
Neural Kernel Network Deep Kernel
Learning for Predicting Particulate
Matter from Heterogeneous Sensors

with Uncertainty

Chaofan Li(B), Till Riedel, and Michael Beigl

Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 1,
76131 Karlsruhe, Germany

chaofan.li@kit.edu

Abstract. Modern web technologies allow novel types of sensor net-
works that collect measurements from different sources ranging from
citizen-collected data to official sources. In this paper, we propose a
scheme to deal with measurement sources of different quality for time-
series prediction of urban particulate matter. Our approach is based
on a neural kernel network deep kernel learning model that takes the
highly heterogeneous and uncertain measurements provided by a post-
hoc hybrid low-cost sensor network as input. And predicts the daily aver-
age PM10 mass concentration for the next day. Furthermore, we also val-
idate the contribution of ultra-low-cost sensors in the SmartAQnet sen-
sor network, which reduces the average MAE of our model pipeline from
4.18µg/m3 to 3.67µg/m3 and increases the PCC from 0.589 to 0.665.
In contrast to existing approaches, we can model the uncertainty of the
prediction based on the quality and quantity of input signals crawled.

Keywords: Machine learning · Gaussian process regression ·
Time-series prediction · Urban air quality · Low-cost sensor network

1 Introduction

Air pollution causes severe damage to human health. According to the WHO 
Air Quality Guidelines 2021 [10], outdoor and household air pollution accounted 
for about 12% of all deaths in 2019. Moreover, even exposure to low concentra-
tions of air pollutants is dangerous, and no thresholds that could be considered 
safe were observed. Among various air pollutants, Particulate Matter (PM) is 
causally associated with all-cause mortality and diseases such as acute lower res-
piratory infections, lung cancer, etc. [6] Individual exposition can vary extremely 
within the same city. Therefore, fine-grained monitoring and forecasting of PM 
concentrations in urban areas have become an important task.

In urban air quality modeling, statistical modeling approaches based on 
machine learning (ML) algorithms are receiving more and more attention as 
they do not rely on accurate data on emission sources in rapidly changing urban
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areas. ML algorithms, however, generally require large-scale datasets to capture
the relationship between measurements and predictions.

In practical applications, a trade-off must be made between the network size
of a sensor network and the average cost of sensors due to budget constraints.
Rather than using a dedicated measurement network, post-hoc networks combine
the small number of high-precision measurement stations for which government
agencies publish data on the internet with low-cost sensors run collaboratively by
citizens and researchers [2,9]. However, fusing such heterogeneous information
into a large-scale urban air quality measurement network is often characterized
by high uncertainty.

This paper proposes a new model pipeline based on a neural kernel network
[21] deep kernel learning model. It takes heterogeneous and uncertain data col-
lected from different Internet-connected sources by the “SmartAQnet” [2] as the
input. And it predicts the daily average of PM10 concentration readings of the
four high-precision PM10 monitoring stations for the next day. As a result, our
model pipeline achieved an average mean absolute error (MAE) of 3.67µg/m3

and an average Pearson correlation coefficient (PCC) of 0.665. We also test the
effect of different preprocessing strategies and compare our prediction model
with other comparison models (baseline, MLP, LSTM, vanilla GPR, etc.). Fur-
thermore, we also validate the contribution of ultra-low-cost sensors in the Smar-
tAQnet sensor network, which reduces the average MAE of our model pipeline
from 4.18µg/m3 to 3.67µg/m3 and increases the PCC from 0.589 to 0.665.

2 Background

2.1 Urban Air Quality Data

Historical data with reliable reference measurements is an important asset
required for modeling tasks. It provides the ground truth necessary to fit and val-
idate models. Traditional urban air quality data is usually collected by sparsely
distributed high-precision measurement stations [5]. These measurement sta-
tions provide high-quality measurement data but are expensive to install and
maintain. This is why typically only a minimal number of such stations are
deployed: typically to comply with regulatory requirements. However, urban
areas are highly complex environments, so fine-grained monitoring and model-
ing of urban pollutants require high temporal and spatial resolution data. To this
end, many grassroots, scientific, or even in some cases municipality-driven efforts
have been made to simultaneously deploy at much lower price levels to balance
the spatial density and cost of deployment [2,8,9,15]. Particularly opportunisti-
cally combining the established sensor networks of different local agencies is also
a potential way to increase the data scale and resolution [2]. However, for those
internet of thing (IoT) enabled methods introduce new difficulties in the data,
namely the problem of calibration, heterogeneity and uncertainty.

Heterogeneity in IoT Air Quality Sensor Networks. For data from hybrid
sensor networks containing sensors at multiple price levels, the problem of het-
erogeneity may arise from numerous aspects, such as:
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Construction and Maintenance of the Sensor Network. The operational stability
of a sensor is often positively related to its cost. When the network contains a
large number of medium and low-cost sensors, it becomes almost impossible to
maintain the stability of the network. Figure 1 shows the average daily available
devices for each month during the operation of the SmartAQnet project [2]. In
such a network, both the deployment and the failure of sensors are present
throughout the time. Some damaged sensors may eventually be repaired or
replenished to work at the former location. However, there are also possibili-
ties that the damaged sensor may never come back to operate, especially when
it is a low-cost one.

Fig. 1. Average daily available
devices for each month

Fig. 2. Sensor deployment map of the Smar-
tAQnet project

Combination of Different Local Sensor Network. Different institutions have dif-
ferent interests in the observed properties, leading them to choose different types
of sensors and adopt different spatial and temporal strategies when deploying
their own sensor networks. Such differences in strategy will result in differences
in the structure of the data sheets, which means there will be a large number of
missing values in the merged dataset.

Uncertainty in IoT Air Quality Sensor Networks. Uncertainty issues also
come from many different sources in hybrid sensor networks, such as:

Errors of Low-Cost Sensors. The error of low-cost sensors is an essential factor in
the uncertainty of the data. For example, Budde et al. analyzed the performance
of a popular low-cost PM sensor, SDS011, in [4]. They find out in their experi-
ments that a notable variance between individual sensors can be observed, and
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the reliability of the sensor’s readings is also affected by various environmental
factors like humidity. Previous research on citizen weather stations employing
also Gaussian process regression, however, to provide spatial interpolation shows
the importance but also the complexity of modelling sensor error as uncertainty
[1].

Errors of Human Management. The longer the urban air quality sensor network
runs, the more likely it is to collect more data across different patterns to help
with better modeling. Therefore, such projects tend to last for years and generate
hundreds of millions of observational records, posing enormous challenges to
project management. In addition, some existing urban air quality projects, such
as SmartAQnet [2], Smart Emission [9], and Luftdaten.info, also include citizen
science programs, which make human management errors more difficult to detect
[3]. No one can guarantee that all human errors are detected and fixed. The
associated uncertainty probably still remains in the aggregated data.

2.2 Urban Air Pollutants Modeling

Current urban air pollutant models can be roughly divided into simulation and
statistical models. Among them, the simulation model usually makes predic-
tions by simulating the physical and chemical processes of pollutant diffusion
and reaction in the atmosphere [16,19]. In comparison, the statistical model
makes predictions by summarizing the statistical characteristics from historical
observations [13,17,18,20]. Our model pipeline adopts a Gaussian process-based
statistical modeling approach.

Gaussian Process Regression. Gaussian Process Regression (GPR) is a clas-
sic non-parametric Bayesian regression algorithm. It has the advantage of per-
forming well on small datasets and provides a measure of uncertainty for pre-
dictions.

Unlike many popular supervised machine learning algorithms such as MLP
and LSTM, Bayesian methods don’t just learn an exact value for each parameter
in a function. They infer the probability distribution of the parameter over all
possible values. The way Bayesian methods work is to specify a prior distribution
p(w) for the parameter w and then use the Bayesian rule (Eq. 1) to relocate this
probability distribution based on the evidence (that is, observational data).

p(w|y,X) =
p(y|X,w) × P (w)

p(y|X)
(1)

The relocated probability distribution p(w|y,X) is called the posterior distri-
bution, containing information from both the prior distribution and the dataset.
When we want to predict the label of a point of interest x∗, the predictive distri-
bution can be calculated by weighting all possible predictions by their posterior
distribution (Eq. 2).
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p(f∗|x∗, y,X) =
∫
w

p(f∗|x∗, w)p(w|y,X)dw (2)

Instead of calculating a probability distribution over the parameters of a
particular function, GPR calculates a probability distribution over all possible
functions that fit the data. In GPR, we first assume a Gaussian process prior,
which can be defined by a mean function m(x) and a covariance function k(x, x′).
The training set and the predicted points of interest are joint multivariate Gaus-
sian distributed from the Gaussian process prior (Eq. 3). The training process of
GPR is to find suitable parameters for the mean and covariance functions. This
is usually done with the help of a gradient-based optimizer by maximizing the
log marginal likelihood on the training set.

[
y
f∗

]
∼ N

([
μ
μ∗

]
,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(3)

3 Methodology

3.1 Data Description

The data used in this paper is freely available on the internet and aggregated
by the www.smartaq.net website. For reproducibility, we are using a dataset
provided by the SmartAQnet project that covers all measurements from January
1, 2017, to December 31, 2021 [14].

SmartAQnet combines meteorology and aerosol measurement data collected
by different entities. A considerable portion of the sensors is located in a rect-
angular area of 6 × 4 km that covers most of the city of Augsburg, Germany
(Fig. 2). The time resolution of the sensor varies by its model. Among them,
the high-precision PM10 measuring station generates a record every 1 h, and the
temporal resolution of the vast majority of the other sensors is between 5 min
and 5 s.

In this study, we treat the data from the above-mentioned 4 high-precision
PM10 measurement stations as labels. Other data are treated as input data.
Several sensors with remote locations and all height profile data are removed.
The considered sensors are all located in a rectangular area of about 16×16 km.
Among over 30 observed properties provided in the dataset, we select 9 proper-
ties that we believe are highly correlated with PM10 concentration to be input
into our model. Namely PM10 mass concentration, PM2.5 mass concentration,
temperature, relative humidity, air pressure, precipitation, wind direction, wind
speed, and global radiation.

3.2 Model Pipeline

Our model pipeline could be divided into three steps: data preprocessing, feature
extraction, and prediction.

www.smartaq.net


NKN Deep Kernel Learning for Predicting PM with Uncertainty

Data Preprocessing. The data preprocessing step is responsible for receiv-
ing the readings directly from the sensor network and preliminarily eliminating
heterogeneity and uncertainty in the input data through methods such as aggre-
gation and interpolation. The data preprocessing step can be further divided
into two stages: temporal-spatial aggregation and window generation.

Temporal-Spatial Aggregation. Data aggregation is a simple and effective way to
reduce data uncertainty, especially good at dealing with the influence of sym-
metrically distributed noise and small probability events. Thanks to the high
temporal and spatial resolution of the SmartAQnet network, we can aggregate
a considerable number of observation records into one. In this stage, the aggre-
gation will be carried out on all input data on the time and space dimensions
(Fig. 3). All data from the four high-precision PM10 measurement stations, which
will be used as labels, are excluded from data aggregation.

Fig. 3. The workflow of the Temporal-Spatial Aggregation stage

In the time dimension, the aggregation resolution is 1 h, while in the spatial
dimension, the spatial extent covered by the dataset (about 16 × 16 km, as
mentioned earlier) is divided into 50 × 50 grids. That is, The spatial resolution
is about 300 × 300 m. The aggregated data structure is shown in Fig. 3: the
data is represented as several 1-hour time slices in the time dimension. Each
time slice is defined as a 50 × 50 grid with 9 channels to reproduce the spatial
relationship of the data. Each channel represents one of the above-mentioned 9
observed properties considered relevant to PM10.

After the aggregation, we consider two additional processing operations:
One processing operation is to slice and center the spatial grid. Precisely, we

slice each of the above-mentioned 50×50 spatial grids, ensuring that the position
we want to predict is in the center of the sliced grid. We’re not sure if the model
will benefit from this operation. According to Tobler’s First Law of Geography
[22], everything is related to everything else, but near things are more related
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than distant things. By slicing, we hopefully help the model exclude interference
from distant noise. On the opposite side, in the SmartAQnet sensor network,
some observed properties are only collected by a few sensors. An aggressive slic-
ing may cause the input data to lose too much information about these observed
properties, resulting in a dramatic decline in model performance. Therefore, we
decided to demonstrate whether slicing should be performed through experimen-
tal results.

Another processing operation is to perform interpolation on the spatial grid.
We think this helps eliminate heterogeneity in the data further. An obvious
benefit is that even the most naive interpolation method can help the model
distinguish whether an input 0 is a measured value of 0 or we don’t know any-
thing about it. Another potential benefit of interpolation is that it promises to
alleviate the shortcomings of the slicing step mentioned above. By interpolation,
we can generalize the information of observed properties recorded by only a few
sensors to the entire grid, which leads to less information loss due to slicing. In
addition, a “wonderful” interpolation that can take land use and the wind into
account is expected to improve the homogeneity and expressiveness of the input
data significantly. But since this problem belongs to another research direction,
and its complexity is no less than the time series prediction problem, we plan
to take this topic as a future research direction. In this article we only consider
Inverse Distance Weighting (IDW) interpolation.

Window Generation. In this stage, we create time windows using the time slices
generated in the previous temporal-spatial aggregation stage. After the window
generation stage, a piece of training data for predicting the daily average PM10
concentration on day T looks as shown in Fig. 4. It consists of two parts: times-
tamp and time window.

Fig. 4. A piece of training data processed after the window generation stage for pre-
dicting the daily average PM10 concentration on day T

For the timestamp part, we use two-dimensional relative timestamps. One
dimension represents how many days have passed from the first day of this year
until day T. Another dimension means which weekday day T is. We use relative
timestamps because, during GPR training, we observed that GPR is difficult to
give effective confidence interval estimates in extrapolation tasks. Because GPR
does not find any experience from the training set in the corresponding area,
thus it does not have any confidence in its prediction. We transform time series
prediction into an interpolation problem using relative timestamps, resulting in
more reliable predictions and confidence intervals. But this approach also comes
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at a cost. For example, it completely ignores the difference between different
years. In fact, during the operation of the SmartAQnet project, we experienced
the coronavirus pandemic. The lockdown policy is likely to lead to the data
pattern over the years are not the same, thus affecting the model performance.

As for the time window part, we select N time slices before 0:00 of the day
T, which were generated by the previous temporal-spatial aggregation stage. In
our experimental setup, N takes a value of 24. That means the time window
includes all the time slices of day T-1.

Feature Extraction. The feature extraction step is responsible for receiving
the output of the data preprocessing step and performing feature extraction.
Feature extraction refers to processing the features that need input to the model
through methods such as screening or reorganization to eliminate information
redundancy in the input data as much as possible.

In our model pipeline, the feature extraction step mainly has the following
two contributions. First, feature extraction reduces the dimension of the input
data, making the data more discriminable when the total amount of data is
limited. Secondly, during the feature extraction process, the data will lose some
unnecessary details (which usually could be treated as noise), which helps further
to reduce the impact of data uncertainty on the model.

We tested three feature extraction methods during the model testing phase:
Principal Component Analysis (PCA), Convolutional Neural Network (CNN),
and Auto-Encoder. Among them, CNN and Auto-Encoder didn’t perform well.
We believe this is because our dimension reduction task is too heavy (the original
input has about 540000 dimensions). At the same time, the total amount of data
is too small (only c.a. 1500 available time windows established). PCA, on the
other hand, performed well on data generated by all the above-mentioned pre-
processing strategies. When set to capture 95% of the variance, PCA can reduce
the preprocessed data from 540000 dimensions to 90—240 dimensions (depend-
ing on the settings of the preprocessing steps). In addition, PCA maintains some
data interpretability. We finally decide to use PCA for feature extraction in the
model pipeline.

Prediction Model. The prediction model is a machine learning model for
regression tasks. As mentioned above, our pipeline uses a GPR-based prediction
model.

Neural Kernel Network. The covariance function (kernel) is essential to the GP
models. The choice of kernel determines almost all the generalization properties
of a GP model. This is because the kernel incorporates prior assumptions about
the characteristics of the data. In Vanilla GPR, the kernel selection relies heavily
on the user’s experience and prior knowledge of the data, but this is not always
feasible. For example, users’ prior knowledge of urban air quality prediction tasks
is limited. Moreover, the data is often unrecognizable after many preprocessing
steps. In addition, with the rise of combination kernel methods [7,11,12,21],
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it has been found that adding or multiplying multiple kernels can express more
complex priors, which further increases the difficulty of choosing a proper kernel.
In this context, the concept of compositional kernel learning is introduced. Its
idea is to automate the selection and combination of kernels as part of the
training process.

The Neural Kernel Network (NKN) [21] is a compositional kernel learning
method. It uses a neural network-styled structure to represent the weighted
addition and multiplication of kernels. And it can adjust the weights in the
network through back-propagation to automatically select the structure of the
combined kernel. The following Fig. 5 shows the basic structure of NKN.

First, we need to choose some commonly used kernels (such as RBF kernel,
linear kernel, periodic kernel, RQ kernel, etc.) as the basic kernels, and these basic
kernels are used as the input layer of the network. After that, each network layer
can be divided into two parts, the first part is responsible for weighted addition,
and the second is for multiplying adjacent results from the weighted addition
step with each other. The last layer of the network has only one output, which
can be seen as the result of the final combined kernel.

Fig. 5. The structure of a Neural Kernel Network kernel

Prediction Model Design. In our model pipeline, the prediction model consists
of MLP and GPR (Fig. 6). We first use an MLP with 2 hidden layer to remap
the output from the feature extraction step. Then the data will be input to a
GPR model with a constant mean function and an NKN kernel for the regression
task. We use RBF kernels, RQ kernels, Cosine kernels, and Matern kernels as
the basic kernels of the NKN kernel. In the network part of the NKN kernel, we
use two layers: the first layer has 4 outputs and the second layer has 1 output. In
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addition to this structure, we also implement some other regression models for
performance comparison. Detailed information will be discussed in the following
Sect. 4.

Fig. 6. The structure of the prediction model

4 Experiments

4.1 Model Performance and Comparison

We conducted controlled experiments to determine the optimal model pipeline
steps and evaluate our predictive models’ performance. As described in Sect. 3,
three components need to be tested and assessed: whether interpolation is
required, if grid slicing and centering are necessary, and which predictive model
to use. For interpolation, we only consider two cases of no interpolation and
IDW interpolation. For grid slicing and centering, we consider three cases: no
slicing, big slicing (21 × 21 grid centered on the predicted point), and small slic-
ing (11 × 11 grid centered on the predicted point). For the prediction model,
in addition to the MLP + NKN kernel GPR proposed above, we also tested
another five cases, namely MLP, LSTM, RBF kernel GPR, NKN kernel GPR,
and MLP + RBF kernel GPR. That is, a total of 36 sets of experiments were
carried out.

For each set of experiments, we first do a hyperparameter tuning. After that,
we train 2 times for each of the 4 high-precision PM10 measurement stations and
then average these 8 training results as the performance of this pipeline setting.
We use this metric to decide which pipeline setting is the best for each prediction
model. Then we train additional 3 times with the best setting of each model.
We compared these results with each other and also with the baseline (using the
previous day label as the predicted value). The result of the best performance
of each prediction model and in which pipeline settings it was achieved is shown
in the following Table 1.

From the results in Table 1, we can draw the following conclusions:
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Table 1. The best performance of each prediction model

Model Best MAE Best PCC Best Settings

Interpolation Slice & Center

Baseline 4.71 0.502 - -

LSTM 4.04 ± 0.07 0.575 ± 0.020 True Big Slicing

MLP + RBF GPR 3.89 ± 0.08 0.624 ± 0.015 True Big Slicing

RBF GPR 3.87 ± 0.06 0.635 ± 0.007 True Big Slicing

NKN GPR 3.80 ± 0.04 0.641 ± 0.006 True Big Slicing

MLP + NKN GPR 3.67 ± 0.08 0.665 ± 0.014 True Big Slicing

MLP 3.66 ± 0.04 0.690 ± 0.001 True Big Slicing

Fig. 7. MLP model (red line) can only give a single-valued prediction, GPR-based
model (green line and interval), however, can also give a reasonable confidence interval
of prediction through Bayesian theory. (Color figure online)

1. All prediction models give the best results in the experimental setting of
interpolation + big slicing, which is consistent with our intuition described
in Sect. 3.2.

2. Among all GPR-based models, the MLP + NKN GPR model is the best-
performing one. Overall, MLP achieves the best performance, and surpris-
ingly, LSTM, which is usually considered a better solution to the time series
problem, shows the worst result. After analysis, we believe this should be
because the recurrent neural network (RNN) design determines that it is
better at dealing with short-term dependencies. As an improvement to RNN,
although LSTM has gained the ability to deal with long-term dependencies by
adding gates mechanisms such as forget gates, the number of hidden units still
limits its ability to express long-term memory. On the other hand, we believe
that in this specific problem of PM10 forecasting, the short-term dependen-
cies (such as the distribution over the last hour and the distribution of the
same day in the previous week) and ultra-long-term periodic dependencies
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(such as the same day of the other years) are dominant. In contrast, the more
recent long-term dependencies (such as distributions from months ago), which
LSTMs are good at handling, have relatively little impact on this problem.
Furthermore, it must be pointed out again that MLP and LSTM also has
the following shortcomings: MLP and LSTM are uninterpretable model and
can only give a single-valued prediction, which means they cannot provide a
reasonable confidence interval (Fig. 7, red line). In many scenarios (such as
critical decision-making, when people are more reluctant to make mistakes),
an uninterpretable single-valued prediction can only provide very limited help.
The GPR-based model can give the confidence interval of prediction through
Bayesian theory, which means the prediction given by the model is a Gaussian
distribution. We can not only obtain the average value of this distribution (as
a single-valued prediction) but also the standard deviation of this distribu-
tion can also be obtained (as the model’s confidence in its predictions) (Fig. 7,
green line and interval).

3. NKN kernel can effectively improve GP models’ performance without prior
knowledge of the dataset with the help of compositional kernel learning meth-
ods. Figure 8 shows the prediction results using the NKN kernel, the Matern
kernel and the Cosine kernel. Since different kernels represent different prior
assumptions about the dataset, their predictions are also entirely different.
The NKN kernel can make multiple assumptions through its base kernels and
then benefit from all these assumptions by learning the composition structure
of these base kernels.

Fig. 8. Sample of the prediction results using the NKN kernel, the Matern kernel and
the Cosine kernel

4.2 Evaluating the Role of Low-Cost Sensors in Prediction Tasks

As the first machine learning-based time series prediction study on the Smar-
tAQnet dataset, we are also interested in the contribution that low-cost sensors
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can make to data analysis. Indeed, to improve sensor networks’ temporal and
spatial resolution, we must make a trade-off in cost. However, there have still
been ongoing discussions about whether introducing ultra-low-cost sensors and
citizen science projects into the network could benefit the datasets [3]. For this
question, we also set up a set of controlled experiments.

The experimental setup is straightforward. We remove all data collected by
ultra-low-cost sensors (84 CrowdSensing Nodes) from the dataset and then train
the model pipeline with the same experimental setup as the above-mentioned
best practice. It is worth noting that after removing these ultra-low-cost sensors,
the entire sensor network still has over 100 sensors, which is still very dense for
the spatial extent we model. We run each set of experiment 5 times, the following
Table 2 shows the results of the experiments:

Table 2. The contribution that low-cost sensors can make to data analysis

MAE ± std PCC ± std

With Ultra-low-cost Sensors 3.67 ± 0.08 0.665 ± 0.014

Without Ultra-low-cost Sensors 4.14 ± 0.04 0.589 ± 0.032

Baseline 4.71 0.502

The results of the experiments are evident: although ultra-low-cost sensors
introduce more heterogeneity and uncertainty into the aggregated dataset, they
can significantly improve the expressiveness of the data when processed and
analyzed appropriately.

5 Conclusions

In this paper, we propose a new model pipeline for time-series prediction of
urban particulate matter based on heterogeneous sensor information. The model
pipeline takes measurements aggregated from multiple internet sources with high
heterogeneity and uncertainty as input and predicts the daily average PM10
mass concentration for the next day. We have experimentally determined the
suitable components for the model pipeline: to sequentially perform temporal-
spatial aggregation, spatial interpolation, slicing and centering, window gener-
ation, PCA dimensionality reduction on the input data, and then use MLP +
GP regression with an NKN kernel to perform the prediction task. Ultimately,
our model pipeline achieved an average MAE of 3.67µg/m3 and a Pearson cor-
relation coefficient of 0.665.

Furthermore, we experimentally verify the contribution of citizen-run ultra-
low-cost sensors in the prediction. Thanks to their meager cost, ultra-low-
cost sensors can be large-scale deployed by institutional entities or popularized
through citizen science programs. Although these sensors pose challenges such
as heterogeneity and uncertainty, they significantly increase the temporal and
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spatial coverage of the data. We observe that the addition of ultra-low-cost sen-
sor data reduces the average MAE of our prediction model from 4.18µg/m3 to
3.67µg/m3 and increases the PCC from 0.589 to 0.665. As long as processed and
analyzed appropriately, ultra-low-cost sensors will definitely result in a signifi-
cant performance improvement. We thus believe that post-hoc sensor networks
that fuse different sensor sources in an opportunistic manner can thus advance
knowledge in areas into which classical measurement systems cannot scale due
to the cost of initial installation and maintenance. Prediction quality, however,
can wildly vary based on the quantity and quality of the local sensor. Thus
new prediction methods are needed that can derive certainty measures from
the available data. We are confident that Gaussian process modeling can be a
key component to inter- and extrapolating heterogeneous information sources.
Machine learning approaches like neural networks can greatly help to derive fit-
ting kernels that qualify relations between multiple heterogeneous data sources
and choose hyperparameters according to the observed data.
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