
ar
X

iv
:2

20
8.

14
68

9v
1

 [
cs

.N
I]

 3
1

A
ug

 2
02

2

Deep Reinforcement Learning for Uplink

Multi-Carrier Non-Orthogonal Multiple Access

Resource Allocation Using Buffer State Information

Eike-Manuel Bansbach, Yigit Kiyak and Laurent Schmalen

Communications Engineering Lab, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany

(email: e.bansbach@kit.edu)

Abstract—For orthogonal multiple access (OMA) systems, the
number of served user equipments (UEs) is limited to the
number of available orthogonal resources. On the other hand,
non-orthogonal multiple access (NOMA) schemes allow multiple
UEs to use the same orthogonal resource. This extra degree
of freedom introduces new challenges for resource allocation.
Buffer state information (BSI), like the size and age of packets
waiting for transmission, can be used to improve scheduling in
OMA systems. In this paper, we investigate the impact of BSI on
the performance of a centralized scheduler in an uplink multi-
carrier NOMA scenario with UEs having various data rate and
latency requirements. To handle the large combinatorial space
of allocating UEs to the resources, we propose a novel scheduler
based on actor-critic reinforcement learning incorporating BSI.
Training and evaluation are carried out using Nokia’s “wireless
suite”. We propose various novel techniques to both stabilize
and speed up training. The proposed scheduler outperforms
benchmark schedulers.

I. INTRODUCTION

While in 5G multiple access (MA) is mainly realized using

orthogonal MA (OMA), non-orthogonal MA (NOMA) is con-

sidered as a key enabling technology to improve the spectral

efficiency of next generation’s mobile communication net-

works [1]. Since orthogonal frequency-division multiple access

(OFDMA) hinders the straightforward sharing of a physical

resource block (PRB) by multiple user equipments (UEs) [2],

the number of orthogonal PRBs limits the number of served

UEs [3]. In contrast, NOMA allows multiple UEs to use the

same PRB [2] by cohabitation of UEs in the power domain

at the transmitter side and successive interference cancellation

(SIC) at the receiver side [4]. Distinctness of the superposed

messages of different UEs can be achieved by either power

control of the UE’s transmit power or by combining UEs

with sufficiently distinct channel gains. Due to OFDMA’s high

robustness against frequency-selective fading [5], multi-carrier

NOMA (MC-NOMA) as combination of both techniques [6]

is considered as an answer to the challenges of the next

generation of communication networks [2].

For an OFDMA system with UEs having alike quality of

service (QoS) and time-invariant data rate requirements, the

This work has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 101001899). Parts of this work have been funded by
the German Federal Ministry of Education and Research (BMBF) within the
project Open6GHub (grant agreement 16KISK010).

resource allocation of PRBs to the UEs can be described as a

convex optimization problem. If the UEs belong to different

QoS classes with varying guaranteed bit rates (GBRs), varying

maximum packet delay budgets (PDBs) and time-variant data

traffic, the optimization problem is non-convex [5]. One way

to solve this optimization problem is by modelling it as a

Markov decision process (MDP) and use deep reinforcement

learning (DRL) [7]. With wireless networks becoming increas-

ingly heterogeneous, DRL-based protocols tailored to specific

applications can outperform general-purpose solutions [8].

We discussed several DRL-based approaches for scheduling

in OFDMA systems in [9]. The approach proposed in [9]

uses buffer state information (BSI), i.e., the size and age of

packets inside the buffer waiting for transmission. It is able to

handle up to 32 UEs belonging to different QoS classes and

outperforms non-DRL-based benchmark algorithms. However,

NOMA capabilities aren’t considered.

Since NOMA increases the number of possible combinations

when allocating resources, a DRL algorithm that can handle

a large action space is necessary. While [10] uses Q-learning

for NOMA resource allocation, all devices belong to the same

QoS class and have time-invariant data traffic. In [11], the deep

deterministic policy gradient (DDPG) algorithm, capable of

dealing with an infinite number of DRL actions, e.g., allocation

options, is introduced. While [12] and [13] use Q-learning

for PRB assignment and DDPG for power allocation, [6]

and [14] directly use DDPG algorithm for PRB assignment.

In [6], a flexible amount of users can be allocated to a

PRB for a downlink MC-NOMA scenario. This DDPG-based

approach outperforms various benchmarks. In [14], an uplink

MC-NOMA system is investigated. For time-varying data and

two QoS classes, the DDPG-based approach outperforms a Q-

learning based reference. In [6] BSI is neglected, in [14] BSI

is reduced to the buffer queue length.

In this work, we extend our work of [9] towards a DDPG

algorithm for uplink MC-NOMA resource allocation with

full BSI. All UEs have alike transmit power and we ensure

discriminability by learning to combine UEs with sufficiently

distinct channel gains. Our main contributions are the inclusion

of BSI into the uplink MC-NOMA resource allocation as

well as, to the best of our knowledge, the first DRL-based

algorithm for uplink MC-NOMA resource allocation without

power control of the UEs’ transmit powers.

http://arxiv.org/abs/2208.14689v1

II. UPLINK MC-NOMA SYSTEM MODEL

The used system model is the NomaULTimeFreq-

ResourceAllocation-v0 environment provided by Nokia’s

“Wireless Suite” problem collection [15]. It simulates an

uplink MC-NOMA scenario and provides benchmarks. The

set of K UEs is given by K = {UE1, . . .UEK} and the set

of N PRBs by N = {PRB1, . . .PRBN}. Each UE has a buffer

with L slots, which contain packets waiting for transmission.

The UEs belong to one of four QoS classes, identified by their

corresponding QoS identifier (QI) qk ∈ {1,2,3,4}. The QoS

classes are given as GBR services, like conversational voice,

conversational video and delay critical GBR, and as non-

GBR services, like web browsing. Upon initialization of an

environment, UEs are randomly spread over a 1 km2 squared

area and assigned a QI. The area is an empty Euclidean space

with a transceiver base station (BS) at its center. The UEs roam

around at rectilinear trajectories with random speeds [16]. The

speeds are independently sampled from a normal distribution

according to [17]. At the egdes of the area, the UEs bounce

off at specular angles [16].

The environment is described by Alg. 1. First, the UEs

are placed randomly across the area (initialization). At the

beginning of every environment step, the scheduler receives

the channel quality indicator (CQI) ck ∈ {0, . . . 15} of every

UE as well as the ages and sizes of the packets inside a UE’s

buffer. The scheduler assigns up to M UEs to each PRB,

where M is the number of NOMA capabilities of a single

PRB. Thus, up to M UEs can do NOMA using a single PRB.

The possible actions for each NOMA resource of a PRB are

either assigning one of the K UEs or leave it empty, resulting

in K+1 possible actions. For every chosen UE, the achievable

rate is calculated by

R =
B

N
log2(1 + SINR) ,

with the overall system bandwidth B. The UE’s signal-to-

interference-plus-noise-ratio SINR is calculated by

SINR =
Prx

σ2
n + ζ + ξ

,

where Prx is the UE’s power received at the BS, σ2
n the

power of additive white Gaussian noise, ζ=̂ − 105 dBm a

constant interference power throughout the coverage area

and ξ the interference caused by other UEs occupying the

current PRB. Prx is calculated using the distance d between

the UE and the BS, applying the free-space loss to the transmit

power Ptx = 13 dBm, which is identical for all UEs. After

each PRB is assigned and the transmitted bits are deleted

from the buffers, it is checked whether the remaining packets

exceed their latency requirements, given by their PDB. The

PDB depends on the UE’s QoS class. If there are packets

that exceed their PDB, the environment returns a negative

reward (penalty) by summing up the bits of packets exceeding

their PDB [16]. Afterwards, the UEs move and new packets

are generated. While SIC demodulates the signals of UEs

in the order of decreasing received power and eliminates

Algorithm 1 Pseudocode of NomaULTimeFreqResourceAllo-

cation-v0 environment [15]

Initialize: K UEs with random QI, N PRBs, M UEs per

PRB, L buffer slots per UE, maximum runtime T

Randomly place UEs, initialize speed, generate packets

for t = 1, . . . Tmax do

Get CQI and BSI of all UEs

for n = 1, . . .N do

Choose up to M UEs to do NOMA on PRBn

Set of chosen UEs: D ⊆ K, |D| ≤M

NOMA Interference: ξ = 0
for UE ∈ D do

Calculate receive power Prx and achievable rate R

Transmit packets, delete from UE’s buffer

ξ ← ξ + Prx

end for

Update BSI

end for

Calculate penalty by checking packet ages [16]

Move UEs, generate new packets

end for

the interfering waveforms one at a time [18, Sec. 16.3-

4], the NomaULTimeFreq-ResourceAllocation-v0 environment

emulates SIC by stepwise adding interference. The reward

function is predefined by the environment [16] and is not

modified within this paper.

While the OFDMA resource allocation problem in [9]

focuses on scheduling by the packet’s urgency, the MC-NOMA

problem extends the OFDMA problem by combining different

UEs on the same PRB, while mitigating the interference

among the UEs.

III. REINFORCEMENT LEARNING

A. Reinforcement Learning Problem

In RL, an agent tries to skillfully map actions to observed

system states in order to maximize a numerical reward [9].

Starting at an observed state, the agent takes an action, receives

a reward and follow-up state, takes another action, et cetera.

This sequential decision making can be formalized as an

MDP [19, Chap. 3]. Let S denote a finite set of states, A
a finite set of actions and St ∈ S, At ∈ A as well as Wt ∈ R

random variables describing the state, action and reward at

time t. Assuming the Markov property is fulfilled, the dynam-

ics of an MDP can be fully described by the state-transition

probabilities p(St+1 = s′|St = s, At = a) : S×S×A → [0,1]
with s′,s ∈ S and a ∈ A, as well as the expected reward

w(St = s, At = a, St+1 = s′) : S × A × S → R

when taking action At = a at state St = s with follow-up

state St+1 = s′ [19, Sec. 3.1].

With Gt :=
∑∞

k=0 γ
kWt+k+1 , γ ∈ [0,1] as the discounted

return, the cumulative reward in the long run is calculated [19,

Sec. 3.3]. A policy π(a|s) defines probabilities of taking action

At = a given state St = s in order to maximize Gt [19,

Sec 3.4]. Following a policy π, the action-value function

qπ(s,a) denotes the expected return for choosing an action

At = a at state St = s [19, Sec. 3.5]:

qπ(s,a) := Eπ {Gt|St = s,At = a} ∀s ∈ S, ∀a ∈ A .

A policy π is called an optimal policy π∗, if its decisions

maximize the action-value function

q∗(s,a) := max
π

qπ(s,a) ∀s ∈ S, ∀a ∈ A ,

where q∗(s,a) is called the optimal action-value function [19,

Sec. 3.6]. Similarly, the value function vπ(s) as the expected

return when in St = s and following π can be defined

by vπ(s) := Eπ {Gt|St = s} ∀s ∈ S [19, Sec. 3.5]. The

RL problem can be solved using value-based or policy-based

methods. While the former try to learn q∗(s,a), the latter

directly optimize the policy π(a|s) [19, Chap. 13].

B. Value-based Methods

The objective of Q-learning is to use temporal differ-

ence learning to learn a function Q(s,a) that approximates

q∗(s,a) [20]. Performing action At = a at state St = s

and observing the reward Wt+1 = w and follow-up state

St+1 = s′ yields the tuple (s,a,w,s′). The approximated Q-

function Q(s,a) can be updated using

Q(s,a)← (1− α)Q(s,a) + α[w + γmax
a′

Q(s′,a′)] ,

with the step-size α ∈ [0,1] [20]. Using a more accurate

estimate incorporating the observed reward w for state-action

pair (s,a), Q(s,a) gets updated. Q-learning converges to

the optimal action-value function q∗(s,a) [20]. The optimal

action At = a∗ given state St = s is chosen greedily by

a∗ = arg max
a∈A

Q(s,a) [20].

C. Policy-based Methods

Instead of learning q∗(s,a), policy-based methods directly

optimize the policy parameters θ ∈ R
d of a parametrized

policy πθ := π(a|s,θ). With the performance measure

J(θ) := vπθ
(s0) as the expected return when starting at state

S0 = s0 and following policy πθ , the policy can be updated

using gradient ascent [19, Chap. 13]. Following the stochastic

policy gradient theorem (PGT), it can be shown that [21]

∇J(θ) ∝ Eπ

[

∑

a

qπ(St,a) ∇θπ(a|St,θ)

]

.

∇J(θ) is proportional to the expectation of the gradient of the

probability choosing action a given state St, weighted with

its expected return qπ(s,a). Hence, the computation of the

performance gradient is reduced to a simple expectation [22].

Using stochastic gradient ascent, θ can be updated by

θ ← θ + ǫ
∑

a

q̂(St,a) ∇θπ(a|St,θ) ,

where ǫ is a step-size and q̂(St,a) is a learned approximation

of qπ(s,a) [19, Sec. 13.2]. Hence, policy-gradient methods

require an estimate of the action-value function qπ(St,a) [22].

Environment

Critic

Actor

z−1

At

St+1St

Wt+1

critic Q(s,a|w)

actor πθ(s)

Fig. 1. Schematic overview of an actor-critic algorithm adapted from [23,
Fig. 1]. The dotted lines indicate that the critic is responsible for updating the
actor and itself.

D. Actor-critic Methods

While policy-based methods are able to handle large or

continuous action spaces, value-based methods have a lower

variance in the estimates of expected returns. Actor-critic

methods combine the advantages of both [23]. A parametrized

actor πθ(s) with parameters θ is defined. Using, e.g., Q-

learning, a critic with parameters Φ estimates the action-value

function Q(s,a|Φ) ≈ qπ(s,a) of the actor’s policy πθ(s). As

depicted in Fig. 1, both the actor and the critic receive a

state St. The actor chooses an action At following πθ(s). Us-

ing the reward Wt+1, the critic updates its estimator Q(s,a|Φ).
Afterwards, Q(s,a|Φ) is used to update the actor according to

the stochastic PGT update step [24].

E. Deterministic Policy Gradient

Now consider a deterministic parametrized policy ρθ(s)
with parameters θ, which maps exactly one action to every

state. Given its performance measure J(θ) := vρθ
(s0) when

starting at state S0 = s0, the deterministic PGT is given

by [22]

∇J(θ) = Eρ

[

∇θρθ(St) ∇aqρ(St,a)|a=ρθ(St)

]

,

where qρ(s,a) is the action-value function following policy ρθ.

Compared to the stochastic PGT, deterministic PGT updates

only for the taken action a = ρθ(St). Moreover, instead of

qρ(s,a), only its gradient ∇qρ(s,a) is taken into account,

which avoids the estimation of qρ(s,a) and is computationally

attractive. The stochastic policy gradient converges to the

deterministic policy gradient for σ2 → 0, where σ2 is the

output variance of the stochastic policy [22].

F. Deep Deterministic Policy Gradient Algorithm

In [11], the DDPG algorithm, an actor-critic setup using

deterministic PGT, is introduced. Since feedforward neural

networks define a parametrized mapping y = f(x,θ), RL

algorithms can be implemented using deep neural networks

(DNNs) [19, Sec. 9.7]. However, there are two challenges

when using DNNs [11]: First, most DNN optimization algo-

rithms assume that the samples used for optimization are i.i.d..

Storing observed transitions (st,at,st+1,rt+1) in a finite replay

memory and randomly sampling from it ensures learning using

(approximately) independent transitions. Second, using only

Actor Actor · · · Actor

X ← x1 X ← x2 X ← xM X

x1 x2 xM

St

X = 0

Fig. 2. Sketch of the proposed decision process of scheduling the
NOMA resources of one PRB. The decision matrix is initialized
as X = 0 ∈ R

M×(K+1) and is updated row-wise using the action prob-
abilities xm ∈ R

(K+1) of NOMA-resource m.

a single DNN for, e.g., Q-learning, updating the DNN while

using it for calculating the target Q(s′,a′) destabilizes learning.

Using a copy of the networks, the actual network is updated

and the copy, called target, is used to estimate Q(s′,a′). The

target network gets periodically synchronized with the updated

network. The full algorithm is given by [11, Alg. 1].

IV. ACTOR-CRITIC METHODS FOR NOMA-OFDMA

UPLINK RESOURCE ALLOCATION

A. Sequential NOMA Allocation

While the general DRL framework introduced in Sec. III re-

ceives St, takes At and immediately receives Wt+1 and St+1,

the uplink MC-NOMA scenario in Alg. 1 involves two major

challenges. First, the BSI and, therefore, the state St is

updated after all NOMA-resources of a PRB are allocated.

Thus, multiple sequential allocation actions, allocating the

NOMA-resources of a PRB, need to be taken without new

state information. If, e.g., UE k is allowed to use the first

NOMA-resource and is able to transmit all the packets in-

side its buffer, allocating the second NOMA resource to

UE k does not make sense. However, the state contain-

ing information about the occupancy of all UEs’ buffers

is not updated and still assumes that UE k has packets

to transmit. To combat this issue, we introduce a sequen-

tial decision making structure, shown in Fig. 2, which is

inspired by [25]. The rows xm ∈ R
(K+1), m = {1, . . .M},

of the matrix X ∈ R
M×(K+1) contain the probabilities of

the K + 1 actions to be chosen for NOMA resource m.

So, X = (x1 . . .xM)T with xm = (xm,1 . . . xm,K+1)
and xm,k ∈ [0,1]. We initialize X = 0 and iteratively decide

for allocation, replacing the mth row of X with the actor

output xm. The updated X is used to enable prediction of

the changes applied to the state, e.g., which UE’s buffers may

have been emptied using already allocated NOMA-capabilites.

After the actor decided for xM , the actions a = (a1 . . . aM)
are sampled from the probability distributions provided by xm.

B. Early Termination

The second issue we face in the uplink MC-NOMA scenario

are sparse rewards. While the state is updated after each PRB

is processed, the rewards are calculated after all PRBs are

processed. Thus, M · N actions have been carried out. Not

getting rewards immediately on single actions, but on a group

of actions, prolongs training. We combat sparse rewards by

introducing early termination for training. Especially at the

beginning of training, the actor decides for suboptimal actions,

leading to full UE buffers and, therefore, to situations without

a chance for choosing beneficial actions. We assume that a

sufficiently trained agent is able to avoid such ill-conditioned

situations. Therefore, we terminate a training episode early

if the training reward Wtrain < Wcap, where Wcap ∈ R is

an empirically determined value. Since the reward penalizes

packets that exceeded their PDB (punishment), the reward is

solely negative Wt+1 ≤ 0 (penalty-only) and it is Wtrain < 0.

With early termination, we save computation time in ill-

conditioned situations and are able to combat the prolonged

training due to sparse rewards.

C. Traffic-based Masking

To avoid the actor choosing UEs with empty buffers,

we introduce traffic-based masking. By defining a Boolean

mask h ∈ {0,1}(K+1), indicating whether a UE has packets

in its buffer or not, the probability vector xm is updated by

an elementwise multiplication xm ← xm ⊙ h. We apply

normalization to ensure that after masking xm is a probability

distribution.

D. Architecture of Actor and Critic Networks

In [9], we introduced encoder neural networks (ENNs)

for effective state space compression. The state sk of every

UE k, containing the size and ages of packets residing in

a UE’s buffer as well as the UE’s CQI ck and QI qk, is

compressed to a vector s′k ∈ R
3 using ENNs. To remedy the

issue of learning a bias towards a specific UE, we randomly

shuffle the order of UEs by s ← Prands, where Prand is a

random permutation matrix. Figure 3 shows the setup of the

actor network. The compressed and randomly permuted UE

information sk, k ∈ K, X as well as nPRB ∈ N , denoting the

current PRB to allocate, are fed to a DNN with a softmax-

function at its output layer. Using P−1
rand, the order of UEs is

restored and the masking is applied. To ensure exploration

during training, parameter space noise [26] is applied to the

weights and biases of the output layer. To avoid overfitting of

the DNN, we use dropout layers.

We furthermore use age capping for handling packets that

exceeded their PDB [9]. The critic’s architecture is sim-

ilar in terms of input information processing, however,

the DNN’s output layer only has a single neuron, since

solely the expected return for executing actions X given

state St = {s1, . . .sK ,nPRB} needs to be estimated.

V. RESULTS

A. Training, Evaluation and Test Setup

We employ the environment described in Sec. II. For a

small environment (SE) with K = 20 UEs, N = 10 PRBs

and Wcap = −80 000, we show the success of masking.

For a large environment (LE) with K = 32 UEs, N = 25
PRBs and Wcap = −150 000, we show the necessity of

dropout layers. All setups have L = 8 buffer slots per UE

s1

s2

s3

sK

...

ENNθ(q=q1)

ENNθ(q=q2)

ENNθ(q=q3)

ENNθ(q=qK)
x
←

P
ra

n
d
x

D
Q

N

X
s′1

s′2

s′3

s′K

s′?

s′?

s′?

s′?

x?

x?

x?

x?

x1

x2

x3

xK

x1

x2

x3

xK

..
.

xK+1
s
′
←

P
ra

n
d
s
′

D
N

N
w

it
h

so
ft

m
ax

x
←

P
−
1

ra
n
d
x

EmbeddingnPRB

M
as

k
in

g

Fig. 3. Structure of the actor network, modified from [9]. ENNs, UE shuffling
and PRB embedding is carried out as described in [9]. Learnable segments are
highlighted by gray shading. Probabilities of taking actions xk are returned,
where xk+1 denotes the action of leaving the resource empty. The probability
matrix of past action probabilities X = [x1 . . .xM] is given as input.

TABLE I
PARAMETERS OF THE DNNS FOR THE SE AND LE

input hidden output hidden activation
width width width layers functions

SE 105 603 21 3 ReLU
LE 165 963 33 3 ReLU

and M = 2. The parameters of the embedding and ENNs

are given by [9, Tab. I]. Depending on SE and LE, the DNN

architecture differs according to Tab. I. The different agents

we train and test are summarized in Tab. II. We benchmark

against the NOMA uplink proportional fair channel aware

(NPFCA) agent, provided by [15]. Given the infinite set of

environment realizations S, we choose |Seval| = 4 realizations

for the evaluation and |Stest| = 100 for the test set, with

Seval ∩ Stest = ∅. Furthermore, Strain ⊂ S \ (Seval ∪ Stest)
denotes the training set, where the training realizations are

sampled from. During training, an environment is stopped

after tstop, either after Tmax = 600 time steps are executed

or by early termination, i.e., tstop ≤ 600 time steps. After five

training episodes, the agent is evaluated. To save computing

time for LE, agents are only evaluated if they achieve a training

reward better than the mean reward of the benchmark agent,

which is Weval = −1552. The evaluation and tests are limited

to 65 536 allocation steps, resulting in Tmax,test = 6553 time

steps for SE and Tmax,test = 2621 time steps for LE.

B. Training and Evaluation Results

In Fig. 4, the training performance of the different agents

is shown. If an agent is evaluated, its mean evaluation reward

over Seval is plotted as a function of the training episode.

TABLE II
OVERVIEW OF THE AGENTS

Environment K N Masking Dropout

S-def SE 20 10 — —
S-mask SE 20 10

√
—

L-mask LE 32 25
√

—
L-drop LE 32 25

√ √

0 200 400 600 800 1000 1200 1400

Training episode

−1400

−1200

−1000

−800

−600

−400

M
ea

n
ev

al
u
at

io
n

re
w

ar
d

S-mask

S-def

L-mask

L-drop

Fig. 4. Mean evaluation reward of the agents introduced in Tab. II.

0 50 100 150 200 250 300 350 400 450

Training episode

0

100

200

300

400

500

600

t
st

o
p

Samples

Fig. 5. Maximum environment runtime tstop of the training environments of
the L-drop agent when early termination is applied.

The S-def agent has only a small window where its training

performance is good enough to get evaluated. With increasing

training episodes, the S-mask agent is steadily improving.

We conclude that masking stabilizes and improves training

significantly. However, for the LE, the L-mask agent returns

volatile evaluation rewards and its performance collapses after

approximately 650 training episodes. We assume that this is

attributed to overfitting of the DNN. Adding dropout layers

with an outage probability of p = 0.2 stabilizes training,

shown by the L-drop agent. Due to sufficient evaluation

performance and high computation effort, training of the L-

drop agent was stopped after 440 training episodes. Figure 5

shows the impact of early termination on the training of the

L-drop agent. With increasing training, the runtime tstop of the

environment realizations increases as well. Especially in the

beginning of training, early termination significantly speeds

up training. The L-drop agent gets a performance boost at

approximately 200 episodes, which, compared to Fig. 4, is

the start of evaluation of the L-drop agent.

−2000 −1750 −1500 −1250 −1000 −750 −500 −250
RewardS-N

PFCA
S-m

as
k

L-N
PFCA

L-m
as

k
L-d

ro
p

Fig. 6. Test rewards of the agents introduced in Tab. II and the benchmark
agents. The lower two agents are specialized to the SE, the upper three agents
to the LE.

C. Test Results

The improvement of our proposed agents compared to the

benchmark agent is shown in Fig. 6. The agents are tested

using the same 100 environment realizations and we plot the

obtained rewards. Green triangles indicate the mean evaluation

reward, vertical orange lines inside the box, limited by the

lower and upper quartile, depict the median reward over all

environments. Open circles are outliers. Our agents outperform

the benchmark agent by getting merely 37% and 27% of the

benchmarks penalty, for SE and LE respectively.

D. Discussion

In [9], we have shown that incorporating ENNs compressing

BSI as well as age capping enable the design of an agent that

outperforms benchmark agents without BSI. For a detailed

discussion of the benefits of ENNs and age capping, we refer

the interested reader to [9]. Due to the large action space of

the MC-NOMA system, the Q-learning approach from [9] is

not feasible anymore. By changing the DRL technique of [9]

to an actor-critic approach and adding traffic-based masking,

we can extend our previous work of [9] and design an agent

for resource allocation in an uplink MC-NOMA system using

BSI. The proposed scheme assumes to train and test on a

fixed number of UEs. The generalization of the agent to a

variable number of UEs, e.g., training for K UEs and testing

for Ktest < K , is ongoing.

VI. CONCLUSION

In this work, we have proposed a centralized DRL agent for

an uplink MC-NOMA resource allocation problem using BSI.

We proposed to use a DDPG-based approach with a stochastic

policy and combine it with the methods introduced in [9]. To

enable the decision for multiple actions per PRB, we proposed

feedback of the probability matrix of past action to the actor.

To speed up training, we introduced early termination, which

interrupts training in ill-conditioned situations. Furthermore,

we have shown that a traffic-based masking of actions as

well as dropout layers stabilize training of the agent. For

K = 20 and K = 32 UEs, we significantly outperform

the benchmark agent. Thus, we enabled the use of BSI for

an uplink MC-NOMA resource allocation problem, which

improved the performance of the scheduler.

REFERENCES

[1] Y. Yuan et al., “Noma for next-generation massive IoT: Performance
potential and technology directions,” IEEE Commun. Mag., vol. 59,
no. 7, pp. 115–121, 2021.

[2] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards
6G: A comprehensive survey,” IEEE Open J. Commun. Soc., vol. 2, pp.
334–366, 2021.

[3] H. Tabassum, M. S. Ali, E. Hossain, M. J. Hossain, and D. I. Kim,
“Uplink vs. downlink NOMA in cellular networks: Challenges and
research directions,” in Proc. VTC Spring, Sydney, Australia, 2017.

[4] M.-R. Hojeij, J. Farah, C. A. Nour, and C. Douillard, “Resource
allocation in downlink non-orthogonal multiple access (NOMA) for
future radio access,” in Proc. VTC Spring, 2015.

[5] F. Shams, G. Bacci, and M. Luise, “A survey on resource allocation
techniques in OFDM(A) networks,” Comput. Netw., vol. 65, pp. 129–
150, June 2014.

[6] S. Wang, T. Lv, W. Ni, N. C. Beaulieu, and Y. J. Guo, “Joint resource
management for MC-NOMA: A deep reinforcement learning approach,”
IEEE Trans. Wirel. Commun., vol. 20, no. 9, pp. 5672–5688, 2021.

[7] J. Wang, C. Xu, Y. Huangfu, R. Li, Y. Ge, and J. Wang, “Deep
reinforcement learning for scheduling in cellular networks,” in Proc.

IEEE WCSP, Xi’an, China, Oct. 2019.
[8] M. P. Mota, A. Valcarce, J.-M. Gorce, and J. Hoydis, “The emergence

of wireless MAC protocols with multi-agent reinforcement learning,” in
IEEE GLOBECOM Workshops, 2021.

[9] E.-M. Bansbach, V. Eliachevitch, and L. Schmalen, “Deep reinforcement
learning for wireless resource allocation using buffer state information,”
in Proc. IEEE GLOBECOM, Madrid, Spain, Dec. 2021.

[10] M. V. da Silva, R. D. Souza, H. Alves, and T. Abrão, “A NOMA-based
Q-learning random access method for machine type communications,”
IEEE Wireless Commun. Lett., vol. 9, no. 10, pp. 1720–1724, 2020.

[11] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. ICLR, San Juan, Puerto Rico, May 2016.

[12] M. He, Y. Li, X. Wang, and Z. Liu, “NOMA resource allocation method
in IoV based on prioritized DQN-DDPG network,” EURASIP J. Adv.

Signal Process, vol. 120, 2021.
[13] S. Wang, X. Wang, Y. Zhang, and Y. Xu, “Resource allocation in multi-

cell NOMA systems with multi-agent deep reinforcement learning,” in
Proc. WCNC, 2021.

[14] Y.-H. Xu, C.-C. Yang, M. Hua, and W. Zhou, “Deep deterministic policy
gradient (DDPG)-based resource allocation scheme for NOMA vehicular
communications,” IEEE Access, vol. 8, pp. 18 797–18 807, 2020.

[15] “Wireless-suite,” Nokia, 2021, (accessed on: 11.04.2022). [Online].
Available: https://github.com/nokia/wireless-suite

[16] A. Valcarce, “The TimeFreqResourceAllocation-v0 environment,”
2020, (accessed on: 11.04.2022). [Online]. Available:
https://github.com/nokia/wireless-suite/blob/master/wireless/doc/TimeFreqResourceAllocation-v0.pdf

[17] S. Chandra and A. K. Bharti, “Speed distribution curves for pedestri-
ans during walking and crossing,” Procedia - Social and Behavioral

Sciences, vol. 104, pp. 660–667, 2013.
[18] J. Proakis and M. Salehi, Digital Communications 5th Edition. McGraw

Hill, 2007.
[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd ed. The MIT Press, 2018.
[20] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach Learn, vol. 8,

no. 3, pp. 279–292, 1992.
[21] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,” in
Adv. Neural Inf. Process. Syst., vol. 12. MIT Press, 1999.

[22] D. Silver, G. Lever, N. Heess, T. Degris, W. Daan, and M. Reidmiller,
“Deterministic policy gradient algorithms,” in Proc. ICML, Bejing,
China, June 2014.

[23] I. Grondman et al., “A survey of actor-critic reinforcement learning:
Standard and natural policy gradients,” IEEE Trans. Syst. Man Cybern.,

Part C, vol. 42, no. 6, pp. 1291–1307, 2012.
[24] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Adv. Neural Inf.

Process. Syst., vol. 12. MIT Press, 1999.
[25] Y. Zhang, Q. H. Vuong, K. Song, X.-Y. Gong, and K. W. Ross, “Efficient

entropy for policy gradient with multi-dimensional action space,” in
Proc. ICLR, Vancouver, Canada, May 2018.

[26] M. Plappert et al., “Parameter space noise for exploration,” in Proc.

ICLR, Vancouver, Canada, May 2018.

https://github.com/nokia/wireless-suite
https://github.com/nokia/wireless-suite/blob/master/wireless/doc/TimeFreqResourceAllocation-v0.pdf

	I Introduction
	II Uplink MC-NOMA System Model
	III Reinforcement Learning
	III-A Reinforcement Learning Problem
	III-B Value-based Methods
	III-C Policy-based Methods
	III-D Actor-critic Methods
	III-E Deterministic Policy Gradient
	III-F Deep Deterministic Policy Gradient Algorithm

	IV Actor-Critic Methods for NOMA-OFDMA Uplink Resource Allocation
	IV-A Sequential NOMA Allocation
	IV-B Early Termination
	IV-C Traffic-based Masking
	IV-D Architecture of Actor and Critic Networks

	V Results
	V-A Training, Evaluation and Test Setup
	V-B Training and Evaluation Results
	V-C Test Results
	V-D Discussion

	VI conclusion
	References

