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Abstract— In this paper, we propose the concept
of accelerated convergence that has originally been
developed to speed up the convergence of numerical
methods for extremum seeking (ES) loops. We demon-
strate how the dynamics of ES loops may be analyzed
to extract structural information about the generated
output of the loop. This information is then used to
distil the limit of the loop without having to wait for
the system to converge to it.

I. Introduction
Extremum seeking is a model-free and robust scheme,

originally proposed in 1922 by Leblanc (see [1]), to track
an extremal operating point of an apparatus by adaptively
shifting the operating point in the direction of greatest
increase in some output function. The approach has
been widely used in the control of systems with a priori
unknown dynamics. A classical source for an in-depth
reference is e.g. [2], where a proof of convergence is given.
Tracking the extremal operating point is achieved by
adding a sinusoidal perturbation to the input signal, com-
paring its phase to the one in the generated output and
adjusting the current input based on the phase difference.
This is a robust method of tracking an extremal state, but
its convergence is rather slow. There are many approaches
to analyzing and increasing the speed of convergence as
well as eliminating oscillations around the limit available
in the literature. Robustness of several ES methods in
application to robotics are discussed in [3]. The influence
of the loop parameters on the speed as well as the domain
of convergence is studied in [4]. A method to eliminate
oscillations around the limit and achieve asymptotic
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convergence by decreasing the dithering amplitude over
time is presented in [5]. Faster convergence has also been
established in [6] by the usage of fractional operators. Ref.
[7] achieves enhanced convergence for small amplitude
and low frequency perturbations by taking the entire
plant parameter signals (instead of only the perturbation-
related ones) as well as curvature information of the
objective function into account. Quite recently Poveda
and Kristić have introduced the concept of ‘prescribed
fixed time’-ES (see [8], [9]). They accomplish convergence
in a given finite time independent of the initial conditions
by employing continuous gradient and Newton flows
without a Lipschitz property.

In this article, we propose to extract the limit directly
from the system dynamics. To achieve this, we conduct an
in-depth study of the dynamics governing ES to deduce
an asymptotic model for the generated output y(t). We
then solve the asymptotic model for its limit in terms of
the output y(t). This methodology is a form of Richardson
extrapolation; a technique originally developed to speed
up the convergence of sequences (see [10]). Similar ideas
have found applications in a variety of fields such as
perturbative quantum field theory (see e.g. [11], [12]) or
machine learning (see e.g. [13]). The method is, to the
best of our knowledge and exhaustive search through the
literature, new and has not been applied in the context
of control theory.

This paper is structured as follows: First, we discuss
preliminaries by giving a short introduction to ES and
then present the basic idea of accelerated convergence
by discussing an ES loop in its most simple form. Next,
we demonstrate how to analyze an ES loop theoretically
to apply acceleration concepts. We then proceed with
some numerical examples to illustrate the performance of
the method and close with an outlook on possible future
developments. After the bibliography we present detailed
proofs.

II. Preliminaries
A. Problem formulation

We consider a function f : R→ R, f(x) = y with a
local minimum at x=L that we wish to find (for example
to optimize a given objective). Such problems appear
naturally in many situations such as tracking the optimal
operating point of photovoltaic systems (see e.g. [14]) or
controlling the optimal substrate flow in bioreactors (see
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e.g. [15]). Similar tasks arise in the backpropagation of
neural networks (see e.g. [16], Chapter 4).

ES provides an algorithm that continuously improves
an initial guess x0 such that the resulting signal x(t) con-
verges exponentially to a neighbourhood of L. Intuitively
this is achieved by the law

dx=−f ′(x(t))dt. (1)
To access the value f ′(x), a small oscillation εsin(ωt) is
added to x leading to

f(x+ εsin(ωt)) = f(x) + εf ′(x)sin(ωt) +O(ε2).
Running the output of f through a high-pass filter
and multiplying with sin(ωt) produces the signal ϕ(t) =
εsin2(ωt)f ′(x). Replacing the actual gradient f ′(x(t)) in
(1) with ϕ(t) gives the law dx=−ϕ(t)dt. A block diagram
for this process is shown in Fig. 1. Closer analysis (see e.g.
Chapter 1 in [2], Equation (1.9)) of this process suggests
the approximate formula

x(t)≈ L+Ce−εbT + εp(t), (2)
where p(t) is an oscillating function and C and b are
constants. The two error terms ‘compete’ with each
other in the following sense: For large ε the exponential
converges rapidly while the oscillating terms becomes
large. For small ε the oscillation get suppressed while the
exponential decay becomes slow.

This motivates studying the dynamics of the ES scheme
described above in-depth to ‘resolve’ the ‘competing
objectives’ in (2). The method we propose in this ar-
ticle is essentially designed to eliminate the exponential
decay term in (2) which allows for fast convergence for
sufficiently small values of ε.
B. Accelerated convergence

We present an easy example of accelerated convergence.
A detailed review can be found in [17]. Consider the
sequence Sn :=

∑n
j=1

1
j2 . It is well known that Sn→ π2

6 .
The convergence is very slow however as

π2

6 −Sn ∼
∫ ∞
n

dt

t2
= 1
n
. (3)

To accelerate the convergence, we first construct an
asymptotic model. Motivated by (3) it is reasonable to
assume (and not too hard to prove) an expansion of the
form

Sn = L+
∞∑
j=1

aj
nj
. (4)

Here we abbreviated the limit of Sn as L := π2

6 . A quick
calculation shows that

S̃n := 1
2
(
(n+ 2)2Sn+2−2(n+ 1)2Sn+1 +n2Sn

)
(5)

satisfies S̃n = L+O
( 1
n3
)
. Hence, the convergence has

been accelerated. Indeed L= 1.64493, S̃10 = 1.64481 while
S10 = 1.54976.

III. Theory
We show how the concept of accelerated convergence

may be applied to ES by studying two distinct loops
starting with the easiest one and then demonstrating
how a more complex situation may be analyzed. For the
latter, we need to perform perturbation analysis to extract
structural information about the dynamics. We remark
that regular dependence of solutions on a perturbation
parameter is a standard result and e.g. discussed in [18],
Chapter 2, Section 9. The analysis essentially aims to
derive a precise version of (2) similar to (4). Considering
shifts in time t→ t+T we then derive extraction schemes
for the limit of the system, similar to (5). Finally, we
point out that a similar analysis has been performed in
[19] for the Mathieu equation (see Chapter 11, Section
4).
A. Basic model

Let a,b,L ∈ R and f(x) := a+ b(x−L)2. Initially, we
analyze the ES loop depicted in Fig. 1.

f(x)

s
s+h×−1

s+

εsin(ωt)

ν(t)+

sin(ωt)

x(t)

Fig. 1. Extremum seeking loop

ν(t) is a noise source, which will be included in the
simulations in Section IV. Denoting the high-pass filter
by F , Figure 1 corresponds to the integral equation

x(t) = x(0)−
∫ t

0
F [f (x(τ) + εsin(ωτ))

+ν(t)] sin(ωτ)dτ.
(6)

Proposition III.1. Let T := 2π
ω , θ := e−εbT and

x : [0,∞)→ R be a solution to the loop in Fig. 1
with ν ≡ 0. For any t ≥ 0, put xn := x(t+nT ).
Then

L= (x0−x1)x2 +θx0(x2−x1)
x0− (1 +θ)x1 +θx2

+O(ε2).

Additionally, putting

g := (x0−x1)(x2−x3)
(x1−x2)(x0−x3)

the following extraction law for θ holds:

θ = 1−g
2g −

1
2g

√
−4g2 + (g−1)2 +O(ε2)



Proof. Let y(t) := x(t)−L. Then ẏ = ẋ. Differentiating
(6) and using n≡ 0 gives

ẏ+ εb(1− cos(2ωt))y+ by2 sin(ωt)
=− bε2 sin(ωt)3. (7)

This is a Ricatti equation without a closed-form solution.
We consider ε as a perturbative parameter and only study
(7) to first order. This justifies dropping the ε2-term in
(7) which gives a Bernoulli Equation. Putting

x0(t) := exp
[
−εbt+ εb

2ω sin(2ωt)
]

we derive the following formula for its solution x in
Appendix B:

x(t) = L+ x0(t)
C+ b

∫ t
0 sin(ωs)x0(s)ds

. (8)

The constant C is related to the initial value x(0).
Recalling θ= e−εbT , it is clear that x0(t+T ) = θx0(t). Let
ϕ(t) := C+ b

∫ t
0 sin(ωs)x0(s)ds so that ϕ̇(t+T ) = θϕ̇(t).

Lemma A.1 in Appendix A implies ϕ(t) = C̃+X(t) for a
constant C̃ and a function X satisfying X(t+T ) = θX(t).
This gives the following equations:

x(t)−L= x0(t)
C̃+X(t)

x(t+T )−L= θ
x0(t)

C̃+θX(t)

x(t+ 2T )−L= θ2 x0(t)
C̃+θ2X(t)

(9)

If we regard x(t+nT ) as known parameters, (9) can be
thought of as a nonlinear system of ordinary equations
for L,C̃,X(t) and x0(t). A solution for L then gives a
formula of the limit in terms of the values xn := x(t+nT ).
Direct computation shows

L= (x0−x1)x2 +θx0(x2−x1)
x0− (1 +θ)x1 +θx2

. (10)

Equation (10) uses the data points x(t), x(t+T ) and
x(t+2T ) and fits them onto the solution (8). It eliminates
the unknown values x0(t), C̃ and X(t) and hence requires
three data points. Note however that θ = e−εbT features
in the extraction law. While T and ε are part of the
design of the loop and therefore known, the parameter b
is part of the function f and in general not known. By
incorporating a fourth data point into the analysis we
can eliminate θ from (10). Indeed we note that (10) also
holds for t→ t+T and hence

L=(x0−x1)x2 +θx0(x2−x1)
x0− (1 +θ)x1 +θx2

=(x1−x2)x3 +θx1(x3−x2)
x1− (1 +θ)x2 +θx3

. (11)

This is a quadratic equation for θ with two solutions.
However, putting

g := (x0−x1)(x2−x3)
(x1−x2)(x0−x3) (12)

we prove in Appendix C that

θ = 1−g
2g −

1
2g

√
−4g2 + (g−1)2 (13)

by exploiting θ = e−εbT ∈ (0,1).

We have derived an extraction scheme that uses
four data points. It first applies (13) to find θ and then
uses (10) to extract the limit L.

B. Including a drift
This Subsection demonstrates how to extend the anal-

ysis from Subsection III-A to other loops by considering
an example. We modify the ES loop in Fig. 1 by taking
f(x,t) = (x−L− q(t))2 to be explicitly time dependent.
We refer to the resulting loop as modified Fig. 1. Here
q(t) = q0e

−δt for a small positive drift parameter δ > 0.

Proposition III.2. Let x be any solution of
modified Fig. 1 with ν ≡ 0 and put z(t) := (x(t)−
L− q(t))−1. Then

z(t) =
∞∑
j=0

[
δje−jδt

j+1∑
k=0

ekεtpjk(t)
]

+O(ε2).

where all function pjk are T -periodic.

Proof. We put y := x− L− q. Differentiating the
analogue of (6) with time-dependent f and exploiting
and q̇(t) =−δq(t) gives

ẏ(t) + 2εsin(ωt)2 +y2 sinωt− δq =−ε2 sin(ωt)3 (14)

After dropping ε2 as in the proof of Proposition III.1 and
letting z = 1

y , we get

ż−2εsin2(ωt)z+ δq(t)z2 = sin(ωt). (15)

Equation (15) is another Riccati equation without closed-
form solution. Still we may extract structural properties
by perturbation analysis. Proposing z(t) =

∑
n≥0 zn(t)δn

we get the following infinite system of linear ordinary
differential equations: For n= 0:{

ż0−2εsin2(ωt)z0 = sin(ωt)
z0(0) = z(0)

(16)

For n≥ 1:
żn−2εsin2(ωt)zn =−q(t)

n−1∑
j=0

zjzn−1−j

zn(0) = 0

(17)

Solving for z0 is trivial. Working iteratively, the n-th
equation is linear in zn with nonlinearities only in the
already known functions zk with k ≤ n−1. An inductive
argument shows

zn(t) = eεtp
(n)
0 (t) +

n∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(n)
jk (t) (18)



with T -periodic functions p
(n)
∗ for n ≥ 1 and

z0(t) = p
(0)
0 (t) +eεtp

(0)
1 (t) with T -periodic functions p(0)

∗ .
Resumming gives the Lemma.

To derive an exact extraction scheme from the
expansion given in Proposition III.2, we would require
infinitely many data points to eliminate all terms in
the series. For small δ we may, however, truncate the
perturbation series and construct a finite extraction
scheme, which we demonstrate in the following Corollary.

Corollary III.3. Let A := eεT and x be any
solution to the loop in modified Fig. 1 with ν ≡ 0.
Put h(t) := x(t)− q(t) and hn := h(t+nT ). Then

L= h1h0− (1 +A)h2h0 +Ah2h1
−h2 + (1 +A)h1−Ah0

(19)

up to an error of order O(δ) +O(ε2).

Proof. As it is not entirely trivial, we also demonstrate
how to derive a O(δ2)-extraction law. Let B := eδT and
za := z(t+aT ). It is readily checked that

0 =z5− (1 +A+B(1 +A+A2)z4

+
(
A+B(1 +A)A(1 +A+A2)

+B2A(1 +A+A2)
)
z3

−
(
(AB(1 +A+A2) + (A+ 1)B2(A+A2 +A3)

+A3B3)z2

+ (AB2(A+A2 +A3) + (A+ 1)A3B3)z1

−A4B3z0.

Summarizing this as
∑

0≤i≤5µizi = 0 and recalling the
definition of z we get the implicit extraction law

5∑
i=0

µi

5∏
j=0
j 6=i

(xj−Bjq0−L) = 0.

For zero order extraction scheme one argues analogously.
Solving the resulting implicit law gives (19).

Note that extraction schemes for q0 and δ are required,
which we do not include here. To derive them, one
employs the strategy that demonstrated following (11).

Considering the statement of Proposition III.2, we must
have convergence of the series for its truncation to be a
valid approximation. For the series to be convergent on
[0,∞), demanding δ > ε is plausible as the perturbation
series grows exponentially otherwise. A sufficient but not
necessary criterion to achieve convergence on [0, 1

2δ ] is

Γ := 24e
2ε
ω |q0|

(
|z(0)|+ 1

δ

)
!
< 1. (20)

To prove (20) one applies the variation of parameters
formula to (17) and derives a recursive upper bound un

Fig. 2. Classical ES vs accelerated ES

for |zn|. Solving the recursion and demanding
∑
n≥0unδ

n

to be convergent then gives (20).

IV. Simulation
We implemented the equations studied above in Math-

ematica: All differential equations have been numerically
solved using the NDSolve function. The following graphics
are generated by evaluating the extraction schemes at
t≥ 0 and plotting the result.

A. Simple model
Fig. 2 shows the classical ES (as depicted in Fig. 1

without noise) versus the accelerated ES for parameters
T := 3, b := 2, ε := .01 and L= 0. The zoomed-in section
of the figure shows that the accelerated curve oscillates
around L= 0 with amplitude ∝ ε2 as is to be expected
from the theory. The initial conditions of the loop are
absent in the accelerated scheme for t≥ 0. This is due to
the extraction scheme using the data points x(t+ kT )
with k ≤ 3 (see (10) and (13)).

Fig. 3 demonstrates the extraction of θ and shows
excellent agreement with the exact value e−εbT ≈ .9418.

0 5 10 15 20 25 30
t0.9410

0.9412

0.9414

0.9416

0.9418

0.9420

0.9422

0.9424

θ

Exact θ

Extracted θ

Fig. 3. Extraction of θ

B. Including noise
We now include the noise block in Fig. 1. The noise

is realized as a piecewise constant function that takes
randomized values in [−N0,N0] on intervals of length dt.
In all following simulations we use b= 2, T = 3, ε= .01



0 5 10 15 20 25 30
t

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
θ

Exact θ

Extracted θ

Fig. 4. Extraction of θ (N0 = ε2).

5 10 15 20 25 30
t

-0.8

-0.6

-0.4

-0.2

0.0

0.2
xacc

Exact L

Extracted L (exact θ)

Extracted L

Fig. 5. Extraction of L (N0 = ε2).

and dt= .5. To explain the following simulation results,
we remark that the inclusion of a noise source introduces
a new term in (7):

ẏ+ εb(1− cos(2ωt))y+ by2 sin(ωt)
=− bε2 sin(ωt)3−ν(t)sin(ωt) (21)

The analysis in Subsection III-A is based on dropping
terms of order ε2 suggesting that noise of higher amplitude
corrupts the method. Indeed, the scheme breaks down
for N0 = ε. Taking N0 = ε2 renders the noise-term in (21)
to be of order ε2 suggesting the extraction schemes to
work. Fig. 4 and Fig. 5 show the extraction of θ and L
with exact and extracted θ respectively. The cutoff visible
in Fig. 4 is caused by cutting off g at g = 1

3 as larger
values lead to complex θ. Extraction of L using the exact
value of θ works fine. However, inclusion of noise causes
noticeable oscillations in the extraction of θ which render
the full extraction scheme for L to work poorly. Averaging
θ over time can, however, drastically improve this result.
Fig. 6 shows the extracted value of L that is obtained
when using the average value θk of θ on [0,kT ] in (10).

Smaller N0 such as N0 = ε
5
2 render the extraction of θ

accurate enough to extract L without having to resort to
averaging procedures. Modifying dt or adding an offset
of order at most ε2 to the noise does not change the
simulation results.

C. Including a drift
For all following simulations, we choose T = 3, L= 0 and

z(0) = 1
2 . Additionally, taking δ = .4, ε= .1 and q0 = .01

gives Γ = .79 thereby ensuring the scheme to function
properly as is verified in Fig. 7. Reusing the terminology
from the previous Subsection, Fig. 7 also shows the effect

5 10 15 20 25 30
t

-0.20

-0.15

-0.10

-0.05

0.00

0.05

Extracted L

Exact L

L for θ1

L for θ2

L for θ3

Fig. 6. Extraction of L (averaged θ, N0 = ε2).

of noise with N0 = ε2 on the scheme. Γ< 1 is, however, not
necessary: Taking ε = .2, q0 = .01 and δ ∈ {1, .1,10−9 }
produces accelerated convergence with high values of
Γ (see Fig. 8). However, taking δ = .1, ε = .01 and e.g.
q0 ∈ { .4, .05} shows that that for Γ> 1 the acceleration
scheme can in fact break down.

0 5 10 15 20 25 30
t-0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6

xCl vs. xacc

Classical ES

xacc without noise

xacc with noise

Fig. 7. Classical vs accelerated ES.

0 1 2 3 4 5 6
t-0.03

-0.02

-0.01

0.00

0.01

xacc for various Γ

Exact L

Γ= 0.871519

Γ= 29.6316

Γ= 2.90506×108

Fig. 8. Various values of Γ/ δ.

Fig. 8 is restricted to 0≤ t≤ 6 to make the differences
between the curves visible. Again, modification of dt and
the inclusion of a small offset have no effect on the results.

V. Summary and outlook
We have demonstrated how ES loops can be analyzed

by considering a perturbation expansion around simpler
loops and how the resulting information can be used to
derive extraction schemes that speed up the convergence
drastically. This statement also holds in comparison to
other acceleration schemes, such as fixed-time extremum
seeking (see e.g. [9]). The obvious downside of the scheme
is that it requires more information about the structure
of the system that is to be optimized. The presented



scheme is therefore suited to systems of which the physics
(but not necessarily the system parameters!) are known
and require fast convergence with little oscillations in
the steady state, such as in robotics applications. There
are still many open questions to be considered: General
statements and formal proofs are needed to make the
proof of concept presented here more rigorous. This also
includes a detailed discussion concerning convergence.
Experimental evidence is needed to show the suitability to
real-world applications. Finally, additional generalizations
such as multidimensional ES are still to be discussed.

Appendix

A. Calculus Lemmata

Lemma A.1. Let L > 0, 1 6= a ∈ R+ and y ∈ C1(R)
such that y′(x+L) = ay′(x). Then

y(x) = α+a
x
LP (x)

for some α ∈ R and L-periodic P ∈ C1(R).

Proof. We only prove the Lemma for x≥ 0. For x < 0
one argues similarly. Since (y(x)−ay(x−L))′ = 0 there
exists some C ∈ R such that y(x) = C+ay(x−L). Let
x≥ 0. There exist unique n ∈N0 and h ∈ [0,L) such that
x= nL+h. Using n= x−h

L we compute

y(x) = C+ay(x−L) = C(1 +a) +a2y(x−2L)
= ...= C(1 +a+ ...+an−1) +any(h)

= C
an−1
a−1 +any(h)

=− C

a−1 +a
x
L a−

h
L

(
y(h) + C

a−1

)
.

Setting α := − C
a−1 and P (x) := a−

h
L (y(h)−α) we get

y(x) = α+ a
x
LP (x). P is L-periodic as h(x+L) = h(x)

and P ∈ C1 follows from P (x) = a−
x
L (y(x)−α).

Lemma A.2. Let η,ω,a ∈ R, T := 2π
ω , q ∈ C0(R) be

T -periodic and y be a solution to

ẏ(t) + 2asin2(ωt)y(t) = eηtq(t).

Then y(t) = e−atp1(t) + eηtp2(t) for some T−periodic
functions p1 and p2.

Proof. Using 2sin2(ωt) = 1−cos(2ωt) it is readily seen
that

d

dt

[
y(t)eat−

asin(2ωt)
2ω

]
= q(t)eηteat−

asin(2ωt)
2ω .

Lemma A.1 implies the existence of a constant ρ0 ∈ R
and a T -periodic function ρ(t) such that

y(t)eat−
asin(2ωt)

2ω = ρ0 +eηteatρ(t).

This proves the Lemma.

B. Proof of Equation (8)
As described in the paragraphs preceding (8) we study

the ODE
ẏ+ εb(1− cos(2ωt))y+ by2 sin(ωt) = 0.

We put z := 1
y such that ż =−y−2ẏ and get

ż− εb(1− cos(2ωt))z = bsin(ωt).

Note that x0(t) = exp(−εb(t− sin(2ωt)
2ω )) defines an inte-

grating factor for the left hand side. Hence
d

dt

(
z(t)x0(t)

)
= bx0(t)sin(ωt).

Integrating from 0 to t and abbreviating z(0)x0(0) =: C
yields

z(t)x0(t) = C+ b

∫ t

0
x0(s)sin(ωs)ds.

Equation (8) follows by definition of z.
C. Proof of Equation (13)

Proving that (13) is true up to the sign in front of
the square root is trivial. To prove that it is ‘−’, we
use θ = e−εbT ∈ (0,1). We get (g− 1)2 ≥ 4g2 and thus
−1≤ g ≤ 1

3 as θ ∈ R. Additionally, g = 0 is not possible
by (12). Indeed, θ 6= 1 and (9) imply x0 6= x1 and x2 6= x3.
For g ∈ [−1,0) we have 1−g

2g < 0. Hence

± 1
2g

√
−4g2 + (g−1)2

!
≥ 0

This implies that − is the correct sign. For g ∈ (0, 1
3 ) we

note that 1−g
2g ≥ 1 and thus

± 1
2g

√
−4g2 + (g−1)2

!
≤ 0

implying again that − is correct.
D. Proof of Equations (17) and (18)

We substitute z(t) =
∑
n≥0 zn(t)δn into (15) to get

∞∑
n=0

(
żn−2znεsin2(ωt)

)
δn = sin(ωt)

− q(t)
∞∑
n=0

δn+1
n∑
j=0

zjzn−j

 .
Equation (17) follows by comparing the coefficients of δn.
Equation (18) is proven inductively. For n= 0 it follows
by applying Lemma A.2 to

ż0−2εsin2(ωt)z0 = sin(ωt).
Supposing (18) for z0, . . . ,zn, it is checked by direct
computation that there exist T -periodic functions qκ,β
such that

q(t)
n∑
j=0

zjzn−j =
n+1∑
κ=1

e−κδ κ+1∑
β=0

eεβtqκ,β(t)

 .
Using the linearity of (17) and Lemma A.2 readily implies
(18) for zn+1.



E. Proof of Equation (20)

Lemma E.3. Let µ > 0 and f ∈ C0(R) be positive.
Then, for all t ∈ [0, 1

2µ ]∫ t

0
e−µsf(s)ds≤ 2e−µt

∫ t

0
f(s)ds.

Proof. Let F (t) :=
∫ t

0 e
−µsf(s)ds. As F is increasing and

F (0) = 0, we may estimate∫ t

0
e−µsf(s)ds= e−µtF (t) +µ

∫ t

0
e−µsF (s)ds

≤ (e−µt+µt)F (t).

Using x≤ e−x for x≤ 1
2 , the Lemma follows.

Lemma E.4. Let ε > 0, ω ∈R, R ∈C0(R) and ξ solve
ξ̇(t)−2εsin2(ωt)ξ(t) =R(t). Then, for t ∈ [0, 1

2ε ]

|ξ(t)| ≤ |ξ(0)|e
ε

2ω eεt+ 2e
ε
ω

∫ t

0
|R(s)|ds.

Proof. It is clear that

ξ(t) =eεt−
ε

2ω sin(2ωt)
[
ξ(0)

+
∫ t

0
e−εs+ ε

2ω sin(2ωs)R(s)ds
]
. (22)

Estimating the second term using Lemma E.3 to the
second term in (22) gives the Lemma.

We now prove (20).

Proof. Put t0 := 1
2δ and uk := sup0≤s≤t0 |zk(s)|. Applying

Lemma E.4 to (16) gives

u0 ≤ |z(0)|e
ε

2ω+εt0 + 2e
ε
ω t0 =: α0. (23)

For n≥ 0, applying Lemma E.4 to (17) and subsequently
using Lemma E.3 gives

un+1 ≤ 2e
ε
ω |q0|

n∑
j=0

∫ t0

0
e−δs|zj(s)zn−j(s)|ds

≤ 4e
ε
ω |q0|e−δt0

n∑
j=0

∫ t0

0
|zj(s)zn−j(s)|ds

≤ 4e
ε
ω |q0|e−δt0t0

n∑
j=0

ujun−j .

Note t0e−δt0 ≤ δ−1, put C := 4(eδ)−1e
ε
ω |q0| and, for n≥

0, define αn by

αn+1 = C

n∑
j=0

αjαn−j . (24)

An inductive argument shows un ≤ αn and hence∑
n≥0 znδ

n converges absolutely when
∑
n≥0αnδ

n con-
verges. Consider the generating function A(x) :=

∑
j≥0αjx

j . Using (24) it is readily checked that
CxA2(x) =A(x)−α0 and hence

A(x) = 1−
√

1−4Cα0x

2Cx . (25)

Expanding (25) and using Stirling’s approximation gives

αn ∼
(4C)n

√
π(n+ 1) 3

2
αn+1

0 .

Thus,
∑
n≥0αnδ

n converges when 4Cα0δ < 1. Inserting
α0 from (23) gives (20).
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Supplementary
Structure of this Part
In the first section, we give more details on the technical Lemmas that are presented in Appendix A. Section 2
provides derivations that have been left out in Section III.A and the corresponding parts of the appendix. Similarly,
Section 3 provides derivations that have been left out in Section III.B and the corresponding parts of the appendix.
Finally, Section 4 describes how the simulations in Section IV have been generated.

F. Technical Lemmas

Lemma F.1. Let L > 0, 1 6= a ∈ R+ and y ∈ C1(R) such that y′(x+L) = ay′(x). Then

y(x) = α+a
x
LP (x)

for some α ∈ R and L-periodic P ∈ C1(R).

Proof. We only prove the Lemma for x≥ 0. For x < 0 one argues similarly. Since (y(x)−ay(x−L))′ = 0 there exists
some C ∈R such that y(x) =C+ay(x−L). Let x≥ 0. There exist unique n ∈N0 and h ∈ [0,L) such that x= nL+h.
Using n= x−h

L we compute

y(x) = C+ay(x−L)
= C(1 +a) +a2y(x−2L)
= ...

= C(1 +a+ ...+an−1) +any(h)

= C
an−1
a−1 +any(h)

=− C

a−1 +a
x
L a−

h
L

(
y(h) + C

a−1

)
. (26)

We now define
α :=− C

a−1 and P (x) := a−
h
L (y(h)−α) .

Inserting these definitions into Equation (26), we get

y(x) = α+a
x
LP (x) (27)

P is L-periodic. Indeed, if x= nL+h, then x+L= (n+ 1)x+h and hence

P (x+L) = a−
h
L (y(h)−α) = P (x).

To prove P ∈ C1 we rewrite Equation (27) as

P (x) = a−
x
L (y(x)−α) ∈ C1.

In the last step we have used the regularity of y.

Lemma F.2. Let η,ω,a ∈ R, T := 2π
ω , q ∈ C0(R) be T -periodic and y be a solution to

ẏ(t) + 2asin2(ωt) = eηtq(t).

Then y(t) = e−atp1(t) +eηtp2(t) for some T−periodic functions p1 and p2. Additionally, p2 = 0 if q = 0.

Proof. Using 2sin2(ωt) = 1− cos(2ωt), we compute
d

dt

[
y(t)eat−

asin(2ωt)
2ω

]
= eat−

asin(2ωt)
2ω

[
ẏ(t) +y(t) d

dt

(
at− asin(2ωt)

2ω

)]
= eat−

asin(2ωt)
2ω [ẏ(t) +y(t)(a−acos(2ωt))]

= eat−
asin(2ωt)

2ω
[
ẏ(t) + 2asin2(ωt)y

]
= eat−

asin(2ωt)
2ω eηtq(t). (28)



In the last step we have used the ODE that y solves. If q = 0, the right hand side in Equation (28) vanishes and we
deduce that there is a constant C such that

y(t)eat−
asin(2ωt)

2ω = C.

Hence
y(t) = e−atCe

asin(2ωt)
2ω

which is the claimed formula. For general q we define

f(t) := eat−
asin(2ωt)

2ω eηtq(t) and Y (t) := d

dt

[
y(t)eat−

asin(2ωt)
2ω

]
. (29)

Note that
f(t+T ) = eη(t+T )ea(t+T )e−a

sin(2ω(t+T ))
2ω = e(a+η)T f(t).

Using Equations (28) and (29) we get

Y ′(t+T )−e(a+η)TY ′(t) = f(t+T )−e(a+η)T f(t) = 0.

Lemma F.1 implies the existence of a constant ρ0 ∈ R and a T -periodic function ρ(t) such that

y(t)eat−
asin(2ωt)

2ω = Y (t) = ρ0 +eηteatρ(t).

This yields the claimed formula:
y(t) = e−atρ0e

asin(2ωt)
2ω +eηtρ(t)e

asin(2ωt)
2ω

Proof of Equation (8)
We define

x0(t)exp
[
−εb

(
t− sin(2ωt)

2ω

)]
(30)

Lemma F.3. Let ε,b,ω ∈ R and y be a solution of

ẏ+ εb(1− cos(2ωt))y+ by2 sin(ωt) = 0.

Then there exists a constant C such that

y(t) = x0(t)
C+ b

∫ t
0 sin(ωs)x0(s)ds

.

Proof. We put z := 1
y such that ż =−y−2ẏ or equivalently ẏ =−z−2ż. This gives

ż− εb(1− cos(2ωt))z =−y−2ẏ− εb(1− cos(2ωt))y−1

=−y−2 (ẏ+ εb(1− cos(2ωt))y)
=−y−2 (−by2 sin(ωt)

)
= bsin(ωt).

Using this ODE for z we compute
d

dt

(
z(t)x0(t)

)
= ż(t)x0(t) +z(t)ẋ0(t)

= x0(t) [ż(t) +z(t)(−εb+ εbcos(2ωt))]
= x0(t) [ż(t)− εbz(t)(1− cos(2ωt))]
= x0(t)bsin(ωt).

Integrating from 0 to t and abbreviating z(0)x0(0) =: C yields

z(t)x0(t) = C+ b

∫ t

0
x0(s)sin(ωs)ds.

The Lemma follows by inserting z(t) = y(t)−1.



G. Supplementary Details to Section III.A
Proof of Equation (10)
We have

xn := x(t+nT ) = L+ θnx0(t)
C̃+θnX(t)

.

Let a := x0(t), b :=X(t), c := C̃ and yn := xn−L. We compute

(y0−y1)y2 =
(

a

b+ c
− aθ

c+ bθ

)
aθ2

c+ bθ2

=
(
ac+abθ−aθb−aθc

(b+ c)(c+ bθ)

)
aθ2

c+ bθ2

= ac−aθc
(b+ c)(c+ bθ)

aθ2

c+ bθ2 .

Next, we compute

θ(y2−y1)y0 = θ

(
aθ2

bθ2 + c
− aθ

c+ bθ

)
a

c+ b

=
(
aθ2c+aθ3b−abθ3−acθ

(c+ bθ2)(c+ bθ)

)
θa

c+ b

= aθ2c−acθ
(c+ bθ2)(c+ bθ)

θa

c+ b

= aθc−ac
(c+ bθ2)(c+ bθ)

θ2a

c+ b
.

Combining both equations we get

0 = (y0−y1)y2 +θ(y2−y1)y0.

Since yn = xn−L we have yk−yl = xk−xl. Consequently

0 = (y0−y1)y2 +θ(y2−y1)y0

= (x0−x1)y2 +θ(x2−x1)y0

= (x0−x1)x2 +θ(x2−x1)x0−L((x0−x1) +θ(x2−x1)) .

Rearranging gives

L= (x0−x1)x2 +θ(x2−x1)x0
x0− (1 +θ)x1 +θx2

.

Proof of Equation (13)
We consider the Equation

(x0−x1)x2 +θx0(x2−x1)
x0− (1 +θ)x1 +θx2

= (x1−x2)x3 +θx1(x3−x2)
x1− (1 +θ)x2 +θx3

(31)

where we recall that θ = e−εbT ∈ (0,1), xn = x(t+nT ) and

xn = x(t+nT ) = L+ x0(t+nT )
C̃+X(t+nT )

= L+ θnx0(t)
C̃+θnX(t)

. (32)

X(t) is a T -periodic function and x0(t) is as in Equation (30). Note that xn→ L as n→∞. This implies that C̃ 6= 0
as otherwise

xn = L+ θnx0(t)
θnX(t) = L+ x0(t)

X(t) 6→ L



as x0(t)> 0. Using Equation (32), we get for n≥ 0 and k ≥ 1

xn+k−xn = θn+kx0(t)
C̃+θn+kX(t)

− θnx0(t)
C̃+θnX(t)

= θk
θnx0(t)

C̃+θnX(t)
C̃+θnX(t)
C̃+θn+kX(t)

− θnx0(t)
C̃+θnX(t)

= θnx0(t)
C̃+θnX(t)

[
θk

C̃+θnX(t)
C̃+θn+kX(t)

−1
]

= θnx0(t)
C̃+θnX(t)

[
θkC̃+θn+kX(t)
C̃+θn+kX(t)

− C̃+θn+kX(t)
C̃+θn+kX(t)

]
= θnx0(t)
C̃+θnX(t)

C̃(θk−1)
C̃+θn+kX(t)

6= 0. (33)

We prove:
θ = 1−g

2g −
1
2g

√
−4g2 + (g−1)2 (34)

Proof. We rewrite Equation Equation (31):(
(x0−x1)x2 +θx0(x2−x1)

)(
x1− (1 +θ)x2 +θx3

)
=
(

(x1−x2)x3 +θx1(x3−x2)
)(

x0− (1 +θ)x1 +θx2

)
We further simplify by collecting the terms with and without θ’s in the large parenthesis:(

(x0−x1)x2 +θx0(x2−x1)
)(

x1−x2 +θ(x3−x2)
)

=
(

(x1−x2)x3 +θx1(x3−x2)
)(

x0−x1θ(x2−x1)
)

Next we expand:

(x0−x1)x2(x1−x2) +θ(x0(x2−x1)(x1−x2) + (x0−x1)x2(x3−x2)) +θ2x0(x2−x1)(x3−x2)
=(x1−x2)x3(x0−x1) +θ(x1(x3−x2)(x0−x1) + (x1−x2)x3(x2−x1)) +θ2x1(x3−x2)(x2−x1)

We subtract all terms in the second line and get:

0 =(x0−x1)(x1−x2)(x2−x3)
+θ
[
−(x0−x3)(x1−x2)2 + (x0−x1)(x3−x2)(x2−x1)

]
+θ2(x0−x1)(x1−x2)(x2−x3)

Considering Equation (33), we may divide by (x1−x2)2(x0−x3) and get
(x0−x1)(x2−x3)
(x1−x2)(x0−x3) (1 +θ+θ2)−θ = 0.

We define
g := (x0−x1)(x2−x3)

(x1−x2)(x0−x3) .

so that gθ2 + (g−1)θ+g = 0. Hence

θ = 1−g
2 ±

√(
1−g
2g

)2
−1 != 1−g

2 ± 1
2g

√
(1−g)2−4g2.

In the last step (marked by !) we have pulled out (2g)−2 out of the square root and written the factor (2g)−1 in front
of it. Really, we have to write |2g|−1. However, we can absorb the potential sign difference in the still ambiguous ±.
Only now we determine the correct sign. To prove that is is ‘−’, we use θ = e−εbT ∈ (0,1). In particular, θ ∈R and so
(g−1)2 ≥ 4g2, which implies −1≤ g ≤ 1

3 . Additionally, due to Equation (33), we deduce g 6= 0. Now we distinguish
two cases.



1) For g ∈ [−1,0) we have 1−g
2g < 0. As θ ∈ (0,1) we deduce

± 1
2g

√
−4g2 + (g−1)2

!
≥ 0.

This implies that − is the correct sign.
2) For g ∈ (0, 1

3 ) we note that 1−g
2g ≥ 1. As θ ∈ (0,1) we deduce

± 1
2g

√
−4g2 + (g−1)2

!
≤ 0.

Again, this implies that − is the correct sign.

H. Supplementary Details to Section III.B
For parameters b,q0,ω ∈ R, δ,ε > 0 and we consider the Equation

ż−2εsin2(ωt)z+ δq(t)z2 = sin(ωt). (35)

where q(t) = q0e
−δt. We treat δ as a perturbative parameter and propose the ansatz

z(t) =
∞∑
n=0

zn(t)δn (36)

with initial values z0(0) = z(0) and zn(0) = 0 for all n≥ 1.

Proof of Equations (17) and (18)

We claim that the following Equations follow:{
ż0−2εsin2(ωt)z0 = sin(ωt),
z0(0) = z(0).

(37)

For n≥ 1: 
żn−2εsin2(ωt)zn =−q(t)

n−1∑
j=0

zjzn−1−j ,

zn(0) = 0.

(38)

Proof. Inserting the ansatz into Equation (35) gives
∞∑
n=0

(
żn−2znεsin2(ωt)

)
δn+ δq(t)

( ∞∑
l=0

zlδ
l

)( ∞∑
k=0

zkδ
k

)
= sin(ωt).

We write

δq(t)
( ∞∑
l=0

zlδ
l

)( ∞∑
k=0

zkδ
k

)
= q(t)δ

∞∑
n=0

(
δn

n∑
a=0

zazn−a

)
= q(t)

∞∑
n=0

(
δn+1

n∑
a=0

zazn−a

)
.

Inserting gives
∞∑
n=0

(
żn−2znεsin2(ωt)

)
δn = sin(ωt)− q(t)

∞∑
n=0

(
δn+1

n∑
a=0

zazn−a

)
.

Comparing coefficients gives Equations (37) and (38).

Lemma H.1. There exist T -periodic functions p(0)
0 and p(0)

1 such that

z0(t) = p
(0)
0 (t) +eεtp

(0)
1 (t).

Further, for n≥ 1, 1≤ j ≤ n and 0≤ k ≤ j+ 1 there exist T -periodic functions p(n)
0 and p(n)

jk such that

zn(t) = eεtp
(n)
0 (t) +

n∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(n)
jk (t).



Proof. For n = 0 we can apply Lemma F.2 with y→ z0, a→−ε, η→ 0 and q(t)→ sin(ωt) to obtain the claimed
formula. For n≥ 1 we argue by induction. First we consider n= 1. We have

ż1−2εsin2(ωt)z1 =−q(t)z2
0 .

We insert z0(t) = p
(0)
0 (t) +eεtp

(0)
1 (t) and use q(t) = q0e

−δt to get

ż1−2εsin2(ωt)z1 =−q0e
−δt
[(
p

(0)
0 (t)

)2
+e2εt

(
p

(0)
1 (t)

)2
+ 2eεtp(0)

0 (t)p(0)
1 (t)

]
.

The general solution to this Equation is given by

z1(t) = z1,h(t) +
2∑
k=0

z1,k(t). (39)

Here z1,h denotes a homogeneous solution and for k = 0,1,2 the function z1,k is any solution of

ż1,k−2εsin2(ωt)z1,k = e−δtekεtP1,k(t)

where
P1,0 :=−q0

(
p

(0)
0

)2
, P1,1 =−2q0p

(0)
0 p

(0)
1 and P1,2 :=−q0

(
p

(0)
1

)2
.

We can apply Lemma F.2 to obtain T -periodic functions π∗ (∗ denotes arbitrary indices) such that

zh(t) = eεtπh(t),
zk(t) = eεtπk,1(t) +ekεt−δtπk,2(t).

Using Equation (39), we get the claimed formula for z1.

Now we consider the inductive step n→ n+ 1. Assume that the formulas for zk with 0≤ k ≤ n are already proven.
We have to compute

n∑
a=0

zazn−a = 2z0zn+
n−1∑
a=1

zazn−a.

For 1≤ a≤ n−1 we have the formulas

za(t) = eεtp
(a)
0 (t) +

a∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(a)
jk (t)

zn−a(t) = eεtp
(n−a)
0 (t) +

n−a∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(n−a)
jk (t).

Multiplying gives

zazn−a = e2εtp
(a)
0 p

(n−a)
0

+eεtp
(a)
0 (t)

n−a∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(n−a)
jk

+eεtp
(n−a)
0

a∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(a)
jk

+

 a∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(a)
jk

n−a∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(n−a)
jk


This sum is a linear combination of e−κδt with κ = 0, ...,n. The coefficients of e−κδt are linear combinations of
functions of the form ejεtp(t) where p stands for a general T -periodic function and 0≤ j ≤ κ+ 2. Consequently

n−1∑
a=1

zazn−a =
n∑
κ=0

e−κδt κ+2∑
j=0

πκj(t)ejεt




where πκj are some T -periodic functions. Now, we compute

z0zn =(p(0)
0 +eεtp

(0)
1 )

eεtp(n)
0 (t) +

n∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(n)
jk (t)


=eεtp(0)

0 p
(n)
0 (t) +

n∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(0)
0 p

(n)
jk (t)

+e2εtp
(0)
1 p

(n)
0 (t) +

n∑
j=1

j+1∑
k=0

e((k+1)ε−jδ)tp
(0)
1 p

(n)
jk (t).

Again, this is a linear combination of e−κδt where 0≤ κ≤ n. The coefficients of e−κδt are again linear combinations
of functions ejεtp(t) where 0≤ j ≤ κ+2 and p stands for a general T -periodic function. Therefore we have shown that

e−δt
n∑
a=0

zazn−a =
n∑
κ=0

e−(κ+1)δt
κ+2∑
j=0

π̃κj(t)ejεt =
n+1∑
κ=1

e−κδt κ+1∑
j=0

πκj(t)ejεt


for some, potentially new. T -periodic functions πκj . Absorbing −q0 into the definition of the functions πκj we get

żn+1 + 2εsin2(ωt) =−q(t)
n∑
a=0

zazn−a =
n+1∑
κ=1

e−κδt κ+1∑
j=0

πκj(t)ejεt
 . (40)

We now argue as we did for n= 1 and write

zn+1 = zn+1,h+
n+1∑
κ=1

κ+1∑
j=0

zκ,j(t)

where zn+1,h is a homogeneous solution to Equation (40) and for 1≤ κ≤ n+ 1 and 0≤ j ≤ κ+ 1

żκ,j + 2εsin2(ωt)zκ,j = e−κδtejεtπκj .

Using Lemma F.2 and resumming we deduce that there exist periodic functions p(n+1)
0 and p

(n+1)
jk such that

zn+1(t) = eεtp
(n+1)
0 (t) +

n+1∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(n+1)
jk (t).

This finishes the inductive argument.

The last step in the proof of Proposition III.2 is to resum the perturbative series. We compute

z(t) =
∞∑
n=0

zn(t)δn

=p(0)
0 +eεtp

(0)
1 +

∞∑
n=1

δn

eεtp(n)
0 (t) +

n∑
j=1

j+1∑
k=0

e(kε−jδ)tp
(n)
jk (t)


=p(0)

0 +eεt

[
p

(0)
1 + δ

∞∑
n=1

p
(n)
0

]
+
∞∑
n=1

n∑
j=1

j+1∑
k=0

δne(kε−jδ)tp
(n+1)
jk (t)

=p(0)
0 +eεt

[
p

(0)
1 + δ

∞∑
n=1

p
(n)
0

]
+
∞∑
j=1

∞∑
n=j

j+1∑
k=0

δne(kε−jδ)tp
(n+1)
jk (t)

=p(0)
0 +eεt

[
p

(0)
1 + δ

∞∑
n=1

p
(n)
0

]
+
∞∑
j=1

δje−jδt j+1∑
k=0

ekεt ∞∑
n=j

δn−jp
(n+1)
jk (t)

 .
For j ≥ 1 and 0≤ k ≤ j+ 1 we define

pjk(t) :=
∞∑
n=j

δn−jp
(n+1)
jk (t).



Note that n− j ≥ 0, so pjk =O(1) with respect to δ. In particular, pjk do not blow up when δ→ 0. Additionally, we
put

p00 := p
(0)
0 and p01 := p

(0)
1 +

∞∑
n=1

p
(n)
0 .

Clearly, for all 0≤ j and 0≤ k ≤ j+ 1, the functions pjk are T -periodic. Also, we get

z(t) =p00 +eεtp01 +
∞∑
j=1

[
δje−jδt

j+1∑
k=0

ekεtpjk(t)
]

=
∞∑
j=0

[
δje−jδt

j+1∑
k=0

ekεtpjk(t)
]
.

Proof of Equation (20)

Lemma H.2. Let µ > 0 and f ∈ C0(R) be positive. Then, for all t ∈ [0, 1
2µ ]∫ t

0
e−µsf(s)ds≤ 2e−µt

∫ t

0
f(s)ds.

Proof. Let F (t) :=
∫ t

0 e
−µsf(s)ds. As F is increasing and F (0) = 0, we may estimate∫ t

0
e−µsf(s)ds=

∫ t

0
e−µsF ′(s)ds

= e−µsF (s)
∣∣∣∣s=t

s=0
−
∫ t

0
(−µ)e−µsF (s)ds

= e−µtF (t)−F (0) +µ

∫ t

0
e−µs︸ ︷︷ ︸

0≤...≤1

F (s)︸︷︷︸
≥0

ds

≤ e−µtF (t) +µt sup
0≤s≤t

F (s)

!= (e−µt+µt)F (t)

= (e−µt+µt)
∫ t

0
f(s)ds.

In the second to last step (marked by !) we have used that F is increasing. For x ∈ [0, 1
2 ] we have x≤ e−x. Indeed,

xex is increasing on [0,∞) and 1
2e

1
2 = 1

2
√
e≤ 1

2
√

4 = 1. For t ∈ [0, 1
2µ ] we have µt ∈ [0, 1

2 ] and the Lemma follows by
estimating µt≤ e−µt.

Lemma H.3. Let ε > 0, ω ∈ R, R ∈ C0(R) and ξ solve ξ̇(t)−2εsin2(ωt)ξ(t) =R(t). Then, for t ∈ [0, 1
2ε ]

|ξ(t)| ≤ |ξ(0)|e
ε

2ω eεt+ 2e
ε
ω

∫ t

0
|R(s)|ds.

Proof. Using 2sin2x= 1− cos(2x), we compute

d

dt

[
ξ(t)e−εt+

εsin(2ωt)
2ω

]
= e−εt+

εsin(2ωt)
2ω

[
ξ̇(t) + ξ(t) d

dt

(
−εt+ εsin(2ωt)

2ω

)]
= e−εt+

εsin(2ωt)
2ω

[
ξ̇(t) + ξ(t)(−ε+ εcos(2ωt))

]
= e−εt+

εsin(2ωt)
2ω

[
ξ̇(t)−2εsin2(ωt)ξ(t)

]
= e−εt+

εsin(2ωt)
2ω R(t). (41)

Integrating gives

ξ(t)e−εt+
εsin(2ωt)

2ω − ξ(0) =
∫ t

0
e−εs+ εsin(2ωs)

2ω R(s)ds.



We now estimate

|ξ(t)| ≤ eεt−
εsin(2ωt)

2ω |ξ(0)|+eεt−
εsin(2ωt)

2ω

∫ t

0
e−εs+ εsin(2ωs)

2ω |R(s)|ds

≤ eεt+
ε

2ω |ξ(0)|+eεt+
ε

2ω

∫ t

0
e−εs+ ε

2ω |R(s)|ds

≤ eεt+
ε

2ω |ξ(0)|+eεt+
ε
ω

∫ t

0
e−εs|R(s)|ds.

To estimate further we use Lemma H.2 to estimate∫ t

0
e−εs|R(s)|ds≤ 2e−εt

∫ t

0
|R(s)|ds for t ∈ [0, 1

2ε ].

Inserting this Estimate gives

|ξ(t)| ≤ |ξ(0)|e
ε

2ω eεt+ 2e
ε
ω eεte−εt

∫ t

0
|R(s)|ds= |ξ(0)|e

ε
2ω eεt+ 2e

ε
ω

∫ t

0
|R(s)|ds.

We now prove a criterion that ensures the convergence of the perturbation series in Equation (36).
Lemma H.4. If δ > ε and

24e
2ε
ω |q0|

(
|z(0)|+ 1

δ

)
< 1,

the series in Equation (36) in convergent.

Proof. Put t0 := 1
2δ and uk := sup0≤s≤t0 |zk(s)|. Applying Lemma H.3 to Equation (37) gives

u0 ≤ |z(0)|e
ε

2ω+εt0 + 2e
ε
ω t0 =: α0. (42)

For n≥ 0, applying Lemma H.3 to Equation (38) and subsequently using Lemma H.2 gives

un+1 ≤ 2e
ε
ω |q0|

n∑
j=0

∫ t0

0
e−δs|zj(s)zn−j(s)|ds

≤ 4e
ε
ω |q0|e−δt0

n∑
j=0

∫ t0

0
|zj(s)zn−j(s)|ds

≤ 4e
ε
ω |q0|e−δt0t0

n∑
j=0

ujun−j . (43)

We use xe−x ≤ 1 for all x≥ 0 to estimate t0e−δt0 ≤ δ−1 and put C := 4(eδ)−1e
ε
ω |q0|. For n > 0, we define αn by

αn+1 = C

n∑
j=0

αjαn−j . (44)

We claim un ≤ αn for all n ≥ 0. For n = 0 this is true by definition and for n ≥ 1 it follows inductively. Indeed,
assuming uk ≤ αk for all 0≤ k ≤ n we estimate

un+1
(43)
≤ C

n∑
j=0

ujun−j ≤ C
n∑
j=0

αjαn−j
(44)= αn+1.

Therefore
∑
n≥0 znδ

n converges absolutely when
∑
n≥0αnδ

n converges. To derive a criterion for the convergence of



∑
n≥0αnδ

n we consider the generating function A(x) :=
∑
j≥0αjx

j . Using (44), we compute

CxA2(x) =
∞∑
n=0

Cx

( ∞∑
k=0

αkx
k

)( ∞∑
l=0

αlx
l

)

= Cx

∞∑
n=0

[
xn

n∑
k=0

αkαn−k

]

=
∞∑
n=0

[
xn+1

(
C

n∑
k=0

αkαn−k

)]

=
∞∑
n=0

xn+1αn+1

=A(x)−α0.

This shows that A(x) satisfies the quadratic equation CxA(x)2−A(x) +α0 = 0. Therefore

A(x) = 1±
√

1−4Cα0x

2Cx .

The correct sign is −. Indeed, assume + was correct. Then we get a contradiction as

α0 =A(0) = lim
x→0

A(x) != lim
x→0

1 +
√

1−4Cα0x

2Cx lim
x→0

2
2Cx , which is divergent.

So
A(x) = 1−

√
1−4Cα0x

2Cx . (45)

We use the expansion
√

1− ε= (1− ε)
1
2 =

∞∑
n=0

(1
2
n

)
(−ε)n

to expand

A(x) = 1
2Cx

[
1−

∞∑
n=0

(1
2
n

)
(−1)n(4Cα0x)n

]

=− 1
2Cx

∞∑
n=1

(1
2
n

)
(−1)n(4Cα0x)n

=
∞∑
n=0
− 1

2C

( 1
2

n+ 1

)
(−4Cα0)n+1xn.

By definition A(x) =
∑
n≥0αnx

n. Comparing coefficients, we get

αn = −1
2C

( 1
2

n+ 1

)
(−4Cα0)n+1.

We use Stirling’s approximation to get an asymptotic expansion of αn:(1
2
n

)
=
(

2n
n

)
(−1)n+1

4n(2n−1)

= (2n)!
(n!)2

(−1)n+1

4n(2n−1)

∼ (2n)2n)

e2n
√

4πn (en)2

(nn)2(
√

2πn2
(−1)n+1

4n(2n)

= 4n√
πn

(−1)n+1

4n(2n)

= (−1)n+1

2
√
π

1
n

3
2



Using this asymptotic formula we get

αn ∼
−1
2C

(−1)n

2
√
π

1√
(n+ 1) 3

2

(−1)n+1(4Cα0)n+1 = 1
4C
√
π

(4Cα0)n+1

(n+ 1) 3
2
.

To ensure convergence of
∑
n≥0αnδ

n we must require

1> lim
n→∞

αn+1δ
n+1

αnδn
= δ lim

n→∞

 1
4C
√
π

(4Cα0)n+2

(n+ 2) 3
2

(
1

4C
√
π

(4Cα0)n+1

(n+ 1) 3
2

)−1
= (4Cα0)δ.

Inserting the definition of C we get

1
!
> 4Cα0δ4

(
4(δe)−1e

ε
ω |q0|

)
δ = 16e−1α0e

ε
ω |q0|.

By definition α0 = u0. Hence

16e−1α0e
ε
ω |q0| ≤ 16e−1e

ε
ω |q0|

(
|z(0)|e

ε
2ω+εt0 + 2e

ε
ω t0
)
.

We have t0 = 1
2δ ≤

1
2ε . The last step is justified by requiring ε < δ. Hence

4Cα0δ ≤ 16e−1α0e
ε
ω |q0|

≤ 16e−1e
ε
ω |q0|

(
|z(0)|e

ε
2ω+εt0 + 2e

ε
ω t0
)

≤ 16e−1e
ε
ω |q0|

(
|z(0)|e

ε
2ω+ 1

2 + 4
δ
e
ε
ω

)
≤ 16e−1e

ε
ω |q0|

(
|z(0)|e

ε
2ω ·4 + 4

δ
e
ε
ω

)
≤ 16e−1e

ε
ω |q0|

(
4e

ε
ω

)(
|z(0)|+ 1

δ
e
ε
ω

)
≤ 64e−1e2 εω |q0|

(
|z(0)|+ 1

δ

)
≤ 24e2 εω |q0|

(
|z(0)|+ 1

δ

)
.

In the last step we have used that 64e−1 = 23.544...≤ 24. So, if

24e2 εω |q0|
(
|z(0)|+ 1

δ

)
< 1,

the series
∑
n≥0αnδ

n converges and hence
∑
n≥0 zn(t)δn converges absolutely.

Detailed proof of Corollary III.3
Step 1: A Zeroth Order Extraction Law
Including only the first term of the perturbation series gives

z(t) = p0(t) +e−εtp1(t)

where p0 and p1 are T -periodic. We fix an arbitrary t and put p0 := p0(t), p1 := p1(t) as well as zn := z(t+nT ). Then

zn = p0 +Anp1.

We consider the following two equations:

zn+1−zn =An(A−1)p1

zn+2−zn+1 =An+1(A−1)p1.

Subtracting A times the first equation from the second gives

zn+2− (1 +A)zn+1 +Azn = 0.

Recalling that y = 1/z, puttning yn := y(t+nT ) and multiplying by ynyn+1yn+2, we get

ynyn+1− (1 +A)ynyn+2 +Ayn+1yn+2 = 0.



By definition y = x−L− q = h−L. Putting hn := h(t+nT ), we get

0 =hn+2hn+1− (1 +A)hnhn+2 +Ahn+2hn+2

+L2− (1 +A)L2 +AL2

−hnL−Lhn+1 + (1 +A)(Lhn+2 +hnL)−A(hn+1L+Lhn+2)
=hn+2hn+1− (1 +A)hnhn+2 +Ahn+2hn+2

+L(−hn−hn+1 +hn+2 +hn+Ahn+2 +Ahn−Ahn+1−Ahn+2)
=hn+2hn+1− (1 +A)hnhn+2 +Ahn+2hn+2

+L(−hn+1 +hn+2 +Ahn−Ahn+1).

Rearranging, we get

L= hn+2hn+1− (1 +A)hnhn+2 +Ahn+2hn+2
−hn+2 + (1 +A)hn+1−Ahn

.

Step 2: A First Order Extraction Law
Including the first two terms of the perturbation series gives

z(t) = p0(t) +eεtp1(t) +e−δt(p2(t) +eεtp3(t) +e2εtp4(t))

where pk are T -periodic functions. Putting zn := z(t+nT ) and pk := pi(t) for 0≤ k ≤ 4, we get

zn = p0 +Anp1 +Bn(p2 +Anp3 +A2np4).

We now methodically combine these equations for various n to get an identity with right hand side 0. We begin by
computing

zn+1−zn =Anp1(A−1) +Bn(B−1)p2 +BnAn(BA−1)p3 +BnA2n(BA2−1)p4.

Hence

zn+2−zn+1−A(zn+1−zn)
=An+1p1(A−1) +Bn+1(B−1)p2 +Bn+1An+1(BA−1)p3 +Bn+1A2(n+1)(BA2−1)p4

−
(
An+1p1(A−1) +ABn(B−1)p2 +ABnAn(BA−1)p3 +ABnA2n(BA2−1)p4

)
=Bn(B−1)(B−A)p2 +BnAn+1(B−1)(BA−1)p3 +BnA2n+1(BA−1)(BA2−1)p4.

Next we compute

zn+3−zn+2−A(zn+2−zn+1)−B (zn+2−zn+1−A(zn+1−zn))
=Bn+1(B−1)(B−A)p2 +Bn+1An+2(B−1)(BA−1)p3 +Bn+1A2n+3(BA−1)(BA2−1)p4

−
(
BBn(B−1)(B−A)p2 +BBnAn+1(B−1)(BA−1)p3 +BBnA2n+1(BA−1)(BA2−1)p4

)
=Bn+1An+1(A−1)(B−1)(BA−1)p3 +Bn+1A2n+1(A2−1)/BA−1)(BA2−1)p4.

We simplify

zn+3−zn+2−A(zn+2−zn+1)−B (zn+2−zn+1−A(zn+1−zn))
=zn+3− (1 +A+B)zn+2 +zn+1(A+B+AB)−ABzn.

So we get

zn+3− (1 +A+B)zn+2 +zn+1(A+B+AB)−ABzn
=Bn+1An+1(A−1)(B−1)(BA−1)p3 +Bn+1A2n+1(A2−1)(BA−1)(BA2−1)p4.

Now we compute

zn+4− (1 +A+B)zn+3 +zn+2(A+B+AB)−ABzn+1

−AB (zn+3− (1 +A+B)zn+2 +zn+1(A+B+AB)−ABzn)
=Bn+2A2n+1(A2−1)(A2−1)(BA−1)(BA2−1)p4.



So, we arrive at the identity

zn+5− (1 +A+B)zn+4 +zn+3(A+B+AB)−ABzn+2

−AB (zn+4− (1 +A+B)zn+3 +zn+2(A+B+AB)−ABzn+1)
−A2B [zn+4− (1 +A+B)zn+3 +zn+2(A+B+AB)−ABzn+1

−AB (zn+3− (1 +A+B)zn+2 +zn+1(A+B+AB)−ABzn)]
= 0.

We collect terms

0 = +zn+5

−zn+4(1 +A+B+AB+A2B)
= +zn+3(A+B+AB+AB(1 +A+B) +A2B(1 +A+B) +A3B2)
=−zn+2(AB+AB(A+B+AB) +A2B(A+B+AB) +A3B2(1 +A+B))
= +zn+1(A2B2 +A3B2 +A3B2(A+B+AB))
=−A4B3zn

. We can simplify further by taking n= 0 and combining terms:

0 = +z5

−z4(1 +A+B(1 +A+A2))
= +z3(A+B(1 +A)A(1 +A+A2) +B2A(1 +A+A2))
=−z2(AB(1 +A+A2) + (A+ 1)B2(A+A2 +A3) +A3B3)
= +z1(AB2(A+A2 +A3) +A3B3(1 +A))
=−A4B3z0

H. Simulations Simple model with/without noise
We first define all parameters
1 ε= .01;
2 b = 2;
3 T = 3;
4 ω = 2 π/T;
5 θ = Exp[-ε b T];

Mathematica Code 1. Definitions

Next, we define the noise function. To do so, we first choose a parameter dt > 0 and define the function

Bumb(t) =
{

1 if 0≤ t≤ dt
0 else

We now generate a random sequence of numbers Ri and define the noise function

n(t) := ε2
∑
i

RiBump(t− idt).

1 dt = .5;
2 Bump[t_] = UnitStep[t] - UnitStep[t - dt];
3 TableR = RandomReal [{-1, 1}, 90/dt];
4 n[t_] = εˆ(2) Sum[TableR [[i]] Bump[t - i dt], {i, 1, 90/dt}];

Mathematica Code 2. Definitions

Next, we implement the extremum seeking ODE

ẏ+ εb(1− cos(2ωt))y+ by2 sin(ωt) =−bε2 sin(ωt)3 +n(t)sin(ωt).

To generate the graphics without noise the last term in this equation must simply be dropped.



1 s = NDSolve [{y’[t] + ε b (1 - Cos[2 ω t]) y[t] +
2 b y[t]ˆ2 Sin[ω t] == -b ε2 Sin[ω t]ˆ3 +
3 n[t] Sin[ω t], y[0] == 1.3}, y, {t, 0, 100},
4 AccuracyGoal -> 15];
5 sol[t_] = y[t] /. s;
6

7 (*Plot*)
8 Plot[sol[t], {t, 0, 30}]

Mathematica Code 3. Definitions

Next, we implement the extraction scheme

L= (x0−x1)x2 +θ(x2−x1)x0
x0− (1 +θ)x1 +θx2

.

This formula requires the knowledge of θ. To extract θ, we first define

g := (x0−x1)(x2−x3)
(x1−x2)(x0−x3)

and obtain θ as
θ = 1−g

2 − 1
2g

√
(1−g)2−4g2.

We define extraction formulas for L with the extracted and the exact value of θ. The first is called ExtraL(t) and the
second one ExtraLCheat(t).
1 g[t_] = Min[
2 1/3, ((sol[t] - sol[t + T]) (sol[t + 2 T] -
3 sol[t + 3 T]))/((sol[t + T] - sol[t + 2 T]) (sol[t] -
4 sol[t + 3 T]))];
5

6 Extraθ[t_] = -(g[t] - 1)/(2 g[t]) -
7 1/(2 g[t]) Sqrt [(g[t] - 1)ˆ2 - 4 g[t]ˆ2];
8

9 ExtraL[
10 t_] = ((sol[t][[1]] - sol[t + T][[1]]) sol[t + 2 T][[1]] +
11 Extraθ[t] sol[t][[
12 1]] (sol[t + 2 T][[1]] - sol[t + T][[1]]))/(sol[t][[
13 1]] - (1 + Extraθ[t]) sol[t + T][[1]] +
14 Extraθ[t] sol[t + 2 T][[1]]);
15

16 ExtraLCheat[t_] = ((sol[t][[1]] - sol[t + T][[1]]) sol[t + 2 T][[
17 1]] + θ sol[t][[
18 1]] (sol[t + 2 T][[1]] - sol[t + T][[1]]))/(sol[t][[
19 1]] - (1 + θ) sol[t + T][[1]] + θ sol[t + 2 T][[
20 1]]);
21

22 (*Plot for extracted θ*)
23 Ptheta = Plot [{θ, Extraθ[t], θ}, {t, 0, 30} ,
24 PlotRange -> {{0, 30}, {.86, 1}},
25 AxesLabel -> {t, "θ"}, LabelStyle -> {FontSize -> 15},
26 PlotLegends -> {
27 "Exact␣θ", "Extracted␣θ"},
28 PlotStyle -> {RGBColor [0.368417 , 0.506779 , 0.709798] ,
29 RGBColor [0.880722 , 0.611041 , 0.142051] ,
30 RGBColor [0.368417 , 0.506779 , 0.709798]}]
31

32 (*Plot for g*)
33 Plot[g[t], {t, 0, 30}]
34

35 (*Plot for extracted L*)
36 PComp = Plot [{sol[t], ExtraL[t]}, {t, 0, 30}, PlotRange -> All ,
37 AxesLabel -> {t,
38 "\!\(\* SubscriptBox [\(x\),␣\(Cl\)]\)␣vs␣\!\(\* SubscriptBox [\(x\),␣\
39 \(acc\)]\)"}, LabelStyle -> {FontSize -> 15}, AxesOrigin -> {0, -.2},
40 PlotLegends -> {"\!\(\* SubscriptBox [\(x\),␣\(Cl\)]\)",
41 "\!\(\* SubscriptBox [\(x\),␣\(acc\)]\)"}]

Mathematica Code 4. Definitions

The extraction scheme is also employed with an averaged value of θ. First, we define an averaged value of θ, that
is obtained by averaging the extracted θ over intervals [0,kT ] for k = 1,2,3. Afterwards, the extraction formula for L
is implemented using these averaged values.



1 avθ1 =
2 1/(T) NIntegrate[Extraθ[s], {s, 0, T}, AccuracyGoal -> 5,
3 WorkingPrecision -> 10]
4 avθ2 =
5 1/(2 T) NIntegrate[Extraθ[s], {s, 0, 2 T}, AccuracyGoal -> 5,
6 WorkingPrecision -> 10]
7 avθ3 =
8 1/(3 T) NIntegrate[Extraθ[s], {s, 0, 3 T}, AccuracyGoal -> 5,
9 WorkingPrecision -> 10]

10

11 ExtraLnewmean1[
12 t_] = ((sol[t][[1]] - sol[t + T][[1]]) sol[t + 2 T][[1]] +
13 avθ1 sol[t][[
14 1]] (sol[t + 2 T][[1]] - sol[t + T][[1]]))/(sol[t][[
15 1]] - (1 + avθ1 ) sol[t + T][[1]] +
16 avθ1 sol[t + 2 T][[1]]);
17 ExtraLnewmean2[
18 t_] = ((sol[t][[1]] - sol[t + T][[1]]) sol[t + 2 T][[1]] +
19 avθ2 sol[t][[
20 1]] (sol[t + 2 T][[1]] - sol[t + T][[1]]))/(sol[t][[
21 1]] - (1 + avθ2) sol[t + T][[1]] +
22 avθ2 sol[t + 2 T][[1]]);
23 ExtraLnewmean3[
24 t_] = ((sol[t][[1]] - sol[t + T][[1]]) sol[t + 2 T][[1]] +
25 avθ3 sol[t][[
26 1]] (sol[t + 2 T][[1]] - sol[t + T][[1]]))/(sol[t][[
27 1]] - (1 + avθ3) sol[t + T][[1]] +
28 avθ3 sol[t + 2 T][[1]]);
29

30 (*Plot*)
31 Plot [{ ExtraLnewmean1[t], ExtraLnewmean2[t],
32 ExtraLnewmean3[t]}, {t, 0, 30},
33 PlotLegends -> {"L␣for␣\!\(\* SubscriptBox [\(θ\), \(1\) ]\)",
34 "L␣for␣\!\(\* SubscriptBox [\(θ\), \(2\) ]\)",
35 "L␣for␣\!\(\* SubscriptBox [\(θ\), \(3\) ]\)"},
36 AxesLabel -> {"t", "Extracted␣L"}, LabelStyle -> {FontSize -> 15}]

Mathematica Code 5. Definitions

Including a Drift
We first define all parameters
1 T = 3;
2 ω = 2 π/T;
3 ε = .1;
4 δ = .4;
5 y0 = 2;
6 A = Exp[ε T];
7 q0 = .01;
8 A = Exp[ε T];
9 q[t_] = q0 Exp[-δ t];

Mathematica Code 6. Definitions

Next, we define the noise in the same way as we did before
1 dt = .5;
2 Bump[t_] = UnitStep[t] - UnitStep[t - dt];
3 TableR = RandomReal [{-1, 1}, 90/dt];
4 n[t_] = εˆ(2) Sum[TableR [[i]] Bump[t - i dt], {i, 1, 90/dt}];

Mathematica Code 7. Definitions

We now implement the ODE

ẏ+ 2εsin2(ωt)y+y2 sin(ωt) =−ε2 sin(ωt)3 + δq(t)− sin(ωt)n(t).

To generate graphics without noise it again suffices to just drop the last term in this equation. We also define
h(t) := y(t)− q(t) and implement the extraction scheme

L= hn+2hn+1− (1 +A)hnhn+2 +Ahn+2hn+2
−hn+2 + (1 +A)hn+1−Ahn

.

To generate graphics without noise it again suffices to just drop the last term in this equation.



1 s = NDSolve [{y’[t] + 2 ε Sin[ω t]ˆ2 y[t] +
2 y[t]ˆ2 Sin[ω t] == - εˆ2 Sin[ω t]ˆ3 + \
3 δ q[t] - Sin[ω t] n[t], y[0] == y0}, y, {t, 0, 70}];
4 sol[t_] = y[t] /. s;
5 h[t_] = sol[t] - q[t];
6 L[t_] = (h[t + T] h[t] - (1 + A) h[t + 2 T] h[
7 t] + A h[t + 2 T] h[t + T])/(-h[t + 2 T] +
8 h[t + T] (1 + A) - A h[t]);
9

10 (*Plot *)
11 Plot [{sol[t], L1[t]}, {t, 0, 30}, AxesOrigin -> {0, -.1},
12 PlotRange -> {{0, 30}, {-.1, .6}}, LabelStyle -> {FontSize -> 20},
13 AxesLabel -> {"t",
14 "\!\(\* SubscriptBox [\(x\),␣\(\(Cl\) \(\\\␣\\\␣\)\)]\)vs.␣\
15 \!\(\* SubscriptBox [\(x\),␣\(acc\)]\)␣"},
16 PlotLegends -> {
17 Row[{"Classical␣ES"}],
18 Row[{"\!\(\* SubscriptBox [\(x\),␣\(acc\)]\)␣with␣noise"}]
19 }]

Mathematica Code 8. Definitions

Obtaining the graphics for various Γ is achieved by generating plots for the various choices of parameters described
in Subsection IV.C and combining the plots.
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