further boundary conditions and symmetry assumption as well as some further implementation details.

4.1.1. Geometrical Setup
For a representative 3D spherical particle, the computational domain can be reduced to the 1D unit interval Ω0 =

(0, 1) with symmetry assumptions. The particle is surrounded by an obstacle like a core shell scenario, compare Fig-
ure 4. Then, the gap g reduces to a one-dimensional parameter g > 1. The dimensional reduction introduces an
artificial boundary Γ0 at which we impose a no flux condition for the lithium flux and fixed radial displacement:

N · n0 = 0, u = 0 on (0, tend) × Γ0. (43)

At the particle surface Γext the boundary conditions are considered as stated in Section 2. Assuming spherical sym-
metry we adapt the quadrature weight to dX0 = 4πr2 dr in the discrete finite element formulation. In this setting, we

12



Table 2: Model parameters for numerical experiments [31, 32].

Description Symbol Value Unit Dimensionless

Universal gas constant Rgas 8.314 J mol−1 K−1 1

Faraday constant F 96485 J V−1 mol−1 1

Operation temperature T 298.15 K 1

Silicon

Particle length scale L0 50 × 10−9 m 1

Diffusion coefficient D 1 × 10−17 m2 s−1 14.4

OCV curve UOCV Equation (42) V F/RgasT · (42)

Young’s modulus EH 90.13 × 109 Pa 116.74

Poisson’s ratio ν 0.22 − 0.22

Partial molar volume vpmv 10.96 × 10−6 m3 mol−1 3.41

Maximal concentration cmax 311.47 × 103 mol m−3 1

Initial concentration c0 6.23 × 103 mol m−3 2 × 10−2

apply a constant initial concentration c0, the chemical potential µ0 = ∂cψch (c0) and the one-dimensional stress-free
radial displacement u0(c0) = r (λch (c0) − 1).

For the 2D simulation we rely on a silicon nanotube [25, 61] and reduce the domain to a quarter sphere of the
nanotube, see Figure 5. Here, we assume symmetry with respect to the x- and y-axis and no variations in z-direction.
The nanotube is surrounded by a cuboid that will serve as a rigid obstacle. This results in two artificial boundaries Γ0,x
and Γ0,y in axial direction and a curved boundary Γext for the surface of the nanotube. On Γext we apply an isoparametric
mapping for the representation of the curved boundary. No flux conditions and only radial displacement is expected
on the boundaries in axial direction:

N · n0 = 0, uy = 0, on (0, tend) × Γ0,x, (44a)
N · n0 = 0, ux = 0, on (0, tend) × Γ0,y, (44b)

where ui is the i-th entry of the vector u, i ∈ {x, y}. For the starting values for the Newton method we choose a constant
initial concentration c0, µ0 = 0 and u0 = 0.

4.1.2. Implementation Details
For our implementation, we apply an isoparametric fourth-order Lagrangian finite element method. The basis for

our numerical simulation is the finite element library deal.II [46], implemented in C++, together with the interface
to the Trilinos library [80, Version 12.8.1] and the UMFPACK package [81, Version 5.7.8] for the LU-decomposition.

g
Ω

spherical

symmetry

Γ0 Γext

gΩ0

x

z

y

obstacle

obstacle

Figure 4: Dimension reduction of a three-dimensional unit sphere with surrounded obstacle to the one-dimensional unit interval with spherical
symmetry and the gap g between the particle and the obstacle, based on [23, Figure B.1].
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z
y

x

y

x

y

Figure 5: Dimension reduction of a three-dimensional nanowire with surrounded rectangular obstacle to the two-dimensional quarter sphere and
the quadratic obstacle ĝ with the gaps gx and gy between the particle and the obstacle.

All simulations are executed on a desktop computer with 64 GB RAM, Intel i5-9500 CPU, GCC compiler version 10.3
and the operating system Ubuntu 20.04.5 LTS. The OpenMP Version 4.5 is used for shared memory parallelization
for assembling the Newton matrix, residuals and spatial estimates.

Unless otherwise stated we choose for the space and time adaptive algorithm the tolerances RelTolt = RelTolx =

10 × 10−5 and AbsTolt = AbsTolx = 10 × 10−8. For the marking parameters for local coarsening and refinement,
θc = 0.05 and θr = 0.5 are used and a maximal time step size τmax = 1 × 10−2.

To get a diagonal structure for the mass matrix Bh or Dh, respectively, we use mass lumping with a Gauß–Lobatto
quadrature rule, compare Remark 1 in [44]. We initialize the active set Ak = ∅ and the inactive set Ik = P for the
lithiation process. During lithiation we check in each time step the condition ûp − ĝp > 0 to set this nodal point active,
since λ̂p = 0 is zero due to the boundary condition for p ∈ P. During delithiation we check in each time step λ̂p ≤ 0 to
set this nodal point inactive again, since ûp − ĝp = 0. To increase numerical stability we only change to active points
during lithiation and to inactive points during the following delithiation.

4.2. Numerical Results

This subsection discusses the numerical simulation results for our two presented computational domains: a 1D
unit interval with modified quadrature weight to consider a 3D spherical particle and a 2D quarter nanotube. We
analyze the behavior of concentration and stress development inside the representative active particle and show the
efficiency of the adaptive space and time algorithm for cycling battery active particles with mechanical constraints.

4.2.1. 1D Spherical Symmetry
In this part we consider for one cycle the influence of the obstacle for the 1D spherical symmetric case as shown in

Figure 4. Firstly, we compare the stress development of a configuration with and without obstacle. Secondly, have a
closer look on the stress development regarding the radius of the particle as well as the concentration process. Thirdly,
we investigate the influence of the size of the gap on the stress development. We close the part with the consideration
of the time step size comparing again a setup with and without obstacle.
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Figure 6: Comparison of the absolute value of the maximal hydrostatic stress |σh | over the SOC for a cycle of a 1D spherical symmetric setup
without and with obstacle.
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In Figure 6 we see the absolute value of the maximal hydrostatic stress |σh| = |1/3σr + 2/3σφ| in GPa over the
SOC, computed with the radial and tangential Cauchy stress, denoted with σr and σφ, respectively. The solid lines
represent the lithiation process and the dashed lines the delithiation process in each case: once without and once with
obstacle. For the gap between particle and obstacle, we use g = 0.4. Before the particle gets in contact with the
obstacle, the stress curves for the case without and with obstacle are identical. Shortly after the start of the lithiation
process, a peak of around 0.8 GPa rises. This can be explained due to the characteristic behavior of the OCV curve,
compare Figure 2 in [32]. At around SOC = 0.51, the particle gets in contact with the obstacle and the stress profiles
deviate between the cases. After a short reduction, the stress values increase significantly until it reaches a maximum
of |σh,max| ≈ 5.36 GPa. The short stress reduction results from the fact, that all (also positive) stress values inside the
particle will change to compressive stresses which have negative values. So tensile stresses with a positive value have
to go through the zero point. Compare for this also the detailed analysis in Figure 7(b) to (c). The stress development
in the case without obstacle flattens out until the change of the external lithium flux for SOC = 0.92 enters. Here
again we have a short drop of the stress value due to the rearrangement from tensile to compressive values and vice
versa. Because of the OCV curve, the stress values increase again but have a slight shift which can be explained by the
rearrangement of the stress after the change from positive to negative lithium flux. After the particle detached from
the obstacle again, the cases without and with obstacle coincide again ending at higher stress values.

In the next step we want to have a closer look on the stress distribution over the particle radius in the Lagrangian
domain. In Figure 7 the three different stresses, radial, tangential and hydrostatic stress, are displayed over the particle
radius for nine different SOCs ∈ {0.02, 0.05, 0.50, 0.55, 0.92, 0.55, 0.50, 0.05, 0.02} considering one cycling. At the
initial SOC = 0.02 in Figure 7(a) there are no stresses present. At SOC = 0.05 the maximal values arise in the particle
center at r0 = 0. Here, tensile stresses occur whereas at the particle surface at r0 = 1 the tangential stresses are com-
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Figure 7: Stress development for the radial σr (blue), tangential σφ (red) and hydrostatic part σh (green) over the particle radius for nine different
SOC ∈ {0.02, 0.05, 0.50, 0.55, 0.92, 0.55, 0.50, 0.05, 0.02} for one cycle in (a)–(i), respectively.
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Figure 8: Concentration profile c over the particle radius r0 during one charging (blue) and discharging (green) cycle at different
SOC ∈ {0.02, 0.20, 0.50, 0.92, 0.87, 0.55, 0.30, 0.05}.

pressive. Note the zero value for the radial stress σr. This is exactly the stress-free boundary condition in Equation (9)
or Equation (12e) fulfilled with equality. In addition, tangential stresses are not equal to zero. For larger SOC all
stresses decrease due to the influence of the OCV curve. A good qualitative accordance of our numerical results is
given with the particle stresses in [31] neglecting the SEI results. At about SOC = 0.51 the particle touches the obsta-
cle and the stress-free condition changes to a Dirichlet boundary condition for the displacement. The displacement is
fixed now, we have Equation (12f) with equality. However, now negative stresses may occur to fulfill Equation (12e)
with strict inequality. Exactly this can be seen in Figure 7(d) until the end of the lithiation at SOC = 0.92 in Fig-
ure 7(e). Here large comprehensive stresses appear throughout the particle domain. Note the different range on the
stress axis in Figure 7(e). Changing now the sign of the external flux the discharging begins. In Figure 7(f) we are
close to the point where the particle detached from the obstacle again. Compared to Figure 7(d) the curvature of the
stress profiles is opposite. At SOC = 0.50 the particle has no contact to the obstacle any more and the stress-free
boundary condition comes into effect again. At the end of the delithiation process the stress values are qualitatively
similar to those of the lithiation process but have the opposite curvature resulting from the negative sign of the external
lithium flux Next. In the end in Figure 7(i) the discharging process stops at a significant level of stress values com-
pared to the constant initial concentration. Compared to the stress measurements in [82] investigating coated silicon
electrodes, we have larger stress values. This could be due to the fact that our model is only based on a chemo-elastic
approach. Nevertheless, our model is capable to deal with the change of the boundary condition during cycling.

In Figure 8 the concentration profile at the SOC ∈ {0.02, 0.20, 0.50, 0.92} for the lithiation in blue and
SOC ∈ {0.87, 0.55, 0.30, 0.05} for the delithiation in green is shown over the particle radius r0. We choose slightly
different SOC values for the delithiation to have more distance between the different results. After the constant initial
concentration c0 the concentration profile increases with a slight curvature until its maximal value at SOC = 0.92.
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SOC compared to the case without obstacle in black for the charging process only.
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Note that the obstacle contact has no critical influence on the concentration profile. After switching to the delithiation
process the curvature of the concentration is also opposite like for the stresses in Figure 7. The curvature remains also
at the end of the simulation time for low concentration level.

Figure 9 shows the influence on the gap or the obstacle, respectively, on the stress development up to a maximal
value of 6.0 GPa over the SOC. The above investigated case with g = 0.4 is here displayed with the blue dashed
line. The simulation without an obstacle is shown with the solid black line. The smaller the gap g is, the earlier
the absolute value of the maximal hydrostatic stress rises. Likewise, the gradient of the stress profile increases with
lower values of the gap g. Interestingly, the rise of the stress development is not constant. For smaller gaps is the
slope significantly higher than for larger gaps. Additionally, the gradient values decrease for higher SOC which could
be explained by the lower curvature of the stress profile itself for larger stress values, see Figure 7(e) compared to,
e.g., Figure 7(c), (d), (f) or (g).

In the last part of this section, we want to emphasize the need and the efficiency of the space and time adaptive
algorithm. In Figure 10(a) the time step size τn and in Figure 10(b) the number of DOFs are plotted over the SOC
without and with obstacle (g = 0.4) for the lithiation (solid) and the delithiation (dashed) process, respectively. We
start the simulation with τ0 = 1 × 10−6 and 1539 DOFs in total. After a few time steps the gradients in concentration,
chemical potential and displacement have formed and the time step size becomes larger until the maximal time step
size of τmax = 0.01. In the same time, the number of DOFs decreases since no new gradients occur. However, the
time step size decreases significantly over three orders of magnitudes in the moment when the particle touches the
obstacle, see Figure 10(a) at SOC = 0.51. After the particle is in contact with the obstacle, the time step size increases
until τmax again. When the delithiation process sets in, we see three crucial points: firstly, in Figure 10(a) the time step
size of τn = 1 × 10−6 for the delithiation with obstacle seems to be enough. Secondly, this is in contrast to the case
without obstacle. Here, a drop of order of magnitude over more than six is needed compared to the maximal time step
size τmax. Thirdly, the number of DOFs behave in a similar way. More DOFs are needed in the case without obstacle
compared to the case with obstacle. An explanation might be the again the lower curvature in the obstacle case so the
changes in the gradients are not so large compared to the obstacle-free situation. After all gradients feature a reversed
direction, the time step size τn increases as well as the number of DOFs decreases again. In the obstacle case the
number of DOFs is even slightly lower compared to the simulation without obstacle. However, the time step size τn

drops down to approximately the same level as for the charging process when the particle detaches from the obstacle.
Finally, the time step size τn flattens out at the end of the simulation time. All in all, the efficiency of the spatial and
temporal adaptive algorithm is clearly visible and of significant importance due to the switching point of the obstacle
contact and the switching point of the lithium flux. Without the adaptivity in space and time we would have to use the
lowest time step size and the highest number of DOFs throughout the total simulation. See for more details about the
numerical efficiency for phase-field materials [22, Section 4.3].
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4.2.2. 2D Quarter Nanotube
Here we analyze the numerical results of the 2D quarter sphere as described in Subsection 4.1. For this simulation

we use the parameters θc = 0.005, RelTolt = RelTolx = 4 × 10−5, AbsTolt = AbsTolx = 4 × 10−8. Furthermore, we
choose τ0 = 1 × 10−8, τmax = 1 × 10−3 and tend = 0.2 to get an appropriate cycling and use a constant grid and a
constant time step size for two time steps after the discharge process is started. To increase numerical stability during
the time steps with active points, we accept this time step after one spatial refinement if the Newton update criterion
is fulfilled and also in one following time step, we allow to skip the spatial refinement criterion. The obstacle ĝ is
defined by ĝx = 1.07 and ĝy = 1.07 for all x-and y-components, respectively.

In Figure 11(a)–(f) the von Mises stress in the general plane state

σvM =

√
σ2

11 + σ2
22 − σ11σ22 + 3σ2

12 (45)

is displayed for six different SOC ∈ {0.02, 0.07, 0.10, 0.12, 0.10, 0.02} warped by the displacement vector to the Eu-
lerian domain Ω and surrounded by the obstacle ĝ. The uniform grid for the initial time step without any stresses is
shown in Figure 11(a). At SOC = 0.07 there are twelve active points, six at the lower right corner and six at the upper
left corner. At this state all stresses are below 2.0 GPa but it is visible that the largest stresses occur at the contact
points. This observation strengthens for higher SOC. The highest stress values occur at the first contact points, com-
pare, e.g., Figure 11(c) or (d). This results from the suppression of the volume increase of the host material. Note that
we charge and discharge with a constant lithium flux Next. At this point a Butler–Volmer boundary condition might
be more appropriate but we postpone this to future work. Near new contact points we have a higher grid resolution
due to changes mainly in the concentration profile. This point is discussed in more detail in Figure 12. Figure 11(d) is
at SOC = 0.119995, shortly after the discharging process was started. Here, the largest stress values occur which are
again larger than the measured stresses in [82]. Similar to the 1D simulation a higher grid resolution and small time
steps appear due to the change in the sign of the constant lithium flux Next. Again, the efficiency of the space and time
adaptivity is crucial to appropriately capture the change in the physics. At SOC = 0.10 of the delithiation process
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Figure 11: Von Mises stress σvM of the two-dimensional quarter sphere of a nanotube in the Eulerian domain Ω surrounded by a square shaped
obstacle at different SOC ∈ {0.02, 0.07, 0.10, 0.12, 0.10, 0.02} for charging and discharging with tend = 0.2.
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Figure 12: Concentration c of the two-dimensional quarter sphere of a nanotube in the Eulerian domain Ω surrounded by a square shaped obstacle
at SOC = 0.10, 0.12.

in Figure 11(e) the grid has a coarser structure again. However, the stress distribution differs from SOC = 0.10 of
the lithiation process. The occurring maximal stress values are lower and the distribution of the high values is more
orientated towards the axes-direction instead of the obstacle direction. Moreover, the particle sections which are in
contact with the obstacle are smaller, too. We also take notice of a dark blue region of low stresses that appears
orthogonal to the first bisector of the coordinate system. In Figure 11(f) the final time tend = 0.2 is reached with state
of low stresses.

The concentration c for the two SOC-values 0.10 and 0.12 is shown in Figure 12. The result in Figure 12(a)
emerged by the charging case, whereas Figure 12(b) arose at the same SOC = 0.119995 as in Figure 11(d). Eye-
catching is the concentration profile near the obstacle contact. The region where the particle is in contact with the
obstacle has a significantly lower concentration value compared with the region where the particle in not yet in
touch with the obstacle. This effect is even more pronounced in Figure 12(b) than in Figure 12(a). Compared to
the 1D spherical symmetry setup we have now a different behavior for the concentration around the obstacle. The
region contacting the obstacle has lower concentration values possibly because the free energy density is smaller in
the contact region with a chemical part with lower concentration values and a larger elastic part due to the obstacle
contact. Also the gradient in the concentration profile as well as the one in the chemical potential has to be reverted
leading to the finer grid distribution during the discharging process.

Figure 13 presents the number of DOFs of the active set A over the SOC when the particle is in contact with the
obstacle during cycling. A hysteresis in the number of DOFs is clearly visible. Specifically, the first active points
arise at an earlier SOC whereas the last active points vanish at a larger SOC. The approximately linear increase of
the number of active points is interrupted in the middle part by some sudden peaks and lows due to the refining and
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Figure 13: Number of active set A over the part of the SOC with a nonempty active set of the two-dimensional quarter sphere of a nanotube
surrounded by a square shaped obstacle for charging (solid blue) and discharging (dashed black) with tend = 0.2.
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coarsening mechanism. In the end of charging the increase is again nearly linear except for two refinement peaks.
During delithiation the number of active points has one large peak at SOC = 0.118252 resulting from the change of the
gradient of the concentration and the chemical potential. This change is located a little further inside the particle and
not directly at the boundary and therefore has a little delay in time. After the curvatures are rearranged the number of
active points decrease with a smaller slope compared to the charging until the particle detaches from the obstacle. The
total number of DOFs varies between a range of 3596 and 96164 DOFs and time step sizes τn between 1.58 × 10−8

and τmax = 1 × 10−3. The total computational time of this two dimensional setup is less than 37 minutes using the
strength of the semismooth space and time adaptive algorithm.

5. Summary and Conclusion

We have developed a thermodynamically consistent chemo-mechanical model for battery active particles coupling
chemical effects in the energy density dependent on a measured OCV curve and finite deformations together with
mechanical boundary constraints of the obstacle problem during cycling of lithium-ion batteries. Furthermore, we
have combined the primal-dual active set strategy as semismooth Newton method to the space and time adaptive
solution algorithm with higher-order finite elements for the numerical simulation of our model equations. Using
silicon as an example for a host material we have investigated several simulation setups in one and two dimensions
to discuss the simulation results from a physical and numerical point of view. We have figured out that the stresses
increase significantly if the particle has only limited surrounding space and is in contact with the obstacle. The distance
to the obstacle has a crucial influence on the slope of the stress increase during cycling. Because of the switch in the
sign of the external lithium flux the curvature of the concentration, chemical potential and stress profiles also have to
rearrange oppositely resulting in a hysteresis development of the concentration, chemical potential and stress profiles.
Although in the one-dimensional simulation setup the obstacle has almost no influence on the concentration over the
particle radius, a clear difference can be seen in the two-dimensional case: a new lithium-poor region occurs near the
obstacle area reducing the energy density due to the large ratio of the elastic part. In the two-dimensional case, the
largest stress values occur near the first contact area between the active particle and the obstacle and a clear hysteresis
of the stress values can be seen.

Looking at the time step scale the power of the adaptive method is revealed immediately. Without a variable time
step size and order, the simulation must run with the smallest present time step size, e.g., using a standard backward
Euler scheme to correctly capture all physical effects. This would result in a significant increase of computational costs
compared to our numerical solution procedure. This is especially crucial for the change of the sign for the lithium flux
to simulate a total cycling and also for long term battery operations. Similarly, the spatial adaptivity is necessary to
appropriately capture all physical mechanisms, especially the new phenomena of the lithium-poor phase around the
obstacle contact in the two-dimensional setup. The usage of the semismooth Newton method does not increase the
number of DOFs of the linear system solving for the Newton update and makes it very useful for higher-dimensional
computations [35].

The efficient extension to various two- and three-dimensional geometries with differently shaped particles and
surrounded obstacles can be investigated in future works together with long term battery cycles. The large emerging
stresses can lead to the need of further coupling, e.g., with plastic effects or additional fracture mechanisms. All this
together can help in the understanding of mechanical degradation, capacity fade and battery aging. The investigation
of numerically expensive simulations like for phase separation materials as LFP or LMO with surrounded obstacles
is also another promising application for this highly efficient adaptive solver.
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Appendices

A. Abbreviations and Symbols

Abbreviations

DAE differential algebraic equation NCP nonlinear complementary problem
DOF degree of freedom OCV open circuit voltage
KKT Karush–Kuhn–Tucker SOC state of charge

Symbol Description

Latin symbols Greek symbols

zAh(z,G) partial derivative of Ah regarding z α > 0 coefficient in NCP function
GAh(z,G) partial derivative of Ah regarding G ατn > 0 coefficient for adaptive time
A set of all active nodes of P discretization
Bh discrete auxiliary matrix δ j,k Kronecker delta
C NCP function ΓP potential contact zone
C fourth-order stiffness tensor λ Lagrange multiplier
Dh discrete diagonal matrix λch factor of concentration induced
Eel elastic strain tensor deformation gradient
F = ∇0χ deformation gradient tensor µ chemical potential
F = FchFel multiplicative decomposition of F ν Poisson’s ratio
Fch chemical deformation gradient Ω Eulerian domain
Fel elastic deformation gradient Ω0 Lagrangian domain
g gap function ϕ scalar valued test function
ĝ obstacle ψ total free energy density
I set of all inactive nodes of P ψch chemical part of free energy density
m tensor valued mobility ψel elastic part of free energy density
n, n0 normal vector on Ω, Ω0 σ Cauchy stress tensor
N, NΛ number of nodes of Vh, Λh ξ j vector valued test function of node j
N lithium flux ξ j scalar basis function: nonzero entry
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Next external lithium flux of ξ j of node j
N set of all other nodes of Ω0: S\P Mathematical symbols
P first Piola–Kirchhoff stress tensor ∂Ω0 boundary of Ω0
P set of all potential contact nodes on ΓP ∇0 gradient vector in Lagrangian domain
S set of all nodes on Ω0 � :�̃ reduction of two dimensions of
UOCV OCV curve two tensors � and �̃
u = x − X0 displacement vector Indices
uh discrete displacement vector or �0 considering variable in Lagrangian

algebraic representation domain or initial time
V scalar valued function space �h finite dimensional function of � or
V vector valued function space algebraic representation of � with
V∗ subset of V respect to basis function
V+ subset of V∗ �P discrete vector with all entries on set P
x = χ (X0, t) motion ∂� partial derivative with respect to �
X0 space coordinate in Lagrangian domain

B. Tensor Analysis

We use the following notation for a scalar a ∈ R, first-order vectors b, c ∈ Rd, second-order tensors A, B, C ∈ Rd,d,
the second-order identity Id ∈ Rd,d and a fourth-order tensor C ∈ Rd,d,d,d:

a = b · c, A = BC, A = BC, a = A :C [B] (B.1)

a = B :C = tr
(
BTC

)
= tr

(
CTB

)
= tr

(
BCT

)
= tr

(
CTB

)
= C :B, (B.2)

where tr (A) denotes the trace of a tensor A. Further, we write for first-order vectors a, b and c ∈ Rd:

a = [b] [c] (B.3)

as ai = bici for all i = 1, . . . d and for a vector a ∈ Rd, we write for a set P with |P| < d:

aP = 0 (B.4)

as ap = 0 for all p = 1, . . . , |P|, understood componentwise respectively.
Moreover, we write for the scalar product for two scalar valued functions f , g ∈ L2(Ω0)

( f , g) =

∫
Ω0

f g dX0, (B.5)

for the scalar product for two vector valued functions f , g ∈ L2(Ω0;Rd)

( f , g) =

∫
Ω0

f · g dX0 (B.6)

and for the scalar product for two tensor valued functions F, G ∈ L2(Ω0;Rd,d)

(F,G) =

∫
Ω0

F :G dX0. (B.7)

Boundary integrals for Γ ⊆ ∂Ω0 are denoted with the subscript of the respective boundary, e.g.,

( f , g)Γ =

∫
Γ

f g dS0. (B.8)
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