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the GP300 array we will also investigate the potential sensitivity for radio transients such as Giant
Radio Pulses and Fast Radio Bursts in the 50-200 MHz range.
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1. Introduction

The radio technique [1, 2] for detecting both cosmic rays and neutrinos at energies above
around 100 PeV has matured. The Giant Radio Array for Neutrino Detection (GRAND)[3] will
use a huge number of antennas to detect radio emission generated by extensive air showers (EASs)
that are initiated by ultra-high-energy (UHE) particles in the atmosphere. GRAND will consist of
roughly 20 separate, independent sub-arrays of approximately 10000 radio antennas each, totaling a
combined area of 200000 km2. GRAND is proposed as a large area observatory with unprecedented
sensitivity for observations of UHE neutrinos, cosmic rays and gamma rays. It is expected to give
revolutionary insights into the origin of UHE Cosmic Rays (CR) and the nature of UHE neutrino
sources.

The GRANDProto300 (GP300) experiment is the 300-antenna pathfinder stage of GRAND.
There are multiple goals for this stage. First of all, GP300 will validate GRAND as a standalone
radio detection array and optimize the self-trigger techniques. Working as a self-triggering system
can fully exploit the potential of the radio-detection technique. This is a challenge, as the background
sources (high voltage power lines or transformers, planes, thunderstorms, etc.) dominate transient
radio signals in the tens-of-MHz frequency range. Nevertheless, the principle for such a self-
triggering mode for an EAS radio detector has been validated on a small-scale prototype array
[4, 5]. In GP300, we will develop the algorithms to reject background and identify EAS events with
improved efficiency.

Secondly, neutrino-induced EASs, which are of the major interest to GRAND, are near-
horizontal, with zenith angles above ∼ 85◦. GP300 will be an ideal test bench to improve the
reconstruction algorithm for the direction, energy and air shower development, and evaluate the
quality of the reconstruction procedure.

Finally, as the GP300 array will cover 200 km2 and from its data we will be able to precisely
measure the energy and mass composition for CRs from 30 PeV to 1 EeV, and to investigate the
CR energy spectrum and anisotropy at the transition between Galactic and extragalactic origins of
cosmic rays. The GP300 array will potentially also be sensitive to radio transients such as Giant
Radio Pulses and Fast Radio Bursts at 50-200 MHz range.

2. The GP300 detector

The GP300 array, consisting of 300 detection units, covers a 200 km2 radio-quiet area in the
western part of China.

2.1 Deployment site and layout

The radio background noise level is an important factor for the autonomous radio detection
for air showers. In our site-selection, we set the requirement that the integrated power of the
stationary noise level would be less than twice the irreducible level due to Galactic and thermal
ground emission in the 50-200 MHz. The other considerations are that there are no transient radio
emission sources, around such as high-voltage power lines, windmills, etc.

We have started the site survey in August 2017, and several candidate sites have been visited
in the Chinese provinces of Qinghai, Gansu, Xinjiang, Yunnan, and Inner-Mongolia. For two of
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these sites we are now evaluating the ease of access, infrastructure, support by local authorities, and
possible extension to the GRAND10k stage.

One candidate site close to the town of Lenghu in Qinghai Province was selected in July 2019.
The long-term measurement facilities were deployed in the summer of 2019, to measure the time
dependent behavior of the radio environment. Another candidate is in a natural preservation zone
near Dunhuang in Gansu Province.

A data collection center is built at the site, as shown in Fig 1. The first 100 antennas of GP300
have been manufactured and tested, and will be installed at the site in summer 2021. The installation
of the other 200 antennas is scheduled to be started in the middle of 2022.

Figure 1: A picture of the data collection center at the site.

The layout of GP300 covers an area of 200 km2 with a regular grid using a 1 km antenna
spacing, combined with a denser infill of 85 antennas with 500 m spacing and a core of 27 detectors
on a 250 m grid.

2.2 Antennas

GRAND will detect radio signals from air showers initiated by Earth-skimming neutrinos,
which arrive with zenith angles close to 90◦. The GP300 antenna is designed to achieve a high
detection efficiency for close to horizontal showers, therefore it is dubbed as the Horizontal Antenna.
The height of the antennas is set to 3 m above ground to decrease the diffraction effect of radio
waves off the ground.

Fig. 2 shows the schematic view of an antenna unit of GP300. The antenna unit is composed
of 5 radiation arms. Two pairs of arms are symmetrical in the east-west and north-south directions,
forming two horizontal linear polarization dipoles. The single arm in the vertical direction consti-
tutes a monopole. The detector is operated at frequencies in the range of 50-200 MHz. The upper
frequency will allow the detection of the radio Cherenkov-cone compared to previous experiments
[4, 6–8]. As GP300 has a larger frequency range, a higher signal-to-noise ratio (SNR) and better
reconstruction are expected [9].

2.3 DAQ

The analog signal in each antenna is first amplified by a 22dB low noise amplifier (LNA),
and then sent over a 5 m cable to the main board where the signal is filtered in the 50-200 MHz
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(a) (b)

Figure 2: (a) Schematic view of the GP300 antenna unit. (b) Picture of a prototype.

frequency band and optionally amplified. Afterwards it is digitized using a 14-bit ADC (AD9694)
running at a sampling rate of 500 Megasamples/s.

The digitized data is processed using a Zync FPGA with hardcore CPU (Xilinx XCZU5CG).
Adjustable digital notch filters are used to reject continuous-wave emitters that may appear in this
band. The FPGA will also process a real-time Fourier transform (FFT) of the data that can be used
for the monitoring of radio background and searching for transient astronomical phenomena, such
as FRBs.

We will transfer data to the central data acquisition (DAQ) room via WiFi technology, which
allows for a throughput of 38 MB s−1 per sector of about 50 antennas, sufficient for our needs.

2.4 Trigger

We have designed three consecutive levels to progressively reduce the background:

( T0 ) A zeroth-level trigger (T0) is generated for one antenna channel when the amplitude of a
radio signal after filtering exceeds a threshold. The threshold is set at 5𝜎 , where 𝜎 is the
mean stationary noise at the antenna output.

( T1 ) The first-level trigger (T1) performs a pulse shape analysis. It evaluates the duration and
structure of the time traces, and the signal polarization. The algorithm based on pulse
duration allows to reject 95% of the background events. T1 time-stamps are sent to the
central DAQ for evaluation.

( T2 ) The second-level trigger (T2) acts on the time-stamps sent by the T1 triggers and searches
for time coincidences among a minimum of five detection neighboring antennas. If such a
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detection is found, a 3 µs-long time-trace from the T2-triggered detection units are transferred
to the central DAQ.

In addition, there will be another mode to search for FRB-like transient radio waves. Each
antenna will continuously calculate the FFT over 4096 samples in the 100 − 200 MHz frequency
range (i.e. 25 kHz frequency resolution) and will sum them over periods of 10 ms.

2.5 Particle detector

A particle detector array with an independent trigger is planned in the GP300 phase. The
particle detector array can both validate the horizontal reconstruction of radio signals, and have
complementary measurements that enrich the physics of GP300. Either Water-Cherenkov detectors
or scintillator detectors can be used in GP300, however the exact design and layout of the array
requires a dedicated study. Even though these arrays are triggered independently, both particle
detector array and radio array will be synchronized through GPS, so that their information can be
combined to obtain the electromagnetic and muon components of air showers. In addition, we are
investigating the option of adding FAST fluorescence telescopes [10] to the GP300 site.

3. Detector performances

GP300 will be twice as large as the current phase of Auger Engineering Radio Array [6] . The
denser infill will improve the statistics of CRs at the energy down to about 30 PeV, while the large
scale of the array, 200 km2, makes it possible to derive sufficient statistics at the high energy end
around 1 EeV. The different spacing between antennas allow to test the dependence of the array
performance on the density of detection units. GP300 can detect about 105 cosmic ray events in the
energy range of 30 PeV-1 EeV after one-year operation, with an angular resolution better than 0.2◦.

4. Science cases

4.1 Air shower physics

GP300 detector adopts the hybrid detection strategy to detect cosmic rays, by measuring the
electromagnetic component via the radio array[7, 11] and the muon component via the ground array
of particle detectors. From the measurement of the electromagnetic component, one can infer the
depth of shower maximum and the energy of the primary cosmic ray[12], which is not sensitive to
hadronic interaction models. The muon component together with the depth of shower maximum
is correlated with the mass of the primary cosmic ray[13]. Therefore, with the measurements on
electromagnetic component and muon component, we can test air-shower development for different
hadronic interaction models.

4.2 Galactic/extra-galactic transition

GP300 is able to detect cosmic rays with energies beyond 30 PeV. It can detect about 100,000
cosmic ray events in the energy range of 30 PeV-1 EeV after one-year operation, and measure the
energy and mass composition of cosmic rays more precisely[14]. Hence, GP300 is able to measure
spectra of cosmic rays for each composition above the knee. It is widely believed that cosmic
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rays below the knee originate mostly from Galactic sources, and a transition between Galactic
and extra-galactic sources is expected in the energy range between 108-109 GeV[15]. Therefore,
GP300’s measurement of the spectra of cosmic rays for different compositions will help us to study
the cause of the formation of the knee and the Galactic/extra-galactic transition, and furthermore,
to constrain the astrophysical source models of cosmic rays.

4.3 Large scale anisotropy

GP300 is able to constrain the existence of a large scale Northern-Hemisphere anisotropy
with an amplitude of 10−5 at the lower energy end[14], due to its large event statistics. The
observation on the large scale of anisotropy will help us to constrain the existence of nearby
UHECR sources. Besides the measurements of spectra and mass composition as mentioned in
Section 4.2, the measurement of the large scale of anisotropy will give us one more tool to constrain
the contributions from extra-galactic sources and Galactic sources, and then finally help us to study
the Galactic/extra-galactic transition.

4.4 Ultra-high-energy gamma rays

Thanks to the particle detectors, the efficiency of distinguishing UHE gamma-rays from cosmic
rays, for zenith angles between 65◦ and 85◦ above an energy of 109 GeV, is close to 100 %. If no
gamma ray events are identified among a sample of 105 showers detected in 2 years, the fraction
of gamma ray-initiated showers will be limited to be 0.03% at the 95% C.L., while the current best
limit is about 0.14% at the energy of 109 GeV [16, 17]. The upper limit of UHE gamma-rays flux
measured by GP300 would constrain the super heavy dark matter models [16]. If GP300 is triggered
by a UHE gamma-ray-initiated shower, it would allow follow-up partner experiments in the multi-
messenger network to search for counterparts associated with the triggered UHE gamma-ray.

4.5 Radio Astronomy

The GP300 sensitivity reaches 750 Jy in the band of 100-200 MHz, making Giant Pulses from
the Crab [18] detectable. The large field of view and high duty-cycle allow GP300 to monitor the full
sky for Fast Radio Burst(FRBs), Giant Pulses, searching for possible counterparts for Gravitational
Wave Signals, and measuring of the 21-cm signature from the epoch of reionization (EoR).
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