KIT | KIT-Bibliothek | Impressum | Datenschutz

Supporting Decision-makers in Estimating Irrigation Demand for Urban Street Trees

Rambhia, Mihir 1; Volk, Rebekka ORCID iD icon 1; Rismanchi, Behzad ; Winter, Stephan; Schultmann, Frank ORCID iD icon 1
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Greening cities is of considerable significance to creating sustainable cities. Cost-benefit analyses have shown that urban green is not only ecologically and socially desirable but also economically advantageous. However, maintaining this urban green is becoming challenging due to changing climatic conditions. With frequent heat-waves, droughts and increasing water scarcity in many regions, it is crucial to establish systematic approaches to economise the available water used for irrigation. Currently, cities rely on rough approximations to assess irrigation demand. To address this gap, a linear time series model was developed based on soil water balance and Water Use Classifications of Landscape Species approach. The model uses publicly available data regarding trees, soil, and current and forecasted weather to estimate the irrigation demand of urban street trees on a weekly time scale. The developed model is applied in a case study of a metropolis in a moderate continental climate. The results show more distributed irrigation demand than the currently implemented soil moisture based model of the case study city. Accordingly, the model can support the decision-makers to not only assess the irrigation demand of existing trees but also help in water budgeting of new plantation under varying climatic conditions.


Postprint §
DOI: 10.5445/IR/1000156062
Veröffentlicht am 14.02.2024
Originalveröffentlichung
DOI: 10.1016/j.ufug.2023.127868
Scopus
Zitationen: 7
Web of Science
Zitationen: 5
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2023
Sprache Englisch
Identifikator ISSN: 1618-8667
KITopen-ID: 1000156062
Erschienen in Urban Forestry & Urban Greening
Verlag Urban and Fischer
Seiten Art.-Nr.: 127868
Vorab online veröffentlicht am 13.02.2023
Schlagwörter Urban green; Water demand; Management; Urban forestry; Decision support
Nachgewiesen in Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 6 – Sauberes Wasser und Sanitär-EinrichtungenZiel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page