KIT | KIT-Bibliothek | Impressum | Datenschutz

Kerr Enhanced Backaction Cooling in Magnetomechanics

Zoepfl, D. ; Juan, M. L.; Diaz-Naufal, N.; Schneider, C. M. F.; Deeg, L. F.; Sharafiev, A.; Metelmann, A. 1,2; Kirchmair, G.
1 Institut für Theorie der Kondensierten Materie (TKM), Karlsruher Institut für Technologie (KIT)
2 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Precise control over massive mechanical objects is highly desirable for testing fundamental physics and for sensing applications. A very promising approach is cavity optomechanics, where a mechanical oscillator is coupled to a cavity. Usually, such mechanical oscillators are in highly excited thermal states and require cooling to the mechanical ground state for quantum applications, which is often accomplished by utilising optomechanical backaction. However, this is not possible for increasingly massive oscillators, as due to their low frequencies conventional cooling methods are less effective. Here, we demonstrate a novel cooling scheme by using an intrinsically nonlinear cavity together with a low frequency mechanical oscillator. We demonstrate outperforming an identical, but linear, system by more than one order of magnitude. While currently limited by flux noise, theory predicts that with this approach the fundamental cooling limit of a linear system can not only be reached, but also outperformed. These results open a new avenue for efficient optomechanical cooling by exploiting a nonlinear cavity.


Volltext §
DOI: 10.5445/IR/1000156064
Veröffentlicht am 16.02.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für QuantenMaterialien und Technologien (IQMT)
Institut für Theorie der Kondensierten Materie (TKM)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 26.02.2022
Sprache Englisch
Identifikator KITopen-ID: 1000156064
Verlag arxiv
Umfang 5 S.
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page