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Abstract

Proof systems and zero-knowledge arguments have been a captivating subject of research since their
conception. Perhaps they receive even more attention nowadays, as they are reaching practical maturity.
In this dissertation, we expand the understanding of zero-knowledge arguments, by providing new
theoretical foundations, improved security analyses, and new constructions.

Theoretical Foundations. There are several definitions of zero-knowledge arguments, depending on
the exact security guarantees. A widespread definition considers (strict) probabilistic polynomial time
(PPT) provers, verifiers, and also adversaries, but allows expected polynomial time (EPT) simulator (and
knowledge extractors). The asymmetry between the efficiency classes of simulator and adversary not
only violates the idea of zero-knowledge — that anything that can be learned in an interaction with a
prover could also be simulated without any interaction — but it also hinders sequential composability.
Yet, this asymmetry is accepted in the plain model, because it is the only way to construct efficient
zero-knowledge arguments of knowledge, i.e. constant round black-box protocols with negligible
knowledge error and black-box simulation (Barak–Lindell, STOC’02). Compared to PPT, handling
EPT adversaries is surprisingly non-trivial, since average-case efficiency is harder to handle and less
well-behaved than worst-case efficiency. For example, an indistinguishable game hop can change the
expectation from polynomial to infinite.

To rectify this behaviour, we define computationally expected polynomial time (CEPT) algorithms,
which slightly expands the class of algorithms to include those which are indistinguishable from
EPT algorithms. The resulting efficiency class not only behaves well w.r.t. indistinguishable game
hops, it also allows us to handle CEPT adversaries with CEPT simulators, restoring the promise of
zero-knowledge and enabling modular sequential composition.

Improved Security Analysis and Efficiency. Security of a cryptographic scheme, say a zero-knowledge
argument Π, is usually defined asymptotically — in terms of negligible functions and polynomial time
— and its security is shown by reductions to certain assumptions 𝐴𝑖 . In this context, an important
quantitative measure is the security loss, both in success probability, i.e. how much of the advantage
of an adversary against Π can be turned into advantage against the assumptions 𝐴𝑖 , and in runtime
tightness, i.e. how does the runtime of the reduction to assumption 𝐴𝑖 relate to the runtime of the
attack on Π. Tightening the bounds on the security loss is both of theoretical and practical interest.
Indeed, tight(er) reductions justify the use of small(er) security parameters and thus improve practical
efficiency.

Related to such tightness questions is the “expressivity” of NP-relations. The more expressive a relation,
the easier it is to encode high-level statements, and the smaller the witness (and often the security
loss) can be. Working on the folding technique from Bulletproofs (Bootle et al., EUROCRYPT’16, and
Bünz et al., S&P’18), we (1) define a new notion, called short-circuit extraction, to achieve tighter
security for knowledge extraction; (2) derive an argument system whose witness relation is general
quadratic equations (instead of the subclass of so-called rank-1 constraints) without compromising on
efficiency.
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Shorter Relaxed Range Proofs. Proving that a commitment contains a value which lies within a certain
(integer) range is an important special-purpose relation, and such zero-knowledge arguments are called
range proofs. For example, they are a widespread building block for privacy-enhancing technologies.
We show how to translate the use of the four square decomposition (Boudot, EUROCRYPT’00) of
non-negative integers, which was previously limited to integer commitment schemes over hidden
order groups, to commitment schemes over groups of known prime order. Our most efficient schemes
offer a relaxed form of soundness, namely membership within a range of rational numbers with short
numerator and short denominator, which is sufficient for certain applications and more than 10× faster
than Bulletproofs. We also show how to obtain stronger soundness, e.g. standard soundness, through
addition of a single hidden order group element.
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Zusammenfassung

Beweissysteme und zero-knowledge Argumente sind seit ihrer Erfindung ein faszinierender Forschungs-
gegenstand. Vielleicht erhalten sie heutzutage sogar mehr Aufmerksamkeit, da sie mittlerweile einen
praktischen Reifegrad erreicht haben. In dieser Dissertation erweitern wir das Verständnis von zero-
knowledge Argumenten, indem wir neue theoretische Grundlagen legen, verbesserte Sicherheitsanaly-
sen geben und neue Konstruktionen aufzeigen.

Theoretische Grundlagen. Es gibt verschiedene Definitionen von zero-knowledge Argumenten, die
sich in ihren genauen Sicherheitseigenschaften unterscheiden. Eine weit verbreitete Definition betrach-
tet strikte probabilistisch polynomialzeitige (PPT) Beweiser (prover), Prüfer (verifier), und ebensolche
Angreifer, aber sie erlaubt erwartet polynomialzeitige (EPT) Simulatoren (und Wissensextraktoren
(knowledge extractors)). Diese Asymmetrie zwischen der Effizienzklasse von Simulator und Angreifer
verletzt nicht bloß die Idee der Zero-Knowledge-Eigenschaft — nämlich, dass ein Angreifer alles, was er
in einer Interaktion mit dem Beweiser lernt, auch hätte ohne Interaktion selbst simulieren können — es
behindert auch sequentielle Protokollkomposition. Nichtsdestotrotz ist diese Asymmetrie akzeptiert, da
es im sogenannten schlichten Modell (plain model) die einzige Möglichkeit ist, effiziente zero-knowledge
Wissensargumente (arguments of knowledge) mit Blackbox-Simulation zu konstruieren, d.h. Blackbox-
Protokolle mit vernachlässigbarem Wissensfehler (knowledge error) und Blackbox-Simulation (Barak–
Lindell, STOC’02). Im Vergleich zu PPT Angreifern ist es überraschend nicht-trivial EPT Angreifer zu
behandeln, denn durchschnittliche (average-case) Laufzeit ist schwieriger handhabbar als schlimmst-
mögliche (worst-case) Laufzeit. Ein besonderes Problem ist hierbei, dass selbst ein ununterscheidbarer
Spielschritt (game hop) die erwartete Laufzeit von polynomiell auf unendlich ändern kann.

Um dieses Verhalten zu korrigieren, definieren wir komplexitätstheoretisch (computationally) erwartete
Polynomialzeit (CEPT), indem wir die Klasse der Algorithmen um solche erweitern, die Ununterscheid-
bar von EPT Algorithmen sind. Die daraus erhaltene Effizienzklasse verhält sich nicht nur gutartig
bezüglich ununterscheidbarer Spielschritte, sie erlaubt es auch CEPT Angreifer mit CEPT Simulatoren
zu handhaben, womit das Versprechen der Zero-Knowledge-Eigenschaft wiederhergestellt ist.

Verbesserte Sicherheitsanalysen und Effizienz. Die Sicherheit eines kryptographischen Verfahrens,
z.B. eines zero-knowledge Arguments Π, ist üblicherweise asymptotisch definiert — über vernachlässig-
bare Funktionen und polynomielle Laufzeit — und dessen Sicherheit wird durch eine Reduktion auf
bestimmte Annahmen 𝐴𝑖 gezeigt. Ein wichtiges quantitatives Maß in diesem Kontext ist der Sicher-
heitsverlust, sowohl im Angreifererfolg — d.h. wie viel des Angreifervorteils in einen Vorteil gegen die
Annahmen 𝐴𝑖 umgewandelt wird — als auch in der relativen Laufzeit (runtime tightness) — d.h. wie
sich die Laufzeit der Reduktion auf die Annahme 𝐴𝑖 zur Laufzeit des Angriffs auf Π verhält. Schärfere
Schranken für den Sicherheitsverlust sind sowohl von theoretischer als auch praktischer Bedeutung,
denn schärfere Reduktionen ermöglichen die Verwendung niedrigerer Sicherheitsparameter womit die
praktische Effizienz verbessert wird.

Verwandt mit diesen Fragen ist auch die „Ausdrucksstärke“ einer NP-Relation. Je ausdrucksstärker eine
Relation ist, desto einfacher ist es, eine abstrakte Aussage mithilfe der Relation zu codieren, und umso
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kleiner ist der Zeuge (und üblicherweise auch der Sicherheitsverlust). Unter diesem Gesichtspunkt
betrachten wir die Faltungstechnik von Bulletproofs (Bootle et al., EUROCRYPT’16, and Bünz et al.,
S&P’18), und wir (1) definieren einen neuen Begriff, die Kurzschlussextraktion, die es erlaubt schärfere
Laufzeitschranken für Wissensextraktion zu erreichen; (2) konstruieren ein Argumentsystem welches
allgemeine quadratische Gleichungssysteme als Zeugenrelation besitzt (statt der Teilmenge R1CS wie
bei Bulletproofs) ohne die Effizienz zu beeinträchtigen.

Kleinere Abgeschwächte Intervallbeweise. Sogenannte Intervallbeweise (range proofs) sind ein wich-
tiges Argumentsystem für eine bestimmte Relation. Sie beweisen, dass ein Wert in einem Commitment
innerhalb eine bestimmten Ganzzahlintervalls liegt. Zum Beispiel in datenschutzfreundliche Technolo-
gien (privacy-enhancing technologies) sind Intervallbeweise ein weit verbreiteter Baustein. Wir zeigen
auf, wie sich die Idee der Vier-Quadrate-Zerlegung (Boudot, EUROCRYPT’00) nicht-negativer Ganz-
zahlen, welche zuvor auf Ganzzahlcommitmentverfahren (integer commitment schemes) über Gruppen
unbekannter Ordnung beschränkt waren, auf Commitmentverfahren über Gruppen bekannter primer
Ordnung übertragen lassen. Unser effizientestes Verfahren bietet eine abgeschwächte Sicherheitsga-
rantie (relaxed soundness), denn statt Intervallzugehörigkeit als Ganzzahl wir nur Zugehörigkeit als
Bruch mit kleinem Nenner und kleinem Zähler sichergestellt, was jedoch für bestimmte Anwendungen
genügt und mehr als 10× schneller ist als Bulletproofs. Wir zeigen des Weiteren, wie stärkere Sicher-
heitsgarantien, z.B. gewöhnliche Sicherheit, mittels Hinzufügens eines einzigen Elements einer Gruppe
unbekannter Ordnung erreicht werden kann.
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Introduction





1. Introduction

Since the invention of the personal computer, the internet and the world wide web, we have entered a
new information age with easy, quick and omnipresent access to and distribution of digital information.
However, these ever-present possibilities also gnaw away at the privacy of its voluntary and involuntary
users. Cryptography provides the technical means to tackle the questions of privacy and authenticity in a
digital world, enabling private and secure communication through encryption and digital signatures, and
much more with other advanced cryptographic primitives and protocols, such as (fully) homomorphic
encryption [RAD78; Gen09] or general multi-party computation[Yao86; GMW86].

Interactive Proofs and Arguments. Among these advanced cryptographic protocols, there are so-
called (interactive) argument systems, also called proof systems [GMR85; BCC88],which generalize
mathematical proofs. Traditionally, a mathematical proof of a statement x is a string w or sequence of
logical derivations based on axioms (or previously established true statements). Thus, mathematical
proofs can be interpreted as a relation R of statement x and proof w, where (x,w) ∈ R if w is
a convincing proof for x. This idea is translated to complexity theory by taking into account the
computational complexity of verifying a proof, hence considering an efficiently computable relation R,
i.e. an NP-relation, with associated languageL = {x | ∃w : (x,w) ∈ R} of “true statements” x. The
“proof” w is called a witness for x ∈ L if (x,w) ∈ R. In an interactive proof system, a party P, called
the prover, wants to convince another party V, called the verifier, of the fact that x ∈ L.

A proof system should be correct, i.e. if two honest parties P and V interact on common input x ∈ L then
V should accept. It should be sound, i.e. if x ∉ L even a malicious prover P∗ cannot convince the honest
verifier V except with small probability. Proof systems for NP-languages with a probabilistic polynomial
time (PPT) prover which receives a witness w as additional input (satisfying (x,w) ∈ R), are also
called argument systems. In cryptography, proof and argument system is often used interchangeably
and merely refers to the syntax (i.e. a prover interacting with a verifier) of the protocol.1

While the trivial protocol, mimicking a mathematical proof by sending the witnessw to the verifier, is a
valid argument system, this does not exploit the power of interaction at all. Indeed, through interaction
and computational complexity assumptions, completely new properties can be obtained:

Sublinear communication: The communication between prover and verifier can be much shorter than
the witness w, e.g. logarithmic in the bit length |w| of w.

Sublinear computation: The computation of the verifier can be sublinear in |w| (but we do not consider
this in this work).

1 Historically, coming from complexity theory, proof systems were defined for arbitrary languages, not only NP-relations, and
thus concerned unbounded provers (and consequently soundness against unbounded adversaries, i.e. statistical soundness).
On the other hand, argument systems concerned (honest or malicious) PPT provers, and only guaranteed computational
soundness. This distinction has mostly been replaced by explicit soundness guarantees (computational or statistical),
especially in cryptography. Moreover, since even theoretical cryptography mostly revolves around efficient protocols, PPT
provers for NP-relations are the archetypal setting.
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Zero-knowledge: The interaction may only reveal that x ∈ L but not leak any other information to a
potentially malicious verifier V∗.

Knowledge soundness: A convincing prover must “know” a witness w with (x,w) ∈ R (even if w is
not sent to the verifier, e.g. in a zero-knowledge argument).

An incredibly versatile combination of these properties are zero-knowledge arguments of knowledge,
abbreviated as ZKAoK, which are argument systems that are both zero-knowledge and knowledge
sound. For example, a ZKAoK allows the prover P to convince the verifier V that it honestly computed
the output 𝑧 of a public (efficient) program 𝐹 with public input 𝑥 and secret input𝑤 , i.e. that 𝑧 = 𝐹 (𝑥,𝑤).
Almost anything of interest (indeed, anything one can compute) is easily expressed as a public program
with public and secret inputs, e.g. one can prove that a ciphertext contains a solution to a hard puzzle,
say a Sudoku, without revealing the solution. Knowledge soundness asserts that P really knows such
a witness𝑤 . Zero-knowledge asserts that, besides what can be derived from the output 𝑧 = 𝐹 (𝑥,𝑤),
nothing (more) about𝑤 is revealed. This privacy-preserving assurance of honest computation is what
makes ZKAoKs an extremely flexible and broadly applicable tool. In practice, one uses relations and
protocols which are tailored to specific problems of interest. For example, an identification card might
prove that one is older than 18 years without revealing the actual date of birth.

Before we jump to the contributions of this thesis, let us recall on a high-level how zero-knowledge
arguments of knowledge are defined, and how they are proven secure.

1.1. Zero-Knowledge Arguments (of Knowledge)

The requirements of zero-knowledge and (knowledge) soundness seem contradictory. But these two
guarantees consider different possible misbehaviours, and thus can co-exist. For zero-knowledge, one
must control what a potentially malicious verifier learns from the interaction with an honest prover. For
knowledge soundness, one must extract a witness from a potentially malicious prover which convinces
an honest verifier. Now, we give a more precise, but still informal, discussion of these properties.

Zero-Knowledge Simulator. What does it mean to “learn nothing” from an interaction? The general
definition of (black-box) zero-knowledge [GMW86] postulates an efficient simulator Sim which is given
black-box rewinding access (denoted by SimV∗ ) to the potentially malicious verifier V∗, i.e. Sim can
send messages to a virtual copy of V∗, receive responses and rewind it to some prior state. The goal is
that SimV∗ (x) generates an output which is indistinguishable from the view of V∗ (i.e. all messages V∗
received) in an interaction with the honest prover P(x,w). Observe that Sim neither has w as input
nor interacts with P(x,w), yet its simulated output is indistinguishable from the view of V∗. In other
words, instead of interacting with P, V∗ could just run SimV∗ in its head to obtain the same information.
Thus, clearly, nothing new is learnt by interacting with the prover P.

To achieve this feat, the simulator Sim uses its black-box rewinding access to V∗ to explore V∗’s reaction
to different messages in a given state, by sending a message, rewinding V∗, and then trying another
message. This power of the simulator over the adversary allows manipulating an execution (via
rewinding) in a way which is completely impossible in a normal, straight-line execution. For example,
the simulator might first learn a verifier’s next message, called a challenge, rewind it, and then produce
a specially crafted response which is convincing for exactly that challenge (but maybe none other).
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Knowledge Extractor. The definition of (black-box) knowledge soundness [BG93; BG11] postulates an
efficient extractor Ext which is given black-box rewinding access to some potentially malicious prover
P∗. Exploiting the power of rewinding, the extractor is able to obtain multiple related responses from P∗,
by feeding it different challenges (in place of the honest verifier). In a knowledge sound protocol, these
responses are correlated in such a way that it is possible to recover the witness.

Rewinding: Two Sides of the Same Coin. In our description of zero-knowledge simulation resp. knowl-
edge extraction, we considered black-box rewinding access to the adversary (the malicious verifier, resp.
the malicious prover). While, this is conceptually simple and clean, it also comes with a price: It can be
shown that practically efficient protocols, namely constant round protocols with negligible soundness
error, are impossible with PPT simulation and extraction. To avoid this, a widespread definition of
zero-knowledge arguments of knowledge allow expected polynomial time (EPT) simulators and/or
extractors. This leads to neat definitions, allows proving natural protocols secure, and seems like a
wonderful solution. Alas, unlike PPT, EPT does not compose well and is prone to subtle problems.

Setups for Practical Efficiency. In the above, we always considered the plain model, where prover
and verifier interact without any common/shared information except the statement x. For practically
efficient zero-knowledge arguments, one often relies on a so-called setup assumption, e.g. that prover
and verifier share a common reference string (CRS) which was generated by an honest party. In the
best case, this CRS is simply a uniformly random string (URS), which can be heuristically generated in
the real world by nothing-up-my-sleeve methods, e.g. using the digits of 𝜋 . These setups also allow
simulation in PPT. In principle, they also allow extraction in PPT, however, to the best of our knowledge
this is only possible when the proofs do not have sublinear communication (excluding a large class of
proofs of particular interest) or under strong assumptions.2

Tightness of Security. One can define zero-knowledge simulation and knowledge extraction using
quantitative measures. For zero-knowledge, one can quantify simulation in terms of a simulation error
(for the simulation’s quality) and the runtime of the simulator. For knowledge soundness, one can
quantify in terms of a knowledge error (which ties V’s acceptance and Ext’s extraction probability
together) and the runtime of the extractor. In theoretical works, the runtime tightness, i.e. the factor
by which the runtime of a simulator or extractor increased over the real execution, is often ignored
(beyond ensuring polynomial time). However, to justify a concrete choice of security parameter𝜆, one
cannot argue with “negligible” and “PPT” anymore, since these make no sense for fixed 𝜆. Thus, to
have good provable assurances in this setting, it is vital to achieve the fastest possible runtime for
simulator and extractor, as well as the best possible quality guarantees in terms of simulation and
knowledge error, respectively. In practice, using setup assumptions facilitates very simple and efficient
simulation. Indeed, it is typically as fast as the adversary (hence has constant runtime tightness) and

2 Common idealized models are the random oracle model (ROM) [BR93] and the generic group model (GGM) [Sho97; Mau05],
and there are argument systems which are zero-knowledge and straight-line knowledge sound in these models. More
generally, knowledge assumptions are used which lie in between full idealization (like ROM and GGM) and standard
assumptions. On the one hand, such knowledge assumptions facilitate efficient extraction and often yield the tightest
plausible proofs in practice. On the other hand, they are also a very strong class of assumption and many of them contradict
the existence of indistinguishability obfuscation (IO) [BCPR16], which has since been established from well-founded
assumptions [JLS21]. Yet, some knowledge assumptions can, in some sense, be realized by IO [AHK20]. The idealized
models do not suffer from such contradictions but are known to be uninstantiable in general [CGH98; GK03].
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the simulated view is statistically indistinguishable from the real view. However, the same does not
hold for extraction, especially not for sublinear communication argument systems.3

1.2. Handling Expected Polynomial Time

As noted above, for efficient zero-knowledge proofs (in the plain model), expected polynomial time
(EPT) simulation and extraction is a necessity [BL04]. However, the standard definition only considers
PPT adversaries. This introduces an asymmetry in the complexity classes of zero-knowledge simulator
and adversary, violating the intuitive promise that everything an adversary learns in a zero-knowledge
protocol (in the plain model) it could just simulate itself. Even worse, it makes it impossible to exploit
simple (sequential) composition properties, because once a PPT adversary V∗ is replaced by a simulation
SimV∗ , the new adversary V′ = SimV∗ is now EPT and thus cannot be handled by a zero-knowledge
simulator or knowledge extractor anymore. While it is possible to prove sequential self-composition
directly, it is not so simple for more general forms of composition, especially in the context of multi-party
computation where (sequential) composition of protocols is particularly useful.

Lastly, when trying to define what expected time adversaries are, one has many choices. For example:
Does the time of the honest prover count? Does the time required to compute the auxiliary adversarial
inputs matter (or do we assume non-uniform auxiliary inputs, which do not consume computation
time)? Does the to-be-called-efficient adversary V∗ have to be “efficient” (say EPT) only when it is
run with the honest prover P, or must it be “efficient” when run with any “efficient” (say EPT) party
P∗? The last question is the most crucial one, and we call the former type of adversaries designated
adversaries, since they only need to be efficient in the protocols they are designed to attack, but not in
other, arbitrary contexts. This is the most natural definition, but also the hardest to handle.

Related work. Already Feige [Fei90] provides a discussion and example in his thesis which demon-
strates the difficulties in defining and handling designated adversaries. In particular, Feige shows
that the naive idea of simply cutting off the adversary’s execution after an a priori fixed number of
steps fails for any a priori polynomial cutoff (under plausible assumptions). Despite pointing out these
problems, Feige decides to keep the standard definition. Katz and Lindell [KL05; KL08] are the first to
provide a solution, which is however not fully general. Their solution assumes the security of primitives
against superpolynomial-time adversaries, hence requires superpolynomial hardness assumptions. The
use of superpolynomial hardness allows superpolynomial cutoffs, sidestepping Feige’s obstructions.
Subsequently, [Gol07; Gol10] presented another solution, which intuitively works by postulating “nice”
adversaries. He considers a complexity class which (by definition) contains only algorithms whose
runtime cannot become superpolynomial even when exploiting black-box rewinding access to “attack”
it.4 At the expense of shrinking the class of adversaries against which security is proven, this makes the
difficulties of rewinding expected time and designated adversaries disappear, by essentially excluding
potentially problematic algorithms by definition. While Hofheinz, Unruh, and Müller-Quade [HUM13]
deal with strict polynomial time, i.e. PPT, they need to handle designated PPT adversaries (something
which is usually avoided or unnecessary) and develop techniques on which we build in our work.

3 Knowledge assumptions and idealized models (cf. Footnote 2) circumvent this, but we do not consider these.
4 Consider the interactive algorithm A which draws a random string 𝑟 $← {0, 1}𝜆 , then expects a message 𝑠 , then sends 𝑟
back, and if 𝑟 = 𝑠 it runs an extra 2𝜆 steps. In an interactive context, the expected time of A is O(𝜆), since, unless 𝑟 was
guessed and sent to A, it just sends 𝑟 and terminates immediately. With rewinding, one can first send 𝑠 ≔ 0𝜆 and thus
learn 𝑟 from A, then rewind A and then deliberately send 𝑠 = 𝑟 , making A run for 2𝜆 steps always. Goldreich’s definition
forbids such algorithms.
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Contribution. In Chapter 5, we define a relaxation of expected polynomial time, called computationally
expected polynomial time (CEPT). Intuitively, we consider a runtime distribution 𝑇 CEPT if it is
computationally indistinguishable from a runtime distribution 𝑇 ′ which is EPT in the usual sense. We
prove a convenient characterization of CEPT which shows a, perhaps surprising, equivalence between
statistical and computational indistinguishability for runtimes. Moreover, we show that with CEPT, we
can finally handle designated CEPT adversary with CEPT simulation. This leads not only to symmetry
for adversary and simulator in the definition of zero-knowledge arguments which includes the efficient
black-box constant round arguments we aimed for. But it also shows that the most natural definition
of efficient adversary, a designated adversary, can indeed be handled. Contrary to Goldreich [Gol10],
instead of shrinking the class of allowed adversaries, we ever so slightly broaden it (and with it also the
class of allowed simulators), and unlike Katz and Lindell [KL08] we do not require superpolynomial
hardness assumptions to prove security.

1.3. Revisiting Efficient Log-Size Arguments from Hardness of DLOG

For practically efficient zero-knowledge arguments, one usually accepts a setup assumption in the form
of a CRS. In theory, the CRS is simply generated by a trusted party which disposes of any potential
trapdoor information that was needed during CRS generation (say, the factorization (𝑝, 𝑞) if the CRS is
an RSA modulus 𝑛 = 𝑝𝑞). In practice, generating a CRS poses a difficult problem because the incentive
to keep and exploit the above-mentioned trapdoor information is huge. Thus, it is best to have a
transparent setup, that is, a CRS which is simply a uniformly random string (URS). Such a URS can be
heuristically obtained from nothing-up-my-sleeve methods, e.g. using digits of 𝜋 , hashing a newspaper,
using sunspots [CPs07], and so on.

One of the most prominent examples of a practically efficient proof system with very small logarithmic-
size communication and transparent setup are so-called Bulletproofs [BBB+18], an optimization
of [BCC+16]. As this part of the work is focused on understanding and improving Bulletproofs,
we give a high level overview of their characteristics.

Bulletproofs use a CRS as setup, which consists entirely of random group elements in a prime order
group with hard DLOG assumption, in particular, the setup is transparent. The CRS is used to instantiate
a linear commitment scheme. A commitment scheme allows to commit to a value 𝑣 such that 𝑣 is fixed
but hidden (similar to encryption), until it is (potentially) unveiled. A commitment scheme where it is
possible to add commitments (implicitly adding the committed values) and multiply commitments with
a scalar (implicitly multiplying the committed values with a scalar) is called linear. Linear commitment
schemes are one of the main tools for practically efficient (zero-knowledge) proofs of knowledge.

The crucial building block of Bulletproofs is a logarithmic communication inner product argument (IPA),
i.e. an argument (which is not zero-knowledge) for proving that ⟨𝒙,𝒚⟩ = 𝑡 for committed 𝒙,𝒚 ∈ F𝑛𝑝 ,
𝑡 ∈ F𝑝 , where the statement x = (𝑐, 𝑡) consists of a commitment 𝑐 to (𝒙,𝒚) and of 𝑡 , and the witness is
w = (𝒙,𝒚). On a very high level, logarithmic communication (in |w|) is achieved by repeatedly halving
and linearly recombining committed vectors. Since commitments are constant size, each halving has
constant communication.5 When 𝑛 hits 1, the witness (𝒙,𝒚) is sent in the plain. This technique is called
folding.

The NP-relation for which [BBB+18] is designed are so called rank 1 constraint systems (R1CS) [BCG+13].
Given a vector𝒘 ∈ F𝑛𝑝 , the witness, a R1CS is a system of equations of the form (∑︁𝑛

𝑖=1 𝑎𝑖𝑤𝑖)·(
∑︁𝑛
𝑖=1 𝑏𝑖𝑤𝑖) =

5 Strictly speaking, constant in the dimension of the committed vector (but not in the security parameter).
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∑︁𝑛
𝑖=1 𝑐𝑖𝑤𝑖 . Given linear commitments and an IPA (without zero-knowledge) as above, [BBB+18] reduces

verification of a committed R1CS solution to verification of an inner product, sending only a constant
number of commitments.

Contribution. In Chapter 4, we revisit the Bulletproofs construction, trying to understand, generalize
and optimize it further. For our approach, we need a zero-knowledge IPA and we show how to construct
it from the Bulletproofs IPA with very little overhead. Moreover, we found a simple optimization
which halves the prover’s computation and enables other standard optimizations. However, our main
contributions are the following:

• Relying on R1CS as a relation means that, perhaps surprisingly, Bulletproofs cannot prove inner
product statements without overhead. We rectify this by constructing QESAZK, an argument
system which proves general quadratic equation systems (QE) which contain R1CS as a special
case. In general, comparing different argument systems for different languages is a complicated
question, cf. Appendix B.8. But fortunately, QESAZK is both faster and smaller than [BBB+18],
even if [BBB+18] uses our improved IPA. So, there is not much to debate about the improved
expressivity gained from handling QE instead of R1CS in this specific comparison.

• We outline a path towards a tighter knowledge soundness reduction. For this, we devised a
generalized form of the so-called special soundness property, which allows what we call short-
circuit extraction. With this, we show that a much smaller number of related transcripts suffice for
extraction than previously known. Concretely, our tightest instantiation needs a linear number of
transcripts (whereas Bulletproofs use a quadratic number [BBB+18]). We complement this result
by a lower-bound for certain hard languages, which even if it may not apply to QEs, shows that
to avoid an almost linear number of related transcripts, novel proof techniques will be necessary.

Lastly, our new proof system is flexible and can be combined easily with other proof systems in the
same setting (i.e. linear commitments based on DLOG). We demonstrate this swapping out the proof
system in the proof of correctness of a shuffle of ElGamal ciphertexts by Bayer and Groth [BG12],
yielding the first practically efficient protocol with logarithmic communication. This example relies on
another building block, a so-called linear map preimage argument, which is obtained by the folding
approach and implicit in the IPA.

Related and Subsequent Work. We restrict our attention to the most closely related works, and refer
to Chapter 4 for more discussions. Clearly, our work is based on Bulletproofs [BCC+16; BBB+18]. A
close subsequent work is [CHJ+22], whose approach also relies on a zero-knowledge inner product
argument (zk-IPA), but they only handle R1CS.

The work [JT20] provides a tighter analysis of the extractor in [BCC+16], improving the knowledge
soundness. In [ACK21] a modified extractor is shown to be essentially optimal for special sound
protocols (both in knowledge soundness and runtime). Neither of the works [JT20; ACK21] exploit
short-circuit extraction, resulting in quartic runtime tightness for Bulletproofs and QESAZK (in the
witness size) for general constraints, whereas short-circuit extraction suggest that linear runtime
tightness is possible for QESAZK. Another line of works [GT21; GOP+22] analyzes the security of
Bulletproofs (with Fiat–Shamir transformation applied) using the algebraic group model [FKL18], which
is a (strong) knowledge assumption. Perhaps (not) surprisingly, for algebraic adversaries, they achieve
essentially optimal tightness results (both in knowledge error and runtime) since their extraction is
straight-line, i.e. does not rewind the adversary.
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1.4. Short(er) Relaxed Range Proofs in the DLOG Setting

In Chapter 3 we present a novel range proof6 in the DLOG setting. A range proof is a special-purpose
zero-knowledge argument of knowledge that shows that a committed value lies in some range [𝐴, 𝐵] ⊆
Z. This is a crucial building block for many applications, especially in privacy-preserving protocols
such as anonymous credentials [Cha90; CL01].

In the DLOG setting, one works modulo the group order 𝑛, i.e. over Z𝑛 . Although it makes sense to
define an “integer range [𝐴, 𝐵]Z𝑛 ” in Z𝑛 as the image of the set [𝐴, 𝐵] modulo 𝑛, it is preferable to choose
a system of representatives and only consider ranges within that. The usual choice of representatives is
{−⌊𝑛−12 ⌋, . . . , ⌊

𝑛−1
2 ⌋} ⊆ Z, as it also gives a sensible notion of positive, negative, and shortness in Z𝑛 .

For efficient range proofs based on linear commitments, there are two general approaches:

𝑘-ary decomposition: The idea is to reduce the general statement “𝑣 ∈ [0, 𝐵]” to a simpler statement by
𝑘-ary decomposition. Usually, binary decomposition is used, i.e. one proves 𝑣 =

∑︁⌈log(𝐵+1) ⌉
𝑖=0 2𝑖𝑏𝑖

and𝑏𝑖 ∈ {0, 1}. If𝑛 is prime then for𝑏 ∈ Z𝑛 we get𝑏 ∈ {0, 1} ⇐⇒ 𝑏 (1−𝑏) ≡𝑛 0. As a low-degree
polynomial equation, this is efficiently provable in zero-knowledge via linear commitments.

Square decomposition: Over the integers, for any 𝑥 ∈ Z, the square 𝑥2 is non-negative. Moreover,
every non-negative number 𝑣 can be decomposed efficiently as the sum of four squares [RS86;
PS19]. Thus, proving that 𝑣 · (𝐵 − 𝑣) ≥ 0 by decomposition into 4 squares ensures 𝑣 ∈ [0, 𝐵] over
the integers.

The 𝑘-ary decomposition approach is very easy to use, integrates easily into many protocols, and is
adequately efficient. Indeed, Bulletproof range proofs [BBB+18] use the binary decomposition approach
to prove range membership. The biggest downside of binary decomposition is that many values (namely
all 𝑏𝑖 ) must be committed to, making the protocols relatively computationally expensive.

The deceptively simple square decomposition approach, however, makes no sense modulo𝑛 and requires
to work over the integers. Thus, linear integer commitments are required. Such commitments exist, but
(group-based) constructions rely on factoring-based assumptions, and are relatively large and relatively
computationally expensive as a consequence.

Contribution. In Chapter 3, we present a range proof over Z𝑝 , for prime 𝑝 . It is inspired by so-called
relaxed/approximate proofs of short preimages from lattice-based cryptography, and offers a slightly
weakened soundness guarantee: Instead of considering (short) integer representatives of Z𝑝 as used
in the explanation above, we consider short rational representatives, that is, fractions 𝑛

𝑑
with short

numerator 𝑛 and short denominator 𝑑 . This allows us to obtain a protocol whose communication (i.e.
proof size) is very small and which is highly efficient. Indeed, computation-wise it easily outperforms
Bulletproofs,7 with the prover being more than 10× faster.

Shortness of rational representatives modulo 𝑝 is in general incompatible with shortness of integer
representatives, e.g. 𝑝+12 ∈ Z𝑝 has a large integer representative, but the short rational representative1
2 ∈ Z𝑝 . Moreover, shortness of rational representatives does not behave well under addition, since
denominators can grow multiplicatively. Thus, one might question the usefulness of this relaxed

6 As noted in Footnote 1, “proof” and “argument” is used interchangeably in cryptography and in this work. The term “range
argument” is much less common, even if it is technically correct (and perhaps more precise).

7 For proving range membership of a single commitment, even the proof size is comparably small. For larger batch range
proofs, the proof size grows linearly, unlike the logarithmic growth for Bulletproofs.
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soundness. However, if it is known a priori that a representative is a short integer, then proving
membership in the interval of short rational representatives actually proves membership in the interval
of short integer representatives. In other words, given this prior knowledge, relaxed soundness is
upgraded to standard soundness. A prime application example is a digital identification card, where
the birth date is known to lie within a predetermined range (say the last 200 years).

Nevertheless, we also provide a simple and efficient way to augment our range proof with a single
RSA group element to obtain standard soundness, slightly increasing proof size and computation, and
unfortunately, losing the transparent setup. Alternatively, using so-called class groups (of hidden order)
is compatible with transparent setup and forces denominators of the form 2𝑘 (for small 𝑘), making
rational representatives behave well under addition, eliminating an important source of trouble.

Chapter 3 is based on [CGKR22a] which is a follow-up of our work [CKLR21b] and aimed specifically
at the DLOG setting, improving usability by using the relaxed soundness notion, improving efficiency
by changing the basic protocol for proving the decomposition, modularizing the decomposition and
shortness proofs, and improving applicability by using a novel batch proof of shortness (derived from a
“core lemma”) to efficiently handle standard sized groups,8 e.g. 256-bit order elliptic curves.

Related Work. Many range proofs are based on the 𝑘-ary decomposition, which is certainly the most
straightforward approach in prime order groups. Concrete examples are the works [CCs08; Gro11] and
of course, the Bulletproofs family of range proofs [BBB+18; CHJ+22]. Of course, due to the simplicity
of the approach, many works use binary decomposition within their protocols.

Range proofs based on square decomposition of integers are for example [Bou00; Lip03; Gro05; CPP17].
As noted, these (must) rely on integer commitment schemes [FO97; DF02] based on a group H of hidden
order. Prior work computes (almost) the full proofs over H. These works are well-suited for very large
ranges. For small ranges, say 64-bit integers, which are of great practical importance, working (solely)
in H leads to comparatively large proof sizes, since hidden order group elements must be large to
withstand generic attacks for computing (a multiple of) the group order. Conversely, in elliptic curves,
𝜆-bit security against DLOG requires only 2𝜆-bit elliptic curves.

Our range proof is inspired by lattice-based constructions of so-called relaxed/approximate proofs
of short preimages (e.g. [Lyu09; Lyu12]), so there are clear similarities. However, to the best of our
knowledge, the proof of our core lemma, and indeed the specific setting and usage, does not appear in the
lattice-based literature and (standard) lattice-based techniques do not seem immediately applicable.

1.5. Other Published Work

This section briefly summarizes other work published during my doctoral studies, but which is not
included in this thesis. The work [HHK+17], which evolved from my master’s thesis, is omitted.

8 The work [CKLR21b] needs either group sizes which depend on the range, or it needs rather expensive (parallel) repetitions
to boost the soundness error.
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1.5.1. Black-box Accumulators: Privacy-Preserving Incentive Systems

Part of my work was on privacy-preserving “point collection” systems, dubbed black-box accumula-
tion [JR16; HHNR17], which very roughly, allow a user to receive and spend points. This abstracts a
form of electronic payments with clearly separated roles of system operator and user, e.g. to implement
customer loyalty programs, reward programs, or anonymous ticket systems. The system operator, as
the name suggests, operates the system and wants to ensure that the points it gives out to users, or
points which users spend, behave as expected. That is, a user can collect a number of points, and it can
spend the collected points, but it can never spend more points than it collected. The user wishes to use
the system privately, hence the receive and spend operations should not reveal the user’s identity.

Contribution. In the work [HKRR20], we improve upon the efficiency of [HHNR17] by avoiding
bilinear groups, using blind signatures, a security proof in the generic group model (GGM), and
(linear-size) Bulletproofs for security. The (linear-size) Bulletproofs can in fact be replaced by our new
relaxed range proofs [CGKR22a], leading to another significant speed-up. In another work [FBK+21],
we translated the construction of [HHNR17] to the lattice setting, which required lattice-specific
adaptations to the general template to remain reasonably efficient without counting the overhead of
the zero-knowledge arguments.

Related Work. Closely related works in general are anonymous credentials (AC) [Cha90; CL01],
which are an anonymous form of identification scheme which allows to prove additional properties in
zero-knowledge, e.g. that one is over 18 years old and a college student. There are many flavours and
efficient instantiations [BL13; RVH17] of ACs, e.g. keyed-verification ACs [CMZ14; CR19], updatable
ACs [BBDE19; BEK+20], and, of course, black-box accumulation schemes [JR16; HHNR17]. So-called
“central bank digital currencies” (CBDC) are another relatively new and closely related building block,
though setting, scope of application, and requirements [BEB+] (e.g. anti-money laundering mechanisms)
are different. Cryptographic techniques used for privacy-preserving CBDCs [WKDC22; KKS22] are
closely related to (keyed verification, updatable) ACs and BBA. Electronic cash, introduced by Chaum
[Cha82], is yet another closely related primitive, in a different setting. Instead of system operator and
user, there are now banks, merchants and users. Users buy from merchants by “spending” coins, and
merchants later “deposit” the spent coins in the bank to receive the money. Thus, despite sharing basic
techniques, constructions [CFT98; CHL05; BCFK15] and challenges differ from AC/BBA/CBDC.

1.5.2. (R)CCA Secure Updatable Encryption with Integrity Protection

In many contexts, it is mandated to secure encrypted data by periodic “key rotation”, i.e. an update
of the encryption keys for the encrypted data. To study this question theoretically, the notion of
updatable encryption (UE) schemes has been defined. Very roughly, an updatable encryption scheme
comes with two additional algorithms: A key-update algorithm, which takes as input an old key 𝑘
and outputs a new key 𝑘 ′ and an update token Δ, and a ciphertext update algorithm, which takes as
input an old ciphertext 𝑐 under key 𝑘 and an update token Δ, and outputs a new ciphertext 𝑐′ (which is
encrypted under 𝑘 ′). The idea is that the server, which stores all ciphertexts, can update them after
receiving the update token Δ without further interaction. In fact, there are two flavours of updatable
encryption: The one described above has ciphertext-independent update tokens, and another flavour
has ciphertext-dependent update tokens, where the update token may depend on a (small) ciphertext
header.
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As security notions, one uses variants of privacy resp. integrity notions, adapted to the setting and
called UE-IND-CPA/CCA, i.e. indistinguishability under chosen plain/ciphertext attacks, resp. UE-
INT-PTXT/CTXT, i.e. plain/ciphertext integrity. In the adapted security games, the adversary may
(repeatedly) cause updates of keys and ciphertexts and it may corrupt keys and update tokens, unless
this causes it to trivially win the game. Depending on the definition of trivial wins, ciphertext updates
obtain a directionality; indeed, in many constructions it is possible to use an update token to both
upgrade and downgrade ciphertexts. The UE-specific security notion UE-IND-UPD, indistinguishability
of updates, ensures that ciphertexts (of the same size) become indistinguishable after a ciphertext
update. For technical reasons, UE-IND-CCA (and UE-INT-CTXT) are only defined for deterministic
updates, and so-called replayable CCA security (RCCA) [CKN03] is the strongest known option for
probabilistic updates.

Contribution. In our work [KLR19], we define the notions of (bidirectional) updatable security
with integrity protection for ciphertext-independent schemes and present two constructions. The
first construction efficiently achieves deterministic UE-IND-CCA, UE-INT-CTXT and UE-IND-UPD.
The second construction achieves (probabilistic) UE-IND-RCCA, UE-INT-PTXT and UE-IND-UPD,
but is of mostly theoretical interest due to heavy reliance on Groth–Sahai proofs [GS08] and their
malleability [CKLM12].

Related Work. Prior work by Everspaugh, Paterson, Ristenpart, and Scott [EPRS17] considered the
ciphertext-dependent setting and achieved indistinguishability and integrity notions for this case. The
work by Lehmann and Tackmann [LT18] introduced the ciphertext-independent setting, but only
defined and achieved UE-IND-CPA and UE-IND-UPD. Subsequent works revisited and extended our
security definitions [Jia20; Nis21; BMPR21], and several works study the deterministic setting with
UE-IND-CCA security, providing more efficient constructions [BDGJ20; BEKS20]. Constructions for
unidirectional schemes have also been found [SS21; MPW22; GP22]. Moreover, RCCA-secure updatable
encryption has been used to construct secure onion routing with replies [KHRS21]. To our knowledge,
there was no progress on more efficient probabilistic updatable encryption with integrity protection,
leaving our quite inefficient construction as the only RCCA-secure option.

1.5.3. Fiat–Shamir Transformation of Multi-Round Special Sound Protocols

The Fiat–Shamir transformation converts interactive arguments of knowledge into non-interactive
arguments by letting the prover compute the verifier’s challenges as the hash of the partial transcript.
It is well-known that the transformation is provably secure in the random oracle model when applied
to certain 3-move protocols, or more generally constant round protocols. Pathological examples are
known which show that, in general, the security loss is exponential in the number 2ℓ + 1 of rounds,
assuming the prover moves first, i.e. assuming ℓ challenges.

Contribution. We show in [AFK22] that for multi-round special sound protocols the knowledge error
and extraction runtime tightness of the Fiat–Shamir transformed proof is only (𝑄 + 1)-fold of that of
the interactive proof, where 𝑄 bounds the number of queries to the random oracle. In particular, the
security loss is independent of the number 2ℓ + 1 of rounds. Multi-round special sound protocols are a
broad class which, for example, includes Bulletproofs. It is easy to see that our result is essentially best
possible (due to concrete attacks). Moreover, we demonstrate a non-pathological attack on the Fiat–
Shamir transformation when applied to a 𝑡-fold parallel repetition of certain special sound protocols.
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1.6. Structure of the thesis

Assuming for simplicity that ℓ divides 𝑡 and𝑄 , the knowledge error grows at least by a factor of𝑄 ℓ/ℓ𝑡+ℓ
(compared to the 𝑡-fold parallel repetition of the interactive protocol), hence exhibits an exponential
loss in the number 2ℓ + 1 of rounds.

Related Work. In concurrent work by Wikström [Wik21], a similar positive result was found, but
presented and derived with a distinctly different terminology and point of view. Ben-Sasson, Chiesa,
and Spooner [BCS16] define state-restoration soundness (SRS) and knowledge (SRK), an abstract notion
for interactive arguments which essentially corresponds to their Fiat–Shamir transformation, and
the respective SRS and SRK error is equivalent to that of the Fiat–Shamir transformed proof. The
notions of round-by-round soundness [CCH+19] and round-by-round knowledge [CMS19] have also been
introduced to study Fiat–Shamir transformations, but are essentially straight-line notions and do not
seem applicable to multi-round special sound protocols in general.

1.6. Structure of the thesis

The thesis is divided into three parts. The first part begins with this introduction in Chapter 1. It
continues with Chapter 2, which contains the basic notation and common definitions that are used
throughout this thesis. The second part contains the main content.

• In Chapter 3, we present our new relaxed range proof construction in the DLOG setting.

• In Chapter 4, we present our results concerning optimizations of the folding technique, the
zero-knowledge inner product argument, our quadratic satisfiability argument. Moreover, it
contains our notion of short-circuit extraction.

• In Chapter 5, we introduce computationally expected polynomial time (CEPT) and show how it
allows us to handle designated adversaries and achieve symmetry between runtime classes of
adversary and simulator.

Each of these chapters begins with a brief outline of the contributions of the respective authors (if
applicable). We conclude this part with an outlook and open questions in Chapter 6.

The third part is the appendix, where further discussions, detailed proofs, and definitions of lesser
importance can be found. The Appendices A, B, and C correspond to Chapters 3, 4, and 5, respectively.
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2. Preliminaries

This chapter provides unified preliminaries for the rest of this work. Definitions, remarks, examples
and discussions are taken (sometimes verbatim) from the papers [HKR19a; Klo21; CGKR22a] or their
respective full versions [HKR19b; Klo20; CGKR22b].

2.1. Notation and Basic Functions

We use log for the binary logarithm. We write [𝑎, 𝑏] for an interval [𝑎, 𝑏] in Z, and we write [𝑎, 𝑏]𝑅 for
an interval in another space 𝑅, e.g. Q,R,Z𝑝 . We denote by |𝑥 | the absolute value of 𝑥 ∈ R. For a string
𝑠 ∈ {0, 1}∗, we denote by |𝑠 | its bitlength.

For a randomized algorithm A with input 𝑥 , we write 𝑦 ← A (𝑥 ; 𝑟 ) for its execution with explicit
randomness 𝑟 . If the randomness is not explicit, we write 𝑦 ←A (𝑥) and assume that 𝑟 was sampled
accordingly. We write 𝑠 $← 𝑆 for sampling 𝑠 uniformly at random from a finite set 𝑆 or 𝑑 ← 𝐷 to
sample 𝑑 randomly according to a given probability distribution 𝐷 . For simplicity, we assume that it is
possible to draw uniformly at random from any set {1, . . . , 𝑛} for 𝑛 ∈ N.1 Further, we generally assume
that some public parameters, denoted by pp, and the security parameter, denoted by 𝜆, are implicitly
passed as input to algorithms if it is clear by the context. By poly we denote some (arbitrary but fixed)
polynomial, and by negl we denote some negligible function, i.e. a function with lim𝜆→∞ 𝜆

𝑐negl(𝜆) = 0
for any 𝑐 ∈ N.

For interactive algorithms A1,A2, we write ⟨A1(𝑥, 𝑧),A2(𝑦, 𝑧)⟩ for the execution where A1 and A2
interact, given private input 𝑥 resp. 𝑦 and common input 𝑧. The sequence tr of exchanged messages
during the interaction is called the transcript and denoted by tr ← ⟨A1(𝑥, 𝑧),A2(𝑦, 𝑧)⟩ . We write
outA𝑖 ⟨A1,A2⟩ for the output of A𝑖 , where we have omitted the inputs to A1 and A2 for simplicity.
Similarly, the view view𝑖 of A𝑖 is denoted by viewA𝑖 ⟨A1,A2⟩ and defined as a tuple which contains all
information available to A𝑖 , i.e. its inputs (𝑥, 𝑧) resp. (𝑦, 𝑧), its random tape 𝑟𝑖 , and all messages𝑚ℓ it
received during the execution. Hence, given the view, one can replay the execution of A𝑖 . Black-box
rewinding access to an algorithm A(𝑥, 𝑧) (with fixed inputs 𝑥, 𝑧) works by first sampling and fixing
the random tape 𝑟 , and then providing the next-message function as an oracle, i.e. the function which
takes as input a sequence of messages (𝑚1, . . . ,𝑚ℓ ) and returns the response A(𝑥, 𝑧) would send if
it received these messages (in that order) from its communication partner.2 For giving algorithm B
black-box rewinding access to A with (fixed) input 𝑥 , we write BA(𝑥,𝑧 ) , or Bbbrw(A(𝑥,𝑧 ) ) if we need to be
very explicit.

1 This subtlety is often ignored in the literature. With any a priori bounded finite number of steps and only binary random
coins it is impossible to sample uniformly from {1, . . . , 𝑛} unless 𝑛 is a power of 2. However, it can be approximated
exponentially precisely, see also Section 2.3.2.1.

2 If a message sequence makes no sense, e.g. because A halts after processing a single message but ℓ ≥ 2, then the next
message function returns a special symbol ⊥ indicates an error state for this input. More specific discussion on machine
models, interaction models, their subtle effects and the robustness of most notions and definitions under sensible concrete
choices of these models, can be found in Chapter 5.
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2. Preliminaries

For Chapters 3 and 4 we use following simple notion of probabilistic polynomial time (PPT) and
expected polynomial time (EPT) algorithms: A non-interactive algorithm A is (classically) PPT (resp.
EPT) if it is PPT (resp. EPT) in its total input length |𝑥 |, i.e. there exists a polynomial poly such that the
total (expected) number of steps of the computation A(𝑥) is bounded by poly( |𝑥 |) for any 𝑥 ∈ {0, 1}∗.
An interactive algorithm A is PPT (resp. EPT) if it is PPT (resp. EPT), if its total (expected) number of
steps is polynomially bounded in its first input, which is the implicit input 1𝜆 unless specified otherwise.
In other words, for interactive algorithms, we assume an a priori polynomial bound poly(𝜆) on the
number of steps. This definition is good enough for our purposes, even though it is not general enough
to cover all reactive systems of interest, see e.g. the discussion on runtime definitions in [HUM13].

Remark 2.1.1 (Non-uniformity). The usual definition of algorithm, i.e. a finite program specification, is
also called uniform. The non-uniform setting considers infinite specifications, which in our case means
the circuit family P/poly or equivalently PPT machines with an additional (infinite) advice advc.

In the rest of this work, non-adversarial (protocol) parties are always uniform. For adversarial parties,
all of our definition make sense for both uniform and non-uniform adversaries (perhaps after a minor
modification). Since we only use the adversary in a black-box manner (and all reductions in this thesis
are uniform), the presence or absence of advice is irrelevant. Indeed, we usually do not pass an explicit
advice advc as input to the adversary. Recall that universal quantification over inputs (e.g. in IND-CPA),
often implies non-uniform hardness. For uniform hardness, possible inputs must also be generated
(efficiently). This mostly affects Chapter 5, where we deal with notions of efficiency for expected time
adversaries. There, the power of non-uniformity trivializes some reductions, but we provide uniform
reductions to ensure our efficiency notions do not depend on non-uniformity.

2.1.1. Probability Theory

By𝑈𝑋 we denote the uniform distribution on a finite set 𝑋 .

Definition 2.1.2. Let 𝜇, 𝜈 be two probability measures on a countable set 𝑆 . We define the statistical
distance as

Δ(𝜇, 𝜈) = sup
𝐴⊆𝑆

𝜇 (𝐴) − 𝜈 (𝐴) = 1
2

∑︂
𝑎∈𝐴
|𝜇 ({𝑎}) − 𝜈 ({𝑎}) |.

We define the sup-ratio 𝜌sup(𝜇/𝜈) as

𝜌sup(𝜇/𝜈) = sup
𝐴⊆𝑆

𝜇 (𝐴)/𝜈 (𝐴) = sup
𝑠∈supp(𝜇 )

𝜇 (𝑠)/𝜈 (𝑠)

where 0/0 = 1 and 𝑥/0 = ∞ for 𝑥 > 0.

We recall some important properties of the sup-ratio: Given two random variables 𝑋 and 𝑌 and any set
of outcomes 𝑆 , we have

Pr[𝑋 ∈ 𝑆] ≤ 𝜌sup(𝑋/𝑌 ) · Pr[𝑌 ∈ 𝑆] .

Consequently, for real-valued 𝑋,𝑌 , resp. for an arbitrary (measurable) function 𝑓 , we find

E [𝑋 ] ≤ 𝜌sup(𝑋/𝑌 ) · E [𝑌 ] resp. 𝜌sup(𝑓 (𝑋 ), 𝑓 (𝑌 )) ≤ 𝜌sup(𝑋,𝑌 ).

We will make ample use of these two facts. Moreover, we use that

𝜌sup((𝑋 ′, 𝑌 ′)/(𝑋,𝑌 )) ≤ 𝜌sup(𝑋 ′/𝑋 ) · 𝜌sup(𝑌 ′/𝑌 )

for pairs (𝑋 ′, 𝑌 ′) (resp. (𝑋,𝑌 )) of independent random variables.
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2.2. Cryptographic Primitives

Remark 2.1.3. Let 0 < 𝑑 ≤ 𝐶 be integers and let𝛾 $← [0,𝐶−1] and𝑢′ $← [0, 𝑑−1]. Suppose𝑢 = 𝛾 mod 𝑑 .
Then it is easily seen that 𝜌sup(𝑢/𝑢′) ≤ 1 + 𝑑/𝐶 . This follows, e.g., from 𝜌sup(𝛾/𝛾 ′) ≤ 1 + 𝑑/𝐶 where
𝛾 ′ ← [0, 𝑑 ⌈𝐶/𝑑⌉] and noting that 𝑢′ = 𝛾 ′ mod 𝑑 in distribution.

2.2. Cryptographic Primitives

We define syntax and semantics of cryptographic primitives, and sketch their security properties.

2.2.1. Cryptographic Groups

We work in the DLOG setting with cryptographic groups. In general, we write G, H, etc., for groups
and use capital letters 𝐺 , 𝐻 , etc., for group elements. All cryptographic groups are cyclic (hence
commutative) and we use additive notation, i.e. we write 𝐺 + 𝐻 and 𝑥 ·𝐺 or 𝑥𝐺 for 𝐺,𝐻 ∈ G, 𝑥 ∈ Z.
We denote by ⟨𝐺⟩ the cyclic subgroup generated by 𝐺 . Despite additive notation, we sometimes speak
of exponents and exponentiations instead of scalars and scalar-group-multiplications, especially for
efficiency considerations.

Remark 2.2.1 (Implicit representation in prime order groups). In Chapter 4, we only consider prime-
order groups and use a special notation, namely implicit representation of group elements by their dlog
w.r.t. an (implicit) distinguished generator in G. That is, we write [1] ∈ G for a fixed generator and
[𝑧] ≔ 𝑧 · [1] for 𝑧 ∈ Z𝑝 for arbitrary group elements. We stress that given [𝑧], the DLOG 𝑧 may be
hard to compute, i.e. the representation [𝑧] is only a notational simplification and 𝑧 is only implicitly
specified, hence the name implicit representation.

A PPT algorithm GrpGen on input 1𝜆 outputs a (description of a) group G = G𝜆 . Given the description,
group operations (addition and inverse) and membership tests are efficient, as well as bounds 𝑈lo ≤
|G| ≤ 𝑈up on the group order are specified. By 𝐴 $← G we denote a uniformly random group element.
When we say “G is a group of (prime) order 𝑝 = 𝑝𝜆”, we mean that 𝑝 = |G| is known unless explicitly
stated otherwise.

Remark 2.2.2 (Random generators). For simplicity, we use random generators in hardness assumptions.
While using deterministic generators is possible, it would affect certain reductions and require (small)
adaptions and appropriately strengthened assumptions throughout.

In general, we define the hard DLOG assumption for groups as follows.

Definition 2.2.3 (DLOG assumption). The DLOG assumption in a group G, or more precisely, for
group generator GrpGen, holds if for every PPT adversaryA, the advantage

Advdlog
A
(1𝜆) ≔ Pr[G $← GrpGen(1𝜆);𝐺 $← G \ {0}, 𝐻 $← G;𝑥 ←A (1𝜆,G,𝐺, 𝐻 ) : 𝐻 ?

= 𝑥 ·𝐺]

is negligible.

Notation 2.2.4. For notational simplicity, we leave GrpGen implicit in the rest of the work. Moreover,
we usually omit indexing group G and group order 𝑝 by the security parameter, as already practised in
Definition 2.2.3. Typically group descriptions are part of the public parameters pp.
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2. Preliminaries

The experiment in Definition 2.2.3 is only efficient if it is possible to efficiently sample uniformly
random elements𝐺 , 𝐻 from the cryptographic groupG. More generally, one can consider any sampling
algorithm Sample for elements in G and define hardness of DLOG w.r.t. Sample. Moreover, one can
distinguish two notions, where one notion keeps the random coins 𝑟 of Sample secret or and the
other makes them public, i.e. passes 𝑟 as input to the adversary. In most groups of interest, we can
assume that it is possible to sample uniformly at random with public coins, essentially by interpreting
a random bitstring as a group element. In particular, DLOG hardness for public and secret random
coins is equivalent in that case. More generally, this is true if Sample is reverse sampleable. We refer
to the discussion in Section 2.3.2 for further details. Non-trivial sampling will only be of interest for
assumptions in class groups, namely in Appendix A.1.

Example 2.2.5. In groups of prime order 𝑝 , it is easy to sample uniformly from G given a generator
𝐺 , i.e. an element 𝐺 ∈ G \ {0}. Simply pick 𝑥 $← Z𝑝 and set 𝐻 = 𝑥 ·𝐺 . In implicit notation, we would
have 𝐺 = [1] and 𝐻 = 𝑥 · [1] = [𝑥]. Hardness of DLOG now translates to hardness of finding 𝑥 given
( [1], [𝑥]).

The concrete assumptions used in Chapter 3 and in Chapter 4 are generalizations of the DLOG assump-
tion in different directions. We recall them in the respective preliminaries.

2.2.2. Hash Functions

Definition 2.2.6 (CRHF). Let Hash : K𝜆 × {0, 1}∗ ↦→ {0, 1}ℓ (𝜆) be a hash function. We call Hash a
collision-resistant hash function (CRHF), if for all PPT adversariesA there exists a negligible function
negl such that

Pr
[︃

𝑘
$← K𝜆 ; (𝑚0,𝑚1) ←A (1𝜆, 𝑘) :

𝑚0 ≠𝑚1 ∧ Hash(𝑘,𝑚0) = Hash(𝑘,𝑚1)

]︃
≤ negl(𝜆) .

Recall that, due to generic birthday attacks, we need at least ℓ = 2𝜆 output size for 𝜆 bits of security.
Moreover, keyed hash functions are required to achieve collision-resistance against non-uniform ad-
versaries, otherwise advice could contain collisions. The keys are part of the public parameters and
omitted until noted otherwise.

2.2.3. Random Oracle Model

In the random oracle model (ROM), introduced by Bellare and Rogaway [BR93], all parties have oracle
access to a truly random function RO : {0, 1}∗ → {0, 1}2𝜆 . In this model, it is possible to provide (much)
more efficient constructions for many primitives, e.g. highly efficient signatures via the Fiat–Shamir
transformation [FS87] from passively secure identification schemes or via hash-then-sign constructions
from trapdoor permutations and preimage samplable functions [BR96; GPV08] as well as highly
efficient CCA secure encryption from IND-CPA secure encryption schemes via the Fujisaki–Okamoto
transformation [FO99]. Heuristic instantiations of constructions which were proven secure in the ROM
have fared well in practice [KM15], though it is well-known that this heuristic is unsound and insecure
in general [CGH98; GK03]. In fact, even constructions for primitives which are provably impossible in
the CRS model are possible in the ROM, such as non-interactive non-committing encryption [Nie02].
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Fiat–Shamir Transformation. The Fiat–Shamir transformation (for proof systems) converts public-coin
proofs (of knowledge) to non-interactive zero-knowledge (proofs of knowledge) (NIZK resp. NIZKPoK)
by computing the verifier’s challenges as random oracle hashes over partial transcripts and other
context information (which includes x). In case of non-zero correctness error, one retries in case
of aborts [Lyu09]. In practice, the ROM is heuristically instantiated by a strong cryptographic hash
function, e.g. SHA-3. Note that a URS can be generated trivially in the ROM. For multi-round special
sound protocols (Section 2.5), the work [AFK22] intuitively shows, that the knowledge error (resp.
runtime) of an extractor is increased by a factor of 𝑄 compared to the knowledge error (resp. runtime)
of the extractor for the interactive protocol.

2.2.4. Non-Interactive Commitments

A (non-interactive) commitment scheme COM allows committing to a message𝑚 ∈M obtaining
a commitment 𝑐 ∈ C and opening information 𝑟 ∈ R, whereM, C, R are message, commitment and
opening (or randomness) space of COM, respectively. A commitment scheme should be hiding and
binding. The hiding property ensures that a commitment reveals nothing about the committed value.
The binding property ensures that the committed value cannot be changed, i.e. that there is at most
one value to which a commitment can be unveiled. We now define the security properties formally.

Definition 2.2.7. A (non-interactive) commitment scheme COM consists of PPT algorithms (Setup,
Com,VfyOpen), which behave as follows:

• Setup(1𝜆, pp) → ck: The PPT algorithm Setup takes as input the security parameter 𝜆 (in unary)
and public parameters pp, and outputs a commitment key ck.

• Com(1𝜆, pp, ck,𝑚; 𝑟 ) → 𝑐: The PPT algorithm Setup takes implicit inputs 1𝜆 and pp, a commit-
ment key ck and a message𝑚 (in the messages space Mck) and outputs a commitment 𝑐 to𝑚.
The randomness 𝑟 is also called the opening.3

• VfyOpen(1𝜆, pp, ck, 𝑐, 𝑟,𝑚) → 𝑏: The PPT algorithm VfyOpen takes implicit input 1𝜆 and pp,
a commitment key ck, a commitment 𝑐 with opening 𝑟 and a messages 𝑚. It outputs a bit 𝑏,
indicating whether the tuple (𝑐, 𝑟,𝑚) is a valid commitment or not.

In the rest of this work, we will usually omit the standard inputs (1𝜆, pp) to all of these algorithms.
We often write Comck (𝑚; 𝑟 ) and VfyOpenck (𝑐,𝑚, 𝑟 ) as the commitment key is usually fixed over many
commitments.

Definition 2.2.8 (Correctness). A commitment scheme COM = (Setup,Com,VfyOpen) is (perfectly)
correct, if for any ck $← Setup(1𝜆), any message𝑚 ∈ Mck and any 𝑐 ← Comck (𝑚; 𝑟 ), it holds that
VfyOpenck (𝑐, 𝑟,𝑚) = 1.

Definition 2.2.9 (Hiding Property). The advantage of a stateful adversaryA against the hiding property
of a commitment scheme COM is

AdvhideA (𝜆) = Pr
⎡⎢⎢⎢⎢⎣
pp← GenPP(1𝜆); ck ← Setup(1𝜆, pp); 𝑏 $← {0, 1};
(𝑚0,𝑚1) ←A (1𝜆, pp, ck); 𝑐 ← Comck (𝑚𝑏 ; 𝑟 );

𝑏′ ←A (𝑐) : 𝑏′ = 𝑏

⎤⎥⎥⎥⎥⎦
3 The opening is often defined to be an output of Com. We will not need this more general definition.
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A commitment scheme COM is (computationally) hiding if for every stateful PPT adversary A,
there exists a negligible function negl such that AdvhideA (𝜆) ≤ 1

2 + negl(𝜆). It is statistically hiding if
the same holds for unbounded adversaries.

Remark 2.2.10 (Multi-Hiding Property). The hiding experiment can be changed to allow the adversary
to obtain many challenge commitments, by allowing it to repeatedly query the experiment for a pair
(𝑚0,𝑚1) and receiving Comck (𝑚𝑏) (for the same choice of 𝑏 in all queries). By a standard hybrid
argument, an adversaryA with advantage 𝜀 against the multi-hiding property which makes at most
𝑄 challenge queries induces an adversary B against the standard hiding property with advantage at
least 𝜀/𝑄 and runtime distribution essentially identical to that of A (except for the small bookkeeping
overhead associated with hybrid distinguishers).

Definition 2.2.11 (Binding Property). The advantage of a stateful adversary A against the binding
property of a commitment scheme COM is

AdvhideA (𝜆) = Pr

⎡⎢⎢⎢⎢⎢⎢⎣
pp← GenPP(1𝜆); ck ← Setup(1𝜆, pp);
(𝑐, 𝑟0, 𝑟1,𝑚0,𝑚1) ←A (1𝜆, pp, ck) :
𝑚0 ≠𝑚1 ∧ VfyOpenck (𝑐, 𝑟0,𝑚0) = 1
∧ VfyOpenck (𝑐, 𝑟1,𝑚1) = 1

⎤⎥⎥⎥⎥⎥⎥⎦
A commitment scheme COM is (computationally) binding if for every stateful PPT adversaryA,
there exists a negligible function negl such that AdvbindA (𝜆) ≤ negl(𝜆). It is statistically binding if the
same holds for unbounded adversaries.

2.3. (Non-)Interactive Proof Systems

In this section, we define proof systems and their properties. As noted before (Chapter 1 Footnote 1),
we use proofs system and argument system interchangeably. Thus, in this section, we opt for proof
systems instead of argument systems for the naming.

2.3.1. Proof Systems and Soundness

Before defining proof systems, we recall (parameter-dependent) relations and languages. A param-
dependent relationR overX×Y is a family of relationsRparam ⊂ X×Y. We sayR is a PPT relation
or NP relation if there is a PPT algorithm which given param decides if a pair (x;w) is inRparam. The
param-dependent language of R is defined as the family Lparam = {x ∈ X | ∃w : (𝑥 ;𝑤) ∈ Rparam =

1}. Instead of families of relations (resp. languages), we can consider tuples (param,x,w) as elements
in R, where (param,x,w) ∈ R ⇐⇒ (x,w) ∈ Rparam.

Convention 2.3.1. Usually, relations are pp-dependent (or crs-dependent). As usual, we often omit
the dependency in our notation to keep the visual noise low. Adding the dependencies on pp is a
straightforward mechanical process.

Now, we define proof systems.4 We always consider a common reference string (CRS) as setup, even
though some proof systems do not require them. Moreover, we only define efficient proof systems for
PPT relations (i.e. NP relations).

4 In Chapter 5, we give another definition of proof systems and associated notions. But that is to generalize to efficiency
notions beyond PPT. Using it here would needlessly complicate Chapters 3 and 4.
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Definition 2.3.2 (Proof system for R). Let R be a PPT relation over a set X, defining a language L. A
proof system is a tuple (GenCRS, P,V) of algorithms, where GenCRS is a PPT algorithm and (P,V) is
a pair of interactive PPT algorithms. They behave as follows:

• GenCRS(1𝜆, pp) → crs: The PPT algorithm GenCRS takes as input the security parameter 𝜆 (in
unary) and public parameters, and outputs a common reference string crs.

• P(1𝜆, pp, crs,x,w): This interactive PPT algorithm takes as input a CRS crs and a statement-
witness pair (x,w) ∈ R, and interacts with an instance of V(crs,x). There is no output.

• V(1𝜆, pp, crs,x) → 𝑏: This interactive PPT algorithms takes as input a CRS crs and a statement x
(not necessarily in L), and output a verdict 𝑏 ∈ {0, 1}. If 𝑏 = 1 we say V accepts the statement x,
else it rejects.

Proof systems for parameter-dependent relations and languages (e.g. pp- or crs-dependent) are defined
in the obvious way.

In the rest of this work, we will usually omit the input 1𝜆 (and often pp) to all of these algorithms.

Notation 2.3.3. We write tr ← ⟨P(𝑠),V(𝑡)⟩ for the transcript of an interaction where P (resp. V) has
input 𝑠 (resp. 𝑡 ) and implicit inputs 1𝜆, pp, crs. We write 𝑏 = ⟨P(𝑠),V(𝑡)⟩ for the verifier’s output 𝑏.

To handle techniques such as rejection sampling, we allow a non-negligible correctness error in our
proof systems.

Definition 2.3.4 (Correctness). A proof system (GenCRS, P,V) forL has correctness error 𝛾cor if for
every adversaryA

Pr
⎡⎢⎢⎢⎢⎣
pp← GenPP(1𝜆); crs← GenCRS(pp);

(𝑥,𝑤) ←A (pp, crs) :
⟨P(pp, crs, 𝑥,𝑤),V(pp, crs, 𝑥)⟩ = 1

⎤⎥⎥⎥⎥⎦ ≥ 1 − 𝛾cor(𝜆)

We call (GenCRS, P,V) correct if 𝛾cor = negl. It is perfectly correct if 𝛾cor = 0.

Unless stated otherwise, we assume that any proof system we consider has negligible correctness error.

Definition 2.3.5 (Soundness Error). Let Π = (GenCRS, P,V) be a public coin proof system for NP-relation
R with languageL. LetA be a probabilistic algorithm and P∗ be a deterministic algorithm. Then

AdvsndP∗,V = Pr
⎡⎢⎢⎢⎢⎣
pp← GenPP(1𝜆); crs← GenCRS(pp);

(𝑥, 𝑠) ←A (pp, crs);
𝑏 = ⟨P∗(𝑥, 𝑠),V(𝑥)⟩ : 𝑏 = 1 ∧ 𝑥 ∉ L

⎤⎥⎥⎥⎥⎦
is the advantage of (A, P∗) in the soundness experiment. We say Π has statistical soundness error
𝛿snd, if AdvsndP∗,V(𝜆) ≤ 𝛿snd(𝜆) for any (unbounded) pair of algorithms (A, P∗), called the adversary. We
say Π has computational soundness error 𝛿snd, if for any PPT pair of algorithms (A, P∗) there exists
a negligible function negl such that AdvsndP∗,V(𝜆) ≤ 𝛿snd(𝜆) + negl.

2.3.2. Reverse Sampling, Public-Coin, and Transparent Setup

We first give a general definition of efficient sampling and reverse sampling, and then use this to define
a generalized notion of public-coin proof systems and transparent setup.
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2.3.2.1. Efficient and Reverse Sampling

The central requirement for making interactive proofs non-interactive by computing the verifier’s
messages “locally” via some means (e.g., a random oracle) is that V should not keep any secrets during
the protocol, as the non-interactive prover interacts with a “virtual” verifier in its head, and necessarily
knows its state. In particular, the verification checks (w.l.o.g. all happening in the very last verifier
step) cannot depend on any secrets, i.e., checks can only depend on the (virtual) transcript of the
interaction. The usual definition of public-coin interactive proofs ensures these requirements by having
the verifier pass out parts of its random tape. However, this simplifies the situation beyond what is
actually practical: Verifier random coins are binary (hence they don’t draw from arbitrary challenge
sets C𝑖 , such as C𝑖 = Z×𝑝 ) and likewise random oracles, when instantiated with hash functions, output
bitstrings. Here, we discuss how to bridge this gap. For this, we use the security parameter denoted 𝜆
(which may be set to 𝜆 = |𝑥 |), and a parameter 𝜂 which controls the quality of sampling algorithms
(which may be set to 𝜆).

Definition 2.3.6. Let 𝜂 ∈ N and X ⊂ {0, 1}∗. A family of distributions (𝐷𝑥 )𝑥∈X is efficiently sam-
pleable (from the uniform distribution (𝑈poly(𝜂, |𝑥 | ) )𝜂∈N,𝑥∈X), if there is a PPT algorithm𝑀 such that
𝑋𝜂,𝑥 = 𝑀 (1𝜂, 𝑥 ;𝑈poly(𝜂, |𝑥 | ) ) is distributed as 𝐷𝑥 when conditioned on𝑋𝜂,𝑥 ≠ ⊥, and Pr[𝑋𝜂,𝑥 = ⊥] ≤ 2−𝜂 .

Let 𝑀 efficiently sample (𝐷𝑥 )𝑥∈X . Then 𝑀 is efficiently reverse sampleable, if there is a PPT
algorithm 𝑀† such that 𝑀† efficiently samples (𝑅𝜂,(𝑥,𝑦) )𝜂∈N,𝑥,𝑦∈{0,1}∗ , where 𝑅𝜂,(𝑥,𝑦) is uniform over
{𝑟 ∈ {0, 1}poly(𝜂, |𝑥 | ) | 𝑀 (1𝜂, 𝑥 ; 𝑟 ) = 𝑦}. That is,𝑀†(1𝜂, (𝑥,𝑦)) samples uniformly from random tapes 𝑟
with 𝑦 = 𝑀 (1𝜂, 𝑥 ; 𝑟 ) (except with probability 2−𝜂).

Reverse sampling is sometimes called invertible sampling.

Efficiently sampleable distributions can be approximated exponentially precise and sampling is error-
less in the sense that an output ⊥ indicates failure, and retries to amplify success are possible. The
failure probability is to account for the impossibility of sampling uniformly in strictly bounded time
from a set C𝑖 of whose cardinality is not a power of 2. Note that we have to deal with sampling failures
in protocols. For simplicity, we may simply accept a completeness error of O(2−poly(𝜆) ), and run
𝑀 (1poly(𝜆) ) to sample with suitable precision.

The notion of reverse sampleable distributions encodes a lack of secret information in a distribution
when sampled using𝑀 .5 This is what we will need for public-coin protocols, transparent setups, or for
programming verifier coins and random oracles during knowledge extraction. Concretely, for reverse
sampleable𝑀 , we can “program” or “explain” a (predetermined) outcome 𝑐 in an (almost) perfect way
by sampling using the reverse sampler to find suitable coins 𝑟 so that 𝑐𝑖 = 𝑀𝑖 (1𝜆 ;RO(𝑟 )).

As we also deal with expected polynomial time algorithms (for knowledge extraction), one must be
careful since even a tiny change in distribution can immensely affect the runtime in general. However,
a closer inspection shows that 𝜌 ≔ 𝜌sup(𝑝 ( · )/𝑈C) = max𝑐∈C 𝑝 (𝑐)/(1/|C |) = max𝑥∈C 𝑝 (𝑐) |C | ≤
1 + 2−poly(𝜆) , where 𝑝 (𝑐) is the probability that𝑀 (1𝜆) outputs 𝑐 . From this, it easily follows that for any
function 𝑇 : C ∪ {⊥} → R≥0, we have E [𝑇 (𝐶)] ≤ 𝜌 · E [𝑇 (𝐶′)] where 𝐶 is uniformly distributed in C

and 𝐶′ = 𝑀 (1𝜆) and we assume E [𝑇 (𝐶′) | 𝐶′ = ⊥] ≤ E [𝑇 (𝐶)]. The latter requirement on 𝑇 is natural
when 𝑇 is runtime of an algorithm which aborts on sampling ⊥.

5 Note that sampling algorithm 𝑀 is of central importance, even though it is often left implicit. For example, sampling a
group element by interpreting a random bitstring as a group element has no secrets, whereas exponentiating the group
generator by a random exponent does contain secrets. More generally, if (𝑥, 𝑟 ) ↦→ 𝑀 (1𝜂 , 𝑥 ; 𝑟 ) is one-way, then𝑀 cannot
be reverse sampleable.
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Many distributions of interest satisfy our definition of reverse sampleable.

Example 2.3.7 (Sampling from {1, . . . , 𝑛}). Choosing uniformly from {0, . . . , 𝑛 − 1} or any setY with
an efficient bijection 𝜄 : X → Y is efficiently reverse sampleable w.r.t. the uniform distribution. This
is an immediate consequence from rejection sampling. For example, let 𝑀 choose 𝑐 uniformly from
{0, 1}⌈log(𝑛) ⌉ ≅ {0, . . . 2⌈log(𝑛) ⌉ − 1} until 𝑐 < 𝑛 or 𝜂 tries are exceeded, in which case 𝑀 outputs
⊥. Clearly, this efficiently samples 𝑈{0,...,𝑛−1} according to Definition 2.3.6. Moreover, 𝑀 is reverse
sampleable as follows: First,𝑀†(1𝜂, 𝑦) runs𝑀 (1𝜂) to sample some output 𝑟𝑡 after 𝑡 tries, with random
choices (𝑟1, . . . , 𝑟𝑡 ) ∈ {0, . . . 2⌈log(𝑛) ⌉ − 1}𝑡 (or ⊥). Then 𝑀† outputs (𝑟1, . . . , 𝑟𝑡−1, 𝑦) (or ⊥ if 𝑀 (1𝜂)
returned ⊥).

Example 2.3.8 (Efficiently sampling fat subsets). SupposeY ⊂ Z is a subset of relative size 𝜌 = #Y/#Z
and that Y is efficiently recognizable and the uniform distribution 𝑈Z is efficiently sampleable and
reverse sampleable (in the security parameter 𝜆, i.e. as a family over X = N). Suppose furthermore
that 𝜌 ≥ 1/poly(𝜆) for security parameter 𝜆. Then the uniform distribution 𝑈Y on Y is efficiently
sampleable and reverse sampleable, e.g. as follows: Use repeated trials similar to Example 2.3.7 to
sample𝑈Y with sampling parameter 𝜂, e.g. run at least 𝑛 = 𝜌−1(𝜆) · 𝜂 trials before giving up. Reverse
sampling is also analogous to Example 2.3.7.

Examples 2.3.7 and 2.3.8 already cover a lot of cases, for example reverse sampling in Z𝑛 for any 𝑛 ∈ N,
or in Z×𝑝 for prime 𝑝 , or in the subset P ∩ {2𝑛, . . . , 2𝑛 − 1} of 𝑛-bit primes. By minor variations, one
covers many cryptographic groups, such as quadratic residues modulo 𝑛, or many elliptic curves which
map bijectively to fat subsets (e.g. by mapping to the 𝑥 coordinate in Z𝑝 and a bit which specifies which
of the (at most) 2 possible 𝑦 coordinates is chosen). However, there are cryptographic groups of interest
where the (im)possibility of reverse sampling is still an open question (at the time of writing), e.g. class
groups of imaginary quadratic orders (cf. Appendix A.1.2).

Aside 2.3.9. Many definitional variants of Definition 2.3.6 are possible. One example is to consider
Δ(𝑋𝜂,𝑥 , 𝐷𝑥 ) ≤ 2−𝜂 in Definition 2.3.6 instead of perfect-unless-⊥. Moreover, in most applications, for
reverse sampling it is sufficent if𝑀† produces almost uniform 𝑟 in {𝑟 ∈ {0, 1}poly(𝜂, |𝑥 | ) |𝑀 (1𝜂, 𝑥 ; 𝑟 ) = 𝑦}.
Lastly, the requirements for efficient (reverse) sampling can be weakened to average case requirements,
since the 𝑥 (resp. 𝑥 and 𝑦) often follow a distribution.

2.3.2.2. Public-Coin and Transparent Setup

As noted, reverse sampleable distribution have “no secrets” and can thus be used to give a (generalized)
definition of public-coin verifiers and transparent setup that more naturally corresponds to their
intuitive meaning and real-world instantiations.

Definition 2.3.10 (Public-coin). An interactive proof system (GenCRS, P,V) is (generalized) public-
coin if V’s message in the 2𝑖-th move, called the challenge 𝑐𝑖 is sampled via a sampling algorithm
𝑀 (1𝜂, tr𝑖) where tr𝑖 is the transcript up to the 2𝑖-th move. Moreover,𝑀 must be reverse sampleable.
Without loss of generality, the final output 𝑏 of a public-coin verifier is 𝑏 = Verify(𝑥, tr) for a PPT
algorithm Verify given the full transcript tr .

Aside 2.3.11. An alternative to public-coin proof systems is to simply define security notions where
the adversary is given the random coins of the verifier (and put no explicit restrictions on the verifier).
This is the most liberal notion we are aware of. It covers pathological examples, e.g. when the protocol
ignores a part of the challenge which the verifier samples non-reversibly. However, we are not aware of
any non-pathological protocol of interest which not already satisfies our stricter notion of public-coin.
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Next, we define transparent setups.

Definition 2.3.12 (Transparent setup). An interactive proof (GenCRS, P,V) has (generalized) trans-
parent setup if GenCRS is reverse sampleable.

Since the CRS crs of a transparent setup can w.l.o.g. be the (uniformly) random coins of GenCRS,
one also calls such a CRS a uniform random string (URS) and its non-transparent counterpart a
structured random string (SRS). Clearly, it is easier to generate a URS than an SRS in practice, e.g.
by using “nothing-up-my-sleeve” methods, such as using the digits of 𝜋 .

2.3.3. Zero-Knowledge

We define honest-verifier zero-knowledge for public-coin proof systems. Full-fledged zero-knowledge
is only considered in Chapter 5 and defined there.

Definition 2.3.13 ((Non-Abort) (S)HVZK). A simulator Sim for a public coin proof system (GenCRS, P,V)
for R is a PPT algorithm with input a statement x for which (x,w) ∈ R and implicit inputs 1𝜆, pp, crs,
and output a transcript tr . LetA be a stateful algorithm and let

RealA (𝜆) = Pr

⎡⎢⎢⎢⎢⎢⎢⎣
pp← GenPP(1𝜆); crs← GenCRS(pp);

(x,w) ←A (pp, crs);
tr ← ⟨P(pp, crs,x,w),V(pp, crs,x)⟩ ;
𝑏 ←A (tr) : 𝑏 ∧R (x;w) = 1

⎤⎥⎥⎥⎥⎥⎥⎦
IdealA (𝜆) = Pr

⎡⎢⎢⎢⎢⎣
pp← GenPP(1𝜆); crs← GenCRS(pp);
(x,w) ←A (pp, crs); tr ← Sim(pp, crs,x);

𝑏 ←A (tr) : 𝑏 ∧R (x;w) = 1

⎤⎥⎥⎥⎥⎦
Define the advantage of A by AdvhvzkA,P,V(𝜆) = RealA (𝜆) − IdealA (𝜆). Then Sim (and by extension
(GenCRS, P,V)) is honest verifier zero-knowledge with simulation error 𝛿sim = 𝛿sim(𝜆), if for all
PPT A there exists a negligible function negl such that AdvhvzkA,P,V ≤ 𝛿sim + negl. It is statistical HVZK
by AdvhvzkA,P,V ≤ 𝛿sim for all (even unbounded)A.

If in the real and ideal experiments, A is allowed to prescribe the challenges that the honest verifier (or
simulator) will use, then we denote the advantage by AdvshvzkA,P,V and call the resulting notion special
honest verifier zero-knowledge (SHVZK).

The simulator is non-abort (S)HVZK, if it satisfies the weaker requirement, that simulated transcripts
and real non-aborting transcripts are indistinguishable. Formally, use the modified RealA , where the
transcript tr is replaced by ⊥ if the honest prover aborts, to define the advantage Advna-hvzkA,P,V (resp.
Advna-shvzkA,P,V ).

Remark 2.3.14 (Non-abort (S)HVZK to ordinary (S)HVZK). The protocols in Chapter 3 are only non-
abort (S)HVZK. If “standard” (S)HVZK is needed, it can be obtained via well-known transformations.
For example, via committing to those messages which, in case of failed masking, the simulator could
not compute backwards. If these messages have enough entropy, suitable hashing (which is collision
resistant and hides high-entropy preimages) suffices.
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Remark 2.3.15. We do not define or use full-fledged zero-knowledge here, but note that it is easily
achieved if we are allowed to modify the setup. For example, by using an equivocal (Blum) coin-toss to
choose the challenges. There is a catch, namely, one might have to change the witness relation, relax
to computational (knowledge) soundness, or use relaxed soundness (as discussed in Section 2.3.4) to
compensate the possibility of breaking the commitment.

2.3.4. Knowledge Soundness

There is a plethora of sensible, useful, and closely related definitions of knowledge soundness. We
present one which is intuitive and easy to use in our setting. Moreover, we concentrate on (statistical)
knowledge errors to have an explicit measure of soundness (instead of requiring asymptotically negligible
errors). This allows us to analyze the behaviour of computational security parameter and knowledge
error almost independently. Moreover, we consider a relation for knowledge soundness RExt, which
may differ from the relation R for correctness.

Definition 2.3.16 (Knowledge Error). Let (GenCRS, P,V) be a public-coin interactive proof system for
NP-relationR with relaxed (knowledge) soundness relationRExt. Let Ext be an expected polynomial
time oracle algorithm (with oracle steps counted as one step) with implicit inputs 1𝜆, pp, crs, explicit
inputs x, tr , and output w, a (purported) witness or ⊥. We call Ext a (black-box) extractor. Let A be
a probabilistic algorithm and P∗ be a deterministic algorithm.

RealA (𝜆) = Pr
⎡⎢⎢⎢⎢⎣

pp← GenPP(1𝜆); crs← GenCRS(pp);
(x, aux) ←A (pp, crs); tr ← ⟨P∗(x, aux),V(x)⟩ :

Verify(x, tr) = 1

⎤⎥⎥⎥⎥⎦
IdealA (𝜆) = Pr

⎡⎢⎢⎢⎢⎢⎢⎣
pp← GenPP(1𝜆); crs← GenCRS(pp);

(x, aux) ←A (pp, crs); tr ← ⟨P∗(x, aux),V(x)⟩ ;
w← ExtP

∗ (x,aux ) (x, tr) :
Verify(x, tr) = 1 ∧ (pp, crs;x;w) ∈ RExt = 1

⎤⎥⎥⎥⎥⎥⎥⎦
W.l.o.g. Ext sets w = ⊥ if Verify(x, tr) ≠ 1. The advantage of (A, P∗) is AdvkeA,P∗,V(𝜆) = RealA (𝜆) −
IdealA (𝜆).

An extractor Ext has (statistical) knowledge error 𝜅, if for any (possibly unbounded) adversary (A,
P∗), we have AdvkeA,P∗,V ≤ 𝜅. Such proof systems are called proofs of knowledge (or arguments of
knowledge).6 If RExt ≠ R, i.e. the relation for correctness and knowledge soundness differ, we speak
of relaxed (knowledge) soundness for relaxed soundness relation RExt.

More generally, we allow a knowledge error function fnknw for extractors, where Pr[IdealA] ≥
fnknw(Pr[RealA]) must hold for statistical soundness. (The standard definition of knowledge error
corresponds to fnknw(𝜀) = 𝜀 − 𝜅.)

Notation 2.3.17. When defining ad-hoc (relaxed) knowledge relations, we sometimes use the shorthand
notation

Kw : pred(x,w),

6 We can analogously define the computational knowledge error 𝜅. However, we will not need it and it is simpler and
more convenient if computational assumptions can instead be put into the relaxed soundness relation, see Remark 2.3.19.
For concreteness: Ext has computational knowledge error 𝜅 if for every PPT pair (A, P∗), there exists a negligible function
negl such that Advke

A,P∗,V ≤ 𝜅 + negl.
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where Kis a “knowledge quantifier” and pred is a predicate. This translates into a relation R via
R = {(x,w) | pred(x,w)}, and we leave 𝜆, pp, crs implicit, as usual.

Convention 2.3.18. If it is clear from the context, we say soundness instead of knowledge soundness. For
example, if we describe extractors, consider proofs of knowledge, or discuss properties where only
witness extraction makes sense (e.g. openings of commitments).

Definition 2.3.16 assumes black-box extraction. Furthermore, knowledge soundness is only defined for
public-coin protocols. For general proof systems, one must replace the transcript by the verifier’s view
and Verify(x, tr) by the verifier’s output bit 𝑏V. In any case, Definition 2.3.16 (or the described general-
ization) intuitively ensure that one can extract any accepting conversation, except with probability
𝜅.

Remark 2.3.19 (Advantages of relaxed soundness). The possibility of a relaxed witness relationRExt ≠ R

significantly simplifies many theorem statements and allows a relatively clean separation of extraction
(which is statistical and even non-asymptotic) and hardness assumptions and security reduction. For
example, the relaxed soundness relation RExt might allow a break of a hard relation (e.g. binding
property of commitment broken) as a witness. Clearly, one can construct an adversary against the
binding property from such a witness. Hence, (statistical) relaxed knowledge soundness w.r.t. RExt

implies computational soundness for R (Footnote 6). This example is typical for the definition of RExt.
Indeed, in Chapters 3 and 4, RExt usually has the form “either (x,w) ∈ R or (x,w) ∈ Rhard”, where
Rhard is a hard relation which captures, e.g. a hash collision or a binding break for a commitment.

Remark 2.3.20 (Definitional variations). Many variations of knowledge soundness can be defined. Our
definition is relatively strong and tailored to our setting of public-coin proof systems. In fact, our actual
constructions of extractors will satisfy even stricter properties. In the other direction, the notion of
witness-extended emulation [Lin03; GI08] is less restrictive on extraction strategies, and it is easily seen
that witness-extended emulation is implied by Definition 2.3.16.

Most of our proof systems crucially rely on either 𝑘-special soundness, or very similar techniques,
to ensure knowledge soundness. That is, given 𝑘 “related transcripts”, one can reconstruct a witness.
While not all of our proof systems are strictly 𝑘-special sound, e.g. in Chapter 3 the protocol SharpPoSO is
a 5-move protocol (which does not satisfy the tree-of-transcripts generalization of special soundness
either), the same techniques which are used for special sound protocol and tree-finding are applicable.
Indeed, these ideas are useful in many contexts.

Thus, we now define (multi-round) special soundness, and then consider tree-finding (i.e. obtaining
related transcripts) and explain how putting this together gives a knowledge extractor.

2.4. Knowledge Extraction and Special Soundness

In this section, we discuss knowledge extractor based on special soundness and split into a tree-finder
and a tree-extractor.
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2.5. Special Soundness

The standard definition of special soundness pertains 3-move public-coin proof systems (also called
Σ-protocols). So let (GenCRS, P,V) be such a proof system forR. It is 𝑘-special sound for some 𝑘 ∈ N
if given 𝑘 related transcripts tr𝑖 with same first message 𝑎 but distinct challenges, one can efficiently
compute a witnessw for the statement x. More concretely, there is a PPT algorithm that given x and a
set {(𝑎,𝛾𝑖 , 𝑧𝑖)}𝑛𝑖=1 of transcripts where tr𝑖 = (pp, crs,x, 𝑎,𝛾𝑖 , 𝑧𝑖) outputs w such that (x,w) ∈ R.

In multi-round protocols, where ℓ challenges are issued, the natural generalization is a tree of transcripts,
where layer 𝑖 nodes have 𝑘𝑖+1 children, starting with layer 0, the root, with 𝑘1 children and ending with
the leaves in layer ℓ (without children). This is illustrated in Fig. 2.1. The formal definition follows.

Definition 2.5.1 (Tree of Transcripts). Let Π = (GenCRS, P,V) be a public-coin proof system for NP-
relation R. A (𝑘1, . . . , 𝑘ℓ )-tree tree of transcripts is defined as follows: It is a set of 𝐾 =

∏︁ℓ
𝑖=1 𝑘𝑖

transcripts tree = {(pp, crs,x;𝑎0, 𝛾1, 𝑎1, . . . , 𝛾ℓ , 𝑎ℓ )} where each 𝑎𝑖 a message from the prover, such that
tree has a labelled (𝑘1, . . . , 𝑘ℓ )-tree structure as follows. The root is (pp, crs,x;𝑎0). It has 𝑘1 edges
labelled with challenges in C1. The next layer has nodes labelled with messages 𝑎1 and 𝑘2 edges labelled
with challenges from C2 and so on. Following a path from the root to a leaf induces a transcript
(pp, crs,x;𝑎0, 𝛾1, 𝑎1, . . . , 𝛾ℓ , 𝑎ℓ ) in tree. A tree is valid if all (inner) nodes have distinctly labelled edges
(i.e. correspond to distinct challenges).

Another analogous definition (𝑘1, . . . , 𝑘ℓ )-trees of challenges. Here, one considers a (probabilistic)
algorithm A which takes as input a sequence of challenges (𝛾1, . . . , 𝛾ℓ ) and outputs 0 or 1. Only the
root is labelled with A’s random tape 𝑟 .

We also write 𝑘-tree for 𝑘 = (𝑘1, . . . , 𝑘ℓ ). Observe that layer 𝑖 has
∏︁ℓ

𝑗=𝑖+1 𝑘ℓ𝑖 children (starting with
layer 0 at the root) and overall a 𝑘-tree consists of 𝑘 =

∏︁ℓ
𝑖=1 𝑘𝑖 transcripts.

𝑎0

𝑎11

𝛾11

𝑎21

𝛾21

. . . . . .

. . .

𝑎𝑘1

𝛾𝑘1

𝑎0

𝑎11

𝑎
1,1
2

𝑎
1,1,1
3

𝛾
1,1,1
3

. . . 𝑎
1,1,𝑘3
3

𝛾
1,1,𝑘3
3

𝛾
1,1
2

. . .

. . .

𝑎
1,𝑘2
2

𝛾
1,𝑘2
2

𝛾11

. . . 𝑎
𝑘1
1

𝛾
𝑘1
1

Figure 2.1.: Trees of transcripts. Left: 𝑘 related transcripts, i.e. a 𝑘-tree for a Σ-protocol. Right: A schematic (𝑘1, . . . , 𝑘3)-tree.

Definition 2.5.2 (Special Soundness). Let Π = (GenCRS, P,V) be a public-coin proof system for NP-
relation R. Suppose that the prover moves first and that ℓ challenges are sent by the verifier (i.e. there
is a total of 2ℓ + 1 moves). Suppose furthermore that in the 𝑖-th move of the verifier, the challenge is
chosen uniformly from a challenge set C𝑖 .

We call Π special sound with tree extractor TreeExt for (potentially relaxed soundness) relation RExt

if TreeExt is a PPT algorithm which given a valid tree tree for statement x outputs a witness w in RExt.
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Convention 2.5.3. Unless stated otherwise, whenever we define a tree extractor, we only consider valid
trees. (Observe that validity is efficiently testable.)

The tree structure is essentially a consequence of sequentially composing Σ-protocols by proving that a
response is accepting, instead of sending that response directly. Since such proofs can be smaller than
sending the witness, it allows for (recursively) compressing the communication. This is exploited in
Chapter 4. Unsurprisingly, the idea of special soundness, namely that a number of transcripts allow
extracting a witness, is a typical approach for achieving knowledge soundness even in settings which
do not strictly fall into our definition of special soundness.

Now, we turn to the question of finding valid 𝑘-trees.

2.5.1. Tree-Finders

Now, we exemplify some tree-finding strategies. First, we define a generic notion of tree-finder

Definition 2.5.4. Let A be an algorithm which takes as input a ℓ-tuple (𝛾1, . . . , 𝛾ℓ ) ∈ C1 × . . . ,×Cℓ of
challenges and outputs 0 or 1. A (𝑘1, . . . , 𝑘ℓ )-tree-finder TreeFind is given black-box access to A and
outputs a valid (𝑘1, . . . , 𝑘ℓ )-tree of challenges tree or ⊥. We say that TreeFind admits knowledge error
function fnknw if for all such A we have

Pr[TreeFindA ≠ ⊥] ≥ fnknw(Pr𝛾,𝑟 [A(𝛾1, . . . , 𝛾ℓ ; 𝑟 )]).

We say TreeFind has knowledger error 𝜅 if knowledge error function fnknw(𝜀) = 𝜀 − 𝜅 is admissible.

We consider a general knowledge error function in Definition 2.5.4 to capture different tree-finding
strategies in one sweep. Moreover, we abstract away proof systems altogether and consider any
algorithm A which takes as input challenges and outputs a bit, which should be viewed as the verifier’s
output bit (given the challenges). For public-coin proof systems, this abstraction works well. Moreover,
it is easy to see that the knowledge error of TreeFind can be checked solely by considering deterministic
A.

Corollary 2.5.5. In Definition 2.5.4, it suffices w.l.o.g. to check the knowledge error for deterministic A.
The same holds for any convex knowledge error functions.

Proof. By definition of black-box rewinding access, the randomness of A is chosen uniformly and then
fixed (during any rewinds). Thus, we have

Pr[TreeFindA( · ) ≠ ⊥] = E𝑟 [Pr[TreeFindA( · ;𝑟 ) ≠ ⊥]]
≥ E𝑟 [fnknw(Pr𝛾 [A(𝛾 ; 𝑟 ) = 1])]
≥ fnknw(E𝑟 [Pr𝛾 [A(𝛾 ; 𝑟 ) = 1]])
= fnknw(Pr𝛾,𝑟 [A(𝛾 ; 𝑟 ) = 1])

.

where the first step is basic probability theory, the second follows from the claim for the now deterministic
A( · ; 𝑟 ), the third is a consequence of Jensen’s inequality (since fnknw is convex), and the last is again
basic probability theory. □

Note that Definition 2.5.4 is also non-asymptotic, which further simplifies working with it. Nevertheless,
we have following straightforward fact.
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Corollary 2.5.6. Let (GenCRS, P,V) be a (𝑘1, . . . , 𝑘ℓ )-special sound public-coin proof system with tree-
extractor TreeExt. Suppose TreeFind is a (𝑘1, . . . , 𝑘ℓ )-tree-finder that works by first querying A on a
uniformly random challenge sequence (𝛾1, . . . , 𝛾ℓ ) ∈ C1 × . . . × Cℓ . Suppose furthermore that TreeFind
has knowledge error 𝜅 . Then we obtain an extractor Ext with knowledge error 𝜅 by running TreeFind and
then TreeExt. An analogous claim same holds for the knowledge error function.

Proof. The definition of A(𝛾1, . . . , 𝛾ℓ ) for TreeFind, provided as a black-box oracle by Ext(x, aux), is
simply an execution of P∗(x, aux, tr) with challenges (𝛾1, . . . , 𝛾ℓ ) and the output being the verifier’s
verdict, i.e.

A(𝛾1, . . . , 𝛾ℓ ) ≔ outV⟨P∗(x, aux, tr),V(x;𝛾1, . . . , 𝛾ℓ )⟩ .

There is a minor subtlety, namely that Ext takes as input the transcript tr of the prior honest interaction.
However, since TreeFind makes a first query with uniformly random challenges sequence (𝛾1, . . . , 𝛾ℓ ),
Ext can program the randomness of TreeFind to start with this challenge sequence (without affecting
the distribution of TreeFind). With this, the claim follows. □

With Corollary 2.5.6, we have reduced the construction of efficient extractors to the construction of
efficient tree-finders and tree-extractors. As the latter are often trivially efficient, the runtime of an
extractor with this blueprint is dominated by the runtime of the tree-finder.

2.5.1.1. Basic Extraction Strategies

Now, we describe two basic extraction strategies for Σ-protocols, i.e. a single challenge (ℓ = 1), i.e. a
𝑘-tree, i.e. 𝑘 related transcripts.

Random Challenges with Replacement. The most straightforward approach to 𝑘-tree-finding is the
following algorithm, which we call TreeFindGeo. Let C be the challenge set and A be a deterministic
algorithm (as in Definition 2.5.4).

1. Pick 𝛾1 $← C uniformly.

2. If A(𝛾1) = 0 return ⊥. Else let 𝑖 = 2.

3. Repeat until 𝑖 > 𝑘

• Pick 𝛾𝑖 ← C uniformly.

• If A(𝛾𝑖) = 1, increase 𝑖 to 𝑖 + 1.

4. If 𝛾1, . . . , 𝛾𝑘 are distinct, output (𝛾1, . . . , 𝛾𝑘 ), else output ⊥.

The runtime analysis of TreeFindGeo in terms of queries to A is quite simple: Let 𝜀 = Pr𝛾 [A(𝛾) = 1].
Then with probability 1 − 𝜀, TreeFind immediately returns ⊥. With probability 𝜀, it enters the loop. For
each 𝑖 , the number of trials until a success follows a geometric distribution Geo(𝜀). Recall that Geo(𝑝)
has expectation 1/𝑝 . Let 𝑄 be the number of total queries TreeFind makes and 𝑄𝑖 be the number of
queries until an accepting 𝛾𝑖 is found. Then, we find the following:

E [𝑄] = 1 + 𝜀 · (
𝑘∑︂
𝑖=2
E [𝑄𝑖]) = 1 + 𝜀 · (𝑘 − 1) · 1

𝜀
= 𝑘

Thus, the expected number of queries is exactly 𝑘 , which is essentially optimal.
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The success analysis gives a less convincing result, due to possible collisions of challenges. Indeed, if A
accepts (i.e. outputs 1) for exactly𝑚 out of 𝑁 = #C challenges, i.e. accepts with probability 𝜀 = 𝑚

𝑁
, then

we find a success probability of only

𝑚/𝑁 ·
ℓ−1∏︂
𝑖=0

𝑚 − 𝑖
𝑚

= 𝜀 · 𝑚!
(𝑚 − 𝑘)!𝑚𝑘

with𝑚 = 𝑘 yielding a worst case of 𝜀 · 𝑘!
𝑘𝑘
≈ 𝜀 ·
√
2𝜋𝑘 · 𝑒−𝑘 . Thus, knowledge error 𝜅 = 𝑘/𝑁 cannot be

(efficiently) achieved with this strategy.

Sampling challenges without replacement. It is clear that for deterministic A sampling challenges
with replacement is wasteful, because the outcome of a retry can be predicted. Indeed, for any fixed
number 𝑛 < 𝑁 = #C, sampling without replacement actually maximizes the probability of success (and
there is never a collision). Thus, an obvious question is whether or not sampling without replacement
is also efficient. This 𝑘-tree-finder was studied in [ACK21] where it is shown that its expected time is
still 𝑘 , hence essentially optimal.

Now, we recall this tree-finder, denoted TreeFindNHG, in more detail. It works as follows:

1. Pick 𝛾1 $← C uniformly.

2. If A(𝛾1) = 0 return ⊥. Else let 𝑖 = 2.

3. Repeat until 𝑖 > 𝑘 or all of C was exhausted.

• Pick 𝛾𝑖 uniformly from C without replacement.

• If A(𝛾𝑖) = 1, increase 𝑖 to 𝑖 + 1.

4. If 𝑖 ≤ 𝑘 , return ⊥. Else return (𝛾1, . . . , 𝛾𝑘 ).

The runtime distribution of the looped part now follows a negative hypergeometric distribution, and
the expected number of queries TreeFind makes is (bounded by) 𝑘 , see [ACK21] for details. Let
𝜀 = Pr𝛾 [A(𝛾) = 1]. Then the success probability of TreeFindNHG is 𝜀 if 𝜀 ≥ 𝑘/𝑁 for 𝑁 = #C and 0
otherwise. Since this knowledge error function is not convex, we use following convex lower bound:

fnknw(𝜀) =
𝜀 − 𝜅
1 − 𝜅

for knowledger error 𝜅 = 𝑘/𝑁 .

2.5.2. Recursive Tree-Finding

Given (a uniformly described family of) basic 𝑘-tree-finders TreeFind𝑘 for 𝑘 ∈ N, we can construct a
(𝑘1, . . . , 𝑘ℓ )-tree-finder in a straightforward manner. Namely, by a form of “sequential composition”
which we sketch here. For this, we implicitly extend the definition of A from Definition 2.5.4 as follows:
A takes an input 𝑐 and outputs a pair (𝑏, 𝑠) of a success bit 𝑏 and some auxiliary string 𝑠 (which is not
relevant for success).

Let A be as above. Define Aℓ (𝑐1, . . . , 𝑐ℓ ) ≔ A(𝑐1, . . . , 𝑐ℓ ), i.e. Aℓ = A. For 𝑖 = 1, . . . , ℓ , define inter-
mediate algorithms A𝑖−1 with inputs (𝑐1, . . . , 𝑐𝑖−1) as follows: The algorithm A𝑖−1(𝑐1, . . . , 𝑐𝑖−1) uses
TreeFindA𝑖 (𝑐1,...,𝑐𝑖−1, · )

𝑘𝑖
to obtain a tree of challengeswith auxiliary information. That is, if TreeFindA𝑖 (𝑐1,...,𝑐𝑖−1, · )

𝑘𝑖
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succeeds, it outputs a list 𝑧 = ((𝛾1, 𝑠1), . . . , (𝛾𝑘𝑖 , 𝑠𝑖)), where A𝑖 (𝑐1, . . . , 𝑐𝑖−1, 𝛾 𝑗 ) = (1, 𝑠 𝑗 ). In this case, A𝑖−1
outputs (1, 𝑧). If TreeFindA𝑖 (𝑐1,...,𝑐𝑖−1, · )

𝑘𝑖
fails, it outputs ⊥, and A𝑖−1(𝑐1, . . . , 𝑐𝑖−1) outputs (0,⊥).

Observe that, recursively, the auxiliary string 𝑠 output by A𝑖−1(𝑐1, . . . , 𝑐𝑖−1) has the form of a (𝑘𝑖 , . . . , 𝑘ℓ )-
subtree of challenges (with prefix (𝑐1, . . . , 𝑐𝑖−1)), until A0 = TreeFindA1 ( · )

𝑘1
actually outputs a full

(𝑘1, . . . , 𝑘ℓ )-tree of challenges for A in the auxiliary string 𝑠 on success (1, 𝑠) (or (0,⊥) on failure).

Define success probabilities 𝜀𝑖 = Pr𝛾1,...,𝛾𝑖 ,𝑟 [A𝑖 (𝛾1, . . . , 𝛾𝑖 ; 𝑟 )] and observe that 𝜀ℓ = Pr𝛾1,...,𝛾𝑖 ,𝑟 [A𝑖 (𝛾1, . . . , 𝛾ℓ ; 𝑟 )] =
𝜀. By definition of knowledge error functions, we find

𝜀𝑖−1 ≥ fnknw,𝑖 (𝜀𝑖) .

By induction, for TreeFindNHG this simplifies to

𝜀𝑖−1 ≥
𝜀ℓ − 𝜅
1 − 𝜅

where the total knowledge error 𝜅 is obtained from the 𝑖-th round knowledge errors 𝜅𝑖 = 𝑘𝑖/#C𝑖 from
the formula

𝜅 = 1 −
ℓ∏︂
𝑖=1
(1 − 𝜅𝑖) ≤

ℓ∑︂
𝑖=1

𝜅𝑖 .

Intuitively, it should hold that the expected number of queries this recursive construction of a tree-finder
makes is bounded by the tree size

𝐾 =

ℓ∏︂
𝑖=1

𝑘𝑖

because layer 𝑖 multiplies the expectation by 𝑘𝑖 , and this intuition is true. However, there is a subtlety in
the analysis: Our efficiency bounds for queries of TreeFind𝑘 to A are given in expectation. Consequently,
A𝑖 for 𝑖 < ℓ make an expected number of queries to the underlying A as well. It is well-known that, in
general, expected time oracles do not compose well. However, we consider very specific algorithms,
and indeed, it can be shown that the basic tree-finders TreeFindGeo (resp. TreeFindNHG) are rewinding
strategies with runtime tightness 𝑘 , cf. Section 5.6.1.1 for a formal definition. Roughly, ignoring the
steps made in TreeFindGeo (resp. TreeFindNHG) and counting only those in A, timeA(TreeFindA) ≤
𝑘 · timeA(A(𝛾)) for uniformly random 𝛾

$← C. In other words, despite the subtleties of counting in
expectation, each application of TreeFind𝑘𝑖 to A𝑖+1 increases the expected number of queries to A by
a factor of at most 𝑘𝑖 if TreeFindGeo or TreeFindNHG is used. Consequently, the expected number of
queries to A is bounded by 𝐾 =

∏︁ℓ
𝑖=1 𝑘𝑖 .

Overall, we find that a recursive composition of TreeFindNHG leads to essentially7 optimal expected
runtime and knowledge error for (𝑘1, . . . , 𝑘ℓ )-tree-finders. For an explicit analysis of runtime and
success probability of TreeFindNHG, refer to [ACK21; AFK22].

7 For TreeFindGeo, one can abort upon a collision. For TreeFindNHG, it is possible to reorder the recursive queries and return
⊥ earlier, if it occurs. Thus, the runtimes are not minimal for any prover (but they are minimal for honest provers).
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3. Sharp: Short Relaxed Range Proofs

This chapter is based on [CGKR22a; CGKR22b]. It is taken verbatim from [CGKR22b] with minor
changes.

My primary contributions in this work are the batch proof of shortness (PoSO), in particular the core
lemma. Moreover, I devised and proved security of the augmentation of the scheme with hidden
order groups, though the initial suggestion of using hidden order groups is due to Geoffroy Couteau.
Minor contributions include separation of proof of shortness and square decomposition into two
mostly separate steps, switching to relaxed soundness (instead of using “bounded integer commitment
schemes” [CKLR21b]), and exploiting prior knowledge to obtain standard soundness in applications to
(updatable) anonymous credentials.

The application of lattice-based techniques to further improve the efficiency of the 3-square decomposi-
tion proof and also enable simple and efficient group-switching are primarily due to Michael Reichle.
He also worked out an exemplary application of our techniques to anonymous transactions, of which
we only include the short overview in Section 3.7.3, see [CGKR22b] the details. The implementations
and benchmarks are by Dahmun Goudarzi.

3.1. Introduction

Zero-Knowledge Proofs and Range Proofs. Zero-knowledge proofs, introduced in the seminal work
of Goldwasser, Micali, and Rackoff [GMR89], allow a prover to convince a verifier of the truth of a
statement while concealing all other information. This makes them an important tool in theory and
practice. Efficient constructions are now known for a variety of NP-languages, and are routinely used
in real-world applications. An example of particular interest is range proofs, which are zero-knowledge
proofs for demonstrating that a secret value (committed or encrypted) belongs to a public range. Range
proofs are a core component in numerous applications, such as anonymous credentials [Cha90], e-
voting [Gro05], or e-cash [CHL05], and have been introduced recently in some popular anonymous
cryptocurrencies (see [Zca; Mon; BAZB20]).

Range Proofs. Many range proofs which have been constructed in the past can be categorized in two
main paradigms:

(1) Range proofs based on 𝑛-ary decomposition [CCs08; Gro11], where one proves a statement of
the form 𝑥 ∈ [0, 𝑛ℓ ) by committing to an 𝑛-ary decomposition (𝑥0, . . . , 𝑥ℓ−1) of 𝑥 , and proving that
𝑥 =

∑︁
𝑖 𝑥𝑖 · 𝑛𝑖 and each 𝑥𝑖 belongs to [0, 𝑛) (which can be done efficiently when 𝑛 is small). The state

of the art method in this paradigm is Bulletproofs [BBB+18], which features very small proof size
𝑂 (𝜆 · log ℓ) for a security parameter 𝜆 (using binary decomposition), and also enjoys a transparent
setup: the only trusted parameter it requires is an unstructured common random string, which can
be easily generated by standard “nothing up my sleeve” methods (in contrast, protocols requiring a
structured common string need to trust the parameter generator, which is undesirable). Due to its
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great concrete efficiency and its transparent setup, Bulletproofs have become the most commonly used
solution in real-world applications.

(2) Range proofs based on square decomposition [Bou00; Lip03; Gro05; CPP17], where one proves a
statement of the form 𝑥 ≥ 0 by using special integer commitment schemes [FO97; DF02] to commit to 𝑥
over Z, and by proving the existence of four squares 𝑥1, . . . , 𝑥4 such that 𝑥 =

∑︁
𝑖 𝑥

2
𝑖 (such a decomposition

always exist by a theorem of Lagrange, and ensures non-negativity). This generalizes to arbitrary
intervals [𝑎, 𝑏] by proving non-negativity of (𝑥 − 𝑎) (𝑏 − 𝑥). While avoiding 𝑛-ary decomposition is
attractive, instantiating integer commitments required until recently the use of hidden order groups
(such as RSA groups), whose elements are too large to be competitive with Bulletproofs for any
reasonable interval size, and which require a trusted setup (to set up the RSA modulus).

The CKLR Range Proof. In a recent work [CKLR21b], Couteau et al. revived the square decomposition
paradigm, by constructing bounded integer commitment schemes, which can be instantiated over
cryptographic groups with hard DLOG problem. They instantiate (a variant of) the range proof
of [CPP17] with this new commitment scheme, significantly reducing their size and removing the need
for a structured common reference string. The CKLR scheme was shown to compare favorably with
Bulletproofs: for a careful choice of parameters and underlying group, the proofs are about 15% shorter
than Bulletproofs, and require an order of magnitude less group operations. Therefore, on paper, CKLR
seems to offer a competitive alternative to Bulletproofs.

CKLR versus Bulletproofs. However, this cost estimation ignores several important practical aspects,
and the distinction turns out to be far from clear cut in real-world instantiations. The main limitation
of CKLR is that it requires exotic group sizes – typically, elliptic curves with elements of size 352 or 416
bits to achieve 128 bits of security for 32- or 64-bit ranges. While in theory, we can use curves with a
wide variety of sizes, and many standard options exist, the vast majority of cryptographic applications
build upon 256-bit elliptic curves, and highly optimized implementations of some of these curves are
available (for example in libsecp256k1 [Wui18] or ristretto255 [VGT+19]). These libraries typically offer
runtimes 10 to 20 times faster than the NIST standardized implementations of other standard curves.
Hence, the use of large curves in CKLR actually negates the efficiency gains of their smaller number of
group operations compared to Bulletproofs. Furthermore, several applications constrain the choice of
curve; for example, the Ethereum cryptocurrency only allows the curve secp256k1.

This is not the only limitation of the CKLR range proof, compared to Bulletproofs. The latter is especially
attractive when performing several range proofs at once, because it allows for very efficient batching
of multiple proofs; no such batching is known for CKLR. This stems from the fact that the CKLR range
proof revolves around an “extraction lemma” which was formulated and proven in the setting of a single
proof, and operates on top of single-value commitments (while Bulletproofs operate on generalized
Pedersen commitments, which can commit compactly to vectors of values).

Eventually, CKLR is also more restricted in its range of applications compared to Bulletproofs. This
is because Bulletproofs operate with standard Pedersen commitments, while CKLR is designed on
top of a new (Pedersen-based) construction of bounded integer commitments. Compared to Pedersen
commitments, these new commitments have (1) only limited homomorphic properties, and (2) a relaxed
notion of opening, where a malicious opener is given more freedom in what is regarded as a valid
opening (this is similar in spirit to the property of standard integer commitment schemes, such as the
Damgård-Fujisaki commitment [DF02]). This means that in some applications, for example when a
value opened by a malicious party must be reused afterwards by an honest prover (this is the case, e.g.
in some cryptocurrency applications), CKLR cannot be used as a drop-in replacement: the use of CKLR
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is only appropriate when the new commitment scheme can be used in the application without harming
security or correctness.

Summing up, the CKLR paradigm is a promising new approach for constructing range proofs with
strong performance. However, it does not currently compare favorably to Bulletproofs in practical
applications, mostly due to its use of larger curves which lack competitive implementations, but also
due to its lack of batching features. Furthermore, it operates on a new commitment scheme, which
makes it not a priori clear what are the standard applications of range proofs where it can be safely
used.

3.1.1. Our Contributions

In this work, we thoroughly revisit the CKLR paradigm. We introduce a new family of range proof
schemes, which we call Sharp (for short relaxed range proofs). The name Sharp stems from a change
of perspective with respect to CKLR: in CKLR, a proof is interpreted as a full-fledged range proof
for values committed with a new bounded integer commitment which they introduce. The latter is
essentially a Pedersen commitment where openings are allowed to be rationals, which are rounded to
the nearest integer in the opening phase. We observe that one can equivalently “push the relaxation
from the commitment to the range proof” and see CKLR as a relaxed range proof operating over
standard Pedersen commitments, where relaxed means that the prover is only bound to a rational inside
the target range, instead of an integer.1 While this change of perspective does not in itself change the
construction nor its security properties, it allows for a more modular treatment of the construction,
and simplifies the analysis of how CKLR (or Sharp) integrates within standard application of range
proofs.

Our new constructions build upon numerous optimizations, which are a combination of known tech-
niques and entirely new approaches. The security analysis of our scheme is subtle and technically
involved; it forms the core technical contribution of our work. Sharp proofs improve upon CKLR on all
possible fronts: they are much shorter, more efficient, allow for a considerably more flexible choice of
the underlying group (and can in particular be efficiently instantiated over 256-bit curves), and can be
batched efficiently. In addition, we also demonstrate how to overcome the relaxation of soundness,
obtaining schemes that operate directly with standard Pedersen commitments and effectively bind the
prover to an integer in the range (instead of a rational) at the cost of slightly larger proofs (but still
with very competitive performance).

To complement the above results, we elaborate on how Sharp can be used to improve the efficiency of
some flagship applications of range proofs, such as anonymous credentials and anonymous transactions,
clarifying which applications can work with bounded integer commitment schemes, and which require
using a scheme with stronger features. We validate our efficiency claims with implementations and
benchmarks of our main schemes. While our implementation is an unoptimized proof-of-concept
implementation, our benchmarks show that it offers a ten-fold runtime improvement over a heavily
optimized implementation of Bulletproofs; we expect that the efficiency gap would widen further with
a more optimized implementation of Sharp. Below, we elaborate on our contributions.

1 This is a purely conceptual change of view with respect to CKLR, where the rational opening is afterwards interpreted as
an encoding of the closest integer via rounding.
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3.1.1.1. Improved Range Proof Constructions.

Our new family of range proofs, Sharp, can be instantiated in a variety of settings, leading to tradeoffs
between efficiency and the underlying soundness notion. We build upon the paradigm introduced in
[CKLR21b] and obtain range proofs with improved efficiency and flexibility. In applications where low
communication matters the most, our scheme SharpGS provides the most competitive performance,
but uses curves of sizes other than the standard 256-bit setting. For runtime-critical applications, or
when the application restricts the available curve, we describe SharpPoSO, a scheme fully optimized to
work over 256-bit groups.

At the heart of our flexibility and efficiency improvements is a modular treatment of the structure
of a range proof. We split the range proof into two conceptual parts: the proof of short opening
(PoSO) and the proof of decomposition (PoDec). The PoSO guarantees that extracted openings are
short and the PoDec ensures that the square decomposition holds over Z𝑝 , where 𝑝 is the order of the
DLOG group. Combining both parts ensures that the committed value is a rational inside the given
range, as the shortness allows us to argue over the integers. This decoupling allows us to develop
tailored optimizations for each part, but also clarifies the exact soundness guarantees which the proof
provides. We stress that one can still equivalently see Sharp as a standard range proof operating over a
relaxed integer commitment scheme, using the rounding technique of CKLR: our change of perspective
improves the conceptual simplicity of analyzing the use of Sharp within standard applications, but the
exact guarantees remain identical to CKLR.

Optimizing the decomposition proof. We optimize the PoDec via a polynomial-based technique, similar
to the lattice version of [CKLR21b] (with some tweaks that improve efficiency). Besides improving
efficiency of the PoDec, this adaption enables two additional improvements: (1) The new protocol
is suited for vector commitments, such as Pedersen multi-commitments (MPed). This enables more
efficient batch range proofs, in the sense of performing range proofs for all 𝑁 values in the vector
commitment at once. (2) We introduce a group switching strategy that enables the use of different
groups for the PoSO and PoDec. To our knowledge, this is the first time group switching is (efficiently)
used without leveraging hidden order groups. This optimization further reduces proof length (and
computation), while allowing more flexibility to instantiate the underlying groups. These changes lead
to an optimized range proof: SharpGS.

Optimizing the short opening proof. We further present SharpPoSO, a range proof with optimized PoSO
(in combination with the changes described above). The analysis of this scheme is delicate and uses
several new ideas. It constitutes the main technical contribution of this work. As range and challenge
space (hence soundness) introduce lower bounds on group size, repetitions are required to achieve high
security levels when the group is fixed. In CKLR, such repetitions were very expensive, as much of the
proof had to be repeated. To reduce their cost, we introduce a (fractional) shortness test that allows the
prover to show that numerator and denominator of multiple fractions are short by sending a single
short integer, per repetition. Integrating this shortness test in the range proof, a “repetition” requires
only two scalars, independent of the batch size. Thus, the bulk of communication and computation of
the range proof is the optimized PoDec (without any repetition).

We note that these optimizations also lead to significant improvements in a batch setting, where multiple
range proofs must be executed at once. For example, executing 𝑁 = 8 range proofs with 128 bits of
security and 64-bit inputs communicates only 2.9 times more than executing a single range proof.
We also observe that a similar batch technique is used in the context of lattice-based range proofs, in
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the setting where all challenges are bits. However, the possibility of using general short challenges
instead of bits is precisely what allows our schemes to remain very compact, and is also what makes
the analysis of our shortness test so delicate (we elaborate on this aspect in the technical overview).

Binding to integers instead of rationals. The bounded integer commitment scheme of [CKLR21b] is
essentially a Pedersen commitment where malicious openers are allowed to reveal a rational instead of
an integer (that is later rounded to encode an integer inside the range). Consequently SharpGS, like
CKLR, provides only a relaxed notion of soundness, in that it only binds the prover to a rational in
the target range. We develop several new approaches to overcome this limitation, obtaining proofs
that operate with standard Pedersen commitments (where openings are required to be integers). In the
interactive setting, where soundness is statistical (and a 2−40 statistical soundness error is a common
choice), we show how our batch shortness test allows us to use challenges in {0, 1} with much more
reasonable communication overhead compared to previous approaches, which gives a competitive
three-round range proof with transparent setup and full-fledged soundness. In the non-interactive
setting (where soundness is computational and 128 repetitions would be too expensive), we show how
to combine our schemes with a minimal use of hidden order groups, obtaining two variants: SharpCL
(using class groups to instantiate the hidden order group) and SharpRSA (using RSA groups). These
variants retain a strong efficiency, as only a single element of the hidden order group must be added to
the proof. They achieve stronger soundness notions, namely: (1) SharpRSA achieves standard soundness
(allowing our scheme to be used as a drop-in replacement in essentially any application of range proofs,
but at the cost of loosing the transparent setup), and (2) SharpCL achieves a slightly weaker soundness
where the prover is bound to a dyadic rational, which suffices to overcome some attacks that arise from
the use of a range proof with relaxed soundness in some applications, while retaining the transparent
setup.

We note that many range proofs in RSA groups have been described in the past [Bou00; Lip03; Gro05;
CPP17]. Our RSA-based variant achieves considerable efficiency improvements compared to all these
previous works (both communication and computation-wise), while achieving the same soundness
guarantees.

Concrete efficiency estimations. We compare the communication efficiency of SharpGS, Sharp
Po
SO, and

SharpRSA to the state-of-the-art in Table 3.1, and provide further tables in Appendix A.6. For performing
a single range proof, SharpGS proofs are almost 50% shorter than Bulletproofs, and about 34% shorter
than the CKLR range proofs. For our computation-optimized range proofs SharpPoSO, these numbers
are about 42% and 29% respectively. When performing a large number of range proofs, Bulletproofs
become better communication-wise, because of their logarithmic cost in the batch size; nevertheless,
even for a batch of 𝑁 = 8 range proofs, our range proofs are only between 1.1 and 1.3 times larger
than Bulletproofs (in concrete applications, we believe that this should be largely compensated by our
strong computational improvements). Our variant in RSA groups, which achieves standard soundness,
improves by a large margin compared to the previous best-known RSA-based range proof of [CPP17]: a
factor 3 improvement for a single range proof, and up to a factor 14 improvement for𝑁 = 8 simultaneous
range proofs.

We implemented our computation-optimized range proof SharpPoSO, using the 256-bit elliptic curve from
the libsecp256k1 library [Wui18]. We stress that this is an unoptimized implementation; yet, compared
to the optimized reference implementation of Bulletproofs using the same library, and running the two
protocols on the same machine, we observe very significant runtime improvements. The runtime of our
prover is 11 to 17 times faster than Bulletproofs’ (for 32-bit and 64-bit ranges), while our verifier is two to
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four times faster; see Table 3.2. For a larger batch size of 𝑁 = 8, our verifier runtime remains two to four
times faster than Bulletproofs, while the gap with our prover runtimes increases slightly, ranging from
11 to 21 times faster (all while maintaining a proof size only 1.1 to 1.3 larger than that of Bulletproofs
for 𝑁 = 8). We expect these gaps to further increase with a more optimized implementation.

Table 3.1.: Theoretical proof size in Bytes for showing that some 𝑥 ∈ [0, 𝐵] of CKLR proofs [CKLR21b],
Bulletproofs [BBB+18], RSA-based range proofs [CPP17] and Sharp proofs (SharpGS, SharpPoSO and
SharpRSA) given the security parameter 𝜆. The groups Gcom and G3sq used for Sharp proofs have order
𝑝 and 𝑞 respectively. 𝜋 denotes proof size in Bytes, 𝑁 denotes the number of proofs in the batch, and
log𝑝, log𝑞 is the bit-size of 𝑝 and 𝑞.

CKLR BPs RSA SharpGS SharpPoSO SharpRSA
(𝜆, log𝐵) 𝑁 log𝑝 𝜋 𝜋 𝜋 log𝑝 log𝑞 𝜋 log𝑝 log𝑞 𝜋 𝜋

128, 64 1 416 545 672 2424 333 411 360 256 256 389 793
8 416 4360 864 19056 333 411 1070 256 256 1119 1503
16 416 8720 928 38064 333 411 1882 256 256 1928 2315

128, 32 1 352 501 608 2404 301 347 318 256 256 335 751
8 352 4008 800 18896 301 347 916 256 256 932 1349
16 352 8016 864 37744 301 347 1600 256 256 1612 2033

Table 3.2.: Benchmark of our optimized range proofs compared to Bulletproofs, using the reference
Bulletproofs implementation in𝐶 of [BBB+18], using batch sizes 𝑁 = 1 and 𝑁 = 8. Both implementations
use the library libsecp256k1 [Wui18], and were run on a MacBook Pro with a 2.3 GHz Intel core i7
processor. All timings are in milliseconds.

Bulletproofs SharpPoSO
(𝜆, log𝐵) N Prover’s work Verifier’s work Prover’s work Verifier’s work

128, 64 1 20.6 2.55 1.17 0.75
8 157 12.1 7.47 3.88

128, 32 1 10.5 1.46 0.97 0.74
8 80.0 6.93 6.74 3.39

3.1.1.2. Security and Applications.

We analyze the guarantees of range proofs with relaxed soundness (such as CKLR and Sharp) in
standard range proof applications. For this, we show which manipulations of the committed values
can be allowed depending on the setting. Specifically, we discuss the arithmetical behaviour of the
manipulated rationals, the impact of the chosen decomposition on soundness and show that Sharp
proofs provide standard soundness when the committed values are short. Then, we use these insights to
sketch how Sharp can be applied to two important applications of range proofs: anonymous credentials
(AC) and anonymous transactions (AT). While relaxed soundness is sufficient in AC, range proofs with
relaxed soundness do not suffice as drop-in replacement in AT (and their usage would lead to concrete
attacks). Nevertheless, some (but not all) range proofs can be replaced with Sharp proofs in AT, and we
sketch how Sharp proofs augmented with both a RSA and class group element improve this situation,
even without trusted setup of the RSA modulus.
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3.1.2. Technical Overview

3.1.2.1. CKLR Proofs.

Before introducing our technical improvements, we give a short overview of CKLR in the DLOG setting.
Given a group G of order 𝑝 with generators (𝐺,𝐻 ), a Pedersen commitment (Ped) to 𝑥 ∈ Z𝑝 with
randomness 𝑟 is given by 𝑥𝐺 + 𝑟𝐻 . (We use additive notation.)

CKLR opens the commitment to 𝑥 ∈ [0, 𝐵] in a zero-knowledge manner using standard Σ-protocol
techniques. That is, the prover commits to random masks in 𝐷 = Ped.Com(˜︁𝑥,˜︁𝑟 ), where ˜︁𝑥 and˜︁𝑟 are
additive masks for 𝑥 and 𝑟 respectively. Then, sends 𝐷 to the verifier who in turn sends a random
challenge 𝛾 ∈ [0, Γ]. The prover responds with two linear combinations 𝑧 = 𝛾𝑥 + ˜︁𝑥 , 𝑡 = 𝛾𝑟 +˜︁𝑟 . Finally,
the verifier checks the linear combination via 𝐷 + 𝛾𝐶 = Ped.Com(𝑧, 𝑡) and checks 𝑧 ∈ [0, (𝐵Γ + 1)𝐿],
where 𝐿 is the “masking overhead”. We call such a “proof of opening with shortness check” a proof of
short opening (PoSO).

The basic observation in [CKLR21b] is that the soundness of the above protocol guarantees the extraction
of a value of the form 𝑥 ≡𝑝 𝑦 · 𝛾−1, where both (𝑦,𝛾) are short as well. While this does not suffice to
bind the prover to a small integer, CKLR observes that 𝑥 ≡𝑝 𝑦 · 𝛾−1 uniquely defines a small rational
number 𝑢 = 𝑦/𝛾 ∈ Q (where 𝑦,𝛾 are short and coprime), if 2(𝐵Γ + 1)Γ𝐿 ≤ 𝑝 holds.2 We call 𝑢 ∈ Q the
rational representative of 𝑥 and write 𝑢 = [𝑥]Q .

To show that 𝑢 resides in the range [0, 𝐵], CKLR decomposes 𝑥 (𝐵 − 𝑥) = ∑︁
𝑖∈[1,4] 𝑦

2
𝑖 as the sum of four

squares, commits to 𝑦𝑖 in separate Ped commitments, performs a PoSO for the 𝑦𝑖 and 𝑥 , and shows
that the decomposition holds over Z𝑝 using the homomorphic properties of Ped. We call this part a
proof of decomposition (PoDec). The shortness guarantees of the PoSO imply that 𝑢 (𝐵 −𝑢) ≥ 0 and thus
𝑢 ∈ [0, 𝐵]Q, if 18((𝐵Γ + 1)𝐿)2 ≤ 𝑝 holds.3

3.1.2.2. SharpGS: Group Switching and Batching via an Adapted PoDec.

To weaken the requirements on commitment homomorphism, we use a polynomial-based technique.
That is, the prover commits to 𝑦𝑖 in Ped commitments and performs a PoSO for each 𝑦𝑖 , as before.
To show that the four square decomposition holds, i.e. 𝑥 (𝐵 − 𝑥) = ∑︁

𝑖∈[1,4] 𝑦
2
𝑖 , the prover computes a

polynomial 𝑓 using the (short) masked witnesses 𝑧 = 𝛾𝑥 +˜︁𝑥 and 𝑧𝑖 = 𝛾𝑦𝑖 +˜︁𝑦𝑖 from the PoSO as follows:

𝑓 = 𝑧 (𝛾𝐵 − 𝑧) −
4∑︂
𝑖=1

𝑧2𝑖 = 𝛼2𝛾
2 + 𝛼1𝛾 + 𝛼0.

A short computation shows that 𝛼2 = 0, i.e. the degree of 𝑓 in 𝛾 is 1, iff the decomposition holds.
To show that the degree of 𝑓 is one, the prover commits to 𝛼1 and 𝛼0 in 𝐶∗ = Ped.Com(𝛼1; 𝑟∗) and
𝐷∗ = Ped.Com(𝛼0;˜︁𝑟∗) and sends 𝐶∗, 𝐷∗ to the verifier. Then, the verifier sends the challenge 𝛾 and
the prover replies with 𝑡∗ = ˜︁𝑟∗ + 𝛾𝑟∗. Note that the verifier can recompute 𝑓 from 𝑧, {𝑧𝑖}4𝑖=1 and the
statement. Now, the verifier can check whether 𝑓 ≡𝑞 𝛼1𝛾 + 𝛼0 via Ped.Com(𝑓 , 𝑡∗) = 𝐷∗ + 𝛾𝐶∗. As the
challenge is not known to the prover at the point of committing to the coefficients, the Schwartz–Zippel
lemma guarantees that the decomposition holds over Z𝑞 with overwhelming probability. Further, the

2 CKLR interprets (𝑦,𝛾, 𝑟 ) as a valid opening to 𝑢 with respect to a modified Pedersen commitment that commits to rationals
𝑢 = 𝑦/𝛾 as (𝑦 · 𝛾−1)𝐺 + 𝑟𝐻 (or integers with rounding). Instead of relaxing the commitment, we relax the soundness
guarantee of the range proof and keep working over rationals. This is more flexible and precise.

3 For improved efficiency, CKLR and our protocols actually use a three square decomposition which can lead to problems in
applications, see Section 3.6.1.2. For simplicity, we stick with the four square decomposition in the introduction.
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prover reveals nothing about the values as the commitments are hiding and the openings are masked
in 𝑡∗.

By construction, the polynomial-based technique allows us to use Pedersen multi-commitments (MPed),
instead of separate Pedersen commitments (as in CKLR). Thus, we can perform 𝑁 range proofs at once,
with a constant number of group elements and a linear number of short integers.

The high level structure of this Σ-protocol resembles the lattice-based version of CKLR. But now, by
committing to the entire decomposition 𝑦𝑖 in a single Pedersen multi-commitment, which was not
possible in the DLOG Σ-protocol of CKLR, the prover needs to communicate two integers and group
elements fewer, compared to CKLR. This improves over the standard Σ-protocol for the showing the
square decomposition in a group setting [CPP17; CKLR21b].

Group Switching. Wehighlighted in the overview above that the uniqueness of rational representatives
requires (only) that 𝑝 ≥ 2(𝐵Γ + 1)Γ𝐿. Unfortunately, for the guarantee that the 3-square decomposition
holds, this becomes 𝑝 ≥ 18𝐾2, where 𝐾 = (𝐵Γ + 1)𝐿, which almost doubles the minimal possible group
size. We observe that a dependency of PoSO and PoDec, which was present in CKLR, is removed with
our improved Σ-protocol. Thus, we can choose groups with different modulus for the PoSO and PoDec.
This gives us flexibility in group choices, and no compromise between optimal choice for commitment
(typically 256-bit groups) or PoDec (typically larger groups) has to be made.

3.1.2.3. SharpPoSO: Cheaper Repetitions via a Novel PoSO

To clarify the requirements for our PoSO, we take a closer look at the security proof of SharpGS. The
PoDec proves (among other equations) the square decomposition of 𝑁 integers 𝑥𝑖 :

𝑥𝑖 (𝐵 − 𝑥𝑖) ≡𝑝
4∑︂
𝑗=1
𝑦2𝑖, 𝑗 (3.1.1)

for each committed value 𝑥𝑖 . Security of PoDec follows from 3-special soundness, i.e. 3 related transcripts.
To derive that [𝑥𝑖]Q ∈ [0, 𝐵]Q, the security proof exploits a guarantee of the (simple) PoSO: Given
two related transcripts (𝑎,𝛾, 𝑧) and (𝑎,𝛾 ′, 𝑧′), we can extract 𝑥𝑖 ≡𝑝 𝑧𝑖/𝑑 where 𝑧𝑖 = 𝑧′𝑖 − 𝑧𝑖 and
𝑑 = 𝛾 ′ − 𝛾 ∈ [−Γ, Γ], and likewise for 𝑦𝑖, 𝑗 ; given a third related transcript, Eq. (3.1.1) is ensured.
Moreover, 𝑧𝑖 ∈ [−𝐾,𝐾] due to verifier size checks, so [𝑥𝑖]Q =

𝑧𝑖
𝑑
∈ Q𝐾,Γ , i.e. a fraction with numerator

bounded by 𝐾 and denominator bounded by Γ. Thus, multiplying Eq. (3.1.1) by 𝑑2, it is a homogeneous
quadratic equation in 𝑑 , 𝐵, 𝑧𝑖 , and 𝑧𝑖, 𝑗 , all of which bounded by𝐾 , so short. Since 18𝐾2 < 𝑝 , the equation
holds over the integers. As a consequence, any PoSO which ensures that all extracted 𝑥𝑖 , 𝑦𝑖, 𝑗 are of the
form 𝑥𝑖 = 𝑧𝑖/𝑑 and 𝑦𝑖, 𝑗 = 𝑧𝑖, 𝑗/𝑑 is sufficient for this argument. Note that it is important that all fractions
𝑥𝑖 , 𝑦𝑖, 𝑗 share the same denominator 𝑑 for the above argument. Thus, we aim to replace the individual
PoSOs by a “Batch-PoSO”: Given any number of 𝑥𝑖s (where we do not distinguish between 𝑥𝑖 and 𝑦𝑖, 𝑗
anymore), prove that all of them are short fractions (i.e. in Q𝐾,Γ) with a shared denominator 𝑑 .

A straightforward approach is the following: To check shortness of 𝑥1, . . . , 𝑥𝑁 , check shortness of
the random linear combination 𝑆 =

∑︁
𝑖 𝛾𝑖𝑥𝑖 for 𝛾𝑖 ← [0, Γ] (where we ignore masking terms for zero-

knowledge for simplicity). Intuitively, if any 𝑥𝑖 is not short,4 the term 𝛾𝑖𝑥𝑖 should ensure that 𝑆 is
not short with high probability. And indeed, it is not hard to see that individually, every 𝑥𝑖 is of the

4 Recall that, e.g. 1/𝑑 ∈ Z𝑝 , is considered short for 𝑑 ≤ Γ in our setting.
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form 𝑧𝑖/𝑑𝑖 for short 𝑧𝑖 and 𝑑𝑖 , where 𝑑𝑖 ∈ [1, Γ]. However, as we explained above, we require that the
common denominator 𝑑 of all 𝑧𝑖/𝑑𝑖 is also short. Perhaps surprisingly, this does not follow trivially.

It is clear that, by using binary challenges, i.e. Γ = 1, all 𝑑𝑖 are 1, and thus, the common denominator 𝑑 is
1. In fact, all 𝑧𝑖/𝑑𝑖 = 𝑧𝑖 are small integers. This simple approach is well-known and used in (lattice-based)
cryptography for proving knowledge of short preimages via random subset sums. While this even
ensures standard soundness, it has the huge drawback of a binary challenge space. Thus, 128 repetitions
are required for knowledge error 2−128, which leads to relatively large proof size, e.g. instead of a
335-byte (relaxed sound) we get a 1877-byte (standard sound) range proof from SharpPoSO (for 32-bit
range).

To achieve the claimed proof size, we must therefore choose a large challenge space [0, Γ], so as to
minimize repetitions. The crux of the security proof is then to ensure the common denominator 𝑑 of all
𝑧𝑖/𝑑𝑖 is still short. Our core lemma (Lemma 3.3.12) asserts, that either such a short common 𝑑 exists,
or the false acceptance probability at most 8/Γ, This result is surprisingly non-trivial to prove, and it
may be of independent interest.

Relation to similar lattice-based approaches As noted before, our Batch-PoSO bears close similarities
to some (approximate) batch proofs of (knowledge of) short preimages in the lattice setting. Indeed,
random linear combinations for batch proofs are a standard approach and used in the lattices setting,
e.g. with binary challenges in [BBC+18]. It is also used with larger challenges spaces to prove “frac-
tional openings” of commitments, resulting in relaxed soundness somewhat similar to our setting, e.g.
in [BKLP15; BDL+18]. Namely, by multiplying with the (small) denominator, an extracted solution
grows in size, but if parameters are chosen accordingly, the lattice problem still remains hard even for
such larger solutions. Moreover, in special settings, e.g. ring-lattices, special challenge sets C where
even (𝛾 ′ − 𝛾)−1 is small for all 𝛾,𝛾 ′ ∈ C are used [AL21].

However, a crucial difference between our setting and the lattice-setting is that, in all the lattice-based
works we are aware of, the challenge space for proving (approximate or relaxed) shortness is small and
a large number of repetitions are required. Moreover, in these works, there is no requirement for a short
common denominator 𝑑 , instead, it suffices that individually each 𝑑𝑖 is small, which is straightforward
to show (but insufficient in our case). Since we embrace relaxed soundness and aim to maximize the
challenge space, our approach exhibits such a requirement. Hence, to prove security, we require an
entirely new analysis for the random linear combination test. Our current proof seems quite different
from (advanced) lattice-based techniques, but it is an interesting question if and how such techniques
are applicable to strengthen the lemma or simplify its proof.

Lastly, we note that lattice-based proof systems have vastly improved; even exact (range) proofs are now
quite small, e.g. [LNS20; LNP22], though still an order of magnitude larger than group-based proofs, e.g.
[LNP22] notes that a proof of opening alone needs 8 kB. We leave it as an interesting question, whether
lattice-based range proofs could benefit from square-decompositions or our techniques as well.

3.1.2.4. SharpHO: Augmenting Sharp with Hidden Order Groups.

By using groups of hidden order, we can achieve improved soundness guarantees. On a high level, we
add a singleMPed commitment𝐶′ in a hidden order group to Sharp to restrict the possible commitment
openings to “special” rationals. In contrast, all other range proofs in hidden order groups perform the
entire range proof in the hidden order group [Bou00; Lip03; Gro05; CPP17; CKLR21b]. As these groups
are larger than standard DLOG groups, our approach heavily improves efficiency.
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Our proof of opening for the additional commitment only requires one additional short integer (for
proving knowledge of the randomness of 𝐶′), as we use a synthesized challenge 𝛾 ′ and response 𝑧′𝑖
(computed from the actual challenges and responses) to avoid further repetitions (even if the underlying
range proof is repeated). In more detail, when the PoSO is repeated 𝑅 times with challenges {𝛾𝑘 }𝑅𝑘=1,
the prover and verifier set 𝛾 ′ =

∑︁𝑅
𝑘=1 𝛾𝑘 (Γ + 1)𝑘−1 and similarly for 𝑧′𝑖 . So for completing the proof, only

the masked commitment randomness 𝑡 ′𝑥 is sent additionally. When instantiating this augmentation
with suitable class groups, the committed 𝑥𝑖s are restricted to be dyadic rationals, i.e. of the form𝑚/2ℓ .
With RSA groups, the 𝑥𝑖 must be integers, hence the proof is standard sound.

3.1.3. Structure of this Chapter

In Section 3.2, we introduce additional basic definitions and notations. Section 3.3 contains our notion
of shortness testing and the soundness result for our random linear shortness test. In Section 3.4, we
present our improved range proof which allows group switching. Then, in Section 3.5, we show how to
combine these improvements with our batch shortness test. We discuss properties of relaxed soundness
how to augment our soundness by using hidden order groups in Section 3.6. Lastly, we discuss possible
applications of our results in Section 3.7.

3.2. Preliminaries

In this section, we introduce the additional preliminaries required for this chapter. See Chapter 2 for
the global preliminaries.

3.2.1. Notation and Basic Functions

We write [𝑎, 𝑏] for an interval [𝑎, 𝑏] in Z, and we write [𝑎, 𝑏]𝑅 for an interval in another space 𝑅,
e.g. Q,R,Z𝑝 . We use Minkowski sum notation for sets, i.e. 𝐴 + 𝐵 ≔ {𝑎 + 𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵} and
write 𝐴 + 𝑏 ≔ 𝐴 + {𝑏} for offsets. We denote by |𝑥 | the absolute value of 𝑥 ∈ R. Let 𝑝 be an (odd)
(prime) number. Let Z𝑝 = Z/𝑝Z be the integers modulo 𝑝 , with representatives either Z𝑝 = [0, 𝑝 − 1]
or Z𝑝 = [⌈−𝑝−12 ⌉, ⌈

𝑝−1
2 ⌉]. Generally, we write ≡𝑝 for equality mod𝑝 and ∈Z𝑝 for set membership

modulo 𝑝 , i.e. 𝑥 ∈Z𝑝 𝑆 iff ∃𝑠 ∈ 𝑆 : 𝑥 ≡𝑝 𝑠 . For 𝑥 ∈ Z𝑝 , let |𝑥 | = min{|𝑘 | | 𝑘 ∈ Z, 𝑘 ≡𝑝 𝑥} ≤ 𝑝/2. Recall
that 𝑑 (𝑥,𝑦) = |𝑦 − 𝑥 | for 𝑥,𝑦 ∈ Z𝑝 defines a metric on Z𝑝 .

We define the “prime number analogue” of the factorial.

Definition 3.2.1 (Primorial). We write priml(𝑘) for the product of the first 𝑘 primes, i.e. priml(𝑘) ≔∏︁𝑘
𝑖=1 𝑝𝑖 where 𝑝𝑖 is the 𝑖-th prime number.5 We write primlmin(𝑛) for min{𝑘 | priml(𝑘) ≥ 𝑛}, i.e. the

smallest 𝑘 such that priml(𝑘) ≥ 𝑛.

5 The usual definition of primorial is 𝑛# =
∏︁
𝑝𝑖≤𝑛 𝑝𝑖 , where 𝑝𝑖 is the 𝑖-th prime. That is, 𝑛# is the product of all primes 𝑝𝑖 up

to 𝑛. Thus, priml(𝑘) = 𝑝𝑘#.
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3.2. Preliminaries

3.2.2. DLSE and SEI Assumptions in Cryptographic Groups

Instead of the usual DLOG assumption, we consider a version for arbitrary ranges of secret exponents.
This allows us to consider exponents which are (much) smaller than the group size, which is important
to improve efficiency in large groups, e.g. in RSA groups. Moreover, we consider a corresponding
indistinguishability assumption, the short exponent indistinguishability assumption, which asserts that
it is hard to distinguish random group elements with short exponents from random group elements.

Definition 3.2.2 (𝑆-Bounded DLSE and SEI). Consider a group G. The 𝑆-bounded discrete logarithm
with short exponents (DLSE) assumption holds if for every PPTA there is a negligible function negl
such that

Pr [𝐺 $← G; 𝑧 $← [0, 𝑆], 𝑧′ ←A (𝐺, 𝑧𝐺) : 𝑧 = 𝑧′] ≤ negl(𝜆)

This probability defines the advantage AdvdlseA ofA against DLSE.

The 𝑆-bounded short exponent indistinguishability (SEI) assumption holds if for all PPTA there is
a negligible negl function such that

Pr [𝐺 $← G; 𝑧 $← [0, 𝑆] : A (𝐺, 𝑧𝐺) = 1]
− Pr

[︁
𝐺

$← G; 𝑧 $← Zord(𝐺 ) : A (𝐺, 𝑧𝐺) = 1
]︁

≤negl(𝜆)

This probability defines the advantage AdvseiA (𝜆) ofA against SEI.

For groups of known order 𝑝 , SEI holds unconditionally for 𝑆 = 𝑝 −1. More generally, an unbounded ad-
versary against SEI for 𝑆 = 𝐿𝑈up has advantage at most 1/𝐿 in groups of unknown order (Remark A.1.1),
but relying on the SEI assumption for 𝑆 > 𝑈up is of little interest.

Note that SEI is a (long-standing) highly plausible assumption. Further, the DLSE and SEI assumption
are known to be essentially equivalent in groups of known prime order with random generators [KK04],
but a security loss is incurred in the reduction.

3.2.2.1. Pedersen Commitment

We consider Pedersen multi-commitments (MPed), a generalization of the Pedersen commitment
scheme [Ped92], with short openings over a prime or hidden order group G. Let 𝑁, 𝑆 ∈ N and
𝑈lo ≤ |G| ≤ 𝑈up. Setup samples𝐺𝑖 $← G for 𝑖 ∈ [0, 𝑁 ] and outputs commitment key ck = ({𝐺𝑖}𝑖∈[0,𝑁 ]).
Given a message vector {𝑥𝑖}𝑖∈[1,𝑁 ] , Com samples 𝑟 $← [0, 𝑆], sets 𝐶 = 𝑟𝐺0 +

∑︁
𝑖∈[1,𝑁 ] 𝑥𝑖𝐺𝑖 , and

outputs the pair (𝐶, 𝑟 ). Given commitment 𝐶 , message {𝑥𝑖}𝑖∈[1,𝑁 ] and opening 𝑟 , VfyOpen outputs 1
iff 𝐶 = 𝑟𝐺0 +

∑︁
𝑖∈[1,𝑁 ] 𝑥𝑖𝐺𝑖 and 𝑥𝑖 is in the right message space for all 𝑖 . That is, if G has prime order

𝑝 , then 𝑥𝑖 ∈ Z𝑝 , or else 𝑥𝑖 ∈ Z unless stated otherwise. We write Ped for the Pedersen commitment
scheme, i.e.MPed for 𝑁 = 1. The schemeMPed is hiding under the SI and SEI assumptions and binding
under the DLOG assumption. The strength of the hiding property scales with hiding parameter 𝑆 .6

6 If 𝐺𝑖 $← ⟨𝐺0⟩ and 𝑆 is large enough, then MPed is statistically hiding. Under the SI assumption, instead using 𝐺𝑖 $← G
remains (computationally) hiding. Usually, sampling 𝐺𝑖 $← G can be transparent (trapdoor-free), but 𝐺𝑖 $← ⟨𝐺0⟩ not
necessarily.
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3. Sharp: Short Relaxed Range Proofs

3.2.3. Rational Representatives

Using Z-valued representatives for Z/𝑝Z is a natural choice, obtained from the homomorphism Z→ Z𝑝 ,
𝑥 ↦→ 𝑥 mod 𝑝 . Another choice is induced by the ring Z(𝑝 ) = {𝑛𝑑 | 𝑛 ∈ Z, 𝑑 ∈ N, 𝑝 ∤ 𝑑} ⊆ Q, and the
homomorphism 𝑛

𝑑
↦→ 𝑛 · (𝑑−1 mod 𝑝) mod 𝑝 . We call such representatives rational. Strictly speaking,

a set of representatives 𝑅 ⊆ Z(𝑝 ) should have a unique representative for each element in Z𝑝 . We work
with smaller sets, which do not have representatives for all of Z𝑝 , but existing representatives are
unique. The lack of surjectivity will be of no concern since, by construction, elements of interest will
always come with an admissible representative.

Definition 3.2.3. Let Q𝑁,𝐷 ⊆ Q be the rationals whose numerator is bounded by 𝑁 and denominator
bounded by 𝐷 , that is

Q𝑁,𝐷 = {𝑛
𝑑
∈ Q | |𝑛 | ≤ 𝑁, |𝑑 | ≤ 𝐷} ⊆ Q.

The value 𝑥 is represented by 𝑛
𝑑
if 𝑥 ≡𝑝 𝑛𝑑−1 (where 𝑑−1 is computed modulo 𝑝).

Note that we interpret 𝑛
𝑑
as a fraction; the tuple (𝑛,𝑑) is not unique. It becomes unique if 𝑛

𝑑
is reduced

and 𝑑 ≥ 1.

Lemma 3.2.4 (Criterion for Unique Representative in Q𝑁,𝐷 ). Let 𝑁, 𝐷 so that 𝑁 · 𝐷 < 𝑝/2. Then for
any 𝑥 ∈ Z𝑝 , if there is a representative in Q𝑁,𝐷 of 𝑥 , i.e. some 𝑛

𝑑
so that 𝑛𝑑−1 ≡𝑝 𝑥 , then 𝑛

𝑑
is unique (as a

fraction).

Proof. Suppose 𝑥 ≡ 𝑛𝑖𝑑−1𝑖 (𝑝) for 𝑖 = 1, 2. Then 𝑛1𝑑2 ≡ 𝑛2𝑑1 (𝑝). Since 𝑁 · 𝐷 ≤ 𝑝/2 and 𝑛𝑖
𝑑𝑖
∈ Q𝑁,𝐷 , we

find that 𝑛1𝑑2 = 𝑛2𝑑1 over Z. (No wrap-around.) Thus, 𝑛1
𝑑1

=
𝑛2
𝑑2

as fractions, and the claim follows. □

From now on, we always assume that 𝑁 · 𝐷 < 𝑝/2 whenever we use Q-representatives.

Remark 3.2.5. Let 𝑎 ∈ Z𝑝 and 𝑁𝐷 < 𝑝/2. We define [𝑎]Q ∈ Q𝑁,𝐷 as the unique irreducible representa-
tives 𝑛

𝑑
of 𝑎, assuming it exists. (We assume that some maximal bounds 𝑁, 𝐷 are implicitly fixed in the

context.) We note that [𝑎]Q can be efficiently computed (if it exists), see [FSW03].

3.2.4. Masking Scheme

We use “additive masking” to hide information with random noise. For readability, we use an abstraction
of this technique formalized below, in a way similar to [ACK21]. A masking scheme is a tuple
(R,mask,𝑉) of efficiently samplable distribution R and a masking algorithm mask for values in range
[0,𝑉].

• 𝑟 $← R is an integer 𝑟 ∈ [0, (𝑉 + 1)𝐿], i.e. supp(R) ⊆ [0, (𝑉 + 1)𝐿]. We call 𝑟 the mask and 𝐿 ≥ 1
themasking overhead.

• mask(𝑣, 𝑟 ) takes as input an integer 𝑣 ∈ [0,𝑉] and a mask 𝑟 and outputs 𝑣 + 𝑟 or ⊥. For simplicity,
we require mask(𝑣, 𝑟 ) = ⊥ if 𝑣 + 𝑟 ∉ [0, (𝑉 + 1)𝐿].

• p denotes an upper bound on the abort probability, i.e. sup𝑣∈[0,𝑉 ] Pr[mask(𝑣, 𝑟 ) = ⊥ | 𝑟 $←
R] ≤ p.

• Let 𝑀𝑣 denote the distribution defined via: Sample 𝑟 $← R, then return mask(𝑣, 𝑟 ). Then
𝜀mask = sup𝑣,𝑤∈[0,𝑉] Δ(𝑀𝑣, 𝑀𝑤) is called the masking error.
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3.3. Shortness Testing mod 𝑝

The range 𝑉 is sometimes left implicit. Intuitively, 𝑧 = mask(𝑣, 𝑟 ) reveals almost nothing about 𝑣 , since
the random mask 𝑟 ensures that 𝑧 is distributed (almost) independently from 𝑣 . The masking error
quantifies this intuition.

Rejection Sampling. (Uniform) Rejection sampling is usually described for values in intervals [−𝑉,𝑉],
i.e. symmetric around 0. We use [0,𝑉] instead, and adaptmask accordingly. Namely, for given masking
overhead 𝐿:

• The distribution R is the uniform distribution𝑈 [0,(𝑉+1)𝐿 ] .

• mask(𝑣, 𝑟 ) outputs 𝑣 + 𝑟 if 𝑣 + 𝑟 ∈ [𝑉, (𝑉 + 1)𝐿], else ⊥.

• The abort probability is p =
𝑉+1

(𝑉+1)𝐿+1 ≤
1
𝐿
.7

• The masking error is 0.8

Drowning in noise. In the above, set 𝐿 = 2𝜆 . Then abort probability is 2−𝜆 . This is convenient to use if
“size” of 𝑟 does not matter much.

No aborts. We also use masking schemes to save communication. In these cases, once R grows beyond
Z𝑝 , i.e. Z𝑝 = [0, 𝑝 − 1] ⊆ R, we assume that R = Z𝑝 and mask(𝑣, 𝑟 ) = 𝑣 + 𝑟 mod 𝑝 (without abort). We
will be explicit about such potential optimizations.

3.3. Shortness Testing mod 𝑝

In this section, we present a result that allows us to test shortness of many fractions at once. We
will apply this result later to efficiently test shortness of committed values in our range proofs (see
Section 3.5). Indeed, it is the basis for constructing a range proof which communicates a single integer
per repetition. For readability, we only present proof sketches and sometimes simplified claims. The
full claims and proofs can proofs are in Appendix A.4. First, we define a notion of “shortness test”
which is tailored to our application.

Definition 3.3.1 (Fractional Shortness Test). A (fractional) shortness test is an algorithm 𝑇 which takes
as input 𝑥 ∈ Z𝑁𝑝 (where 𝑇 is implicitly parameterized by 𝑝 and 𝑁 ) and outputs 𝑇 (𝑥) ∈ {0, 1}. Let
𝐾, 𝐷 ∈ N with 𝐾𝐷 < 𝑝/2. A vector 𝑥 ∈ Z𝑁𝑝 is uniformly (𝐾, 𝐷)-short, if ∃𝑑 ∈ [1, 𝐷] : 𝑑𝑥 ∈ [−𝐾,𝐾]𝑁Z𝑝 .
Let 𝜙𝐾,𝐷 (𝑥) ∈ {0, 1} be the predicate which is 1 if 𝑥 is uniformly (𝐾, 𝐷)-short. We say that 𝑇 is a
fractionally (𝐾, 𝐷)-sound shortness test with error 𝛿snd, if

∀𝑥 ∈ Z𝑁𝑝 : Pr
[︁
𝑇 (𝑥) = 1 =⇒ 𝜙𝐾,𝐷 (𝑥) = 1

]︁
≥ 1 − 𝛿snd (3.3.1)

or, equivalently,
∀𝑥 ∈ Z𝑁𝑝 : 𝜙𝐾,𝐷 (𝑥) = 0 =⇒ Pr[𝑇 (𝑥) = 1] ≤ 𝛿snd. (3.3.2)

7 For any 𝑣 ∈ [0,𝑉], there are 𝑉 + 1 “bad” 𝑟 (out of (𝑉 + 1)𝐿 + 1 choices for 𝑟 ).
8 The abort probability is independent of 𝑣 . Conditioned on no abort, the distribution is uniform over [𝑉, (𝑉 + 1)𝐿].
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3. Sharp: Short Relaxed Range Proofs

The crucial point in fractional (𝐾, 𝐷)-soundness is that a vector is rejected with high probability if
there is no single denominator of size at most 𝐷 such that 𝑑 ·𝑥 ∈ [−𝐾,𝐾]𝑁Z𝑝 , i.e. ∥𝑑 ·𝑥 ∥∞ ≤ 𝐾 . A weaker
definition might only require 𝑥𝑖 ∈ Q𝐾,𝐷 for all 𝑖 , but this is not enough for our applications. Note that
we do not define what correctness of a fractional shortness test is; it will be evident in applications and
concrete requirements may vary.

Definition 3.3.2 (RAST). We define the random affine shortness test RAST𝑁,D,𝐾,𝜇 for shortness over Z𝑝
with dimension or batch-size 𝑁 , test distribution D𝑁 range bound 𝐾 , and offset 𝜇 as follows: To test
𝑥 ∈ Z𝑁𝑝 , pick 𝛾

$← D𝑁 , and output 1 if 𝜇 +∑︁𝑁
𝑖=1 𝑥𝑖𝛾𝑖 ∈ [0, 𝐾]Z𝑝 , else output 0.

The following theorem assures fractional soundness of the RAST. The proof is based on the core lemma,
Lemma 3.3.12, whose proof is technical and lengthy; it is the subject Appendix A.4.

Theorem 3.3.3. Let RAST be the random affine shortness test with uniform distribution D over [0, 𝐷]𝑁 ,
dimension 𝑁 , range bound 𝐾 , and any offset 𝜇 ∈ Z𝑝 . Let 𝐾 ′ = (1 + 2𝛽)𝐾 where 𝛽 = min(𝑁, primlmin(
𝐷 + 1)) and suppose that 2𝐷 (𝐾 ′ + 𝐷𝐾 + 2) < 𝑝 . Then RAST is fractionally (𝐾 ′, 𝐷)-sound with error
8/(𝐷 + 1),

Remark 3.3.4 (Compressing the challenge). The verifier’s challenge in RAST is relatively large, but it
can be compressed. A direct reduction shows that replacing the challenge 𝛾 $← [0, 𝐷]𝑁 by 𝛾 = PRG(𝑠)
for 𝑠 $← {0, 1}𝜆 , where PRG is a pseudo-random generator, ensures that the soundness error increases
only by a negligible amount (assuming PRG is secure against non-uniform adversaries). And now, the
verifier could send 𝑠 instead, as a compressed version of 𝛾 = PRG(𝑠). As the security of RAST is a
combinatorial property, it is an interesting question to find small (structured) challenge spaces which
are unconditionally secure.

3.3.1. Modulo Arithmetic

In this section, we work with representatives Z𝑝 = [0, 𝑝 − 1] instead of representatives which are
symmetric around 0. Mostly, because we want to use Remark 3.3.5. However, our results are phrased in
a way which is independent of representatives, so they hold for any choice of representatives for Z𝑝 .

First, recall that a (rational) number 𝑥 splits into an integer part ⌊𝑥⌋ and a decimal part 𝑥 − ⌊𝑥⌋, often
denoted frac(𝑥).

Remark 3.3.5. For𝑚 ∈ Z, 𝑑 ∈ N, we make much use of following simple but important equality:

𝑚

𝑑
=

⌊︂𝑚
𝑑

⌋︂
+ 𝑚 mod 𝑑

𝑑
=

⌈︂𝑚
𝑑

⌉︂
− 𝑚 mod 𝑑

𝑑
. (3.3.3)

This equality holds for representatives [0, 𝑑 − 1] of Z𝑑 for “𝑥 mod 𝑝”. For modulo operations symmetric
around 0, “flooring”/“ceiling” would become “rounding”.

Remark 3.3.6 (Inequalities for floor and ceil). Let 𝑥,𝑦 ∈ R. The we have ⌊𝑥⌋ ≤ 𝑥 ≤ ⌈𝑥⌉ and

⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋ ≤ 𝑥 + 𝑦 ≤ ⌈𝑥 + 𝑦⌉ ≤ ⌈𝑥⌉ + ⌈𝑦⌉ (3.3.4)
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3.3. Shortness Testing mod 𝑝

Lemma 3.3.7 (Regular Spacing of S𝑑 ). Suppose 1 < 𝑑 < 𝑝 and gcd(𝑑, 𝑝) = 1 and consider the set

S𝑑 ≡𝑝 {
𝑖

𝑑
mod 𝑝 | 𝑖 ∈ [0, . . . , 𝑑 − 1]} ⊆ Z𝑝 . (3.3.5)

Then S𝑑 = {⌈𝑖𝑝/𝑑⌉ | 𝑖 ∈ [0, . . . , 𝑑 − 1]} and the minimal distance 𝛿 = min𝑥≠𝑦∈S𝑑 |𝑥 −𝑦 | satisfies 𝛿 = ⌊ 𝑝
𝑑
⌋.

When interpreting Z𝑝 and the set 𝑆 on the unit circle as regularly spaced points, it is visually clear that
the claim should hold. See Fig. 3.1 for this. Note, 𝑑/𝑑 ≡𝑝 1, that is, it is an angle of 2𝜋/𝑝 away from
0, so the spacing of S𝑑 is not perfectly regular. Indeed, as shown in Fig. 3.1, the points 𝑖/𝑑 ∈ Z𝑝 are
not in sequential order, but permuted by a unit modulo 𝑑 , so the visual heuristics can be somewhat
misleading. With Lemma 3.3.7 at hand, we can easily derive some simple consequences.
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Figure 3.1.: Visual heuristics for Lemma 3.3.7. The left figure is the naive intuition. The middle figure is the visualization of
for 𝑝 = 27. The right figure denotes S𝑑 = {𝜇0, . . . , 𝜇4} where 𝜇𝑖 ≡𝑝 ⌈ 𝑖𝑝𝑑 ⌉. In the example, 𝜇1 ≡27 6, 𝜇2 ≡27 11, 𝜇3 ≡27 17,
𝜇4 ≡27 22.

Lemma 3.3.8. Suppose 𝑑 ∈ N and gcd(𝑑, 𝑝) = 1 and 𝑢 $← [0, . . . , 𝑑 − 1]. Let 𝜇, 𝐾 ∈ N be arbitrary. Then
for 1 < 𝑑 < 𝑝 we have

Pr
[︂𝑢
𝑑
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︂
≤ 1
𝑑

⌈︄
𝐾 + 1
⌊ 𝑝
𝑑
⌋

⌉︄
(3.3.6)

and for 𝑑 > 𝑝 , we have

Pr
[︂𝑢
𝑑
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︂
≤ 2𝐾 + 1

𝑝
(3.3.7)

where the probability is over 𝑢. Combining the conditions gives

Pr
[︂𝑢
𝑑
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︂
≤ 1
𝑑
+ 2𝐾 + 1

𝑝
(3.3.8)

Note that in Lemma 3.3.8, we consider membership intervals [0, 𝐾] + 𝜇, i.e. arbitrary (shifted) intervals,
not just [0, 𝐾], because such intervals appear naturally in our setting.

While Lemma 3.3.8 was a good warm-up, it does not cover all of our needs. On the one hand, we need
to deal with more general 𝑎/𝑏 (instead of just 1/𝑑) and 𝑢 ∈ [0, 𝐷] (instead if 𝑢 ∈ [0, 𝑑 − 1]). On the
other hand, we need to deal with unions of disjoint intervals, namely [0, 𝐾] + S𝑑 + 𝜇. Thus, we take a
closer look at the specific case of interest. It is sketched in Fig. 3.2.
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Figure 3.2.: Visual heuristics for Lemmas 3.3.8 and 3.3.9. The left figure is the intuition for Lemma 3.3.8. The middle figure
shows [0, 𝐾]Z𝑝 + S6 + 𝜇. The right figure shows [0, 𝐾]Z𝑝 + S6 + 𝜇 and how points of the form 𝑢𝑎/3 are distributed. Visibly,
until the gray points first escape the intervals, they all lie within; after they escape, they never re-enter an interval. Hence at
most 3 · 𝐾/𝑎 points lie within [0, 𝐾]Z𝑝 + S6 + 𝜇.

Lemma 3.3.9. Let 𝑝, 𝑑, 𝑎, 𝑏, 𝜇, 𝐷, 𝐾 ∈ N and suppose 𝑢 $← [0, 𝐷] is a uniform random variable. Let
S𝑑 ≡𝑝 {𝑖/𝑑 | 𝑖 ∈ Z𝑑 } ⊆ Z𝑝 as usual, and likewise S𝑏 . Suppose that gcd(𝑑, 𝑝) = 1, and 𝑏 | 𝑑 , and that

𝑏 (𝐾 + 1) + 𝐷𝑎 <

⌊︃
𝑝

𝑑/𝑏

⌋︃
. (3.3.9)

Then we have ∑︂
𝑠∈S𝑑

Pr
[︂
𝑢
𝑎

𝑏
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇 + 𝑠

]︂
≤

⌈︃
𝑏 (𝐾 + 1)

𝑎

⌉︃
1

𝐷 + 1 . (3.3.10)

Again, the claim of Lemma 3.3.9 is visually clear and sketched in Fig. 3.2. (Our lemma is not as tight as
the picture suggests, but good enough for our purposes.)

Remark 3.3.10. A useful property of S𝑑 is that S𝑑 = 1 − S𝑑 (because 𝑝−𝑖
𝑑
≡𝑝 1 − 𝑖

𝑑
), hence, Lemma 3.3.9

also applies to [0, 𝐾] + 𝜇 − S𝑑 ≡𝑝 [0, 𝐾] + (𝜇 − 1) + S𝑑 . Moreover, Lemma 3.3.9 applies to negative 𝑎 as
well, where |𝑎 | is used in all bounds and estimates. This follows since multiplying the expression in the
probability by (−1) leads to positive 𝑛 which must lie in [−𝐾, 0]Z𝑝 − 𝜇 − S𝑑 which can be rewritten as
[0, 𝐾]Z𝑝 + 𝜇′ + S𝑑 for suitable 𝜇′.

Towards analyzing random linear combinations with the help of Lemmas 3.3.8 and 3.3.9, we introduce
another lemma.

Lemma 3.3.11 (Simplified Lemma A.4.2). Suppose 1 ≠ 𝑑 ∈ N and let 𝑢𝑖 be random variables in
Z𝑑 = [0, . . . , 𝑑 − 1] for 𝑖 = 1, . . . , 𝑁 . Fix some arbitrary 𝑎𝑖 ∈ [0, 𝑑 − 1] with 𝑑 = lcm(𝑎1, . . . , 𝑎𝑁 ).
Then there exist 𝑞1, . . . , 𝑞𝑁 ∈ N, which are pairwise coprime, 𝑞𝑖 | ordZ𝑑 (𝑎𝑖), and

∏︁𝑁
𝑖=1 𝑞𝑖 = 𝑑 . Let

𝑍 =
∏︁𝑁
𝑖=1 Z𝑞𝑖 ↩→ Z𝑁𝑑 (where the injections Z𝑞𝑖 ↩→ Z𝑑 of the Chinese remainder theorem is used component-

wise). Then
∑︁𝑁
𝑖=1𝑢𝑖 · 𝑎𝑖 mod 𝑑 is uniformly distributed in Z𝑑 for (𝑢1, . . . , 𝑢𝑁 ) $← 𝑍 .

Clearly, in Lemma 3.3.11,
∑︁𝑁
𝑖=1𝑢𝑖𝑎𝑖 is uniformly distributed if 𝑢𝑖 $← Z𝑑 for all 𝑖 . The key point of

Lemma 3.3.11 is, that the sum is uniformly distributed even if the 𝑢𝑖 are drawn from the possibly much
smaller space 𝑍 . This helps in our analysis of the core lemma.
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3.3. Shortness Testing mod 𝑝

3.3.2. Shortness Failure of Random Linear Combinations

Now, we turn to the core lemma, Lemma 3.3.12. It should be viewed as a non-trivial generalization
of Lemmas 3.3.8 and 3.3.9 with certain requirements and restrictions. Implicit in Lemma 3.3.12 is the
RAST from Theorem 3.3.3. That is, we consider the probability of “bad” challenges, which for a given
choice of 𝑥𝑖 ’s of the form 𝑚𝑖

𝑑𝑖
lead to falsely accepting

∑︁
𝑖 𝛾𝑖𝑥𝑖 as short, even though some 𝑥𝑖 exceed the

allowed bounds.

Lemma 3.3.12 (Core Lemma). Let 𝐷,𝑀 ∈ N and suppose 2𝐷𝑀 < 𝑝 . Let 𝑥𝑖 =
𝑚𝑖
𝑑𝑖

where 𝑑𝑖 ∈ [1, 𝐷] and
𝑚𝑖 ∈ [−𝑀,𝑀] for 𝑖 = 1, . . . , 𝑁 . Let 𝛾𝑖

$← [0, 𝐷]. Define

𝑆 =

𝑁∑︂
𝑖=1

𝛾𝑖 ·
𝑚𝑖

𝑑𝑖
mod 𝑝 (3.3.11)

Let 𝐼 ⊆ [1, 𝑁 ] denote the set of indices which minimizes 𝑑 ≔ lcm({𝑑𝑖 | 𝑖 ∈ 𝐼 }) under the constraint
that 𝑑 > 𝐷 , or 𝐼 = [1, 𝑁 ] if lcm(𝑑1, . . . , 𝑑𝑁 ) ≤ 𝐷 . Let 𝐾 ∈ N, let 𝛽 = min( |𝐼 |, primlmin(𝐷 + 1)), and let
𝐾 ′ ≔ 𝐾 + 2𝛽𝑀 . Then, for arbitrary 𝜇 ∈ Z𝑝 , we have

Pr
[︁
𝑆 ∈ [0, 𝐾]Z𝑝 + 𝜇

]︁
≤ 4 ·

{︄
1
𝑑

if 𝑑 (𝐾 ′ + 1) < 𝑝
1
𝑑
+ 2𝐾 ′+1

𝑝
always

(3.3.12)

Now, suppose additionally that 𝑑 ≤ 𝐷 and 𝐷 (𝐾 ′ + 𝐷𝑀 + 2) < 𝑝 . If 𝑑
𝑑𝑖
|𝑚𝑖 | > 𝐾 ′ for some 𝑖 ∈ [1, 𝑁 ], then

Pr
[︁
𝑆 ∈ [0, 𝐾]Z𝑝 + 𝜇

]︁
≤ 8
𝐷 + 1 . (3.3.13)

This time, we have no “visual heuristic”. However, though the detailed proof of Lemma 3.3.12 is rather
technical, its basic idea is relatively simple: First, simplify the situation by reducing to the case of
𝐼 = {1, . . . , 𝑁 } and imposing certain minimality properties on 𝐼 and 𝑑 . Then, rewrite the sum 𝑆 with
lowest common denominator 𝑑 . That is, let 𝑆 ′ =

∑︁𝑁
𝑖=1 𝛾𝑖 ·

𝑑𝑚𝑖
𝑑𝑖
∈ Z, and then split 𝑆 ′/𝑑 (resp. 𝑆) into

decimal and integer parts:

𝑆 ≡𝑝
1
𝑑
𝑆 ′ =

𝑆 ′ mod 𝑑
𝑑

+
⌊︃
𝑆 ′

𝑑

⌋︃
.

The idea is to exploit this to analyze the two summands separately, after making them almost stochasti-
cally independent. (But this works only to some extent, namely, small garbage terms will appear.) For
this, we change the challenge distribution. For 𝛾𝑖 , we could change 𝑈 [0,𝐷 ] to 𝑈 [0,𝑑𝑖 ⌈𝐶+1𝑑𝑖 ⌉ ]

, which allows
us to write 𝛾 ′𝑖 = 𝑢𝑖 + 𝑑𝑖𝑣𝑖 with 𝑢𝑖

$← [0, 𝑑𝑖 − 1] and 𝑣𝑖 $← [0, ⌈𝐶+1
𝑑𝑖
⌉]. Then

𝑆 ′/𝑑 =

𝑁∑︂
𝑖=1

𝛾 ′𝑖
𝑚𝑖

𝑑𝑖
=

𝑁∑︂
𝑖=1

𝑢𝑖
𝑚𝑖

𝑑𝑖
+

𝑁∑︂
𝑖=1

𝑣𝑖𝑚𝑖 .

On the right hand side, the second sum is an integer sum, and relatively easy to control. The first sum
has the same form as 𝑆 ′, but the 𝑢𝑖 are uniformly from Z𝑑𝑖 now, which is simpler to analyze. However,
our analysis makes use of Lemma A.4.2 to get a tighter result. Lemma A.4.2 suggests 𝛾 ′𝑖 ∼ 𝑈 [0,𝑞𝑖 ⌈𝐶+1𝑞𝑖 ⌉ ]
(for suitable 𝑞𝑖 ), and we write

𝑆 ≡𝑝
1
𝑑
𝑆𝑢 + 𝑆𝑣 where 𝑆𝑢 =

∑︂
𝑖

𝑢𝑖
𝑚𝑖𝑑

𝑑𝑖
and 𝑆𝑣 =

∑︂
𝑖

𝑣𝑖𝑞𝑖
𝑚𝑖

𝑑𝑖
.
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3. Sharp: Short Relaxed Range Proofs

The central requirements of this change in distribution are that it is close (in terms of 𝜌sup(𝛾/𝛾 ′)), that
𝑆𝑢 mod 𝑑 is now uniformly distributed, and that 𝑆𝑢 and 𝑆𝑣 are stochastically independent. Indeed, a
“loss factor” of 4 compared to Lemma 3.3.8 comes precisely from 𝜌sup(𝛾 ′/𝛾). Moreover, when rewriting
1
𝑑
𝑆𝑢 =

𝑆𝑢 mod𝑑
𝑑
+ ⌊ 𝑆𝑢

𝑑
⌋, we can get rid of the garbage term ⌊ 𝑆𝑢

𝑑
⌋ = ∑︁

𝑖 𝑢𝑖𝑚𝑖
𝑞𝑖
𝑑𝑖

by increasing the interval
from [0, 𝐾] to [0, 𝐾 + 2𝛽𝑀] (since the garbage term lies in [−𝛽𝑀, 𝛽𝑀]). After these changes, we have
simplified to

Pr
[︁
𝑆 ∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︁
≤ 𝜌sup(𝛾/𝛾 ′) · Pr

[︃
𝑆𝑢 mod 𝑑

𝑑
+ 𝑆𝑣 ∈Z𝑝 [0, 𝐾 + 2𝛽𝑀]Z𝑝 + 𝜇′

]︃
where 𝑆𝑢 and 𝑆𝑣 are independent and (𝑆𝑢 mod 𝑑) is uniform in Z𝑑 . Now, Lemma 3.3.12 follows
effectively from Lemma 3.3.8 (which yields Eq. (3.3.12)) and Lemma 3.3.9 (which yields Eq. (3.3.13)).

The core lemma is precise enough for our purposes, but the true bounds and premises may be much
better. On the one hand, the necessity of the size restrictions on 𝐷 , 𝐾 ,𝑀 is uncertain, as is the role of 𝛽 .
On the other hand, a factor of 4 in the inequalities in Lemma 3.3.12 is a consequence of switching 𝛾 to
𝛾
′ (and relying on Lemma A.4.2 to “shrink” the randomness space) instead of analyzing the distribution
of the sum 𝑆 more directly.

3.4. SharpGS: Batching and Group Switching

In this section, we present the optimized Σ-protocol for showing the decomposition in the DLOG
setting, introduce group switching, and show how to perform efficient proofs for batches of integers.

3.4.1. Parameters

Here, we give an overview of all the used parameters in SharpGS. Let 𝑁 ∈ N be the number of integers
𝑥1, . . . , 𝑥𝑁 in the ranges [0, 𝐵𝑖]. In the following, we fix 𝐵 = 𝐵𝑖 for simplicity. Let 𝑅 be the number
of repetitions of the proof and [0, Γ] be the challenge set. Generally, we have 𝑅 = ⌈𝜆/log(Γ + 1)⌉
unless lower soundness than 𝜆 bits is satisfactory. We will need to mask values 𝑥 ∈ [0, 𝐵Γ] and values
𝑟 ∈ [0, 𝑆Γ] (where 𝑆 is defined below) with masking algorithm mask𝑥 ,mask𝑟 , masking randomness
distribution R𝑥 , R𝑟 , masking overhead 𝐿𝑥 , 𝐿𝑟 and masking abort probability px, pr respectively. Let
𝑝 ≥ 2(𝐵Γ2 + 1)𝐿𝑥 and 𝑞 ≥ 18((𝐵Γ + 1)𝐿𝑥 )2. We use MPed commitments with hiding parameter 𝑆 in
groups Gcom and G3sq, with prime order 𝑝 and 𝑞 respectively. We fix generators𝐺0,𝐺𝑖 ,𝐺𝑖, 𝑗

$← Gcom for
the commitment key ckGcom and 𝐻0, 𝐻𝑖

$← G3sq for ckG3sq , where 𝑖 ∈ [1, 𝑁 ] and 𝑗 ∈ [1, 3]. Let Hash be
a collision resistant hash function with output size 2𝜆 bits. The CRS is crs = (ckGcom, ckG3sq).

3.4.2. Scheme Overview

The Σ-protocol SharpGS is described in Algorithm 1. The prover receives the witnesses 𝑥𝑖 ∈ [0, 𝐵]
and 𝑟𝑥 ∈ [0, 𝑆], and the statement 𝐶𝑥 = 𝑟𝑥𝐺0 +

∑︁𝑁
𝑖=1 𝑥𝑖𝐺𝑖 and 𝐵 as input. Prover and verifier proceed

as follows: (1) In the first flow, the prover computes and commits to a decomposition of 𝑥𝑖 using
MPed in Gcom (Lines 1 and 2). Then, for all repetitions 𝑘 ∈ [1, 𝑅], she commits to random masks
of the witnesses and decomposition in MPed over Gcom (Line 4 to 7) and the garbage terms of the
decomposition polynomial (lines 8 to 12). Finally, she sends the commitments to the verifier. (2) In
the second flow, the verifier draws a random challenge for each repetition (Line 1) and sends it to the
prover. (3) In the third flow, the prover masks the witnesses (multiplied with the challenges) for each
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3.4. SharpGS: Batching and Group Switching

repetition and sends the result to the verifier (lines 13 to 18). (4) Finally, the verifier checks whether the
linear relation between the commitments and the challenge holds, after recomputing the decomposition
polynomial (lines 2 to 8).

Optimizations. We use uniform rejection sampling for the masking (instead of Gaussian rejection
sampling in CKLR). This reduces the masking overhead in our setting. As in CKLR, the prover can
avoid sending the commitments D = (𝐷𝑘,𝑥 , 𝐷𝑘,𝑦, 𝐷𝑘,∗)𝑅𝑘=1 by replacing the output D in the first flow
with a hash Δ← Hash(D). Then, the verifier can recompute D in the verification and check whether
the hash matches. Applying the Fiat-Shamir transformation yields a non-interactive range proof.

3.4.3. Security and Correctness

Non-abort probability. With 𝑅 repetitions, the probability of the honest prover not aborting (due to
masking) is lower-bounded by [(1 − pr)3 · (1 − px)4𝑁 ]𝑅 .

Security. SharpGS proofs satisfy correctness, non-abort SHVZK and relaxed soundness. Intuitively, the
verifier is convinced that the committed value has a unique rational representative in the range [− 1

4𝐵 , 𝐵+1
4𝐵 ]Q, formalized in Theorem 3.4.1 below. Note that with the four square decomposition, we obtain
exact range membership in [0, 𝐵], in exchange for slightly increasing proof size (see Section 3.6.1.2).

Theorem 3.4.1. The scheme SharpGS has correctness error at most 1−[(1−pr)3 · (1−px)𝑁 ]𝑅 . It is non-abort
SHVZK under the SEI assumption in Gcom and G3sq. If 2(𝐵Γ2 + 1)𝐿 < 𝑝 and 18𝐾2 < 𝑞 with 𝐾 = (𝐵Γ + 1)𝐿,
then SharpGS has relaxed soundness under the DLOG and SEI assumptions inGcom andG3sq with knowledge
error ( 2

Γ+1 )
𝑅 for the relation RExt =

{︁
((𝑥𝑖)𝑁𝑖=1, 𝑟𝑥 ) : 𝐶𝑥 = 𝑟𝑥𝐺0 +

∑︁𝑁
𝑖=1 𝑥𝑖𝐺𝑖 ∧ [𝑥𝑖]Q ∈ [− 1

4𝐵 , 𝐵 +
1
4𝐵 ]Q𝐾,Γ

}︁
.

To be precise, we consider the 𝑆-bounded SEI assumption in Gcom and G3sq. Moreover, in RExt all [𝑥𝑖]Q
have a common denominator 𝑑 ∈ [1, Γ].

Security proof, outline. Here, we only sketch the proof of security and the relaxed soundness guarantee.
We refer to Appendix A.5.1 for details. (The proof is given for the SharpGS with all optimizations.)
Informally, the committed 𝑥𝑖 are guaranteed to have rational representatives in [− 1

4𝐵 , 𝐵+
1
4𝐵 ]Q𝐾,Γ , where

the numerator and denominator is bounded by 𝐾 = (𝐵Γ + 1)𝐿 and Γ respectively.

Since either mask aborts or the 𝑧’s lie within a predetermined range, correctness follows easily. Also,
we can simulate a valid transcript of the proof for statement (𝐶𝑥 , 𝐵) by first sampling the challenge
and then computing a transcript starting from the last flow. For this, we replace each witness 𝑤 in
the masking mask(𝛾𝑤, ˜︁𝑤) with 0 (where ˜︁𝑤 is the used mask) which affects the distribution only by
𝜀mask = 0 (see Section 3.2.4). If any masking aborts, the simulator returns ⊥. Thus, the scheme is
non-abort SHVZK under the SEI assumption (for hiding commitments). For the soundness proof, we
show 3-special soundness, i.e. extraction from 3 related transcripts. First, we extract the commitments
(with a standard argument). Second, we verify that the three square decomposition holds over Z𝑞 for
the extracted 𝑥𝑖s and infer that [𝑥𝑖]Q ∈ [− 1

4𝐵 , 𝐵 +
1
4𝐵 ]Q using Lemma A.2.2. The switch between groups

requires special care, as the rings Z𝑝 and Z𝑞 are “algebraically incompatible”. But the shortness of the
extracted values suffices to show that the three square decomposition over Z𝑞 implies non-negativity
for the rational representative committed over Z𝑝 .
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Algorithm 1 SharpGS
Prover(𝐶𝑥 , 𝐵, 𝑟𝑥 , {𝑥𝑖}𝑁𝑖=1) Verifier(𝐶𝑥 , 𝐵)

1: Compute 𝑦𝑖, 𝑗 s.t. 4𝑥𝑖 (𝐵 − 𝑥𝑖) + 1 =
∑︁3
𝑗=1𝑦

2
𝑖, 𝑗 for 𝑖 ∈ [1, 𝑁 ]

2: Set 𝐶𝑦 = 𝑟𝑦𝐺0 +
∑︁𝑁
𝑖=1

∑︁3
𝑗=1𝑦𝑖, 𝑗𝐺𝑖, 𝑗 for 𝑟𝑦

$← [0, 𝑆]
3: for all 𝑘 ∈ [1, 𝑅] do
4: Set˜︁𝑟𝑘,𝑥 ,˜︁𝑟𝑘,𝑦 $← R𝑟 ⊲ Opening
5: Set ˜︁𝑥𝑘,𝑖 ,˜︁𝑦𝑘,𝑖, 𝑗 $← R𝑥 for 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3]
6: Set 𝐷𝑘,𝑥 =˜︁𝑟𝑘,𝑥𝐺0 +

∑︁𝑁
𝑖=1 ˜︁𝑥𝑘,𝑖𝐺𝑖

7: Set 𝐷𝑘,𝑦 =˜︁𝑟𝑘,𝑦𝐺0 +
∑︁𝑁
𝑖=1

∑︁3
𝑗=1 ˜︁𝑦𝑘,𝑖, 𝑗𝐺𝑖, 𝑗

8: Set 𝑟 ∗
𝑘

$← [0, 𝑆] and˜︁𝑟 ∗
𝑘

$← R𝑟 ⊲ Decomposition
9: Set 𝛼∗1,𝑘,𝑖 = 4˜︁𝑥𝑘,𝑖𝐵 − 8𝑥𝑖˜︁𝑥𝑘,𝑖 − 2∑︁

𝑗∈[1,3] 𝑦𝑖, 𝑗˜︁𝑦𝑘,𝑖, 𝑗 for 𝑖 ∈ [1, 𝑁 ]
10: Set 𝛼∗0,𝑘,𝑖 = −(4˜︁𝑥2𝑘,𝑖 +∑︁

𝑗∈[1,3] ˜︁𝑦2𝑘,𝑖, 𝑗 ) for 𝑖 ∈ [1, 𝑁 ]
11: Set 𝐶𝑘,∗ = 𝑟 ∗𝑘𝐻0 +

∑︁𝑁
𝑖=1 𝛼

∗
1,𝑘,𝑖𝐻𝑖

12: Set 𝐷𝑘,∗ =˜︁𝑟 ∗
𝑘
𝐻0 +

∑︁𝑁
𝑖=1 𝛼

∗
0,𝑘,𝑖𝐻𝑖

𝐶𝑦, {𝐶𝑘,∗, 𝐷𝑘,𝑥 , 𝐷𝑘,𝑦, 𝐷𝑘,∗}𝑅𝑘=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1: 𝛾𝑘
$← [0, Γ] for 𝑘 ∈ [1, 𝑅] ⊲ Challenge

{𝛾𝑘 }𝑅𝑘=1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13: for all 𝑘 ∈ [1, 𝑅], 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3] do
14: Set 𝑧𝑘,𝑖 = mask𝑥 (𝛾𝑘 · 𝑥𝑖 ,˜︁𝑥𝑘,𝑖), 𝑧𝑘,𝑖, 𝑗 = mask𝑥 (𝛾𝑘 · 𝑦𝑖, 𝑗 ,˜︁𝑦𝑘,𝑖, 𝑗 )
15: Set 𝑡𝑘,𝑥 = mask𝑟 (𝛾𝑘𝑟𝑥 ,˜︁𝑟𝑘,𝑥 ), 𝑡𝑘,𝑦 = mask𝑟 (𝛾𝑘 · 𝑟𝑦,˜︁𝑟𝑘,𝑦)
16: Set 𝑡∗

𝑘
= mask𝑟 (𝛾𝑘 · 𝑟 ∗𝑘 ,˜︁𝑟 ∗𝑘 )

17: if any 𝑧𝑘,𝑖 , 𝑡𝑘,𝑥 or 𝑡∗𝑘 is ⊥ then
18: abort ⊲ Masking failed

{𝑧𝑘,𝑖,𝑗 , 𝑧𝑘,𝑖 , 𝑡𝑘,𝑥 , 𝑡𝑘,𝑦, 𝑡∗𝑘 }𝑘∈ [1,𝑅 ],𝑖∈ [1,𝑁 ], 𝑗 ∈ [1,3]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2: for all 𝑘 ∈ [1, 𝑅] do
3: Check 𝐷𝑘,𝑥 + 𝛾𝑘𝐶𝑥 = 𝑡𝑘,𝑥𝐺0 +

∑︁𝑁
𝑖=1 𝑧𝑘,𝑖𝐺𝑖

4: Check 𝐷𝑘,𝑦 + 𝛾𝑘𝐶𝑦 = 𝑡𝑘,𝑦𝐺0 +
∑︁𝑁
𝑖=1

∑︁3
𝑗=1 𝑧𝑘,𝑖, 𝑗𝐺𝑖, 𝑗

5: Set 𝑓 ∗
𝑘,𝑖

= 4𝑧𝑘,𝑖 (𝛾𝑘𝐵 − 𝑧𝑘,𝑖) + 𝛾2𝑘 −
∑︁3
𝑗=1 𝑧

2
𝑘,𝑖, 𝑗

6: Check 𝐷𝑘,∗ + 𝛾𝑘𝐶𝑘,∗ = 𝑡∗𝑘𝐻0 +
∑︁𝑁
𝑖=1 𝑓

∗
𝑘,𝑖
𝐻𝑖

7: Check 𝑧𝑘,𝑖 , 𝑧𝑘,𝑖, 𝑗 ∈ [0, (𝐵Γ + 1)𝐿𝑥 ] for 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3]
8: return 1 iff all checks succeed
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3.5. SharpPoSO: Improved Proof of Short Opening

We present SharpPoSO, which is based on SharpGS but uses a (batch) shortness test to separate PoSO and
PoDec, and to reduce costs of “internal” repetitions.

3.5.1. Parameters

The groupsGcom andG3sq, and parameters 𝐵, Γ, 𝑁 , and 𝑆 , are identical to SharpGS (cf. Section 3.4.1). The
commitment key ckcom is augmented by additional elements ˜︁𝐺 𝑗 $← Gcom for 𝑗 ∈ [1, 𝑅]. For simplicity,
we define ˆ︁Γ ≔ (Γ + 1)𝑅 − 1 (the size of “large” challenge), and require that ˆ︁Γ ≤ 𝑝 .9
More concretely, we consider a small group Gcom of order 𝑝 and a large group G3sq (which may be
equal) of order 𝑞. Let 𝐵 be a range bound and let Γ be a bound for the challenge sizes. Let 𝑁 be the batch
size, i.e. the number of committed 𝑥𝑖 whose range membership is to be proven. Let 𝑅 be the number of
“internal repetitions” of the Batch-PoSO. Let ˆ︁Γ ≔ (Γ + 1)𝑅 − 1 be the size of “large” challenges, and
assume that ˆ︁Γ ≤ 𝑝 .
Commitment key setup. The commitment key is ck = (ckcom, ck3sq), where

• ckcom = ({𝐺𝑖}𝑖∈[0,𝑁 ], {𝐺𝑖, 𝑗 }𝑖∈[1,𝑁 ], 𝑗∈[1,3], {˜︁𝐺 𝑗 } 𝑗∈[1,𝑅 ]), where 𝐺𝑖 ,𝐺𝑖, 𝑗 , ˜︁𝐺 𝑗 $← Gcom.

• ck3sq = ({𝐻𝑖}𝑖∈[0,𝑁 ]), where 𝐻𝑖 $← G3sq.

Analogous to SharpGS, the elements 𝐺0 and 𝐻0 are used for random masking terms of the commit-
ment, the elements 𝐺1, . . . ,𝐺𝑁 are used to commit to 𝑥𝑖 , and 𝐺𝑖,1, . . . ,𝐺𝑖,3 are used for the 3-square
decomposition 𝑦𝑖,1, . . . , 𝑦𝑖,3 of 1 + 4𝑥𝑖 (𝐵 − 𝑥𝑖), and the elements 𝐻1, . . . , 𝐻𝑁 are used to commit to the
garbage terms for linearization of the square decomposition proof. The new elements ˜︁𝐺1, . . . , ˜︁𝐺𝑅 are
for Batch-PoSO masks 𝜇 𝑗 ,

Masking and mask sizes. For simplicity, we fix a single masking overhead 𝐿 for all masks. Logically,
some masks must be short due to shortness checks, while other masks only hide the value and shortness
is used to reduce communication. The latter may be drawn uniformly from Z𝑝 as well. In SharpGS, 𝐿𝑥
was the former, 𝐿𝑟 the latter type. In SharpPoSO, we have following masking behaviour:

• R𝑝𝑜𝑠𝑜 = [0, (𝑉𝑝𝑜𝑠𝑜 + 1)𝐿], where 𝑉𝑝𝑜𝑠𝑜 = 4𝑁𝐵Γ must be short.

• For 𝑧 ∈ {𝑥, 𝜇, 𝑟, 𝑟 ∗}, R𝑧 need only hide the value, so mask𝑧 (𝑣,𝑚) is computed modulo 𝑝 (resp. 𝑞).
If R𝑧 = Z𝑝 (resp. Z𝑞), mask𝑧 never aborts.

• For 𝑧 ∈ {𝑥, 𝜇, 𝑟 }, we set R𝑧 = [0,min(𝑝 − 1, (𝑉𝑧 + 1)𝐿)], where 𝑉𝑥 = 𝐵ˆ︁Γ, 𝑉𝑟 = 𝑆 , and 𝑉𝜇 =

R𝑝𝑜𝑠𝑜 ·ˆ︁Γ𝐿that is,𝑉𝜇 = (𝑉𝑝𝑜𝑠𝑜 + 1)𝐿 ·ˆ︁Γ𝐿. And we set R𝑟 ∗ = [0,min(𝑞− 1, (𝑉𝑟 ∗ + 1)𝐿)] where𝑉𝑟 ∗ = 𝑆 .

• If Gcom = G3sq, then typically R𝑟 = R𝑟 ∗ = R𝜇 = Z𝑝 .

9 Since the maximal challenge set for a scalar challenge is [0, 𝑝 − 1] = Z𝑝 , increasing the challenge set would require
repetitions in “Phase 2”, which is trivially implemented but completely unnecessary for our instantiations.

55



3. Sharp: Short Relaxed Range Proofs

3.5.2. Scheme Overview

The difference between SharpGS and SharpPoSO is the use of the Batch-PoSO. Again, to simplify we
only consider one range [0, 𝐵] for all 𝑥𝑖 . It will be evident how to generalize to independent ranges
𝑥𝑖 ∈ [0, 𝐵𝑖].

The scheme is defined in Algorithms 2 and 3. It is a 5-move protocol which effectively consists of 2
phases: In Phase 1, the prover commits to the 3-square decompositions (and masks 𝜇𝑘 ). Then, 𝑘 parallel
random affine shortness tests are run on committed values. In Phase 2, the prover proves that it has
correctly answered the shortness test, and that the 3-square decomposition holds modulo 𝑞. Thus,
Phase 2 is very similar to SharpGS, except, it uses a large challenge space [0,ˆ︁Γ], so no repetitions are
required.

Algorithm 2 SharpPoSO– Phase 1
Prover(𝐶𝑥 , 𝐵, 𝑟𝑥 , {𝑥𝑖}𝑁𝑖=1) Verifier(𝐶𝑥 , 𝐵)

1: Compute 4𝑥𝑖 (𝐵 − 𝑥𝑖) + 1 =
∑︁3
𝑗=1𝑦

2
𝑖, 𝑗 for 𝑖 ∈ [1, 𝑁 ]

2: Set 𝑟𝑦 $← [0, 𝑆] and 𝜇1, . . . , 𝜇𝑅 $← R𝑝𝑜𝑠𝑜
3: Set 𝐶𝑦 = 𝑟𝑦𝐺0 +

∑︁𝑁
𝑖=1

∑︁3
𝑗=1𝑦𝑖, 𝑗𝐺𝑖, 𝑗 +

∑︁𝑅
𝑘=1 𝜇𝑘

˜︁𝐺𝑘
𝐶𝑦−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1: Sample 𝛾 (𝑘 )
𝑖, 𝑗

$← [0, Γ] for 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [0, 3], 𝑘 ∈ [1, 𝑅]

{𝛾 (𝑘 )
𝑖,𝑗
}𝑖,𝑗,𝑘

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4: Let 𝑦𝑖,0 ≔ 𝑥𝑖

5: Set 𝜁𝑘 ≔ mask𝑝𝑜𝑠𝑜 (
∑︁𝑁
𝑖=1

∑︁3
𝑗=0 𝛾

(𝑘 )
𝑖, 𝑗
𝑦𝑖, 𝑗 , 𝜇𝑘 ) for 𝑘 ∈ [1, 𝑅]

6: if any 𝜁𝑘 is ⊥ then
7: abort ⊲ Masking Failed

{𝜁𝑘 }𝑘∈ [1,𝑅 ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2: if any 𝜁𝑘 ∉ [0, (4𝑁𝐵Γ + 1)𝐿] then
3: return 0 ⊲ PoSO rejected

Run Phase 2: Proof of consistency of 𝜁𝑘 and 3-square decomposition (see Algorithm 3)

3.5.3. Security and Correctness

Non-abort probability. With 𝑅 “internal” repetitions, the number of masking operations are 𝑅 in
Phase 1. In Phase 2, we have 4𝑁 for 𝑥𝑖 and 𝑦𝑖, 𝑗 , again 𝑅 for 𝜇𝑘 , and 3 masks for 𝑟𝑥 , 𝑟𝑦, 𝑟 ∗. Thus, the
probability of the honest prover not aborting (due to masking) is lower-bounded by (1 − 1

𝐿
)2𝑅+4𝑁+3.
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Algorithm 3 SharpPoSO– Phase 2
After Phase 1 (shortness proof, see Algorithm 2)

8: Set˜︁𝑟𝑥 ,˜︁𝑟𝑦 $← R𝑟
9: Set ˜︁𝑥𝑖 ,˜︁𝑦𝑖, 𝑗 $← R𝑥 for 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3]
10: Set ˜︁𝜇𝑘 $← R𝜇 for 𝑘 ∈ [1, 𝑅] ⊲ PoSO
11: Set 𝑑𝑘 =

∑︁𝑁
𝑖=1

∑︁3
𝑗=0 ˜︁𝑦𝑖, 𝑗𝛾 (𝑘 )𝑖, 𝑗

+ ˜︁𝜇𝑘 for 𝑘 = 1, . . . , 𝑅 ⊲ PoSO
12: Set 𝐷𝑥 =˜︁𝑟𝑥𝐺0 +

∑︁𝑁
𝑖=1 ˜︁𝑥𝑖𝐺𝑖

13: Set 𝐷𝑦 =˜︁𝑟𝑦𝐺0 +
∑︁𝑁
𝑖=1

∑︁3
𝑗=1 ˜︁𝑦𝑖, 𝑗𝐺𝑖, 𝑗 +∑︁𝑅

𝑘=1 ˜︁𝜇𝑘 ˜︁𝐺𝑘
14: Set 𝑟 ∗ $← [0, 𝑆] and˜︁𝑟 ∗ $← R𝑟 ∗
15: Set 𝛼∗1,𝑖 = 4˜︁𝑥𝑖𝐵 − 8𝑥𝑖˜︁𝑥𝑖 − 2∑︁

𝑗∈[1,3] 𝑦𝑖, 𝑗˜︁𝑦𝑖, 𝑗 for 𝑖 ∈ [1, 𝑁 ]
16: Set 𝛼∗0,𝑖 = −(4˜︁𝑥2𝑖 +∑︁

𝑗∈[1,3] ˜︁𝑦2𝑖, 𝑗 ) for 𝑖 ∈ [1, 𝑁 ]
17: Set 𝐶∗ = 𝑟 ∗𝐻0 +

∑︁𝑁
𝑖=1 𝛼

∗
1,𝑖𝐻𝑖

18: Set 𝐷∗ =˜︁𝑟 ∗𝐻0 +
∑︁𝑁
𝑖=1 𝛼

∗
0,𝑖𝐻𝑖

𝐶∗, 𝐷𝑥 , 𝐷𝑦, 𝐷∗, {𝑑𝑘 }𝑅𝑘=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4: 𝛾 $← [0, (Γ + 1)𝑅 − 1) ⊆ Z𝑝 ⊲ Large challenge
𝛾

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19: for all 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3], 𝑘 ∈ [1, 𝑅] do
20: Set 𝑧𝑖 = mask𝑥 (𝛾 · 𝑥𝑖 ,˜︁𝑥𝑖) and 𝑧𝑖, 𝑗 = mask𝑥 (𝛾 · 𝑦𝑖, 𝑗 ,˜︁𝑦𝑖, 𝑗 )
21: Set 𝑡𝑥 = mask𝑟 (𝛾 · 𝑟𝑥 ,˜︁𝑟𝑥 ) and 𝑡𝑦 = mask𝑟 (𝛾 · 𝑟𝑦,˜︁𝑟𝑦)
22: Set 𝑡∗ = mask𝑟 (𝛾 · 𝑟 ∗,˜︁𝑟 ∗)
23: Set 𝜏𝑘 = mask𝜇 (𝛾 · 𝜇𝑘 ,˜︁𝜇𝑘 ) ⊲ PoSO
24: if any 𝑧𝑖 , 𝑧𝑖, 𝑗 , 𝑡𝑥 , 𝑡𝑦 𝑡∗, 𝜏𝑘 is ⊥ then
25: abort ⊲ Masking failed

{𝑧𝑖 }𝑖∈ [1,𝑁 ] , {𝑧𝑖,𝑗 }𝑖∈ [1,𝑁 ], 𝑗 ∈ [1,3] , 𝑡𝑥 , 𝑡𝑦, 𝑡∗, {𝜏𝑘 }𝑘∈ [1,𝑅 ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

5: Compute 𝐹𝑥 = −𝛾𝐶𝑥 + 𝑡𝑥𝐺0 +
∑︁𝑁
𝑖=1 𝑧𝑖𝐺𝑖

6: Compute 𝐹𝑦 = −𝛾𝐶𝑦 + 𝑡𝑦𝐺0 +
∑︁𝑁
𝑖=1

∑︁3
𝑗=1 𝑧𝑖, 𝑗𝐺𝑖, 𝑗 +

∑︁𝑅
𝑘=1 𝜏𝑘

˜︁𝐺𝑘
7: Let 𝑧𝑖,0 ≔ 𝑧𝑖

8: Set 𝑓𝑘 = −𝛾𝜁𝑘 +
∑︁𝑁
𝑖=1

∑︁3
𝑗=0 𝑧𝑖, 𝑗𝛾

(𝑘 )
𝑖, 𝑗
+ 𝜏𝑘 for 𝑘 ∈ [1, 𝑅] ⊲ PoSO

9: Compute 𝑓 ∗𝑖 = 4𝑧𝑖 (𝛾𝐵 − 𝑧𝑖) + 𝛾2 −
∑︁3
𝑗=1 𝑧

2
𝑖, 𝑗 for 𝑖 ∈ [1, 𝑁 ]

10: Recompute 𝐹∗ = −𝛾𝐶∗ + 𝑡∗𝐻0 +
∑︁𝑁
𝑖=1 𝑓

∗
𝑖 𝐻𝑖

11: if 𝐹𝑥 = 𝐷𝑥 , 𝐹𝑦 = 𝐷𝑦 , 𝐹∗ = 𝐷∗, and 𝑓𝑘 = 𝑑𝑘 for 𝑘 ∈ [1, 𝑅] then
12: return 1
13: else return 0
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Security. The security guarantee of SharpPoSO is almost the same as that of SharpGS, except for a small
tightness loss due to the weaker (provable) guarantees of the shortness test (Theorem 3.3.3).

Theorem 3.5.1. The scheme SharpPoSO has correctness error at most 1 − (1 − 1
𝐿
)2𝑅+4𝑁+3. It is non-abort

SHVZK under the SEI assumption in Gcom and G3sq. Let 𝐾 ′ = (1 + 2𝛽)𝐾 where 𝐾 = (𝐵Γ + 1)𝐿 and
𝛽 = min(4𝑁, primlmin(Γ + 1)). If 18(𝐾 ′)2 < 𝑞 and 2(Γ + 1)2𝐾 ′ < 𝑝 and (Γ + 1)𝑅 − 1 < 𝑝 , then SharpPoSO
has relaxed soundness under the DLOG and SEI assumptions in Gcom and G3sq with knowledge error 2+8𝑅

(Γ+1)𝑅

for the relation RExt =
{︁
((𝑥𝑖)𝑁𝑖=1, 𝑟𝑥 ) : 𝐶𝑥 = 𝑟𝑥𝐺0 +

∑︁𝑁
𝑖=1 𝑥𝑖𝐺𝑖 ∧ [𝑥𝑖]Q ∈ [− 1

4𝐵 , 𝐵 +
1
4𝐵 ]Q𝐾 ′,Γ

}︁
. To be precise,

we consider the 𝑆-bounded SEI assumption in Gcom and G3sq. Moreover, in RExt all [𝑥𝑖]Q have a common
denominator 𝑑 ∈ [1, Γ].

Security proof, outline. The proof of correctness and non-abort SHVZK for SharpPoSO are completely
analogous to the respective proofs for SharpGS.

The ideas behind the soundness proof of Theorem 3.5.1 are quite straightforward. It proceeds by
dealing with the two phases separately. First, observe that Phase 2 is effectively a Σ-protocol for the
statement which was completed in Phase 1, i.e. that 𝐶𝑥 resp. 𝐶𝑦 are commitments to the 𝑥𝑖 ’s resp.
auxiliary values𝑦𝑖, 𝑗 and 𝜇𝑘 , the answers 𝜁𝑘 of a random affine shortness test are correct, and the 3-square
decomposition holds. Indeed, Phase 2 is 3-special sound, i.e. given 3 accepting transcripts identical up
until the challenge message 𝛾 for 3 distinct challenges, one can extract openings to the commitments
which satisfy the relation (or the binding property is broken). Thus, as a first step, one can replace
Phase 2 with an extractor with knowledge error 2/(Γ + 1)𝑅 .

Next, one needs to argue that the 𝑥𝑖 and 𝑦𝑖, 𝑗 are short (from above, we know that they satisfy the
3-square decomposition). This does not follow from (3 transcripts for) Phase 2 alone. Intuitively, if the
“shortness test” used has soundness error 𝛿snd, then if any 𝑥𝑖 , 𝑦𝑖, 𝑗 is not short, the probability that the
verifier accepts is at most 𝛿𝑅snd. More precisely, if there is no 𝑑 ∈ [1, Γ] such that 𝑑𝑥𝑖 , 𝑑𝑦𝑖, 𝑗 ∈ [−𝐾 ′, 𝐾 ′]Z𝑝
for all 𝑖, 𝑗 , then the shortness test accepts with probability at most 𝛿snd. However, there is a gap: Our
commitment is only computationally binding, so, by breaking the commitment, the adversary might
win with probability 𝜀 (much) higher than 𝛿𝑅snd. Fortunately, to win with probability 𝜀 > 𝛿𝑅snd, the
adversary must break the binding property. Thus, except with probability 𝛿𝑅snd, one obtains a binding
break from such an adversary in expected time (by rewinding untilA succeeds again). Overall, this
proves the soundness claim of Theorem 3.5.1.

3.5.4. Trade-offs and Optimizations

Reducing communication. As with SharpGS, hashing can reduce the communication in Phase 2 of
the protocol. Namely, the final verification step in Phase 2 computes 𝐹𝑥 , 𝐹∗, {𝑓𝑘 }𝑘∈[1,𝑅 ] , and checks if
they are equal to 𝐷𝑥 , 𝐷∗, {𝑑𝑘 }𝑘∈[1,𝑅 ] . This check can be compressed by using a collision resistant hash
function 𝐻 , and having the prover send 𝐷𝐻 = 𝐻 (𝐷𝑥 , 𝐷𝑦, 𝐷∗, {𝑑𝑘 }𝑘∈[1,𝑅 ]) instead. The verification now
checks 𝐷𝐻 = 𝐹𝐻 , where 𝐹𝐻 ≔ 𝐻 (𝐹𝑥 , 𝐹∗, {𝑓𝑘 }𝑘∈[1,𝑅 ]). It is easy to see that the protocol remains secure if
𝐻 is collision resistant. Also, since Phase 2 is effectively independent of Phase 1, it may be exchanged
with other suitable (succinct) argument systems. This is discussed in a later paragraph.
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Fiat–Shamir transformation. SharpPoSO is public-coin and the Fiat–Shamir transformation is applicable.
This yields a non-interactive zero-knowledge argument. If the (hash) function is modelled as a random
oracle, the resulting scheme is provably secure in the ROM, although there is a security loss (in the
number of random oracle queries).

As SharpPoSO is not a usual Σ-protocol, nor special sound (with sensible parameters), well-known
extraction techniques are not directly applicable. However, the reasoning for the security of the Fiat–
Shamir transformation of multi-round special sound protocols in recent works [AFK21; Wik21] should
be applicable to our setting. After all, the step in Phase 1 is not particularly involved, and we have
a property akin to special soundness there: If a second transcript is necessary (due to inconsistent
witness extracted in Phase 2), then a uniformly random accepting transcript (with same message) will,
with high probability, lead to a non-trivial DLOG relation.

Proving non-negativity. As with CKLR proofs [CKLR21b], it is possible to only prove 𝑥 ≥ 0 instead of
𝑥 ∈ [0, 𝐵]. Namely, using 1 + 4𝑥 =

∑︁3
𝑖=1𝑦

2
𝑖 shows 𝑥 ≥ −1/4, and using the four square decomposition

shows 𝑥 ≥ 0. This is of interest if the upper bound 𝐵 is “unreachable” or otherwise not of interest.
However, an upper bound 𝐵 for 𝑥 is still required (and must not be too large), as it determines the
size of the masks and the verifier’s size checks as before (since wrap-around must still be prevented).
Moreover, 𝐵 is the maximal value for which zero-knowledge guarantees hold; the larger 𝑥 > 𝐵 becomes,
the more zero-knowledge degrades. This optimization applies to SharpGS and SharpPoSO.

Standard Soundness and higher knowledge error. It is easy to see that RAST with uniform distri-
bution over {0, 1}𝑁 is fractionally (𝑁𝐵𝐿, 1)-sound with error 1/2. In this case, SharpPoSO has standard
soundness with knowledge error 𝜅 = 2−𝑅 , and 𝑅 repetitions require approximately 2𝑅 · log(𝑁𝐵𝐿) bits
communication overhead. This trade-off is especially interesting if high knowledge error is acceptable.
for example, a statistical knowledge error 𝜅 = 2−40 + negl in interactive settings10 is a common choice,
and in application to anonymous credentials may be considered acceptable.

By using the Fiat–Shamir transformation on Phase 2 (with ˆ︁Γ = 2𝜆 − 1), an interactive 3-move protocol
can be obtained.11 The trade-off is also useful if batch size 𝑁 is huge (hence amortized cost to achieve
standard soundness is small). In that case, exchanging Phase 2 is also of interest.

Exchanging phase 2. Since Phase 2 is effectively independent of Phase 1, i.e. the shortness test, it may
be exchanged with other suitable (succinct) argument systems. This is especially interesting to reduce
overall communication. As only knowledge of openings and simple quadratic equations are proven,
generic proof systems which target R1CS over Z𝑝 (e.g. Bulletproofs [BCC+16; BBB+18]) or general
quadratic or polynomial equations over Z𝑝 (e.g. [HKR19a; BG18]) can be used as drop-ins.

In fact, the 𝜁𝑘 could also be committed to and proven to be computed correctly and that they lie
within [0, 𝐾]; if done in zero-knowledge, this makes the masking terms 𝜇𝑘 superfluous, improving
the soundness error of the shortness test. However, a (standard sound) range proof is needed to
check 𝜁𝑘 ∈ [0, 4𝑁𝐵Γ], and the proof system must now include adaptively chosen commitments and
statements, which typically is not a problem for commit-and-prove-based proof systems, but it does

10 In this case, the communication overhead is reasonable and computational efficiency remains excellent. For 128 repetitions,
the communication overhead becomes noticeable. See Table A.2 for concrete size estimates.

11We stress that high knowledge error, e.g. 2−40, only makes sense in interactive settings. Fiat–Shamir transformations are
trivial (and cheap) to break in this regime.
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slightly increase proof size and round complexity. Considering the number of variables for adding
the necessary constraints for the (bit-decomposition) range proof for 𝜁𝑘 , and using binary challenges
in the Batch-PoSO (to obtain standard soundness) with 𝑅 = 128 repetitions for security, we obtain a
break-even in the number of (auxiliary) variables at about 𝑁 = 170 with naive R1CS-type constraints
(and 𝑁 = 160 for quadratic constraints). Overall, for large enough batches sizes, this approach may be
of interest. See Example 3.5.2 for more details.

Example 3.5.2 (Using a succinct Phase 2). As discussed in Section 3.5.4, it is possible to adapt suitable
succinct arguments which follow a commit-then-prove strategy which allowmultiple commitment steps
and an adaptive choice of the final statement. The upside is, that the 3-square decomposition requires
fewer auxiliary variables (compared to bit-decomposition). The downside is, that an overhead which is
almost independent of the batch size must be paid (namely, the 𝑅 repetitions). We discuss and roughly
quantify this trade-off, where we use the PoSO with binary challenges to achieve standard soundness.
For concreteness, consider the Bulletproofs variant [HKR19a], which allows proving quadratic equations
over committed variables (instead of the weaker R1CS-type equations). We set 𝐵 = 264 − 1 and 𝑅 = 128
(and Γ = 1).

The protocol with exchanged Phase 2 works as follows:

1. (Phase 1) Commit not only to 𝑥𝑖 , but also to the square decomposition 𝑦𝑖, 𝑗 and masks 𝜇𝑘 for
𝑘 = 1, . . . , 𝑅.

2. Receive the PoSO challenges and responds with 𝜁𝑘 .

3. (Phase 2) Both prover and verifier adapt the statement by including the linear check constraints
(for 𝑘 = 1, . . . , 𝑅) for the PoSO, similar to Phase 2 of SharpPoSO.

With this approach, sending {𝜁𝑘 }𝑅𝑘=1 significantly increases the proof size (namely, by 𝑅 elements of
log((4𝑁 Γ𝐵 + 1)𝐿) bits each). But only 4 variables per range are used (𝑥𝑖 and 3 auxiliary variables
{𝑦𝑖, 𝑗 } 𝑗 ), whereas 64 variables are required per bit-decomposition.

A more complex approach enables smaller proofs, but requires an adaptive commitment and statement:

1. Commit not only to 𝑥𝑖 , but also to the square decomposition 𝑦𝑖, 𝑗 .

2. Receive the PoSO challenges and commit to 𝜁𝑘 for 𝑘 ∈ [1, 𝑅].

3. Both prover and verifier adapt the statement by including the linear check constraint (for 𝑘 =

1, . . . , 𝑅) for the PoSO, and a (bit-decompostion) range proof for 𝜁𝑘 ∈ [0, 4𝑁 Γ𝐵].

An advantage is, that no masks are necessary, but we now require an adaptive commitment to 𝜁𝑘 which
still slightly increases proof size. For the normal bit-decomposition of all 𝑥𝑖 , one needs 𝑁 log(𝐵 + 1)
variables and quadratic constraints. With this approach, one needs 4𝑁 + 𝑅 · log(4𝑁 Γ𝐵 + 1) variables
and quadratic constraint (plus a suitable commit-and-prove system). For 𝑅 = 𝜆 = 128 and 𝐵 = 264 − 1
the break-even point in terms of variables and constraints is at about 𝑁 = 160, and at 𝑁 = 2048 we
observe an over 7-fold reduction in terms of variables and constraints, which tends to 16 as 𝑁 grows.
For R1CS-type constraints (now using 8 instead of 4 variables), we observe break-even at about 𝑁 = 170
and an almost 5-fold reduction at 𝑁 = 2048 which tends to 8 as 𝑁 grows.

3.6. Soundness Guarantees and Hidden Order Augmentation

We provide some insights into the consequences of relaxed soundness and the use of hidden order groups
in that context. Further discussions can be found in Appendix A.2 and Appendix A.3 respectively.
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3.6.1. Remarks on Relaxed Soundness

The relaxed soundness of CKLR-type proofs only ensures that a committed value 𝑥 is a fraction
𝑥 ≡𝑝 𝑚/𝑑 with short numerator and denominator, say 𝑥 ∈ Q𝑀,𝐷 . As we will see, this can be sufficient
in important applications, such as anonymous credentials. However, this guarantee is, in general, too
weak to allow unchecked homomorphic operations on commitments, e.g. the sum

∑︁𝑁
𝑖=1

𝑚𝑖
𝑑𝑖

of short
fractions𝑚𝑖/𝑑𝑖 need not be short. The main problem is the growth of the common denominator as
𝑑 = lcm(𝑑1, . . . , 𝑑𝑁 ), and the numerator grows similarly. Thus, after a few operations, all guarantees
on shortness are lost.

3.6.1.1. Cheating with Small Denominators

The use of relaxed soundness is not a proof artefact: For small 𝑑 and𝑚, find
∑︁3
𝑗=1 𝑎

2
𝑗 = 𝑑

2 + 4(𝑚 − 𝑑)𝑚
and let 𝑥 ≡𝑝 𝑚/𝑑 and 𝑦 𝑗 ≡𝑝 𝑎 𝑗/𝑑 . This decomposition has a chance of 1/𝑑 (per repetition, and 1/𝑑𝑅
overall) to fool the verifier. In particular, after the Fiat–Shamir transformation, generating proofs for 𝑥
is efficiently possible if 𝑑 is not too large.

3.6.1.2. Three Square Decomposition

Our range proofs use the 3-square decomposition and prove membership in [− 1
4𝐵 , 𝐵 +

1
4𝐵 ]Q𝐾 ′,Γ . To

obtain membership in [0, 𝐵]Q𝐾 ′,Γ one can either use the 4-square decomposition, or use Γ < 4𝐵
(perhaps, increasing repetitions), as this ensures that denominators 𝑑 ≥ 4𝐵 violate soundness, hence
[0, 𝐵]Q𝐾 ′,Γ = [− 1

4𝐵 , 𝐵 +
1
4𝐵 ]Q ∩ Q𝐾 ′,Γ = [−

1
4𝐵 , 𝐵 +

1
4𝐵 ]Q𝐾 ′,Γ .

3.6.2. Using Groups of Hidden Order

The problem of denominator growth can be mitigated by resorting to a group H of hidden order. For
SharpGS and SharpPoSO, the approach works as follows: Add a single additional commitment 𝐶′𝑥 to all
values 𝑥𝑖 in H (using a MPed commitment). Moreover, include a proof of knowledge of opening of 𝐶′𝑥
(to the same value as in 𝐶𝑥 ). This small change allows us to reduce to properties of H to control the
denominator. Using reasonable assumptions, it can be shown that the denominators 𝑑𝑖 are of the form
𝑑𝑖 = 𝑒

𝑘𝑖 for 𝑘𝑖 ∈ N0.

3.6.2.1. Instantiating the Hidden Order Group.

When instantiating H with suitable class groups of hidden order for which a plausible strengthened
2-fROOT assumption holds, the prover will be bound to dyadic rationals, i.e. 𝑥𝑖 of the form 𝑥𝑖 =

𝑚𝑖/2𝑘𝑖 . This improves the applicability of the range proof significantly, since, even in homomorphic
computations, the common denominator 𝑑 is of the form 2𝑘 with 𝑘 ≤ log(Γ). This restriction already
enables the use of homomorphic computations.

When using RSA groups (with trusted setup), the proof provides standard soundness, since the prover
is bound to an integer under the 1-fROOT assumption (a.k.a. strong RSA assumption). Interestingly,
even without trusted setup, e.g. in cases with a “designated verifier”, we sketch how RSA groups enable
the use of Sharp proofs (cf. Section 3.7.3).
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3. Sharp: Short Relaxed Range Proofs

We refer to Appendix A.3 for a more detailed overview of these “augmented” schemes with an efficiency
and security analysis.

3.6.3. Non-Relaxed Soundness from Prior Knowledge

Prior knowledge on the shortness of committed values can “upgrade” the soundness from relaxed to
non-relaxed. Namely, suppose for some reason, that you have prior knowledge or the guarantee that
the committed value 𝑥 ∈ Z𝑝 is short, i.e. 𝑥 ∈ [−𝑀,𝑀]. Then its representative in Q𝑀,𝐷 is an integer
(namely, 𝑥1 ). Thus, the range proof then directly implies that 𝑥 = [𝑥]Q ∈ Z is in the desired range
[0, 𝐵]Q. More formally, we use that [− 1

4𝐵 , 𝐵 +
1
4𝐵 ]Q ∩ Q𝑀,𝐷 ∩ Z = [0, 𝐵]Q ∩ Z = [0, 𝐵]Z. Note that this

reasoning also works for the range proofs from CKLR [CKLR21b].

3.7. Applications

In this section, we show how range proofs with relaxed soundness, such as Sharp (or CKLR), can be
used in certain applications, namely as anonymous credentials and anonymous transactions.

3.7.1. Anonymous Credentials

Anonymous credential schemes [Cha90; CL01; Bra00] allow users to obtain credentials from issuing
authorities. Later, the user can present this credential to a verifier, without revealing his identity, which
is fixed (but hidden via a commitment) in the credential. These credentials can also have attributes, for
example a birthdate or a validity date. When showing the credential, the user might need to show that
he is older than 18 or that the credential is still valid in a privacy-preserving manner.

Constructions of anonymous credentials typically rely on very efficient special-purpose zero-knowledge
proofs. Concretely, most rely on so-called “CL-type” (algebraic) signature schemes, which come with
very efficient proofs of knowledge of a signature on committed messages [CL03]. These are used to sign
the identity and attributes of a user. To prove that attributes lie in some range, e.g. for age restrictions
or a validity date of the credential, range proofs are employed. Thus, range proofs often constitute a
significant, if not dominant, part in computation (and communication) in these settings.

Sharp proofs can often be used as an almost drop-in replacement in such settings. Consider the DLOG
setting in a group of prime order 𝑝 .

• When issuing the credential, all attribute values are known to the issuer. Assuming suitably
small ranges [0, 𝐵] ⊆ [−𝐾,𝐾] for valid attributes, the verifier’s validity check of attribute values
ensures shortness. If 𝐾 < 𝑝/(4Γ), then a rational representative𝑚/𝑑 of an attribute 𝑥 must be of
the form𝑚/1, i.e. 𝑥 is a short integer. Thus, our range proof will be standard sound for 𝑥 (see
Section 3.6.3).

• In case of blind issuance (where identity and attributes remain (partially) hidden), the relaxed
soundness of DLOG-based Sharp may not suffice (see Section 3.6.1.1). Here, we can use SharpRSA
which provides standard soundness, using a trusted public RSA-based setup of the issuer.

• For showing the credential, our range proofs can be used if the (blind) issuing phase ensured
that the attributes lie within valid ranges, as in that case, our range proof is standard sound (see
Section 3.6.3).
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The same reasoning applies to so-called keyed-verification anonymous credentials [CMZ14], where the
issuer and verifiers have a shared secret key, which allows for more efficient protocols (but restricts the
use-cases).

Anonymous credentials and their constructions come in many flavours [RVH17; CR19; BL13], and
not all rely on prime order groups alone. Some use pairing groups and some use hidden order groups.
Nevertheless, it is very likely that in all these settings, our range proofs offer favourable trade-offs when
compared to those in use. For example, while hidden order groups allow for three-square decomposition
based range proofs, working in prime order groups is typically more efficient in terms of computation
and communication. In the pairing-based settings, the approach of [CCs08] allows quite efficient
digit-based decompositions. However, operations in pairing-groups are slower, elements are bigger,
and for efficiency, [CCs08] needs relatively large (non-transparent) public parameters.

3.7.2. Updatable Anonymous Credentials and BBAs

A line of works [JR16; HHNR17; BBDE19; HKRR20; BEK+20] uses techniques from anonymous creden-
tials in a “non-static” manner to construct updateable anoymous credentials or black-box accumulation
(BBA) schemes, which can be used for electronic payments, ticket systems, incentive systems and more.
Most of the schemes feature range proofs as a core component, as these are required to prevent users
from spending more than they have. The (blind) issuing process is mostly unchanged in comparison
to anonymous credentials. The show protocol is replaced by (one or more) update protocol(s), which
modify the user’s attributes (e.g. the user’s current balance).

Most applications work in the “public balance update” setting, where the user interacts with an operator,
and the operator knows the amount Δ by which a user’s (hidden) balance 𝑣 is changed. That is, after
the transaction, the balance should be 𝑣 + Δ, and for security, 𝑣 + Δ ≥ 0 must be ensured. In this “public
balance update” setting, our range proofs are again almost drop-in replacements. Namely, if the security
proof ensures that the balance 𝑣 is “small” (i.e. has rational representative 𝑣/1), then our proof has
standard soundness for 𝑣 + Δ ∈ [0, 𝐵]. Since the security proofs typically prove inductively that, after
each operation, the (new) balance 𝑣 has certain properties (e.g. lies in the range [0, 𝐵]), the requirement
for our proof to be standard sound is easily seen to be satisfied.

Range proofs are so expensive that early works [JR16; HHNR17] consider weakened (security) require-
ments to achieve practical efficiency. Even in later works [BBDE19; HKRR20; BEK+20], they amount to
a large part of (or even dominate) the runtime. Our optimized range proofs greatly improve efficiency.

3.7.3. Anonymous Transactions

Range proofs are often used in privacy-preserving blockchain-based smart contract platforms in order
to ensure that the fixed (but hidden) balance of users is non-negative after performing a transfer [Zca;
Mon; BAZB20]. This ensures that no user can spend more coins than he owns while preserving privacy.
Thus, this is a “secret balance update” setting. Here, we give an overview on the applicability of Sharp
in this context and refer to the full version [CGKR22b] for more details.

When a sender with a balance of 𝑏 coins performs a transfer of 𝑎 coins to a receiver, she has to guarantee
the following: (1) 𝑏 − 𝑎 ≥ 0, i.e. the sender’s balance remains non-negative after the transaction and
(2) 𝑎 ≥ 0, i.e. the sender transfers a non-negative number of coins to the receiver. Often, the values 𝑎
and 𝑏 are committed (or fixed via an encryption), and the sender performs two range proofs to show
equations (1) and (2). Unfortunately, even an initial shortness guarantee on the committed balances 𝑏 is
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3. Sharp: Short Relaxed Range Proofs

not sufficient for relaxed soundness to provide standard guarantees, as the shortness of 𝑎 cannot be
guaranteed this way. Thus, we cannot replace all range proofs with Sharp proofs naively (and doing so
would lead to concrete attacks). Nevertheless, some range proofs can be replaced with Sharp proofs for
efficiency improvements.

Furthermore, in the full version [CGKR22b] we sketch how the use of augmented Sharp proofs, with
both an additional RSA and class group element, is sufficient to avoid these attacks without trusted
setup of the RSA modulus. Perhaps surprisingly, we can still leverage the properties of RSA groups in
this case.
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4. Efficient Zero-Knowledge Arguments in the DLOG
setting, Revisited

This chapter is based on [HKR19a] and [HKR19b] (revision 2019-11-21) and large parts of the chapter
are rephrased or taken verbatim from these works My contribution in [HKR19a; HKR19b] are the
theoretical aspects. Implementations and practical evaluations in Section 4.5 and Appendix B.6 are by
Max Hoffmann.

Compared to [HKR19b] (revision 2019-11-21), the work was significantly revised and extended. In
particular, (1) we show how a modified choice of challenge distributions enables extraction from a
linear number of transcripts (in the witness dimension), see for Section 4.3.3.2 and Corollary 4.4.12;
(2) we provide a corresponding lower bound for black-box extraction in Appendix B.5.1; (3) we discuss
two candidate short-circuit extraction strategies in Appendix B.9; (4) we simplified and restructured the
discussion in Section 4.3; (5) we provide an extended comparison of R1CS and QE in Appendix B.8.

4.1. Introduction

Zero-knowledge arguments (of knowledge) (ZKAoK) allow a party P, the prover, to convince another
party V, the verifier, of the truth of a statement (and knowledge of a witness) without revealing any
other information. For example, one may prove knowledge of a valid signature on some message,
without revealing the signature. The ability to ensure correctness without compromising privacy
makes zero-knowledge arguments a powerful tool, which is ubiquitous in theory and application of
cryptography. Since the first practical construction of succinct non-interactive arguments of knowledge
(SNARK) [GGPR13], and their application to Blockchain and related areas, research in theory and
applications of efficient ZKAoKs has progressed significantly, see the works [GGPR13; DFGK14; GMO16;
BCC+16; CDG+17; AHIV17; GMNO18; WTs+18; BSCR+18] to name only a few of the earlier works,
with many more constructions since then.

In this chapter, we revisit a line of works [Gro09; BCC+16; BBB+18] in the setting of groups of prime
order. From an abstract point of view, in terms of [ZkpComref], one part of our work is in the world of
ideal linear commitments (ILC). That is, our verifier can do “matrix-vector queries” on a committed
value𝒘 , e.g. request an opening for a matrix-vector product 𝚪𝒘 . A priori, this is more powerful than
other settings like PCP or IOP, where the verifier’s queries are restricted to point or inner-product
queries[ZkpComref]. Nonetheless, the ILC-arguments in [Gro09; BCC+16; BBB+18] only work for the
language R1CS “natively”, which is also covered by more restricted verifiers. We show that with ILC,
one can directly handle systems of quadratic equations, of which R1CS is a special case.

Another part of this chapter treats proofs of knowledge of preimages of group homomorphisms. For
example, one can prove knowledge of the decryption of an ElGamal ciphertext like this. This does not
fit into the ILC setting, hence we do not use the ILC abstractions.
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4.1.1. Basic Techniques

We identify and present basic design principles which underly most existing works on efficient zero-
knowledge arguments in the group setting.

In the following, we use implicit representation notation for group elements, see Section 4.2. Let us
recall (a slight variant of) the standard Σ-Protocol (Σstd) for proving knowledge of a preimage 𝒘 for
[𝑨]𝒘 = [𝒕] for [𝑨] ∈ G𝑚×𝑛 . This proof covers a large class of statements, including dlog relations,
knowing the opening of a commitment, and so on. The protocol works as follows:

• Prover: Pick 𝒓 $← F𝑛𝑝 , let [𝒂] ≔ [𝑨]𝒓 , send [𝒂].

• Verifier: Pick and send 𝒙 = (𝑥1, 𝑥2) $← F2𝑝 (with 𝑥2 ≠ 0).

• Prover: Send 𝒛 ≔ 𝑥1𝒘 + 𝑥2𝒓 .

• Verifier: Accept iff [𝑨]𝒛 = 𝑥1 [𝒕] + 𝑥2 [𝒂].

Intuitively, this is zero-knowledge since 𝒓 completely masks𝒘 in 𝒛 = 𝑥1𝒘+𝑥2𝒓 (since 𝑥2 ≠ 0), and finding
𝒓 from [𝒂] is hard. It is extractable, since two linearly independent challenges 𝒙1, 𝒙2 with answers 𝒛1, 𝒛2
(for fixed [𝒂]) allow to reconstruct𝒘, 𝒓 . But Protocol Σstd is not particularly communication-efficient,
as it sends the full masked witness 𝒛 ∈ F𝑛𝑝 as well as [𝒂] ∈ G𝑚 . Using probabilistic verification, one can
often improve this.

4.1.1.1. Probabilistic Verification

The underpinning of efficient arguments of knowledge (without zero-knowledge) is probabilistic
verification of the claim. For instance, instead of verifying [𝑨]𝒘 = [𝒕] directly, the verifier could
send a random 𝑦

$← F𝑝 . Both parties compute 𝒚 = (𝑦𝑖)𝑖 ∈ F𝑚𝑝 and prove (resp. verify) [ˆ︁𝑨]𝒘 = [ˆ︁𝑡] for
[ˆ︁𝑨] = 𝒚⊤ [𝑨] ∈ G1×𝑛 and [ˆ︁𝑡] = 𝒚⊤ [𝒕] ∈ G instead. This would result in a communication complexity
which is independent of𝑚 as [ˆ︁𝒂] = [ˆ︁𝑨]𝒓 ∈ G.
Not all probabilistic verifications are alike. To work well with zero-knowledge, we need “suitable”
verification procedures, so that techniques to efficiently attain zero-knowledge are applicable. This
essentially means that the verification should be linear, i.e. all tested equations should be linear. (Abstract
groups only allow linear operations anyway.)

We define so-called testing distributions which are distributions over F𝑛𝑝 , yielding “random linear test
maps”. Given enough independent test maps and images, one can recover the “tested object”. This
allows to extract knowledge. Our definitions are tailored to our setting.1

P V
[𝑎]

−−−−−−−−−−−→
𝑥1←−−−−−−−−−−−
𝑥1𝑤−−−−−−−−−−−→

⊕

P V
[𝑎]

−−−−−−−−−−−→
𝑥2←−−−−−−−−−−−
𝑥2𝑟−−−−−−−−−−−→

=

P V
[𝑎]

−−−−−−−−−−−→
𝑥1, 𝑥2←−−−−−−−−−−−

𝑥1𝑤 + 𝑥2𝑟−−−−−−−−−−−→

Figure 4.1.: Linear Combination of Protocols. Left: The trivial proof of knowledge: Send the witness. Middle: Send a random
statement. Then send the witness. Grayed out: Terms for linear combination. Right: The linear combination with verifier’s
randomness.

1 See [Wik18] for a possible generalisation, which considers “metroids”.
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4.1.1.2. Linear Combinations of Protocols

A core insight for achieving zero-knowledge (and reducing communication) in our setting efficiently is
that protocols can often be linearly combined, see Fig. 4.1 for an illustration. This exploits the linearity
of the computations and checks of verifier and prover in each round. By running an “umasked non-
zero-knowledge argument” (Fig. 4.1, left) and linearly combining it with an argument for a “masking
randomness” (middle), one can achieve zero-knowledge (right). All of our zero-knowledge compilations
rely on this strategy. We typically consider random linear combinations of protocols, where the verifier
picks the randomness (𝑥1, 𝑥2 in Fig. 4.1), as this often achieves extractability. In fact, this kind of linear
combination recovers the batch proofs of [PBD07], see Section 4.3.4. Nevertheless, non-randomised
linear combinations are also useful, e.g. in Protocols 4.4.1 and B.4.1 or [BBB+18] they are used to
compress multiple commitments into one.

4.1.1.3. Uniform(-or-Unique) Responses

In our setting, for simulation it is typically enough to ensure that the prover’s messages are distributed
uniformly at random. More concretely, the responses should be either uniformly distributed (conditioned
on all later messages, not previous messages), such as 𝒛 in Protocol Σstd. Or they should be uniquely
determined and efficiently computable from the challenges and all later messages, such as [𝒂] in
Protocol Σstd. This allows to construct a trivial simulator, which constructs the transcript in reverse:
Starting with the final messages, and working its way towards the beginning, the simulator picks the
uniformly distributed messages itself, and then computes the uniquely determined ones. All simulators
in this chapter work like this.

4.1.1.4. Kernels and redundancy

Many interesting statements are non-linear. For example, for polynomial commitments [BG18], we
want to show that [𝑐] ∈ G is a commitment to a polynomial 𝑓 ∈ F𝑝 [𝑋 ] (of degree at most 𝑑 − 1)
and 𝑓 (𝑥) = 𝑡 , where 𝑥 ∈ F𝑝 is a random challenge. Naively, one commits to the coefficients of the
polynomial with monomial basis 𝑋 𝑖 for 𝑖 = 0, . . . , 𝑛 − 1. Suppose we have a (linear) protocol which
proves 𝑓 (𝑥) = 𝑡 . We could hope that running a random linear combination as in Fig. 4.1 should give
us uniform-or-unique responses (and hence zero-knowledge). However, we are in a predicament: For
random 𝑔 ∈ F𝑝 [𝑋 ], we have (𝑓 + 𝑔) (𝑥) ≠ 𝑓 (𝑥) and thus we have to let V know 𝑦 = 𝑔(𝑥) somehow.
To ensure the prover does not send arbitrary 𝑦, we have to rely on a proof again! But if this proof
leaks (too much) information,2 we cannot use it to randomise the response. We can escape this cycle
by having a way to randomize without changing the statement. In other words, we need some 𝑔 with
𝑔(𝑥) = 0 for all 𝑥 ∈ F𝑝 . Clearly, that means 𝑔 = 0, and there’s nothing random anymore.

One solution is to add redundancy, which does not “influence” soundness: Here, we artificially create
a non-trivial kernel of the “evaluate at 𝑥”-map. We can do so by representing 𝑓 (𝑋 ) as ∑︁

𝑖 (𝛼𝑖 + 𝛽𝑖)𝑋 𝑖
and commit to all 𝛼𝑖 and 𝛽𝑖 . Now we can mask with 𝑔(𝑋 ) where 𝛼𝑖 $← F𝑝 and 𝛽𝑖 = −𝛼𝑖 . Thus, we
successfully injected randomness into the response. Generally, adding just enough redundancy to
achieve uniformly random responses is our goal.

2 If it only leaks a little bit, then a linear combination with many 𝑔𝑖 may work.
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4.1.1.5. Composition of arguments systems

For completeness, we recall that, by committing to (intermediate) results and sharing these commitments
in multiple argument systems, one can easily combine the most efficient arguments for each task. While
this is an obvious approach, it is easy to overlook as NP-complete languages offer a suitably encoded
statement as a straightforward alternative.

4.1.1.6. Exemplary applications of the basic techniques

As in [BBB+18], we construct IPAnoZK from a linear combination of the logarithmic communication
linear map preimage arguments (LMPAnoZK) for K𝒘 : [𝒈]𝒘 = [𝒕]. The linear combination compresses
the messages from multiple instances into a single one. For our logarithmic communication (al-
most) zero-knowledge inner product argument IPAalmZK for K𝒙,𝒚 : ⟨𝒙,𝒚⟩ = 𝑡 , we mask the witness as
⟨𝒙 + 𝒓 ,𝒚 + 𝒔⟩ = 𝑡 , with masks 𝒓 , 𝒔 chosen such that ⟨𝒓 ,𝒚⟩ = ⟨𝒓 , 𝒔⟩ = ⟨𝒙, 𝒔⟩ = 0. This is an application of
the “redundancy/kernel” technique. The “uniform-or-unique” guideline ensures that it is enough that
each response is random. By choosing the random components in 𝒓 , 𝒔 suitably, a logarithmic number
of randomized components suffice to achieve uniform responses (and all other components may be
0). Finally, for our logarithmic communication shuffle argument Πshuffle (Appendix B.2), we compose
QESAZK (our quadratic equation argument) and LMPAZK by sharing a commitment to the witness.

4.1.2. Contribution

Our contribution is two-fold. On the one hand, we extract and present useful strategies and building
blocks from [BCC+16; BBB+18] and devise new protocols with improved performance (and a more
expressive language). On the other hand, we initiate the study of more precise soundness notions to
assert better provable security guarantees.

4.1.2.1. New Protocols

As a minor contribution, we note that there is no work which outlines the — certainly folklore —
techniques from Section 4.1.1, in particular linear combination of protocols, as useful guidelines for
efficient zero-knowledge protocols. Implicitly, these techniques are used in many works, e.g. [PBD07;
Gro09; BCC+16; BBB+18; BG18] to cite a few. We follow the above guidelines for constructing and
explaining our zero-knowledge arguments.

Linear Map Preimage Argument (LMPA) We give, in two steps, an argument for K𝒘 : [𝑨]𝒘 = [𝒕] for
[𝑨] ∈ G𝑚×𝑛 with communication O(log(𝑛)). The idea is to first use batch verification. Essentially,
LMPAbatch multiplies the equation with a random vector 𝒚 ∈ F𝑚𝑝 from the left to obtain [ˆ︁𝑨] = 𝒚⊤ [𝑨] ∈
G1×𝑛 and [ˆ︁𝑡] = 𝒚⊤ [𝒕] ∈ G. Thus, communication is independent of𝑚. Now, we prove K𝒘 : [ˆ︁𝑨]𝒘 = [ˆ︁𝑡]
using the logarithmic-communication argument LMPAnoZK, which is derived from [BCC+16] LMPAnoZK
can be made zero-knowledge by fully masking the witness, which we denote by LMPAsimpleZK. Thus,
the total communication cost (resp. computation cost) of LMPAsimpleZK in terms of group elements
(resp. group operations) becomes O(𝑚 log(𝑛)) (resp. O(𝑚𝑛)). By first using to LMPAbatch and then
LMPAsimpleZK, the cost is O(log(𝑛)) resp. O(𝑚𝑛), as claimed.
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For completeness, we also derive a more sophisticated approach, where the actual (additive) overhead
in computation for achieving zero-knowledge is much smaller (namely, logarithmic in 𝑛). However,
due to the incurred complexity and subtleties, LMPAsimpleZK (with linear overhead) is the preferable
choice in practice.

Quadratic Equation Commit-and-Prove First of all, we derive a (almost) zero-knowledge inner product
argument IPAalmZK from [BCC+16; BBB+18], with constant communication and logarithmic computa-
tional overhead compared to [BCC+16; BBB+18]. Based on IPAalmZK, we construct an argument for
proving K𝒘 : ∀𝑖 : ⟨𝒘, 𝚪𝑖𝒘⟩ = 0, where 𝚪𝑖 ∈ F𝑛×𝑛𝑝 are public matrices and𝒘 is a (committed) vector. For
efficiency, we carry out a batch proof, i.e. we prove ⟨𝒘, 𝚪𝒘⟩ with 𝚪 ≔

∑︁
𝑖 𝑟𝑖𝚪𝑖 for random 𝑟𝑖 ∈ F𝑝 . The

resulting argument, QESAZK for short, is “adaptive commit-and-prove”, i.e. the statement 𝚪𝑖 may be
chosen after the commitment to𝒘 .

The commit-and-prove system QESAZK is conceptually simple. We extend QESAZK to QESACopy to
demonstrate that our techniques can be easily extended and combined with other argument systems.

Quadratic Equations and R1CS Being able to prove arbitrary quadratic equations instead of R1CS
equations, i.e. equations of the form (∑︁𝑎𝑖𝑥𝑖) (

∑︁
𝑏𝑖𝑥𝑖) +

∑︁
𝑐𝑖𝑥𝑖 = 0, gives much flexibility. To the best

of our knowledge, expressing the quadratic equation ⟨𝒙, 𝒙⟩ = ∑︁
𝑥2𝑖 = 𝑡 as R1CS requires 𝑛 equations:

𝑦𝑖 = 𝑥
2
𝑖 (𝑖 = 1, . . . , 𝑛 − 1) and 𝑥2𝑛 = 𝑡 −∑︁

𝑖 𝑦𝑖 , where 𝑦𝑖 are auxiliary variables. Requiring 𝑛 equations is
surprising for [BCC+16; BBB+18] which build on an inner product argument. Clearly, QESAZK needs
one (quadratic) equation to express ⟨𝒙, 𝒙⟩ = 𝑡 . We discuss the relation between R1CS and QE in terms
of them being the “native language of a proof system” in more detail in Appendix B.8.

Example 4.1.1 (QE for polynomial evaluation). Using general quadratic equations, one can evaluate
any (univariate) polynomial 𝑓 (𝑋 ) = ∑︁𝑑2−1

𝑖=0 𝑎𝑖𝑋
𝑖 of degree 𝑑2 − 1 with 2𝑑 equations and intermediate

variables. Concretely, let 𝑦𝑖 = 𝑥𝑖 = 𝑦𝑖−1𝑥 , 𝑧𝑖 = 𝑥𝑑𝑖 = 𝑧1𝑧𝑖−1, for 𝑖 = 2, . . . 𝑑 − 1 and 𝑧1 = 𝑦𝑑−1𝑥 and 𝑧0 = 1.
Then 𝑓 (𝑥) = ∑︁𝑑

𝑖,𝑗=0 𝑎𝑖+𝑗𝑑𝑦𝑖𝑧 𝑗 . Using this, one can speed up “table lookups”, which are typically encoded
as polynomial evaluation. Note however, that by using composition of protocols, even more efficient
(batch) subproofs for such tasks may be possible.

Example 4.1.2. For S(N)ARK-friendly cryptography [KZM+15], supporting quadratic equations is
very useful. Matrix-vector multiplications are efficient even when both matrix and vector are secret.
“Embedding” an elliptic curve (see Jubjub [Web]), is also more efficient than for R1CS. For general point
addition in a (twisted) Edwards curve, we need 5 instead of 7 constraints per bit.

Example 4.1.3. The square decompositions in the relaxed range proof from Chapter 3 are naturally
quadratic equations, and can be proven efficiently combined with our constructions, leading to an
alternative range proof which required asymptotically fewer constraint for (very) large batch sizes, cf.
Example 3.5.2 in Section 3.5.4.

Correctness of a Shuffle By instantiating the shuffle proof of Bayer and Groth [BG12] with LMPAZK
and QESAZK as subprotocols, we obtain an argument Πshuffle for correctness of a shuffle (of ElGamal
ciphertexts). To the best of our knowledge, this is the first such (fully specified) efficient argument with
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proof size O(log(𝑁 )).3 Our computational efficiency is comparable to [BG12], which has proof size
O(
√
𝑁 ). More concretely, we estimate the relative overhead at about 2–3×.

4.1.2.2. Knowledge Errors, Tightness and Short-Circuit Extraction

As an intermediate abstraction, we define the notion of testing distributions. This allows us to view
the verifier’s challenge distributions as a separate object, which may be modified to achieve different
trade-offs in a scheme. In particular, it is possible to choose testing distribution which lead to different,
tunable levels of soundness, e.g. a knowledge error of 2−120 instead of 2−256, which impacts runtime
positively.

Short-Circuit Extraction. To motivate a more precise analysis of extraction, consider the extractor
in [BBB+18]. According to [JT20], it needs 7(𝐿 + 1)𝑀3 transcripts, for a statement consisting of 𝐿 linear
and 𝑀 multiplicative constraints. If we assume 𝐿 ≈ 𝑀 ≈ 𝑛, where 𝑛 is the number of variables, we
derive a runtime induced security loss of O(𝑛4) and concretely ≈ 280 for 𝑛 ≈ 220.

To improve upon this, we define the notion of short-circuit extraction, which is applicable to extraction
assertions of the form “Ext either finds a witness or it solves a hard problem”. It formalises the (common)
behaviour of an extractor to either find a witness with few transcripts, or solve the hard problem (e.g.
equivocating a commitment). Without distinguishing these cases, the bounds on the necessary number
of transcripts for extraction is much higher. For example, we show that the extractor for the LMPAZK
and IPAalmZK (and also [BCC+16; BBB+18]) needs to explore a tree of transcripts of size O(𝑛) in the
worst case. This improves the runtime induced security loss from ≈ 𝑛2 to ≈ 𝑛 for the inner product
argument.

For QESAZK, extracting a proof for 𝑁 quadratic equations in 𝑛 variables requires O(𝑛𝑁 ) transcripts,
which for 𝑛, 𝑁 ≈ 220 implies a runtime induced security loss of ≈ 240. By using a special testing
distribution, this can be further reduced to O(log(𝑛𝑁 )𝑛), and ≈ 230 for 𝑛, 𝑁 ≈ 220 Thus, we reduce the
runtime induced quartic loss O(𝑛4) in 𝑛 to a merely quasi-linear loss O(𝑛 log(𝑛)).

In Appendix B.5.1, we lay out an intuitive connection between communication efficiency and extraction
efficiency, which implies that extraction from O( 𝑛

log(𝑛) ) transcripts would be optimal (under strong
assumptions). As a consequence, the special instantiation of QESAZK (Corollary 4.4.12) is close to
optimal, as it requires O(𝑛 log(𝑛)) transcripts for extraction (assuming 𝑛 ≈ 𝑁 in the asymptotics). We
also elaborate on a loophole in above security estimates, namely how to efficiently obtain the transcripts.
For this, we present candidate algorithms in Appendix B.9 whose (optimal) runtime bounds are only
conjectural or heuristically derived.

Dual Testing Distributions Dual testing distributions are a technical tool which allow us to sample a
“new” commitment key from a given one, such that knowledge (e.g. commitment opening) cannot be
transferred. This turns out to be more communication efficient than letting the verifier send a new
commitment key. To the best of our knowledge, this is a new technique.

3 In [BBB+18], a (less efficient) shuffle proof is claimed, which apparently handles Pedersen commitments (not ElGamal
ciphertexts). After publication of this work [HKR19b], of an implementation of shuffle proofs based on of Bulletproofs [AVY]
with a similar approach as ours, but which also seems to operate on commitments, not ciphertexts. See Remark B.2.1 for
further discussion.

70



4.1. Introduction

4.1.2.3. Efficiency and Comparison to Bulletproofs [BBB+18]

In Table 4.1, we compare our argument systems with related work in the group setting. In Table 4.2, we
give precise efficiency measures for LMPAZK and QESAZK. In any case, 𝑛 = |𝒘 | is the size of the witness
𝒘 ∈ F𝑛𝑝 . Since it is statement dependent, we ignore that QE is more powerful than R1CS, possibly
allowing smaller witness size (as seen in the example ⟨𝒙, 𝒙⟩ = 𝑡 above). Since statement size 𝑁 is
typically a small mulitple of witness size, we ignore its influence. In Table 4.2, we omit the verifier’s
computation, since after optimisations [BBB+18], both are almost identical.4 Generally, optimisations
applicable to [BBB+18] are applicable to our protocols as well. For the prover, we do not optimise (e.g.
we use no multi-exponentiations), and are not aware of non-generic optimisation. Although QESAZK
and QESACopy cover general quadratic equations, they compare favorably to Bulletproofs [BBB+18]
which only cover R1CS. By default, they prove slightly different statements than Bulletproofs, see
Remark 4.4.18, hence the parameters are not perfectly comparable. In Section 4.5, we compare our
implementations of (aggregate) range proofs. Due to their close relation, we also compare with
Bulletproofs+ [CHJ+22], which were published after this work (which appeared as [HKR19a]).

URS Ass. Moves Comm. Comp. P Comp. V Nat. R
SNARG [GGPR13] ✗ KoE 1 O(1) O(𝑛) ≪ |𝒘 | R1CS

Bulletproofs[BBB+18] ✓ dlog O(log(𝑛)) O(log(𝑛)) O(𝑛) |𝒘 | R1CS
This work ✓ dlog O(log(𝑛)) O(log(𝑛)) O(𝑛) |𝒘 | QE

Table 4.1.: URS: Is a common uniformly random string (URS) sufficient for setup, a.k.a. transparent setup? Ass(umption):
Underlying security assumption. Knowledge of exponents (KoE); Hardness of dlogs. Moves: The number of messages sent.
Comm(unication): The number of group elements sent. Comp: Computation of P resp. V in number of exponentiations.
Nat(ive) R: “Native” relation proven.

Comm. G Comm. F𝑝 Comp. P R

LMPAsimpleZK ⪅ 2𝑘𝑚 log𝑘 (𝑛) 𝑘 ⪅ 2𝑚𝑛 LMP
LMPAbatch+simpleZK ⪅ 4𝑘 log𝑘 (𝑛) 𝑘 ⪅ (𝑚 + 5)𝑛 LMP

Bulletproofs[BBB+18] 2⌈log(𝑛)⌉ + 8 5 ⪅ 12𝑛 R1CS
Bulletproofs+[CHJ+22] 2⌈log(𝑛)⌉ + 5 3 ⪅ 11𝑛 R1CS

QESAZK/QESACopy(𝑘 = 2) 2⌈log(𝑛 + 3)⌉ + 3 2 ⪅ 8𝑛 QE

Table 4.2.: Detailed comparisons in terms of group operations. By “⪅” we denote upper bounds up to logarithmic (or constant)
additive terms, i.e. 𝑔 ⪅ 𝑓 means 𝑔 ≤ 𝑓 + O(log(𝑓 )). Note that 𝑘 is a tunable parameter but 𝑘 = 2 is the sweet spot.5We
assume all random exponents are full sized and do not count multi-exponentiations. For QESACopy, we assume only Pedersen
commitments to a single value are given as inputs (matching [BBB+18]), see Remark 4.4.18 for minor inaccuracies and
differences due to this comparison.

4.1.2.4. Comparison with Other Proof Systems

It is hard to make a fair comparison of proof systems. There are many relevant parameters, such as setup,
assumptions, quantum resistance, native languages, etc., beyond mere proof size and performance.
See Section 4.1.3 for a high-level discussion. To draw sensible conclusions from comparisons on an
implementation level, one should compare fully optimised implementations. Thus, we restrict ourselves
to a comparison with Bulletproofs (which we reimplemented with the same optimisation level as our

4 For completeness, this means 4𝑛 resp. 6𝑛 exponentiations for QESAZK resp. [BBB+18]. The verifier in LMPAZK needs ≈𝑚𝑛
group exponentiations.

5 For 𝑘 > 2, FFT-based techniques are needed to ensure the prover’s complexity, which in fact improves for larger 𝑘 . See the
discussion in [BCC+16], which adapts to our setting.
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proof systems). For concrete numbers regarding (implementation) performance, as well as other factors
relevant to the comparison of proof systems, we refer to [BSCR+18, Figure 2]. Our proof systems are
similar enough to Bulletproofs for these comparisons to still hold.

4.1.2.5. Implementation

In Section 4.5, we compare our implementations of (aggregate) range proofs. The theoretical prediction
of 0.66–0.75× prover runtime compared to [BBB+18] is close to measurements, which suggest 0.7×.
Using 140bit challenges, we experimentally attain ≈ 0.63× compared to [BBB+18] on the same platform.
We stress that, we compare the dedicated range proofs of [BBB+18] with our generic instantiation of
QESAZK, since this chapter does not focus on range proofs.

4.1.3. Related Work

Due to space constraints, we only elaborate on the most important concepts and related (mostly
subsequent) works. We refer to [ZkpComref] for an overview of the current landscape and a general
taxonomy of zero-knowledge proof systems.

The DLOG Setting and ILC. Very closely related works are [Gro09; BCC+16; BBB+18; BG18; BAZB20;
AC20; CHJ+22], which are efficient proofs in the dlog setting. Subsquent works [BAZB20; CHJ+22;
AC20] also build one the folding technique of Bulletproofs [BCC+16; BBB+18], enhancing them differ-
ently. For example, the work [BAZB20] also provides better interoperability with other Σ-protocols.
Other variations of Bulletproofs or proofs based on the folding technique include the work of Lai,
Malavolta, and Ronge [LMR19] which extends Bulletproofs to bilinear groups and statements, and the
“compressed Σ-protocol theory” [AC20; ACK21; ACR21], which uses folding and linear map preimage
argument (instead of an IPA)6 as its privotal compression technique. Bootle, Chiesa, and Sotiraki
[BCS21] show that the sumcheck paradigm can explain the folding technique.

Moreover, many zero-knowledge proofs in the group setting are instantiations of [CD98; Mau15]. The
possibilities of our setting, namely ability to apply linear transformations to a committed witness has
been abstracted in the ideal linear commitment model [BCG+17]. (Our techniques for QESAZK are
amenable to ILC.)

Zero-Knowledge (Weighted) Inner Product Arguments of [CHJ+22]. This work also build upon a
zero-knowledge IPA and hence very closely to our approach. One core difference in the approach
of [CHJ+22] and this work, is that [CHJ+22] considers a specific (Pedersen) commitment scheme with
designated randomness terms, and it refreshes the randomness in each round. This simplifies achieving
zero-knowledge. Our approaches tried to avoid designated randomness terms, though in hindsight,
they appeared in some places anyway (e.g. in commitment randomness in QESAZK). Moreover, we use
an up-front masking instead of injecting fresh randomness in each round. It should be possible to use
the zero-knowledge (weighted) inner product argument (zk-WIP) of [CHJ+22] in place of our “almost”
zero-knowledge IPAalmZK within QESAZK and variants. This does not affect the proof size, but achieves
perfect HVZK (instead of statistical) and may allow to replace the terms log𝑘 (𝑛 + 3) by log𝑘 (𝑛) in the
proof size.

6 Except for [ACR21], which generalizes [LMR19] and still needs to partially rely on an IPA for logarithmic communication.
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Sublinear Verifiation in the DLOG Setting, Knowledge Assumptions and the SRS Setting. Many works
(in the DLOG setting) which rely on “naive” folding and uniformly random strings (URS) instead of
structured reference strings (SRS) as their common reference string (CRS) have sublinear communication
but a quasi-linear-time verifier, e.g. [BCC+16; BBB+18; BAZB20; AC20; CHJ+22]. Much effort has
gone into improving the situation, and there are now practically efficient arguments with sublinear
communication and sublinear verification with a URS. Interestingly, we do not know group-based
examples which rely solely on DLOG, but all use either bilinear groups or groups of hidden order,
e.g. [BFS20; Set20; BDFG21; Lee21]. However, arguments based on SRSs (in bilinear groups or groups
of hidden order), are still more efficient, although many additionally rely on knowledge assumptions,
e.g. the line of works[GGPR13; DFGK14; Gro16] even attain constant size proofs. As such, there is now
a body of work providing a theoretical treatment [KMSV21] of and protocols [BGM17] for so-called
“setup ceremonies” which securely compute a SRS. Moreover, a middle ground between URSs and
SRSs, namely updatable SRSs, has been conceived and is being explored [GKM+18; MBKM19; GWC19;
CHM+20; RZ21; CFF+21].

Lattices, PCPs, IOPs, MPC-in-the-Head, and More. Efficient lattice-based argument system have ad-
vanced significantly, and the work [BLNS20] is essentially a translation of the folding approach to the
lattice setting. Techniques, such as probabilistically checkable proofs (PCP), MPC-in-the-head [IKOS07],
interactive oracle proofs (IOP) [BCS16; RRR16] and more, construct efficient zero-knowledge proofs
without relying on public key primitives. The possible performance gain (and quantum resistance) is
interesting from a practical point of view. As there is too much work of interest to adequately cover
here, we refer again to [ZkpComref] for further references.

Tightness of the Security Reduction. Jaeger and Tessaro [JT20] provide a tighter analysis of the
extractor in [BCC+16], improving the knowledge soundness. In [ACK21] a modified extractor is shown
to be essentially optimal for special sound protocols (both in knowledge soundness and runtime). Neither
of the works [JT20; ACK21] exploit short-circuit extraction, resulting in quartic runtime tightness for
Bulletproofs and QESAZK (in the witness size) for general constraints, whereas short-circuit extraction
suggest that linear runtime tightness is possible for QESAZK. Another line of works [GT21; GOP+22]
analyzes the security of Bulletproofs (with Fiat–Shamir transformation applied) using the algebraic
group model [FKL18], which is a (strong) knowledge assumption. Perhaps (not) surprisingly, for
algebraic adversaries, they achieve essentially optimal tightness results (both in knowledge error and
runtime) since their extraction is straight-line, i.e. does not rewind the adversary. Note that this is not a
contradiction to our lower bound on runtime tightness, since it only holds for black-box extractors, and
the AGM is inherently non-black-box.

4.1.4. Structure of this Chapter

In Section 4.2, we clarify additional preliminaries and notational conventions, in particular, testing
distributions and short-circuit extraction. In Section 4.3, we analyze the folding technique for linear
map preimage arguments. We apply this in Section 4.4 to construct our zero-knowledge inner product
argument and our quadratic equation satisfiability argument. Finally, in Section 4.5, we provide an
overview of our implementation and benchmarks.
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4.2. Preliminaries

The number 𝑝 ∈ N will always denote a prime, F𝑝 ≔ Z/𝑝Z, and G is a (cyclic abelian) group of order 𝑝 .
We use additive implicit notation for G as introduced in [EHK+13]. Recalling Section 2.2.1, we write [1]
for some (fixed public) generator associated with G and [𝑥] ≔ 𝑥 [1]. We extend this notation to vectors
and matrices, i.e. for compatible 𝑨,𝑩, 𝑪 over F𝑝 , we write 𝑨[𝑩]𝑪 = [𝑨𝑩𝑪]. Matrices are bold, e.g. [𝒂],
components not, e.g. [𝑎𝑖]. By 𝒆𝑖 we denote the 𝑖-th standard basis vector. We write diag(𝑴1, . . . ,𝑴𝑛)
for a block-diagonal matrix. By id𝑛 we denote the 𝑛 × 𝑛 identity matrix.

Matrices of matrices. As a special form of block matrices, we use matrices of matrices and vectors
of vectors. Matrices of matrices are of the form 𝑅𝑚×𝑛 , where instead of 𝑅 = F𝑝 we have 𝑅 = F

𝜇×𝜈
𝑝 .

For example, a matrix of matrices 𝑴 =

(︂
𝑴1,1 𝑴1,2
𝑴2,1 𝑴2,2

)︂
. There is an evident bijection between such block

matrices in (F𝜇×𝜈𝑝 )𝑚×𝑛 and ordinary matrices in F𝜇𝑚×𝜈𝑛𝑝 via forgetting or adding the blocks. The general
multiplication of two matrices of matrices is thus merely (block) matrix multiplication. That is, for
𝑨 ∈ 𝑆 ℓ×𝑚 where 𝑆 ∈ F𝜆×𝜇𝑝 and 𝑴 is as above, we define 𝒁 = 𝑨𝑴 ∈ (F𝜆×𝜈𝑝 )ℓ×𝑛 via 𝒁 𝑖, 𝑗 =

∑︁𝑚
ℓ=1𝑨𝑖,ℓ𝑴 ℓ, 𝑗 .

When transposing matrices of matrices, we are explicit about whether or not the inner matrices are
transposed or not, i.e. whether we consider (𝑴⊤)𝑖, 𝑗 ≔ 𝑴 𝑗,𝑖 or (𝑴⊤)𝑖, 𝑗 ≔ 𝑴⊤𝑗,𝑖 , e.g. by specifying the
dimension of 𝑴⊤.

We also use following special case: Matrix multiplication of a matrix 𝑴 ∈ 𝑅𝑚×𝑛 with a matrix 𝑨 in
Fℓ×𝑚𝑝 is defined as 𝒁 = 𝑨𝑴 ∈ 𝑅ℓ×𝑛 , where 𝒁 𝑖, 𝑗 =

∑︁𝑚
ℓ=1𝐴𝑖,ℓ𝑴 ℓ, 𝑗 . Effectively, this interprets 𝑨 ∈ Fℓ×𝑚𝑝

as a block-diagonal matrix (𝑨′𝑖, 𝑗 )𝑖, 𝑗 in 𝑆 ℓ×𝑚 and 𝑆 = F
𝜇×𝜇
𝑝 with 𝑨′𝑖, 𝑗 = 𝐴𝑖, 𝑗 · id𝜇 , that is, as 𝑨′ = id𝜇 ⊗𝑨

where “⊗” is the tensor/Kronecker product. Note that whenever multiple definitions apply (e.g. if 𝑅 or
𝑆 is F𝑝 ) all yield identical results.

4.2.1. Matrix Kernel Assumptions and Pedersen Commitments

Instead of discrete logarithm assumptions, the generalisation of hard (matrix) kernel assumptions [MRV16],
but for right-kernels, better suits our needs.

Definition 4.2.1. Let G $← GrpGen(1𝜆) be a group generator (we let [1] and 𝑝 be implicitly given by G).
LetD𝑚,𝑛 be a (efficiently samplable) distribution over G𝑚×𝑛 (where𝑚 and 𝑛 may depend on 𝜆). We say
D𝑚,𝑛 has a hard kernel assumption if for all efficient adversariesA, we have

Pr
[︂
G

$← GrpGen(1𝜆); [𝑨] $← D𝑚,𝑛 ; 𝒙 $←A (1𝜆,G, [𝑨]) : [𝑨]𝒙 = 0 ∧ 𝒙 ≠ 0
]︂
≤ negl(𝜆)

For simplicity, we will often only implicitly refer to D𝑚,𝑛 and just say [𝑨] has hard kernel assumption.
Note that kernel assumptions generalise discrete log assumptions: Finding a non-trivial kernel element
of [ℎ, 1] ∈ G2 immediately yields the discrete logarithm ℎ of [ℎ].

If D𝑚,𝑛 is a matrix distribution with hard kernel assumption, then [𝑨] $← D𝑚,𝑛 is a (Pedersen)
commitment key ck. Commit to 𝒙 ∈ F𝑛𝑝 via Comck (𝒙) = [𝒄] ∈ G𝑚 . Breaking the binding property of
the commitment is equivalent to finding non-trivial elements in ker( [𝑨]). The common case will be
[𝒈] ∈ G1×(𝑛+1) drawn uniformly as commitment key ck. Breaking the hard kernel assumption for [𝒈]
is tightly equivalent to breaking the dlog assumption in G. Write 𝒙 = (𝑟𝒘,𝒘) with 𝑟𝒘 ∈ F𝑝 , 𝒘 ∈ F𝑛𝑝 .
If 𝑟𝒘 $← F𝑝 is drawn uniformly, it is evident that [𝑐] = [𝒈]𝒙 perfectly hides 𝒘 , i.e. [𝑐] is uniformly
distributed in G.
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Remark 4.2.2. It would be convenient to consider hard kernel assumptions with prior knowledge 𝑉 ≤ F𝑛𝑝 ,
where the subvector space 𝑉 is some (leaked) knowledge about ker( [𝑩]) for [𝑩] $← D𝑚,𝑛 . The reason
being that we construct matrices [𝑩] from [𝑨] (where [𝑨] has a standard hard kernel assumption) in
such a way that some kernel elements are known, e.g. because [𝑩] has some zero columns. However,
to keep the overhead low, we deal with these cases explicitly.

Remark 4.2.3 (Efficient group operations). In general, multiplications of group elements with small
scalars (“small exponents”) are faster, since computational complexity for a scalar-group multiplication
is roughly linear in the bit-size of the scalar. Thus, it is beneficial for efficiency to keep scalars
small. In certain situations, e.g. terms of the form

∑︁𝑛
𝑖=1 𝛼𝑖 [ℎ𝑖] for 𝛼𝑖 ∈ F𝑝 , [ℎ𝑖] ∈ G (so-called multi-

exponentiations), further optimizations exist, see e.g. [MOV96]. Moreover, if the 𝛼𝑖 are structured,
special-purpose optimizations exist. Concretely, if 𝛼𝑖 = 𝜉𝑖−1 for 𝜉 ∈ F𝑝 , then [𝑎] =

∑︁𝑛
𝑖=1 𝛼𝑖 [ℎ𝑖] may

be computed by setting [𝑎𝑛] = [ℎ𝑛] and then letting [𝑎𝑖] = 𝜉 · [𝑎𝑖+1] + [ℎ𝑖] for 𝑖 = 𝑛 − 1, . . . , 1, where
[𝑎1] = [𝑎] (i.e. by using Horner’s scheme for polynomial evaluation). In particular, if 𝜉 is small, then
[𝑎] is computed with “small exponentiations” only (even though most 𝛼𝑖 are fully exponents). This is
special case appears frequently in our protocols.

4.2.2. Testing Distributions

Intuitively, testing distributions are a special form of probabilistic linear verification where one can
efficiently recover the “tested” value given enough “tests”. Thus, they are used to recover the witness in
proofs of knowledge. We only define testing distributions over F𝑚𝑝 . Moreover, we only use them as an
abstraction which allows to consider small variations of protocols, obtained by changing the testing
distribution. As we will see, the choice testing distribution can affect efficiency optimizations, and also
affects what security guarantees we are able to prove.

Example 4.2.4. To test if a vector [𝒄] ∈ G𝑚 is [0], test if 𝒙⊤ [𝒄] ?
= [0] for random 𝒙 ∈ F𝑚𝑝 . The soundness

error is 1/𝑝 .

Definition 4.2.5. A testing distribution 𝜒𝑚 for F𝑚𝑝 is a distribution over F𝑚𝑝 .

From a testing distribution 𝜒𝑚 , we want that given𝑚 independent challenges 𝒙1, . . . , 𝒙𝑚 ← 𝜒𝑚 , the
probability that 𝑿 = (𝒙1, . . . , 𝒙𝑚) ∈ F𝑚×𝑚𝑝 is invertible is high. Note that det(𝑿 ) ≠ 0, is equivalent to
all 𝒙𝑖 being linearly independent, and equivalent to

⋂︁𝑚
𝑖=1 ker(𝒙⊤𝑖 ) = {0}. These interpretations allow to

generalise the idea for dual testing distributions later on.

Remark 4.2.6. While we would like to ascribe some measure of “soundness” to a testing distribution, it
turns out that for (rewinding-based) extraction, the workings of the extractor strongly determine the
soundness error. For example, an extractor may sample challenges with or without repetition. From
a purely information-theoretic argument, one might define the soundness error 𝛿snd(𝜒) of a testing
distribution 𝜒 as sup0≠𝒛∈F𝑚𝑝 Pr𝒙 $←𝜒𝑚 [𝒙⊤𝒛 = 0], i.e. the maximal probably of the test failing to detect a
non-zero 𝒛.

As the information-theoretic soundness measure noted above is a viable sanity check for good testing
distributions, we recall the well-known Schwartz–Zippel lemma, which can be used for simple upper
bounds on the “information-theoretic soundness error”. For this, we use a minor generalisation of the
lemma of Schwartz–Zippel.
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Lemma 4.2.7 (Schwartz–Zippel). Let 𝑓 ∈ F𝑝 [𝑋1, . . . , 𝑋𝑛] be a non-zero polynomial of (total) degree 𝑑 .
Let D be a distribution on F𝑛𝑝 . Let 𝑝∞(D) ≔ sup𝒚∈F𝑝 Pr[𝒙 = 𝒚 | 𝑥 $← D], Then Pr𝒙 $←D [𝑓 (𝒙) = 0] ≤
𝑑𝑝𝑛−1 · 𝑝∞(D)

Proof. Suppose 𝑓 ≠ 0 has degree 𝑑 . By the usual Schwartz–Zippel lemma, we find Pr𝒙 $←F𝑛𝑝 [𝑓 (𝒙) = 0] ≤
𝑑/𝑝 . In particular, the vanishing set 𝑉 (𝑓 ) ≔ {𝒙 | 𝑓 (𝒙) = 0} ⊆ F𝑛𝑝 has at most 𝑑𝑝𝑛−1 elements. Thus,
Pr𝒙 $←D [𝑓 (𝒙) = 0] = Pr𝒙 $←D [𝒙 ∈ 𝑉 (𝑓 )] ≤ #𝑉 (𝑓 )𝑝∞(D) ≤ 𝑑𝑝𝑛−1𝑝∞(D), as claimed. □

Example 4.2.8 (Polynomial/Monomial testing). We write 𝜒mon
𝑚 for the testing distribution induced by

𝒙 = (𝜉0, . . . , 𝜉𝑚−1), where 𝜉 ← S, where S ⊆ F×𝑝 . The distribution induced by the monomials 𝜉𝑖 , and
thus 𝑿 is a Vandermonde matrix. Hence 𝑿 is invertible as long as no 𝜉 was chosen twice. Moreover,
the information-theoretical soundness error satisfies 𝛿snd(𝜒mon

𝑚 ) ≤ (𝑚 − 1)/#S.

Remark 4.2.9. Observe that we restricted to S ⊆ F×𝑝 in Example 4.2.8, i.e. we exclude 0. The reason is,
that we want 𝑥−𝑖 to be well-defined in security proofs.

Example 4.2.10. For the special case𝑚 = 2, and testing distribution with 𝒙 = (𝛼, 1) where 𝛼 $← S for
some S ⊆ F𝑝 we write 𝜒 (𝛽 ) and 𝛼 $← 𝜒 (𝛽 ) . If S ⊆ F×𝑝 , i.e. 𝛼 ≠ 0, we write 𝜒 (𝛽≠0) . Up to permutation,
this distribution equivalent to 𝜒mon

2

Example 4.2.11 (Random testing). The uniform distribution over F𝑚𝑝 is a testing distribution. The
Lemma of Schwartz–Zippel immediately yields 𝛿snd(𝜒) ≤ 𝑚

𝑝
. Moreover, one can resort to a set S of

“small exponents”, i.e. draw from S = {0, . . . , ℓ − 1} and still have information-theoretic soundness
error at most 1

ℓ
.

Example 4.2.12 (Tensor testing). An intermediate choice between monomial and (fully) random testing
distributions is offered by tensor-based testing. We denote a tensor-based testing distribution over
F𝑚𝑝 = F𝑘

ℓ

𝑝 ≅ (F𝑘𝑝)⊗ ℓ by 𝜒⊗ ℓ𝑘 , where 𝜒𝑘 is the base testing distribution, and 𝒙 $← 𝜒⊗ ℓ
𝑘

is sampled via
𝒙 ≔ 𝝃 1 ⊗ . . . ⊗ 𝝃 ℓ for 𝝃 1, . . . , 𝝃 ℓ

$← 𝜒𝑘 . One can view tensor-based tests as repeated applications of
testing, e.g. 𝝃 1 ⊗ 𝝃 2 · 𝒛 = 𝝃 1 · (id𝑘 ⊗ 𝝃 2) · 𝒛. This idea is explained and used in protocols in Section 4.3.3.2,
where we can show tighter security guarantees when using tensor-based instead of monomial testing
distributions. The information-theoretic soundness error satisfies ℓ · 𝛿snd(𝜒𝑘 ) ≤ 𝛿snd(𝜒⊗ ℓ𝑘 ).

Example 4.2.13 (Pseudo-random testing). The verifier can replace truly random choices, e.g. 𝒙 $← F𝑚𝑝 ,
by pseudorandom choices, e.g. 𝒙 $← PRG(𝑠) for 𝑠 $← {0, 1}𝜆 . This allows the verifier to compress such
challenges to a random seed 𝑠 .

It is heuristically plausible, that when using a non-pathological PRG to seed randomness, the resulting
testing distribution has an information-theoretic soundness error (negligibly) close to using true
randomness. In fact, for a PRG which is secure against non-uniform adversaries, this is easy to see.

Note that soundness of testing distributions is a combinatorial property. No pseudorandomness property
is required, as illustrated by all other examples. Thus, instead of compressing the randomness to a
small seed via a PRG, better (provably secure) constructions with small seeds should exist.
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4.2.2.1. Dual Testing Distributions

Testing distributions are essentially a stronger (and simplified) form of the general concept of probabilis-
tic verification with efficient extraction by solving linear systems. They allow to test if an element in
F𝑛𝑝 is 0. By dualising, we find another concept, for which an intuitive description seems harder. Instead
of a distribution on 𝒙⊤ ∈ F1×𝑚𝑝 where sup0≠𝒛∈F𝑚𝑝 Pr𝒙 $←𝜒𝑚 [𝒛 ∈ ker(𝒙⊤)] should be small, we consider a
distribution on 𝑴 ∈ F𝑚×𝑚−1𝑝 , where sup0≠𝒛∈F𝑚𝑝 Pr𝑴 $←𝜒𝑚 [𝒛 ∈ im(𝑴)] should be small. In a sense, dual
testing allows to enforce 𝒛 = 0 by working in im(𝑴), instead of testing 𝒙⊤𝒛 = 0.

More concretely, we can use this to ensure that for a Pedersen commitment [𝑐] = [𝑮 |𝑯 ] ( 𝒘𝒛 ) the
adversary must have 𝒛 = 0. We do so by constructing [𝑯 ] as [𝑯 ] ≔ [𝑯 ′]𝑴 . Intuitively, knowledge of
some [𝑐′] = [𝑮 |𝑯 ′]

(︁ 𝒘
𝒚
)︁
cannot be transferred to [𝑮 |𝑯 ] because we must have 𝒛 = 𝑴𝒚, i.e. 𝒛 ∈ im(𝑴),

which is unlikely (except for 𝒛 = 0 or if A breaks the binding property). Thus, we can provably “zero”
a part of a commitment without an (expensive) argument, simply by changing the commitment key.
Generally, this allows to derive “fresh” commitment keys. Using this is more communication efficient
than picking and sending a fresh [𝑯 ] ← G𝑚 .

Morally, dual testing enforces 𝒛 = 0, while “normal” testing verifies 𝒛 = 0.

Definition 4.2.14. An (arbitrary) dual testing distribution 𝜒∨𝑚 is a distribution on F𝑚×(𝑚−1)𝑝 . The
information-theoretic soundness error is defined as sup0≠𝒛∈F𝑚𝑝 Pr𝑴 $←𝜒𝑚 [𝒛 ∈ im(𝑴)]

Let 𝜒𝑚 be a testing distribution on F𝑚𝑝 such that 𝒙 $← 𝜒𝑚 always has 𝑥1 = 1. Then 𝜒∨𝑚 defined as follows
is a dual testing distribution: To pick𝑴 $← 𝜒∨𝑚 , pick 𝒙⊤ = (1, 𝒙′)⊤ $← 𝜒𝑚 and let𝑴 ≔ 𝑴𝒙 ≔

(︂
𝒙′

− id𝑚−1

)︂
.

By construction ker(𝒙⊤) = im(𝑴𝒙), and consequently 𝛿snd(𝜒∨𝑚) = 𝛿snd(𝜒𝑚).

Note that by construction, 𝑴𝒙 is the (parity) check matrix for the linear code with generator 𝒙 . In
particular, 𝒙⊤𝑴𝒙 = 0. For simplicity, we only consider dual testing distributions associated to some
testing distribution. Also note that we use the information-theoretic soundness error only as a sanity
check. Security proofs of protocols rely on special soundness.

4.2.3. Special Soundness, Revisited

Recall that, to prove knowledge soundness, we use the notion of special soundness. In this chapter, we
rely very explicitly on linearity and effectively all challenges are viewed as vectors in F𝑛𝑝 . A challenge
vector 𝒙 may be given directly as an element in F𝑛𝑝 . But the vector may also be derived from an
underlying challenge, e.g. for monomial testing distributions the challenge 𝜉 ← F𝑝 is expanded into
(1, 𝜉, . . . , 𝜉𝑛−1) ∈ F𝑛𝑝 . In any case, extraction requires the (derived) challenge vectors to be linearly
independent. Observe that, distinct challenge vectors are not necessarily linearly independent; however,
distinct derived challenge vectors may imply linear independence, e.g. for monomial testing the 𝜉𝑖 are
distinct iff the derived 𝒙𝑖 are linearly independent. To capture this behaviour, we change the definition
of valid trees as follows: A tree of challenges is valid if for every node, any subset of (at most) 𝑛 sibling
challenge vectors are linearly independent.7 We note that, as with distinct challenges, basic tree-finders
for such trees are easy to construct.

Moreover, following interpretation of trees of challenges will turn out to be useful.

7 Observe that for, e.g. for monomial testing, this implies distinct choices 𝜉1, . . . , 𝜉𝑘 , even if 𝑘 > 𝑛 challenges are considered.
More generally, one can define special soundness w.r.t. a monotone access structure on the challenges.
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Remark 4.2.15. In some situations, we can think of a verifier sending multiple challenges in a single
round (e.g. this is the case for tensor-based testing distributions, Example 4.2.12). To indicate that this
constitutes a special tree structure, we parenthesize such “multiple” challenges, e.g. both (2, 3, 3) and
𝜇 = (2, (3, 3)) denote a tree of size 18, but in the former the verifier sends 3 challenges, while in the
latter, it sends 2 challenges (with the second challenge having a “special” structure). We provide a more
detailed and concrete explanation in Section 4.3.3.2 where we first encounter this in our protocols.

4.2.3.1. Short-Circuit Extraction

In this section, we assume TreeFind produces the tree’s nodes and leaves on demand, and Ext queries
TreeFind as an oracle, and traverses the tree in depth-first order. Moreover, we are in a situation where
Ext either extracts a witness for some statement, or a solution to a (supposedly) hard problem, or both.
Concretely, we have statements like “we extract𝒘 such that either [𝒈]𝒘 = [𝑐] is a valid commitment
opening, or [𝒈]𝒘 = [0] breaks the hard kernel assumption for [𝒈].”

Definition 4.2.16. Consider the setting of 𝝁-special soundness (Section 2.5). SupposeR is anOR-relation
OR(R1,R2), i.e. R = {((x1,x2), (𝑖,w𝑖)) | (x𝑖 ,w𝑖) ∈ R𝑖 , 𝑖 ∈ {1, 2}}.

Suppose there is some 𝝁′ ≤ 𝝁, that is 𝜇′𝑖 ≤ 𝜇𝑖 for all 𝑖 , such that extractor Ext has following property.
For any valid 𝝁-tree tree, Ext(x, tree) we have either:

• Ext explores the tree in a depth-first manner.

• Quick-extraction: Ext finishes exploring a node in layer ℓ , after 𝜇′ℓ children (i.e. subtrees) under
this node are explored (and Ext has recovered a partial witness for this node),

• Short-circuit extraction: Whenever Ext explores more than 𝜇′𝑖 children (without success),8 it
finishes after exploring all 𝜇ℓ children of that node (or earlier) and returns a witness for x2.

• If short-circuit does not occur, then Ext returns a witness for x1 (after exploring a 𝜇′-subtree of
tree) If short-circuit extraction occurs, a larger subtree may be explored.

We say that such an Ext has short-circuit extraction for finding a witness to x1 or to x2, or more
precisely, has 𝜇′-quick 𝜇-short extractability (for 𝜇′ ≤ 𝜇).

Caution 4.2.17. Short-circuit extraction is not symmetric. The order of the relation R1, R2 in the
OR-statement matters! We always think of the second one as the “hard relation” whose witness will
lead to a short-circuit.

Remark 4.2.18. While it is often the case that a 𝜇-special sound protocol is also a 𝜇′-quick 𝜇′′-short
extractable protocol, it can happen that 𝜇′′ ≠ 𝜇 (and the relaxed soundness relations may differ)! An
example of this appears in Section 4.3.3.1. We do not know whether this is a mere proof artefact
or (non-pathological) separating examples exist, hence we strictly separate special soundness and
short-circuit extraction in our claims.

Our definition is ad-hoc and tailored to our needs. We leave a general definition and precise treatment
of short-circuit extraction for future work.

8 If 𝜇′
𝑖
= 𝜇𝑖 , then no short-circuitting is possible in this layer.
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Corollary 4.2.19. If Ext as in Definition 4.2.16 traverses a valid tree tree in depth-first order, we have
following “runtime” guarantees: Let 𝝁′ = (𝜇′1, . . . , 𝜇′𝑛) ≤ (𝜇1, . . . , 𝜇𝑛) = 𝝁. In case of quick-extraction, at
most

∏︁𝑛
𝑖=1 𝜇

′
𝑖 leaves are explored. In case of short-circuit extraction, at most 𝑠1 + 1 leaves are explored,

where 𝑠1 =
∑︁𝑛
𝑖=1(𝜇𝑖 − 1)

∏︁𝑛
𝑗=𝑖+1 𝜇

′
𝑗 . In particular, 𝑠1 ≤ (

∑︁𝑛
𝑖=1 𝜇𝑖) (

∏︁𝑛
𝑖=1 𝜇

′
𝑖 ).

Observe that if 𝝁′ = (𝜇′, . . . , 𝜇′) resp. 𝝁 = (𝜇, . . . , 𝜇) are fixed to 𝜇′ resp. 𝜇 in each layer, then if 𝜇 > 𝜇′

and 𝜇′ ≠ 1, we get

𝑠1 = (𝜇 − 1)
𝑛∑︂
𝑗=1
(𝜇′) 𝑗−1 = (𝜇 − 1) (𝜇

′)𝑛 − 1
𝜇′ − 1 .

In more generality, let𝑀 ′𝑖 =
∏︁𝑛

𝑗=𝑖 𝜇
′
𝑖 , and 𝑎 = #{𝑖 | 𝜇′𝑖 = 1}. We find

𝑠1 =
𝑛∑︂
𝑖=1
(𝜇𝑖 − 1)𝑀 ′𝑖+1 =

𝑛∑︂
𝑖=1

𝜇𝑖 − 1
𝜇′
𝑖

𝑀 ′𝑖 ≤ max
𝑖

(︂ 𝜇𝑖 − 1
𝜇′
𝑖

)︂ 𝑛∑︂
𝑖=1

𝑀 ′𝑖 ≤ max
𝑖

(︂ 𝜇𝑖 − 1
𝜇′
𝑖

)︂
(1 + 𝑎)𝑀 ′1

Hence, it is useful to keep all 𝜇′𝑖 and the ratios 𝜇𝑖
𝜇′
𝑖
small, in order to minimize 1 + 𝑠1, the worst-case

number of visited leaves for short-circuit extraction.

Proof of Corollary 4.2.19. Let 𝑠𝑖 denote the maximal number of leaves necessary to ensure a 𝜇 |𝑖-subtree,
where 𝜇 |𝑖 = (𝜇𝑖 , . . . , 𝜇𝑛), is extractable. We define 𝑠𝑛+1 = 1 and find 𝑠𝑛 = 𝜇𝑛 = (𝜇𝑛 −1) ·1+1. Recursively,
we find 𝑠𝑖 = (𝜇𝑖 − 1)

∏︁𝑛
𝑗=𝑖+1 𝜇

′
𝑗 + 𝑠𝑖+1. For this, we argue as follows.

In the worst case, layer 𝑖 short-circuits. If that happens, we have to extract all 𝜇𝑖 nodes. A subtree (in
layer 𝑖 + 1) quick-extracts after exploring ∏︁𝑛

𝑗=𝑖+1 𝜇
′
𝑗 leaves. In case of failure of quick-extraction, the

subtree must short-circuit, requiring at most 𝑠𝑖+1 nodes. In the worst case, the first 𝜇𝑖 − 1 nodes in layer
𝑖 quick-extract, and the last node, i.e. the 𝜇𝑖-th node, again short-circuits. Thus, we again pay the costs9
for a short-circuit extraction, now in layer 𝑖 + 1, which is bounded by 𝑠𝑖+1. Hence, at most 𝑠𝑖+1 nodes
are explored.

To derive the formula for 𝑠1, let𝑀 ′𝑖 =
∏︁𝑛

𝑗=𝑖 𝜇
′
𝑗 and observe that by induction,

𝑠1 = (𝜇1 − 1)𝑀 ′2 + 𝑠2 = . . . =
𝑛∑︂
𝑖=1
(𝜇𝑖 − 1)𝑀 ′𝑖+1 + 𝑠𝑛

where 𝑠𝑛+1 = 1 by definition (and𝑀𝑛+1 = 1). The claim follows. □

We note that since the tree tree is randomised (or Extmight explore children in random order), the above
worst-case analysis is rather conservative. In Appendix B.9 we discuss two candidate short-circuit
extractors. Unfortunately, the candidates currently only have conjectured and heuristic runtime bounds,
respectively, but they lack formal proofs.

9 Since 𝜇′ ≤ 𝜇, short-circuit extraction is never cheaper.
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4.3. HVZK Arguments for [𝑨]𝒘 = [𝒕]

We set up the notation for the rest of this section. Let ck ≔ [𝒈] = [𝑔0,𝒈] $← G1×𝑛+1 be a Pedersen
commitment key, where [𝑔0] ∈ G and [𝒈] ∈ G𝑛 . Define Com𝒈 (𝒘 ; 𝑟 ) ≔ [𝑔0]𝑟 + [𝒈]𝒘 for 𝑟 ∈ F𝑝 ,𝒘 ∈ F𝑛𝑝 .
In some subsections, we let [𝒈] ∈ G1×𝑛 , i.e. there is no special randomness term 𝑔0; the dimensions
will always be clear from the context. We work with matrices [𝑨] ∈ G𝑚×𝑛 , and vectors 𝒘 ∈ F𝑛𝑝
and [𝒕] ∈ G𝑚 , with the these dimensions unless otherwise specified. The target (witness) relation
R is R = {(([𝑨], [𝒕]),𝒘) | [𝑨]𝒘 = [𝒕]} that is, x = ( [𝑨], [𝒕]) and w = 𝒘 . However, in many cases,
this relation is only the correctness guarantee, but the statistical knowledge soundness guarantee
(typically in form of special soundness) is for a relaxed relation. For example, some protocols prove
that knowledge for either K𝒘 : [𝑨]𝒘 = [𝒕] or a non-trivial kernel element for [𝒈].

4.3.1. Intuition

In this section, we devise communication efficient public-coin HVZK arguments for knowledge of a
preimage of a linear map, i.e. K𝒘 : [𝑨]𝒘 = [𝒕]. We follow two principles: “Use probabilistic (batch)
verification to check many things at once” and “If messages are too long, replace them by a shorter
proof (of knowledge).” For this, we use shrinking commitments, to keep the messages small.

Our strategy is as follows: First, we recall the well-known general HVZK protocol [CD98; Mau15] for
proving K𝒘 : [𝑨]𝒘 = [𝒕] where [𝑨] ∈ G𝑚×𝑛 . Then, we show how to apply batch verification to reduce
the argument for ( [𝑨], [𝒕]) to another an argument for some ( [𝑩], [𝒖]) with [𝑩] ∈ G2×𝑛 . This makes
communication independent of the number𝑚 of rows of [𝑨]. We also show how to reduce to a single
row, i.e.𝑚 = 1, but the soundness guarantee must be significantly relaxed.

After this, we revisit the arguments from [BCC+16] which recursively batch statement and witness, i.e.
they reduce the number 𝑛 of columns of [𝑨]. Unlike [BCC+16; BBB+18], we need a zero-knowledge
version of these arguments. If [𝑨] = [𝒈] is a commitment matrix, we provide a HVZK transformation
with constant communication and logarithmic computational overhead. For general (adversarial)
[𝑨], we also provide a transformation, which for certain (large) [𝑨] can outperform naive full-blown
masking of𝒘 at the price of computational soundness and higher complexity; we believe it to be mostly
of theoretical interest.

4.3.2. Step 0: A standard Σ-Protocol for [𝑨]𝒘 = [𝒕]

Here, we recall the prototypical Σ-protocol in a group setting [CD98; Mau15].

Protocol 4.3.1 (Σstd). The following is a protocol to prove K𝒘 : [𝒕] = [𝑨]𝒘 , using testing distribution
𝜒 (𝛽 ) for challenges, cf. Example 4.2.10. Common input is ( [𝑨], [𝒕]) ∈ G𝑚×𝑛 ×G𝑛 . The prover’s witness
is some𝒘 ∈ F𝑛𝑝 .

• P→ V: Pick 𝒓 $← F𝑛𝑝 and compute [𝒂] = [𝑨]𝒓 . Send [𝒂] ∈ G𝑚 .

• V→ P: Pick and send 𝛽 $← 𝜒 (𝛽 ) .

• P→ V: Compute 𝒛 = 𝛽𝒘 + 𝒓 . Sends 𝒛 ∈ F𝑛𝑝 .

• V: Check [𝑨]𝒛 ?
= 𝛽 [𝒕] + [𝒂]. Accept/reject if true/false.
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It is straightforward to show that any (𝑥1, 𝑥2) $← 𝜒2 can be used instead of 𝜒 (𝛽 ) , as long as 𝑥2 ≠ 0, so
that 𝑥1𝒘 + 𝑥2𝒓 is uniformly distributed, cf. Section 4.1.1.

Lemma 4.3.2. Protocol Σstd is a HVZK-PoK for K𝑤 : [𝒕] = [𝑨]𝒘 . It is perfectly complete, has perfect
HVZK and is 2-special sound.

Proof. Completeness: is straightforward to verify.

Extraction: We are given two accepting transcripts ( [𝒂], 𝛽, 𝒛), and ( [𝒂], 𝛽 ′, 𝒛′) with 𝛽 − 𝛽 ′ ≠ 0. Due to
the final check of the verifier, we obtain 1

𝛽−𝛽 ′ [𝑨] (𝒛 − 𝒛
′) = [𝒕]. Consequently, 𝒘 ≔ 1

𝛽−𝛽 ′ (𝒛 − 𝒛
′) is a

witness.

HVZK: Pick 𝛽 ← 𝜒 (𝛽 ) and 𝒛 ← F𝑚𝑝 . Then [𝒂] ≔ [𝑨]𝒛−𝛽 [𝒕] is uniquely defined. Since the distribution
of 𝛽 and 𝒛 is as in an honest execution, this yields a perfect simulation. □

Now, we improve communication efficiency. We do this in two steps. First, we make the communication
independent of the number𝑚 of equations, using batch-verification. Then we make it logarithmic in the
size 𝑛 of the witness, using techniques from [BCC+16; BBB+18]. We apply all techniques mentioned in
the introduction, using shrinking commitments to keep messages small. Composition of proof systems
is implicit due the following remark.

Remark 4.3.3. AND-proofs for statements of the form K𝒘 : [𝑨]𝒘 = [𝒕] are trivial. Namely, to prove
K𝒘 : [𝑨1]𝒘 = [𝒕1] ∧ [𝑨2]𝒘 = [𝒕2], it suffices to define [𝑨] =

[︁ 𝑨1
𝑨2

]︁
and [𝒕] =

[︁ 𝒕1
𝒕2

]︁
and prove

K𝒘 : [𝑨]𝒘 = [𝒕]. This AND-compilation technique will be used without explicit mention.

4.3.3. Step 1: Batching All Equations Together

In this step, we devise a HVZK-AoK for K𝒘 : [𝑨]𝒘 = [𝒕], where P’s communication is independent
of𝑚, the “number of equations”. Thus, we have to shrink the message [𝒂] ∈ G𝑚 somehow. There is
a well-known [FS87] optimization in Σ-protocols which achieves this, assuming that the verifier can
re-compute the first prover message from challenge and response. Namely, the first message [𝒂] is
completely replaced by the hash Hash( [𝒂]) of a collision-resistant hash function (CRHF) Hash. This
technique is less useful in our setting, as an important step to achieve succinctness is to avoid sending
the (large) response by proving knowledge of a response which the verifier would accept. This does
not work well when the verifier’s checks are “non-algebraic”, such as a CRHF. Thus, our approach is
slightly different.

To reduce the size of the first message, we would like to batch all𝑚 linear equations (given by [𝑨])
into a single linear equation, i.e. replace [𝑨] by a random linear combination of its rows. While we can
prove a sometime useful sufficient form of relaxed soundness, we do not know whether this is standard
sound or not. Nevertheless, if P has explicitly committed to the witness 𝒘 (or [𝒂]), the statement —
excluding the commitment — can be batched, as P cannot change its mind anymore.

Note that the value [𝒕] does not, in general, bind the adversary to some fixed𝒘 , since the adversary may
supply (parts of) [𝑨] in the soundness experiment. Thus, he may know dlogs and generate preimages
of [𝒕] freely. By adding a commitment to𝒘 , we get around this problem.

By using a shrinking commitment to𝒘 , we ensure that the communication is small. Now the verifier
can send batching randomness, and a HVZK-AoK for the batched statement is carried out. We directly
apply AND-compilation in the protocol. We use general testing distributions, but the reader may want
to imagine the familiar setting of polynomial testing with 𝒙 = (𝑥0, . . . , 𝑥𝑚) first.
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Protocol 4.3.4 (Protocol LMPAbatch). The following is a protocol to prove K𝒘 : [𝒕] = [𝑨]𝒘 . Let 𝜒𝑚 and
𝜒 (𝛽 ) be testing distributions. Common input is ( [𝑨], [𝒕]) ∈ G𝑚×𝑛 × G𝑚 . The prover’s witness is some
𝒘 ∈ F𝑛𝑝 .

• P→ V: Pick 𝑟𝒘 $← F𝑝 , and compute [𝑐𝒘] = [𝑔0]𝑟𝒘 + [𝒈]⊤𝒘 = Com(𝒘 ; 𝑟𝒘). Send [𝑐𝒘].

• V→ P: Pick and send 𝒙 $← 𝜒𝑚 .
Let [ˆ︁𝑨] = 𝒙⊤ [𝑨] ∈ G1×𝑛 and [ˆ︁𝑡] = 𝒙⊤ [𝒕] ∈ G be the batched statement (for both P and V). Let

[𝑩] ≔
[︃
𝑔0 𝒈

0 ˆ︁𝑨]︃
and let K(𝒘, 𝑟𝒘) : [𝑩]

(︃
𝑟𝒘
𝒘

)︃
=

[︃
𝑐𝒘ˆ︁𝑡 ]︃
≕ [𝒖] be the new statement.

• P↔ V: Engage in Protocol Σstd for K( 𝑟𝒘𝒘 ) : [𝑩] ( 𝑟𝒘𝒘 ) = [𝒖].

In words, Protocol LMPAbatch batches [𝑨] to [ˆ︁𝑨], and carries out an AND-proof for opening the
commitment [𝑐𝒘] and that the content 𝒘 of [𝑐𝒘] is preimage of [ˆ︁𝑡] under [ˆ︁𝑨]. This is proven via a
subprotocol call to Protocol Σstd.

Lemma 4.3.5. Protocol LMPAbatch is a 5-move HVZK-AoK for K𝑤 : [𝒕] = [𝑨]𝒘 with (𝑚, 2)-special
soundness for finding a witness or a non-trivial kernel element for [𝒈]. It is (1, 2)-quick (𝑚, 2)-short
extractable.

Proof. Completeness: It is straightforward to see that completeness holds.

Zero-knowledge: The simulator picks 𝛽, 𝒙 according to the distributions. The simulator proceeds in
two steps. First, simulate the Protocol Σstd, i.e. the final three rounds. Since those are now simulated
independently of [𝑐𝒘], it picks [𝑐𝒘] $← G uniformly. This gives a perfect HVZK simulation.

Extraction: Given a valid (𝑚, 2)-tree tree, we first extract the second layer (i.e. the subprotocol Σstd). If
not all of the (sub)extractions yield the same (𝑟𝒘,𝒘), we found a non-trivial kernel element for [𝒈] and
are finished. So suppose that for all 𝒙𝑖 , we have [𝑩𝑖] ( 𝑟𝒘𝒘 ) =

[︁ 𝑐𝒘ˆ︁𝑡𝑖 ]︁
, where the subscript 𝑖 denotes the

matrices of the 𝑖-th round. Then in particular,

𝒙⊤𝑖 [𝑨]𝒘 = [ˆ︁𝑨𝑖]𝒘 = [ˆ︁𝑡𝑖] = 𝒙⊤𝑖 [𝒕] . (4.3.1)

Let𝑿 = (𝒙1, . . . , 𝒙𝑛). since tree is valid,𝑿 is invertible. Arranging the𝑚 linear equations from Eq. (4.3.1),
we find

𝑿⊤ [𝑨]𝒘 = 𝑿⊤ [𝒕] and hence [𝑨]𝒘 = [𝒕] .

Thus 𝒘 is a valid witness. This proves (unconditional) (𝑚, 2)-special soundness. To see (1, 2)-quick
(𝑚, 2)-short extractability, consider what happens if the first subextraction (𝑟𝒘,𝒘) does not satisfy
[𝑨]𝒘 = [𝒕]. As we just argued that given𝑚 identical subextractions, the equation [𝑨]𝒘 = [𝒕] must
hold. Hence we must find a distinct pair (𝑟 ′𝒘,𝒘 ′) among the 𝑚 pairs, and thus a non-trivial kernel
element to [𝒈]. Short-circuit-extraction follows as claimed. □

Remark 4.3.6 (Commitment extending). When working with adversarial [𝑨] (and [𝒕]), one can not
rely on any hardness assumptions w.r.t. [𝑨]. Extending [𝑨] to some [𝑩] which has hardness (as in
Protocol 4.3.4) is one way to address this by introducing hardness. For the sake of referencing, we call
this commitment extending [𝑨].
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4.3.3.1. Batching to a Single Row

The batch-verification in Protocol 4.3.4 effectively leads to a protocol for K𝒘 : [𝑨]𝒘 = [𝒕] which is
computationally sound based on the kernel assumption for [𝒈]. More concretely, extraction either
yields a witness𝒘 with [𝒕] = [𝑨]𝒘 or [𝒈] ( 𝑟𝒘𝒘 ) = [0]. The extraction crucially relied on the fact that
the commitment row was excluded from the batching. Now, we consider the case where all rows are
batched into a single one. In particular, there is no commitment step and the verifier starts the protocol
with the batching randomness.

Remark 4.3.7. For modularity, we present LMPAbat-sing without built-in zero-knowledge. For simplicity,
we reduce [𝑨] to a single row. If [𝑨] is a matrix of matrices in (G𝜇×𝜈 )𝑚×𝑛 , then reduction to (G𝜇×𝜈 )1×𝑛
follows completely analogously, see also Remark 4.3.14.

Protocol 4.3.8 (Protocol LMPAbat-sing). Let 𝜒mon
𝑚 be a monomial testing distribution. Consider following

protocol. Common input is ( [𝑨], [𝒕]) ∈ G𝑚×𝑛 × G𝑚 . The prover’s witness is some 𝒘 ∈ F𝑛𝑝 with
[𝑨]𝒘 = [𝒕].

• V→ P: Pick and send 𝒙 $← 𝜒mon
𝑚 .

Let [ˆ︁𝑨] = 𝒙⊤ [𝑨] ∈ G1×𝑛 and [ˆ︁𝑡] = 𝒙⊤ [𝒕] ∈ G be the batched statement (for both P and V).

• P→ V: Send𝒘 .

• V: Check if [ˆ︁𝑨]𝒘 = [ˆ︁𝑡].
We stress that it is crucial that in Protocol LMPAbat-sing, the verifier only checks [ˆ︁𝑨]𝒘 = [ˆ︁𝑡] (even
though it could check [𝑨]𝒘 = [𝒕]), because this is what would be the case if the final check were
replaced by, say Σstd, to obtain a zero-knowledge protocol.

Lemma 4.3.9. For [𝑨] write [�⃗�] =
[︃ 𝒂1
...

𝒂𝑚

]︃
∈ G𝑚×𝑛 . Moreover, let [𝒂] = [𝒂1 . . . 𝒂𝑚] = [�⃗�]⊤. Proto-

col LMPAbat-sing is a 2-move argument system with correctness relation {(([𝑨], [𝒕]),𝒘) | [𝑨]𝒘 = [𝒕]}. It
is𝑚-special sound for relaxed soundness relation “ K𝒖𝑖 ∈ F𝑚 ·𝑛𝑝 : [𝒕𝑖] = [𝒂]𝒖𝑖 for all 𝑖”. Moreover, for relaxed
soundness relation “ K𝒘 : [𝒕] = [𝑨]𝒘 or a non-trivial kernel element in [𝒂]” it is 1-quick and (𝑚 + 1)-short
extractable.

Note that the relations for correctness, relaxed soundness w.r.t. to special soundness, and relaxed
soundness w.r.t. short-circuit extraction differ. Indeed, short-circuit extraction requires (up to)𝑚 + 1
transcripts whereas special soundness only requires𝑚. Also observe that we only consider 𝜒mon

𝑚 , and
not a generic testing distribution. The reason will become clear in the proof. It is related to the reduction
to special soundness; basing security on a general knowledge extractor can circumvent this.

Proof. Correctness is trivial. We show special soundness. First, we consider a valid𝑚-tree of purported
witnesses 𝒗𝑖 with

𝒙⊤𝑖 [�⃗�]𝒗𝑖 = 𝒙⊤𝑖 [𝒕] = [𝒕]⊤𝒙𝑖
for 𝑖 = 1, . . . ,𝑚. Unlike Lemma 4.3.5, we cannot conclude that either 𝒗𝑖 = 𝒗 𝑗 or a non-trivial kernel
relation is found. Thus, we have to argue differently. Namely, let 𝒙 ⊗ 𝒗 denote the vector of vectors(︃ 𝑥1𝒗
...

𝑥𝑚𝒗

)︃
∈ (F𝑛𝑝)𝑚 . Then

𝒙⊤𝑖 [�⃗�]𝒗𝑖 = [�⃗�]⊤(𝒙𝑖 ⊗ 𝒗𝑖) = [�⃗�]⊤𝒑𝑖
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where 𝒑𝑖 ≔ 𝒙𝑖 ⊗ 𝒗𝑖 for 𝑖 = 1, . . . ,𝑚. Arranging 𝒙𝑖 ∈ F𝑚𝑝 into 𝑿 = (𝒙1, . . . , 𝒙𝑚) ∈ F𝑚×𝑚𝑝 and arranging

𝒑𝑖 ∈ (F𝑛𝑝)𝑚 into 𝑷 = (𝒑1, . . . ,𝒑𝑚) =
(︄
𝑋1,1𝒗1 ... 𝑋1,𝑚𝒗𝑚
...

...
𝑋𝑚,1𝒗1 ... 𝑋𝑚,𝑚𝒗𝑚

)︄
∈ (F𝑛𝑝)𝑚×𝑚 , we find

[𝑨]⊤𝑷 = [𝒕]⊤𝑿 and hence [𝑨]⊤𝑷𝑿−1 = [𝒕]

Consequently, for𝑾 = 𝑷𝑿−1 and 𝒖𝑖 ≔ 𝑷𝑿−1𝒆𝑖 we find [𝒕𝑖] = [𝒂]𝒖𝑖 as claimed.

Note that in𝑾 = 𝑷𝑿−1 the matrices 𝑷 and𝑾 are matrices of vectors, i.e. they lie in (F𝑛𝑝)𝑚×𝑚 . Now,
we derive the structure of𝑾 = 𝑷𝑿−1 by considering an (𝑚 + 1)-th transcript. By construction, we find
for any (𝑚 + 1)-th accepting transcript with challenge 𝒙 then 𝒗 must either satisfy the equality

𝑾𝒙 = 𝒙 ⊗ 𝒗

or a non-trival kernel element of [𝒂] can be computed (via𝑾𝒙 − 𝒙 ⊗ 𝒗). From now on, we assume the
equality always holds.

Now, consider any 𝜶 ∈ F𝑚𝑝 . Then for𝑾𝒙 = 𝒙 ⊗ 𝒗, we find

(𝜶⊤ · 𝒙) ⊗ 𝒗 =

𝑚∑︂
𝑖=1

𝛼𝑖 · 𝑥𝑖𝒗 = 𝜶⊤ ·
(︃ 𝑥1𝒗
...

𝑥𝑚𝒗

)︃
= 𝜶⊤ · (𝒙 ⊗ 𝒗) = 𝜶⊤𝑾𝒙 =

𝑚∑︂
𝑖, 𝑗=1

𝑾 𝑖, 𝑗𝛼𝑖𝑥 𝑗

where we used block matrix multiplication conventions for 𝜶⊤ · (𝒙 ⊗ 𝒗) and 𝜶⊤𝑾𝒙 , and interpret
𝑾 = (𝑾 𝑖, 𝑗 ) ∈ (F𝑛𝑝)𝑚×𝑚 as a matrix of matrices. Picking suitable 𝜶 depending on 𝒙 , namely 𝜶 =

(0, . . . , 0, 𝑥ℓ+1,−𝑥ℓ , 0, . . . , 0)⊤ where the non-zero components are ℓ and ℓ + 1, we find:

0 = (𝜶⊤𝒙) · 𝒗 =

𝑚∑︂
𝑖, 𝑗=1

𝑾 𝑖, 𝑗𝛼𝑖𝑥 𝑗

At this point, it is helpful to observe that the final sum is the sum of the element-wise product of𝑾
and 𝜶𝒙⊤, where

𝜶𝒙⊤ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0 . . . 0
...

...
...

...

𝑥ℓ+1𝑥1 . . . 𝑥ℓ+1𝑥ℓ 𝑥ℓ+1𝑥ℓ+1 . . . 𝑥ℓ+1𝑥𝑚
−𝑥ℓ𝑥1 . . . −𝑥ℓ𝑥ℓ −𝑥ℓ𝑥ℓ+1 . . . −𝑥ℓ𝑥𝑚
...

...
...

...

0 . . . 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We see that for 𝜶 as described, we get

0 =
𝑚∑︂
𝑖, 𝑗=1

𝑾 𝑖, 𝑗𝛼𝑖𝑥 𝑗 =

𝑚∑︂
𝑗=1

𝑾 ℓ, 𝑗𝑥ℓ+1𝑥 𝑗 −
𝑚∑︂
𝑗=1

𝑾 ℓ, 𝑗𝑥ℓ+1𝑥 𝑗

= (𝑾 ℓ,ℓ −𝑾 ℓ+1,ℓ+1)𝑥ℓ+1𝑥ℓ +
∑︂
𝑗≠ℓ

𝑾 ℓ, 𝑗𝑥ℓ+1𝑥 𝑗 −
𝑚∑︂

𝑗≠ℓ+1
𝑾 ℓ, 𝑗𝑥ℓ+1𝑥 𝑗

Now, we exploit that we considered a monomial testing distribution 𝜒mon, hence 𝑥𝑖𝑥 𝑗 = 𝑥𝑖+𝑗−2 (for
1-based indexing). Dividing by 𝑥 ℓ−1, the degree of 𝜶⊤𝑾𝒙 in 𝑥 is𝑚, and it follows that from𝑚 + 1
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transcripts with distinct challenges, we can conclude that𝑾 ℓ,ℓ =𝑾 ℓ+1,ℓ+1 and𝑾 ℓ, 𝑗 = 0 =𝑾 ℓ+1, 𝑗 for all
𝑗 ≠ ℓ, ℓ + 1. In particular, the matrix (of vectors)𝑾 has the form

𝑾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝒘 0 . . . 0
0 𝒘 0

0 0 . . .
...

0 0 . . . 𝒘

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and therefore 𝑨𝒘 = [𝒕]. This completes the proof. □

We note that our proof is modelled after [BCC+16], though we tried to surface some of the relevant
properties more clearly.

4.3.3.2. Trading Challenge Size for Extraction Tightness

In protocols LMPAbatch and LMPAbat-sing, a monomial testing distribution 𝜒mon is the straightforward
choice. As a consequence, at least 𝜇 ≥ 𝑚 transcripts are required for short-circuit extraction, while
𝜇′ = 1 is required for quick-extraction. Thus, the quotient 𝜇−1

𝜇′ ≥ 𝑚 − 1 is large, which is detrimental to
runtime-tightness of short-circuit extraction. To improve upon this, we modify the approach slightly.

Firstly, we observe that one can compose LMPAbat-sing sequentially if only a part of the matrix [𝑨]
is batched: View [𝑨] as a matrix of matrices [𝑨] =

[︁ 𝑨1
𝑨2

]︁
and similar𝒘 and [𝒕] as vectors of vectors.

Suppose the dimension of [𝒕] is a power of 2, say𝑚 = 2ℓ . Then LMPAbat-sing can be applied, and the
height of [𝑨] and [𝒕] is reduced by half. Instead of sending the witness and checking [ˆ︁𝑨]𝒘 = [ˆ︁𝒕],
one can again recursively apply LMPAbat-sing (i.e. the verifier sends another challenge), until [𝒕] is
1-dimensional and [𝑨] ∈ G1×𝑛 .

This idea corresponds to a different choice of challenges: Let𝑚 = 2ℓ . The testing distribution now
chooses 𝝃 = (𝜉1, . . . , 𝜉ℓ ) $← Sℓ where S ⊆ F×𝑝 and sets 𝑥𝑖 = 𝝃 �⃗� , where �⃗� ∈ {0, 1} denotes the binary
representation of 𝑖 ∈ {0, . . . , 2ℓ−1} and 𝝃 �⃗� ≔ ∏︁𝑚

ℓ=1 𝜉
𝑖ℓ
𝑗
(i.e. the usual short-hand notation for multivariate

monomials). We write 𝜒⊗ ℓ2 for this testing distribution, since this is in fact the tensor-based testing
distribution from Example 4.2.12. Note that, the 𝒙⊤ [𝑨] and 𝒙⊤ [𝒕] results in exactly the same final [ˆ︁𝑨]
and [ˆ︁𝒕] as we would obtain in the above recursive composition of LMPAbat-sing. The only difference is,
that we did not explicitly think of the verifier sending 𝜉1, . . . , 𝜉ℓ as multiple challenges, sent one after
another, but as a single challenge.

Reminder 4.3.10. Recall our notation (from Remark 4.2.15) to indicate such “structured” challenges,
which result in a deeper tree shape even though they correspond to a single challenge message in terms
of round complexity, we put them in parenthesis, e.g. (3, 2)- resp. ((3, 3), 2)- resp. ((3, 3), (2, 2))-short
extractability all refer to a protocol with 2 challenges sent in terms of round complexity, but tree height
of 2, resp. 3, resp. 4.

An almost immediate consequence of these specially structured challenges is the following.

Corollary 4.3.11. Consider the situation of Lemma 4.3.9, but with Protocol LMPAbat-sing using 𝜒𝑚 = 𝜒⊗ ℓ2
as defined above. Then the protocol is ((1, . . . , 1))-quick ((3, . . . , 3))-short extractable for relaxed soundness
relation “ K𝒖𝑖 ∈ F𝑚 ·𝑛𝑝 : [𝒕𝑖] = [𝒂]𝒖𝑖 for all 𝑖”.
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Proof. The claim follows by taking the recursive composition point of view explained above, and by
observing that a non-trivial relation [ˆ︁�⃗�]⊤ˆ︁𝒖 = [0] at any intermediate recursion also yields a relation
[𝒂]𝒖 = [0] in a straightforward manner. □

Using 𝜒⊗ ℓ2 as in Corollary 4.3.11 instead of monomial testing as in Lemma 4.3.9 increases the challenge
size (namely, ℓ elements in F×𝑝 instead of 1) but is otherwise an almost universal improvement: Let
𝑚 = 2ℓ and S ⊆ F×𝑝 . Then the (proven) knowledge error is 2ℓ

#S instead of 𝑚−1#S , and the required number
of transcripts for short-circuit extraction is at most 2ℓ + 1 instead of𝑚. Thus, already for𝑚 ≥ 8 using
𝜒⊗ ℓ2 (as described) instead of 𝜒mon

𝑚 only improves the security.

More generally, by using a different bases, e.g.𝑚 = 16ℓ or𝑚 =
√
𝑚

2 or even more generally, different
sequences (𝜇′1, . . . , 𝜇′ℓ ), different tradeoffs are possible w.r.t. increase of challenge size and improvement
in extraction tightness.

4.3.4. Intermezzo: Batch Proofs of Knowledge

By applying the “linear combination of protocols” technique, to multiple “trivial proofs of knowledge”
(cf. Fig. 4.2) we obtain batch verification of statements ( [𝑨], [𝒕𝑖]), 𝑖 = 1, . . . , 𝑁 , i.e. multiple statements
with fixed matrix [𝑨] but varying [𝒕] as in the setting of [PBD07], in a straightforward way. As a
clarifying terminology, we suggest to follow [HHK+17] and use internal batching for batching techniques
which relate to a single statement, e.g. those presented in Section 4.3.3 above or Section 4.3.5 below. For
batching multiple statements into one, as in this section, we suggest external batching [HHK+17].

Protocol 4.3.12. The following is a protocol to prove: K𝒘𝑖 : [𝑨]𝒘𝑖 = [𝒕𝑖] for 𝑖 = 1, . . . , 𝑁 . Let 𝜒𝑁+1
be a testing distribution, such that 𝒙 = (𝑥0, . . . , 𝑥𝑁 ) $← 𝜒𝑁+1 has 𝑥0 = 1 always. Common input is
( [𝑨], ( [𝒕𝑖])𝑖) ∈ G𝑚×𝑛 × G𝑛 . The prover’s witness are some𝒘𝑖 ∈ F𝑛𝑝 with [𝑨]𝒘𝑖 = [𝒕𝑖] for all 𝑖 .

• P→ V: Pick 𝒓 $← F𝑛𝑝 and let [𝒕0] = [𝑨]𝒓 . Send [𝒕0] ∈ G𝑚 .

• V→ P: Pick and send 𝒙 $← 𝜒𝑁+1.

• P→ V: Compute 𝒛 = 𝒙⊤
(︃

𝒓
𝒘1
...
𝒘𝑁

)︃
= 𝒓 +∑︁𝑁

𝑖=1 𝑥𝑖𝒘𝑖 . Send 𝒛 ∈ F𝑛𝑝 .

• V: Check [𝑨]𝒛 ?
= [𝒕0] +

∑︁𝑁
𝑖=1 𝑥𝑖 [𝒕𝑖], and accept/reject if true/false.

Lemma 4.3.13. Protocol 4.3.12 is a HVZK-PoK for K𝑤𝑖 : [𝒕𝑖] = [𝑨𝑖]𝒘 for 𝑖 = 1, . . . 𝑁 . It is perfectly
complete, has perfect HVZK and is (𝑁 + 1)-special sound.

Proof. Completeness is straightforward. Extraction uses 𝑁 + 1 accepting transcripts ( [𝒕0], 𝒙 𝑗 , 𝒛 𝑗 ).
Let [𝑻 ] ≔ [𝒕0, . . . , 𝒕𝑁 ] and 𝒁 , 𝑿 be appropriate matrices built from the 𝑁 + 1 transcripts. Since
[𝑨]𝒁 = [𝑻 ]𝑿 , we find (𝒓,𝒘1, . . . ,𝒘𝑁 ) ≔ 𝒁𝑿−1 is a valid witness. For HVZK note that 𝑥0 = 1
and hence 𝒛 is uniformly distributed for any honest execution. Thus, we can pick 𝒛 ← F𝑚𝑝 and let
[𝒕0] ≔ [𝑨]𝒛 −

∑︁𝑁
𝑖=1 [𝒕𝑖]𝑥𝑖 as usual. □
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If we squint a bit, we can recast this as a special case of LMPAbat-sing:

[𝑨] (𝒓 +
𝑁∑︂
𝑖=1

𝑥𝑖𝒘𝑖) = [𝑨𝒓 ,𝑨𝒘1, . . . ,𝑨𝒘𝑁 ] · 𝒙 = 𝒙⊤ ·
[︂

𝑨𝒓
...

𝑨𝒘𝑁

]︂
= 𝒙⊤ ·

[︃ 𝑨
. . .

𝑨

]︃ [︃ 𝒓
...

𝒘𝑁

]︃
[𝒕0] +

𝑁∑︂
𝑖=1

𝑥𝑖 [𝒕𝑖] = [𝒕0, . . . , 𝒕𝑁 ] · 𝒙 = 𝒙⊤
[︄
𝒕0
...
𝒕𝑁

]︄
A priori, the relaxed extraction case in Lemma 4.3.9 for diag( [𝑨], . . . , [𝑨]) produces “only” wit-
nesses 𝒖�⃗� = (𝒗𝑖0,

..., 𝒗𝑖
𝑁
)⊤ ∈ (F𝑛𝑝)𝑁+1 with [𝑨, . . . ,𝑨]𝒖�⃗� = [𝒕𝑖]. However, the block diagonal structure

diag( [𝑨], . . . , [𝑨]) ensures that𝒘𝑖 =
∑︁𝑁
𝑖=0 𝒗

𝑖
𝑗 satisfies [𝑨]𝒘 = [𝒕𝑖].

The linear combination approach also yields efficient 𝑘-out-of-𝑁 proofs, by having the verifier only
partially fix the challenge. However, this requires care to not become unsound, see [HG13].

While we now have the tools to (in a sense modularly) derive a log-size linear map preimage argument
via “batching the witness”, we will skip such motivation and directly consider to the optimized approach
of [BCC+16; BBB+18]. For completeness, we include the derivation in Appendix B.1.

4.3.5. Step 2: “Batching” the Witness

In this section, we show how to “batch” the witness, i.e. proving K𝒘 : [𝑨]𝒘 = [𝒕] for [𝑨] ∈ G𝑚×𝑛 with
communication sublinear in 𝑛. For the introduction, one may assume𝑚 = 1, e.g. [𝑨] = [𝒈]. Indeed,
this is the most interesting case, as it used for the inner product argument we construct later. Moreover,
by an application of LMPAbatch, we can always reduce to𝑚 = 2 after commitment extending [𝑨].

Remark 4.3.14. It is possible to reduce to𝑚 = 1 conceptually. Namely, let H ≔ G𝑚 . Then [𝑨] and [𝒕]
can be interpreted as [𝑨] ∈ H1×𝑛 , [𝒕] ∈ H, and [𝑨]𝒘 = [𝒕]. Using H means working over a (base)
vector space of dimension𝑚 > 1. In particular, to draw a random [𝑏] $← H one now needs a basis [ℎ𝑖]
of H and sets [𝑏] = ∑︁

𝑟𝑖 [ℎ𝑖] for 𝑟𝑖 $← F𝑝 .

4.3.5.1. The General Idea

Wepresent the technique of [BCC+16], but in our situation and notation. For themotivation, we let𝑚 = 1
and ignore zero-knowledge. For𝑚 > 1, the argument applies without change (by Remark 4.3.14).

Let 𝑘 ∈ N be the size-reduction of the witness, which we want to achieve per iteration Assume for
simplicity that 𝑘 |𝑛, i.e. 𝑛/𝑘 ∈ N.10 We will reduce the equation [𝑨]𝒘 = [𝒕] to [ˆ︁𝑨]ˆ︁𝒘 = [ˆ︁𝒕], where
[ˆ︁𝑨] ∈ G1×𝑛/𝑘 , ˆ︁𝒘 ∈ F𝑛/𝑘𝑝 , [ˆ︁𝑡] ∈ G. To do so, divide [𝑨] and 𝒘 into 𝑘 blocks size of size 𝑛/𝑘 , obtaining
vectors/matrices of vectors/matrices i.e. [𝑨] = [𝑨1 | . . . |𝑨𝑘 ] ∈ (G1×𝑛/𝑘 )1×𝑘 with [𝑨𝑖] ∈ G1×𝑛/𝑘 , and
likewise𝒘 =

(︂ 𝒘1
...
𝒘𝑘

)︂
∈ (F𝑛/𝑘𝑝 )𝑘 .11 We want to prove

𝑘∑︂
𝑖=1
[𝑨𝑖]𝒘𝑖 = [𝒕] .

10 Pad [𝑨] and the witness with zeroes if necessary. Security proofs now require minor adaptions, see Remark 4.2.2.
11 It also may be helpful to think of the vector space (F𝑛/𝑘𝑝 )𝑘 as F𝑘𝑝 ⊗ F

𝑛/𝑘
𝑝 .
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Despite similarities, the techniques from Section 4.3.3 are not applicable, as they only reduce𝑚. The
trick of [BCC+16] is to embed our problem into a different one which can be batch-verified. Namely, we
exploit that the scalar product is the sum of the diagonal entries (i.e. the trace) of the outer product:

⎡⎢⎢⎢⎢⎢⎣
𝑨1
...

𝑨𝑘

⎤⎥⎥⎥⎥⎥⎦ (𝒘1, . . . ,𝒘𝑘 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑨1𝒘1 𝑨1𝒘2 . . . 𝑨1𝒘𝑘
𝑨2𝒘1 𝑨2𝒘2 . . . 𝑨2𝒘𝑘
...

... . . .

𝑨𝑘𝒘1 𝑨𝑘𝒘2 . . . 𝑨𝑘𝒘𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ G𝑘×𝑘 (4.3.2)

Now we can send all terms [𝑨𝑖]𝒘 𝑗 to the verifier. Our probabilistic test has to map both [𝑨] and𝒘 to a
new (smaller) statement. We can do that by multiplying from the left by 𝒙 ∈ F𝑘𝑝 and from the right by
𝒚 ∈ F𝑘𝑝 where 𝒙,𝒚 ← 𝜒𝑘 . Consequently, we obtain (from associativity)

𝒙⊤
⎛⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣
𝑨1
...

𝑨𝑘

⎤⎥⎥⎥⎥⎥⎦ (𝒘1, . . . ,𝒘𝑘 )
⎞⎟⎟⎠𝒚 =

⎛⎜⎜⎝𝒙⊤
⎡⎢⎢⎢⎢⎢⎣
𝑨1
...

𝑨𝑘

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞

≔
∑︁
𝑖 𝑥𝑖 [𝑨𝑖 ] ≕ [ˆ︁𝑨]

((𝒘1, . . . ,𝒘𝑘 )𝒚)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
≔

∑︁
𝑖 𝑦𝑖𝒘𝑖≕[ˆ︁𝒘 ]

=
∑︂
𝑖, 𝑗

𝑥𝑖𝑦 𝑗 [𝑨𝑖]𝒘 𝑗⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
≕[ˆ︁𝑡 ]

The prover thus sends the (purported) [𝑨𝑖]𝒘 𝑗 , denoted [𝒖𝑖, 𝑗 ], and ˆ︁𝒘 , the shrunk witness. The verifier
checks

∑︁
𝑖 [𝒖𝑖,𝑖]

?
= [𝒕] and [ˆ︁𝑨]ˆ︁𝒘 ?

= [ˆ︁𝑡] = ∑︁
𝑖, 𝑗 𝑥𝑖𝑦 𝑗 [𝒖𝑖, 𝑗 ].

If the [𝑨𝑖] satisfy a hard kernel assumption, the prover is committed to𝒘1, . . . ,𝒘𝑘 . It is not hard to see
that given enough transcripts with suitable structure (depending on the testing distribution), one can
extract𝒘 (or find non-trivial kernel elements.) We will show this for a more efficient special case. All
in all, we reduced the statement ( [𝑨], [𝑡]) to ( [ˆ︁𝑨], [ˆ︁𝑡]) which is smaller by a factor of 𝑘 . This can be
applied recursively.

As noted before, this strategy applies verbatim to [𝑨]𝒘 = [𝒕] with [𝑨] ∈ G𝑚×𝑛 ,𝒘 ∈ F𝑛𝑝 and [𝒕] ∈ G𝑚 ,
and it results in [ˆ︁𝑨] ∈ G𝑚×𝑛/𝑘 , ˆ︁𝒘 ∈ F𝑛/𝑘𝑝 and [ˆ︁𝒕] ∈ G𝑚 .
Remark 4.3.15. In Appendix B.1 we explain how to derive a folding-like protocol in two simpler
(modular) steps. It turns out that even the optimized version LMPAnoZK we discuss next is closely
related.

4.3.5.2. Refining the Testing Distribution

It turns out, that by a good choice of testing distribution, we can reduce communication. Namely, we
can pick testing distributions with 𝑥𝑖𝑦 𝑗 = 𝑧 𝑗−𝑖 for all 𝑖, 𝑗 . Then it is sufficient for the verifier to know
the sum of the off-diagonals12 i.e. [𝒖ℓ ] ≔

∑︁
𝑗−𝑖=ℓ [𝑨𝑖]𝒘 𝑗 for ℓ = ±1, . . . ,±(𝑘 − 1) (and [𝒖0] = [𝒕]). This

follows from
∑︁
𝑗−𝑖=ℓ 𝑥𝑖𝑦 𝑗 [𝑨𝑖]𝒘 𝑗 = 𝑧ℓ

∑︁
𝑗−𝑖=ℓ [𝑨𝑖]𝒘 𝑗 . We denote the (purported)

∑︁
𝑗−𝑖=ℓ [𝑨𝑖]𝒘 𝑗 , sent by

the prover, as [𝒖ℓ ]. Note that [𝒖0] = [𝒕] need not be sent. From the testing distribution ˜︁𝜒2𝑘−1 we
require that 𝒛 $← ˜︁𝜒2𝑘−1, belongs to a pair (𝒙,𝒚). We always implicitly consider (𝒙,𝒚, 𝒛) for ˜︁𝜒2𝑘−1, as
these values belong together. We leave the formal definition of such generalized testing distributions to
the reader.

12 Any diagonal which is “parallel” to the diagonal (i.e. (𝑀𝑖, 𝑗 ) 𝑗−𝑖=ℓ for some ℓ) is called off-diagonal.
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One testing distribution with this property comes from monomials 𝑋 𝑖 , e.g. 𝒙 = (1, 𝑥, . . . , 𝑥𝑘−1) and
𝒚 = (1, 𝑥−1, . . . , 𝑥−𝑘+1). In this case, 𝑧ℓ = 𝑥−ℓ . For efficiency, picking 𝒙 as before, but𝒚 = (𝑥𝑘−1, . . . , 𝑥, 1)
is also interesting, since this preserves small 𝑥𝑖 . In this case, 𝑧ℓ = 𝑥𝑘−1−ℓ . (We recall that if 𝑥 is small,
then using Horner’s scheme, group-operations can take advantage of this, cf. Remark 4.2.3.)

Definition 4.3.16. We write ˜︁𝜒mon
2𝑘−1 for the (generalized) testing distribution with (𝒙,𝒚, 𝒛) so that 𝒙 =

(1, 𝑥, . . . , 𝑥𝑘−1), 𝒚 = (𝑥𝑘−1, . . . , 𝑥, 1), and 𝑧ℓ = 𝑥 (𝑘−1)−ℓ .

Remark 4.3.17. Consider any generalized testing distribution with 𝑥𝑖𝑦 𝑗 = 𝑧 𝑗−𝑖 ≠ 0 (for all 𝑖, 𝑗 ), i.e.
non-zero 𝑧ℓ . Then, up to being a scalar multiple, it has the form of Definition 4.3.16. To prove this, we
first note that if any 𝑥𝑖 or 𝑦𝑖 is 0, then 𝑧0 = 𝑥𝑖𝑦𝑖 = 0, contradicting our assumption. Hence all 𝑥𝑖 , 𝑦 𝑗 are
non-zero. Now, observe that from 𝑥𝑖𝑦 𝑗 = 𝑧 𝑗−𝑖 we can deduce 𝑥𝑖+ℓ

𝑥𝑖
=

𝑦0
𝑦ℓ
. So in particular 𝑥𝑖+1

𝑥𝑖
=

𝑦0
𝑦1
≕ 𝜌

holds for all 𝑖 . Analogously, we find 𝑦 𝑗+1
𝑦 𝑗

= 𝜌−1. Thus, 𝑥𝑖 = 𝑥0 · 𝜌𝑖 and 𝑦𝑖 = 𝑦0 · 𝜌−𝑖 , as claimed.

With this optimization, we effectively recover and generalize the implicit building block of [BCC+16;
BBB+18] as following protocol.

Protocol 4.3.18 (LMPAnoZK). The following is a protocol to prove K𝒘 : [𝒕] = [𝑨]𝒘 . Let ˜︁𝜒mon
2𝑘−1 be the

testing distribution from Definition 4.3.16. Common input is ( [𝑨], [𝒕]) ∈ G𝑚×𝑛 × G𝑚 . We assume
𝑛 = 𝑘𝑑 . The prover’s witness is some𝒘 ∈ F𝑛𝑝 with [𝑨]𝒘 = [𝒕].

Recursive step. Suppose 𝑛 = 𝑘𝑑 > 𝑘 .

• Notation: Let [𝑨] ≕ [𝑨1, . . . ,𝑨𝑘 ] ≕ [�⃗�] ∈ (G𝑚×𝑛/𝑘 )1×𝑘 , and �⃗� ≔
(︄
𝒘1
...

𝒘𝑘

)︄
∈ (F𝑛/𝑘𝑝 )𝑘 . Then we

get [�⃗�⊤] ≔
[︄
𝑨1
...
𝑨𝑘

]︄
∈ (G𝑚×𝑛/𝑘 )𝑘 and [�⃗�]�⃗� =

∑︁𝑘
𝑖=1 [𝑨𝑖]𝒘𝑖 = [𝒕].

• P→ V: Compute [𝒖ℓ ] =
∑︁
𝑗−𝑖=ℓ [𝑨𝑖]𝒘 𝑗 . Send [𝒖ℓ ] for ℓ = ±1, . . . ,±(𝑘 − 1). ([𝒖0] = [𝒕] is known

to the verifier.)

• V→ P: Pick 𝒛 $← ˜︁𝜒mon
2𝑘−1 with corresponding 𝒙,𝒚. Send (𝒙,𝒚, 𝒛).

• Both parties compute [ˆ︁𝑨] = 𝒙⊤ [�⃗�⊤] = ∑︁
𝑖 𝑥𝑖 [𝑨𝑖] ∈ G𝑚×𝑛/𝑘 and [ˆ︁𝒕] = 𝒛⊤ [𝒖] = ∑︁𝑘−1

ℓ=−𝑘+1 𝑧ℓ [𝒖ℓ ] ∈
G as the resulting batched statement. Moreover, P computes ˆ︁𝒘 = �⃗�⊤𝒚 =

∑︁
𝑖 𝒘𝑖𝑦𝑖 . The protocol

may then be recursively restarted, setting 𝑛 ← 𝑛/𝑘 ,𝒘 ← ˆ︁𝒘 , [𝒕] ← [ˆ︁𝒕], [𝑨] ← [ˆ︁𝑨].
Base case. Suppose 𝑛 ≤ 𝑘 .

• P→ V: Send𝒘 .

• V: Test if [𝑨]𝒘 ?
= [𝒕].

See Appendix B.7 for a sketch of the protocol.

For 𝑘 = 2, the base case could also be at 𝑛 = 4, which reduces (only) round complexity (assuming
elements in G and F𝑝 have the same bitlength). However, this would require special treatment of 𝑘 = 2
in all further protocols and claims, which is why choose not to do this. Indeed, we could describe
Protocol LMPAnoZK for general 𝑛 = 𝑘1 . . . 𝑘ℓ , as does [BCC+16], but choose not to.

Lemma 4.3.19 (Recursive stepwise extraction). Consider the situation above. Let ˜︁𝜒mon
2𝑘−1 be the testing

distribution from Definition 4.3.16. Let [𝒖ℓ ], [𝑨𝑖], [𝒕],𝒘 𝑗 and [ˆ︁𝑨], [ˆ︁𝒕] be defined as above. Then:
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1. Kernel propagation: Given a non-trivial kernel element of [ˆ︁𝑨], we (efficiently) find a non-trivial
kernel element of [𝑨].

2. Special soundness: Given 2𝑘 − 1 accepting transcripts with distinct challenges, i.e. an invertible
matrix 𝒁 of challenges, one can extract (unconditionally) a witness [𝑨]𝒘 = [𝒕].

3. Extra consistency: Given 2𝑘 accepting transcripts with distinct challenges, if the extracted witness
from above does not fit w.r.t. the [𝒖ℓ ], i.e. if an honest prover would send different [𝒖ℓ ] for𝒘 , then
we find (additionally) a non-trivial kernel element 𝒗, i.e. [𝑨]𝒗 = 0.

4. Short-circuit extraction: Given 𝑘 accepting transcripts with distinct challenges, a candidate witness
𝒘 ′ can be computed. If 𝒘 ′ is not a valid witness or does not satisfy the additional consistency
requirements from item 3, i.e. if

∑︁
𝑗−𝑖=ℓ [𝑨𝑖]𝒘 ′𝑗 ≠ [𝒖ℓ ] for some ℓ , then we are guaranteed to find a

non-trivial kernel relation from 2𝑘 distinct challenges. In particular, each round has 𝑘-quick 2𝑘-short
extractability.

Items 1 and 4 ensure (𝑘, . . . , 𝑘)-quick (2𝑘, . . . , 2𝑘)-short extractability, whereas item 2 implies (2𝑘 −
1, . . . , 2𝑘 − 1)-special soundness.

Note that, maybe surprisingly, extraction of a witness𝒘 with [𝑨]𝒘 = [𝒕] is unconditional, i.e. we have
a proof of knowledge (though consistency of [𝒖ℓ ] is not shown unconditionally). The proof is a minor
generalisation of [BCC+16; BBB+18].

Proof. Given a non-trivial kernel element ˆ︁𝒘 for 𝒙⊤ [�⃗�⊤], i.e. 0 = 𝒙⊤ [�⃗�⊤]ˆ︁𝒘 =
∑︁
𝑖 [𝑨𝑖]𝑥𝑖ˆ︁𝒘 , we see thatˆ︁𝒘𝒙 as defined below satisfies [𝑨]ˆ︁𝒘𝒙 = 0. Thus, we can recursively “extend” kernel elements to earlier

rounds. Now to the interesting case.

Given 2𝑘 − 1 transcripts with distinct challenges 𝒛 (𝑖 ) , we find

[𝒖−𝑘+1, . . . , 𝒖𝑘−1]𝒛 (𝑖 ) = (
𝑘∑︂
𝑗=1

𝑥
(𝑖 )
𝑗
[𝑨𝑗 ])ˆ︁𝒘 (𝑖 )

=
∑︂
𝑗

[𝑨𝑗 ]𝑥 (𝑖 )ˆ︁𝒘 (𝑖 )
= [𝑨1, . . . ,𝑨𝑛]ˆ︁𝒘 (𝑖 )𝒙

where ˆ︁𝒘 (𝑖 )𝒙 ≔ ⎛⎜⎜⎝
𝑥
(𝑖 )
1 ˆ︁𝒘
...

𝑥
(𝑖 )
𝑛 ˆ︁𝒘

⎞⎟⎟⎠ ∈ (F
𝑛/𝑘
𝑝 )𝑘 .

Note that ˆ︁𝒘 (𝑖 )𝒙 is a column vector of vectors, and is multiplied with a row vector of matrices. We
will sometimes explicate this by writing [�⃗�] and �⃗� , see the notation Protocol 4.3.18. Thus, we get
[�⃗�]�⃗� = [𝒕] for the witness �⃗� . For simplicity, the reader may think of the case𝑚 = 1, 𝑛 = 𝑘 where we
deal with “normal” vectors and matrices, cf. Remark 4.3.14. To gather all equations in a single linear
system, let

𝒁 ≔ (𝒛 (1) , . . . , 𝒛 (2𝑘−1) ) ∈ F(2𝑘−1)×(2𝑘−1)𝑝 and ˆ︁𝑾 ≔ (ˆ︁𝒘 (1)𝒙 , . . . ,ˆ︁𝒘 (2𝑘−1)𝒙 ) ∈ (F𝑛/𝑘𝑝 )𝑘×(2𝑘−1)

and note that we obtain
[𝒖−𝑘+1, . . . , 𝒖𝑘−1]𝒁 = [𝑨1, . . . ,𝑨𝑘 ]ˆ︁𝑾

as the linear system. Note that 𝒁 is invertible, since distinct challenges 𝒛 are automatically also linearly
independent. Multiplication by 𝒁−1 yields𝑾 ≔ ˆ︁𝑾𝒁−1 which satisfies

[𝒖−𝑘+1, . . . , 𝒖𝑘+1] = [𝑨1, . . . ,𝑨𝑘 ]𝑾 .
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4.3. HVZK Arguments for [𝑨]𝒘 = [𝒕]

In particular, numbering columns from −𝑘 + 1 to 𝑘 − 1, shows that the ℓ-th column of𝑾 is a preimage
of 𝒖ℓ . (However, this preimage is under [𝑨1, . . . ,𝑨𝑘 ], and hence not necessarily one an honest prover
could have produced.) We only care about the preimage of [𝒖0] = [𝒕], hence the corresponding column
yields a witness ˜︁𝒘 satisfying [𝑨]˜︁𝒘 = [ˆ︁𝒕]. This shows item 2, i.e. unconditional extraction.

For item 3, we consider the structure of𝑾 . Observe that a𝑾 obtained from by extracting an honest
prover has the structure

𝑾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒘𝑘 𝒘𝑘−1 . . . 𝒘1 0 . . . 0

0 𝒘𝑘
. . . 𝒘2 𝒘1

. . . 0

0 0 . . .
...

. . .
. . . 0

0 0 . . . 𝒘𝑘 𝒘𝑘−1 . . . 𝒘1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This is, because an honest [𝒖ℓ ] is the sum of the ℓ-th off-diagonal of [𝑨1, . . . ,𝑨𝑘 ]⊤(𝒘1, . . . ,𝒘𝑘 ),
cf. Eq. (4.3.2). By arguing similar as in the proof of Lemma 4.3.9, i.e. by deriving polynomial equations
in 𝜌 of degree 2𝑘 , where 𝒙 = (1, 𝜌, . . . , 𝜌𝑘−1), 𝒚 = (𝜌𝑘−1, . . . , 1), and 𝒛 = (1, 𝜌, 𝜌2, . . . , 𝜌𝑘−1), we find
that either𝑾 satisfies the above structure, or the transcripts yield a non-trivial element 𝒗 such that
[𝑨]𝒗 = 0. This argument is also completely analogous to [BCC+16; BBB+18].

Finally, let us remark the following: Given 𝑘 distinct challenges, we can compute a candidate �⃗� via
(𝒘1, . . . ,𝒘𝑘 )𝒀 = (ˆ︁𝒘1, . . . ,ˆ︁𝒘𝑘 ). If this is a suitable witness, we have quick-extraction. If [𝑨]𝒘 ≠ [𝒕], we
must obtain a non-trivial kernel element of [𝑨] from 2𝑘 transcripts; this yields the claimed short-circuit
extraction. More concretely, we argue as follows: Let 𝒗⊤ be (ˆ︁𝒘1, . . . ,ˆ︁𝒘𝑘 )𝒀 −1 as described. Suppose that
by using all 2𝑘 transcripts we obtain a witness �⃗� ≠ 𝒗 as in item 3 (if it fails, we’re done). By construction
of �⃗� resp. 𝒗, they satisfy 𝒙⊤𝑖 [�⃗�]⊤(𝒚⊤𝑖 �⃗�) = 𝒙⊤𝑖 [𝒖] resp. 𝒙⊤𝑖 [�⃗�]⊤(𝒚⊤𝑖 𝒗) = 𝒙⊤𝑖 [𝒖] for 𝑖 = 1, . . . , 𝑘 . Thus, we
find 𝒙⊤𝑖 [�⃗�]⊤(𝒚⊤𝑖 (�⃗� −𝒗)) = [0]. Lastly, for some 𝑖 ∈ {1, . . . , 𝑘} we have𝒚⊤𝑖 (�⃗� −𝒗) ≠ 0, else 𝒀 (�⃗� −𝒗) = 0
and thus, �⃗� = 𝒗, a contradiction. Hence find a non-trivial kernel element of [�⃗�] as claimed. □

Remark 4.3.20. By using different testing distributions and adapting LMPAnoZK suitably, many protocol
variants can be derived. Unfortunately, we did not find a variant which improved upon the choice of˜︁𝜒mon
2𝑘−1, hence we presented only that. One interesting approach was to increase the symmetries in the

(generalized) testing distribution ˜︁𝜒2𝑘−1 further, by considering 𝒛 = 𝒙 ⊗𝒚 +𝒚 ⊗ 𝒙 for monomial 𝒙,𝒚 as
in ˜︁𝜒mon

2𝑘−1. With this, two off-diagonals are summed together as [𝒖±ℓ ], and thus only 𝑘 − 1 elements have
to be sent. However, without sending additional elements (namely, 𝑘 − 1 more), we were unable to turn
this idea into a working protocol. Thus, ultimately this did not lead to any improvements.

4.3.5.3. Adding Zero-Knowledge

There are many variations which yield honest-verifier zero-knowledge. The most straightforward one is
to run Protocol 4.3.1 (Σstd) and replace sending 𝒛 by proving K𝒛 : [𝑨]𝒛 = 𝛽 [𝒕] + [𝒂] via LMPAnoZK. This
is analogous to [BCC+16; BBB+18], where LMPAnoZK was only (implicitly) used to save communication,
and it results in a communication-efficient proof of knowledge, which we denote by LMPAsimpleZK;
the combination LMPAbatch+simpleZK denotes a first application LMPAbatch and then LMPAsimpleZK. One
downside of LMPAsimpleZK is, that computing [𝑨]𝒓 for random 𝒓 is expensive. If the computational
overhead for computing [𝑨]𝒓 is acceptable — and it often is — using LMPAsimpleZK a simple and secure
choice. If computational resources are limited, it is natural to try to avoid computing [𝑨]𝒓 . We will
show some means for this.
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4. Efficient Zero-Knowledge Arguments in the DLOG setting, Revisited

Intuitively, it suffices to blind the prover’s responses (instead of the entire witness), and therefore, a
logarithmic amount of randomness should suffice. There are two caveats:

1. If [𝑨] ∈ G𝑚×𝑛 is a tall matrix, say𝑚 ≫ 𝑛, then this intuition (and our constructions) lead to
𝑚 log(𝑛) random terms, and𝑚 log(𝑛) ≫ 𝑛. This problem can be mitigated by using commitment-
extension (using a commitment key [𝒈]) and batching down to 𝑚 = 2 as done in Proto-
col LMPAbatch. However, computing [𝒈] ( 𝑟𝒘𝒘 ) is requires O(𝑛) exponentiations.

2. Since [𝑨] may be adversarially chosen, using [𝑨] for blinding turns out to lead to technical
difficulties, which would make a generic protocol rather complex (if possible at all). Thus, our
approach relies on a trusted commitment key to avoid this.

In the rest of this section, we consider the most relevant special case, which will be used and extended
in our inner product argument construction in Section 4.4.4.

Proving Knowledge of Opening of a Commitment. Suppose that [𝑨] = [𝒈] ∈ G1×𝑛 , and [𝒈] is a
commitment key and 𝑘 = 2. Thus, [𝑨] has hard kernel assumption by construction.

So our current problem is to prove in zero-knowledge that K𝒘 : [𝒈]𝒘 = [𝑡]. We will employ a masked
version of LMPAnoZK, with judiciously chosen randomness 𝒓 , to achieve this. In particular, we do not
pick 𝒓 $← F𝑛𝑝 . We pick 𝒓 so that only logarithmically many 𝑟𝑖 are non-zero. Thus, computing [𝒈]𝒓 = [𝑎]
is quite cheap (unlike in Protocol Σstd). By the uniform-or-unique guideline, we want that each message
[𝒖±1] looks uniformly random. By analysing the recursive structure of LMPAnoZK, we can achieve this
by picking 𝑟𝑖 $← F𝑝 for 𝑖 ∈ M𝑛 ⊆ {1, . . . , 𝑛} withM𝑛 as defined below, and 𝑟𝑖 = 0 else.

Definition 4.3.21 (Masking sets). For some implicitly fixed 𝑘 , we define themasking (randomness)
sets/spacesM𝑛 ⊆ {1, . . . , 𝑛} (for 𝑛 = 𝑘𝑑 ) by the formulas below. The setM𝑛 describes the unit vectors
of F𝑛𝑝 which are used for random masking. We typically treatM𝑛 as a subvector space of F𝑛𝑝 (instead of
explicitly referring to its span ⟨𝒆𝑖 | 𝑖 ∈ M𝑛⟩).

• M1 ≔ {1} andM𝑘 ≔ {1, . . . , 𝑘}

• M𝑘𝑑 ≔ {M𝑘𝑑−1} ∪̇ {𝑖𝑘𝑑−1 − 1, 𝑖𝑘𝑑−1 | 𝑖 = 1, . . . , 𝑘} for 𝑑 ≥ 2.

See Fig. 4.2 for a pictorial description for 𝑘 = 2.

M4 ˆ︁=
M8 ˆ︁=
M16 ˆ︁=
M32 ˆ︁= ˆ︁= 𝒓

𝑦1𝒓1 ˆ︁=
+

𝑦2𝒓2 ˆ︁=
Figure 4.2.: Left: The (construction of the) masking randomness setsM4,M8,M16 andM32 (for 𝑘 = 2). The squares denote
the numbers 1, . . . , 𝑛 (or the respective basis vectors). Right: A demonstration of the “overlap” when a recursive step is applied
to M16, i.e.ˆ︁𝒓 = 𝑦1𝒓1 + 𝑦2𝒓2 is computed. The indices in M𝑛 can also be constructed recursively via string concatenation:
𝑚2𝑛 =𝑚𝑛 |0𝑛−211 and𝑚2 = 11,𝑚1 = 1.

By the structure of the masking sets, we have that (for 𝑘 = 2), if 𝒓 is split into 𝒓 =
(︁ 𝒓1
𝒓2

)︁
as in

LMPAnoZK, then [𝑢 𝑗−𝑖] = [𝒈𝑖]𝒓 𝑗 is uniformly distributed for 𝒓 $← M𝑛 . Moreover, ˆ︁𝒓 = 𝑦1𝒓1 + 𝑦2𝒓2 is
distributed like a fresh 𝒓 ′ $← M𝑛/𝑘 . Essentially, this holds even when considering the joint distribution
(ˆ︁𝒓 , 𝑢±1, . . . , 𝑢±(𝑘−1) ). Thus, masking sets exhibit a useful recursive structure.
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4.3. HVZK Arguments for [𝑨]𝒘 = [𝒕]

Protocol 4.3.22. Let crs = [𝒈] ∈ G1×𝑛 be a uniformly random commitment key (in particular, [𝒈] has hard
kernel relation under the DLOG assumption onG.). The following is a protocol to prove K𝒘 : [𝒈]𝒘 = [𝑡].
Let ˜︁𝜒mon

2𝑘−1 be the testing distribution from Definition 4.3.16 and 𝜒 (𝛽 ) be from Example 4.2.10. Common
input is (crs, [𝑡]) ∈ G1×𝑛 × G. We assume 𝑛 = 𝑘𝑑 . The prover’s witness is𝒘 ∈ F𝑛𝑝 with [𝒈]𝒘 = [𝒕].

• P→ V: Choose 𝒓 $← M𝑛 . Compute [𝑎] = [𝒈]𝒓 . Send [𝑎].

• V→ P: Choose 𝛽 $← 𝜒 (𝛽 ) . Send 𝛽 .

• P↔ V: Let 𝒛 ≔ 𝛽𝒘 + 𝒓 and [𝑡 ′] ≔ 𝛽 [𝑡] + [𝑎]. Engage in LMPAnoZK for K𝒛 : [𝒈]𝒛 = [𝑡 ′].

Lemma 4.3.23. Protocol 4.3.22 an AoK for K𝒘 : [𝒈]𝒘 = [𝑡] which is perfectly correct, 𝜀-statistical HVZK
with 𝜀 = 2(𝑘 − 1) log𝑘 (𝑛)/𝑝 , and (2, 2𝑘 − 1, . . . , 2𝑘 − 1)-special sound. Moreover is has (2, 𝑘, . . . , 𝑘)-quick
(2, 2𝑘, . . . , 2𝑘)-short extractability.

Proof. It is clear that this protocol is correct. Short-circuit extraction follows easily as this is essentially
a sequential composition of Protocol Σstd and LMPAnoZK, only the masking randomness differs (which
does not affect soundness, since a malicious prover could always pick this randomness). Thus, only
zero-knowledge remains.

For HVZK, one should note that 𝒛 = 𝛽𝒘 + 𝒓 behaves like a linear combination throughout the protocol,
because the reduced witness ˆ︁𝒛 is of the form 𝛽ˆ︁𝒘 +ˆ︁𝒓 . Indeed, we can view the protocol as a linear
combination of protocols for [𝒈]𝒘 = [𝑡] and [𝒈]𝒓 = [𝑎]. Thus, we may assume that 𝒘 = 0 and we
can focus on 𝒓 alone. Now, we have to show that in each non-base iteration (i.e. 𝑛 > 𝑘), the joint
distribution (ˆ︁𝒓 , [𝑢−(𝑘−1) ], . . . , [𝑢𝑘−1]) is (almost) uniform inM𝑛/𝑘 × G2(𝑘−1) . As explained before, this
basically follows due to the form of M𝑛 . A formal proof is given below. For the base case, we note
that by construction, M𝑘 = {1, . . . , 𝑘}. Thus, 𝒓 $← M𝑘 is uniformly random in F𝑘𝑝 , and hence 𝑥𝒘 + 𝒓
is uniformly random for 𝑛 ≤ 𝑘 , perfectly hiding 𝒘 . In particular, the messages in the base case are
uniformly random too. Since the uniform-or-unique property is satisfied, the zero-knowledge simulator
can construct the transcript in reverse, as usual.

Now, we prove that in each recursive step, unless a bad event happens, (ˆ︁𝒓 , 𝑢−(𝑘−1) , . . . , 𝑢𝑘−1) is dis-
tributed uniformly inM𝑛/𝑘 ×G2(𝑘−1) . Recall that we assume w.l.o.g.𝒘 = 0 and consider the distribution
of the execution for 𝒓 alone. Moreover, for simplicity, we treat the case where 𝑘 = 2. To analyze the
distribution of (ˆ︁𝒓 , 𝑢−1, 𝑢1), we consider the “transition map 𝑳” (for fixed challenge 𝑥 ) from 𝒓 =

(︁ 𝒓1
𝒓2

)︁
to

(ˆ︁𝒓 , 𝑢−1, 𝑢1), ⎛⎜⎝
𝑥 id2 id2
𝒈2 0
0 𝒈1

⎞⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
≕𝑳

(︃
𝒓1
𝒓2

)︃
=

⎛⎜⎝
ˆ︁𝒓
𝑢−1
𝑢1

⎞⎟⎠.
Since only the components inM𝑛 (resp.M𝑛/𝑘 ) of 𝒓 (resp.ˆ︁𝒓 ) are non-zero, we can remove all columns
not inM𝑛 and all rows not inM𝑛/𝑘 from 𝑳, as these consist are entirely of zeroes in 𝒓 (resp.ˆ︁𝒓 ) and do
not contribute anything (for an honest prover). To express the resulting transition, write 𝒓 ′1 for the
components inM𝑛/2 \ {𝑛/2− 1, 𝑛/2} and 𝒓 ′′1 for the components in {𝑛/2− 1, 𝑛/2} of 𝒓1, and write 𝒓 ′′2 for
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the components in {𝑛/2 − 1, 𝑛/2} of 𝒓2 (i.e. the components {𝑛 − 1, 𝑛} of 𝒓 ). Using a similar convention
for 𝒈 andˆ︁𝒓 , and taking into account this recursive structure ofM𝑛 , we can now write the transition as

⎛⎜⎜⎜⎝
𝑥 iddim(M𝑛/2 )−2 0 0

0 𝑥 id2 id2
𝒈′2 𝒈′′2 0
0 0 𝒈′′1

⎞⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
≕𝑴

⎛⎜⎝
𝒓 ′1
𝒓 ′′1
𝒓 ′′2

⎞⎟⎠ =

⎛⎜⎜⎜⎝
ˆ︁𝒓 ′ˆ︁𝒓 ′′
𝑢−1
𝑢1

⎞⎟⎟⎟⎠.

Since a surjective matrix 𝑴 maps the uniform distribution to the uniform distribution (Lemma B.4.4),
it suffices to prove that 𝑴 is surjective. By Gaussian elimination, it suffices to prove surjectivity of

𝑴 ′ =

(︃
𝑥 id2 id2
𝒈′′2 0
0 𝒈′′1

)︃
. Equivalently since the matrix is square (for 𝑛 ≥ 4 = 𝑘2), it suffices to prove it is

invertible or has full rank. It is easy to compute det(𝑴 ′) and find that it is a (non-zero) polynomial in 𝒈′
and 𝒈′′ of degree 2 (considering 𝑥 as a constant), hence by Schwartz–Zippel,13 except with probability
2/𝑝 we have det(𝑴 ′) ≠ 0. In our case, this is also easily derived by elementary row and column
transformations, namely

⎛⎜⎝
𝑥 id2 id2
𝒈′′2 0
0 𝒈′′1

⎞⎟⎠⇝ ⎛⎜⎝
𝑥 id2 id2
0 1

𝑥
𝒈′′2

0 𝒈′′1

⎞⎟⎠⇝ ⎛⎜⎝
id2 0
0 1

𝑥
𝒈′′2

0 𝒈′′1

⎞⎟⎠⇝ ⎛⎜⎝
id2 0
0 𝒈′′2
0 𝒈′′1

⎞⎟⎠
and hence it suffices show that 𝒈′′1 and 𝒈′′2 are linearly independent, which fails with probability at
most 2/𝑝 since 𝒈′′1 ,𝒈′′2 ∈ F2𝑝 are uniformly random.

We now argue by induction for any 𝑛 ≥ 22 to extend the claim to multiple rounds. Since 𝒈 is distributed
uniformly by assumption, so are 𝒈′1, 𝒈′′1 , 𝒈′′2 . Hence, 𝒈′′1 and 𝒈′′2 are linearly dependent with probability
at most 2/𝑝 . Moreover,ˆ︁𝒈 = 𝑥𝒈1 + 𝒈2 is again uniformly distributed. Thus, by induction, we can upper
bound the probability that a non-surjective 𝑴 is encountered by 2 log2(𝑛)/𝑝 over all recursions.

Lastly, for 𝑛 = 2, 𝒓 completely masks 𝒘 , so the response is uniform as well. Overall, this proves the
claim for 𝑘 = 2. For 𝑘 > 2, one argues similarly, but the analysis becomes more technical because 𝑴 is
larger (as it has a row for each [𝒖±ℓ ], ℓ = 1, . . . , 𝑘 − 1) and describing it gets more technical. See the
proof of Lemma B.4.5 in Appendix B.4 for details. □

Note that, if [𝒈] might be non-uniform or even adversarial, one should use full masking (i.e. Σstd).

Remark 4.3.24. For HVZK, we crucially rely on uniformity of [𝒈]. Indeed, if [𝒈] is adversarially chosen,
there is an explicit attack. For example, choose 𝑛 = 23, and 𝒈 so that 𝒈′′2 = 𝛼𝒈′′1 (where 𝒈′′𝑖 are defined as
in the proof of Lemma 4.3.23) and let ˆ︁𝒘 = 0. Then it can be shown that (ˆ︁𝒓 , 𝑢−1, 𝑢1) satisfies a non-trivial
relation which is efficiently verifiable given 𝛼 , namely, (1 + 𝛼) [𝒈′′1 ]ˆ︁𝒓 ′′ = [𝑢−1 + 𝛼𝑢1]. Thus, the terms
are not uniform.

Dealing with General [𝑨]. We briefly sketch how we deal with a general matrix [𝑨]. In Remark 4.3.24,
we saw an attack on HVZK for adversarial [𝑨] when using masking sets. An even simpler attack is if
[𝑨] has only 0-columns for all indices inM𝑛 , then [𝑨]𝒓 = [0], and the masking is obviously useless.
To avoid analyzing the structure of [𝑨], trying to make M𝑛 dynamically depend on [𝑨], we take a
slightly different approach.

13We exploit HVZK, i.e. that 𝑥 is stochastically independent of 𝒈′ and 𝒈′′, to apply Schwartz–Zippel.
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The core idea is, for each row 𝑖 of [𝑨], to run a proof for [𝒉]𝒓𝑖 in parallel and their linearly combined
responses are used as response. Here [𝒉] ∈ G1×𝑛 is a uniformly random commitment key and we
pick 𝒓𝑖

$← M𝑛 as in Protocol 4.3.22.14 However, this negatively affects soundness, as only a preimage
(𝒘, 𝒓1, . . . , 𝒓𝑚) with [𝑨𝑖 |𝒉]

(︁ 𝒘
𝒓𝑖

)︁
is extracted, in particular [𝑨]𝒘 ≠ [𝒕] may happen. To counteract this,

we use a commitment extension of [𝑨] (with [𝒈]), similar to LMPAbatch. Then, either a preimage𝒘 with
[𝑨]𝒘 = [𝒕] or a non-trivial kernel element for [𝒈 |𝒉] is found, which yields computational soundness.

The more more complicated nature and the (necessary) fall-back to computational soundness, with
the only upside of the HVZK-compilation being (potentially) more computationally efficient than the
naive masking of LMPAsimpleZK, lead us to conclude that this result is mostly of theoretical interest.
As the outlined approach is rather straightforward, yet its analysis is technical, provides no further
insight, and is required for our inner product argument construction in Section 4.4.4, it is relegated
to Appendix B.4.

4.3.6. Step 3: Adding (Arithmetic Circuit) Relations to the Witness

If the witness𝒘 for [𝑨]𝒘 = [𝒕] is committed to, e.g. if the first row of [𝑨] is a Pedersen commitment
CRS [𝒈], it is easily possible to make other (zero-knowledge) statements about 𝒘 by composition of
zero-knowledge protocols. Using, for example, Protocol QESACopy from Section 4.4, it is possible to
add constraints on the witness. Following slightly more fine-grained approach is often useful.

Remark 4.3.25. Often,𝒘 is much larger than the part which has to satisfy some constraints. It is efficiently
possible to “split” and “merge” Pedersen commitments i.e. [𝑐] = [𝑐1] + [𝑐2] where [𝑮] = [𝑮1 |𝑮2] and
[𝑐𝑖] = [𝑮𝑖]𝒘𝑖 . With this, one can split off the relevant portion𝒘1 of𝒘 into the commitment [𝑐1] and
prove additional relations about this portion only. Splitting is generally very cheap. We use these ideas
in our construction of an efficient proof of shuffle of ElGamal cipertexts, see Appendix B.2.1.

4.4. Arithmetic Circuit Satisfiability from Quadratic Equations

In this section, we describe quadratic gates, and relate them to rank 1 constraint systems (R1CS) and
arithmetic circuits (AC). Then, we construct a proof of satisfiability of a set of quadratic equations via a
(zero-knowledge) inner-product argument.

4.4.1. Quadratic Gates

The equations our scheme is able to prove are quadratic equations, i.e. given a witness𝒘 ∈ F𝑛𝑝 and a
matrix 𝚪 ∈ F𝑛×𝑛𝑝 we wish to prove

𝒘⊤𝚪𝒘 = 0.

We choose this description of quadratic equations for simplicity and uniformity of notation. In particular,
we assume without loss of generality, that the witness 𝒘 has the constant 1 as first component, i.e.
𝑤1 = 1. Our notation is similar to [EG14], which uses such notation for Groth–Sahai proofs [GS08].
Indeed, our arguments are essentially commit-and-prove systems [EG14]. Consider a general quadratic
equation 𝒙⊤𝚪𝒙 + 𝒂⊤𝒙 − 𝑡 = 0, with 𝒂, 𝒙 ∈ F𝑛𝑝 , 𝚪 ∈ F𝑛×𝑛𝑝 , 𝑡 ∈ F𝑝 with statement given by the constants
(𝒂, 𝚪, 𝑡). This can be encoded via𝒘 =

(︁ 1
𝒙

)︁
and suitably (re)defined 𝚪, namely𝒘⊤

(︁
𝑡 0
𝒂 𝚪

)︁
𝒘 = 0.

14 For better efficiency, we set all components of [𝒉] outsideM𝑛 to 0 and only pick those inM𝑛 uniformly.
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It is straightforward to encode arithmetic circuits (ACs) as systems of quadratic equations. Doing this
allows for ACs built from quadratic gates, i.e. gates whose input-output behaviour is described by a
quadratic equation.

4.4.2. Arithmetic Circuits and Rank 1 Constraint Systems

Rank 1 constraint systems (R1CS) are systems of equations of the form (𝒘⊤𝒂) (𝒃⊤𝒘) − 𝒄⊤𝒘 = 0, where
𝒂, 𝒃, 𝒄 ∈ F𝑛𝑝 . Evidently, these are special cases of quadratic equations with 𝚪 = 𝒂𝒃⊤ + 𝑒1𝒄⊤.15 Arithmetic
circuit satisfiability can also be encoded in R1CS. See [BCG+13] for details.

The gates testable by one R1CS equation allow a single “multiplication”. As we noted in Section 4.1.2,
quadratic equations are more flexible. For example, the inner product ⟨𝒙,𝒚⟩ is a single quadratic gate.
To the best of our knowledge, 𝑛 gates are necessary to encode this in R1CS (essentially one per 𝑥𝑖𝑦𝑖
multiplication). Even more extreme, multiplication of secret 𝑛 × 𝑛-matrices requires 𝑛2 quadratic
equations and no auxiliary variables. On the other hand, R1CS naively requires 𝑛3 equations and
auxiliary variables (though using better matrix multiplication algorithms improves this, e.g. Strassen’s
algorithm yields 𝑛log2 (8) ). Thus, in terms of the constraint system alone, QEs can be much more compact
than R1CS; but see Appendix B.8 for a discussion of the interplay between constraint system and proof
system w.r.t. R1CS and QEs.

Overall, note that quadratic gates enable new optimisations. Indeed, all “AC to R1CS” optimisations
(and more), are applicable for “AC to QE”.

4.4.3. The Verification Strategy

Verification that a system of quadratic gates is satisfied is easy given the witness 𝒘 , in our case the
wire assignments of the AC, and equations 𝚪𝔤 (the gate 𝔤 encoded as a matrix). One simply checks
𝒘⊤𝚪𝔤𝒘 = 0 for all 𝔤 ∈𝔊. By batching this can be sped up: Pick (𝑟𝔤)𝔤 $← 𝜒#𝔊 from a testing distribution.
Then compute 𝚪 ≔

∑︁
𝔤∈𝔊 𝑟𝔤𝚪𝔤 as the “batched statement”. Finally, check if𝒘⊤𝚪𝒘 = 0.

We run this strategy in a commit-then-prove manner. First, we commit to the witness𝒘 . Then we let
the verifier pick testing randomness (𝑟𝔤)𝔤 and we prove that 𝒘⊤𝚪𝒘 = 0 where 𝚪 ≔

∑︁
𝔤∈𝔊 𝑟𝔤𝚪𝔤 is the

“batched statement”. Note that𝒘⊤𝚪𝒘 = ⟨𝒘, 𝚪𝒘⟩ is an inner product. Hence, we require a zero-knowledge
inner-product argument.

For technical reasons, we cannot generate a commitment to 𝚪𝒘 efficiently (prior to knowing 𝚪).16
Therefore, the prover first commits to 𝒙 = 𝒘 as [𝑐𝒙] = Comck1 (𝒘). Then it obtains 𝚪 and commits to
𝒚 = 𝚪𝒘 as [𝑐𝒚] = Comck2 (𝚪𝒘). Then the prover carries out the inner product argument. It must also
prove that the commitments [𝑐𝒙] and [𝑐𝒚] open to values 𝒙 = 𝒘 and𝒚 = 𝚪𝒘 as promised. Again, we use
(linear) batching to shorten the proof for 𝒚 = 𝚪𝒙 . Namely, to check 𝒚 = 𝚪𝒙 , the verifier picks random
𝒔 ← 𝜒𝑛 (after receiving [𝑐𝒙], [𝑐𝒚]) and the prover proves 0 = ⟨𝚪𝒙 −𝒚, 𝒔⟩. This batch-verification is
𝑛-special sound.

15 In our context, the name “R1CS” may be misleading, since 𝚪 can have rank 2, i.e. the rank of 𝚪 is ≤ 2 for R1CS (and arbitrary
for general quadratic equations). Nevertheless, we follow this standard naming convention.

16 If [𝒈] is a Pedersen commitment key and [𝑐] = [𝒈]𝒘 , then [𝒉] = [𝒈]𝚪−1 is a Pedersen commitment keywhere [𝑐] = [𝒉] (𝚪𝒘).
We do not use this for various reasons, in particular, since computing 𝚪

−1 is expensive.
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Instead of running two inner product arguments (for ⟨𝚪𝒙 −𝒚, 𝒔⟩ = 0 and ⟨𝒙,𝒚⟩ = 0) we immediately
batch verify again: The verifier picks randomness 𝛼 and the prover proves knowledge of openings 𝒙,𝒚
such that,

⟨𝒙 − 𝛼𝒔,𝒚 + 𝛼𝚪⊤𝒔⟩ = ⟨𝒙,𝒚⟩ + 𝛼
(︁
⟨𝒙, 𝚪⊤𝒔⟩ − ⟨𝒔,𝒚⟩

)︁
− 𝛼2⟨𝒔, 𝚪⊤𝒔⟩

= ⟨𝒙,𝒚⟩ + 𝛼 ⟨𝚪𝒙 −𝒚, 𝒔⟩ − 𝛼2⟨𝒔, 𝚪⊤𝒔⟩
!
= −𝛼2⟨𝒔, 𝚪⊤𝒔⟩⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞

≕𝑡

(4.4.1)

where 𝑡 is fixed by the random choices of the verifier. For fixed 𝒙,𝒚, 𝚪, 𝒔, this is a degree 2 polynomial,
and hence this batch-verification is 3-special sound. the lemma of Schwartz–Zippel can be applied
to the polynomial in 𝛼 . Thus, the overall strategy is (special) sound. To instantiate it, we need a
zero-knowledge inner product argument.

4.4.4. Zero-Knowledge Inner Product Argument

Now, we show how to construct a zero-knowledge inner product argument (IPA). We first recall
[BCC+16; BBB+18], from a high level. We identify [BBB+18] as a linear combination of protocols. We
achieve HVZK similar to Protocol 4.3.22 by masking the witness, but we also exploit the redundancy
(or kernel) guideline. Addition of zero-knowledge adds a single round, where one group element and
one challenge are sent. (Note that𝑚 = 1 now.) For technical reasons we have a base case at 𝑛 = 8 (for
𝑘 = 2). In practice, this is hardly worth mentioning.

4.4.4.1. Inner Product Argument (IPA)

First, we describe the (non-zero-knowledge) inner product argument following [BCC+16; BBB+18]. It
will also be evident how to extend [BBB+18] to 𝑘 > 2. Since 𝑘 = 2 minimises communication, we only
mention this in passing.

Our setting is as follows: We have a CRS crs = ( [𝒈′], [𝒈′′], [𝑄]) for which finding a non-trivial kernel
element of [𝒈′,𝒈′′, 𝑄] ∈ G2𝑛+1 is hard. In other words, these are three independent (or one large
tripartite) Pedersen commitment keys.

Naively, one proves knowledge of openings of 𝑐′𝒘 and 𝑐′′𝒘 with ⟨𝒘 ′,𝒘 ′′⟩ = 𝑡 . The idea and argument(s)
in Section 4.3.5, in particular Protocol 4.3.22, allow to recursively shrink our statement. After one
recursion step, we obtain ⟨ˆ︁𝒘 ′,ˆ︁𝒘 ′′⟩ =ˆ︁𝑡 . The prover sends terms 𝑣±1 = ⟨𝒘 ′𝑖 ,𝒘 ′′𝑗 ⟩ (for 𝑗 − 𝑖 = ±1), so that
the verifier can computeˆ︁𝑡 , in analogy to [𝑢±1] in Section 4.3.5,

Let (𝒙,𝒚, 𝒛) $← ˜︁𝜒mon be challenges from the generalized testing distribution Definition 4.3.16 (as in
Protocols 4.3.18 and B.4.1). A naive linear combination of Protocol LMPAnoZK for 𝒘 ′ and 𝒘 ′′ does
not work well. Namely, we would getˆ︁𝑡 = ⟨ˆ︁𝒘 ′,ˆ︁𝒘 ′′⟩ = ⟨𝒙⊤�⃗� ′, 𝒙⊤�⃗� ′′⟩, but there are no compatibility
guarantees for this expression, and indeed for 𝒙 = (1, 𝜉), 𝒚 = (𝜉, 1), we concretely find

⟨ˆ︁𝒘 ′,ˆ︁𝒘 ′′⟩ = ⟨𝒘 ′1,𝒘 ′′1 ⟩ + 𝜉 (⟨𝒘 ′1,𝒘 ′′2 ⟩ + ⟨𝒘 ′2,𝒘 ′′1 ⟩) + 𝜉2⟨𝒘 ′2,𝒘 ′′2 ⟩.
In analogy to [𝑢0] in LMPAnoZK, we want that the term 𝑡 = ⟨𝒘 ′1,𝒘 ′′1 ⟩ + ⟨𝒘 ′2,𝒘 ′′2 ⟩ appears (perhaps scaled
by 𝜉) and is preserved. Instead, the “mixed terms” are preserved this way. Fortunately, we solved this
problem in Section 4.3.5 already. The solution is to use ⟨𝒙⊤𝒘 ′,𝒚⊤𝒘 ′′⟩ Thus, we find

⟨𝒙⊤𝒘 ′,𝒚⊤𝒘 ′′⟩ = 𝜉 ⟨𝒘 ′,𝒘 ′′⟩ + ⟨𝒘 ′1,𝒘 ′′2 ⟩ + 𝜉2⟨𝒘 ′2,𝒘 ′′1 ⟩
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Therefore, we run the protocol for𝒘 ′ with challenge (𝒙,𝒚), and we run the protocol for𝒘 ′′ with flipped
challenge (𝒚, 𝒙). Now, as in Protocol LMPAnoZK, it suffices to send 𝑣 𝑗−𝑖 ≔ ⟨𝒘 ′𝑖 ,𝒘 ′′2−𝑖⟩ (for 𝑖 = 1, 2).

The argument described above is a hybrid of [BCC+16] and [BBB+18]. For security, we need that
“commitment merging” (see Remark 4.3.25), which the linear combination of protocols induces, still
is binding. To obtain [BBB+18], we simply commit to 𝑣ℓ as well (using [𝑄]), and send the combined
commitment, i.e. apply again a linear combination. This “merged” commitment key is now [𝒈′,𝒈′′, 𝑄].
Thus instead of sending two messages thrice (namely [𝑢′±1], [𝑢′′∓1], [𝑣∓1𝑄]), we only send the two
“merged commitments” [𝑢±1] = [𝑢′±1] + [𝑢′′∓1] + [𝑣∓1𝑄]. Unlike [BBB+18], which uses 𝒙 = (𝜉−1, 𝜉) we
prefer 𝒙 = (1, 𝜉) since exponentiation with 1 is free.

Protocol 4.4.1 (IPAnoZK). The following is an inner product argument for relation

RIPA = {(([𝑐], 𝑡), (𝒘 ′,𝒘 ′′)) ∈ F𝑛𝑝 | [𝑐] = [𝒈′]𝒘 ′ + [𝒈′′]𝒘 ′′ + 𝑡 [𝑄] ∧ ⟨𝒘 ′,𝒘 ′′⟩ = 𝑡}.

Let 𝜒 (𝛽≠0) be a testing distribution, and let ˜︁𝜒mon
2𝑘−1 be the generalized testing distribution from Defini-

tion 4.3.16, i.e. we have 𝒛 $← ˜︁𝜒mon
2𝑘−1 (with 𝒛 indexed from −𝑘 to 𝑘) together with 𝒙,𝒚 such that 𝑧 𝑗−𝑖 = 𝑥𝑖𝑦 𝑗 .

Common input is crs = ( [𝒈′,𝒈′′, 𝑄]) ∈ G1×𝑛 × G1×𝑛 × G and the statement ( [𝑐], 𝑡) We assume 𝑛 = 𝑘𝑑 .
The prover’s witness is (𝒘 ′,𝒘 ′′) such that (( [𝑐], 𝑡), (𝒘 ′,𝒘 ′′)) ∈ RIPA.

• V→ P: (Step 0: “Fixing” 𝑡 .) Pick and send 𝛼 $← 𝜒 (𝛽≠0) . Both sides set [𝑄] ≔ 𝛼−1 [𝑄]. Then they
set [𝑐] ≔ ( [𝑐] − 𝛼𝑡 [𝑄]) + 𝑡 [𝑄].17

Recursive step. Suppose 𝑛 = 𝑘𝑑 > 1.

• P → V: Compute [𝒖′ℓ ] =
∑︁
𝑖− 𝑗=ℓ [𝒈′𝑖 ]𝒘 ′𝑗 , where [𝒈′𝑗 ] and [𝒘 ′𝑗 ] are as usual (i.e. split [𝒈′], [𝒘 ′]

into 𝑘 equal-size pieces). Compute the respective [𝒖′′ℓ ]. Let 𝑣ℓ ≔
∑︁
ℓ=𝑗−𝑖 ⟨𝒘 ′𝑖 ,𝒘 ′′𝑗 ⟩. Let [𝒖ℓ ] ≔

[𝒖′ℓ ] + [𝒖′′−ℓ ] + 𝑣−ℓ [𝑄]. Send [𝒖ℓ ] for ℓ = ±1, . . . ,±(𝑘 − 1).18

• V→ P: pick 𝒛 $← ˜︁𝜒2𝑘−1 with corresponding 𝒙,𝒚. Send (𝒙,𝒚, 𝒛).

• Both parties compute [ˆ︁𝒈′] = 𝒙⊤ [�⃗�′] = ∑︁
𝑥𝑖 [𝒈′𝑖 ] ∈ G1×𝑛/𝑘 and [ˆ︁𝒈′′] = 𝒚⊤ [�⃗�′′] ∈ G1×𝑛/𝑘 , and

[ˆ︁𝑐] = 𝒛⊤ [𝒖] = ∑︁
ℓ 𝒛ℓ [𝒖ℓ ] ∈ G as the new batched statement. Moreover, P computes ˆ︁𝒘 ′ = 𝒚⊤�⃗� ′

and ˆ︁𝒘 ′′ = 𝒙⊤�⃗� ′′. (Note the invariant:ˆ︁𝑡 = 𝒛⊤𝒗 =
∑︁𝑘−1
ℓ=−𝑘+1 𝑧ℓ𝑣ℓ = ⟨ˆ︁𝒘 ′,ˆ︁𝒘 ′′⟩.)

Skipping Step 0, recursively continue with 𝑛 ← 𝑛/𝑘 ,𝒘 ′ ← ˆ︁𝒘 ′,𝒘 ′′ ← ˆ︁𝒘 ′′, [𝑐] ← [ˆ︁𝑐], [𝒈′] ← [ˆ︁𝒈′],
[𝒈′′] ← [ˆ︁𝒈′′].
Base case. Suppose 𝑛 = 1.

• P→ V: Send𝒘 ′,𝒘 ′′.

• V: Let 𝑡 ≔ ⟨𝒘 ′,𝒘 ′′⟩ and test if [𝑐] ?
= [𝒈′]𝒘 ′ + [𝒈′′]𝒘 ′′ + 𝑡 [𝑄].

See Appendix B.7 for a sketch of this protocol.

The above argument is correct by inspection. In Step 0, we “enforce” value 𝑡 in the [𝑄]-component of
the commitment. Hence, 𝑡 is not explicit in any further computation, but [𝑐] satisfies the invariant that
it is a commitment to𝒘 ′,𝒘 ′′, 𝑡 where 𝑡 = ⟨𝒘 ′,𝒘 ′′⟩.

17 This changes the committed value 𝑠 in [𝑐] to 𝛼 (𝑠 − 𝑡) + 𝑡 under the new [𝑄].
18 Note that [𝒖0] is implicitly known to V (as [𝑐]).
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Lemma 4.4.2. Protocol IPAnoZK is (2, 2𝑘, . . . , 2𝑘)-special (relaxed) sound for finding a witness in RIPA or
a non-trivial element in the kernel of [𝒈′,𝒈′′, 𝑄]. Moreover, it is (1, 𝑘, . . . , 𝑘)-quick (2, 2𝑘, . . . , 2𝑘)-short
extractable for the same relation.

The proof is straightforward, and essentially the same as [BCC+16; BBB+18].

Proof sketch. First, we ignore Step 0, i.e. we treat 𝑡 as part of the prover’s witness and do not change
[𝑄] or [𝑐]. (This is the case in the recursive steps.)

Then, the proof of extraction is essentially the same as Lemma 4.3.19. More concretely: The base case is
extractable by definition. In each recursive step, we need at most 2𝑘 transcripts ˆ︁𝒘 ′𝑖 , ˆ︁𝒘 ′′𝑖 ,ˆ︁𝑡𝑖 , 𝒛𝑖 (with fixed
[𝑢ℓ ]) which we arrange into a matrix equation analogous to the proof for Lemma 4.3.19. By computing
𝒘 ′,𝒘 ′′ and 𝑡 from 𝑘 transcripts by using 𝒀 −1 (resp. 𝑿−1) we get quick-extraction, unless 𝑡 ≠ ⟨𝒘 ′,𝒘 ′′⟩.

If quick-extraction fails, there are two possibilities. Either the sent values [𝑢±ℓ ] (and [𝑢0]) are incom-
patible with (𝒘 ′,𝒘 ′′, 𝑡), or 𝑡 ≠ ⟨𝒘 ′,𝒘 ′′⟩. In the former case, from 2𝑘 transcripts the binding property
is broken, i.e. we must then find a non-trivial element in ker( [𝒈′,𝒈′′, 𝛼𝑄old]), as in Lemma 4.3.19,
and (since 𝛼 ≠ 0) we find one in ker( [𝒈′,𝒈′′, 𝑄old]) (where we write [𝑄old] to denote [𝑄] before it
is overwriting in Step 0). Let us now consider the latter case, i.e. 𝑡 ≠ ⟨𝒘 ′,𝒘 ′′⟩ but all messages are
consistent with (𝒘 ′,𝒘 ′′, 𝑡). Since we have 2𝑘 transcripts which are consistent with (𝒘 ′,𝒘 ′′, 𝑡), we find

⟨ˆ︁𝒘 ′,ˆ︁𝒘 ′′⟩ = ⟨𝒙⊤𝒘 ′,𝒚⊤𝒘 ′′⟩ = 𝑘+1∑︂
ℓ=𝑘−1

∑︂
𝑗−𝑖=ℓ
⟨𝒘 ′𝑖 ,𝒘 ′′𝑗 ⟩𝑧ℓ =

∑︂
ℓ

𝑣ℓ𝑧ℓ

for all 2𝑘 challenges. This implies that 𝑡 = 𝑣0 = ⟨𝒘 ′,𝒘 ′′⟩, so the case 𝑡 ≠ ⟨𝒘 ′,𝒘 ′′⟩ cannot happen (unless
the binding property was broken, which did not happen by assumption).

Finally, let us consider Step 0. Given 2 transcripts with challenges 𝛼1 ≠ 𝛼2 and extracted witnesses
(from subtrees) 𝒘 ′, 𝒘 ′′, and 𝑠 ≔ ⟨𝒘 ′,𝒘 ′′⟩. These witnesses are identical for both subtrees, or we
find a non-trival kernel element. But then the recomputation of [𝑐] and [𝑄] in Step 0 implies that
𝛼1(𝑠 − 𝑡) = 𝛼2(𝑠 − 𝑡), which implies 𝑠 − 𝑡 = 0 as claimed. □

4.4.4.2. Adding Zero-Knowledge

Making the inner-product argument zero-knowledge can be done in many ways. To be competetive
with Bulletproofs [BBB+18], which uses the IPA without zero-knowledge, we directly mask the witness
(as in Protocol 4.3.22, unlike LMPAZK). This is problematic, since the scalar product is non-linear.
Consequently, our (initial) approach only works under some (mild) constraints.

As mentioned above, the problem with using masking randomness and proving ⟨𝛽𝒘 ′ + 𝒓 ′, 𝛽𝒘 ′′ + 𝒓 ′′⟩ is
the non-linearity:

⟨𝛽𝒘 ′ + 𝒓 ′, 𝛽𝒘 ′′ + 𝒓 ′′⟩ = ⟨𝒓 ′, 𝒓 ′′⟩ + 𝛽 (⟨𝒓 ′,𝒘 ′′⟩ + ⟨𝒘 ′, 𝒓 ′′⟩) + 𝛽2⟨𝒘 ′,𝒘 ′′⟩

Thus, to linearize we need to send ⟨𝒓 ′, 𝒓 ′′⟩ and𝑚 = ⟨𝒓 ′,𝒘 ′′⟩ + ⟨𝒘 ′, 𝒓 ′′⟩, But, we also need to show that
⟨𝒓 ′,𝒘 ′′⟩ + ⟨𝒘 ′, 𝒓 ′′⟩ does not reveal anything about 𝒘 ′ or 𝒘 ′′. Instead of doing this directly, we pick
randomness with the “kernel guideline” in mind, namely

• 𝒓 ′ is chosen freely, and

• 𝒓 ′′ is chosen subject to ⟨𝒓 ′, 𝒓 ′′⟩ = 0 and ⟨𝒘 ′, 𝒓 ′′⟩ + ⟨𝒓 ′,𝒘 ′′⟩ = 0.
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In other words, we pick randomness which does not induce any errors. Thus, we do not need to
send anything besides [𝑐𝒓 ] = [𝒈′]𝒓 ′ + [𝒈′′]𝒓 ′′ to the verifier. Unfortunately, due to the constraints
dependency on the witness, the protocol is not zero-knowledge in the usual sense, but only, what we
call, almost statistical zero-knowledge.

Now, we outline our almost zero-knowledge argument, using an augmented masking setM+𝑛 which is
defined later.

Protocol 4.4.3 (IPAalmZK). The following is an inner product argument for RIPA as in Protocol 4.4.1
(IPAnoZK).

• P → V: Pick 𝒓 ′ $← M+𝑛 . Pick 𝒓 ′′ uniformly from M+𝑛 subject to ⟨𝒓 ′, 𝒓 ′′⟩ = 0 and ⟨𝒘 ′, 𝒓 ′′⟩ =
−⟨𝒓 ′,𝒘 ′′⟩, that is, uniformly from {𝒗 ∈ M+𝑛 | ⟨𝒓 ′, 𝒓 ′′⟩ = 0 ∧ ⟨𝒘 ′, 𝒓 ′′⟩ = −⟨𝒓 ′,𝒘 ′′⟩}. Compute
[𝑐𝒓 ] ≔ [𝒈′]𝒓 ′ + [𝒈′′]𝒓 ′′. Send [𝑐𝒓 ].

• V→ P: Pick and send 𝛽 $← 𝜒 (𝛽 ) .

• P ↔ V: Engage in Protocol IPAnoZK for ⟨𝛽𝒘 ′ + 𝒓 ′, 𝛽𝒘 ′′ + 𝒓 ′′⟩ = 𝛽2𝑡 (with commitment [𝑐] =
[𝑐𝒓 ] + 𝛽 [𝑐𝒘] + 𝛽2𝑡 [𝑄]). Verifier (and prover) use 𝑡 (and [𝑐𝒘]) from the statement to compute [𝑐].

See Appendix B.7 for a sketch of this protocol.

Correctness follows by inspection. Soundness follows essentially from Lemma 4.4.2 and Lemma 4.3.2.

Corollary 4.4.4. Protocol 4.4.3 is (2, 2, 2𝑘, . . . , 2𝑘)-special (relaxed) sound for finding a witness for RIPA

or a non-trivial element in the kernel of [𝒈′,𝒈′′, 𝑄]. Moreover, it has (2, 1, 𝑘, . . . , 𝑘)-quick (2, 2, 2𝑘, . . . , 2𝑘)-
short extractability.

Showing zero-knowledge is more contrived. As for LMPAZK in Lemma B.4.5, we want to show that the
prover’s messages are uniformly random. Unfortunately, the constraints which must be satisfied depend
on the witness. Thus, an adversarially chosen witness may be a problem. Hence, we require certain
properties, which automatically hold when IPAalmZK is used with suitably “randomised” witnesses, e.g.
commitments.

Definition 4.4.5. Let 𝑘 be fixed and 𝑛 ≥ 4𝑘 . DefineM+𝑛 ≔ M𝑛 ∪̇ {𝑛/𝑘 + 1, 𝑛/𝑘 + 2}.

We introduceM+𝑛 because satisfying the kernel constraints “consumes two pieces of randomness” in 𝒓 ′′.
We compensate this inM+𝑛 . Note that for this, {𝑛/𝑘 + 1, 𝑛/𝑘 + 2} must be disjoint fromM𝑛 , which is
guaranteed by 𝑛 ≥ 4𝑘 . For the sake of simplicity, we will from now on stick to 𝑘 = 2. But it should be
evident how to appropriately generalise, cf. Appendix B.4.

Lemma 4.4.6. Let crs = ( [𝒈′,𝒈′′, 𝑄]) be uniformly random and as in Protocol 4.4.3 (IPAalmZK) and 𝑘 = 2.
Suppose that 𝑛 ≥ 4𝑘 and letM+𝑛 be as in Definition 4.4.5. Suppose𝒘 ′ is chosen such that some component
of 𝑤 ′1, 𝑤

′
2, 𝑤

′
𝑛−1, or 𝑤

′
𝑛 is uniformly random independent of [𝒈′′]. Then IPAalmZK is 𝜀-statistical HVZK

with 𝜀 = 2/𝑝 + 2(𝑘 − 1) log2(𝑛)/𝑝 for such witness distributions.
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More generally, we have the following: For arbitrary but fixed 𝒘 ′, 𝒘 ′′, 𝑥1, 𝑥2, consider the combined
transition and constraint matrix

⎛⎜⎜⎜⎜⎜⎝
𝑥1 id𝑛/2 𝑥2 id𝑛/2
𝒈′′2 0
0 𝒈′′1

𝒘 ′⊤1 𝒘 ′⊤2
𝒓 ′⊤1 𝒓 ′⊤2

⎞⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
≕˜︁𝑴 ′′

(︃
𝒓 ′′1
𝒓 ′′2

)︃
=

⎛⎜⎜⎜⎜⎜⎝
ˆ︁𝒓 ′
𝑢′′−1
𝑢′′+1

−⟨𝒓 ′,𝒘 ′′⟩
0

⎞⎟⎟⎟⎟⎟⎠
.

where 𝒓 ′ $← M+𝑛 . Let 𝑴 ′′ be defined by ˜︁𝑴 ′′ but restricted to non-zero components of 𝒓 ′′ resp.ˆ︁𝒓 ′′, i.e. to
columns in M+𝑛 resp. in to rows in M𝑛/2 in upper block of ˜︁𝑴 ′′. Let 𝑪 ′′ be 𝑴 ′′ except that the last row
(𝒓 ′⊤1 , 𝒓⊤) of 𝑴 ′′ is removed. Let A be an unbounded HVZK adversary which picks the witnesses (𝒘 ′,𝒘 ′′)
(given ( [𝒈′,𝒈′′, 𝑄])). Let 𝛿 be an upper bound on the probability that A chooses (𝒘 ′,𝒘 ′′) such that 𝑪 ′′ is
not surjective. Then the advantage against HVZK ofA is at most 𝛿 + (1 + 2(𝑘 − 1) log(𝑛))/𝑝 .

The idea and proof of Lemma 4.4.6 is very similar to Lemma 4.3.23, and we argue via surjectivity of
transition matrices The main difference is the first recursive step, whereM+𝑛 and the constraints on
𝒓 ′′ play a role. After that, the argument of Lemma 4.3.23 applies directly since the transition matrix
for 𝒓 ′′ (and 𝑢′′±1) are identical to those in Lemma 4.3.23. Generalisations of this result to 𝑘 ≥ 2 are left
to the reader. For simplicity, in the proof, we exploit that 𝒓 ′′ alone is sufficient to ensure all [𝑢ℓ ] are
randomised (until 𝑛 = 𝑘), and then we use thatM𝑘 = {1, . . . , 𝑘}, i.e. 𝒓 ′ resp. 𝒓 ′′ completely mask the
witness at that point. The full proof is in Appendix B.3

4.4.5. Quadratic Equation Satisfiability

We can finally instantiate our sketch of an argument system for satisfiability of a system of quadratic
equations from Section 4.4.3. It is a commit-and-prove system as follows. The prover commits to the
solution 𝒘 . Then 𝚪 is fixed and ⟨𝒘, 𝚪𝒘⟩ = 0 shown to hold. The commitment scheme pads 𝒘 ∈ F𝑛−2𝑝

with randomness and extends 𝚪 in a suitable way. Intuition for soundness is given in Section 4.4.3.

Protocol 4.4.7 (QESAZK). Let {𝚪𝑖 ∈ F(𝑛−2)×(𝑛−2)𝑝 | 𝑖 = 1, . . . , 𝑁 } be a system of quadratic equations.
Suppose 𝑁 ≥ 2. Let𝒘 ∈ F𝑛−2𝑝 be a solution, i.e.𝒘⊤𝚪𝑖𝒘 = 0 for all 𝑖 . We assume that the first component
𝑤1 of𝒘 is 1.

Let crs = [𝒈′,𝒈′′, 𝑄], ˜︁𝜒2𝑘−1, 𝜒 (𝛽≠0) and 𝑛 ≥ 4𝑘 as in Protocol 4.4.3, and M+𝑛 as in Lemma 4.4.6. Let
𝒙 ← 𝜒𝑁 be a testing distribution with 𝑥1 = 1 and 𝑥2 ≠ 0 for all 𝒙 .19 Let 𝒚 ← 𝜒𝑛+1 be a testing
distribution with 𝑦1 = 1 always. The following is a protocol for proving

K𝒘 ∈ F𝑛−2𝑝 : ∀𝑖 : 𝒘⊤𝚪𝑖𝒘 = 0 ∧ 𝑤1 = 1

where crs and {𝚪𝑖}𝑖 are common inputs and the prover’s witness is𝒘 satisfying {𝚪𝑖} and𝑤1 = 1.

1. P→ V (Commitment to𝒘 ′): Pick 𝒓 ′ $← F2𝑝 . Let the “extended” witness be𝒘 ′ ≔
(︁ 𝒘
𝒓 ′

)︁
and compute

the commitment [𝑐′𝒘] = [𝒈′]𝒘 ′. Send [𝑐′𝒘].

2. V→ P (Batch equations and fix𝑤1 to 1):

19 Restrictions on 𝜒𝑁 are merely to simplify protocol description and proofs.
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• Pick and send 𝒙 $← 𝜒𝑁 . Both parties compute 𝚪 ≔
∑︁
𝑥𝑖𝚪𝑖 ∈ F(𝑛−2)×(𝑛−2)𝑝 .

• Both parties let 𝛽 ≔ 𝑥2 and do: Redefine [𝑔′1] ≔ 𝛽−1 [𝑔′1]. Redefine [𝑐′𝒘] ← [𝑐′𝒘]−(𝛽−1) [𝑔′1]
(with the new [𝑔′1]).

3. P → V: Let 𝒓 ′′ = 𝑹𝒓 ′ where 𝑹 =
(︁ 0 −1
1 0

)︁
is a rotation by 90 degrees. Let 𝒘 ′′ =

(︁
𝚪𝒘
𝒓 ′′

)︁
. Compute

and send [𝑐′′𝒘] = [𝒈′′]𝒘 ′′.

4. V→ P: Pick (1, 𝒔, 𝒔)⊤ $← 𝜒𝑛+1 where 𝒔 ∈ F𝑛−2𝑝 , 𝒔 ∈ F2𝑝 . Let 𝒔′ = (𝒔, 𝒔)⊤ and send 𝒔′.

5. P ↔ V: Both parties let 𝚪′ =
(︁
𝚪 0
0 𝑹

)︁
∈ F𝑛×𝑛𝑝 where 𝑹 is as in Step 1. Then they engage in

Protocol IPAalmZK for ⟨𝒘 ′ − 𝒔′,𝒘 ′′ + 𝚪′⊤𝒔′⟩ = 𝑡 with 𝑡 = −⟨𝒔, 𝚪⊤𝒔⟩, and commitment [𝑐] = ( [𝑐′𝒘] −
[𝒈′]𝒔′) + ([𝑐′′𝒘] + [𝒈′′]𝚪′⊤𝒔′) and the modified [𝒈′] (and unmodified [𝒈′′], [𝑄]) as commitment
keys.

See Appendix B.7 for a sketch of this protocol.

Remark 4.4.8. It is not hard to see that the prover never needs to compute [𝑐] = ( [𝑐′𝒘] − [𝒈′]𝒔′) +
([𝑐′′𝒘] + [𝒈′′]𝚪′⊤𝒔′). (In general, P does not need [𝒖0].) While the verifier has to check [𝑐], using lazy
evaluation and optimisations from [BBB+18], this hardly affects its runtime. All in all, dealing with 𝒔′

is almost free.

Remark 4.4.9. Compared to the idea derived in Section 4.4.3, the challenge 𝛼 does not appear in
Protocol 4.4.7. The reason is simple: Every appearance of 𝛼𝒔 in Section 4.4.3 corresponds to an
appearance of 𝒔′ in Protocol 4.4.7, i.e. 𝛼 is absorbed into 𝒔, and thus turns out to be superfluous.

Lemma 4.4.10. Protocol QESAZK has perfect correctness.

Using ⟨
(︁
𝒖′
𝒓 ′

)︁
,
(︁
𝒖′′
𝒓 ′′

)︁
⟩ = ⟨𝒖′, 𝒖′′⟩ + ⟨𝒓 ′, 𝒓 ′′⟩ and ⟨𝒓 , 𝑹𝒓⟩ = 0 for all 𝒓 ∈ F2𝑝 , correctness follows by a

straightforward check.

Proof. The verifier only rejects an honest prover if the IPAalmZK rejects, and IPAalmZK is perfectly correct.
Hence, it suffices to show that the statment which IPAalmZK proves, i.e. ⟨𝒘 ′ − 𝒔′,𝒘 ′′ + 𝚪′⊤𝒔′⟩ = 𝑡 , for
𝑡 = −⟨𝒔, 𝚪⊤𝒔⟩, always holds (for honest prover). Let 𝒘 ′ =

(︁ 𝒘
𝒓 ′

)︁
, 𝒘 ′′ =

(︁
𝚪𝒘
𝑹𝒓 ′

)︁
as in the protocol and let

𝒔′ =
(︂
𝒔
𝒔

)︂
with 𝒔, 𝒔 as in QESAZK. By construction, ⟨𝒙, 𝑹𝒙⟩ = 0 for any 𝒙 ∈ F2𝑝 . With this, we find

⟨𝒘 ′ − 𝒔′,𝒘 ′′ + 𝚪′⊤𝒔′⟩ = ⟨𝒘 − 𝒔, 𝚪𝒘 + 𝚪⊤𝒔⟩ + ⟨𝒓 ′ − 𝒔, 𝑹𝒓 ′ + 𝑹⊤𝒔⟩
= −⟨𝒔, 𝚪⊤𝒔⟩

because from 𝑹⊤ = −𝑹 and ⟨𝒘, 𝚪𝒘⟩ = 0 we have

⟨𝒓 ′ − 𝒔, 𝑹𝒓 ′ + 𝑹⊤𝒔⟩ = ⟨𝒓 ′ − 𝒔, 𝑹 (𝒓 ′ − 𝒔)⟩ = 0
and ⟨𝒘 − 𝒔, 𝚪𝒘 + 𝚪⊤𝒔⟩ = ⟨𝒘, 𝚪𝒘⟩⏞ˉ̄⏟⏟ˉ̄⏞

=0

+ (⟨𝒘, 𝚪⊤𝒔⟩ − ⟨𝒔, 𝚪𝒘⟩)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
=0

−⟨𝒔, 𝚪⊤𝒔⟩

and thus
⟨𝒘 ′ − 𝒔′,𝒘 ′′ + 𝚪′⊤𝒔′⟩ = −⟨𝒔, 𝚪⊤𝒔⟩. □

Lemma 4.4.11. Protocol QESAZK is (𝑁,𝑛 + 1, 2, 2, 2𝑘, . . . , 2𝑘)-special sound for relaxed soundness re-
lation of finding a witness in RIPA or a non-trivial kernel element of [𝒈′,𝒈′′, 𝑄]. Moreover, it inherits
(1, 1, 2, 2, 𝑘, . . . , 𝑘)-quick (𝑁,𝑛 + 1, 2, 2, 2𝑘, . . . , 2𝑘)-short extractability.
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Proof. First of all, note that the randomisation of [𝑔′1] to fix𝑤1 to 1 is as in Lemma 4.4.2. In particular,
non-trivial kernel elements in [𝒈′new] yield such in [𝒈′old]. Therefore, it suffices to only consider
[𝒈′] = [𝒈′new] in the following.

Arguing the claimed extractability is straightforward. In the subprotocol of IPAalmZK, we have the
claimed short-circuit extraction by Corollary 4.4.4. From this, we (dynamically) find for each the 𝑖-th

subtree witnesses𝒘 ′𝑖 ,𝒘 ′′𝑖 , 𝑡𝑖 with [𝒈′,𝒈′′, 𝑄]
(︃
𝒘′𝑖
𝒘′′𝑖
𝑡𝑖

)︃
. If these are not kernel elements of [𝒈′,𝒈′′, 𝑄], they

satisfy RIPA, and short-circuit-extraction holds. If we ever encounter a (𝒘 ′𝑖 ,𝒘 ′′𝑖 , 𝑡𝑖) ≠ (𝒘 ′𝑗 ,𝒘 ′′𝑗 , 𝑡 𝑗 ) for
𝑖 ≠ 𝑗 , this yields a non-trivial kernel element, hence short-circuits. Thus, in the following, w.l.o.g. we
assume that𝒘 ′ = 𝒘 ′𝑖 ,𝒘 ′′ = 𝒘 ′′𝑖 , 𝑡 = 𝑡𝑖 = ⟨𝒔, 𝚪

⊤𝒔
𝑖
⟩ for all 𝑖 .

We’re left with a (𝑁,𝑛 + 1)-tree of transcripts. We first deal with an (𝑛 + 1)-subtree of the penultimate
challenge. We have with following properties: The witness on each node in (layer 2) is the same fixed
(𝒘 ′,𝒘 ′′) which satisfies

⟨𝒘 ′ − 𝒔′,𝒘 ′′ + 𝚪′⊤𝒔′⟩ = −⟨𝒔, 𝚪⊤𝒔⟩

where 𝒔′ =
(︂
𝒔
𝒔

)︂
denotes the respective challenge. We find

0 = ⟨𝒘 ′ − 𝒔′,𝒘 ′′ + 𝚪′⊤𝒔′⟩ + ⟨𝒔′, 𝚪⊤𝒔′⟩
= ⟨𝒘 ′,𝒘 ′′⟩ + ⟨𝚪′𝒘 ′ −𝒘 ′′, 𝒔′⟩

= (1, 𝒔′⊤)
(︃
⟨𝒘 ′,𝒘 ′′⟩
𝚪
′𝒘 ′ −𝒘 ′′

)︃
Given 𝑛 + 1 accepting transcripts for linearly independent challenges

(︁ 1
𝒔′

)︁
, we find that ⟨𝒘 ′,𝒘 ′′⟩ = 0

and 𝚪
′𝒘 ′ −𝒘 ′′ = 0. Now, let𝒘 ′ =

(︁
𝒖′
𝒓 ′

)︁
with 𝒖′ in F𝑛−2𝑝 and 𝒓 ′ ∈ F2𝑝 , and likewise𝒘 ′′ =

(︁
𝒖′′
𝒓 ′′

)︁
. We find

(using the block structure of 𝚪′) that

𝒓 ′′ = 𝑹𝒓 ′ and 𝒖′′ = 𝚪𝒖′.

Thus, ⟨𝒓 ′, 𝒓 ′′⟩ and we get
0 = ⟨𝒘 ′,𝒘 ′′⟩ = ⟨𝒖′, 𝒖′′⟩ + ⟨𝒓 ′, 𝒓 ′′⟩⏞ˉ̄⏟⏟ˉ̄⏞

=0

.

Consequently,𝒘 ≔ 𝒖′ is a witness with𝒘⊤𝚪𝒘 = 0.

What’s left to show is that given 𝑁 transcripts (with linearly independent challenges), we must have
𝑤1 = 1 and a solution to {𝚪𝑖}𝑖 (or have found a non-trivial kernel element) The redefinition of [𝑔′1] is
equivalent to setting𝑤1 to𝑤1 ≔ 𝛽𝑤1 − (𝛽 − 1). Since, like𝒘 ′new, all𝒘 ′old must coincide (or a non-trivial
kernel element of [𝒈′new] is found, leading to short-circuit extraction). But clearly, under this condition
we get 𝑤1 = 1 if any pair 𝛽 ≠ 𝛽 ′ is in the transcripts. And since all 𝑁 challenges 𝒙 are linearly
independent and 𝛽 = 𝑥2, this must be the case.

Finally, we prove that 𝒘 satisfies {𝚪𝑖}𝑖 . (Again, we assume that 𝒘 is the same fixed one for all leafs,
otherwise, short-circuit extractions would give a non-trival kernel element already.) Consider the
vector 𝒆 ∈ F𝑁𝑝 defined by 𝑒 𝑗 ≔ 𝒘⊤𝚪 𝑗𝒘 . Write 𝚪 (𝑖 ) ≔

∑︁
𝑗 𝑥
(𝑖 )
𝑗
𝚪 𝑗 , where the superscript 𝑖 indicates the

𝑖-th transcript. Since all transcripts are valid, we know that𝒘⊤𝚪 (𝑖 )𝒘 = 0. We get

0 = 𝒘⊤𝚪 (𝑖 )𝒘 =
∑︂
𝑗

𝑥
(𝑖 )
𝑗
𝒘⊤𝚪 𝑗𝒘 = 𝒙 (𝑖 )𝒆.

Since all 𝒙 (𝑖 ) are linearly independent this implies 𝒆 = 0, i.e.𝒘 solves each equation. □
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If we use tensor-based testing distributions, as in Section 4.3.3.2 to improve soundness, we obtain
following stronger guarantee.

Corollary 4.4.12. If the testing distributions 𝜒𝑁 resp. 𝜒𝑛+1 are instantiated with a tensor-based distri-
butions (cf. Example 4.2.12 and Section 4.3.3.2), then we achieve ((1, . . . , 1), (1, . . . , 1), 2, 2, 𝑘, . . . , 𝑘)-quick
and ((2, . . . , 2), (2, . . . , 2), 2, 2, 2𝑘, . . . , 2𝑘)-short extractability.

In particular, suppose that 𝑘 = 2 (or 𝑘 = O(1) more generally) and 𝑛 is a power of 2 and 𝑁 ≈ 𝑛. Then by
Corollary 4.2.19 the maximal size of a short-circuit tree is ≈ 8𝑛 log(𝑛) (resp. O(𝑛 log2(𝑛))).

Corollary 4.4.12 follows from Lemma 4.4.11 by viewing tensor-based testing as multiple challenges,
completely analogous to the proof in Corollary 4.3.11.

Lemma 4.4.13. Protocol QESAZK is 𝜀-statistical HVZK for 𝜀 = 2/𝑝 + 2 log2(𝑛)/𝑝 .

For the proof of Lemma 4.4.13, we essentially establish that the conditions of Lemma 4.4.6 are met.
Thus, IPAalmZK is statistical HVZK, and consequently QESAZK is statistical HVZK as well.

Proof. First, observe that simulation by computation in reverse works for all steps before the subprotocol
call to IPAalmZK. Namely, the honest distributions of [𝑐′𝒘] and [𝑐′′𝒘] are jointly uniform, and given two
out of [𝑐′𝒘], [𝑐′′𝒘], [𝑐], the third is uniquely defined. Indeed, the simulator can even choose [𝑐′𝒘] and
[𝑐′′𝒘] uniformly and compute [𝑐] appropriately. Thus, this part of the simulation is perfect. Hence,
it suffices to show that the conditions of Lemma 4.4.6 are met to obtain the promised 𝜀-statistical
simulation. For this, observe that𝒘 ′ =

(︁ 𝒘
𝒓 ′

)︁
chooses 𝒓 ′ uniformly and independent of [𝒈′,𝒈′′, 𝑄]. Thus,

component 𝑛 (and 𝑛 − 1) of𝒘 ′ satisfies the requirement of Lemma 4.4.6 and the claim follows. □

4.4.6. Combining QESAZK with Other Proof Systems

As is, QESAZK can be used to commit-and-prove quadratic equations. However, oftentimes, one wishes
to prove statements about commitments which come from some other source (and do not include
auxiliary information necessary for a proof). For example, Bulletproofs [BBB+18] were specifically
designed for confidential transactions, where the commitments are input to the proof system. This
is not immediately feasible with QESAZK as is, because QESAZK is commit-and-prove only w.r.t. the
solution of the set of quadratic equations. So either the commitment includes the auxiliary information
(e.g. a bit decomposition for range proofs), or QESAZK is not directly applicable. Fortunately, applying
(the ideas of) QESAZK in such circumstances is not hard.

We consider following setting. There are commitment keys ˜︁ck (𝑖 ) for 𝑖 = 1, . . . , 𝑀 . Each commitment
key corresponds to a subset I𝑖 ⊆ {1, . . . , 𝑛} of the components of [𝒈′], where crs = ( [𝒈′,𝒈′′, 𝑄]) is the
commitment key of QESAZK. That is ˜︁ck (𝑖 ) ˆ︁= {[𝑔′𝑗 ]} 𝑗∈I𝑖 . Let I ≔ ∪𝑀𝑖=1I𝑖 be the set of all indices which
are part of some ˜︁ck (𝑖 ) . Note that #I𝑖 is the size of ˜︁ck (𝑖 ) . We assume the following: Every commitment
key ˜︁ck (𝑖 ) uses [𝑔′𝑛] (or [𝑔′𝑛−1]) as its randomness components. Moreover, 1 ∉ I𝑖 , because the index
1 ˆ︁= [𝑔′1] is reserved for the commitment to value 1 in QESAZK. A useful point of view is that ˜︁ck (𝑖 ) is a
commitment under [𝒈′] ∈ G𝑛 to a vector 𝒗 (𝑖 ) ∈ F𝑛𝑝 with

∀𝑖 ∈ {1, . . . , 𝑛}∀𝑗 ∉ I𝑖 : 𝑣 𝑗 = 0. (4.4.2)

We assume for simplicity that there is only one commitment per commitment key ˜︁ck (𝑖 ) . To model the
case of multiple commitments [𝑐1], . . . , [𝑐𝑀 ] for one key, e.g. all commitments are under ˜︁ck = ˜︁ck (1) , we
simply duplicate ˜︁ck , i.e. we rewrite this as [˜︁𝑐 (𝑖 ) ] = [𝑐𝑖], ˜︁ck (𝑖 ) = ˜︁ck .
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Example 4.4.14. In a typical range proof, with Pedersen committed value, we would have ˜︁ck (1) ˆ︁= [𝑔′2, 𝑔′𝑛],
where𝑀 = 1. We write ˜︁ck ≔ ˜︁ck (1) for simplicity. This means I = {2, 𝑛}.

Remark 4.4.15. Using the in𝑛 varying [𝑔′𝑛] in the commitment keys ˜︁ck (𝑖 ) is problematic and inconvenient.
Running the protocol for a smaller or larger instance, e.g. an instance of size 𝑛/2 or 2𝑛, leads to
incompatible requirements for randomizer terms of the commitment keys ˜︁ck (𝑖 ) . A simple solution is to
fix some (random) [𝑔′,★rnd1, 𝑔

′,★
rnd2] (as part of crs) and construct [𝒈′] so that [𝑔′𝑛−1, 𝑔′𝑛] = [𝑔

′,★
rnd1, 𝑔

′,★
rnd2].

Another solution is to permute the position of the randomness and reserve the fixed indices 2, 3 for
randomness (instead of 𝑛 − 1, 𝑛). Either approach fixes the group elements corresponding to the
randomising term, solving the problem.

With this setup, we can extend QESAZK as follows: Given commitments [˜︁𝑐 (𝑖 ) ] under keys ˜︁ck (𝑖 ) , prove
that the values committed in [˜︁𝑐 (𝑖 ) ] satisfy some set of quadratic equations. In other words, prove that
the [˜︁𝑐 (𝑖 ) ] satisfy some arithmetic circuit.

Example 4.4.16 (Aggregate range proof). Consider [˜︁𝑐 ( 𝑗 ) ], 𝑗 = 1, ..., 𝑀 . We wish to prove that the values
𝒗 ( 𝑗 ) committed in [˜︁𝑐 ( 𝑗 ) ] all lie in the range {0, . . . , 28 − 1}.

Unsurprisingly, our solution to the problem is probabilistic verification. On a high level, we proceed
as follows: The commitments [˜︁𝑐 (𝑖 ) ] are part of the statement. We start QESAZK as usual, the prover
sends the commitment [𝑐′𝒘] to the witness, where the components in I are zeroed (except for the
randomness in 𝑛 − 1, 𝑛). Then the verifier sends a challenge 𝜶 ∈ F𝑀+1𝑝 with 𝛼0 = 1. Both sides compute
the random linear combination [𝑐′𝒘] ≔ [𝑐′𝒘] +

∑︁𝑀
𝑖=1 𝛼𝑖 [˜︁𝑐 (𝑖 ) ] as the new commitment. The prover adjusts

his (extended) witness𝒘 ′ =
(︁ 𝒘
𝒓 ′

)︁
to𝒘 ′ ← 𝛼0𝒘 ′ +

∑︁
𝑖 𝛼𝑖𝒗

(𝑖 ) . The statements, i.e. the matrices 𝚪𝑖 are also
adjusted, and additional “glue equations” are included.

For a single commitment, the strategy can be made to work as described. For multiple commitments,
it depends on the statement. The problem is, that if I𝑖 and I𝑗 are overlapping for 𝑖 ≠ 𝑗 outside the
randomness components {𝑛 − 1, 𝑛}, then one cannot recover the values for both 𝒗 (𝑖 ) and 𝒗 ( 𝑗 ) from
their linear combination. Hence, this must be corrected.

Our idea for general interoperability is as follows. The initial QESAZK witness𝒘 (commitment 𝑐′𝒘) has
all components in I zeroed (except for randomness 𝑛 − 1, 𝑛) and also contains copies of the committed
𝒗 (𝑖 ) . The actual equations, i.e. the 𝚪𝑖 , only refer to the copies and the components I. As before, for
verifier randomness 𝜶 , we set [𝑐′𝒘] ← [𝑐′𝒘] +

∑︁
𝑖 𝛼𝑖 [˜︁𝑐 (𝑖 ) ], and obtain 𝒘 ′ ← 𝒘 ′ + ∑︁

𝑖 𝛼𝑖𝒗
(𝑖 ) as new

extended witness. Note that all (extended) equations 𝒘 ′𝚪′⊤𝑖 𝒘 ′ still hold (for an honest prover). Now
we add (linear) equations 𝚪 (𝑖 )copy to the statement, which we call copy-equations and which depend on
the randomness 𝛼𝑖 . These equations simply assert that, if we compute

∑︁
𝑖 𝛼𝑖𝒗

(𝑖 ) using the committed
copies in𝒘 , then this equals the values committed in components I (again excluding the randomness
components 𝑛 − 1, 𝑛). In other words, we assert that the purported copies of 𝒗 (𝑖 ) in witness [𝑐′𝒘 ,old]
were valid copies. Commitment randomness (in components {𝑛 − 1, 𝑛}) is not copied, as it is not a
relevant part of the committed value. It is simply accumulated, e.g. as 𝑟 ∗2 = 𝛼0𝑟2 + 𝛼1𝑟 (1) + 𝛼2𝑟 (2) . This
“copy-based” approach is simple and modular.

The formulaic description of QESACopy is arguably technical. However, the examples in Fig. 4.3 and
Fig. 4.4 demonstrate that it is a simple concept.

The presented approach has one small downside: It does not in fact prove that Eq. (4.4.2) holds, i.e. it
does not enforce that˜︁𝑐 (𝑖 ) is zero outside of I𝑖 . If necessary, this can be enforced via different means, cf.
Remark 4.4.18 . In applications, this often follows from prior knowledge anyway.
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˜︁𝑐 (1) ˆ︁= I1 = {2, 𝑛}: 𝑚 (1) 𝑟 (1)

˜︁𝑐 (2) ˆ︁= I2 = {2, 𝑛}: 𝑚 (2) 𝑟 (2)

𝒘′ =
(︁ 𝒘
𝒓 ′

)︁
: 1 0 𝑚 (1) 𝑚 (2) 𝑟1 𝑟2

𝛼0𝒘′ + 𝛼1𝒗 (1) + 𝛼2𝒗 (2) : 1 𝛼1𝑚 (1)

+𝛼2𝑚 (2) 𝑚 (1) 𝑚 (2) 𝑟1 𝑟∗2

𝛼1

𝛼2

𝛼0

= 1

Figure 4.3.: An example of a copying two values from two commitments. The blocks are colour-coded as follows: White
blocks contain either 0 or the value indicated. Orange blocks belong to the (value-part) of commitment indices, i.e. to I.
Green blocks denote “copied” values. Gray blocks contain an arbitrary value. Blue blocks refer to randomness parts (i.e.
components 𝑛 − 1, 𝑛). Recall that randomness is not copied (i.e. components {𝑛 − 1, 𝑛 − 2}). The actual statements (i.e. the
matrices 𝚪𝑖 ) are statements over all variables except the orange (and blue) blocks, as these are merely “test-values” which
ensure that𝒘 contains copies of (the message part of) 𝒗 (𝑖 ) , here𝑚 (𝑖 ) , as claimed.

I1 = {2, 3, 𝑛}: 𝑚
(1)
2 𝑚

(1)
3 𝑟 (1)

I2 = {2, 4, 𝑛}: 𝑚
(2)
2 𝑚

(2)
4 𝑟 (2)

𝒘′ =
(︁ 𝒘
𝒓 ′

)︁
: 1 0 0 0 𝑚

(1)
2 𝑚

(1)
3 𝑚

(2)
2 𝑚

(2)
4

𝑟1 𝑟2

𝒘′new: 1 ★ ★ ★ 𝑚
(1)
2 𝑚

(1)
3 𝑚

(2)
2 𝑚

(2)
4

𝑟1 ★

𝛼1

𝛼2

𝛼0

= 1

Figure 4.4.: This is a more complex example of the copying technique. Colour-coding is as before. Note that I1 ≠ I2. Again,
all orange values 𝒎 (𝑖 ) ˆ︁= 𝒗 (𝑖 ) , are copied and appear as green values in𝒘 . Further optimisations are possible:

Protocol 4.4.17 (QESACopy). Let 𝑛 ≥ 4𝑘 , {𝚪𝑖}𝑁𝑖=1, crs = [𝒈′,𝒈′′, 𝑄], ˜︁𝜒2𝑘−1 be as in Protocol QESAZK. Let
𝜒𝑀+1 be a testing distribution where the first component is always 1, i.e. 𝜶 $← 𝜒𝑀+1 has 𝛼0 = 1.20 Let˜︁ck (𝑖 ) ˆ︁= I𝑖 be commitment keys for commitments (for 𝑖 = 1, . . . , 𝑀), as described above. Let [˜︁𝑐 (𝑖 ) ] be
commitments to values 𝒗 (𝑖 ) . We identify 𝒗 (𝑖 ) with a vector in F𝑛𝑝 when necessary (satisfying Eq. (4.4.2)).
Let𝒘 ∈ F𝑛−2𝑝 be a solution to {𝚪𝑖}𝑖 , i.e.𝒘⊤𝚪𝑖𝒘 = 0 for all 𝑖 . We assume that𝑤1 = 1 and

∀𝑖 ∈ {1, . . . , 𝑀} ∀𝑗 ∈ I𝑖 ∩ {2, . . . , 𝑛 − 2} : 𝑤 𝑗 = 0. (4.4.3)

We assume there is a map 𝜏 with 𝜏 (𝑖, · ) : {1, . . . , #I𝑖} → {1, . . . , 𝑛} such that

• ∀𝑖 : 𝜏 (𝑖, 𝑛 − 1) = 𝑛 − 1 ∧ 𝜏 (𝑖, 𝑛) = 𝑛

• ∀𝑖 ∀𝑗 ∈ I𝑖 \ {𝑛 − 1, 𝑛} : 𝑤𝜏 (𝑖, 𝑗 ) = 𝒗 (𝑖 )
𝑗

• ∀𝑖 : 𝜏 (𝑖, · ) is injective and the sets 𝜏 (𝑖,I𝑖 \ {𝑛 − 1, 𝑛}) are disjoint for all 𝑖 .

20 The restriction 𝛼0 = 1 is just for convenience.
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The map 𝜏 and its requirements encodes where components of each 𝒗 (𝑖 ) are “stored in” 𝒘 (ignoring
randomness components {𝑛 − 1, 𝑛}). Define the correctness relation RQcopy as

RQcopy =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝒘 ∈ F𝑛−2𝑝 , 𝒗 (𝑖 ) ∈ F𝑛𝑝

|︁|︁|︁|︁|︁|︁|︁|︁|︁
∀𝑖 ∈ {1, . . . , 𝑁 } : 𝒘⊤𝚪𝑖𝒘 = 0
∧ ∀𝑖 ∈ {1, . . . , 𝑀} : [˜︁𝑐 (𝑖 ) ] = [𝒈′]𝒗 (𝑖 )
∧ ∀𝑖 ∈ {1, . . . , 𝑀}∀𝑗 ∈ I𝑖 \ {𝑛 − 1, 𝑛} : 𝑤𝜏 (𝑖, 𝑗 ) = 𝒗 (𝑖 )

𝑗

∧ ∀𝑖 ∈ {1, . . . , 𝑀}∀𝑗 ∉ I𝑖 : 𝒗 (𝑖 )𝑗 = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
In particular, the prover’s witness consists of 𝒘 , 𝒗 (1) , . . . , 𝒗 (𝑀 ) as described above. The statement
consists of {𝚪 𝑗 }𝑁𝑗=1 and {[˜︁𝑐 (𝑖 ) ]}𝑀𝑖=1.

• P→ V: (Step 0: Commit to𝒘 .) Send [𝑐′𝒘] ≔ [𝒈′]𝒘 ′ with𝒘 ′ =
(︁ 𝒘
𝒓 ′

)︁
, where𝒘 is as outlined above

and 𝒓 ′ $← F2𝑝 .

• V→ P: (Step 1: Batch verification and statement adaption forQESAZK) Pick and send 𝜶
$← 𝜒𝑀+1,

where (𝛼0, . . . , 𝛼𝑀 ) = 𝜶 ∈ F𝑀+1𝑝 and where 𝛼0 = 1 always (by assumption). Both sides set
[𝑐′𝒘] ≔ [𝑐′𝒘] +

∑︁𝑀
𝑖=1 𝛼𝑖 [˜︁𝑐 (𝑖 ) ]. The prover sets𝒘 ′ ≔ 𝒘 ′ +∑︁𝑀

𝑖=1 𝛼𝑖𝒗
(𝑖 ) ∈ F𝑛𝑝 . The set of equations is

extended with additional equations, given by “copy-matrices” 𝚪 (𝑘 )copy for each 𝑘 ∈ I∩{1, . . . , 𝑛−2}
as follows:

𝒘⊤𝚪 (𝑘 )copy𝒘 = 0 ˆ︁= 𝑤𝑘 =

𝑀∑︂
𝑖=1

∑︂
𝑘∈I𝑖\{𝑛−1,𝑛}

𝛼𝑖𝑤𝜏 (𝑖,𝑘 ) .

These equations formalise that computing the (random) linear combination of the (purported)
copies of 𝒗 (𝑖 ) (as part of 𝒘 ′) yield the same value as the (random) linear combination of the
commitments, cf. Figs. 4.3 and 4.4. With these additional equations and the adapted witness,
continue as in QESAZK (Step 2) without further changes.

See Appendix B.7 for a sketch of this protocol.

It not hard to see that QESACopy is correct. For zero-knowledge, we merely note that QESAZK is
statistical HVZK, and by a completely analogous proof, QESACopy is statistical HVZK as well.

Remark 4.4.18. As noted before, QESACopy has relaxed soundness. Importantly, Eq. (4.4.3) is not ensured
for the commitments [˜︁𝑐 (𝑖 ) ] (let alone the stronger Eq. (4.4.2)). This is not a proof artefact, in fact, the
honest prover strategy would convince a verifier even if all unused components in QESACopy (grey in
Fig. 4.3) arbitrary values — nothing is proven them!

Nevertheless, Eq. (4.4.2) may hold in applications due to priori knowledge, or it may be enforced by
(combinations of) other means, e.g. an additional (integrated) zero-knowledge proof of knowledge, or
adding additional checks𝑤 𝑗 = 0 to force all “unused” components to 0, or by specially deriving [𝒈′],
e.g. via a dual-testing distribution. Establishing Eq. (4.4.2) when all 𝒗 (𝑖 ) coincide, i.e. 𝒗 = 𝒗 (𝑖 ) for all 𝑖 , is
typically easy and very efficient. As the details are simple but application-dependent, we leave them to
the reader.

The relaxed soundness relation RQcopy-relaxed of QESACopy is defined as

RQcopy-relaxed =

⎧⎪⎪⎨⎪⎪⎩𝒘 ∈ F𝑛−2𝑝 , 𝒗 (𝑖 ) ∈ F𝑛𝑝

|︁|︁|︁|︁|︁|︁
∀𝑖 ∈ {1, . . . , 𝑁 } : 𝒘⊤𝚪𝑖𝒘 = 0
∧ ∀𝑖 ∈ {1, . . . , 𝑀} : [˜︁𝑐 (𝑖 ) ] = [𝒈′]𝒗 (𝑖 )
∧ ∀𝑖 ∈ {1, . . . , 𝑀}∀𝑗 ∈ I𝑖 \ {𝑛 − 1, 𝑛} : 𝑤𝜏 (𝑖, 𝑗 ) = 𝒗 (𝑖 )

𝑗

⎫⎪⎪⎬⎪⎪⎭
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Lemma 4.4.19. Let (𝑀 + 1, 𝑁 ′, 𝑛 + 1, 2, 2, 2𝑘, . . . , 2𝑘). Then Protocol QESACopy is 𝜇-special (relaxed)
sound for a witness forRQcopy-relaxed or a non-trivial kernel element of [𝒈′,𝒈′′, 𝑄], where 𝑁 ′ is the number
of equations plus the number of copy equations. Moreover, QESACopy is (𝑀 + 1, 1, 1, 2, 2, 𝑘, . . . , 𝑘)-quick
𝜇-short extractable.

Proof sketch. The proof is straightforward, but the indexing is tedious. We only sketch it.

First of all, note that just like withQESAZK, we can for each run with randomness 𝜶 extract a witness𝒘 ′𝜶
satisfying all 𝚪𝑖 , including additional copy-equations (which depend on 𝜶 ). To complete the extraction,
we have to obtain the committed values 𝒗 (𝑖 ) of [˜︁𝑐 (𝑖 ) ] and𝒘 ′ of [𝑐𝒘], and demonstrate their consistency
of 𝒗 (𝑖 ) with𝒘 ′.

First, we note that from𝑀 + 1 linearly independent challenges 𝜶 , we obtain openings𝒘 ′, 𝒗 (𝑖 ) to each
commitment under commitment key [𝒈′] in the usual way. Indeed, this is just (the extraction of) a
batch proof of opening, see Section 4.3.4.

Now, we reinterpret the setting to avoid carrying around too many indices. The “copy proofs” essentially
state the following: There is a “subvector” (𝒂, 𝒃1, . . . , 𝒃𝑀 ) of (a permutation of)𝒘 such that 𝒃𝑖 consists
of the copied values of all 𝒗 (𝑖 ) , and 𝒂 should be zero. In𝒘 ′𝜶 , we have 𝒂𝛼 = 𝒂 +∑︁𝑀

𝑖=1 𝛼𝑖𝒗
(𝑖 ) . Otherwise, or

a non-trivial kernel element must be encountered upon extracting all𝒘𝛼 , which leads to short-circuit
extraction. By the “copy equations” from Step 1, we also have21

𝑀∑︂
𝑖=1

𝛼𝑖𝒃𝑖 = 𝒂𝛼 = 𝒂 +
𝑀∑︂
𝑖=1

𝛼𝑖𝒗
(𝑖 ) .

Given𝑀 + 1 linearly independent 𝜶 (and recall 𝛼0 = 1 by assumption), we find that 𝒂 = 0 and 𝒃𝑖 = 𝒗 (𝑖 ) .
Thus, we find that the 𝒗 (𝑖 ) satisfy the copy constraint (given by the map 𝜏) in RQcopy-relaxed, and the
constraint that𝒘 has zeroed all𝑤𝑖 with 𝑖 ∈ I (which corresponds to 𝒂). This completes the proof. □

Remark 4.4.20. It is possible to optimize QESACopy by eliminating unnecessary copies. For example, if
a single commitment (i.e.𝑀 = 1) is “copied”, the variables in I \ {𝑛 − 1, 𝑛} are simply the 𝛼-fold of the
actual value. By modifying the statement {𝚪𝑖}𝑖 appropriately, one can omit any “copy components” and
“copy equations”. This also works if𝑀 > 1, where one of the copies can be omitted (per component in
I).

Another optimization uses more general “gluing equations” than just “copying”. Namely, if the values
committed in ˜︁𝑐 (𝑖 ) can be checked from other (auxiliary) values in 𝒘 via quadratic equations, these
equations can be used to “glue” committed values together. For example, in a bit-decomposition-based
range proof for 𝑣 , then by checking 𝑣 =

∑︁ℓ−1
𝑖=0 2𝑖𝑏𝑖 one can evidently omit the copy of 𝑣 in 𝒘 , since 𝑣

can be recomputed by
∑︁ℓ−1
𝑖=0 2𝑖𝑏𝑖 , and the {𝚪 (𝑘 )copy}𝑘 are easily adapted to work with the “virtual” copy∑︁ℓ−1

𝑖=0 2𝑖𝑏𝑖 of 𝑣 within𝒘 .

Example 4.4.21. Consider the situation of (aggregate) range proofs in [BBB+18], that is, we have a
commitment key ˜︁ck ≔ [𝑔′2, 𝑔′𝑛] and want to prove that commitments [𝑐𝑖], for 𝑖 = 1, . . . , 𝑀 , all under this
key, contain values within a some ℓ-bit range. With QESACopy and the optimization of Remark 4.4.20,
the prover transmits 2⌈log(ℓ𝑀 + 4)⌉ + 3 group elements and 2 scalars. If ℓ𝑀 + 4 is just below a power of
2, then this is slightly better than Bulletproofs(+) [BBB+18; CHJ+22]. However, as QESACopy provides a
weaker soundness guarantee (recall Remark 4.4.18), we have to compensate for that. A very simple way

21 If we don’t have this, QESAZK extraction would short-circuit.
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to fix this is to run a batch proof of knowledge of openings for all [𝑐′𝑖 ] (cf. Section 4.3.4). The prover
sends 1 group element and 2 scalars for this, resulting in 2⌈log(ℓ𝑀 +4)⌉ +4 group elements and 4 scalars,
which is smaller than [BBB+18] but larger than [CHJ+22]. Alternatively, one may introduce additional
equations to zero all “unused” components, as noted in Remark 4.4.18. Lastly, one may let the verifier
choose all components in [𝒈′] except [𝑔′2] and [𝑔′𝑛], e.g. via a dual testing distribution (which enforces
[𝑐′𝑖 ] has all components except for [𝑔′2] and [𝑔′𝑛] zeroed). This should come with almost no overhead,
but one has to redo the security analysis, both for (short-circuit) extractability and honest-verifier
zero-knowledge.

4.5. Implementation

We implemented all protocols in C++17 using the RELIC toolkit [AG] for underlying group operations.
Our instantiation uses G = Curve25519 and thus F𝑝 = F2255−19. For a fair comparison, we implemented
Bulletproofs on the same architecture with equal care. The code is available on GitHub.22

Remark 4.5.1. The implementation is based on a slightly different version of IPAalmZK, where three
constraints ⟨𝒓 ′, 𝒓 ′′⟩ = ⟨𝒘 ′, 𝒓 ′′⟩ = ⟨𝒓 ′,𝒘 ′′⟩ = 0 are used. The revised version of IPAalmZK has only two
constraints (which simplifies security analysis). These changes do not affect performance.

Representing 𝚪. All QESA protocols make use of sparse matrices 𝚪. For efficient computation, a
suitable representation is necessary. Decomposing 𝚪 into a sum

∑︁
𝑖 𝒂𝑖𝒃

⊤
𝑖 , similar to R1CS, allows for

both runtime and memory optimisations. Note that vectors 𝒂𝑖 and 𝒃𝑖 are sparse themselves, allowing
for even further optimisation via an appropriate data structure. For multiplications 𝚪𝒔, at most𝑚

∑︁
𝑖 𝑘𝑖ℓ𝑖

scalar multiplications are necessary, where𝑚, 𝑘𝑖 , ℓ𝑖 are the number of non-zero entries in 𝒔, 𝒂𝑖 , 𝒃𝑖 . Thus,
all operations remain polynomial in the input size.

Results. We benchmarked our protocols on an Intel Core i7-6600U CPU at 2.6GHz running Debian
Stretch 4.9.168 using a single core. A point multiplication with a random 254-bit scalar takes on
average 0.28ms on this platform. Table 4.3 shows how our aggregate range proofs QESARP compare
to Bulletproofs. For QESARP, the internal witness 𝒘 contains 4 static elements: the constant 1, the
aggregate element for QESACopy, and the 2 random elements added by QESAInner, cf. Appendix B.7.
Hence, we select the range as a power of 2 minus 4, in order to keep the CRS size from expanding to
the next power of two, which doubles the computation in our simple implementation. Our results show
that QESARP outperforms Bulletproofs for all tested parameters. Allowing batching randomnesses
to be small further improves the performance (cf. QESARP (short) for 140-bit random values). Note
that the execution times given in [BBB+18] are lower, since a highly optimised library dedicated to
a single elliptic curve was used instead of a general purpose library as in this work. However, since
both protocols were benchmarked on the same platform with the same underlying library, the values
in Table 4.3 give a fair comparison.

Note that we have not applied special optimisations to the verification algorithms and therefore show
verification times in gray. Using delayed (batch) verification, e.g. as in [BBB+18], significantly improves
verifier performance. Optimised verification performance of Bulletproofs and our proof systems is

22 https://github.com/emsec/QESA_ZK
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Parameters Bulletproofs QESARP QESARP (short)
P V P V P V

60 bit 0.26 0.17 0.16 0.07 0.15 0.06
60 bit × 2 0.47 0.29 0.32 0.15 0.30 0.10
60 bit × 32 7.4 4.5 5.1 2.4 4.6 1.7
60 bit × 128 28.9 17.9 20.6 9.4 18.4 6.7
60 bit × 512 116 78.7 82.3 37.5 73.8 27.1
124 bit 0.46 0.29 0.32 0.15 0.29 0.11
124 bit × 32 14.9 9.2 10.4 4.7 9.3 3.4
124 bit × 128 59.7 36.8 41.4 18.9 37.2 13.5
124 bit × 512 238 147 165 75.4 149 54.6
252 bit 0.95 0.59 0.65 0.30 0.57 0.22
252 bit × 32 30.2 18.6 20.8 9.5 18.9 6.8
252 bit × 128 121 74.3 83.5 37.8 76.1 27.4
252 bit × 512 484 297 358 165 302 109

Table 4.3.: Comparison of non-optimised prover runtime in seconds of aggregate range proofs from [BBB+18] with this work.
Verification times are only included for completeness. See Section 4.5 for details.

Shuffle size 1000 10000 100000
P V P V P V

Time [s] 8.8 4.4 117 56.1 1009 491

Table 4.4.: Evaluation of shuffle proofs via QESACopy and LMPAsimpleZK.

almost identical.23 This was also verified in independent benchmarks by Noether and Wedderburn.24
We are not aware of similar optimisations for the prover.

Table 4.4 gives execution times for our shuffle proofs. They are an instantiation of [BG12], cf. Ap-
pendix B.2, and we project them to be 2–3× more computationally expensive than [BG12], but they are
size O(log(𝑁 )) instead of O(

√
𝑁 ) for 𝑁 ciphertexts. Again the very high execution times compared to

[BG12] are caused by the underlying library.

23 Application of delayed batch verification with multi-exponentiation to our setting is slightly different. However, compared
to the costs of the multi-exponentiation, the difference is likely not noticeable.

24 Code available at https://github.com/crate-crypto/qesa/blob/master/src/ipa/no_zk.rs
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5. On Expected Polynomial Runtime in Cryptography

This chapter is taken verbatim from [Klo21] with minor changes.

5.1. Introduction

Interactive proof systems allow a prover P to convince a verifier V of the “truth” of a statement x, i.e.
that x ∈ L for some languageL. Soundness of the protocol ensures that if the verifier accepts, then
x ∈ L with high probability. Zero-knowledge proof systems allow P to convince V of x ∈ L without
revealing anything else. The definition of zero-knowledge relies on the (more general) simulation
paradigm: It stipulates that, for every (malicious) verifier V∗, there is a simulator Sim which, given
only the inputs x, aux of V∗, can produce a simulated output (or view 1) out = Sim(x, aux), which is
indistinguishable from the output outV∗ ⟨P(x,w),V∗(x, aux)⟩ of a real interaction. Thus, anything V∗

learns in the interaction, it could simulate itself — if Sim and V∗ lie in the same complexity class.

Let us write 𝑋/𝑌 (zero-knowledge) for adversary complexity 𝑋 and simulator complexity 𝑌 . The two
widespread notions of zero-knowledge are PPT/PPT and PPT/EPT. The former satisfies the “promise
of zero-knowledge”, but comes at a price. Barak and Lindell [BL04] show that it is impossible to
construct constant round proof systems with black-box simulation and negligible soundness error in
the plain model. Since constant round black-box zero-knowledge is attractive for many reasons, the
relaxation of PPT/EPT zero-knowledge is common. However, this asymmetry breaks the “promise of
zero-knowledge”. The adversary cannot execute Sim, hence it cannot simulate the interaction. More
concretely, this setting does not compose well. If we incorporate an EPT simulator into a (previously
PPT) adversary, the new adversary is EPT. This common approach — constructing simulators for more
complex systems from simulators of building blocks — therefore fails due to the asymmetry.

To remedy the asymmetry, we need to handle EPT adversaries. There are several sensible definitions
of EPT adversaries, but the arguably most natural choice are designated EPT adversaries. That is,
adversaries which only need to be EPT when interacting with the protocol they are designed to attack.
Feige [Fei90] first considered this setting, and demonstrates significant technical obstacles against
achieving security in the presence of such attacks.

The problems of EPT (and designated adversaries) are not limited to zero-knowledge, and extend to the
simulation paradigm, e.g. multi-party computation.

Preliminary Conventions. Throughout, 𝜆 denotes the security parameter. We generally consider
objects which are families (of objects) parameterized by 𝜆, but often leave the dependency implicit.
We abbreviate systems of (interactive) machines (or algorithms) by system. A system is closed, if it only
expects 𝜆 as input, and produces some output. For example, a prover P does not constitute a closed
system, nor does the interaction ⟨P,V⟩ , since it still lacks the inputs to P and V. Our primary setting

1 We use view and output synonymously in the introduction.

111



5. On Expected Polynomial Runtime in Cryptography

is uniform complexity [Gol93], where inputs to an (otherwise closed) system are generated efficiently
by so-called input generators. Interaction of algorithms A, B is denoted ⟨A,B⟩ , the time spent in A is
denoted timeA(⟨A,B⟩), and similarly for time spent in B or A +B. Oracle access toO is written AO . An
algorithm A is a priori efficient, if the runtime bound is independent from its environment, e.g. classical
“a priori PPT”. The term a posteriori emphasizes an absence of a priori efficiency, i.e. bounds which
depend on the environment, e.g. in the case of designated adversaries.

5.1.1. Obstacles

We first recall some obstacles regarding expected runtime and designated adversaries which we have
to keep in mind. For more discussions and details, we refer to the excellent introductions of [KL08;
Gol10] and to [Fei90, Section 3].

Runtime Squaring. Consider (a family of) random variables 𝑇𝜆 over N, where Pr[𝑇𝜆 = 2𝜆] = 2−𝜆 and
𝑇𝜆 is 0 otherwise. Then 𝑇𝜆 has polynomially bounded expectation E [𝑇𝜆] = 1, but E [𝑇 2

𝜆
] = 2𝜆 . That is

𝑆𝜆 = 𝑇
2
𝜆
is not expected polynomial time anymore. This behaviour not only prevents machine model

independence of EPT as an efficiency notion, but also the non-black-box simulation technique of Barak
[Bar01] (which suffers from a quadratic growth in runtime).

Composition and Rewinding. Consider an oracle algorithm AO with access to a PPT oracle O. Then
to check if the total time timeA+O (AO) is PPT, we can count an oracle call as a single step. Moreover,
it makes no difference if A has “straightline” or “rewinding” access to O. For EPT, even a standalone
definition of “O is EPT” is non-trivial and possibly fragile. For example, there are oracles, where any
PPT A with “straightline” access to O results in an EPT interaction, yet access “with rewinding” to O

allows an explosion of expected runtime. See [KL08] for a concrete example.

Designated EPT Adversaries. For a designated adversary A against zero-knowledge of a proof
system (P,V), we require (only) that A is efficient when interacting with that protocol. Since a zero-
knowledge simulator deviates from the real protocol, the runtime guarantees ofA are void.

5.1.2. Motivation: Reproving Zero-Knowledge of Graph 3-Colouring

The constant-round black-box zero-knowledge proof of Goldreich and Kahan [GK96] is our running
example for demonstrating problems and developing our approach.

Recall that (non-interactive) commitment schemes allow a committer to commit to a value in a way
which is hiding and binding, i.e. the commitment does not reveal the value to the receiver, yet it can be
unveiled to at most one value. A commitment scheme consists of algorithms (Setup,Com,VfyOpen).
The commitment key is generated via ck $← Setup(𝜆). For details, see Appendix C.2.
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5.1.2.1. The Constant Round Protocol of Goldreich–Kahan

The protocol of [GK96] uses two different commitments, Com(H) is perfectly hiding, Com(B) is perfectly
binding. The idea of protocol G3CGK is a parallel, 𝑁 -fold, repetition of the standard zero-knowledge
proof for G3C, with the twist that the verifier commits to all of its challenges beforehand. Let𝐺 = (𝑉 , 𝐸)
be the graph and let𝜓 be a 3-colouring of 𝐺 . The prover is given (𝐺,𝜓 ) and the verifier 𝐺 .

(P0) P sends ckhide ← Setup(H) (𝜆). (ckbind ← Setup(B) (𝜆) is deterministic.)

(V0) V picks 𝑁 = 𝜆 · card(𝐸) challenge edges 𝑒𝑖 ← 𝐸, and commits to them using Com(H) .

(P1) P picks randomized colourings for each of the 𝑁 parallel repetitions of the standard graph 3-
colouring proof system, and sends the Com(B) -committed randomized node colours to V.

(V1) V opens all commitments (to 𝑒𝑖 ).

(P2) P aborts if any opening is invalid. Otherwise, P proceeds in the parallel repetition using these
challenges, i.e. in the 𝑖-th repetition P opens the committed colours for the nodes of edge 𝑒𝑖 .

(V2) V aborts iff any opening is invalid, any edge not correctly coloured, or if ckhide is “bad”. Else V
accepts.

The soundness of this protocol follows from Com(H) being perfectly hiding. Therefore, each of the 𝑁
parallel repetitions is essentially an independent repetition of the usual graph 3-colouring proof. For
𝑁 = 𝜆 · card(𝐸) parallel rounds, the probability to successfully cheat is negligible (in 𝜆), see [GK96].

5.1.2.2. Proving Zero-Knowledge: A (Failed?) Attempt

Now, we prove black-box zero-knowledge for designated adversaries. That is, we describe a simulator
which uses the adversary V∗ only as a black-box, which can be queried and rewound to a (previous)
state. We proceed in three game hops, gradually replacing the view of a real interaction with a simulated
view. Successive games are constructed so that their change in output (which is a purported view) is
indistinguishable.

G0 This is the real G3C protocol. The output is the real view.

G1 The prover rewinds a verifier which completes 5.1.2.1 successfully (i.e. sends valid openings on the
first try) to 5.1.2.1 and repeats 5.1.2.1 until a second run where V validly opens all commitments.
The output is the view of this second succesful run. The prover uses fresh randomness in each
reiteration of 5.1.2.1 (whereas the black-box has fixed randomness).

G2 If the two openings in 5.1.2.1 differ, return ambig, indicating ambiguity of the commitment.
Otherwise, proceed unchanged.

G3 The initial commitments (in 5.1.2.1) to a 3-colouring are replaced with commitments to 0. These
commitments are never opened. In successive iterations, the commitments to a 3-colouring are
replaced by commitments to pseudo-colourings 𝜓𝑖 (for 𝑒𝑖 ), i.e. for edge 𝑒𝑖 = (𝑢𝑖 , 𝑣𝑖), 𝜓𝑖 colours
𝑢𝑖 and 𝑣𝑖 differently (and uniformly), whereas𝜓𝑖 colours all 𝑣 ≠ 𝑢𝑖 , 𝑣𝑖 with 0. Hence the opened
commitments simulate a valid 3-colouring at the challenge edges 𝑒𝑖 .
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Evidently, Game G3 outputs a purported view independent of the witness. Thus, the simulator is
defined as in G3: In a first try, it commits (using Com(B) ) to all zeroes instead of a 3-colouring in 5.1.2.1,
and uses this “garbage” commitment to learn the verifier’s challenge (in 5.1.2.1). If the verifier does not
successfully open the commitments (in 5.1.2.1), Sim aborts (as an honest prover would) and outputs
the respective view. Otherwise, Sim rewinds the verifier to Step 2 and sends a pseudo-colouring (w.r.t.
the previously revealed challenge) instead. Sim retries until the verifier succesfully unveils (in 5.1.2.1)
again. (If the verifier opens to a different challenge, return view = ambig.)

Now, we sketch a security proof for Sim. We argue by game hopping.

G0 to G1. The expected number of rewinds is at most 1. Namely, if V∗ opens in 5.1.2.1 with probability 𝜀,
then an expected number of 1

𝜀
rewinds are required. Consequently, the expected runtime is polynomial

(and G1 is EPT). The output distribution of the games is identical.

G1 to G2. It is easy to obtain an adversary against the binding property of Com(H) which succeeds
with the same probability that G2 outputs ambig. Thus, this probability is negligible.

G2 to G3. Embedding a (multi-)hiding game for Com(B) in this step is straightforward. Namely,
using the left-or-right indistinguishability formulation, where the commitment oracle either commits
the first or second challenge message. Thus, by security of the commitment scheme, G2 and G3 are
indistinguishable.2

A Closer Look. The above proof is clear and simple. But the described simulator is not EPT! While
G2 and G3 are (computationally) indistinguishable, the transition does not necessarily preserve expected
polynomial runtime [Fei90; KL08]. Feige [Fei90] points out a simple attack, where V∗ brute-forces the
commitments with some tiny probability 𝑝 , and runs for a very long time if the contents are not valid
3-colourings. This is EPT in the real protocol, but our simulator as well as the simulator in [GK96] do
not handle V∗ in EPT. The problem lies with designated adversaries as following example shows.

Example 5.1.1. Let V∗ sample in step 5.1.2.1 a “garbage” commitment 𝑐′ to zeroes, using Com(B) just
like Sim in its first step, trying to predict Sim’s choice. (𝑐′ is a “proof of simulation”.) Now V∗ unveils 𝑒
in 5.1.2.1 if and only if it receives 𝑐′. The honest prover always aborts in 5.1.2.1 because V∗ will never
unveil. However, if Sim happens to chose 𝑐 = 𝑐′ as its “garbage” commitment, the simulation runs
forever, because V∗ unveils only for this 𝑐′, which is not a pseudo-colouring.

As described, V∗ is a priori PPT, and indeed, the simulator in [GK96] uses a “normalization technique”
which prevents this attack. However, exploiting designated PPT, V∗ may instead run for a very long
time, when it receives 𝑐′.

Obstructions to Simple Fixes. Let us recall a few simple, but insufficient fixes. A first idea is to truncate
the execution of A at some point. For PPT adversaries, this may seem viable.3 However, there are EPT
adversaries, or more concretely runtime distributions, where any strict polynomial truncation affects
the output in the real protocol noticeably. So we cannot expect that such a truncation works well for
Sim. See [Fei90, Section 3] for a more convincing argument against truncation.

2 We rely on security of binding and hiding against expected time adversaries, which follows from PPT-security by runtime
truncation arguments, e.g. by Lemma 5.1.2.

3 Even there, the situation is far from easy. In a UC setting with an a posteriori efficiency notion (and designated adversaries),
Hofheinz, Unruh, and Müller-Quade show in [HUM13, Section 9] that (pathological) functionalities can make simulation in
PPT impossible (if one wants security under composition for just a single instance).
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Being unable to truncate, we could enforce better behaviour on the adversary. Intuitively, it seems
enough to require that V∗ runs in expected polynomial time in any interaction [KL08; Gol10]. However,
even this is not enough. Katz and Lindell [KL08] exploit the soundness error of the proof system to
construct an adversary which runs in expected polynomial time in any interaction, but still makes the
expected runtime of the simulator superpolynomial. The problem is that these runtime guarantees are
void in the presence of rewinding.

Modifications of these fixes work, but at a price: Katz and Lindell [KL08] use superpolynomial trunca-
tion and need to assume superpolynomial hardness. Goldreich [Gol10] restricts to algorithms (hence
adversaries) which behave well under rewinding. We discuss these in Section 5.1.5. Our price will be
proof techniques, which become more technical and, perhaps, more limited.

Our Fix: There is no Problem. Our starting point is the conviction that the given “proof” should
evidently establish the security of the scheme for any cryptographically sensible notion of runtime.
If one could distinguish the runtime of G2 and G3, then this would break the hiding property of the
commitment scheme. Thus, the runtimes are indistinguishable. Following, in computational spirit,
Leibniz’ “identity of indiscernibles”, we declare runtimes which are indistinguishable from efficient by
efficient distinguishers as efficient per definition. With this, the proof works and the simulator, while
not expected polynomial time, is computationally expected polynomial time (CEPT), which means its
runtime distribution is indistinguishable from EPT.

We glossed over a crucial detail: We solved the problem with the very strategy we claim to fix —
different runtime classes for Sim and V∗! Fortunately, Sim also handles CEPT adversaries in CEPT.

5.1.3. Contribution

Our main contribution is the reexamination of the notion of runtime in cryptography. We offer a novel,
and arguably natural, alternative solution for a problem that was never fully resolved. Our contribution
is therefore primarily of explorational and definitional nature. More concretely:

• We define CEPT, a small relaxation of EPT with a convenient characterization.

• To the best of our knowledge, this is the first work which embraces uniform4 complexity, expected
time, and designated adversaries.

• We develop general tools for this setting, most importantly, a hybrid lemma.

• Easy-to-check criteria show that many (all known?) black-box zero-knowledge arguments from
standard assumptions in the plain model5 have CEPT simulators which handle designated CEPT
adversaries. Consequently, security against designated adversaries is natural. For example, the
proof systems [GMW86; GK96; Lin13; Ros04; KP01; PTV14] satisfy our criteria.

• We impose no (non-essential) restrictions on the adversary, nor do we need additional (hardness)
assumptions.

• We sketch the application of our techniques to secure function evaluation (SFE), and demonstrate
that auxiliary input security implies modular sequential composition.

4 Our results are applicable to a minor generalization of the non-uniform setting as well, namely non-uniformly generated
input distributions, see Appendix C.5.1.2.

5 Unfortunately, problems might arise with superpolynomial hardness assumptions, see Section 5.8.
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All of this comes at a price. Our notions and proofs are not complicated, yet somewhat technical.
This is, in part, because of a posteriori runtime and uniform complexity. Still, we argue that we have
demonstrated the viability of our new notion of efficiency, at least for zero-knowledge.

A Complexity Theoretic Perspective. This work is only concerned with the complexity class of feasible
attacks, and does not assume or impose complexity requirements on protocols. Due to designated
adversaries, the complexity class of adversaries is (implicitly) defined per protocol, similar to [KL08].
We bootstrap feasibility from complexity classes for (standalone) sampling algorithms, i.e. algorithms
with no inputs except 𝜆. Hence a (designated) adversary is feasible if the completed system of protocol
and adversary (including input generation) is CEPT (or more generally, in some complexity class of
feasible sampling algorithms).

The complexity class of simulators is relative to the adversary, and thus depends both on the protocol
and the ideal functionality. Namely, feasibility of a simulator Sim means that if an adversary A is
feasible (w.r.t. the protocol), then “Sim(A)” is feasible (w.r.t. the ideal functionality).

Comments on our Approach. The uniform complexity setting drives complexity, yet is necessary,
since a notion of time that depends on non-uniformity is rather pathological. Losing the power of
non-uniformity (and strictness of PPT) requires many small adjustments to definitions.6 Moreover,
annoying technical problems with efficiency arise inadvertently, depending on formalizations of games
and models. As in prior work, we mostly ignore them, but do point them out and propose solutions.
They are easily fixed by adding “laziness”, “indirection”, or “caching”.

An important point raised by a reviewer of TCC’20 is the “danger of zero-knowledge being trivialized”
by “expanding the class of attacks”, and a case for “moving towards knowledge tightness” (with which
we fully agree). Many variations of zero-knowledge, from weak distributional [DNRS03; CLP15] to
precise [MP06; DG12], exist. We argue that our notion is very close to the “standard” notion with EPT
simulation, but allows designated (C)EPT adversaries. Indeed, it seems to gravitate towards “knowledge
tightness” [Gol10], as seen by runtime explosion examples due to expectation.

5.1.4. Technical Overview and Results

We give an overview of our techniques, definitions, and results. Recall that we only consider runtimes
for closed systems (which receive only 𝜆 as input and produce some output). W.r.t. uniform complexity
and designated adversaries, i.e. adversaries which only need to be efficient in the real protocol [Fei90],
closed systems are the default situation anyway. A runtime class T is a set of runtime distributions.
A runtime (distribution) is a family (𝑇𝜆)𝜆 of distributions 𝑇𝜆 over N0. We use runtime and runtime
distribution synonymously. Computational T-time indistinguishability of oracles and distributions is
defined in the obvious way (c.f. Section 5.2.6). For statistical T-query indistinguishability, we count
only queries as steps, and require T-time w.r.t. this. (In our setting, unbounded queries often imply
perfect indistinguishability, which is too strong.)

6 For example, we need a stateful distinguisher for modular sequential security, whereas non-uniformly, state and even
randomness can be trivially removed by coin-fixing, demonstrating the equivalence of many variations, whose equivalence
in the uniform setting not clear. Thus, our definition of auxiliary input zero-knowledge deviates slightly from [Gol93].
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5.1.4.1. The Basic Tools

Statistical vs. Computational Indistinguishability. The (folklore) equivalence of statistical and com-
putational indistinguishability for distributions with “small” support is a simple, but central, tool. For
polynomial runtime, “small” support means polynomial support, say {0, . . . , poly1(𝜆)}. Assuming
non-uniform advice, the advice is large enough to encode the optimal decisions, achieving statistical
distance as distinguishing advantage. This extends to “polynomially-tailed” runtime distributions 𝑇 .
There, by assumption, for any poly0 there is a poly1 such that Pr[𝑇𝜆 > poly1(𝜆)] ≤ 1

poly0 (𝜆)
, Hence,

we can reduce to strict polynomial support by truncating at poly1, sacrificing 1/poly0 in statistical
distance. The Markov bound shows that expected polynomial time is polynomially tailed. Removing
non-uniformity is possible with repeated sampling, e.g. by approximating the distribution.

Standard Reduction. Another simple, yet central, tool is the standard cutoff argument (Section 5.4.1).
It is the core tool to obtain efficiency from indistinguishability.

Lemma 5.1.2 (Standard reduction to PPT). Let D be a distinguisher for two oracles O0, O1. Suppose D
has advantage at least 𝜀 ≥ 1

polyadv
(infinitely often). Suppose furthermore thatDO0 is EPT (even CEPT) with

expected time poly0. Then there is an a priori PPT distinguisherA with advantage at least 𝜀4 (infinitely
often). (Here, 𝜀, polyadv, poly0 are functions in 𝜆.)

We stress that we require no runtime guarantees for DO1 — it may never halt for all we know. For a
proof sketch, define 𝑁 = 4poly0 · polyadv and let A be the runtime cutoff of D at 𝑁 . The outputs of
AO0 and DO0 are 𝜀

4 close. For A
O1 and DO1 this may be false. However, if DO1 exceeds 𝑁 steps with

probability higher than 2𝜀
4 , then the runtime is a distinguishing statistic with advantage 𝜀

4 . Thus, we can
assume the outputs ofAO1 andDO1 are 2𝜀

4 close. Now, a short calculation shows thatA has advantage
at least 𝜀4 . Namely, Δ(AO1,AO0) ≥ Δ(DO1,DO0) − Δ(AO1,DO1) − Δ(DO0,AO0).

5.1.4.2. Computationally Expected Polynomial Time

We define the runtime classes PPT (resp. EPT), as usual, i.e. (𝑇𝜆)𝜆 ∈ PPT ⇐⇒ ∃poly : Pr[𝑇𝜆 ≤
poly(𝜆)] = 1 (resp. (𝑇𝜆)𝜆 ∈ EPT ⇐⇒ ∃poly : E [𝑇𝜆] ≤ poly(𝜆)).

Definition 5.1.3 (Simplified7 Definition 5.3.5). A runtime 𝑆 , i.e. a family of randomvariables 𝑆𝜆 with values
in N0, is computationally expected polynomial time (CEPT), if there exists a runtime 𝑇 which is
(perfectly) expected polynomial time (i.e. EPT), such that any a priori PPT distinguisher has negligible
distinguishing advantage for the distributions 𝑇 and 𝑆 . The class of CEPT runtime distributions is
denoted CEPT. Computationally strict polynomial time (CPPT) is defined analogously.

Characterizing CEPT. At a first glimpse, CEPT looks hard to handle. Fortunately, this is a mirage. We
have following characterization of CEPT.

Proposition 5.1.4 (Simplified7 Corollary 5.3.9). Let 𝑇 be a runtime. The following are equivalent:

0. 𝑇 is in CEPT.

7 Formally, “triple-oracle” instead of “standard” indistinguishability is used. Assuming non-uniform advice, or runtimes 𝑇, 𝑆
which are induced by algorithms, the simplified definition is equivalent to the actual one.
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1. ∃𝑆 ∈ EPT which is computationally PPT-indistinguishable from 𝑇 .

2. ∃𝑆 ∈ EPT s.t. 𝑇 and 𝑆 are statistically indistinguishable (given polynomially many samples).

3. There is a set of good eventsG𝜆 with Pr[G𝜆] ≥ 1−𝜀 (𝜆) such that E [𝑇𝜆 |G𝜆] ≤ 𝑡𝜆 (for the conditional
expectation), where 𝜀 is negligible and 𝑡 is polynomial.

Let 𝑇 be a runtime. Item 3 defines virtually expected time (𝑡, 𝜀) with virtual expectation (bounded
by) 𝑡 and virtuality 𝜀. Thus, the characterization says that computational, statistical and virtual EPT
coincide.

Proposition 5.1.4 follows essentially from the statistical-to-computational reduction and a variant of
Lemma 5.1.2. Thanks to this characterization, working with CEPT is feasible. One uses item 1 to justify
that indistinguishability transitions preserve CEPT. And one relies on item 3 to simplify to the case of
EPT, usually in unconditional transitions, such as efficiency of rewinding.

An Intrinsic Characterization. The full Corollary 5.3.9 not only reveals that CEPT is “well-behaved”. It
also shows that the runtime class CEPT is “closed under indistinguishability”: Any runtime 𝑆 which
is CEPT-indistinguishable from some 𝑇 ∈ CEPT lies in CEPT. This intrinsic property sets it apart
from EPT. (Indeed, CEPT is the closure of EPT.) PPT and CPPT behave analogously.

Example 5.1.5. Let A be an algorithm which outputs 42 in exactly 1010 steps, and let A′ act identical to
A, except with probability 2−𝜆 , in which case it runs 22𝜆 steps. Then A′ is neither PPT nor EPT. Yet, A
and A′ are indistinguishable even given timed black-box access. That is, observing both output and
runtime of the black-box, it is not possible to tell A and A′ apart. Thus, it is rather unexpected that A′
is considered inefficient. For many properties, e.g. correctness or soundness, statistical relaxations from
“perfect” exist. CPPT and CEPT should be viewed as such relaxations for efficiency.

Working with CEPT. Applying the characterization of CEPT to a whole system ⟨P,V∗⟩ , the good event
G may induce arbitrary stochastic dependencies on (internal) random coins of the parties. This is
inconvenient. We are interested only in one party, namely V∗. Moreover, in a simulation, there is no P
anymore and the probability space changed, hence there is no event G. To account for this, we observe
that only the messages V∗ receives from P are relevant for V∗’s behaviour, not P’s internal randomness.
We formulate a convenience lemma (Lemma 5.3.12) for handling this. Roughly Lemma 5.3.12 states that
for interacting algorithms ⟨A,B⟩ , there is a modification B′ (which need not be efficiently computable),
which immediately aborts “bad executions” by sending timeout. If the closed system ⟨A,B⟩ is
CEPT, i.e. timeA+B(⟨A,B⟩) is CEPT, the probability for timeout is negligible. Then, by construction,
timeB′ (⟨A,B′⟩) will be EPT. This makes B′ into a convenient tool to track the evolution of runtime and
virtuality under actions such as rewinding. By using B′ only via oracle-access, its possible inefficiency
poses no problems. After the (runtime) analysis, oracle-access toB′ is replacedwithB again. Importantly,
B′ is just a means to reason about changes in runtime when applying rewinding to B. One can also
reason without introducing B′, by using the analysis in Lemma 5.3.12 directly.

5.1.4.3. Definitions and Tools for Zero-knowledge

Here, we state our definition of uniform complexity zero-knowledge, demonstrate how to prove
zero-knowledge for G3CGK, and then abstract the approach to cover a large class of protocols.
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Definition of Zero-Knowledge. For uniform auxiliary input zero-knowledge, the input (x,w, aux, state) ←
I(𝜆) is efficiently generated by an input generator I. A designated adversary (I,V∗) consists of
input generation, malicious verifier, and distinguisher, but we leave I often implicit. The distin-
guisher receives out and state, the latter is needed for modular sequential composition.8 Here,
out = outV∗ ⟨P(x,w),V∗(x, aux)⟩ or out = outSimSim(code(V∗),x, aux), where (x,w, aux, state) is
sampled by I(𝜆). As a shorthand, for the system which lets I sample inputs and passes them as
above, we write ⟨P,V⟩I. From designated CEPT adversaries, we require that timeI+P+V∗+D ((state,
outV∗P(x,w),V∗(x, aux))) is CEPT.

Concrete example. Recall that in Section 5.1.2, we showed zero-knowledge of the graph 3-colouring
protocol G3CGK of Goldreich and Kahan [GK96] as follows:

Step 1: Introduce all rewinding steps as in G1. Here, virtually expected runtime and virtuality at most
doubles. To see this, one can use Lemma 5.3.12 to “replace” V∗ with an modified V′ which yields an EPT
execution and outputs timeout for “bad” queries. Since Game G1 at most doubles the probability
that some query query is asked, bad queries are only twice as likely, i.e. virtuality at most doubles. It is
easy to see that the virtually expected runtime also (at most) doubles.

Step 2: Apply indistinguishability transitions, which reduce to hiding resp. binding properties of
the commitment. From this, we obtain both good output quality and efficiency of Sim. Concretely,
indistinguishability and efficiency follow by an application of the standard reduction (to PPT).

We abstract this strategy to cover a large class of zero-knowledge proofs.9 Intuitively, we apply the
ideas of [Gol10] (“normality”) and [KL08] (“query indistinguishability”), but separate the unconditional
part (namely, that rewinding preserves efficiency), and the computational part (namely, that simulated
queries preserve efficiency).10

Abstracting Step 1 (Rewinding Strategies). A rewinding strategy RWS has black-box rewinding
(bb-rw) access to a malicious verifier V∗, and abstracts a simulator’s rewinding behaviour. Unlike the
simulator, RWS has access to the witness. For RWS to be normal, we impose three requirements.

Firstly, a normal rewinding strategy outputs an adversarial view which is distributed (almost) as in the
real execution. Secondly, there is some poly so that

E [timeRWS+V∗ (RWSV
∗)] ≤ poly(𝜆) · E [timeP+V∗ (⟨P,V∗⟩)]

for any adversary V∗. We call this (polynomial) runtime tightness of RWS.11 Thirdly, RWS has
(polynomial) probability tightness, which is defined as follows: Let prrws(query) be the probability
that RWS asks V∗ a query query. Let prreal(query) be the probability that the prover P asks query. Then
RWS has probability tightness poly if for all queries query

prrws(query) ≤ poly(𝜆) · prreal(query) .

Intuitively, runtime tightness ensures that RWS preserves EPT, whereas probability tightness bounds
the growth of virtuality. Indeed, the virtuality 𝛿 in ⟨P,V∗⟩ increases to at most poly · 𝛿 in RWSV

∗ . This

8 While [Gol93] passes no extra state, only sequential repetition is proven there.
9 Strictly speaking, we concentrate on zero-knowledge arguments, since we need efficient provers.
10We significantly deviate from [KL08] to obtain simpler reductions. See Appendix C.6 for an approach similar to [KL08].
11 Up to minor technical details, polynomial runtime tightness of RWS coincides with “normality” of Sim in [Gol10, Def. 6].
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follows because the probability for a “bad” query (a timeout of the modified V′ from Lemma 5.3.12)
in RWSV

∗ is at most poly-fold higher than in ⟨P,V∗⟩ .

Lemma 5.1.6 (InformalLemma 5.6.5). Let RWS be a normal rewinding strategy for (P,V) with runtime
and probability tightness poly. Let (I,V∗) be an adversary. If ⟨P,V∗⟩I is CEPT with virtually expected
time (𝑡, 𝜀), then RWS(V∗) composed with I is CEPT with virtually expected time (poly · 𝑡, poly · 𝜀).

(Weak) Relative Efficiency. We generalize the guarantees of rewinding strategies to relative effi-
ciency of (oracle) algorithms. An oracle algorithm B is efficient relative to A with runtime tight-
ness (polytime, polyvirt) if for all oracles O: If timeA+O (AO) is virtually expected (𝑡, 𝜀)-time, then
timeB+O (BO) is virtually expected (polytime · 𝑡, polyvirt · 𝜀)-time.

We call B weakly efficient relative to A, if whenever timeA+O (AO) is efficient (e.g. CEPT), then
timeB+O (BO) is efficient (e.g. CEPT).

Abstracting Step 2 (Simple Assumptions). A “simple” assumption is a pair of efficiently computable
oracles C0 and C1, and the assumption that C0

𝑐≈ C1, i.e. C0 and C1 cannot be distinguished in PPT.12
For example, hiding resp. binding for commitment schemes are simple assumptions.

In Step 2, we reduce the indistinguishability of RWSV
∗ and SimV∗ to a simple assumption. That is, there

is some algorithm R such that RWSV
∗ ≡ RC0 (V∗), and RC1 (V∗) ≡ SimV∗ . Moreover, we assume that

RC0 (V∗) is efficient relative to RWSV
∗ , and SimV∗ is efficient relative to RC1 (V∗).

Putting It Together (Benign Simulators). Black-box simulators whose security proof follows the above
outline are called benign. See Fig. 5.1 for an overview of properties and their relation.

CEPT characterization
Corollary 5.3.9

standard reduction
Section 5.4.1

comp. ind. to stat. ind.
Section 5.3.2 & Appendix C.4.6

aux. input ZK
Definition 5.5.2

benign
Definition 5.6.20

query-benign
Definition C.6.13

normal RWS
Definition 5.6.4

eff. rel. to
Section 5.4.2

simple ass.
Section 5.6.2

normal RWS
Definition 5.6.4

“efficiency notion”
Appendix C.6.4

query ind.
Appendix C.6.1

sequential ZK
Definition 5.5.11

Lemma 5.4.7

Figure 5.1.: A rough overview of dependencies of core results and definitions. The greyed out approach follows [KL08] more
closely. The top line is used everywhere implicitly.

12 Technically, our definition of “simple assumption” corresponds to falsifiable assumptions [Nao03] in the sense of [GW11].
We deliberately do not call them falsifiable, since our proof techniques should extend to a larger class of assumptions,
which includes non-falsifiable assumptions.
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Lemma 5.1.7 (Informal Lemma 5.6.23). Argument systems with benign simulators are auxiliary-input
zero-knowledge against CEPT adversaries.

Proof summary. The proof strategy above can be summarized symbolically:

outV∗ ⟨P,V∗⟩ ≡ RWS(V∗) ≡ RC0 (V∗) 𝑐≈ RC1 (V∗) ≡ Sim(V∗) .

More precisely, consider a CEPT adversary (I,V∗). By normality of RWS, outV∗ ⟨P,V∗⟩ and RWS(V∗)
have (almost) identical output distributions, and RWS(V∗) is CEPT. By relative efficiency, RC0 (V∗) is
CEPT if RWSV

∗ is CEPT. Since C0
𝑐≈ C1, by a standard reduction, if RC0 (V∗) is CEPT, so is RC1 (V∗), and

their outputs are indistinguishable. Finally, since SimV∗ is efficient relative to RC1 (V∗), also SimV∗ is
CEPT. All in all, SimV∗ is efficient and produces indistinguishable outputs. □

Benign simulators are common, e.g. the classic, constant round, and concurrent zero-knowledge
protocols in [GMW86; GK96; Lin13; Ros04; KP01; PTV14] satisfy this property.

5.1.4.4. Sequential Composition and Hybrid Arguments

It turns out that hybrid arguments are non-trivial in the setting of a posteriori efficiency. Here, we
outline the challenges in proving the hybrid lemma, how to overcome them, and how to obtain security
of sequential composition from our abstract hybrid lemma.

Intermezzo: Tightness Bounds. The use of relative efficiency with polynomial tightnesss bounds
is not strictly necessary. Nevertheless, it offers “more quantifiable” security and is easier to handle.
For example, benign simulators are easily seen to “compose sequentially” because, (1) normal RWS
and relative efficiency compose sequentially, and (2) “simple” assumptions satisfy indistinguishability
under “repeated trials”. Together, this translates to sequential composition of benign simulation. Hence,
argument systems with benign simulators are sequential zero-knowledge against CEPT adversaries.
Unfortunately, the general case is much more involved.

The Hybrid Lemma. To keep things tidy, we consider an abstract hybrid argument, which applies to
zero-knowledge simulation and much more. Due to a posteriori efficiency, the lemma is both non-trivial
to prove and non-trivial to state.

Lemma 5.1.8 (Lemma 5.4.7). LetO0 andO1 be two oracles and suppose thatO1 is weakly efficient relative
to O0 and O0

𝑐≈ O1. Denote by rep(O0) and rep(O1) oracles which give repeated access to independent
instances of O𝑏 . Then rep(O1) is weakly efficient relative to rep(O0) and rep(O0)

𝑐≈ rep(O1).

Lemma 5.1.8 hides much of the complexity caused by a posteriori efficiency, and is often a suitable
black-box drop-in for the hybrid argument. We sketch how to adapt the usual hybrid reduction. In
our setting, rep(O𝑏) gives access to arbitrarily many independent instances of O𝑏 . The usual hybrids
H𝑖 use O1 for the first 𝑖 instances, and switch to O0 for all other instances. W.l.o.g., only q = poly(𝜆)
many O-instances are accessed by the distinguisher D. The hybrid distinguisher D′ guesses an index
𝑖∗ ← {0, . . . , q − 1}, and simulates a hybrid H𝑖+𝑏 embedding its challenge oracle O∗

𝑏
.

If D has advantage 𝜀, then the hybrid distinguisher D′ has advantage 𝜀/q. In the classic PPT setting,
we assume that O0 and O1 are classical PPT, and hence find thatD′ is PPT and therefore efficient. In
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an a posteriori setting, the efficiency of D′ is a bigger hurdle. We make the minimal assumptions, that
timeD+rep (O0 ) (Drep (O0 ) ) is efficient and that O1 is weakly efficient relative to O0.13 Hence, we do not
trivially know whether timeD+rep (O1 ) (Drep (O1 ) ) or the hybrid distinguisher D′, which has to emulate
many oracle instances, is efficient. Indeed, a naive argument would invoke weak relative efficiency q
times. In the case of PPT, this would mean q-many polynomial bounds. But, for all we know, these
could have the form 2𝑖poly(𝜆) in the 𝑖-th invocation, leading to an inefficient simulation.

The core problem is therefore to avoid a superconstant application of weak relative efficiency.14
Essentially this problem was encountered by Hofheinz, Unruh, and Müller-Quade [HUM13] in the
setting of universal composability and a posteriori PPT. They provide a nifty solution, namely to
randomize the oracle indexing. This ensures that, in each hybrid, every emulation of O0 (resp. O1) has
identical runtime distribution 𝑇0 (resp. 𝑇1). This gives a uniform bound on runtime changes. Now, we
show how to extend the proof of [HUM13], which is limited to CPPT.

We prove the hybrid argument in game hops, starting from the real protocol G1. In G2, we replace one
oracle instance of O0 by O1 (at a random point). In G3, every instance of O0 but one is replaced by O1.
In G4, only O1 is used. Since O1 is weakly efficient relative to O0 and O0

𝑐≈ O1, the transitions from
G1 to G2 (resp. G3 to G4) preserve efficiency and are indistinguishable. The step from G2 to G3 is the
crux. Note that we have at least one O0 (resp. O1) instance in either game. Take any one and denote
the time spent in that instance by 𝑇0 (resp. 𝑇1). Since we randomized the instances, the distribution of
𝑇0 (resp. 𝑇1) does not depend on the concrete instance. Importantly, even in the hybrid reduction, there
is an instance which can be used to compute 𝑇0 (resp. 𝑇1). Moreover, the total time spent in computing
instances of O0 and O1 is “dominated”15 by q ·𝑇0 + q ·𝑇1. Thus, it suffices to prove that 𝑆 = 𝑇 ′ +𝑇0 +𝑇1
is CEPT, where 𝑇 ′ is the time spent outside emulation of instances of O0 and O1. (Note that 𝑆 , 𝑇 ′, 𝑇0,
𝑇1 depend on the hybrid Hℓ , where ℓ ∈ {1, . . . , 𝑞 − 1}; we suppressed this dependency.) Now, we have
two properties:

• 𝑆ℓ is CEPT if and only if time(Hℓ ) is CEPT for the ℓ-th hybrid Hℓ .

• The reduction can compute and output 𝑆ℓ .

Thus, it suffices that 𝑆1 and 𝑆q−1 are indistinguishable, since we know that 𝑆1 is CEPT. Curiously, we
now reduced efficiency to indistinguishability.16 To prove indistinguishability, we can truncate the
reduction (or rather, the hybrids) to strict PPT as in the standard reduction. Thus, we obtain 𝑆1

𝑐≈ 𝑆q.
The hybrid lemma follows. The actual reasoning of this last step is a bit lengthier, but follows [HUM13]
quite closely: We truncate each oracle separately to maintain symmetry of timeout probabilities.
Unfortunately, the reduction does not give the usual telescoping sum, since the challenge oracle cannot
be truncated. Due to symmetry, the error is “dominated” by observed timeouts. Hence, it suffices to
find a (uniform) bound for the timeout probabilities over allHℓ . Our reasoning for this is mildly more
complex than [HUM13], since we do not have negligible bounds for timeouts, but only polynomial
tail bounds, and we make a weaker assumption on efficiency of O0 and O1.

Modular Sequential Composition. With Lemma 5.1.8 at hand, it is straightforward to prove that auxil-
iary input zero-knowledge composes sequentially. In fact, the well-known proof works almost without

13 The hybrid proof technique requires the hybrid distinguisher to emulate all but one oracle instance, and for this we need
weak relative efficiency.

14 For reference, even for a priori PPT sequential composition for zero-knowledge, one must avoid a superconstant invocation
of the existence of simulators. There, the solution is to consider a “universal” adversary and its “universal” simulator.

15 To be exact, dominated with slack q: Pr[timeO0+O1 (Hℓ ) > 𝑡] ≤ q · Pr[𝑞(𝑇ℓ,0 +𝑇ℓ,1) > 𝑡].
16 The CEPT characterization (Corollary 5.3.10) does not strictly apply here, but a simple variation does.
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modifications by using the hybrid lemma (Lemma 5.1.8), which absorbs the bulk of the complexity.
Indeed, it is possible to prove a modular sequential composition theorem for secure function evaluation,
similar to [KL08]. Interestingly, in [KL08], subprotocols must have simulators which are EPT in any
interaction, whereas in our setting, there is no such restriction.

5.1.5. Related Work

We are aware of three (lines of) related works w.r.t. EPT: The results by Katz and Lindell [KL08] and
those of Goldreich [Gol10], both focused on cryptography. And the relaxation of EPT for average-
case complexity by Levin [Lev86]. A general difference of our approach is, that we treat the security
parameter separate from input sizes, whereas [KL08; Gol10] assume 𝜆 = |x|.17 With respect to a
posteriori runtime, [HUM13] is a close analogue, although for PPT and in the UC setting.

Comparison with [KL08]. Katz and Lindell [KL08] tackle the problem of expected polynomial time by
using a superpolynomial runtime cutoff. They show that this cutoff guarantees a (strict) EPT adversary.
However, for the superpolynomial cutoff, they need to fix one superpolynomial function 𝛼 and have to
assume security of primitives w.r.t. (strict) 𝛼-time adversaries. Squinting hard enough, their approach
is dual to ours. Instead of assuming superpolynomial security and doing a cutoff, we “ignore negligible
events” in runtime statistics, thus doing a “cutoff in the probability space”. Moreover, we require no
fixed bound.

Interestingly, their first result [KL08, Theorem 5] holds for “adversaries which are EPT w.r.t. the real
protocol”. Their notion is minimally weaker than ours, as it requires efficiency of the adversary for all
inputs instead of a sequence of input distributions.18 [KL08, Section 3.5] claims that other scenarios, e.g.
sequential composition, fall within [KL08, Theorem 5]. Their modular sequential composition theorem,
[KL08, Theorem 12], however, requires that subprotocol simulators are “expected polynomial time in
any interaction”, which neither Theorem 5 nor Theorem 12 assert for the resulting simulators.

Comparison with [Gol10]. Goldreich [Gol10] strengthens the notion of expected polynomial time to
obtain a complexity class which is stand-alone and suitable for rewinding based proofs. He requires
expected polynomial time w.r.t. any reset attack, hence restricts to “nice” adversaries. With this, normal (in
the sense of [Gol10]) black-box simulators run in expected polynomial time, essentially by assumption.
This way of dealing with designated adversaries is far from the spirit of our work.

Comparison with [Lev86]. The relaxation of expected polynomial time adopted by Levin [Lev86]
and variations [Gol11b; Gol10; BT06] are very strong. Let 𝑇 be a runtime distribution. One definition
requires that for some poly and 𝛾 > 0, Pr[𝑇𝜆 > 𝐶] ≤ poly(𝜆)

𝐶𝛾
for large enough 𝜆 and𝐶 ≥ 0. Equivalently,

E [𝑇𝛾
𝜆
] is polynomially bounded (in 𝜆) for some 𝛾 > 0. Allowing negligible “errors” relaxes the notion

further. This definition fixes the composition problems of expected polynomial time. But arguably, it
stretches what is considered efficient far beyond what one may be willing to accept. Indeed, runtimes
whose expectation is “very infinite” are considered efficient.19 The goals of average case complexity

17 For completeness, we show how to mirror this weakened security in Appendix C.5.4.3.
18 Their definitions are a consequence of their non-uniform security definition and complexity setting. The proof of [KL08,
Theorem 5] never changes adversarial inputs, so there is no obstruction to handling designated adversaries in our sense.

19 Setting 𝑐 = 2 and 𝛾 = 3 in Remark 5.1.9 yields a runtime 𝑇 with E [𝑇 ] = ∑︁∞
𝑛=1 𝑛, which is still considered efficient. (The

limit − 1
12 is not applicable here.)
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theory and cryptography do not align here. We stress that our approach, while relaxing expected
polynomial time, is far from being so generous, see Section 5.1.6.1. (For completeness, we note that we
are not aware of work on designated adversaries in this setting.)

Related Work on CPPT. The notion of CPPT is (in different forms) used and well-known. For example,
Boneh and Shoup [BS20] rely on such a notion. This sidesteps technical problems, such as sampling
uniformly from {0, 1, 2} with binary coins. With a focus on complexity theory, Goldreich [Gol11a]
defines typical efficiency similar to CPPT. As the relaxations for strict bounds is very straightforward,
we suspect more works using CPPT variations for a variety of reasons.

Comparison with [HUM13]. Hofheinz, Unruh, and Müller-Quade [HUM13] define PPT with overwhelm-
ing probability (w.o.p.), i.e. CPPT, and consider a posteriori efficiency. They work in the setting of
universal composability (UC), and their main focus is an overall sensible notion of runtime, which does
not artificially restrict evidently efficient functionalities, such as databases or bulletin boards. Their
notion of efficiency is similar to our setting with CPPT. In fact, we use their techniques for the hybrid
argument. Since [HUM13] defines and assumes protocol efficiency, which we deliberately neglect, there
are some differences. Reinterpreting [HUM13], their approach is based on: “If for all (stand-alone)
efficient D the machine DO0 is efficient, then for all (stand-alone) efficient D the machine DO1 is
efficient.”20 Our approach is based on: “For all D, if the machine DO0 is efficient, then the machine
DO1 is efficient.” The stronger (protocol) efficiency requirements are harder to justify in our setting.
(Even classical PPT O0 can be “inefficient” for expected poly-size inputs. E.g., disallowing quadratic
time protocols seems harsh.)

More Related Work. Halevi and Micali [HM98] define a notion of efficiency for extractors in proofs
of knowledge, which closely resembles our notion of normal rewinding strategies. Precise zero-
knowledge [MP06; Pas06] requires that simulation and real execution time are closely related. Due to
Feige’s “attack” (or Example 5.1.1), this does not seem to help with designated EPT adversaries.

5.1.6. Separations

We briefly provide separations between some runtime notions. Here, we focus only on efficiency of
adversaries, and ignore requirements imposed on protocol efficiency, since we deliberately neglected
those. We consider basic runtime classes (i.e. runtimes of sampling algorithms) and how they are lifted
to interactive algorithms.

Both [KL08, Definition 1] and [HUM13, Definitions 1 and 2] use an “a posteriori” lifting. The former
lifts EPT, the latter lifts CPPT; both allow designated adversaries and are similar to our setting. “A
priori” liftings, such as [Gol10, Definitions 1–4] are far more restrictive (on adversaries), effectively
disallowing designated adversaries.

Regarding the underlying runtime classes, the works [KL08; Gol10] deal with (perfect) EPT, negligible
deviations are not allowed. The notion of PPT w.o.p. from [HUM13] and CPPT coincide. To separate
PPT, EPT, CPPT, CEPT, and Levin’s relaxations, we first recall fat-tailed distributions.

20 Think of D as the environment, O0 as the protocol, and O1 as the simulator.
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Remark 5.1.9 (Fat-tailed distributions). The sum
∑︁
𝑛 𝑛
−𝑐 is finite if and only if 𝑐 > 1. Thus, we obtain

a random variable 𝑋 with Pr[𝑋 = 𝑛] ∝ 𝑛−𝑐 . For 𝛾 > 0 we have E [𝑋𝛾 ] ∝ ∑︁
𝑛 𝑛
−𝑐+𝛾 . If 𝑐 − 𝛾 ≤ 1, then

E [𝑋𝛾 ] = ∞. Moreover, Pr[𝑋 ≥ 𝑘] ≥ 𝑘−𝑐 , i.e. 𝑋 has fat tails. In particular, for 𝑐 = 3, E [𝑋 ] < ∞ but
E [𝑋 2] ∝ ∑︁

𝑛 𝑛
−1 = ∞, and Pr[𝑋 ≥ poly] ≥ 1

poly3
for any poly.

Allowing a negligible deviation clearly separates perfect runtime distributions from their computational
counterparts. Clearly, PPT is strictly contained in EPT. The separation of CPPT and CEPT follows from
fat-tailed distributions. In Section 5.1.6.1 below, we separate CEPT from Levin’s relaxations of EPT,
denoted LT, and Vadhan’s relaxation [Gol10] of LT, denoted VT, which allows negligible deviation.
In the following diagram, strict inclusions are denoted by arrows.

PPT EPT LT

CPPT CEPT VT

5.1.6.1. Levin’s Relaxation and CEPT

We noted in Remark 5.1.9, that
∑︁∞
𝑛=1 𝑛

−𝑐 = 𝛼𝑐 < ∞ for 𝑐 > 1 gives rise to a distribution 𝑍𝑐 over N via
normalizing the sum. Let 𝑋 = 𝑍 3

2 . Then E [𝑋 ] =
1
𝛼𝑐

∑︁∞
𝑛=1 𝑛 = ∞. Since 𝑍2 is fat-tailed, so is 𝑋 . Let

𝑌𝑘 = 𝑋 | ( ·≥𝑘3 ) ↦→0. It follows immediately that E [𝑌𝑘 ] = E [𝑋 | ( ·≥𝑘3 ) ↦→0] ≥ 1
𝛼𝑐
𝑘2 for any 𝑘 ∈ N. Thus, for

any superpolynomial cutoff 𝐾 , we find E [𝑌𝐾 ] ≥ 1
2𝛼𝑐𝐾

2 is superpolynomial, and as a consequence, there
is no superpolynomial cutoff which makes 𝑋 EPT. (We interpret 𝑋 as a constant family of runtimes, i.e.
𝑋𝜆 = 𝑋 for all 𝜆.)

Formally, CEPT uses𝜈-quantile cutoffs (i.e. wemay condition on an eventG of overwhelming probability
1−𝜈 that minimizes E [𝑇 |G]). For𝑋 , any 𝜈-quantile cutoff for negligible 𝜈 induces some bound 𝑘 which
maximizes Pr[𝑇 ≤ 𝑘] ≥ 𝜈 . If 𝑘 were polynomial, then (due to “fat tails”) 𝜈 must also be polynomial.
Hence, 𝑘 must be superpolynomial, and consequently there is no negligible quantile cutoff which makes
𝑋 EPT. All in all, the runtime distribution 𝑋 is allowed by Levin’s relaxation, but is not CEPT.

5.1.7. Structure of this Chapter

In Section 5.2, we clarify additional preliminaries, such as (non-)standard (notational) conventions,
shorthands and terminology, and some basic concepts and results. In Section 5.3, we define CEPT
and prove the characterization as well as generalizations and convenience lemmas. In Section 5.4,
we introduce the standard reduction, relative efficiency and the hybrid lemma. In Section 5.5, we
apply CEPT to zero-knowledge. We define (uniform complexity auxiliary input) zero-knowledge, and
consider the example of G3CGK in detail. Then, we define sequential zero-knowledge and prove that it
is implied by auxiliary input zero-knowledge. In Section 5.6, we define rewinding strategies, simple
assumptions, and benign simulation, Moreover, we give a simple proof that benign simulators are
(sequential) zero-knowledge. In Section 5.7, we sketch the application of CEPT to (uniform complexity)
multiparty computation. In Section 5.8, we conclude and highlight some open questions.

In Appendix C.1, we give a detailed discussion on the effect of machinemodels and their (in)compatibility
with expected time. Appendix C.2 contains supplementary definitions for commitment schemes. The
remaining appendices contain further material and discussion. Appendix C.3 contains some simple
but useful results and reminders for our general discussion of runtime classes. Appendix C.4 treats
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runtime more abstractly. It justifies the notion of “closed runtime classes” formally and demonstrates
how most of our results extend to algebra-tailed runtime class. In Appendix C.5, we discuss asides
for each chapter, and more. These provide clarifications, justify decisions, technical details, effects
of variations in definitions, give (simple) examples, and so on. Finally, for completeness, we show in
Appendix C.6 that our approach is applicable even if we follow the work of Katz and Lindell [KL08]
much more closely, although at the expense of more convoluted proofs.

5.2. Preliminaries

In this section, we state some basic definitions and (non-)standard conventions used in this chapter.
We also recall some basic definitions since dealing with low-level questions such as runtime is more
sensitive to the concrete choices, although our final notions appear to be rather robust.

5.2.1. Notation and Basic Definitions

We denote the security parameter by 𝜆; it is often suppressed. Similarly, we often speak of an object 𝑋 ,
instead of a family of objects (𝑋𝜆)𝜆 parameterized by 𝜆. We always assume binary encoding of data,
unless explicitly specified otherwise.21 We write 𝑋 ∼ 𝑌 if a random variable 𝑋 is distributed as 𝑌 .
For random variables 𝑋 , 𝑌 over a set 𝐴We write 𝑋 |𝑎 ↦→𝑏 (resp. 𝑋 |𝑆 ↦→𝑏 , resp. 𝑋 |pred ↦→𝑏 ) for the random
variable where 𝑎 (resp. any 𝑎 satisfying 𝑎 ∈ 𝑆 resp. pred(𝑎) = 1) is mapped to 𝑏, and everything else
unchanged, e.g. 𝑋 |⊥↦→0 or 𝑋 |𝑆 ↦→0 or 𝑋 | · ≥𝑁 ↦→𝑁 .

For a countable set S and a function 𝜙 : S → R, let ∥𝜙 ∥𝑝 ≔ (
∑︁
𝑥∈S |𝜙 (𝑥)𝑝 |)1/𝑝 be the 𝑝-norms for 𝑝 ∈

[1, . . . ,∞]. (Recall that ∥𝜙 ∥∞ ≔ sup𝑥∈S |𝜙 (𝑥) |.) We define statistical distances Δ𝑝 (𝜌, 𝜎) ≔ 1
2 ∥𝜌 −𝜎 ∥𝑝 of

distributions 𝜌, 𝜎 : S → [0, 1]. Recall that Δ1(𝜌, 𝜎) = sup𝑋 ⊆Ω |𝜌 (𝑋 ) −𝜎 (𝑋 ) |. We refer to the variational
distance Δ( · , · ) ≔ Δ1(·, ·) as the statistical distance.

We call 𝜌sup(𝜇/𝜈) ≔ sup𝑥
𝜇 (𝑥 )
𝜈 (𝑥 ) (where

0
0 ≔ 0) the sup-ratio of 𝜇 over 𝜈 ; 𝜇 and 𝜈 may be arbitrary

non-negative functions.

With poly, polylog, and negl we denote polynomial, polylogarithmic and negligible functions (in 𝜆)
respectively. Usually, we (implicitly) assume that poly, polylog, and negl are monontone. A function
negl is (polynomially) negligible if lim𝜆→∞ poly(𝜆)negl(𝜆) = 0 for every polynomial poly. In many
definitions, we assume the existence of a negligible bound negl on some advantage 𝜀 = 𝜀 (𝜆). We
generally use “strict pointwise ≤” for bounds, e.g. 𝜀 ≤ negl denotes ∀𝜆 : 𝜀 (𝜆) ≤ negl(𝜆). We avoid
“eventually ≤”, denoted 𝜀 ≤ev negl (defined via ∃𝐶∀𝜆 > 𝐶 : 𝜀 (𝜆) ≤ negl(𝜆)). If 𝜀 ≤ev negl, then
max{𝜀 (𝜆), negl(𝜆)} =: 𝜈 (𝜆) is negligible and 𝜀 ≤ 𝜈 , hence this makes no difference in most situations.
However, “≤” behaves “more intuitively” than “≤ev” in some sense.22

21 In classical efficiency settings, unary encoded data is primarily used to model efficiency restrictions implicitly. We model
these explicitly, and, due to a posteriori notions, efficiency depends only on 𝜆 anyway. It is irrelevant if 𝜆 is passed as
binary or unary to the machines, hence we use binary encodings unless otherwise specified.

22 When infinitely many functions are considered, ≤ and ≤ev behave differently. For ≤ev, any countable set of negligible
functions is ≤ev-dominated by some negl, c.f. [Bel02]. This is false for ≤. Indeed, ≤ev behaves unintuitive. Consider a sum
of a growing number (in 𝜆) of negligible functions 𝜈𝑖 . It is well-known that 𝜇 (𝜆) ≔ ∑︁𝜆

𝑖=1 𝜈𝑖 (𝜆) need not be negligible, even
if all 𝜈𝑖 are negligible. But if all 𝜈𝑖 are “strictly dominated” by some 𝜈 , i.e. 𝜈𝑖 ≤ 𝜈 , then 𝜇 (𝜆) ≤ 𝜆𝜈 (𝜆) hence 𝜇 is negligible.
However, if all 𝜈𝑖 are only “eventually dominated”, i.e. 𝜈𝑖 ≤ev 𝜈 , then the standard counterexample (𝜈𝑖 ( 𝑗) = 1 if 𝑖 = 𝑗 and 0
else) shows that 𝜇 need not be negligible. Concretely, 𝜈 = 0 eventually dominates all 𝜈𝑖 , yet 𝜇 (𝑛) = 1 > 0 = 𝑛𝜈 (𝑛). Due to
this behaviour, we avoid “≤ev”.
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5.2.2. Systems, Algorithms, Interaction and Machine Models

More detailed discussion of (unexplained) terms in this section are in Appendix C.1.

Machine Models. We fix some admissible machine model, which in particular implies that emu-
lating a system of interacting machines has small overhead. The reader may assume a RAM model
without much loss. In particular, polylogarithmic (emulation) overhead is acceptable in our setting,
see. Appendix C.1.4.23 Another irksome technicality are non-halting computations. One may follow
[Gol10], and assume all algorithms halt after a finite number 𝑛(𝜆) of steps. Instead, we deal with
non-halting executions explicitly. For this, we define the symbol nohalt as the “output” of such
a computation, and assume that any system which receives nohalt also outputs nohalt, if not
specified otherwise.

Systems, Algorithms and Oracles. We always consider (induced) systems, which offer interfaces for
(message-based) communication.24 Input and output are modelled as interfaces as well. The security
parameter 𝜆 is an implicit input interface of (almost) every system; a system is closed if its only
interfaces are for 𝜆 and output, i.e. it is a “sampling algorithm” (which takes 𝜆 and samples some
output). A system is a “mathematical” object, which defines (probabilistic) behaviour of the offered
interfaces. An algorithm is given by code, a finite25 string describing the behaviour and interfaces,
and has a notion of runtime and randomness interface (e.g. random tape) which are imparted on it
by the machine model. Oracles or parties are, unless stated otherwise, algorithms, which are only
used via their interface. To emphasize availability of a certain oracle to some algorithm, we speak of
oracle algorithms. A timed oracle offers an extended interface to its caller, which allows to bound
the maximum time spent in an invocation (and return timeout if the allotted time is exceeded), and
also returns the elapsed time of any invocation. Oracles also serve as a means to make subroutine
calls explicit. A timeful oracle (or system) comes with some notion of purported elapsed runtime. For
consistency, the purported elapsed runtime is always at least the answer length of an invocation, and
this is usually also the runtime notion of interest. Timeful oracles (or systems) are used as convenience
abstractions to specify and analyze unconditional properties. Timed timeful oracles are defined in the
obvious way.

Interaction. It will always be clear from the context how interfaces are used or connected. Interactivity
is implicit, and implied by open interfaces. Let A1,A2 be a algorithms (or more generally, systems).
For connecting A1 and A2, i.e. interaction, with (fixed) inputs 𝑥,𝑦, 𝑧, we write ⟨A1(𝑥, 𝑧),A2(𝑦, 𝑧)⟩ . The
result is another algorithm (or system), where we write outA𝑖 ⟨A1,A2⟩ for the output (interface) of A𝑖
for 𝑖 = 1, 2. We write AO for an algorithm (or system) A, with access to an oracle O (where O may be
a subroutine, e.g. a commitment scheme). This notation emphasizes, that the output of the system is
that of A. Otherwise, the system is equivalent to ⟨A,O⟩ , or even OA. We view interaction, oracle, and
subroutine calls as essentially identical and use the notation interchangeably if no confusion arises.

Black-box rewinding (bb-rw) access to an algorithm A (or timeful system) means access to an oracle
bbrw(A) emulating A with fresh but fixed randomness, which allows to feed A messages and rewind it

23 More precisely, CEPT is robust w.r.t. polylogarithmic overhead, due to virtuality. For robustness of EPT, an additional strict
a priori runtime bound is needed, e.g. 2poly(𝜆) works.

24We use an ad-hoc definition of system. A compatible, precise notion was recently (concurrently) introduced in [LM20].
25 Non-uniform notions deviate here and allow infinite descriptions.
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to any visited state. For notational simplicity, we treat bbrw(A) like a NextMsgA function, which upon
a query query = (m1, . . . ,m𝑛) returns the result of A when given m𝑖 as its 𝑖-th message. The query
(m1, . . . ,m𝑛) is viewed as a logical handle (m1, . . . ,m𝑛−1) to a previously visited state, and a message
m𝑛 to A when in that state. Implementations of bbrw(A) use short handles, say a counter. A timed
bb-rw oracle truncates and returns the elapsed runtime of its emulated program. By abuse of notation,
we often write BA instead of Bbbrw(A) if it is clear that B has bb-rw access to A.

Remark 5.2.1 (Efficient implementations). Access to NextMsgA and bbrw(A) is “logically equivalent”,
yet, the efficiency characteristics differ vastly. For expected time, this is a critical point. We encounter
such issues also in other situations, and will offer a brief warning but proceed with the usual notation.
Using more efficient “logically equivalent” implementations solves such problems. See Appendix C.1.3.

5.2.3. Input Generation: Conventions and Shorthands

In non-uniform complexity settings, it is possible to quantify over all inputs to a protocol universally.
In uniform complexity settings [Gol93], these inputs must be efficiently samplable. For this, we use
efficient algorithm, usually denoted I, called the input generator. For non-uniform security, I is
non-uninform, i.e. has tape-like access to an (unbounded) non-uniform advice string advc𝜆 . This
deviates from standard definitions [Gol01] slightly by allowing input distributions.

Notation 5.2.2 (Shorthand expressions for composing systems). Let P,V∗ be two (interacting) parties
and let I be an input generator. We use the shorthand notation ⟨P,V∗⟩I for the system resp. interaction
of ⟨P,V⟩ completed with I, where it is either clear how to connect the interfaces or it is explicitly
described. We also say: “Let outV∗ ⟨P(x,w),V∗(x, aux)⟩ , where (x,w, aux) $← I(𝜆).”

What we mean by this is: Consider the system obtained by composing I, P and V∗ as indicated, that
is, the system which first runs I to obtain (x,w, aux), then passes (x,w) to P as input, and passes
(x, aux) to V∗, and then runs P and V∗ (i.e. letting them interact). Of this composed system, take and
return the output of V∗.

Note that we do not mean to quantify over all inputs (x,w, aux) which I may produce, except if made
explicit, e.g. by stating “for all (x,w, aux) ← I” or more precisely “for all (x,w, aux) ∈ supp(I)”.
Since we almost exclusively consider closed systems, and fixed inputs make little sense in a uniform
asymptotic setting, no confusion should arise.

5.2.4. Preliminary Remarks on Runtime

An abstract treatment of runtime is in Appendix C.4, and meant for the inclined reader only. This section
contains all essential definitions for Section 5.3 and later sections, which only deal with polynomial
times, namely PPT, EPT, CPPT and CEPT.

For an oracle algorithm A, we write timeA(AO) for the time spent in A (called oracle-excluded time),
timeO (AO) for the time spent inO, and timeA+O (AO) for the time spent in both (called oracle-included
time). This notation extends naturally to interaction and composite systems built from interacting
machines. Note that 𝑇 = timeA(AO) is a random variable, or more precisely, a sequence of random
variables 𝑇𝜆 parameterized by 𝜆. We assume that that runtimes sum up, i.e. timeA(AO) + timeO (AO) =
timeA+O (AO), as dependent random variables.
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Definition 5.2.3. A runtime (distribution) 𝑇 is a family of random variables (resp. distributions)
over N0 parameterized by the security parameter 𝜆. We (only) view a runtime as a random variable
𝑇𝜆 : Ω𝜆 → N0, when stochastic dependency is relevant.

Definition 5.2.4. A runtime class T is a set of runtime distributions.26 A (sampling) algorithm A is
T-time if timeA(A) ∈ T, more explicitly, 𝑇𝜆 = timeA(A(𝜆)) is in T.

Example 5.2.5. The runtime classes PPT and EPT of strict polynomial time (PPT) and expected
polynomial time (EPT) are defined in the obvious way, i.e.: 𝑇 ∈ PPT (resp. 𝑇 ∈ EPT) if there exists a
polynomial poly such that Pr[𝑇𝜆 > poly(𝜆)] = 0 (resp. E [𝑇𝜆] ≤ poly(𝜆)).

Our central tool for dealing with expected time is truncation. Also recall that timed oracles abstract the
ability to truncate executions.

Definition 5.2.6 (Runtime truncation). Let A be an algorithm. We define A≤𝑁 as the algorithm which
executesA up to𝑁 steps, and then returnsA’s output. IfA did not finish in time, A≤𝑁 returnstimeout.

A priori Time, a posteriori Time, and Designated Adversaries. In any closed system, every component
has an associated random variable, describing the time spent in it. We only consider such runtimes
(most often, the total runtime). Hence, efficiency depends only on 𝜆, since closed systems have no (other)
input. In particular, we do not assign a stand-alone notions of efficiency or runtime to a non-closed
system, e.g. an algorithm A which needs inputs (besides 𝜆), resp. oracle access, resp. communication
partners. The exception to the rule are a priori PPT resp. EPT algorithms A, for which there is a bound
poly such that timeA(. . . ) ≤ poly resp. E [timeA(. . . )] ≤ poly for any choice of inputs, oracles, and
communication partners.27

A posteriori efficiency of algorithms (or systems) considers them in a complete context, i.e. as part of a
closed system. Let A be an algorithm and E be an environment such that ⟨E,A⟩ is a closed system. For a
posteriori time, there are two sensible definitions: We can call A a posteriori PPT (resp. EPT, . . . ) w.r.t.
E, if timeA(⟨E,A⟩) is PPT (resp. EPT, . . . ), or if timeE+A(⟨E,A⟩) is PPT (resp. EPT, . . . ). We generally use
the latter, but are always explicit about it. Applied to security notions, we get designated adversaries,
which need only be efficient for the protocol they are designed to attack, see [Fei90] or [KL08; Gol10].

5.2.5. Probability Theory

By Dists(𝑋 ) we denote the space of probability distributions on 𝑋 . The underlying probability space
for random variables is usually denoted by Ω, the associated 𝜎-algebra is always left implicit. We
neglect measurability questions because they do not pose any problems and are merely trivial technical
overhead, see Appendix C.5.8 for a brief discussion.

We allow product extension of Ω to suit our needs, say extending to Ω′ = Ω × Σ with Bernoulli
distribution Ber( 13 ) on Σ = {0, 1}. Random variables over Ω are lifted implicitly and we again write Ω
instead of Ω′. Let N0 ∪ {∞,timeout} be totally ordered via 𝑛 < ∞ < timeout for all 𝑛 ∈ N0. For
𝑋 : Ω → R, if Pr[𝑋 > 𝑐] < tail(𝑐), we call tail a tail bound. For families 𝑋𝜆 : Ω → R, we sometimes

26 For our general treatment of runtimes, we use a more restrictive definition, c.f. Appendix C.4.3.
27 By definition, a priori PPT is the essentially same as a priori PPT in any interaction of [KL08; Gol10], but in our setting
where only the security parameter grants runtime. Note that “classical” PPT algorithms are not a priori PPT in our sense,
since their runtime bound depends on the input size, while ours are fixed by 𝜆 alone. We can mitigate this discrepancy by
size-guarding (see Appendix C.5.4.3).
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sloppily call 𝑡𝜆 a tail bound for 𝑐𝜆 if Pr[𝑋𝜆 > 𝑐𝜆] < 𝑡𝜆 . We denote the cumulative density function (CDF)
of 𝑋 by CDF𝑋 (𝑐) = Pr[𝑋 ≤ 𝑐] and let CDF𝑋 ( · ) ≔ 1 − CDF𝑋 ( · ) = Pr[𝑋 > · ].

For convenience, we use a relaxation of stochastic domination.

Definition 5.2.7 (Domination with slack). Let 𝑋,𝑌 : Ω → S be random variables and S be a totally
ordered set (usually S = R ∪ {timeout}). Let 𝐿 ≥ 1. We say 𝑌 dominates 𝑋 with slack 𝐿 (in
distribution), if CDF𝑋 ≤ 𝐿 · CDF𝑌 , that is, if

∀𝑐 ∈ S : Pr[𝑋 > 𝑐] ≤ 𝐿 · Pr[𝑌 > 𝑐] .

We denote this by 𝑋
𝑑
≤𝐿 𝑌 . If 𝐿 = 1, we write 𝑋

𝑑
≤ 𝑌 . We use the same notation for families of random

variables, i.e. we write 𝑋
𝑑
≤ 𝑌 and mean 𝑋𝜆

𝑑
≤ 𝑌𝜆 for all 𝜆.

Instead of truncating runtimes in the domain, we often “truncate” in the probability space.

Definition 5.2.8 (𝜈-quantile cutoff). Let 𝑇 be a distribution on N0 ∪ {∞} and 𝜈 > 0. Suppose that
Pr[𝑇 = ∞] ≤ 𝜈 .28 The (exact) 𝜈-quantile (cutoff)𝑇 𝜈 is following distribution on N0∪timeout. Let
CDF𝑇 ( · ) : N0 ∪ {∞} → [0, 1] be the CDF of𝑇 . Then CDF𝑇 𝜈 ( · ) : N0 ∪timeout→ [0, 1] is defined
by CDF𝑇 𝜈 (𝑛) = min{1−𝜈,CDF𝑇 (𝑛)} for 𝑛 ∈ N, and CDF𝑇 𝜈 (∞) = lim𝑛→∞min{1−𝜈,CDF𝑇 (𝑛)}, hence
Pr[𝑇 𝜈 = ∞] = 0, and CDF𝑇 𝜈 (timeout) = 1,

An exact 𝜈-quantile cutoff for a random variable 𝑇 : Ω → N0 ∪ {∞} can be constructed by: First pick
𝑁 = inf{𝑛 | Pr[𝑇 > 𝑛] ≤ 𝜈}. If Pr[𝑇 > 𝑁 ] ≕ 𝜈 ′ equals 𝜈 , let 𝑇 𝜈 ≔ 𝑇 | · >𝑁 ↦→timeout. Else, pick a
(measurable) subset of 𝐴 = {𝜔 ∈ Ω | 𝑇 (𝜔) = 𝑁 } of probability 𝜈 − 𝜈 ′, and let 𝑇 𝜈 ≔ 𝑇 |𝐴 ↦→timeout. If
necessary, modify Ω. So we assume w.l.o.g. that there is such a set of events. An approximate 𝜈-quantile
cutoff with error 𝛿 is an exact 𝜈 ′-quantile cutoff, where 𝜈 ≤ 𝜈 ′ ≤ 𝜈 + 𝛿 .

In case of discrete distributions, one can find a unique maximal (measurable) subset 𝐴 (e.g. minimal by
lexicographic order), and a unique atomic event which may have to be split between 𝑁 and timeout.
By modifying Ω to Ω × {0, 1}𝑛 , an approximate cutoff with error at most to 2−𝑛 is possible. Using
Ω × Ber(𝜈 − 𝜈 ′), exact cutoffs are possible.

Remark 5.2.9 (Equal-unless). If 𝑋,𝑌 : Ω → S are random variables and coincide (as functions), except
for an event E ⊆ Ω, then 𝑋 and 𝑌 are (pointwise) equal unless E. Typically, E = {𝜔 | 𝑌 (𝜔) = bad}
(for some symbol bad), and we say 𝑋 equals 𝑌 unless bad happens. We also say 𝑋 and 𝑌 coincide
unless (or agree except) if bad happens. The definition naturally extends to oracles and systems.

Remark 5.2.10 (Truncation of values vs. quantiles). Consider random variables𝑋,𝑌 over Rwith 𝑋
𝑑
≤𝐿 𝑌

(for some 𝐿 ≥ 1). As seen in Lemma C.3.7, quantile-truncation preserves domination even if we
additionally condition on ¬timeout. Truncating in the domain does not preserve domination if we
additionally condition on ¬timeout. For example, over {1, 2, 3, 4} consider the probability vectors
𝑝𝑋 ˆ︁= (𝛽, 0, 1 − 𝛽, 0) and 𝑝𝑌 ˆ︁= (0, 𝛼, 0, 1 − 𝛼). Truncating 𝑋,𝑌 at 3 and conditioning on ¬timeout

yields 𝑋 ′, 𝑌 ′ with 𝑝𝑋 ′ = 𝑝𝑋 and 𝑝𝑌 ′ = (0, 1, 0), and thus 𝑋 ′
𝑑

≰𝐿 𝑌
′, even for 𝐿 = 1.

28 It is straightforward to deal with general 𝜈 ≥ 0. But distributions 𝑆 over N0 ∪ {∞} ∪ timeout with Pr[𝑆 = ∞] > 0 are
not particularly useful for us.
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5.2.6. Indistinguishability and Oracle-Related Notions

We define (oracle-)indistinguishability, repeated trials, and query sequences.

5.2.6.1. Oracle-Indistinguishability

The (in)distinguishability of oracles (or systems) is a folklore abstraction. “Bit-guessing” experiments,
such as indistinguishability of distributions, and more generally game-based security notions can be
straightforwardly rephrased as an oracle pair, see Appendix C.5.1.3. Depending on the oracles (or
systems) and their interfaces, distinguishing can encompass (adversarial) input generation, protocol
runs, and more. For example, an oracle may present an IND-CPA game for public key encryption, or it
may present the distinguisher with a concurrent zero-knowledge setting.

Definition 5.2.11 (Oracle-indistinguishability). Let O0 and O1 be (not necessarily computable) oracles
with identical interfaces. A distinguisher D is a system which connects to all interfaces or O0, O1,
resulting in a closed system DO𝑏 . The (standard) distinguishing advantage of D is defined by

AdvdistD,O0,O1
(𝜆) = |Pr[DO1 (𝜆) (𝜆) = 1] − Pr[DO0 (𝜆) (𝜆) = 1] |.

By abuse of notation, we sometimes abbreviate AdvdistD,O0,O1
by AdvdistD,O .

Let T be a runtime class. Then O0 and O1 are computationally (standard) indistinguishable
in T-time, written O0

𝑐≈T O1 if for any T-time distinguisher D, i.e. timeD (DO𝑏 (𝜆) (𝜆)) ∈ T (for
𝑏 = 0, 1),29 there is some negligible negl such that AdvdistD,O (𝜆) ≤ negl. We define statistical T-query
indistinguishability by counting only oracle-queries as runtime.

Perfect indistinguishability is special, and we reserve the notation “≡” for it.

Definition 5.2.12. Oracles O0, O1 (or systems, or algorithms), for which all (unbounded) distinguishers
have advantage 0 are called perfectly indistinguishable. We also write O0 ≡ O1 to emphasize this.

Remark 5.2.13 (Indistinguishability of distributions). Indistinguishability of distributions𝑋 and𝑌 (under
repeated samples) is defined in the natural compatible way, namely via oracles O𝑋 and O𝑌 which
output a single (a fresh) sample of 𝑋 resp. 𝑌 (for each query).

5.2.6.2. Repeated Trials

It is useful to make repeated oracle access explicit.

Definition 5.2.14 (Repeated oracle access). Let O be an oracle. We denote by rep(O) an oracle which
offers repeated access to independent instances of O. For example, rep(O) may implement this by
expecting message tuples (𝑖,𝑚) of oracle index 𝑖 and query𝑚, and a special message which starts a
new independent copy of O, increasing the maximal admissible index 𝑖 by 1. We denote by rep𝑞 (O) an
oracle which limits access to a total of at most 𝑞 instances of O. (Effectively, the admissible indices are
1, . . . , 𝑞. Also observe that rep(O) = rep∞(O).)

29 This is equivalent to being efficient in the respective distinguishing experiment.
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Definition 5.2.15 (Indistinguishability under repeated trials). Let O0 and O1 be two oracles. We say
O0 and O1 are T-time computationally indistinguishable under 𝑞 (repeated) trials, if rep𝑞 (O0)
and rep𝑞 (O1) are T-time computationally indistinguishable. We say O0 and O1 are T-time indistin-
guishable under (unbounded many) repeated trials, if they are T-time indistinguishable for 𝑞 = ∞
repeated trials. The definition for T-query statistically indistinguishable is analogous.

5.2.6.3. Query-Sequences

We use following definition and notation for the sequence of queries made by an algorithm to its
oracle.

Definition 5.2.16 (Query-sequence). LetAO be an oracle algorithm. The query-sequence qseqO (AO (𝑥))
is the (distribution of the) sequence of queries made by A to O. We view qseqO (AO (𝑥)) as an oracle,
which grants lazy (tape-like) access to the queries.

5.3. Computationally Expected Polynomial Time

In this section, we define computationally expected polynomial time (CEPT), briefly recap the general
results of Appendix C.4 for polynomial runtime classes, and have a first glimpse of the behaviour of
CEPT. The inclined reader may wish to continue with Appendix C.4 instead; it deals with runtime
classes in more generality.

5.3.1. A Brief Recap

5.3.1.1. Virtually Expected Time

We are interested in properties, which need only hold with overwhelming probability. We formalize
this for the expectation of non-negative random variables as follows.

Definition 5.3.1 (Virtual expectation). Let 𝑋 : Ω → R≥0 ∪ {∞} Let 𝜀 > 0. We say 𝑋 has 𝜀-virtual
expectation (bounded by) 𝑡 if

∃G ⊆ Ω : Pr[G] ≥ 1 − 𝜀 ∧ E [𝑋 | G] ≤ 𝑡

We extend this to families by requiring it to hold component-wise. Moreover, we say a runtime 𝑇
is 𝜀-virtually 𝑡-time if 𝑇 has 𝜀-virtual expectation bounded by 𝑡 . We abbreviate this as virtually
expected (𝑡, 𝜀)-time and call 𝜀 the virtuality of time (𝑡, 𝜀).

Virtual properties have a “probably approximately” flavour. They are closely related to “𝜀-smooth
properties”, such as 𝜀-smooth min-entropy, which smudge over statistically close random variables
(instead of conditioning).30 Virtual properties must behave well under restriction (up to a certain
extent).

Lemma 5.3.2. Let 𝑋 : Ω → R≥0 be a random variable and E [𝑋 ] = 𝑡 . Then any restriction of 𝑋 to an
event G of measure 1 − 𝜀 implies E [𝑋 | G] ≤ (1 − 𝜀)−1𝑡 .

30We borrowed the terminology of virtual properties from group theory.
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The upshot of Lemma 5.3.2 is that, if we condition on an overwhelming (in fact, noticeable) event G,
polynomially bounded expectation is preserved. Also, consecutive restrictions of Ω are unproblematic.

5.3.1.2. Triple-Oracle Indistinguishability

Using triple-oracle indistinguishability, instead of standard indistinguishability, for (runtime) distribu-
tions abstracts technical details and prevents technical problems. Recall that we always use binary
encodings, and this includes runtime oracles (even though unary encodings work there without
change).

Definition 5.3.3. A triple-oracle distinguisher D for distributions 𝑋0, 𝑋1, receives access to three
oraclesO0,O1 andO∗𝑏 , which sample according to some distributions𝑋0, 𝑋1, and𝑋𝑏 . The distinguishing
advantage is Adv3-distD,O0,O1

= |Pr[DO0,O1,O∗1 (𝜆) = 1] − Pr[DO0,O1,O∗0 (𝜆) = 1] |.

Two runtime distributions 𝑇, 𝑆 are computationally T-time triple-oracle indistinguishable, de-
noted by 𝑇

𝑐

∼∼∼T 𝑆 , if any T-time distinguisher has advantage 𝑜 (1). If T contains PPT, then (by ampli-
fication) any distinguisher has negligible advantage. For statistical triple-oracle indistinguishability, we
only count oracle queries as steps (and often explicitly speak of statistical T-query distinguishers)31

and write 𝑇
𝑠

∼∼∼T 𝑆 .

A runtime class T is computationally closed if for all runtimes 𝑆 , if there exists some 𝑇 ∈ T such
that 𝑇

𝑐

∼∼∼T 𝑆 , then 𝑆 ∈ T. Statistically closed is defined analogously.

In the definition, we sketched our approach for general runtime classes (namely requiring𝑜 (1) advantage
bound, see Appendix C.4). This definition applies to runtime classes from other algebras, such as polylog
or quasi-polynomial time, and implicitly uses the notion of negligible function for these algebras. The
use of tail bounds as our proof technique seems limited to the setting, where “advantage” and “time”
algebras coincide. From now on, we specialize to the polynomial setting, where amplification enforces
(poly-)negligible advantage.

Triple-oracle distinguishing should be interpreted as distinguishing with repeated samples, plus sam-
pling access to the distributions 𝑋0, 𝑋1. It allows for quite modular reductions, as we see now.

Remark 5.3.4 (Standard and triple-oracle indistinguishability). To clearly distinguish triple-oracle and
“normal” indistinguishability, we call the latter standard when in doubt. We use (and defined) triple-
oracle indistinguishability only for (runtime) distributions, not for general oracles.

5.3.2. Characterizing CEPT

We begin with the fundamental definition of this section.

Definition 5.3.5 (CEPT and CPPT). The runtime class CEPT of computationally expected polyno-
mial time contains all runtimes which are (triple-oracle) PPT-time indistinguishable from expected
polynomial time. In other words: A runtime𝑇 is CEPT if there is an EPT ˜︁𝑇 , such that𝑇 and ˜︁𝑇 are triple-
oracle PPT-time indistinguishable, i.e. 𝑇

𝑐

∼∼∼ ˜︁𝑇 .
31We never consider unbounded queries for statistical triple-oracle distinguishing, as this trivially coincides with perfect

indistinguishability.
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Computationally (strict) probabilistic polynomial time is defined analogously and denoted
CPPT.

Now, we turn towards the characterization of CEPT. We start with a few simple lemmata. Their
central technique is to approximate probability distributions with suitable precision, and then use this
information for distinguishing.

Lemma 5.3.6. Suppose 𝑆 and 𝑇 are runtimes and 𝑇 ∈ CEPT. Then statistical CEPT-query and

computational CEPT-time triple-oracle indistinguishability coincide, i.e. 𝑆
𝑐

∼∼∼PPT 𝑇 ⇐⇒ 𝑆
𝑠

∼∼∼PPT 𝑇 .
Moreover, a priori PPT distinguishers are sufficient.

Proof sketch. It is clear that statistical indistinguishability implies computational indistinguishability.
Thus, we concentrate on the converse. For 𝑇 ∈ CEPT there exists, by definition, some ˜︁𝑇 ∈ EPT such
that 𝑇

𝑐

∼∼∼ ˜︁𝑇 (triple-oracle computational indistinguishability). Hence, for any efficiently computable
𝑁 = 𝑁 (𝜆), we have |Pr[𝑇 > 𝑁 ] − Pr[˜︁𝑇 > 𝑁 ] | ≤ negl.

We show that 𝑇 and ˜︁𝑇 are statistically triple-oracle indistinguishable as well. Assume the statistical
distance Δ(𝑇,˜︁𝑇 ) is at least 𝛿 = 1

poly0
infinitely often. Note that Pr[˜︁𝑇 > 𝑁 ] ≤ poly1

𝑁
, where E [˜︁𝑇 ] ≤ poly1.

Thus, by truncating𝑇 , ˜︁𝑇 after, say 𝑁 = 4poly0poly1, we know that𝑇 ≤𝑁 and ˜︁𝑇 ≤𝑁 are distributions with
polynomial support in {0, . . . , 𝑁 } and non-negligible statistical distance 𝛿

4 infinitely often. Since we have
(repeated) sample access to 𝑇 , ˜︁𝑇 and the challenge runtime, we can approximate the probability distri-
butions (by the empirical probabilities) up to any 1

poly precision in polynomial time, see Appendix C.3.4.
Consequently, we can construct a (computational) PPT distinguisher if 𝑇 and ˜︁𝑇 are not statistically
PPT-query indistinguishable.

The described statistical-to-computational distinguisher works for𝑇 and 𝑆 as well. Let 𝛿 = Δ(𝑇, 𝑆). Since
𝑇 ∈ CEPT, there is a suitable tail bound 𝑁 with Δ(𝑇,𝑇 ≤𝑁 ) ≤ 𝛿

4 . It is easy to see that Δ(𝑇 ≤𝑁 , 𝑆≤𝑁 ) ≥
𝛿
4 .

32 If 𝛿 ≥ 1
poly infinitely often, then there is a suitable polynomial 𝑁 , such Δ(𝑇 ≤𝑁 , 𝑆≤𝑁 ) ≥ 𝛿

4 infinitely
often. Thus, we are in the same setting as before, and can distinguish by approximation. Lastly, note
that the distinguisher we constructed is a priori PPT. □

The proof of Lemma 5.3.6 also shows closedness of CEPT.

Corollary 5.3.7. Let 𝑇, 𝑆 be two runtimes and 𝑇 ∈ CEPT. Then 𝑆
𝑐/𝑠
≈ PPT 𝑇 ⇐⇒ 𝑆

𝑐/𝑠
∼∼∼ CEPT 𝑇 , i.e.

statistical PPT-query and computational PPT-time triple-oracle indistinguishability coincide.

Thus, we have shown that all relations
𝑚

∼∼∼T for𝑚 ∈ {𝑐, 𝑠}, T ∈ {PPT,CEPT} coincide. For concrete
applications, we want to use standard indistinguishability instead of triple-oracle indistinguishability
whenever possible.

Lemma 5.3.8. Let𝑇 and 𝑆 be runtimes induced by algorithms A, B, and suppose𝑇 ∈ CEPT. Then triple-

oracle and standard PPT-time indistinguishability coincide, i.e. 𝑆
𝑐/𝑠
≈ PPT 𝑇 ⇐⇒ 𝑆

𝑐/𝑠
∼∼∼ PPT 𝑇 .

32 Intuitively, either timeout accumulates a difference in probability of 𝛿4 , or a difference of
𝛿
4 in probability is present on

{0, . . . , 𝑁 }, see Corollary C.3.5.
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Proof sketch. Suppose 𝑇 and 𝑆 are triple-oracle distinguishable with advantage at least 𝛿 = 1
poly0

infinitely often. The distinguisher D′ from the proof of Lemma 5.3.6 is a priori PPT with advantage
𝛿
4 infinitely often. Moreover, D′ truncates all samples at polynomial 𝑁 , i.e. D actually distinguishes
𝑇 ≤𝑁 and 𝑆≤𝑁 . These truncated runtime distributions can be sampled via emulation in strict polynomial
time. By sampling via emulation and a hybrid argument, we find an a priori PPT distinguisher D with
advantage at least 𝛿

4𝑁 infinitely often. □

We stress that to efficiently distinguish two induced runtimes, it is sufficient that one of the two
algorithms is efficient.33

Putting things together yields following convenient characterization of CEPT and CPPT:

Corollary 5.3.9 (Characterization of CEPT). Let𝑇 be a runtime. The following conditions are equivalent:

0. 𝑇 is in CEPT.

1. 𝑇 is PPT-time triple-oracle computationally indistinguishable from some ˜︁𝑇 ∈ EPT.

2. 𝑇 is PPT-query triple-oracle statistically indistinguishable from some ˜︁𝑇 ∈ EPT.

3. 𝑇 is virtually expected polynomial time. Explicitly: There is a negligible function negl, an event G
with Pr[G] ≥ 1 − negl, and a polynomial poly, such that E [𝑇𝜆 | G] ≤ poly(𝜆).

Furthermore, 𝑇 ∈ CEPT satisfies the following tail bound

Pr[𝑇𝜆 > 𝑁 ] ≤ poly(𝜆)
𝑁

+ negl(𝜆)

for poly and negl as in 3. Consequently, CEPT distinguishers are not more powerful than PPT distin-
guishers. In particular, CEPT is a closed runtime class. (In fact, it is the closure of EPT.)

For induced runtimes 𝑇 = timeA(A), 𝑆 = timeB(B), where 𝑇 ∈ CEPT, and 𝑆 is arbitrary, computational
CEPT-time (resp. statistical CEPT-query) triple-oracle indistinguishability and standard computational
(resp. statistical) indistinguishability coincide.

The analogous characterization and properties hold for CPPT.

The essence of Corollary 5.3.9 is the equivalence of items 1 and 3. The former is easy to prove, as it is
follows by reductions to indistinguishability assumptions. The latter is easy to use, as it guarantees
that, after ignoring a negligible set of bad events, one can work with perfect EPT.

Proof sketch of Corollary 5.3.9. Equivalence of items 1 and 2 follows from Lemma 5.3.6. Now, we show
that 2 implies 3. For our triple-oracle notion, being statistically indistinguishable implies statisti-
cally closeness, as one can see by approximating the probability distribution, as in Lemma 5.3.6. By
assumption, there exists some ˜︁𝑇 ∈ EPT with Δ(𝑇,˜︁𝑇 ) ≤ 𝜈 negligible. Let 𝑇 𝜈 be the 𝜈-quantile
of 𝑇 . Clearly, 𝑇 𝜀 |timeout ↦→0 minimizes the value of E [𝑆] under the constraint that 𝑆 is a non-
negative random variable with Δ(𝑇, 𝑆) ≤ 𝜈 . Hence, we have E [𝑇 𝛿

|︁|︁
timeout↦→0] ≤ poly. Consequently

E [𝑇 𝛿 | ¬timeout] ≤ 1
(1−𝛿 ) poly ≤ poly1. Let 𝑆 = 𝑇 𝜈 be the respective 𝜈-quantile of 𝑇 , note that

𝑆 ≤ E [˜︁𝑇 ], and let G be an event associated with the quantile, (which exists, perhaps after extension of
Ω) that is, 𝑆 = 𝑇 |

G∁ ↦→timeout. Then E [𝑇 | G] ≤
1

1−𝜈 poly1, and 3 follows.

33 If neither runtime is efficient, we are in a setting where the truncation argument does not work. Indeed, strings can be
encoded as numbers, hence runtimes. Thus, this is indistinguishability of general distributions.
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The converse is trivial: If E [𝑇 | G] ≤ poly for an event G of overwhelming probability 1 − negl, then˜︁𝑇 = 𝑇 |G ↦→0 is evidently EPT and has statistical distance at most negl. This finishes the equivalence of
items 1, 2 and 3.

To see the tail bound, note that for𝑇 ∈ CEPT there is a “good” runtime ˜︁𝑇 ∈ EPT with Δ(𝑇,˜︁𝑇 ) ≤ negl.
Thus, the tail bound follows immediately fromMarkov’s bound (LemmaC.3.2) applied to˜︁𝑇 and statistical
distance of negl. That PPT distinguisher suffice and CEPT is closed was already shown in 5.3.7, but
follows easily from the tail bound.

Finally, for induced runtimes, Lemma 5.3.8 demonstrates the equivalence of triple-oracle and standard
distinguishing. □

As noted before, non-uniform advice can replace sampling access. For non-uniform distinguishers,
triple-oracle and standard indistinguishability coincide. In fact, all the above results follow almost
trivially by using the optimal decision table of a distinguisher for 𝑇 ≤𝑁 and 𝑆≤𝑁 as advice.

Applications require a further corollary which, though unmotivated, best fits here.

Corollary 5.3.10. Let A, B be two algorithms which output a number in N0. Let 𝐴, 𝐵 denote the output

distribution and let𝑇 = timeA(A), 𝑆 = timeB(B). Suppose𝑇
𝑑
≤L q ·𝐴 and 𝑆

𝑑
≤L q · 𝐵 and let L = L(𝜆) and

q = q(𝜆) polynomial in 𝜆. Suppose furthermore 𝐴 ∈ CEPT (and hence 𝑇 ∈ CEPT).

If𝐴
𝑐≈ 𝐵 then 𝑆 ∈ CEPT. In particular, 𝐴 ∈ CEPT ⇐⇒ 𝐵 ∈ CEPT and statistical and computational

(standard and triple-oracle) indistinguishability coincide. The claims generalize to oracle algorithms w.r.t.
𝑇 = timeA(AO𝐴), 𝑆 = timeB(BO𝐵 ).

The corollary says that, if we measure (and output) a statistic which bounds the runtime (up to
polynomial slack), then indistinguishability of that statistic implies preservation of efficiency. This is a
core step for the hybrid argument. We stress that the claim is non-trivial, as equivalence of standard and
triple-oracle indistinguishability was only proven for induced runtimes. Nevertheless, after “rescaling”
the tail bound from 𝑁 to 𝑁 · q · L, the argument is quite analogous to Lemma 5.3.8.

Proof sketch. By assumption, 𝐴 ∈ CEPT, and therefore 𝑇 ∈ CEPT (by Lemma C.3.7). By the tail
bound for CEPT (see Corollary 5.3.9), for any polynomial 𝛿 = 1/poly, there exists a polynomial 𝑁 with
Pr[𝐴 > 𝑁 ] < 𝛿 . Usually, we would choose such an 𝑁 for suitable small 𝛿 and truncate 𝐴 and 𝐵 at 𝑁 ,
and argue with a standard cutoff argument. However, we cannot truncate A (resp. B) w.r.t. 𝐴 (resp. 𝐵),
since these are not the runtimes, and the standard cutoff argument does not apply. Nevertheless, we
have a relation between 𝑇 (resp. 𝑆) and 𝐴 (resp. 𝐵) which we can use. So instead, we truncate at 𝐾 ,
where Pr[𝐴 > 𝐾] < 𝛿

qL . Then

CDF𝑇 (𝐾) ≤ Lq · CDF𝐴 (𝐾) ≤ Lq
𝛿

qL
= 𝛿.

Note that 𝛿
qL is again polynomial. Thus, we can approximate the distribution of 𝐴 up to precision 𝛿 by

using A≤𝐾 .

The first inequality also works with 𝑆 and 𝐵, but as in the standard cutoff argument, we do not know
if CDF𝐵 (𝐾) ≤ 𝛿

qL . Suppose Δ(𝐴, 𝐵) > 𝜀 = 1/poly infinitely often. Take 𝛿 = 𝜀/4 and fix the respective
cutoff 𝐾 from above. Then |Pr[𝐵 > 𝐾] −Pr[𝐴 > 𝐾] | ≤ 𝜀/4 or this statistic yields a distinguisher (but we
assumed 𝐴 𝑐≈ 𝐵). Hence, Δ(𝐴,𝐴′) ≤ 𝜀/4, and Δ(𝐵, 𝐵′) ≤ 𝜀/4. Thus, we can sample approximations 𝐴′
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(resp. 𝐵′) of 𝐴 (resp. 𝐵) via A≤𝐾 (resp. B≤𝐾 ) which are 𝜀/4 statistically close. With this, we can retrace
the steps of the CEPT characterization, in particular Lemma 5.3.8, to prove equivalence of triple-oracle
and standard indistinguishability. (That is, we approximate the distribution of 𝐴′, 𝐵′, and compute
from this a decision table for the challenge sample. With non-uniform advice, we can again skip this
process, and just assume the advice contains the optimal decisions.)

□

5.3.3. From CEPT to EPT

The characterization of CEPT ensures that, conditioning on “good” events yields a strict EPT algorithm.
For interacting parties, this is not yet very useful, because it “entangles” their probability spaces.

Example 5.3.11. Let ⟨P,V⟩ be an interactive protocol. Suppose P sends a randommessage 𝑟 ∈ 𝑅. Suppose
V picks a random number 𝑠 ∈ 𝑅, and if 𝑟 = 𝑠 , it loops forever. Otherwise the protocol finishes. Now, the
bad event is {(𝑟, 𝑟 ) | 𝑟 ∈ 𝑅} (or some superset).

This “entanglement” of probability spaces prevents one core separation, namely the random coins of
honest and adversarial parties. Fortunately, they can be “disentangled” as far as possible. Namely, only
the (distribution of) messages of (honest) parties are of relevance, but no internal coin tosses. This
essentially follows from the fact, that the interacting systems have “independent” randomness spaces,
and the interaction is mediated solely by messages between the systems.

Lemma 5.3.12 (Timeout oracles). Let A be an interactive algorithm and O be a (probablistic) timeful
oracle. Suppose timeO (⟨A,O⟩) is CEPT with virtual runtime (𝑡, 𝜀). Then there exists an oracleO′, modelled
as a timeful oracle, such that: O andO′ behave identically except whenO′ sends timeout (and halts) to
signal bad executions. If A aborts upon receiving timeout, then34 timeO (⟨A,O′⟩) is EPT with expected
runtime 𝑡 + O(1) (with small hidden constant).35 The probability for a timeout message in ⟨A,O′⟩
is 𝜀.36

We stress that O′ is a timeful oracle. While the construction shows that O′ is computable from timed
bb-rw access toO, it is generally far from efficiently computable. The usage of Lemma 5.3.12 is roughly
as follows: ReplaceO with the timefulO′. Now, the runtime problems are is easier to analyse, since we
have guaranteed EPT runtime. In the analysis, track the effects on runtime and timeout messages
of O′. Finally, replace O′ with O again, noting that only if timeout occurs, there is a difference.
Of course, such arguments can be made directly, without introducing O′ at all. However, the explicit
modification simplifies the presentation.

The construction of O′ is straightforward, one defines O′ by a runtime truncation at 𝑁 , i.e. O′ acts
exactly as O until the total elapsed time exceeds 𝑁 . Then, O′ aborts with timeout. Exact 𝜈-quantile
cutoffs are achieved by extension of ΩO , as usual.

34 More formally, one should lift A to an algorithm which aborts upon receiving timeout, since timeout is a special
symbol which A cannot receive/interpret.

35 The constant O(1) merely accounts for O′ and outputting timeout.
36 The probability space may be enlarged to achieve an exact cutoff, see Section 5.2.5.
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Proof of Lemma 5.3.12. A runtime truncation of O at 𝑁 is defined in the obvious way, i.e. O≤𝑁 returns
timeout if, after an invocation, the purported elapsed runtime exceeds 𝑁 . An exact 𝜈-quantile cutoff
is constructed as usual, i.e. let 𝑁 be the minimal such that

𝜈 ′ ≔ Pr[⟨A,O≤𝑁 ⟩ has timeout] ≤ 𝜈.

If this is an equality, let O𝜈 be defined as O≤𝑁 . Else, extend ΩO via 𝑏 ∼ Ber(𝜈 − 𝜈 ′), so that there is an
exact cutoff if one truncates at time 𝑡 for 𝑡 > 𝑁 and for 𝑡 = 𝑁 if additionally 𝑏 = 1.

Let 𝑇O = timeO (⟨A,O⟩). Then
𝑇 𝜈O = timeO (⟨A,O𝜈⟩),

assuming the execution of ⟨A,O𝜈⟩ stops with timeout (and the purported runtime is 𝑁 = 𝑁 (𝜈).) In
other words, truncating the runtime distributions and truncating the oracle have the “same” effect.

Our timeout oracle O′ is defined as the 𝜈-quantile truncated oracle, except that O′ additionally
pays a small constant time overhead for sending timeout. (Recall that due to consistency rea-
sons, sending messages sets lower bounds for purported runtime for timeful oracles.) Note that
Pr[⟨A,O≤𝑁 ⟩ has timeout] = 𝜈 by construction. Moreover

timeO (⟨A,O′⟩) ≤ timeO (⟨A,O𝜈⟩) +O(1),

hence the claims follow (as in Corollary 5.3.9). □

In our setting, we usually deal with “multi-oracle” adversaries. For example, zero-knowledge needs
input generation I and a malicious verifier V∗ (and a distinguisherD which of lesser concern). Clearly,
we can view I and V∗ as a single oracle (or party), by merging everything except the prover P into one
entity. The new entity first runs I to produce inputs, and then continues as V∗. For completeness, this
is discussed more explicitly in Appendix C.5.2.2

5.4. Towards Applications

In this section, we gather the basic tools to deal with a posteriori efficiency. While we focus on CEPT,
it will again be evident that our techniques work for “algebra-tailed” runtime classes, and the results
generalize to any such class (where the algebra for negligible functions coincides with the algebra for
runtime), see Appendix C.4 for the definitions.

5.4.1. Standard Reductions and Truncation Techniques

In this section, we give some semi-abstract reduction and truncation techniques, which are the
workhorse for dealing with designated CEPT adversaries.

Lemma 5.4.1 (Reduction to a priori runtime). LetO0 andO1 be two oracles. SupposeD is a distinguisher
with advantage 𝜀 ≔ AdvdistD,O0,O1

. Let 𝑇0 = timeD (DO0) and let 𝜈0 ∈ [0, 1] be some negligible function.
Suppose there is a tail bound 𝑡0 for 𝑇0 with Pr[𝑇0 > 𝑡0] ≤ 1

4𝜀 + 𝜈 . Then there is a (standard) distinguisher
A with runtime strictly bounded by 𝑡 = 𝑡0 (up to emulation overhead), and advantage at least 𝜀4 − 𝜈0
infinitely often. More concretely,A is a runtime truncation of D after 𝑡 steps with tiny overhead.
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The only reason for stating Lemma 5.4.1 in the asymptotic setting is convenience. We also note that
instead of runtime, any “runtime-like” statistic, e.g. the number of oracle queries, can be used.

Proof sketch. Let A run 𝑏 ← D≤𝑡0 and output 𝑏, except if 𝑏 = timeout, where A returns a random
bit instead. The outputs ofDO0 andAO0 have statistical distance at most 1

4𝜀 + 𝜈0 by assumption on the
tail bound 𝑡0.

Suppose the output of AO1 has statistical distance 𝛿 of DO1 . If 𝛿 > 2𝜀
4 , then necessarily, the probability

thatAO1 exceeds 𝑡0 steps is greater than 2𝜀
4 . Thus, this runtime statistic can be used as a distinguishing

property, with advantage at least 𝜀4 − 𝜈0 (infinitely often). (The distinguisher A′ obtained from this
returns 1 on timeout and 0 otherwise.)

Now suppose 𝛿 ≤ 2𝜀
4 . Then the advantage of A is at least 𝜀4 − 𝜈0 (by statistical distance of the outputs).

The promised runtime bounds for A andA′ follow immediately. □

Plugging in the tail bounds for CEPT, we get the following.

Corollary 5.4.2 (Standard reduction to PPT). Let O0 and O1 be two oracles. SupposeD a distinguisher
with advantage AdvdistD,O0,O1

at least 𝜀 ≔ 1
poly infinitely often, and timeD (DO0) ∈ CEPT. Then there is

an a priori PPT (standard) distinguisherA with advantage at least 𝜀4 − negl infinitely often.

Note that D need only be efficient for O0, and that the constructedA has roughly the same runtime
distribution as D.

Remark 5.4.3 (Standard cutoff argument). The strategy in the proof of Lemma 5.4.1 and Corollary 5.4.2
is the standard cutoff argument. It works with minor variations in many situations.

Notation 5.4.4. We often sloppily write 𝑐≈ instead of 𝑐≈T when specifying indistinguishability. Corol-
lary 5.4.2 justifies this (for the runtime classes of interest).

5.4.2. Relative Efficiency

By considering a posteriori runtime and designated adversaries, we lack a notion of “absolute” efficiency
of an algorithm (or timeful system). Instead, we rely on a relative notion of efficiency, which is a
definitional cornerstone in our setting.

Definition 5.4.5 (Weak relative efficiency). Let A and B be two (interactive) algorithms (or timeful
systems) with identical interfaces. We say that B is weakly (T,S)-efficient relative to A w.r.t.
(implicit) runtime classes T, S, if for all distinguishing environments E (which yield closed systems
⟨E,A⟩ , ⟨E,B⟩)

timeE+A(⟨E,A⟩) ∈ T =⇒ timeE+A(⟨E,B⟩) ∈ S

We say B is weakly efficient relative to A w.r.t. an (implicit) runtime class T, if it is weakly (T,T)-
efficient relative to A.
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Efficiency relative to a “base” algorithm is the notion of efficiency we need in security definitions and
reductions. Indeed, if an adversary is not efficient in the real protocol, the simulator (or reduction)
need not be efficient either. However, whenever the adversary is efficient, so should the simulation (or
reduction) be.37 A stronger, unconditional form of relative efficiency is the following. In the following,
the runtime classes T and S are from {PPT, EPT,CPPT,CEPT}, and they decide whether strict
or expected time is measured. This allows us to specify cases T = S = PPT, (T,S) = (PPT, EPT),
and T = S = EPT, as well as variations with virtuality succinctly.

Definition 5.4.6 (Tight relative efficiency). Let A, B be as in Definition 5.4.5. We say that B is (T,S)-
efficient relative to A with runtime tightness (polytime, polyvirt), if: For all timeful environments E,
if timeA(⟨E,A⟩) is virtually strict/expected (𝑡0, 𝜀0)-time, then timeB(⟨E,B⟩) is virtually strict/expected
(𝑡1, 𝜀1)-time, with 𝑡1(𝜆) ≤ polytime(𝜆)𝑡0(𝜆) with 𝜀1(𝜆) ≤ polyvirt(𝜆)𝜀0(𝜆) (for all 𝜆).

5.4.3. Hybrid Lemma

The formulation and proof of the hybrid lemma is more involved than for a priori definitions of runtime.
To state it, we require relative efficiency. To prove it, we use the random embedding trick from [HUM13]
to allow us to get a measure of runtime, which is closely related to the runtime of the full hybrid, even
though the time spent in the challenge oracle is inaccessible to a reduction.

Lemma 5.4.7 (Hybrid-Lemma for CEPT). Suppose that O1 is weakly efficient relative to O0 and that
O0

𝑐≈ O1. Suppose thatD is an algorithm with oracle-access to rep(O𝑏), and timeD+rep (O0 ) (Drep (O0 ) ) ∈
CEPT. Then timeD+rep (O1 ) (Drep (O1 ) ) ∈ CEPT and the distinguishing advantage is

AdvdistD,O0,O1
= |Pr[Drep (O0 ) = 1] − Pr[Drep (O1 ) = 1] | ≤ negl.

In other words, rep(O1) is weakly efficient relative to rep(O0), and rep(O0)
𝑐≈ rep(O1).

For a detailed sketch of the proof and the intuition, we refer back to Section 5.1.4.4.

Proof. We split the proof into several steps. We first show, that proving the claim for q-fold repeated
access, for arbitrary but fixed polynomial q(𝜆), is enough.

Claim 5.4.8. Suppose the hybrid lemma holds for repq (O0) and repq (O1) for any polynomial q. That is, for
any distinguisherD with timeD+repq (O0 ) (D

repq (O0 ) ) ∈ CEPT, we have that timeD+repq (O1 ) (D
repq (O1 ) ) ∈

CEPT and advantage AdvdistD,O0,O1
= |Pr[Drepq (O0 ) = 1] − Pr[Drepq (O1 ) = 1] | ≤ negl. Then the hybrid

lemma holds.

Proof of Claim 5.4.8. Suppose D is a distinguisher with timeD+rep (O0 ) (Drep (O0 ) ) ∈ CEPT and non-
negligible advantage. Let the advantage exceed 𝜀 = 1/poly infinitely often. The number of 𝑄0 of O0-
instances generated inDrep (O0 ) is certainly CEPT. Let𝑄1 denote the number ofO1-instances generated
inDrep (O1 ) . Treating these statistics as “runtime”, the standard truncation argument (Corollary 5.4.2),
ensures that there is a PPT distinguisherA which makes a strictly polynomial number q of queries and

37 Strictly speaking, a simulator depends on the adversary, and Definition 5.4.5 should be applied “pointwise”, i.e. for every
adversary, the simulator should be efficient relative to the simulator. For completeness, we give a generalized definition in
Appendix C.5.3.3.
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has advantage at least 𝜀/4 − negl infinitely often. Clearly,Arep (O0 ) has runtime bounded by Drep (O0 )

(up to emulation overhead), hence remains efficient. Consequently, we have reduced to the setting
where at most q queries are made for some polynomial q which depends on D. □

From now on, we assume that D generates at most q oracle instances, for some polynomial q. We
proceed in game hops, starting with Drep (O0 ) and finishing with Drep (O1 ) For each hop, we have to
ensure indistinguishable output bits and preservation of efficiency.

• Game G0 is simply the execution of Drep (O0 ) .

• In Game G1 we pick a random permutation 𝜋 : {1, . . . , 𝑞} → {1, . . . , 𝑞} and reroute the access
to the oracles: If D queries for the 𝑖-th oracle, it is routed to the 𝜋 (𝑖)-th oracle. More precisely,
in G0 the adversary D has access to O⃗ = (O1

0 , . . . ,O
𝑞

0 ), whereas in G1 it has access to a random
permutation O⃗

𝜋
= (O𝜋 (1)

0 , . . . ,O
𝜋 (𝑞)
0 ). Clearly, G0 and G1 are perfectly indistinguishable and

have almost identical runtime (up to bookkeeping). The key change is, that all O𝑖 now have
identical runtime distributions.

• In Game G2, we replace the O1
0 with O1

1 , that is we consider O⃗ = (O1
1 ,O

2
0 , . . . ,O

𝑞

0 ). Indistin-
guishability (of outputs) of G2 follows directly from the standard reduction, whereas efficiency
of G2 follows from O1 being weakly efficient relative to O0. Note that the runtime of G2 may
differ significantly from that of G1.

• In Game G3, we have O⃗ = (O1
1 , . . . ,O

𝑞−1
1 ,O

𝑞

0 ). That is, all but one oracle instance is of O1-type.
Proving that G3 is CEPT is the key point in this argument. Indistinguishability of G2 and G3
follows easily. We postpone the proof to Claim 5.4.9, and finish up first.

• In Game G4, we use O⃗ = (O1
1 , . . . ,O

𝑞−1
1 ,O

𝑞

1 ), that is, we switched completely to O1 for every
instance. Efficiency and output indistinguishability follow as from G1 to G2.

• In Game G5, we remove the random permutation 𝜋 . Thus, G5 is Drep (O1 ) , as claimed. □

Claim 5.4.9. If G2 is CEPT, so is G3. Moreover, their outputs are indistinguishable.

We will prove Claim 5.4.9 by establishing a relatively precise grasp on the runtime.

Proof. Recall that we have to switch the oracle setup from (O1
1 ,O

2
0 , . . . ,O

𝑞

0 ) to (O1
1 , . . . ,O

𝑞−1
1 ,O

𝑞

0 ). The
core difficulty is the efficiency in the latter case. Following the trick of [HUM13], we randomized the
oracle order for D using a random permutation 𝜋 . This spreads the runtime of O1

1 and O
𝑞

0 evenly over
all possible positions, and this property is at the heart of the reduction.

LetHℓ denote the game with oracle setup O⃗ = (O1
1 , . . . ,O

ℓ
1,O

ℓ+1
0 , . . . ,O

𝑞

0 ).38 By construction, H1 equals
G2 and H𝑞−1 equals G3. Thus, it suffices to prove indistinguishability of H1 and H𝑞−1.

Clearly, hybrids Hℓ and Hℓ+1 (for ℓ = 1, . . . , 𝑞 − 2) are related by a direct reduction to O0
𝑐≈ O1. The

hybrid reduction 𝑅 embeds the challenge oracleO∗
𝑏
in position ℓ+1, picking ℓ ← {1, . . . , 𝑞−2} uniformly.

Denote by 𝑅ℓ the reduction with fixed choice ℓ . By construction, 𝑅O
∗
𝑏

ℓ
= Hℓ+𝑏 . Note thatD has randomly

permuted access, so the challenge oracle is embedded uniformly from D’s view.

38 Note that all hybrids have O1
1 and O

𝑞

0 fixed. Thus there 𝑞 − 1 hybrids and 𝑞 − 2 hybrid transitions.
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One main complication is, that 𝑅O∗ℓ cannot keep runtime statistics of O∗. Yet, we need enough control
over the runtime to guarantee efficiency of 𝑅 andH𝑞−1. By randomizing the order of the oracle instances
(from the view of D), we can exploit the strong symmetry of the local runtimes of instances. Let us
now take a close look at these runtimes. To keep notation in check, we fix a hybrid Hℓ , and notationally
suppress the dependency of most variables on ℓ .

• Let 𝑇ℓ = time(Hℓ ) be the total runtime of Hℓ (as a random variable). Recall that it is understood
that Hℓ emulates all oracles O1, . . . ,O𝑞 .

• Let 𝑇O, 𝑗 denote the time Hℓ spends in O 𝑗 .

• Let 𝑇D denote the time Hℓ spends outside O 𝑗 (mostly emulating D).

• We have 𝑇ℓ = 𝑇D +∑︁𝑞

𝑗=1𝑇
O, 𝑗 as random variables by definition.

By the symmetry introduced by the random permutation 𝜋 , the distributions of the 𝑇O, 𝑗 for the same
type of oracle coincide. That is,𝑇O,𝑖 𝑑≡ 𝑇O, 𝑗 for all (𝑖, 𝑗) ∈ {1, . . . , ℓ} forO1-type instances, and likewise
with (𝑖, 𝑗) ∈ {ℓ + 1, . . . , 𝑞} for all O0-type instances.

Claim 5.4.10. Let 𝑆ℓ = 𝑇D +𝑇O,1 +𝑇O,𝑞 . Then we have

CDF𝑇ℓ ( · ) ≤ (q + 1)CDF(q+1)𝑆ℓ ( · ) that is 𝑇ℓ
𝑑
≤ (q+1) (q + 1) · 𝑆ℓ . (5.4.1)

Proof. Using the definition and symmetries, we argue that

CDF𝑇ℓ (𝑡) = Pr[𝑇D +
ℓ∑︂
𝑖=1

𝑇O,𝑖 +
q∑︂

𝑗=ℓ+1
𝑇O, 𝑗 > 𝑡]

≤ Pr[𝑇D >
1

q + 1𝑡] + Pr[
ℓ∑︂
𝑖=1

𝑇O,𝑖 >
ℓ

q + 1𝑡] + Pr[
q∑︂

𝑗=ℓ+1
𝑇O, 𝑗 >

q − ℓ
q + 1𝑡]

≤ Pr[𝑇D >
1

q + 1𝑡] +
ℓ∑︂
𝑖=1

Pr[𝑇O,𝑖 >
1

q + 1𝑡] +
q∑︂

𝑗=ℓ+1
Pr[𝑇O, 𝑗 >

1
q + 1𝑡]

= Pr[(q + 1) ·𝑇D > 𝑡] + ℓ · Pr[(q + 1) ·𝑇O,1 > 𝑡] + (q − ℓ) · Pr[(q + 1) ·𝑇O,𝑞 > 𝑡]
≤ (q + 1) · Pr[(q + 1) · 𝑆ℓ > 𝑡] .

The first two inequalities use that for any sum
∑︁𝑛
𝑖=1 𝜆𝑖𝑋𝑖 > 𝑥 with 𝜆𝑖 ≥ 0 and

∑︁𝑛
𝑖=1 𝜆𝑖 = 1, there exists

some 𝑖 such that 𝑋𝑖 > 𝜆𝑖𝑥 . The next (in)equalities follow from symmetries and simplifications. The
final inequality holds, because by construction, 𝑆ℓ dominates 𝑇D , 𝑇O,1 and 𝑇O,𝑞 . Also, we bound 1, ℓ
and q − ℓ by q + 1. Thus the claim follows. □

Note that 𝑆ℓ can be computed, even in a reduction between hybrids, since O1 and O𝑞 are fixed and
there is never a challenge-embedding there. This is crucial. Using Eq. (5.4.1), the generalized CEPT
characterization, Corollary 5.3.10, is applicable. Therefore, it suffices to prove that 𝑆1

𝑐≈ 𝑆𝑞−1, and
Corollary 5.3.10 ensures that 𝑇q−1 is CEPT if 𝑇1 is CEPT This is our next step. (In a sense, we have now
reduced efficiency to indistinguishability.)

Claim 5.4.11. For 𝑆ℓ defined as above, we have 𝑆1
𝑐≈ 𝑆𝑞−1.
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To prove 𝑆1
𝑐≈ 𝑆𝑞−1, we modify the hybrids Hℓ to also output this quantity. That is, the hybrid Hℓ

outputs the runtime 𝑆ℓ and output of D, obtained by emulating D given access to O⃗
𝜋
with O⃗ =

(O1
1 , . . . ,O

ℓ
1,O

ℓ+1
0 , . . . ,O

𝑞

0 ) for ℓ = 1, . . . , 𝑞 − 1. For now, we focus solely on the output 𝑆ℓ .

Recall that 𝑅 denotes the hybrid reduction, which embeds its challenge-oracleO∗ intoO𝑖∗ for 𝑖∗ = 𝑖 + 1,
where 𝑖 ← {1, . . . 𝑞 − 2}), and simulates the remaining oracles. Recall, that 𝑅𝑖 denotes reduction 𝑅 with
fixed choice 𝑖 . Hence, 𝑅O

∗
𝑏

ℓ
simulates Hℓ+𝑏 .

If 𝑅O0 were efficient, this would almost finish the proof. However, we do not yet know whether 𝑅O0 is
efficient. Since we only need to prove 𝑆1 and 𝑆𝑞−1 indistinguishable, we truncate the hybrids and the
reduction. We then need to prove that the truncations are close to the originals, i.e. the probability for
timeout is (arbitrarily polynomially) small. We define:

• [Hℓ ] is the hybrid which imposes a strict time bound of 𝑡max (to be chosen later) on each oracle
emulation (i.e. each O𝑖 ) individually as well as the emulation of D. If a bound is exceed, [Hℓ ]
aborts with timeout. (That is, [Hℓ ] aborts if 𝑇D > 𝑡max or 𝑇O,𝑖 > 𝑡max for any 𝑖 = 1, . . . , 𝑞.)

• [𝑅]ℓ is defined analogously to [Hℓ ]. Note that [𝑅] cannot truncate its challenge oracle O∗.

• [O] (resp. [D]) denotes same cutoff at 𝑡max applied to an oracle (resp. D).

By definition
[Hℓ ] = [𝑅] [O1 ]

ℓ−1 = [𝑅] [O0 ]
ℓ

if the expressions are defined. The technical problem, is that we can only compute [𝑅]O∗ℓ , but not
[𝑅] [O

∗ ]
ℓ

. Yet, the latter is necessary in the usual telescoping sum. To quantify the introduced error, we
define:

• ℎℓ ≔ Pr[[Hℓ ] = timeout], the timeout probability of [Hℓ ].

• 𝑟𝑏ℓ ≔ Pr[[𝑅]O𝑏
ℓ

= timeout], the timeout probability of [𝑅]O𝑏
ℓ
. Note that the challenge

oracle O𝑏 cannot time out.

Claim 5.4.12. For all 𝛿 = 1/poly, there exists a polynomial 𝑡max such that for all ℓ = 1, . . . 𝑞 − 1

ℎℓ ≤ 𝛿 and |ℎℓ − 𝑟 1ℓ−1 | ≤ 𝛿 and |ℎℓ − 𝑟 0ℓ | ≤ 𝛿.

Similar to before, and as in [HUM13], it is easy to use the symmetry of timeouts to show39

𝑟 1ℓ−1 ≤ ℎℓ ≤
ℓ

ℓ − 1 · 𝑟
1
ℓ−1 (5.4.2)

𝑟 0ℓ ≤ ℎℓ ≤
𝑞 − ℓ

𝑞 − ℓ − 1 · 𝑟
0
ℓ (5.4.3)

for all ℓ = 1, . . . , 𝑞 − 2. This implies

ℎℓ ≤
ℓ

ℓ − 1𝑟
1
ℓ−1 =

ℓ

ℓ − 1𝑟
0
ℓ−1 +

ℓ

ℓ − 1 (𝑟
1
ℓ−1 − 𝑟 0ℓ−1) ≤

ℓ

ℓ − 1ℎℓ−1 +
ℓ

ℓ − 1𝜌ℓ−1

39 This is the reason we applied timeouts to each oracle individually, instead of to the whole game Hℓ . The latter may not
exhibit this symmetry.
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where we let 𝜌𝑖 = 𝑟 1𝑖 − 𝑟 0𝑖 . Inductively we find40

ℎℓ ≤ ℓ · ℎ1 +
ℓ−1∑︂
𝑖=1

ℓ

𝑖
𝜌𝑖 (5.4.4)

Recall that we can make ℎ1 arbitrarily polynomially small by picking 𝑡max large enough. Now, we want
to prove that ℎℓ is also small for all ℓ . Hence we are looking for a (small) upper bound on

∑︁ℓ−1
𝑖=1

ℓ
𝑖
𝜌𝑖 .

If all 𝜌𝑖 were positive, we could just guess a good 𝑖 and use a completely standard hybrid argument, but
we do not know this. In [HUM13], non-uniform advice is used, namely the index 𝑖∗ which maximizes
|𝜌𝑖∗ |. It is easy to see that [𝑅]𝑖∗ is a distinguisher with advantage |𝜌𝑖∗ |, hence |𝜌𝑖∗ | is negligible and
consequently |∑︁ℓ−1

𝑖=1
ℓ
𝑖
𝜌𝑖 | ≤ 𝑞 · |𝜌𝑖∗ | is also negligible. It is also noted in [HUM13], that one can

approximate ℓ∗ using [𝑅]O𝑏 to obtain a uniform distinguisher. In [HUM13], [𝑅]O0 is efficient by
assumption, which makes approximation of 𝑖∗ straightforward. In our setting, efficiency of [𝑅]O0 does
not hold by assumption. Thus, we need to argue differently.

We approximate a good index 𝑖∗, where 𝜌𝑖∗ is large by using the following inequality

𝜌−ℓ−1 ≔
ℓ − 1
ℓ
ℎℓ − ℎℓ−1 ≤ 𝜌ℓ−1 = 𝑟 1ℓ−1 − 𝑟 0ℓ (5.4.5)

where we used Eqs. (5.4.2) and (5.4.3). Observe that Ber(ℎ𝑖) can be sampled in time( [H𝑖]) ≤ (𝑞+1) ·𝑡max
(up to emulation overhead), since ℎ𝑖 = Pr[[H𝑖] = timeout]. Hence, we can approximate ℎ𝑖 (and
hence 𝜌−𝑖 ) via sampling to arbitrary polynomial precision. By induction, we find

ℎℓ = ℓ · ℎ1 +
ℓ−1∑︂
𝑖=1

ℓ

𝑖
𝜌−𝑖 (5.4.6)

which is an equality by definition. Note that ifmax𝑞−2
𝑖=1 𝜌

−
𝑖 ≤ 𝜈 for some negligible 𝜈 , we getℎℓ ≤ ℓℎ1+ℓ2𝜈 .

This is sufficient for our purposes. We stress that we do not consider absolute values here, as we only
need an upper bound for the timeout probability.41

We argue by contradiction. Suppose max𝑞−2
𝑖=1 𝜌

−
𝑖 > 1/poly infinitely often. Then, as noted, we can

approximate 𝜌−𝑖 up to any polynomial precision, and in particular we can sample a “good” 𝑖∗ which
satisfies 𝜌𝑖∗ ≥ 𝜌−𝑖∗ ≥

1
2poly(𝜆) with overwhelming probability.42 Thus, this yields a distinguisher for

O0 and O1, which is efficient for any choice of polynomial cutoff bound 𝑡max and has advantage
≥ 1

2poly − negl infinitely often. (Namely, first approximate 𝑖∗ and then run [𝑅]O∗
𝑖∗ . The choice of 𝑖

∗

is “good” with overwhelming probability, so we get an advantage of at least 1
2poly(𝜆) − negl infinitely

often.) This finally proves that

∀𝑡max = poly ∃𝜈 = negl ∀ℓ = 2, . . . , 𝑞 − 1 : ℎℓ ≤ ℓℎ1 + ℓ2𝜈.

In particular, for almost all 𝜆, ℎℓ ≤ 𝑞ℎ1 + 𝑞2𝜈 . Since H1 is CEPT, for any poly there is a 𝑡max such that
ℎ1 ≤ 1/poly. Let 𝛿 = 1/poly for some poly. Pick 𝑡max such that ℎ1 ≤ 𝛿

2𝑞 . Then ℎℓ ≤ 𝛿/2 + 𝑞
2𝜈 ≤ 𝛿 for

almost all 𝜆. This proves the first part of Claim 5.4.12. From Eqs. (5.4.2) and (5.4.3) we also find

|ℎℓ − 𝑟 0ℓ | ≤
1

𝑞 − ℓ − 1ℎℓ and |ℎℓ − 𝑟 1ℓ−1 | ≤
1

ℓ − 1ℎℓ .

40 In a standard hybrid argument, we would have
∑︁
𝑖 𝜌𝑖 = 𝑟

0
1 − 𝑟

1
ℓ−1 instead of a weighted sum.

41 One can similarly define 𝜌+
ℓ
≔ ℎℓ+1 − 𝑞−ℓ−1

𝑞−ℓ ℎℓ ≥ 𝜌ℓ and consider min𝑞−1
𝑖=2 𝜌

−
𝑖
. Hence there is a negl such that |𝜌ℓ | ≤ negl

for all ℓ . We do not need this.
42We can use the same approximation of distributions as for CEPT, see also Appendix C.3.4.
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This completes the proof of Claim 5.4.12. Claim 5.4.11 now follows from Lemma 5.4.13 below. More
concretely, it follows that H1

𝑐≈ H𝑞−1, which implies 𝑆1
𝑐≈ 𝑆𝑞−1 (since we augmented the output of Hℓ

by 𝑆ℓ ), and, by Corollary 5.3.10, H𝑞−1 is CEPT (since H1 is CEPT). This finishes the proof of Claim 5.4.9.

□

The following lemma uses notation similar to the above, but does not follow the indexing. This simplifies
the presentation, as we can go from 0 to 𝑞 instead of 1 to 𝑞 − 1.

Lemma 5.4.13 (Approximable hybrid lemma). LetO0,O1 be oracles, let H0, . . . ,H𝑞 be hybrid games (for
polynomial 𝑞) and let 𝑅 be an algorithm. We call 𝑅 a hybrid reduction for H, if it is of the following form:

• 𝑅 is an oracle algorithm which in the beginning chooses a random integer 𝑖∗ ∈ {0, . . . , 𝑞 − 1}.

• Denoting by 𝑅𝑖 the algorithm with fixed choice 𝑖∗ = 𝑖 , we have 𝑅O𝑏
𝑖
≡ H𝑖+𝑏 , where we mean

equivalence as systems.43

We say 𝑅 is a time-approximable hybrid reduction, if for any choice 𝛿 = 1
poly𝛿

:

1. There exist “truncated” a priori PPT hybrids [Hℓ ] for 𝑖 = 0, . . . , 𝑞, which may return timeout.

2. Hℓ and [Hℓ ] are equal until timeout and Pr[[Hℓ ] = timeout] ≤ 𝛿 .

3. There exists a “truncated” a priori PPT reduction algorithm [𝑅] with Δ( [Hℓ ], [𝑅]O0
ℓ
) ≤ 𝛿 and

Δ( [Hℓ+1], [𝑅]O1
ℓ
) ≤ 𝛿 (for almost all 𝜆).

If 𝑅 is a time-approximable hybrid reduction for H, then 𝑅O0
0 ≡ H1

𝑐≈ H𝑞 ≡ 𝑅
O1
𝑞−1. More precisely,

for every a priori PPT distinguisher D and for every 𝛿 = 1
poly𝛿

there exists an adversary A such that

AdvdistH0,H𝑞,D ≤ 𝑞 · Adv
dist
O0,O1,A

+(2𝑞 + 2)𝛿 (for almost all 𝜆).

One can replace item 3 with

4. For any 𝛿 = 1
poly𝛿

there exists a “truncated” a priori PPT reduction algorithm [𝑅], such that

Δ(𝑅O0
ℓ
, [𝑅]O0

ℓ
) ≤ 𝛿 for all ℓ .

In this case, we get AdvdistH0,H𝑞,D ≤ 𝑞 · Adv
dist
O0,O1,A

+(4𝑞 + 4)𝛿 (for almost all 𝜆).

Note that Claim 5.4.11 establishes items 1, 2 and 4 in the respective setting. Hence, Lemma 5.4.13 is
applicable.

One can easily generalize Lemma 5.4.13 beyond runtime truncation. Truncation and timeout (“time-
approximation”) is just the special case of approximation we are most interested in.

Proof. We can assume w.l.o.g. that Hℓ outputs a bit, since we can integrate a distinguisher (which is
w.l.o.g. a priori PPT) into H. Thus, the distinguisher advantage is now simply Δ(H0,H𝑞). Consider
some 𝛿 = 1

poly𝛿
and let [Hℓ ] and [𝑅]ℓ as in the statement. By the triangle inequality and item 2, we get

Δ(H0,H𝑞) ≤ Δ( [H0], [H𝑞]) + 2𝛿.

43We assume that Hℓ is a closed system. But this actually unnecessary, if we allow distinguishing environments.
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Moreover, we have for almost all 𝜆

Δ( [H0], [H𝑞]) =
|︁|︁|︁𝑞−1∑︂
ℓ=0

Pr[[Hℓ ] = 1] − Pr[[Hℓ+1] = 1]
|︁|︁|︁

=

|︁|︁|︁ 𝑞−1∑︂
ℓ=0

Pr[[Hℓ ] = 1] − Pr[[𝑅]O0
ℓ

= 1] + Pr[[𝑅]O1
ℓ

= 1]

− Pr[[Hℓ+1] = 1] + Pr[[𝑅]O0
ℓ

= 1] − Pr[[𝑅]O1
ℓ

= 1]
|︁|︁|︁

≤
𝑞−1∑︂
ℓ=0
|Pr[[Hℓ ] = 1] − Pr[[𝑅]O0

ℓ
= 1] |

+
𝑞−1∑︂
ℓ=0
|Pr[[𝑅]O1

ℓ
= 1] − Pr[[Hℓ+1] = 1] |

+ |
𝑞−1∑︂
ℓ=0

Pr[[𝑅]O0
ℓ

= 1] − Pr[[𝑅]O1
ℓ

= 1] |

≤ 𝑞𝛿 + 𝑞𝛿 + 𝑞 · AdvdistO0,O1,A
(𝜆)

where the inequality follows from item 3 and the “hybrid reduction” adversaryA which runs𝑑 ← [𝑅]O∗

and if 𝑑 ≠ timeout outputs 𝑑 , else 1. Taken together, we find for almost all 𝜆

Δ(H0,H𝑞) ≤ 𝑞 · AdvdistO0,O1,A
(𝜆) + (2𝑞 + 2)𝛿.

Since O0
𝑐≈ O1, AdvdistO0,O1,A

(𝜆) is negligible. Now, let 𝜀 = 1/poly some prescribed polynomial bound.
Since 𝑞 is polynomial and 𝛿 is chosen after 𝑞, one can choose 𝛿−1 ≥ (4𝑞+4)𝜀−1, which is still polynomial
and ensures that (2𝑞 +2)𝛿 ≤ 1

2𝜀. Hence, Δ(H0,H𝑞) = 1
2𝜀 +𝑞 ·negl < 𝜀 (for almost all 𝜆). Thus, Δ(H0,H𝑞)

is smaller than any polynomial 𝜀. Consequently, Δ(H0,H𝑞) is negligible, and the first part of the claim
follows.

For the second part, note that from items 2 and 4 we find

Δ( [Hℓ+𝑏], [𝑅]O𝑏ℓ ) ≤ Δ( [Hℓ+𝑏],Hℓ ) + Δ(Hℓ+𝑏, 𝑅O𝑏ℓ ) + Δ(𝑅
O𝑏
ℓ
, [𝑅]O𝑏

ℓ
).

By assumption Δ(Hℓ+𝑏, 𝑅O𝑏ℓ ) = 0. Thus, if Δ( [Hℓ ],Hℓ ) ≤ 𝛿/2 and Δ(𝑅O𝑏
ℓ
, [𝑅]O𝑏

ℓ
) ≤ 𝛿/2 for all ℓ and

𝑏 ∈ {0, 1}, then Δ( [Hℓ ], [𝑅]O𝑏ℓ ) ≤ 𝛿 and hence item 3 is satisfied. The claim now follows by using
𝛿 ′ = 𝛿/2 as choice of 𝛿 for [Hℓ ] and [𝑅]ℓ in items 2 and 4. □

5.5. Application to Zero-Knowledge Arguments

Our flavour of zero-knowledge follows Goldreich’s treatment of uniform complexity [Gol93], combined
with Feige’s designated adversaries [Fei90]. We only define efficient proof systems for NP-languages.

Definition 5.5.1 (Interactive arguments). Let R be an NP-relation with corresponding language L. An
argument (system) forL consists of two interactive algorithms (P,V) such that:

Efficiency: There is a polynomial poly so that for all (𝜆,x,w) the runtime timeP+V(⟨P(x,w),V(x)⟩)
is bounded by poly(𝜆, |x|).
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Completeness: ∀(x,w) ∈ R : outV⟨P(x,w),V(x)⟩ = 1.

Definition 5.5.1 essentially assumes “classic” PPT algorithms, but it will be evident that our techniques
do not require this. We do not define soundness, but note that it is easily handled via truncation to a
PPT adversary. The terms proof and argument systems are often used interchangeably (and we also do
this). Strictly speaking, proof systems require unconditional soundness and allow unbounded provers.
Argument systems allow computational soundness and require efficient provers. All our exemplary
proof systems [GMW86; GK96; Lin13; Ros04; KP01; PTV14] have efficient provers, hence are also
argument systems.

5.5.1. Zero-Knowledge

Definition 5.5.2. Let T,S ∈ {PPT,CPPT, EPT,CEPT}. Let (P,V) be an argument system. A
universal simulator Sim takes as input (code(V∗),x, aux) and simulates V∗’s output. Let (I,V∗,D)
be an adversary. We define the real and ideal executions as

RealI,V∗ (𝜆) ≔ (state, outV∗ ⟨P(x,w),V∗(x, aux)⟩)
and IdealI,Sim(code(V∗ ) ) (𝜆) ≔ (state, Sim(code(V∗),x, aux))

where (x,w, aux, state) ← I and (x,w) ∈ R, else Real and Ideal return a failure symbol, say ⊥. We
omit the input code(V∗) to Sim, if it is clear from the context. The advantage of (I,V∗,D) is

AdvzkI,V∗,D (𝜆) ≔ |Pr[D (RealI,V∗ (𝜆)) = 1] − Pr[D (IdealI,Sim(𝜆)) = 1] |.

A (designated) adversary (I,V∗,D) is T-time if timeI+P+V∗+D (D (RealI,V∗)) ∈ T.

The argument is (uniform) (auxiliary input) zero-knowledge against T-time adversaries w.r.t.
S-time Sim, if for any T-time adversary (I,V∗,D):

• timeI+Sim+D (D (IdealI,Sim)) ∈ S. The runtime of Sim includes whatever time is spent to emulate
V∗. In a (generalized) sense, Sim is weakly (T,S)-efficient relative to P, see Definition C.5.12.

• AdvzkI,V∗,D (𝜆) is negligible

Some more remarks are in order.

Remark 5.5.3. In our setting, existential and universal simulation are equivalent. The adversary Vuniv,
which executes aux as its code, is universal, see Appendix C.5.4.4.

Remark 5.5.4 (Reductions to PPT). By a standard reduction to PPT, we may w.l.o.g. assume that D is a
priori PPT. Perhaps surprisingly, this is false for I. Intuitively, verifying the quality of the output of
Sim requires only PPT D (and I). Verifying the efficiency, however, does not. The cause is that I may
generate expected poly-size inputs. See also Example C.5.26.

Remark 5.5.5 (Efficiency of the simulation). Definition 5.5.2 only ensures that Sim isweakly efficient rela-
tive to P, i.e. we have no tightness bounds. Relative efficiency with tightness bounds is an unconditional
property, and hence not possible if zero-knowledge holds only computationally.

In the definition, it is possible to replace timeI+Sim+D (D (IdealI,Sim)) ∈ Swith timeSim(D (IdealI,Sim)) ∈
S, since I is unaffected, and D is w.l.o.g. a priori PPT.
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Definition 5.5.2 can be extended to proof systems with unbounded provers, but technical artefacts can
arise, see Remark C.5.21.

Remark 5.5.6 (“Environmental” distinguishing: Why I outputs state). In Definition 5.5.2, we allow I

to output state, effectively making (I,D) into a stateful distinguishing “environment”. Viewing Sim
and P as oracles, this corresponds to oracle indistinguishability. Without this, the security does not
obviously help when used as a subprotocol, since a protocol is effectively a (stateful) distinguishing
environment. Definition 5.5.2 is discussed in-depth in Appendix C.5.4.1. Here, we only note that in the
non-uniform classical PPT setting, it coincides with the standard definition.

Remark 5.5.7. We seldom mention non-uniform zero-knowledge formulations in the rest of this work.
Our definitions, constructions and proofs make timed bb-rw use of the adversary, and therefore apply
in the non-uniform setting without change.

5.5.2. Application to Graph 3-Colouring

To exemplify the setting, the technical challenges, and our techniques, we use the constant-round zero-
knowledge proof of Goldreich and Kahan [GK96] as a worked example. We only prove zero-knowledge,
as completeness and soundness are unconditional. Formal definitions of commitment schemes are in
Appendix C.2. We assume left-or-right (LR) oracles in the hiding experiment for commitment schemes.
Intuitively, we assume a built-in hybrid argument. (Security against CEPT adversaries follows from
security against PPT adversaries by a simple truncation argument.)

5.5.2.1. The Protocol

We recallG3CGK from Section 5.1.2. It requires two different commitments schemes; Com(H) is perfectly
hiding, Com(B) is perfectly binding. See [GK96] for the exact requirements. We assume non-interactive
commitments for simplicity. The common input is 𝐺 = (𝑉 , 𝐸) and the prover’s witness is a 3-colouring
𝜓 : 𝑉 → {0, 1, 2}.

(P0) P sends ckhide ← Setup(H) (𝜆). (ckbind ← Setup(B) (𝜆) is deterministic.)

(V0) V randomly picks challenge edges 𝑒𝑖 ← 𝐸 for 𝑖 = 1, . . . , 𝑁 = 𝜆 · card(𝐸), commits to them as
𝑐𝑒𝑖 = Com(H) (ckhide, 𝑒𝑖), and sends all {𝑐𝑒𝑖 }𝑖=1,...,𝑁 .

(P1) P picks randomized colourings𝜓𝑖 for all 𝑖 = 1, . . . , 𝑁 and commits to all node colours for all graphs
in (sets of) commitments {{𝑐𝜓

𝑖,𝑗
} 𝑗∈𝑉 }𝑖=1,...,𝑁 using Com(B) . P sends all 𝑐𝜓

𝑖,𝑗
to V.

(V1) V opens the commitments 𝑐𝑒𝑖 to 𝑒𝑖 for all 𝑖 = 1, . . . , 𝑁 .

(P2) P aborts if any opening is invalid or 𝑒𝑖 ∉ 𝐸 for some 𝑖 . Otherwise, for all iterations 𝑖 = 1, . . . , 𝑁 , P
opens the commitments 𝑐𝜓

𝑖,𝑎
, 𝑐𝜓
𝑖,𝑏

for the colours of the nodes of edge 𝑒𝑖 = (𝑎, 𝑏) in repetition 𝑖 .

(V2) V aborts iff any opening is invalid, any edge not correctly coloured, or if ckhide is bad. Otherwise,
V accepts.

In [GK96], delaying the check of ckhide to the end of the protocol weakens the requirements on VfyCK,
as the verifier may learn setup randomness of ckhide at that point. But this is irrelevant for zero-
knowledge.
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5.5.2.2. Proof of Zero-Knowledge

Our goal is to show the following lemma.

Lemma 5.5.8. Suppose Com(H) and Com(B) are a priori PPT algorithms. Then protocol G3CGK in
Section 5.5.2.1 is zero-knowledge against CEPT adversaries with a bb-rw CEPT simulator. Let (I,V∗) be a
CEPT adversary and suppose𝑇 ≔ timeP+V∗ (RealI,V∗) is (𝑡, 𝜀)-time. Then Sim handles (I,V∗) in virtually
expected time (𝑡 ′, 2𝜀 + 𝜀′). Here 𝜀′ stems from an advantage against the hiding property of Com(B) , hence
𝜀′ negligible. If the time to compute a commitment depends only on the message length, then 𝑡 ′ is roughly
2𝑡 .

Our proof differs from that in [GK96] on two accounts: First, we do not use the runtime normalization
procedure in [GK96]. This is because a negligible deviation from EPT is absorbed into the CEPT
virtuality, namely 𝜀′. Second, we handle designated CEPT adversaries. In particular, the runtime classes
of simulator and adversary coincide. We first prove the result for perfect EPT adversaries.

Lemma 5.5.9. The claims in Lemma 5.5.8 hold if 𝑇 ∈ EPT, i.e. 𝜀 = 0.

Proof sketch. We proceed in game hops. The initial game being RealI,V∗ and the final game being
IdealI,Sim. We consider (timed) bb-rw simulation.

Game G0 is the real protocol. The output is the verifier’s output and state (from I). From now on, we
ignore the state output, since no game hop affects it.

Game G1: If the verifier opens the commitments in 5.5.2.1 correctly, the game repeatedly rewinds it
to 5.5.2.1 using fresh prover randomness, until it obtains a second runwhereV∗ unveils the commitments
correctly (in 5.5.2.1). The output is V∗’s output at the end of this second successful run. If the verifier
failed in the first run, the protocol proceeds as usual. The outputs ofG1 andG0 are identically distributed.
It can be shown that this modification preserves (perfect) EPT of the overall game, i.e. G1 is perfect
EPT. More precisely, the (virtually) expected time is about 2𝑡 (plus emulation overhead). To see this,
use that each iteration executes P’s code with fresh randomness. For the analysis, condition to fix the
randomness of everything but P; averaging over the randomness of I, V∗ (and D), then extends the
reasoning again. Since bb-rw-access fixes the randomness of V∗ between rewinds, the probability that
V∗ opens the commitment in step 5.5.2.1 is 𝑝 in each (independent) try. Hence, the number of rewinds is
distributed geometrically, and 1 + 𝑝∑︁∞

𝑖=1 𝑖 · 𝑝 (1 − 𝑝)𝑖−1 = 2 is the expected number of overall iterations
(including the first try). Consequently, the expected runtime doubles at most.44

Game G2: Test if both (valid) openings of V∗’s commitments in 5.5.2.1 open to the same value. Else,
G2 outputs ambig, indicating equivocation of the commitment. This modification hardly affects the
runtime, so it is still bounded roughly by 2𝑡 . The probability for ambig is negligible, since one can
(trivially) reduce to an adversary against the binding property of Com(B) . That is, there is an adversary
B such that |Pr[D (out(G2) = 1)] − Pr[D (out(G1) = 1)] | = Advbind

Com(B)
(B).

44 Formally arguing that the expected time is bounded by 2𝑡 is a bit more technical than for strict time bounds. But it follows
easily from the independence of the iterations (due to fresh prover randomness), and the fact that 𝑡 , in particular, upper
bounds the expected time per iteration. In detail: Observe that each iteration has the same runtime distribution 𝑇 ′. Let
𝑇 denote the random variable for a complete run (without rewinding) and let 𝑇 ′

𝑖
be the random variable denoting the

𝑖-th (hypothetical) iteration for 𝑖 ∈ N, where we also define iterations which never happen (due to an earlier success).
Then clearly E [𝑇 ′

𝑖
] = E [𝑇 ′] ≤ 𝑡 . Let 𝐼 be random variable denoting the number of iterations. Then the total time is

E [(𝑇 −𝑇1) +
∑︁𝐼
𝑖=1𝑇

′
𝑖
] = E [𝑇 ] + E [𝐼 − 1]E [𝑇 ′

𝑖
] ≤ 2𝑡 .
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In Game G3, the initial commitments (in 5.5.2.1) to 3-colourings are replaced with commitments
to 0. These commitments are never opened. Thus, we can reduce distinguishing Games 2 and 3 to
breaking the hiding property of Com(B) modelled as left-or-right indistinguishability. More precisely,
the reduction constructs real resp. all-zero colourings, and uses the LR-challenge commitment oracle
O𝑏 which receives two messages (𝑚0,𝑚1) and commits to𝑚𝑏 . Use𝑚0 to commit to the real colouring
(left), whereas𝑚1 is the all-zero colouring (right). The modification of G2 to “oracle committing” yields
an EPT Game G2′ (instantiated withO0). The modification of G3 to G3′ (withO1) is CEPT. This follows
immediately from the standard reduction, because Games G2′ and G3′ differ only in their oracle, and
the case of O0 is EPT. More precisely, the standard reduction applied to O0 and O1 yields an adversary
B such that |Pr[D (out(G2)) = 1] − Pr[D (out(G1)) = 1] | ≥ 1

4 Adv
hide
Com(B)

(B) infinitely often, assuming
B has non-negligible advantage.

Consequently, Game G3′ is efficient with (oracle) runtime 𝑇3′
𝑐≈ 𝑇2′ , and the output distributions of

Games G2′ and G3′ are indistinguishable. Finally, note that Game G3 and G3′ only differ by (not) using
oracle calls. Incorporating these oracles does not affect CEPT (as O1 is an a priori PPT oracle). Thus,
G3 is efficient (i.e. CEPT) as well. Assuming the time to compute a commitment depends only on the
message length, a precise analysis shows, that the (virtually) expected time is affected negligibly (up to
machine model artefacts).

In Game G4, the commitments in the reiterations of 5.5.2.1 are replaced by commitments to pseudo-
colourings for each 𝑒𝑖 , that is, at the challenge edge 𝑒𝑖 , two random different colours are picked, and all
other colours are set to 0. If V∗ equivocates, the game outputs ambig. The argument for efficiency
and indistinguishability of outputs is analogous to the step from Game G2 to Game G3. It reduces all
replacements to the hiding property in a single step. This is possible since our definition of hiding is
left-or-right oracle indistinguishability with an arbitrary number of challenge commitments. As before,
a precise analysis shows that the (virtually) expected time is affected negligibly.

All in all, if G0 runs in (virtually) expected time 𝑡 , then G4 runs in expected time about 2𝑡 , ignoring
the overhead introduced by bb-rw emulation, etc. Moreover, the output is indistinguishable, i.e.
|Pr[D (out(G4)) = 1] − Pr[D (out(G0))] = 1| ≤ negl.

The simulator is defined as in G4: It makes a first test-run with an all-zeroes colouring. If the verifier
does not open its challenge commitment in 5.5.2.1, Sim aborts (like the real prover in 5.5.2.1). Otherwise,
it rewinds V∗ (and uses pseudo-colourings) until V∗ opens the challenge commitment again, and outputs
the verifier’s final output of this run (or ambig). (To prevent non-halting executions, we may abort
after, e.g., 22𝜆 steps. But this is not necessary for our results.) □

We point out some important parts of the proof: First, in Game G1, rewinding and its preservation
of EPT is unconditional. That is, rewinding is separated from the computational steps happening
after it. Second, since the simulator’s time per iteration is roughly that of prover and verifier, the
total simulation time is CEPT (and roughly virtually expected 2𝑡 ). Third, with size-guarded security
(Appendix C.5.4.3), we could have argued efficiency much simpler and coarser. It would suffice if the
runtime per rewind is polynomial in the input size (not counting V∗).

There is only one obstacle to extend our result to CEPT adversaries. It is not obvious, whether
the introduction of rewinding in G1 preserves CEPT. Fortunately, this is quite simple to see: The
probability that a certain commitment is sent in 5.5.2.1 increases, since the verifier is rewound and
many commitments may be tried. However, the probability only increases by a factor of 2. Thus, “bad”
queries are only twice as likely as before.
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More concretely, using Lemma 5.3.12, we obtain a I′ and O′ which output timeout in case of “bad”
queries. By the above claim, the probability for timeout at most doubles. Thus, the virtuality of G1
is at most twice that of G0, (and the virtually expected runtime is roughly doubled as well). Hence, G1
is CEPT. We show this in more detail in the following proof.

Proof sketch of Lemma 5.5.8. G0 toG1: Fix the first message ckhide of P to bbrw(V∗) and the randomness
of V∗ (which is fixed since we consider a bb-rw oracle). Let 𝑝𝑏 (𝑐) be the probability, that in protocol
step 5.5.2.1 G𝑏 sends 𝑐 = {{𝑐𝜓𝑖,𝑗 } 𝑗∈𝑉 }𝑖=1,...,𝑁 to bbrw(V∗) at least once. (For G0, also at most once. But
rewinding in G1 increases the chances.) Let 𝛾𝑖 denote the 𝑖-th query sent in step 5.5.2.1 (or ⊥ if none
was sent), let the random variable 𝐼 denote the total number of queries. Then

𝑝1(𝑐) = Pr[∃ 𝑗 ≤ 𝑖 : 𝛾 𝑗 = 𝑐 ∧ 𝐼 ≤ 𝑗] ≤
∞∑︂
𝑖=1

Pr[𝐼 ≥ 𝑖 ∧ 𝛾𝑖 = 𝑐]

=

∞∑︂
𝑖=1

Pr[𝐼 ≥ 𝑖] Pr[𝛾𝑖 = 𝑐 | 𝐼 ≥ 𝑖] ≤
∞∑︂
𝑖=1

Pr[𝐼 ≥ 𝑖] · 𝑝0(𝑐) = E [𝐼 ] · 𝑝0(𝑐).

In the penultimate equality, we use that, for any fixed 𝑖 , 𝛾𝑖 is a fresh random commitment (or never
sampled, if 𝐼 < 𝑖). As argued before, E [𝐼 ] = 2, hence 𝑝1(𝑐) ≤ 2𝑝0(𝑐). Thus, the probability 𝑝1(𝑐) for G1
to issue query 𝑐 is at most twice that of G0. By averaging over first messages 𝑐 (according to prover
randomness), the derivation extends to our setting of interest, where 𝑐 is chosen randomly by P. Next,
we conclude from this, that the virtuality at most doubles.

By an application of Lemma 5.3.12, we can assume a perfect EPT V′ derived from V∗, i.e. timeV′ (G0) is
EPT. We can then use V′ the transition of from Game G0 to G1. Recall that V∗ and V′ are equal until
timeout by construction.

Denote by G′0 the modification of G0 which uses V′ instead of V∗, and let G′0 immediately output
timeout if V′ does. Then timeV′ (G′0) is EPT by construction, and essentially equals the virtual
expected time of timeV∗ (G0). The statistical distance Δ(G0,G′0) is exactly the probability that V′
outputs timeout. Let G′1 be defined analogously to G′0.

Let timeout(query) be 1 if query causes a timeout and 0 otherwise. Then

PrG′1 [timeout] =
∑︂
query

timeout(query) · 𝑝1(query)

≤ 2
∑︂
query

timeout(query) · 𝑝0(query) = 2 · PrG′0 [timeout] .

Since the probability for timeout bounds the virtuality if we use V∗ instead of V′, this shows that G1
is CEPT, with virtuality 2𝜀. If G0 always halts, the outputs of G1 and G0 are identically distributed. In
general, the statistical distance is (at most) 2 · Pr[G0 = nohalt]; this follows as for virtuality, which
must encompass the probability of non-halting executions. Conditioned on halting executions, the
distributions G0 and G1 are identical. The transition to G2 now relies on the standard reduction, all
other steps of Lemma 5.5.9 apply literally. □

We abstract the above proof strategy in Section 5.6, to cover a large class of proof systems.

Remark 5.5.10. With an analogous proof, one finds that the simulator in [GK96] is also a CEPT
simulator. Its advantage is, that it handles adversaries which are a priori PPT, as well as EPT w.r.t. any
reset attack [Gol10], without introducing any “virtuality”, i.e. the simulation is EPT. On the other hand,
it increases virtuality of CEPT adversaries by a larger factor.
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5.5.3. Sequential Composition of Zero-Knowledge

The formulation of sequential security is not merely sequential repetition, but considers adaptive choices
of inputs. With this, our notion and proof is very close to modular sequential composition for SFE.

5.5.3.1. Security Definition

To model adaptive inputs, we replace the input generator I by an “environment” E. This “environment”
E provides all inputs for the protocol, but does not participate in the protocol execution itself, it
only learns the participants final outputs. This definition of sequential composition allows adaptive
sequential executions.

Informally, our definition of sequential zero-knowledge can be summarized as follows: Instead of indis-
tinguishability of ⟨P,V∗⟩ and Sim(V∗), we assume indistinguishability of rep(⟨P,V∗⟩) and rep(Sim(V∗)),
i.e. indistinguishability under repeated trials (Definition 5.2.15).

Definition 5.5.11 (Sequential zero-knowledge). LetT,S ∈ {PPT,CPPT, EPT,CEPT}. Let (P,V) be
an argument system. A universal simulator Sim takes as input (x, code(V∗), aux) and simulates V∗’s
output. Let (E,V∗,D) be an adversarial environment E and an adversarial verifier V∗and a distinguisher
D. The environment is given access one of two oracles OP, OSim, which take as input (x,w, aux) and

• OP(x,w, aux) returns outV∗ ⟨P(x,w),V∗(aux)⟩ . (OP ˆ︁= rep(⟨P( · ), · ⟩))

• OSim(x,w, aux) returns Sim(x, code(V∗), aux). (OSim ˆ︁= rep(Sim( · )))

We assume that both oracles reject (say with ⊥) if (x,w) ∉ R. We consider two executions, a real and
an ideal one, defined by:

RealE,V∗ (𝜆) ≔ outE⟨E, rep(OP)⟩
and IdealI,Sim(𝜆) ≔ outE⟨E, rep(OSim)⟩

We define RealE,V∗ (𝜆) to be the execution of (E,V∗) withOP, and IdealE,Sim(𝜆) the execution withOSim.
The distinguishing advantage of (E,V∗,D) is

AdvzkE,V∗,D (𝜆) ≔ |Pr[D (RealE,V∗ (𝜆)) = 1] − Pr[D (IdealE,Sim(𝜆)) = 1] |.

A (designated) adversary (E,V∗,D) is T-time if timeE+P+V∗+D (D (RealE,V∗)) ∈ T.

The argument system is (uniform) sequential zero-knowledge against T-time adversaries w.r.t.
S-time Sim, if for any T-time adversary (E,V∗):

• timeE+Sim+D (D (IdealE,Sim)) ∈ S, that is, rep(OSim(code(A ) ) ) is weakly (T,S)-efficient relative
to rep(O⟨P,V∗ ⟩ ).

• AdvzkE,V∗,D (𝜆) is negligible

We also say that protocols with sequential zero-knowledge simulators compose sequentially. We dropped
the input generator I, since its complexity class is the same as that of the environment E, For clarity,
we did not “include” D in E, although the resulting definition would be equivalent.

A few remarks are in order. One could fix the universal adversary Vuniv (which executes a given
program) as V∗ in Definition 5.5.11. For compatibility with Definition 5.5.2, we allow any V∗.

Remark 5.5.12. Sequential zero-knowledge where E is restricted to a single query is equivalent to
auxiliary input zero-knowledge. This is easily seen since Definition 5.5.2 allows I to pass state to D.
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Caution 5.5.13. Taken literally, Definition 5.5.11 is unsuitable for expected time. Inefficiencies similar to
the setting of bb-rw oracles arise. However, as with rewinding strategies, we use the usual convenient
notation. We leave implicit, that an efficient implementation which is logically equivalent is easily
derived.45 In Definition 5.5.11, passing the state of V∗ via aux runs into these problems. For simplicity,
assume aux is shared memory between E and V∗.

5.5.3.2. Sequential Composition Lemma

We are now ready to state and prove the sequential composition lemma for zero-knowledge.

Lemma 5.5.14 (Sequential composition lemma). Let (P,V) be an argument system. Suppose Sim is a
simulator for auxiliary input zero-knowledge (which handles CEPT adversaries in CEPT). Then (P,V) is
sequential zero-knowledge (with the same simulator Sim which also handles CEPT adversaries against
sequential zero-knowledge in CEPT).

The proof is an almost trivial consequence of the hybrid lemma.

Proof. Let (E,V∗,D) be a CEPT adversary. Let OP(x,w, aux) and OSim(x,w, aux) be as in Defini-
tion 5.5.11. By definition,

RealE,V∗ (𝜆) = outE⟨E, rep(OP)⟩ and IdealI,Sim(𝜆) = outE⟨E, rep(OSim)⟩

Define a distinguisherA for rep(OP) and rep(OSim) asD (outE⟨E, rep(O)⟩). Now, we are in the usual
setting of oracle (in)distinguishability. Since Sim is an auxiliary input zero-knowledge simulator for
(P,V), we have that OSim is weakly efficient relative to OP and that OP

𝑐≈ OSim. Thus, the hybrid
lemma for CEPT, Lemma 5.4.7, is applicable. Hence rep(OP) is weakly relative efficient to rep(OSim)
and rep(OP)

𝑐≈ rep(OSim). This concludes the proof. □

5.6. Benign Simulation

In this section, we define benign simulation. This abstracts the proof strategy for G3CGK in Section 5.5.2.
Namely, we define rewinding strategies to abstract the rewinding step, and we define “simple assumption”
to abstract the left-right hiding and binding property of the commitment. Put together, we define
benign simulators as simulators which have a proof of security analogous to the one of G3CGK.

45 The problem is that passing around state is extremely wasteful, and involves copying the state to and from message
interfaces. Generally speaking, almost anything, which does not go over a “real” network, should not be passed by copying.
This can be solved in any number of ways. E.g. allow shared memory/tapes between machines, or introduce an additional
interactive machine which represents that shared tape, and pass around (interface) access to memory/machine, and so on.
It should be evident that it is easy but tedious to formalize this.
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5.6.1. Rewinding Strategies

Rewinding strategies encapsulate the rewinding schedule of a simulator. Unlike simulators, their
properties are unconditional.

Reminder (Black-box queries). By abuse of notation, we typically write AO instead of Abbrw(O) , if it is
understood that A has bb-rw access to O. Our presentation treats bbrw(O) as a NextMsg oracle, but it
is understood that a logical query (𝑚1, . . . ,𝑚ℓ ) is implemented efficiently by a short handle to the state
of bb-rw(O) after processing (𝑚1, . . . ,𝑚ℓ−1), and the message𝑚ℓ in that state.

5.6.1.1. Definitions

Our definition of rewinding strategies is specialized for zero-knowledge, but it generalizes to other
settings easily.

Definition 5.6.1. A rewinding strategy RWS for a proof system (P,V) is an oracle algorithm with
timed bb-rw access to the (malicious deterministic) verifier V∗. The output of RWS is a state of bbrw(O)
(or an abort message), which we denote by the (logical) query leading to it.

A rewinding strategy RWS has runtime tightness poly, if the following holds: Let be (I,V∗) any
adversary (modelled as a timeful oracle). Let

𝑇 ≔ timeP+V∗ (⟨P,V∗⟩I) and 𝑆 ≔ timeRWS+V∗ (RWSV
∗ (x,aux ) (x,w))

with input distribution I. Then E [𝑆] ≤ poly · E [𝑇 ] for all (I,V∗).46

Equivalently, for deterministic timeful I, i.e. any sequence (x𝜆,w𝜆, aux𝜆) ∈ R and any deterministic
timeful V∗, the analogous claim holds.

The notion of runtime tightness of RWS is strong and unconditional. Up to minor technical details, it is
equivalent to the notion of “normal machine” implicit in [Gol10, Definition 6]. The equivalence of using
probabilistic and deterministic adversaries follows easily: Certainly, probabilistic covers deterministic.
For the converse, one uses the tightness bound poly and linearity of expectation.

Remark 5.6.2 (Preservation of EPT). It is clear that a rewinding strategy RWS with polynomial runtime
tightness preserves EPT, i.e. in the setting of Definition 5.6.1, if timeP+V∗ (⟨P,V∗⟩I) ∈ EPT, then
timeRWS+V∗ (RWSV

∗ (x,aux ) ) ∈ EPT.

Before we tackle preservation of CEPT, we introduce more parameters of rewinding strategies.

Definition 5.6.3 (Properties of rewinding strategies.). Let (P,V) be a proof system and RWS a rewinding
strategy. LetLQ be the set of all possible (logical) queries. Suppose V∗ is some (malicious) deterministic
verifier (as a timeful oracle). Let 𝜆, (x,w), aux be inputs. Let query ∈ LQ be a (logical) query to
bbrw(V∗). Let prreal(query) be the probability that, in a real interaction ⟨P(x,w),V∗(x, aux)⟩ , the
prover queries query, that is47

prreal(query) = Pr[query ∈ qseqP(⟨P(x,w),V∗(x, aux)⟩)] .

46We define that∞ ≤ ∞.
47 By abuse of notation, wewrite qseqP (⟨P(x,w),V∗ (x, aux)⟩) for the sequence of logical queries toNextMsgV∗ , i.e. bbrw(V∗).

Formally, qseqP (. . .) is the sequence of message sent by P, (and P does not treat V∗ as bbrw(V∗)). So actually, we consider
the sequence of prefixes of qseqP (. . .), which correspond to the logical queries to bbrw(V∗) which result in the same
execution as ⟨P,V⟩ .
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Let prrws(query) be the probability, that RWSV
∗ (x,w) queries query, that is

prrws(query) = Pr[query ∈ qseqRWS(RWSV
∗ (x,aux ) (x,w))] .

We say a rewinding strategy RWS has probability tightness polypr(𝜆) if

prrws(query) ≤ polypr(𝜆) · prreal(query)

for all queries query ∈ LQ. (In other words: 𝜌sup(prrws/prreal) ≤ polypr.)

The output skew of RWS for an execution with (I,V∗) (where (x,w, aux) ← I(𝜆)) is similarly defined
by the ratio 𝜌sup(𝑌/𝑋 ) of the output distributions, 𝑌 of RWS and 𝑋 of P running with V∗ on input
sampled by I.48 We say RWS has output skew 𝛿 = 𝛿 (𝜆), if for every (deterministic) (I,V∗) which
halts (with probability 1), the output skew for (I,V∗) is at most 1 + 𝛿 (𝜆). We say RWS has perfect
output (distribution) if for all (I,V∗) which always halt with probability 1 the output of RWS is
distributed identically (that is, 𝛿 = 0) to the real execution.

We note that the properties in Definition 5.6.3 are unconditional. Also, non-halting executions can
affect the output distribution, as they will be encountered by RWS with higher probability than in
the real execution, increasing the probability that RWS “outputs” nohalt. In any situation where
statistical properties are good enough, one can assume that all algorithms halt (e.g. by truncation or
modifying the machine model).

Finally, we define our notion of normality. The definition is similar to Goldreich’s definition of normality
in [Gol10].49

Definition 5.6.4 (Normal RWS). A rewinding strategy RWS is normal if it has polynomial runtime
tightness, polynomial probability tightness, and perfect output distribution.

Perfect output distribution is vital for later use of RWS (as a part of security proofs). Negligible output
skew would suffice, but natural rewinding strategies seem to satisfy perfect output skew, so we require
that for simplicity.

5.6.1.2. Basic Results

Now, we state our main result for normal rewinding strategies.

Lemma 5.6.5 (Normal rewinding strategies preserve CEPT). Let RWS be a normal rewinding strategy
for (P,V). Let (I,V∗) be a CEPT adversary for zero-knowledge, that is timeI+P+V∗ (⟨P,V∗⟩I) ∈ CEPT.
Then timeI+RWS+V∗ (RWSV

∗ (x,aux ) (x,w)) ∈ CEPT, where (x,w, aux, state) $← I(𝜆).

More precisely, suppose polytime is a runtime tightness and polyvirt a probability tightness of RWS (against
EPT adversaries). If timeP+V∗ (⟨P,V∗⟩I) is virtually (𝑡, 𝜀)-time, then timeRWS+V∗ (RWSV

∗) is virtually
(polytime · 𝑡, polyvirt · 𝜀)-time. In other words, RWS is efficient relative to ⟨P, · ⟩ with runtime tightness
(polytime, polyvirt).

48 More correctly, 𝑋 and 𝑌 are the distributions of the state of the timed bb-rw V∗.
49 Goldreich remarks [Gol10, Footnote 24] that his notion of normality of a simulator is probably satisfied if the runtime

analysis is unconditional. We separate the analysis into rewinding strategies and indistinguishability transitions, since our
notion of runtime and efficiency of simulators is not unconditional. Disregarding this, the notions essentially coincide.
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The proof exploits that “bad queries”, which result in overly long runs of ⟨P,V∗⟩I happen at most
polynomially more often with RWS, due to normality. Since bad queries happen with probability 𝜀, the
claim follows. A detailed proof follows.

Proof. By Lemma 5.3.12, we know that there is a modification V′ of V∗ such that timeV′ (⟨P,V′⟩I) is
EPT, where V′ is a timeful oracle which aborts bad executions with timeout. By normality, also
timeV′ (RWSV

′) is EPT. We call a (logical) query query = (𝑚1, . . . ,𝑚𝑛) to V′ which returns timeout
a timeout query. The probability that such a timeout query happens in a real execution with P is at
most 𝜀 (by construction).

The only case where RWS encounters a difference between (I,V∗) and (I,V′) is if RWS asks a timeout
query, i.e. if V′ returns timeout. By normality of RWS, the probability of asking a timeout query is
only polynomially higher than the probability that P asks a timeout query. The latter is at most 𝜀, hence
the former is bounded by polyvirt · 𝜀. Thus, the runtime timeRWS+V∗ (RWSV

∗) is CEPT with virtually
expected time (polytime𝑡, polyvirt𝜀). The claim for the total runtime follows analogously. □

We note that runtime tightness already implies probability tightness (see Remark C.5.30). However,
the implied bounds are far from optimal. Following lemma is a simple way to get a tight(er) bound on
probability tightness.

Lemma 5.6.6. Let RWS be a rewinding strategy for (P,V), and let (I,V∗) be a timeful adversary. Let
Q𝑖 ⊆ qseqRWS(RWSV

∗) be the list of queries of length 𝑖 from RWS to bbrw(V∗); that is Q𝑖 consists of
queries (𝑚1, . . . ,𝑚𝑖). Let 𝑄𝑖 = card(Q𝑖). Note that Q𝑖 and 𝑄𝑖 are random variables. Let 𝑄 =

∑︁∞
𝑖=0𝑄𝑖 be

the total number of queries. Suppose that for all adversaries, E [𝑄𝑖] ≤ 𝑀𝑖 for some𝑀𝑖 .

Let prrws(query) resp. prreal(query) be the probability that RWS resp. P queries query, as in Definition 5.6.3.
Write Q𝑖 [ 𝑗] for the 𝑗-th query in Q𝑖 . Suppose that for all 𝑖 and all logical queries query of length 𝑖

∀𝑗 ∈ N0 : Pr[query = Q𝑖 [ 𝑗] | 𝑄𝑖 ≥ 𝑗] ≤ prreal(query),

where the probability is over the randomness of RWS and P. Then

prrws(query) ≤ 𝑀𝑖 · prreal(query) .

In particular, the probability tightness of RWS is bounded by𝑀 = max𝑖 𝑀𝑖 .

The basic idea behind Lemma 5.6.6 is that for any (𝑖 − 1)-length history 𝑚′ = (𝑚1, . . . ,𝑚𝑖−1), the
probability that the prover queries 𝑚𝑖 (conditioned on 𝑚′) is identical to the probability that RWS
queries𝑚𝑖 “conditioned on𝑚′”. The “conditioning RWS on𝑚′” part needs a suitable definition. In
special cases, e.g. “tree-based” rewinding strategies, this can be done hands on. Lemma 5.6.6 gives a
general formalization of this idea (without needing to condition on some𝑚′).

It is often (almost) trivial to verify the conditions of Lemma 5.6.6. Moreover, we are not aware of (natural)
rewinding strategies which do not satisfy normality, even outside the context of zero-knowledge.

Proof of Lemma 5.6.6. The proof is almost trivial. Consider the setting and notation of Lemma 5.6.6.
Let query be a logical query of length 𝑖 . We have

Pr[∃ 𝑗 : query = Q𝑖 [ 𝑗]] ≤
∞∑︂
𝑗=0

Pr[query = Q𝑖 [ 𝑗]] =

∞∑︂
𝑗=0

Pr[query = Q𝑖 [ 𝑗] | 𝑄𝑖 ≥ 𝑗] Pr[𝑄𝑖 ≥ 𝑗],
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by a union bound, and we have

∞∑︂
𝑗=0

Pr[query = Q𝑖 [ 𝑗] | 𝑄𝑖 ≥ 𝑗] Pr[𝑄𝑖 ≥ 𝑗] =

∞∑︂
𝑗=0

prreal(query) Pr[𝑄𝑖 ≥ 𝑗] ≤ prreal(query) · E [𝑄𝑖] .

by assumption (and by E [𝑄𝑖] =
∑︁∞
𝑗=0 Pr[𝑄𝑖 ≥ 𝑗]). □

The criterion in Lemma 5.6.6 is “global” and not “local”, making it somewhat inconvenient. Instead of
applying Lemma 5.6.6, it is often simple(r) to derive more precise bounds and directly prove normality.

Remark 5.6.7 (Partial RWS). A typical proof strategy for normality is to view RWS as a composition of
(partial) strategies. For example, many rewinding strategies are “tree-based” and each layer corresponds
to a (partial) rewinding strategy, which calls lower layers as substrategies. This approach lends itself
to a simple and precise analysis of runtime tightness, probability tightness and “query tightness”. For
example, if calls to substrategies not skewed, probability tightness behaves multiplicatively. Checking
normality like this relies on “local” properties, which by composition yield the “global” properties.

Remark 5.6.8. Halevi and Micali [HM98] define “valid distributions” [of transcripts] for extraction
in the context of proofs of knowledge. Their definition requires that a polynomial number of total
executions are made (with the extractor in the role of the verifier), and each execution has a transcript
(i.e. queries) which is distributed like for an honest verifier. Separate runs may be stochastically
dependent. Lemma 5.6.6 deals with partial transcripts, expected polynomially many executions, and
probability tightness (not runtime), but is otherwise similar to [HM98].

5.6.1.3. Examples of Normal Rewinding Strategies

We give some examples for rewinding strategies which are normal. Most claims follows easily from
their original efficiency analysis.

Example 5.6.9 (The classic cut-and-choose protocols). The classic protocols for graph 3-colouring, graph
hamiltonicity, as well as graph-(non)-isomorphpism [GMW86; Blu86] use normal rewinding strategies.

Example 5.6.10 (Constant round zero-knowledge). Our motivating example [GK96], the simplification
of Rosen [Ros04], and the proof of knowledge of Lindell [Lin13] have normal rewinding strategies.

Example 5.6.11 (Concurrent zero-knowledge). The concurrent zero-knowledge proof systems of Kilian
and Petrank [KP01] and its variation [PTV14] also rely on normal rewinding strategies. Indeed, their
strategy is strictly PPT (in oracle-excluded time).

Example 5.6.12 (Blum coin-toss). The simulator for the coin-toss protocol [Blu81; Lin17] also gives rise
to normal rewinding strategies. It is strictly PPT (in oracle-excluded time).
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5.6.2. Simple Assumptions and Repeated Trials

To obtain nice results, we want nice “base assumptions” to reduce security to. We call these “simple
assumptions”. For simplicity, we do not allow (shared) setups, such as a common random string, and
are very restrictive w.r.t. the runtime of such oracles.

Definition 5.6.13 (PPTpa). A timeful oracle O is a priori PPT per activation (PPTpa), if there is a
polynomial poly such that every invocation of O has runtime bounded by poly(𝜆).

The property we need from a priori PPTpa is that, if a distinguisher yields an inefficient system, then
the oracle is never to blame, i.e. even excluding its runtime, the system is inefficient. There are less
strict efficiency notions which satisfy this as well, but PPTpa is sufficient for our purposes.

Definition 5.6.14 (Simple assumption). Let C0 and C1 be two oracles, induced by algorithms which are a
priori PPT per activation. The assumption that C0 and C1 are indistinguishable (w.r.t. PPT adversaries)
is called a simple assumption. We also say C0 and C1 form a simple assumption.

Example 5.6.15. Many assumptions are simple, for example one-way functions, trap-door one-way
permutations, pseudorandom functions, hiding and binding properties of commitments, IND-CPA and
IND-CCA security of public key encryption, and so on. Counterexamples are 1-more assumptions, e.g.
the one-more RSA assumption. Knowledge assumptions are also not simple. Note that assumptions
which can be reduced to simple assumptions need not be simple, e.g. soundness of (non-extractable)
proof systems.

By definition, simple assumptions are essentially falsifiable assumptions [Nao03] as defined by Gentry
and Wichs [GW11]. However, the (invisible) intent of simple assumptions is that they have a simple
notion of repeated trials, and behave well in this setting. Since our primary setting is the plain model,
simple assumptions are natural, but we stress that our techniques work for a much broader class of
game-based assumptions, including non-falsifiable assumptions.50

Simple assumptions are secure under repeated trials against PPT (or CEPT) adversaries.

Lemma 5.6.16 (Hybrid lemma for simple assumptions). Let C0 and C1 be two oracles forming a simple
assumption, and let 𝑞 = 𝑞(𝜆) where 𝑞 = ∞ is allowed. Suppose D is a CEPT distinguisher for 𝑞-repeated
trials, with |AdvdistD,rep𝑞 (C0 ),rep𝑞 (C1 ) | ≥ 𝜀 = 1/poly infinitely often. Suppose timeD (Drep𝑞 (C0 ) ) is bounded
by (𝑡0, 𝜈0). Let𝑀 (𝜆) ≥ min(𝑞(𝜆), 4𝜀−1𝑡0) be an (efficiently computable) polynomial upper bound. Then
there is an a priori PPT distinguisherA with advantage at least 1

𝑀
( 𝜀4 − 𝜈0) infinitely often.

This immediately yields:

Corollary 5.6.17. Let C0 and C1 form a simple assumption, in particular, C0
𝑐≈ C1. Then rep(C0) and

rep(C1) form a simple assumption, in particular, rep(C0)
𝑐≈ rep(C1).

50 Typical 1-more assumptions have a meaningful notion of security under repeated trials as well, but Definition 5.2.14
is too coarse to capture this, as it postulates independent instances. For example, given two 1-more-dlog oracles for a
deterministic group generator, it is easy to win in one of the 1-more dlog instances; but by correlating the repeated oracles,
one can also embed a 1-more-dlog challenge.
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Proof of Lemma 5.6.16. First apply Corollary 5.4.2 to get an a priori PPT distinguisher A′. Note that
we treat distinguishing under repeated trials as distinguishing O∗0 = rep(C0) and O∗1 = rep(C1). Thus,
we end up with advantage 𝜀

4 −𝜈0 and runtime bound roughly 4𝜀−1𝑡0, where (𝑡0, 𝜈0) is virtually expected
time of D as in Lemma 5.4.1. In particular,A′ can make at most𝑀 (𝜆) queries.

Now, we rely on the efficient implementation of C0, C1 to implement the hybrid distinguisher. The
claim follows from the (standard a priori) PPT) hybrid lemma. □

5.6.3. Benign Simulators

Our definition of a benign simulator abstracts the proof strategy for G3CGK. Before we give the
definition, we demonstrate the idea.

Example 5.6.18 (Structure of the security reduction for G3CGK). Consider the protocol G3CGK in
Section 5.5.2.1 and the security proof in Section 5.5.2.2. Let (I,V∗,D) be an adversary. Since the
simulator cannot depend on I and D, they are of no importance in the following. Indeed, they should
be viewed as one entity, the “distinguisher”, whereas V∗ is the actual “attacker”. Below, we omit the
inputs x,w, aux.

Let A0 = A0(V∗) denote the algorithm outV∗ ⟨P,V∗⟩ . Let ˜︁A0 = ˜︁A0(V∗) denote the algorithm which
introduces all rewindings, as in Section 5.5.2.2, G1. Moreover, ˜︁A0 makes any commitment computations
into explicit calls to subroutines. (Let us call this boxing, and the act of “forgetting” subroutine calls
unboxing.)

We note the following: For any V∗, A0 ≡ ˜︁A1 (i.e. they are perfectly indistinguishable), and if A0 is
efficient, then so is ˜︁A0. More concretely: For every I,D, if the completed system for A0 is CEPT (i.e.
with inputs sampled by I and with D applied to the output of A0), so is the completed system for ˜︁A0.

Similarly, let A1 ≔ Sim(V∗) and let ˜︁A1 = ˜︁A1(V∗) be the simulator with boxed calls to Com. Clearly, for
any V∗, ˜︁A1 ≡ A1, and if ˜︁A1 is efficient (i.e. CEPT), so is A1.

Consider the two indistinguishable oracles O0, O1, which represent the (repeated) binding and hid-
ing experiments in the security proof, squeezed into one oracle. It is straightforward to define an
(oracle) algorithm R = R(V∗), which encapsulates the reduction given in the games following G1 in
Section 5.5.2.2, such that for R, it holds that ˜︁A0 ≡ RO0 and RO1 ≡ ˜︁A1. Moreover, RO0 is efficient if ˜︁A0
is. Furthermore, since O0 and O1 are indistinguishable, if RO0 is CEPT, so is RO1 . (This step relies on
CEPT and fails for EPT.)

Consequently, Sim(V∗) is CEPTwhenever ⟨P,V∗⟩ is CEPT, and Sim(V∗) and ⟨P,V∗⟩ are computationally
indistinguishable. Pictorially, the security proof worked as follows:

A0
≡−−→
𝑒

˜︁A1
≡−−→
𝑒

RO0 𝑐≈ RO1 ≡−−→
𝑒

˜︁A1
≡−−→
𝑒

A1,

where A ≡−−→
𝑒

B denotes that A and B are perfectly indistinguishable and that if B is efficient (given V∗),
so is A. More precisely, we have

⟨P, · ⟩ ≡−−→
𝑒

RWS( · ) ≡−−→
𝑒

RO0 ( · ) 𝑐≈ RO1 ( · ) ≡−−→
𝑒

˜︃Sim( · ) ≡−−→
𝑒

Sim( · ),

where we made explicit, that this construction is functional in the adversary (the missing argument
denoted “ · ”). We also note that the intermediate steps (˜︁A0, ˜︁A1, resp. RWS, ˜︃Sim) can be omitted.
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As a first step, we have define what a “reduction” is. Simple “reductions” are just connections of
two interactive algorithms (which depend on A) by an indistinguishability assumption. The name
“reduction” is debatable, and the definition very restrictive, but sufficient for our purposes.

Definition 5.6.19 (Simple reductions). A simple reduction under an (implicit) simple assumption
(C0,C1) is an oracle algorithm R which expects expects access to an oracle C𝑏 and code(A) as input.
Given O and code(A), RO𝑏 (A) implements (an interactive) algorithm.

Our definition of benign simulation requires a security proof as sketched in Example 5.6.18, and is
basically an abstract formalization of that proof strategy. For completeness, we give a more traditional
approach in Appendix C.6, which relies on indistinguishability of queries similar to [KL08]. We view
both approaches as complementary: Our definition of benign simulation is easily applicable to typical
protocols (and all of our examples), whereas the query-indistinguishability condition is something
one can arguably expect from almost any simulator, which broadens the class of simulators which
handle CEPT adversaries in CEPT. In any case, a bb-rw simulation with a normal rewinding strategy is
assumed.

Definition 5.6.20 (Benign simulation). Let (P,V) be an argument system. Let Sim be a (timed) bb-rw
simulator with associated rewinding strategy RWS and associated simple reduction R under
simple assumption (C0,C1). Moreover, the reduction RC𝑏 (V∗) has the interface of RWS, i.e. it expects
(code(V∗),x,w, aux). Suppose that, for any adversary V∗:

1. RWS is a normal rewinding strategy.

2. RWSV
∗ ≡ RC0 (V∗) and RC0 (V∗) is efficient relative to RWSV

∗ with polynomial runtime tightness.

3. RC1 (V∗) ≡ Sim(V∗) and Sim(V∗) is efficient relative to RC1 (V∗) with polynomial runtime tight-
ness.

4. C0 and C1 form a simple assumption, and are indistinguishable, i.e. C0
𝑐≈ C1.

Then Sim is benign (under the assumption C0
𝑐≈ C1).

5.6.3.1. Iterated Benign Reductions

Our definition of benign allows only one “reduction step” using C0
𝑐≈ C1. Many security proofs can be

squeezed into this setting. However, a simple relaxation is useful.

Definition 5.6.21 (Iterated benign). In the setting of Definition 5.6.20, we call Sim iterated benign, if
there is a constant 𝑘 and a sequence of “intermediate simulators” Sim0, . . . , Sim𝑘 , which expect as input
(code(A),x,w, aux) so that

1. Sim0 ≡ ⟨P, · ⟩ and Sim𝑘 ≡ Sim (where Sim𝑘 ignores w).

2. Sim𝑖 and Sim𝑖+1 are related by a benign reduction (as in Definition 5.6.20, with oracles C𝑖,𝑏 ,
𝑖 = 1, . . . , 𝑘 , 𝑏 = 0, 1.).

We stress that iterated benign only allows a constant number of “hops”. The reason is that runtime may
double for each hop, so superconstantly many “hops” could make the runtime explode. Thus, hybrid
arguments must be put into the (simple) assumptions. Also note that RWS can be absorbed into R, and
the relative efficiency requirement. While we the (possible) use of RWS explicit in Definition 5.6.20, we
left it implicit in Definition 5.6.21.
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5.6.3.2. Examples of (Iterated) Benign Simulators

All of our examples can be easily expressed via (iterated) benign simulators. We stress that hybrid
arguments must be incorporated into the (simple) assumptions C𝑖,0

𝑐≈ C𝑖,1.

Example 5.6.22. The classic, the constant round, and the concurrent zero-knowledge protocol exam-
ples [GMW86; Blu86; GK96; Ros04; Lin13; KP01; PTV14] from Section 5.6.1.3 have benign simulation.

5.6.3.3. Zero-Knowledge and Benign Simulation

We only give results for benign simulation. Extending these to iterated benign is straightforward and
left to the reader.

Lemma 5.6.23. Suppose (P,V) is an argument system. Let Sim be a benign simulator. Then Sim is a
zero-knowledge simulator which handles CEPT adversaries (in CEPT).

Proof. Suppose (I,V∗,D) is an adversary which is CEPT in the real protocol. For brevity, whenever
we call an (interactive) algorithm CEPT in the following, we mean that (if necessary) the inputs are
generated by I (and D is applied to the output).

Suppose for simplicity that it halts with probability 1. Then the output of a normal rewinding strategy
RWS is distributed like the real protocol output.51 By normality, RWS is CEPT. By relative efficiency,
RC0 (V∗) is CEPT. Also, by assumption, the “reduction” RC0 (V∗) behaves (as a system) exactly like
RWS. By indistinguishability of C0 and C1, the standard reduction shows that RC1 (V∗) is CEPT and the
output of RC1 (V∗) is (computationally) indistinguishable from RC0 (V∗) (and hence the real protocol).
By relative efficiency of Sim, Sim(V∗) is CEPT (with environment I,D). Since RC1 (V∗) is behaves (as a
system) exactly as Sim(V∗), the output of Sim(V∗) and ⟨P,V∗⟩ is indistinguishable. Thus Sim handles
CEPT adversaries in CEPT. □

By Lemma 5.6.23, all of our examples in Example 5.6.22 are not only secure against a priori PPT
adversaries, but have CEPT simulation against designated CEPT adversaries.

Remark 5.6.24 (More precise runtime bounds). We saw for G3CGK, that the runtime of the simulator Sim
and the rewinding strategy RWS are very closely related. For this, we used “boxing” and “unboxing” (and
that commitment computations only depend on message lengths). Such a close relation of runtime is
typical, since in most security proofs only rewinding and bookkeeping introduces (significant) changes
in the runtime. Hence, our extendability results are relatively crude feasibility results, assuring that
zero-knowledge extends to CEPT adversaries.

51 If ⟨P,V∗⟩I halts with probability 1 − 𝜈 , then the output (including nohalt) has statistical distance at most polyvirt · 𝜈 .
Since 𝜈 is bounded by the virtuality of ⟨P,V∗⟩I anyway, the rest of the proof works without change.
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5.6.4. Sequential Zero-Knowledge from Benign Simulation

To prove sequential that sequential zero-knowledge follows from auxiliary input zero-knowledge, we
had to rely on the hybrid argument, which hides a lot of complexity. For benign simulation, it is easy
to prove that it composes sequentially. Conceptually this follows from:

• Using that rewinding strategies “compose sequentially”.

• Using that relative efficiency with runtime tightness “composes sequentially”.

• Using that simple assumptions “compose sequentially”, which is a very fancy way to say that we
rely on “repeated trials”.

• Hence, benign “composes sequentially”.

Remark 5.6.25 (Lifting normality and relative efficiency). For brevity’s sake, we do not explicitly lift
rewinding strategies and relative efficiency to the sequential composition setting, i.e. we do not explicitly
define what “composes sequentially” means in that setting. It is straightforward to define by using an
(environmental) adversary and replacing access to the objects O0, O1 of interest (e.g. RWS and ⟨P, · ⟩
for normality) by repeated access, i.e. rep(O0), rep(O1). We note that the tightness parameters are
unaffected (since the notions were already “perfect”).

Lemma 5.6.26 (Sequential zero-knowledge from benign simulation). Let (P,V) be an argument system.
Suppose Sim is a benign simulator (for auxiliary input zero-knowledge). Then (P,V) is sequential zero-
knowledge.

Proof sketch. Let (E,V∗) be the adversary trying to distinguish OP and OSim. Let RWS be the normal
rewinding strategy of Sim. Let R be reduction and C0, C1 be the simple assumption.

Step 1 (Sequential composition of RWS): Let polytime and polyvirt be the runtime and probability
tightness of RWS. Let OP ˆ︁= rep(⟨P,V∗⟩) and let ORWS ˆ︁= rep(RWSV

∗). Suppose for simplicity that
(E,V∗) always halts. Then we know that for any input, the state ofV∗ after RWS is identically distributed
to the state after interaction with P (by normality). Hence, replacing OP with ORWS only affects the
runtime. Now, we lift Lemma 5.6.5 to the sequential setting.

Define 𝑇RWS,𝑖 resp. 𝑇P,𝑖 as the time spent in the 𝑖-th invocation of ORWS resp. OP. Note that

E [timeRWS+V∗ (⟨E,ORWS⟩)] =
∑︂
𝑖

E [𝑇RWS,𝑖]

≤ polytime ·
∑︂
𝑖

E [𝑇P,𝑖]

= polytime · E [timeP+V∗ (⟨E,OP⟩)]

where normality is applied for each 𝑖 .

Suppose (E′,V′) are timeout-modifications according to Lemma 5.3.12. By probability tightness,
the probability that the 𝑖-th iteration of RWS runs into a timeout event is at most polyvirt-fold the
probability for P to run into a timeout event. Consequently, the virtuality is increased by at most a
factor of polyvirt.
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All in all, we have shown thatORWS is a “sequential rewinding strategy” with runtime tightness polytime,
probability tightness polyvirt, and perfect output distribution;52 and we lifted Lemma 5.6.5.

Step 2 (Relative efficiency composes sequentially): Let ORC𝑏 ˆ︁= rep(RC𝑏 (V∗)) for 𝑏 ∈ {0, 1}, and let
OSim ˆ︁= rep(Sim(V∗)). Suppose Sim is efficient relative to RC1 with runtime tightness (polytime, polyvirt).
Then the oracle OSim is efficient relative to ORC1 with runtime tightness poly. Namely, for any (E,V∗),

E [timeSim+V∗ (⟨E,OSim⟩)] =
∑︂
𝑖

E [𝑇Sim,𝑖]

≤ polytime

∑︂
𝑖

E [𝑇RC1 ,𝑖]

= polytime · E [timeRC1 (⟨E,OP⟩)]

where 𝑇Sim,𝑖 resp. 𝑇RC1 denotes the time for the 𝑖-th invocation of the respective oracle. This again
follows by comparing 𝑖-th invocations, and using that output distributions are identical by assumption.
And as for RWS, we can lift the runtime guarantees to the sequential setting, including virtualities.
That is, if the virtually expected time is (𝑡, 𝜀) with ORC1 , then it is (polytime · 𝑡, polyvirt · 𝜀) with OSim.
The same holds for ORWS and ORC0 .

Step 3 (Indistinguishability of ORC0 and ORC1 ): It is obvious that indistinguishability of ORC0 and
ORC1 reduces to indistinguishability of C0 and C1 under repeated trials. (Each invocation of ORC0 (resp.
ORC1 ) is another trial.) By Corollary 5.6.17, simple assumptions are indistinguishable under repeated
trials. (It is vital that RC0 is CEPT. That follows from Steps 1 and 2.)

Step 4 (Benign composes sequentially): From Steps 1 to 3, it follows immediately that benign
“composes sequentially”. More concretely, it follows that (E,V∗) cannot distinguish OP and OSim, and
in particular, an execution with OSim is again CEPT. □

5.7. Sketched Application to SFE

We very briefly recall security definitions for SFE, but assume basic familiarity with the topic. Again, we
adopt a uniform complexity setting with universal simulation. As with zero-knowledge, we therefore
need an “environmental” adversary.

5.7.1. Definitions

Let 𝑛 be a constant in 𝜆 and consider 𝑛 interacting parties. In the setting of SFE, 𝑛 parties wish to jointly
compute a (probabilistic) functionality f : ({0, 1}∗)𝑛 → ({0, 1}∗)𝑛 implemented by the algorithm f. We
demand that f is a priori PPT in 𝜆. The parties input 𝑥1, . . . , 𝑥𝑛 and, at the end of the protocol, output
𝑦1, . . . , 𝑦𝑛 . A protocol 𝜋 consists of algorithms (𝜋1, . . . , 𝜋𝑛), such that each party 𝑖 executes 𝜋𝑖 (𝑥𝑖).53
We assume the parties have secure channels for communication, i.e. an eavesdropping adversary only
learns message lengths and communications proceeds in rounds.

52 If the probability for non-halting executions is not 0, the easiest way is to argue by truncating after say 2𝜆 steps and using
statistical closeness to (E,V∗). But a closer inspection shows that any polytime is fine since∞ ≤ ∞. For polyvirt a closer
inspection shows that it does not change either. This is unsurprising since virtuality must at least remove non-halting
executions anyway.

53 Typically the 𝜋𝑖 are a priori PPT, but as with zero-knowledge, we do not rely on this to specify and prove security.
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We call a party corrupted, if it is controlled by the adversary. We restrict to static corruption, that is,
for execution of a protocol 𝜋 the subset 𝐼 ⊆ {1, . . . , 𝑛} of the corrupted parties is fixed from the start
(and does not (adaptively) grow).

To shorten our exposition, we start with the hybrid model, and treat the real model as a special case.
In the 𝑓 -hybrid model, we assume (repeated) access to an ideal functionality 𝑓 . A protocol 𝜋 may use 𝑓 ,
and we sometimes write 𝜋 𝑓 to emphasize this. Let 𝜋 𝑓 be a protocol implementing a functionality𝑔 in the
𝑓 -hybrid model. Let A be an adversary corrupting the set 𝐼 ⊆ {1, . . . , 𝑛} of parties Let 𝑥 = (𝑥1, . . . , 𝑥𝑛),
𝑟 = (𝑟1, . . . , 𝑟𝑛, 𝑟A, 𝑟 ′) denote the inputs and randomness of the parties. Here 𝑟 ′ denotes the randomness
used in ideal functionalities. By aux we denote the auxiliary input of A. The adversary’s input will be
{𝑥𝑖}𝑖∈𝐼 , aux and 𝐼 . The computation of 𝜋 proceeds in rounds. The parties can also query an instance of
the functionality 𝑓 . In the end, all parties return outputs 𝑦𝑖 , and the adversary outputs 𝑦A ; we write
𝑦 = (𝑦1, . . . , 𝑦𝑛, 𝑦A) for all outputs.

We denote byHybrid𝑓
𝜋,A
(𝜆, 𝑥, aux, 𝐼 ; 𝑟 ) the output𝑦 of the execution of the protocol 𝜋 𝑓 where adversary

A controls the parties in 𝐼 and the inputs to all parties is 𝑥 (and randomness 𝑟 ). Since the parties have
access to 𝑓 , we call this the 𝑓 -hybrid model.

In the real model, Real𝜋,A (𝜆, 𝑥, aux, 𝐼 ; 𝑟 ), denotes the output of a real execution. This is defined as in
the hybrid model, except that there is no hybrid functionality (i.e. 𝑓 is the null-functionality).

We denote by Ideal𝑔,Sim(𝜆, {𝑥𝑖}𝑖∈𝐼 , code(A), aux, 𝐼 ; 𝑟 ) the output 𝑦 = (𝑦1, . . . , 𝑦𝑛, 𝑦Sim) of an execution
in the ideal model with functionality 𝑔 and ideal adversary Sim, called (universal) simulator. Here, the
honest parties hand their inputs to 𝑔 and output what they receive from 𝑔; inputs for corrupted parties
may be provided by Sim. The simulator is given {𝑥𝑖}𝑖∈𝐼 , aux, 𝐼 , and code(A) as input. (As usual, we
often omit code(A) when it is clear from the context; it is only required for universal simulation.54)

We extend the definition of Hybrid, Real and Ideal to adaptive sequential composition, where an
“environment” E provides inputs to executions ofHybrid, Real or Ideal (which choose fresh randomness).
We denote this by Hybrid𝑓

𝜋,A
(𝜆, E), or Real𝜋,A (𝜆, E), or Ideal𝑔,Sim(𝜆, E). After each execution, E learns

all outputs, and can (adaptively) choose inputs for further executions. More formally, E is given access
to either O𝜋,A or O𝑔,Sim, which take as inputs (𝑥, code, aux, 𝐼 ) and output 𝑦 (which includes 𝑦A), i.e.
O𝜋,A (𝑥, aux, 𝐼 ) = Real𝜋,A (𝑥, aux, 𝐼 ) and O𝑔,Sim(𝑥, aux, 𝐼 ) = Ideal𝑔,Sim,𝐼 (𝑥, aux, 𝐼 ). (We omitted code,
since it is always code(A).) Note that E can adaptively choose the set 𝐼 of corrupted parties as well.

Definition 5.7.1. Let 𝜋 be a protocol for 𝑔 in the 𝑓 -hybrid model. We say an adversary (E,A) is T-time
(e.g. CEPT), if time(Hybrid𝑓

𝜋,A
(𝜆, E)) is T-time, where (𝑦, aux, state) ← I. (We stress that the time to

compute 𝑓 is included here.)

The protocol 𝜋 is said to sequentially 𝑡-securely compute 𝑔 against T-time adversaries, if there exists
a (universal) ideal adversary Sim, for any T-time adversary (E,A), where E only corrupts subset of
size at most 𝑡 , we have

• Real𝑓
𝜋,A
(𝜆, E) 𝑐≈ Ideal𝑔,Sim(𝜆, E);

• time(Ideal𝑔,Sim(𝜆, E)) is T-time (e.g. CEPT);

Auxiliary input 𝑡-security is defined by restricting E to one query only; in this case, we usually write
I instead of E.

Lemma 5.7.2. Auxiliary input 𝑡-security and sequential 𝑡-security are equivalent.

54 In our setting, universal and existential simulation coincide, just like for zero-knowledge.
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5.7. Sketched Application to SFE

Proof sketch. This is a straightforward application of the hybrid lemma. □

Note that there is no hybrid functionality 𝑓 in the ideal world. The simulator must provide the hybrid
functionalities. In particular, it is essential that 𝑓 itself is efficient. Also note that we require that
Sim is universal in bothA and 𝐼 . This does not strengthen the security in our setting, but simplifies
discussions.55 Some more remarks are in order.

Remark 5.7.3. We note that neither our results nor our definitions require black-box simulation. This is
unlike [KL08]. However, the overhead of non-black-box simulation seems to preclude its use — at least
the technique of [Bar01].

Remark 5.7.4. The notion of benign simulation can be extended to simulators for SFE.

Remark 5.7.5 (Zero-knowledge as an ideal functionality). The ideal zero-knowledge functionality takes
as input (𝑥,𝑤) and outputs 𝑥 to the verifier if (𝑤, 𝑥) ∈ R, else ⊥. The protocol G3CGK is not (proven)
𝑡-secure as an ideal zero-knowledge functionality, because it does not seem to be a proof of knowledge,
i.e. the witness cannot be extracted. Lindell [Lin13] describes a 5-move protocol, which is a zero-
knowledge proof of knowledge, hence realizes the ideal zero-knowledge functionality. Its simulator
handles CEPT adversaries in CEPT. (The simulation is benign.)

Remark 5.7.6 (Proofs of knowledge). Communication efficient (zero-knowledge) proofs of knowledge
often have a superlinear overhead for extraction in the witness size. This can break compatibility with
CEPT completely, for example if extraction has a quadratic overhead in the witness size, then fat-tailed
input distributions lead to inefficient extraction. Again, the problem are expected size inputs, and can
be mitigated to some extent by size-guarding.

5.7.2. Modular Sequential Composition

In the following, we denote substituting an (ideal) subprotocol 𝑓 by a (real) subprotocol 𝜌 in 𝜋 𝑓 as 𝜋𝜌 .
Similarly we write 𝜋 𝑓1,...,𝑓𝑚 resp. 𝜋𝜌1,...,𝜌𝑚 for substituting in multiple protocols. We need to assume
that 𝜋 proceeds in rounds, making only one subprotocol call per round. Moreover, all (honest) parties
always call the same subprotocol.56

We can now state our adaption of [KL08, Theorem 12]. Unlike [KL08, Theorem 12], we assume the
protocols are secure against CEPT adversaries (in our sense).

Theorem 5.7.7. Let 𝑓1, . . . , 𝑓𝑚 and 𝑔 be ideal 𝑛-party functionalities. Let 𝜋 be an 𝑛-party protocol that
𝑡-securely computes 𝑔 against CEPT adversaries in the (𝑓1, . . . , 𝑓𝑚)-hybrid model. Suppose that 𝜋 makes
no more than one call to an ideal functionality in each round, that is, the functionalities 𝑓𝑖 are used strictly
sequentially. Let 𝜌1, . . . , 𝜌𝑚 be 𝑛-party protocols so that 𝜌𝑖 𝑡-securely compute 𝑓𝑖 against CEPT adversaries
(in the real model). Then 𝜋𝜌1,...,𝜌𝑚 𝑡-securely computes 𝑔 against CEPT adversaries (in the real model).

The proof of Theorem 5.7.7 is straightforward — it is essentially as in [Can00]. That is:

55We require constant 𝑛, so separate simulators (for the constantly many 𝐼 ⊆ {1, . . . , 𝑛}) can be merged into one. Due to the
a posteriori efficiency setting, existential simulators are universal anyway, as for zero-knowledge.

56 See [Can00] for details the restrictions imposed on 𝜋 .
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1. We construct from (I,A) the obvious adversary (E𝜌 ,A𝜌 ) against sequential 𝑡-security of 𝜌 . By
assumption, we can replaceA𝜌 with Sim𝜌 (and 𝜌 with 𝑓 ). The execution remains efficient and
the output is indistinguishable, i.e.

Real𝜌,A𝜌
(𝜆, E𝜌 )

𝑐≈ Ideal𝑓
𝜌,Sim𝜌

(𝜆, E𝜌 )

Thus, 𝜋𝜌 was effectively replaced by 𝜋 𝑓 .

2. Now, we construct an adversary (I,A𝜋 ) against 𝑡-security of 𝜋 in the 𝑓 -hybrid model. By
assumption, we can replaceA𝜋 with Sim𝜋 (and 𝜋 with 𝑔). Again, the execution remains efficient
and the output is indistinguishable, i.e.

Hybrid𝑓
𝜋,A𝜋
(𝜆,I) 𝑐≈ Ideal𝑔,Sim𝜋 (𝜆,I)

This concludes the proof.

Note that we can avoid the requirement of [KL08], that the simulator for 𝜌 is efficient in any interaction.
Weak relative efficiency of simulation is sufficient. The hybrid lemma takes care of the all the hairy
details.57

Now, we sketch the proof in more detail. For brevity’s sake, we will not repeat that 𝑡-security against
CEPT adversaries is considered in every statement of “𝑋 securely computes 𝑌 ”. We note that, by
assumption on 𝜋 𝑓1,...,𝑓𝑚 , the real protocol 𝜋𝜌1,...,𝜌𝑚 does not interleave executions. That is, only one
instance of a subprotocol 𝜌𝑖 is executed at a time.

Proof sketch. First, we simplify the situation by considering only one hybrid functionality 𝑓 and protocol
𝜌 . Since𝑚 is a constant, it will be evident that the proof easily extends, e.g. by going through𝑚 hybrid
models.

Before we continue, we clarify and revert an important notational difference: We used the notation
rep(O) for repeated access to independent instance of O. In SFE/MPC, it is common that 𝜋𝜌 resp. 𝜋𝑔
denotes that 𝜋 has repeated access to independent instances of 𝜌 resp. 𝑔.

As noted before Definition 5.7.1, we view security as oracle indistinguishability. As with zero-knowledge,
the hybrid lemma shows that rep(O𝜌,A𝜌

) is weakly efficient relative to rep(O𝑓 ,Sim𝜌 ) and rep(O𝜌,A𝜌
) 𝑐≈

rep(O𝑓 ,Sim𝜌 ). That is, the analogue of sequential 𝑡-security (for a single protocol 𝜌) holds.

We argue in games. Game G0 is the real execution 𝜋𝜌 , that is Real𝜋,A (𝜆,I).

In Game G1, we prepare to replace all instances 𝜌 by 𝑓 . For this, we interpret the calling “environment”
of 𝜌 as E𝜌 . That is, E𝜌 executes 𝜋 using access to rep(O𝜌,A𝜌

). The adversary A is now split and
executed partially by E𝜌 andA𝜌 . Here E𝜌 simulates the everything (the game, honest parties andA)
outside the subprotocol calls to 𝜌 , whereasA𝜌 emulatesA (only) the subprotocol calls (and receives
the state ofA via aux). Here, it is essential that the calls are sequential. The changes from G0 to G1 are
conceptual. Everything is efficient if (and only if) it was efficient before and the output is identically
distributed.

In Game G2, we replace O𝜌,A𝜌
by O𝑓 ,Sim𝜌 . As noted before, the hybrid lemma implies that

G1 ≡ Real𝜌,A𝜌
(E𝜌 ) ≡ E

rep (O𝜌,A𝜌 )
𝜌

𝑐≈ E
rep (O𝑓 ,Sim𝜌 )
𝜌 ≡ Ideal𝑓 ,Sim𝜌 (E𝜌 ) ≡ G2

57 It is unsurprising that the proof of the modular sequential composition theorem in [KL08], is more complex, since it
effectively is the hybrid argument.
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and both executions are efficient. Thus, we have substituted 𝜌 by 𝑓 in 𝜋 . Now, we are effectively in the
𝑓 -hybrid model.

Game G3 undoes the changes of G1, i.e. we revert to E ˆ︁= I and 𝜋 , but now, we have 𝜋 rep (𝑓 ) instead of
𝜋 rep (𝜌 ) . We call the resulting “network” adversaryA𝜋 . This change is conceptual and does not affect
output or efficiency.

In Game G4, we replace 𝜋 rep (𝑓 ) (resp. A𝜋 ) by 𝑔 (resp. Sim𝜋 ). Since 𝜋 𝑡-securely computes 𝑔 in the
𝑓 -hybrid model, we find

G3 ≡ Hybrid𝑓
𝜋,A𝜋
(I) ≡ E

O𝜋,A𝜋
𝜋

𝑐≈ E
O𝑔,Sim𝜋
𝜋 ≡ Ideal𝑔,Sim𝜋 (E𝜋 ) ≡ G4

and G4 is efficient if G4 is. Thus Ideal𝑔,Sim𝜋 (E𝜋 ) CEPT.

The construction of the simulator Sim for 𝜋𝜌 follows from the above. That is, Sim runs Sim𝜌 for A𝜌 in
subprotocol calls to 𝜌 and Sim𝜋 for 𝜋 . □

5.8. Conclusion and Open Problems

At the example of zero-knowledge and a sketched application to SFE, we demonstrated that the notion
of computationally expected polynomial time is a useful and viable alternative to EPT. We also gave a
“philosophical” motivation why EPT should be enlarged to CEPT, namely distinguishing-closedness.
However, we leave open many minor and major questions and directions.

Beyond Negligible Advantage. The most important question may well be the (in)compatibility of
CPPT/CEPT and superpolynomial hardness assumptions. Concretely, consider a one-way function where
we assume that no PPT adversary can invert with probability better than O(2−𝜆/2). W.r.t. CPPT/CEPT,
such assumptions cannot exist, since with probability O(2−𝜆/4), a CPPT/CEPT adversary may brute-
force a preimage.

It is a critical question, whether this is a fundamental problem, or just another technical artefact. If
CPPT/CEPT is incompatible with subexponential hardness assumptions, then protocols which rely on
such are very likely incompatible with CPPT

Quantifiability, Tightness, Constructivity. For a more quantifiable notion of security, we need to
better tackle the question of tightness of reductions, simulations, etc. The interpretation and treatment
of the virtuality error for a good notion of tightness is non-trivial. Moreover, constructivity of security
reductions is an interesting and important question, as we used the existence of (in general not
computable) polynomial bounds in many places. In Appendices C.5.3.1 and C.5.3.2, we explore these
questions very briefly.

Efficiency Artefacts. In several situations, expected polynomial size inputs and messages resulted
in rather strong requirements and fickle behaviour. Size-guards (Appendix C.5.4.3) are a mitigation.
A more natural alternative is to investigate the efficiency class of expected time strict space (EPT/SPS)
machines.
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More Abstract Questions. Our “general” treatment of runtime provides the central results only for
algebra-tailed runtime classes. Indeed, we even lack a definition of well-behaved runtime classes, for
which we can expect such results to hold. Such a definition and extensions, as well as incorporating
different advantage classes, are open. This may also lead to insights regarding superpolynomial hardness
and CEPT, or vice versa.
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6. Conclusion

We conclude with an outlook on open questions and interesting research directions.

Rational Representatives. In Chapter 3 we presented our short relaxed range proof Sharp. The relaxed
soundness definition and its efficiency crucially relies on the interpretation of a range through rational
representatives. We also noted that rational representatives are not as well-behaved as the usual integer
representatives, making them hard(er) to use. This raises the question in which other settings rational
representatives might prove useful. Moreover, the proof of our core lemma does not mirror the intuitive
nature of its statement. We would be delighted to see a simpler, stronger and more generally applicable
proof.

Better Handling of Class Groups. When relying on class groups of imaginary quadratic orders in
Chapter 3, we either need to assume a trusted setup, or we need strengthened hardness assumptions in
the class group to it secure with transparent setup. The core problem and open question is, whether it is
possible to efficiently circumvent this without increasing the proof size.1 Moreover, we leave open the
question of whether it is possible to relate our assumptions in groups of hidden order (cf. Lemma A.1.7),
or how to abstractly model this setting, where sampling might leak something, e.g. in an appropriate
generic or algebraic group model. An efficient reverse sampling algorithm in class groups would resolve
all of these questions (in class groups), but its existence appears to be an open problem.

Short-Circuit Extraction. In Chapter 4 we introduce short-circuit extraction to prove better bounds
on runtime tightness of extraction, aiming for better bounds on concrete security. In Appendix B.9,
we present two candidate extractors for which a formal runtime analysis is an open question. If
the candidate with optimal knowledge error, would have runtime bounded by the worst-case size of
the tree of challenges which must be found, then this would provide the tightest reduction (without
knowledge assumptions) for Bulletproofs and QESAZK by a large margin. Another question is if and
how short-circuit extraction can be handled more generally, and how generic (sequential) composition
results (e.g. analogous to those recalled in Section 2.5.2) would look like.

Computationally Expected Polynomial Time. In Section 5.8, we already discuss several open questions
and directions for CEPT. We only recall the main questions here: Firstly, due to the definition of CEPT it
is not immediately clear what a good notion of tightness would be in this setting. In that regard, it may
be interesting to investigate a non-asymptotic variant of CEPT. Secondly, again due to the definition of
CEPT, certain hardness assumptions cannot hold against CEPT adversaries, which raises the question
if this breaks security reductions relying on such assumptions (or if the reduction can sidestep the
problem), and also whether this is a fundamental problem with CEPT and analogous definitions, or if
small changes to the definition are sufficient to fix it.

1 We show in [CKLR21a] that it is possible to rely on ElGamal commitments, but this significantly increases the proof size.
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Appendix





A. Appendix for Chapter 3

A.1. Preliminaries Continued

A.1.1. Groups of Hidden Order

Following assumptions are relevant in groups of hidden order. Note that we still use additive notation,
even if multiplicative notation is more common for RSA groups.

Remark A.1.1. In a cyclic group ⟨𝐺⟩ of unknown order, a random group element be approximated via
𝑥𝐺 for 𝑥 $← [0, . . . , 𝐿𝑈up − 1] and 𝑥𝐺 has statistical distance at most 1/𝐿 from a random group element.
Indeed, at most 1/4𝐿 (due to [CL15]).

The ORD assumption ensures, that it is hard to find (a multiple of) the order of non-trivial elements.

Definition A.1.2 (ORD). The order (ORD) assumption holds for a given group G if for any PPT
adversaryA, there is a negligible function negl, such that

Pr
[︃
(𝑊,𝛼) ←A (G);𝑊 ∈ G \ {0};
0 ≠ |𝛼 | < 2poly(𝜆) : 𝛼𝑊 = 0

]︃
≤ negl(𝜆)

This probability defines the advantage AdvORDA (𝜆) of A against ORD.

We use the adaption of ORD to the class group setting of [BFS20] with corrections from [CKLR21b]. It
is believed to hold in suitable class groups of imaginary quadratic orders and the subgroup of quadratic
residues QR𝑛 in RSA groups. For 128 bits of security, class groups require a discriminant of size 1827
bits and RSA groups a modulus size of 3072 bits [BJS10; TCLM21]. Further, the representation of class
group elements can be compressed to 3/4 the size of the discriminant [DGS21].

Definition A.1.3 (𝑒-fROOT). The 𝑒-fractional root (𝑒-fROOT) assumption holds for group G if for
any PPT adversaryA, there is a negligible function negl, such that

Pr

⎡⎢⎢⎢⎢⎢⎣
𝐺

$← G; (𝛼, 𝛽,𝑈 ) ←A (G,𝐺);𝑈 ∈ G;
0 ≠ |𝛼 | < 2poly(𝜆) ∈ Z; |𝛽 | < 2poly(𝜆) ∈ Z :
𝛽𝑈 = 𝛼𝐺 ∧ 𝛽

gcd(𝛼,𝛽 ) ≠ 𝑒
𝑘 for 𝑘 ∈ N

⎤⎥⎥⎥⎥⎥⎦ ≤ negl(𝜆)

This probability defines the advantage Adv𝑒-fROOTA (𝜆) ofA against 𝑒-fROOT.

The 𝑒-strong RSA assumption is defined as 𝑒-fROOT but where 𝛼 = 1must hold. [BFS20] define this and
show that 𝑒-strong RSA and ORD imply 𝑒-fROOT. The 𝑒-fROOT assumption clearly implies 𝑒-strong
RSA and almost implies ORD, except for elements𝑊 with 𝑒𝑘𝑊 = 0.

The 1-fROOT assumption is equivalent to the (usual) strong RSA assumption and believed to hold
in QR𝑛 . The 2-fROOT assumption is believed to hold in suitable class groups of imaginary quadratic
orders.
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Remark A.1.4. Let G be a group, let 𝐺 ∈ G, and let (𝛼, 𝛽,𝑊 ) with 𝛼𝐺 = 𝛽𝑊 . Then:

1. The 𝑒-fROOT experiment is won with (𝛼, 𝛽,𝑊 ) iff 𝛼
𝛽
∉ Z[1/𝑒].

2. The ORD experiment is won if 𝑑 = gcd(𝛼, 𝛽) (or more generally any divisor 𝑑 of 𝛼 and 𝛽), we
have 𝛼

𝑑
𝐺 ≠

𝛽

𝑑
𝑊 .

The SI assumption ensures that random elements in the subgroup ⟨𝐺⟩ are indistinguishable from
random elements in G.

Definition A.1.5 (SI). The subgroup indistinguishability (SI) assumption holds for group G if for
any PPT adversaryA, there is a negligible function negl, such that

Pr
⎡⎢⎢⎢⎢⎣

𝐺,𝐻0
$← G, 𝐻1

$← ⟨𝐺⟩ ;
𝑏

$← {0, 1}, 𝑏′ ←A (G,𝐺, 𝐻𝑏) :
𝑏 = 𝑏′

⎤⎥⎥⎥⎥⎦ ≤
1
2 + negl(𝜆)

The left hand side defines the advantage AdvsiA (𝜆) of A against SI.

Again, we use the adaption from [BFS20] of the SI assumption introduced in [BG10]. It is believed to
hold in QR𝑛 or suitable class groups of imaginary quadratic orders.

DefinitionA.1.6 ((𝐷, 𝑒, 𝑁 )-relaxedDLOG-relation). LetG be a group,𝐷, 𝑒, 𝑁 ∈ N, and �⃗� = (𝐺0, . . . ,𝐺𝑁 ) ∈
G𝑁+1. Define the (𝐷, 𝑒, 𝑁 )-relaxed DLOG relation w.r.t. �⃗� as

R𝐷,𝑒,𝑁 (�⃗�) =
{︃
(𝐶,𝑑, {𝑚𝑖}𝑁𝑖=1)

|︁|︁|︁|︁ 𝑑𝐶 =
∑︁𝑁
𝑖=0𝑚𝑖𝐺𝑖 ∧ ∃𝑖 : 𝑚𝑖𝑑 ∉ Z[1/𝑒]
∧𝑑 ∈ [0, 𝐷] ∧ 𝑚𝑖 ∈ Z

}︃
The advantage Advrlx-dlog

G,(𝐷,𝑒,𝑁 ),A (𝜆) of A against the hardness of the (𝐷, 𝑒, 𝑁 )-relaxed DLOG-relation
with subgroup setup (and without public coins), is defined as the following probability:

Pr
⎡⎢⎢⎢⎢⎣
G← GrpGen(1𝜆);𝐺0

$← G;𝐺1, . . . ,𝐺𝑁
$← ⟨𝐺0⟩

(𝐶,𝑑,𝑚0, . . . ,𝑚𝑁 ) ←A (G,𝐺0, . . . ,𝐺𝑁 ) :
(𝐶,𝑑,𝑚0, . . . ,𝑚𝑁 ) ∈ R𝐷,𝑒,𝑁 (�⃗�)

⎤⎥⎥⎥⎥⎦ .
We say that finding (𝐷, 𝑒, 𝑁 )-relaxed DLOG-relations with subgroup setup is hard in G, if for every
PPT adversary, there exists a negligible function negl such that Advrlx-dlog

G,(𝐷,𝑒,𝑁 ),A (𝜆) ≤ negl(𝜆).

We define hardness with random setup analogously, except that 𝐺𝑖 $← G for all 𝑖 (instead of 𝐺𝑖 $←
⟨𝐺0⟩).

We abbreviate (𝐷, 𝑒, 1)-relaxed by (𝐷, 𝑒)-relaxed.

Viewing𝐶 as a commitment and (𝐺0, . . . ,𝐺𝑁 ) as a commitment key in Definition A.1.6 (which is exactly
how we use it), (𝐷, 𝑒, 𝑁 )-relaxed DLog-relation hardness roughly holds if it is not possibly to open 𝐶
to anything but an element in Z[1/𝑒] (where we neglect the condition that 𝑑 ≤ 𝐷). The choice 𝑁 = 1
is the most important one for (𝐷, 𝑒, 𝑁 )-relaxed DLOG-relations, as it is required for our applications
and (as we will see) is equivalent 𝑁 > 1. The (𝐷, 𝑒, 0)-relaxed DLOG-relation is a (presumably) slightly
weaker assumption, but is implied under additional restrictions (or assumptions).

Lemma A.1.7. Let G be a group and let A be an algorithm. Then for hardness with subgroup setup,
we have following implications.
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1. The (𝐷, 𝑒, 𝑁 )-relaxed DLOG-relation tightly implies the (𝐷, 𝑒, 𝑛)-relaxed DLOG-relation for any
𝑛 ≤ 𝑁 .

2. The (𝐷, 𝑒, 1)-relaxed DLOG-relation tightly implies the (𝐷, 𝑒, 𝑁 )-relaxed DLOG-relation for 𝑁 ∈ N0.

3. The 𝑒-fROOT assumption tightly implies hardness of (𝐷, 𝑒, 0)-relaxed DLOG-relation. If 𝐷 = ∞, the
assumptions are equivalent.

4. If the order |G| has no prime factors smaller than or equal to 𝐷 , then (𝐷, 𝑒, 0)-relaxed DLOG-relation
tightly implies the (𝐷, 𝑒, 1)-relaxed DLOG-relation.

Under the SI assumption in G, the claims also hold for hardness with random setup.

Item 4 is the general formulation to be used with 𝐶 (𝜆)-rough groups [DF02], i.e. groups which have no
subgroups of order smaller than𝐶 (𝜆). The proof of item 4 uses the argument from [CKLR21b] which is
an adaption of [DF02]. For item 2, a standard randomization technique is used (which is also used to
show the tight equivalence of DLOG and DLOG-relations). Items 1 and 3 are immediate and included
for completeness. The full proof of Lemma A.1.7 is relegated to Appendix A.1.3.

A.1.2. Transparent Setup and Assumptions Without Invertible Sampling

As we saw in Section 2.3.2.1, invertible sampling (a.k.a. reverse sampling) is known for many groups.
Unfortunately, invertible sampling is not known to be possible in class groups (at the time of writing).
This was first pointed out by [ADOS22] w.r.t. CKLR proofs [CKLR21b], but also affects our setting.
CKLR resolved the problem by relying on ElGamal commitments and the DXDH assumption [ADOS22]
which sacrifices efficiency. We rely on novel assumptions which take this into account by providing
the adversary with sampling randomness. We stress that, while these assumptions are stronger than
their counterparts, like DXDH they are all very plausible.

In the following, we denote by Sample the sampling algorithm and write (𝐺, 𝜌) $← Sample(1𝜆,G), i.e.
we consider the random coins 𝜌 as an output, partially adopting the notation of [ADOS22]. This is
more convenient and more flexible as it allows us to model leakage other than the random coins as
well. We modify our assumptions to account for leakage of 𝜌 to the adversary. The modifications are
straightforward, but we provide them for completeness. Changes are highlighted in red.

Definition A.1.8 (𝑆-Bounded DLSE and SEI w.r.t. Sample). Consider a group G. The 𝑆-bounded discrete
logarithm with short exponents (DLSE) assumption w.r.t. Sample holds if for all PPTA there is a
negligible function negl such that

Pr
[︃
(𝐺, 𝜌) ← Sample(1𝜆,G);

𝑧
$← [0, 𝑆]; 𝑧′ ←A (𝐺, 𝜌, 𝑧𝐺) : 𝑧 = 𝑧

′
]︃
≤ negl(𝜆)

The 𝑆-bounded short exponent indistinguishability (SEI) assumption w.r.t. Sample holds if for all
PPTA there is a negligible negl function such that

Pr
[︂
(𝐺, 𝜌) ← Sample(1𝜆,G); 𝑧 $← [0, 𝑆] : A (𝐺, 𝜌, 𝑧𝐺) = 1

]︂
− Pr

[︂
(𝐺, 𝜌) ← Sample(1𝜆,G); 𝑧 $← Zord(𝐺 ) : A (𝐺, 𝜌, 𝑧𝐺) = 1

]︂
≤negl(𝜆)
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DefinitionA.1.9 (𝑒-fROOTw.r.t. Sample). The 𝑒-fractional root (𝑒-fROOT) assumption w.r.t. Sample
holds for group G if for any PPT adversaryA, there is a negligible function negl, such that

Pr

⎡⎢⎢⎢⎢⎢⎣
(𝐺, 𝜌) ← Sample(1𝜆,G);(𝛼, 𝛽,𝑈 ) ←A (G,𝐺, 𝜌);
𝑈 ∈ G; 0 ≠ |𝛼 | < 2poly(𝜆) ∈ Z; |𝛽 | < 2poly(𝜆) ∈ Z :

𝛽𝑈 = 𝛼𝐺 ∧ 𝛽

gcd(𝛼,𝛽 ) ≠ 𝑒
𝑘 for 𝑘 ∈ N

⎤⎥⎥⎥⎥⎥⎦ ≤ negl(𝜆)

Definition A.1.10 (SI w.r.t. Sample). The subgroup indistinguishability (SI) assumption w.r.t.
Sample holds for group G if for any PPT adversaryA, there is a negligible function negl, such that

Pr
⎡⎢⎢⎢⎢⎣
(𝐺, 𝜌) ← Sample(1𝜆,G);𝐻0

$← G, 𝐻1
$← ⟨𝐺⟩ ;

𝑏
$← {0, 1}, 𝑏′ ←A (G,𝐺, 𝜌, 𝐻𝑏) :

𝑏 = 𝑏′

⎤⎥⎥⎥⎥⎦ ≤
1
2 + negl(𝜆)

Definition A.1.11 (Hard (𝐷, 𝑒, 𝑁 )-relaxed DLOG-relation (w.r.t. Sample)). Let G be a group, 𝐷, 𝑒, 𝑁 ∈ N,
and �⃗� = (𝐺0, . . . ,𝐺𝑁 ) ∈ G𝑁 . The advantage Advrlx-dlogG,(𝐷,𝑒,𝑁 ),A (𝜆) of A in the advantage against hardness
of (𝐷, 𝑒, 𝑁 )-relaxed DLOG-relation w.r.t. Sample, is defined as the following probability:

Pr
⎡⎢⎢⎢⎢⎣
∀𝑖 = 1, . . . , 𝑁 : (𝐺𝑖 , 𝜌𝑖) ← Sample(1𝜆,G)

(𝐶,𝑑,𝑚0, . . . ,𝑚𝑁 ) ←A (G,𝐺0, 𝜌0, . . . ,𝐺𝑁 , 𝜌𝑁 ) :
(𝐶,𝑑,𝑚0, . . . ,𝑚𝑁 ) ∈ R𝐷,𝑒,𝑁 (�⃗�)

⎤⎥⎥⎥⎥⎦ .
We say that finding (𝐷, 𝑒, 𝑁 )-relaxed DLOG-relations w.r.t. Sample is hard, if for every PPT adversary,
there exists a negligible function negl such that Advrlx-dlog

G,(𝐷,𝑒,𝑁 ),A (𝜆) ≤ negl(𝜆).

(Note: We do not define hardness with subgroup setup, as this case does not occur.)

A.1.3. Proof of Lemma A.1.7

We give the full proof for Lemma A.1.7 below.

Proof. To item 1: This is immediate: IfA outputs (𝐶,𝑑,𝑚0, . . . ,𝑚𝑛), output (𝐶,𝑑,𝑚0, . . . ,𝑚𝑛, 0, . . . , 0)
to break (𝐷, 𝑒, 𝑁 )-relaxed DLOG-relation hardness with exactly the same success.

To item 2: For 𝑁 ≤ 1 this follows from the previous point. For 𝑁 ≥ 2, this follows with by borrowing
randomization techniques from known prime order groups. Concretely, pick 𝑟 0, 𝑟 1 $← [0, 2𝑁2𝜆𝑈up]𝑁
and define the matrix

𝑅 =

(︃
1 0
𝑟 0 𝑟 1

)︃
∈ Z(𝑁+1)×2

Let (𝐺 ′0, . . . ,𝐺 ′𝑁 )⊤ = 𝑅(𝐺0,𝐺1)⊤. The reduction hands (𝐺 ′0, . . . ,𝐺 ′𝑁 ) toA, which outputs (𝑑,𝐶,𝑚0, . . . ,𝑚𝑁 ).
The reduction then returns (𝑑,𝐶, (𝑚0, . . . ,𝑚𝑁 )𝑅).

The success analysis will be information-theoretic. Let 𝐾 = ord(𝐺0) be the order of the generated
subgroup. Observe that information-theoretically (𝑟 0, 𝑟 1) mod 𝐾 is almost uniform, namely the
statistical distance to Z𝑁

𝐾
is at most 2−𝜆 to. Let 𝑔1 be the DLOG of𝐺1 to𝐺0, i.e. 𝑔1𝐺0 = 𝐺1. For simplicity,

we now argue using the DLOGs, i.e. we argue over Z𝐾 (mapping𝐺0 to 1 and𝐺1 to 𝑔1), and we argue as
though 𝑟 0 and 𝑟 1 are uniform modulo 𝐾 . Observe that 𝑅(1, 𝑔1)⊤ and (𝑅 + 𝑣 (−𝑔1, 1)) (1, 𝑔1)⊤ have the
same distribution for any 𝑣 ∈ Z𝑁+1

𝐾
, that is

𝑅(1, 𝑔1)⊤ ∼ (𝑅 + 𝑣 (−𝑔1, 1)) (1, 𝑔1)⊤ (A.1.1)
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In particular, this holds for uniformly random 𝑣
$← Z𝑁+1

𝐾
. Now consider A’s output (𝑑,𝐶,𝑚0, . . . ,𝑚𝑁 ).

Let 𝑐 = dlog𝐺0 (𝐶), i.e 𝑐 · 𝐺 = 𝐶 , and let �⃗�⊤ = (𝑚0, . . . ,𝑚1). Then 𝑑𝐶 =
∑︁𝑚
𝑖=0𝑚𝑖𝐺𝑖 = �⃗�

⊤
𝑅(𝐺0,𝐺1)⊤

becomes 𝑑𝑐 = �⃗�⊤𝑔′ = �⃗�⊤𝑅(1, 𝑔1). Let 𝑑 ′ = 𝑑/gcd(𝑒𝑑 , 𝑑), i.e. let 𝑑 ′ | 𝑑 be the maximal factor of 𝑑 which
is coprime to 𝑒 .

IfA wins, then for some 𝑖 we have𝑚𝑖/𝑑 ∉ Z[1/𝑒]. Moreover, following conditions are equivalent:

𝑚𝑖/𝑑 ∉ Z[1/𝑒] ⇐⇒ 𝑚𝑖/𝑑 ′ ∉ Z[1/𝑒]
⇐⇒ 𝑑 ′ ∤𝑚𝑖

⇐⇒ 𝑚𝑖 ≢𝑑 ′ 0

Whenever �⃗�⊤𝑅 ≢𝑑 ′ 0 holds, then (𝑑,𝐶, �⃗�⊤𝑅) is a (𝐷, 𝑒, 1)-relaxed DLOG-relation. Hence, we have to
show that �⃗�⊤𝑅 ≢𝑑 ′ 0 holds with high probability. From the equivalence of distributions in Eq. (A.1.1),
we have

Pr[�⃗�⊤𝑅 ≡𝑑 ′ 0⃗]
= Pr[�⃗�⊤(𝑅 + 𝑣 (−𝑔1, 1)) ≡𝑑 ′ 0⃗]
≤ max
�⃗�≢𝑑′0

Pr[�⃗�⊤𝑣 (−𝑔1, 1) ≡𝑑 ′ 𝜇]

where the initial probabilities go over 𝑅,𝑚, 𝑣 , and we used for the inequality that we can maximize over
�⃗� and 𝑅 and let 𝜇 = −�⃗�⊤𝑅. Looking only at the second component of the equation �⃗�⊤𝑣 (−𝑔1, 1) ≡𝑑 ′ 𝜇,
namely, �⃗�⊤𝑣 ≡𝑑 ′ 𝜇2, where 𝜇 = (𝜇1, 𝜇2)⊤, suffices to upper-bound the probability.

Note that if 𝑑 ′ = 1, the adversary loses, so w.l.o.g. 𝑑 ′ ≠ 1. Let 𝑝𝑘 | 𝑑 ′ be a prime power dividing 𝑑 ′ such
that 𝑘 ∈ N is minimal with:

• for all 𝑖 = 0, . . . , 𝑁 :𝑚𝑖 ≢𝑝𝑘 0,

• for some 𝑖 = 0, . . . , 𝑁 :𝑚𝑖 ≡𝑝𝑘−1 0.

If no such 𝑝 exists, then𝑚𝑖 ≡𝑑 ′ 0 for all𝑚𝑖 , and again, A loses (because𝑚𝑖/𝑑 ∈ Z[1/𝑒] for all 𝑖). Thus,
assume w.l.o.g. that such a prime 𝑝 exists.

Now, we show
Pr[�⃗�⊤𝑣 ≡𝑝𝑘 𝜇2] ≤ 1/𝑝.

For this, intuitively, we consider the 𝑝-adic digits and concentrate on the 𝑘-th digit, and show that �⃗�⊤𝑣
has almost uniformly random 𝑘-th digit. To do so, first note that (by assumption) all𝑚𝑖 lie in 𝑝𝑘−1Z,
and for some 𝑖∗, we have𝑚𝑖 ∉ 𝑝

𝑘Z. In other words, we can divide all𝑚𝑖 by 𝑝𝑘−1, and then one element,
namely𝑚𝑖∗/𝑝𝑘−1, is not divisible by 𝑝 anymore. Thus, after dividing and taking the equations modulo
𝑝 , we see that𝑚𝑖∗/𝑝𝑘−1 is invertible in Z𝑝 . (Note that𝑚𝑖/𝑝𝑘−1 mod 𝑝 is exactly the 𝑘-th digit in basis
𝑝 .) For the 𝑘-th digit of �⃗�⊤𝑣 , it is not hard to see that it is a uniformly linear combination of all the
𝑚𝑖/𝑝𝑘−1 mod 𝑝 , since 𝑣 mod 𝑝 is uniform in Z𝑁+1𝑝 . But it is well-known that for 𝑢 $← Z𝑁+1𝑝 we have

Pr[�⃗�⊤𝑢 ≡𝑝𝑘 𝜇2] = 1/𝑝

and easy to check that Pr[𝑎⊤𝑢 ≡𝑝 𝑧] = 1/𝑝 if 𝑢 $← Z𝑁+1𝑝 , 0⃗ ≠ 𝑎 ∈ Z𝑁+1𝑝 , and 𝑧 ∈ Z𝑝 .

Putting things together and accounting for the statistical distance of 2−𝜆 of the 𝑟 0 and 𝑟 1 from uniform
over Z𝐾 , we have shown: IfA does not lose, then we get

Pr[�⃗�⊤𝑣 ≠ 𝜇2] ≥ 1 − 1/𝑝 − 2−𝜆
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that is, with probability at least 1 − 1/𝑝 − negl(𝜆) we find a non-trivial (𝐷, 𝑒, 1)-relaxed relation. Thus,
the claim follows.

To item 3: Observe that for 𝑁 = 0, the (𝐷, 𝑒, 1)-relaxed DLOG-relation specializes to hardness of finding
(𝐶,𝑑,𝑚) such that 𝑑𝐶 =𝑚𝐺0 and𝑚/𝑑 ∉ Z[1/𝑒], and 𝑑 ≤ 𝐷 . Applying Remark A.1.4 with𝐶 =𝑊 , 𝑑 = 𝛽

and𝑚 = 𝛼 , and noting that𝑚 = 𝛼 = 0 breaks neither assumption, we immediately obtain the claimed
equivalence if 𝐷 = ∞, and a one-sided implication otherwise.

To item 4: Since it makes no difference in the proof, we directly show that (𝐷, 𝑒, 𝑁 )-relaxed implies
(𝐷, 𝑒, 0)-relaxed DLOG-relation hardness, if |G| has no prime factor smaller or equal to 𝐷 . We setup
𝐺𝑖 = 𝜌𝑖𝐺0 for 𝜌𝑖 $← [0, 𝑁2𝜆𝑈 2

up − 1], where 𝑈up is an upper bound on the group order of G. By
Remark A.1.1, 𝐺𝑖 is 1/𝑁 · 2−𝜆𝑈 −1up close to a uniform element in ⟨𝐺0⟩. By a union bound, (𝐺1, . . . ,𝐺𝑁 )
is 2−𝜆𝑈 −1up close to uniform in G. Let 𝑛 ≤ 𝑈up be any number with gcd(𝑛, ord(𝐺0)) = 1. Since 𝐺𝑖
information-theoretically only reveals 𝜌𝑖 mod ord(𝐺0), we see that (𝜌1, . . . , 𝜌𝑁 ) mod 𝑛 is 2−𝜆-close to
uniform in Z𝑛 (since 𝑛 ≤ 𝑈up). We apply this to 𝑛 = 𝑝𝑘/𝑑 later.

As in item 2, let (w.l.o.g.) 1 ≠ 𝑑 ′ | 𝑑 be the maximal factor of 𝑑 coprime to 𝑒 , and let 𝑝 be a prime and
𝑘 ∈ N be minimal such that𝑚𝑖 ≡𝑝𝑘−1 0 for all 𝑖 , but𝑚𝑖∗ ≢𝑝𝑘 0 for some 𝑖∗ ∈ {0, . . . , 𝑁 }. Such 𝑝 and 𝑖∗
exist since 𝑑 ′ ≠ 1.

Using the setup, we have 𝑑𝐶 = 𝑚0𝐺0 +
∑︁𝑁
𝑖=1𝑚𝑖𝐺𝑖 = (𝑚0 +

∑︁𝑁
𝑖=1 𝜌𝑖𝑚𝑖)𝐺0. Let 𝑚 ≔ 𝑚0 +

∑︁𝑁
𝑖=1 𝜌𝑖𝑚𝑖 .

Observe that if𝑚 ≢𝑝𝑘 0, then we have 𝑑𝐶 =𝑚𝐺0 and𝑚 ≢𝑑 ′ 0, and hence𝑚/𝑑 ∉ Z[1/𝑒] because 𝑑 is
not a power of 𝑒 . Thus, we break 𝑒-fROOT. Now, we show that this happens with high probability.

Since we assumed that𝑚𝑖∗ ≢𝑝𝑘 0, but𝑚𝑖 ≡𝑝𝑘−1 0, we can argue almost as in item 2 that the linear
combination (∑︁𝑁

𝑖=0 𝜌𝑖𝑚𝑖)/𝑝𝑘−1 mod 𝑝 is zero with probability at most 1/𝑝 + negl. The only difference
is that 𝜌0 = 1. But it is easy to see that 𝑧0 +

∑︁𝑁
𝑖=1𝑢𝑖𝑧𝑖 mod 𝑝 for arbitrary 𝑧𝑖 ∈ Z and uniform 𝑢𝑖

$← Z𝑝
is 0 with probability at most 1/𝑝 , unless 𝑧𝑖 mod 𝑝 = 0 for all 𝑖 .

Since𝑚 ≔ 𝑚0 +
∑︁𝑁
𝑖=1 𝜌𝑖𝑚𝑖 , we find that𝑚 mod 𝑝𝑘 ≠ 0 with probability at least 1 − 1/𝑝 − negl, and

hence, whenever A wins, the reduction wins with probability at least 1/3. Thus, the claim follows. □

A.2. Further Remarks on Sharp’s Soundness

The Sharp family satisfies correctness for short integers 𝑥 in Z𝑝 , while it guarantees relaxed soundness,
namely range membership of the rational representative [𝑥]Q . Here, we discuss the behaviour of
rational representatives and the soundness guarantees of (the variants of) Sharp from the perspective
of possible use-cases.

A.2.1. Arithmetic Behaviour ofQ𝑀,𝐷

Let 𝑥𝑖 , 𝑐 ∈ Z𝑝 for 𝑖 ∈ [1, ℓ]. The usual integer representatives 𝑥𝑖 behave very simply. Namely additions
𝑥1+𝑥2 andmultiplications with constant 𝑐 ·𝑥1 (and general multiplications 𝑥1 ·𝑥2) work on representatives
as long as it is ensured that no wraparound happens, i.e. the result is within [−𝑝−12 ,

𝑝−1
2 ]. For example,

for ℓ additions

Z ∋
ℓ∑︂
𝑖=1

𝑥𝑖 = (
ℓ∑︂
𝑖=1

𝑥𝑖) mod 𝑝 (A.2.1)
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if ℓ𝑀 < 𝑝/2 and each 𝑥𝑖 is bound by𝑀 , everything works well. Similar claims hold for multiplications
(with a constant 𝑐 ∈ Z). If there is a bound 𝐵 on the total sum of values 𝑥𝑖 , Eq. (A.2.1) holds if 𝐵 < 𝑝/2
and independently of the total number of additions ℓ .

A.2.1.1. Overflow Conditions forQ𝑀,𝐷 .

For rational representatives, overflows behaviour effectively boils down to computations with fractions.
Let 𝑥𝑖 ∈ Z𝑝 and let [𝑥𝑖]Q𝑀,𝐷 = 𝑛𝑖/𝑑𝑖 ∈ Q𝑀,𝐷 be the rational representative of 𝑥𝑖 for 𝑖 ∈ [1, ℓ]. The sum
𝑥1 + 𝑥2 has rational representative (𝑛1𝑑2 + 𝑛2𝑑1)/(𝑑1𝑑1) ∈ Q2𝑀𝐷,𝐷2 and similarly for multiplications
(with constants). Note that Q𝑀,𝐷 is “two-dimensional” in the sense that𝑀 and 𝐷 are independent (but
must satisfy 𝑀𝐷 < 𝑝/2), If Q𝑀,𝐷 ⊆ Q𝑀 ′,𝐷 ′ then representatives will coincide, but in general (e.g. if
𝑀 < 𝑀 ′ but 𝐷 > 𝐷 ′) Q𝑀,𝐷 and Q𝑀 ′,𝐷 ′ representatives have no obvious relation. In analogy to the
summation example (Eq. (A.2.1)), we can require 𝑥𝑖 ∈ Q𝑀,𝐷 for ℓ𝑀𝐷2ℓ−1 < 𝑝/2 in order for

ℓ∑︂
𝑖=1
[𝑥𝑖]Q𝑀,𝐷 = [(

ℓ∑︂
𝑖=1

𝑥𝑖) mod 𝑝]Q𝑀′,𝐷′ (A.2.2)

to hold in Q𝑀 ′,𝐷 ′ , where𝑀 ′ ≤ ℓ𝑀𝐷ℓ−1, 𝐷 ′ ≤ 𝐷ℓ . Similar claims hold for multiplication. Addition and
multiplication of small integers 𝑐 ∈ Z with |𝑐 | < 𝐶 behaves well: 𝑐 · 𝑥1 ∈ Q𝐶𝑀,𝐷 .

Remark A.2.1. The potentially rapid growth of numerator and denominator under additions is one of
the main sources of trouble when using rational representatives and relaxed soundness guarantees.
Hence, they are less “friendly” in homomorphic operations on commitments.

A.2.1.2. Overflow Conditions in Hidden Order Groups.

With groups of hidden order, we show that the denominator is of the form 𝑑𝑖 = 𝑒𝑘 ≤ 𝐷 , cf. see
Appendix A.3. In particular, a sum 𝑥1 + 𝑥2 now lies in Q2𝑀𝐷,𝐷 , i.e. the maximal possible denominator 𝐷
is unchanged — we prevented the growth of 𝐷 . The requirement for Eq. (A.2.2) to hold improves to
ℓ𝑀𝐷2. When we further know a bound 𝐵 on the sum of all numerators, the requirement becomes 𝐵𝐷2

and is independent of ℓ .

A.2.2. Remark on the Square Decomposition

We recall that the three square decomposition only shows relaxed range membership for fractions
(unless one rounds to integers [CKLR21b] or has prior knowledge (Section 3.6.3)).

Lemma A.2.2 (Three Squares for Fractions). Let 𝐵 ≥ 1, 𝑥 ∈ Q and {𝑥𝑖}3𝑖=1 ∈ Q such that 1+ 4𝑥 (𝐵−𝑥) =∑︁3
𝑖=1 𝑥

2
𝑖 . It holds that 𝑥 ∈ [− 1

4𝐵 , 𝐵 +
1
4𝐵 ]Q.

To show exact range membership for fractions, we can use the four square decomposition.

Lemma A.2.3 (Four Squares for Fractions). Let 𝐵 ≥ 1, 𝑥 ∈ Q and {𝑥𝑖}𝑖=1..4 ∈ Q and 𝐵 ∈ N. Further, let
𝑥 (𝐵 − 𝑥) = ∑︁4

𝑖=1 𝑥
2. Then it holds that 𝑥 ∈ [0, 𝐵]Q.
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Both decompositions can be calculated efficiently [RS86; PS19]. As the four square decomposition
increases the communication (since we have to open an additional committed integer 𝑥4), we present
our range proofs using the three square decomposition. Replacing it with the four square decomposition
leads to range proofs that guarantee exact range membership for the rational representative. Alterna-
tively, if Γ < 4𝐵 is ensured (e.g. by, if necessary, trading challenge size for repetitions), our soundness
claims ensure that denominators 𝑑 ≥ 4𝐵 violate soundness, i.e. [0, 𝐵]Q𝐾 ′,Γ = [− 1

4𝐵 , 𝐵 +
1
𝐵
]Q ∩ Q𝐾 ′,Γ .

A.3. Augmented Soundness

We show how to “augment” a range proof with one hidden order group element in order to improve
the soundness guarantee. The hidden order group can be instantiated with: (1) a class group for better
additive homomorphic guarantees (cf. Appendix A.2.1.2) or (2) a RSA group for standard soundness
with trusted setup.

A.3.1. Proof of Short Opening

Both the simple PoSO used in SharpGS and the Batch-PoSO used in SharpPoSO only ensure that the
(committed) values are short as fractions, i.e. lie inQ𝑀,𝐷 for suitable𝑀 and 𝐷 . It is easy to see, that these
PoSOs also work over (commitments in) hidden order groups, as they are ignorant of the group order.
Importantly, hidden order groups allow to mitigate the problems with homomorphic computations
of fractions to some extent. Thus, we can achieve better soundness guarantees. Namely, under the
hardness of (Γ, 𝑒)-relaxed DLOG relations, denominators 𝑑 of an extracted witness 𝑥 =𝑚/𝑑 must be of
the form 𝑑 = 𝑒𝑘 , for 𝑘 ∈ N0, i.e. the opening lies in Z[1/𝑒] instead of Q. In RSA groups, the hardness
assumption is implied (with 𝑒 = 1) by strong RSA, assuming safe primes are used, and therefore 𝑥 =𝑚,
i.e. 𝑥 is an integer representative. For class groups, the hardness assumption (with 𝑒 = 2) is novel,1 and
see that 𝑥 =𝑚/2𝑘 , i.e. a dyadic integer.

We leverage this in our range proof by adding an additional commitment to 𝑥 in the hidden order group
H, and proving consistency and small opening. For RSA groups, we get 𝑥 ∈ Z and hence standard
soundness. For class groups, we get 𝑥 = 𝑚

2𝑘 . Despite allowing a denominator, this is a huge improvement
over arbitrary rational representative, as homomorphic computation now pose a much smaller threat,
since the committed values are forced to lie in 1

2log(Γ) Z, which is closed under addition (unlike Q∞,𝐷 for
general 𝐷).

A.3.2. Augmented Range Proof

The modification to our schemes is surprisingly lightweight. It reuses the challenges of the standard
scheme and does not require repetitions. The only additional communication is the commitment to 𝑥
and the masked randomness required for the proof of short opening.

As additional setup, a Pedersen commitment key ckH = (𝐺 ′𝑖 , 𝜌𝑖)𝑁𝑖=0, where (𝐺 ′𝑖 , 𝜌𝑖) ← Sample(1𝜆,H),
with hiding parameter 𝑆 is required. (We explicitly include the public coins 𝜌𝑖 in the commitment key

1 More precisely, we require a family of assumptions, which collapses to two assumptions when one assumes invertible
sampling. Moreover, we show the assumptions are closely related to the better understood 2-fROOT and ORD assumptions.
(See Lemma A.1.7) Unfortunately, our reductions do not apply for groups without invertible sampling. Thus, they cannot be
used to provably justify security when using transparent setup. However, it is still a heuristic justification of their hardness.
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due to the lack of invertible sampling in class groups, cf. Appendix A.1.2. Note that the correspondence
of 𝐺 ′𝑖 and 𝜌𝑖 must be checked by the parties (once).) We mask values in [0, 𝑆 (Γ + 1)𝑅] with masking
algorithm mask′𝑟 , masking randomness distribution R′𝑟 , masking overhead 𝐿′𝑟 and abort probability pr′.
As stated above, the main difference is, that an additional MPed commitment 𝐶′𝑥 to all 𝑥𝑖 using ckH is
made (and sent by the prover), and knowledge of opening of 𝐶′𝑥 is proven. We first describe the more
complex case of SharpGS.

A.3.2.1. Necessary Modifications to SharpGS.

We describe only the modifications of Algorithm 1 (SharpGS) below, using the same variable names as
in SharpGS.

• The prover’s first flow (e.g. after Line 12) is changed as follows: Additionally commit the 𝑥𝑖 in H.

1. 𝐶′𝑥 = 𝑟 ′𝑥𝐺
′
0 +

∑︁𝑁
𝑖=1 𝑥𝑖𝐺

′
𝑖 , where 𝑟 ′𝑥

$← [0, 𝑆].

Now, compute the first message of the proof of short opening in H.

2. Set˜︁𝑟 ′𝑥 $← R′𝑟 and let ˜︁𝑥𝑘,𝑖 be as in SharpGS.

3. Let ˜︁𝑥 ′𝑖 = ∑︁𝑅
𝑘=1(Γ + 1)𝑘−1˜︁𝑥𝑘,𝑖

4. Set 𝐷 ′𝑥 =˜︁𝑟 ′𝑥𝐺 ′0 +∑︁𝑁
𝑖=1 ˜︁𝑥 ′𝑖𝐺 ′𝑖

Modify the sent message as follows:

1. Add 𝐶′𝑥 to the message.

2. With the hash optimization, add 𝐷 ′𝑥 to the list of hashed messages. (Without it, add 𝐷 ′𝑥 to
the message.)

• The verifier’s challenge is unmodified. Recall that 𝛾𝑘 ∈ [0, Γ] for 𝑘 ∈ [1, 𝑅] are the challenges.

• The provers’s response (e.g. after Line 18) is changed as follows: Compute the “synthesized
challenge” 𝛾 ′.

1. Set 𝛾 ′ =
∑︁𝑅
𝑘=1 𝛾𝑘 (Γ + 1)𝑘−1 ∈ [0, (Γ + 1)𝑅 − 1].

Compute the masked opening randomness.

2. Set 𝑡 ′𝑥 = mask′𝑟 (𝛾 ′ · 𝑟 ′𝑥 ,˜︁𝑟 ′𝑥 ).
Abort if any masking failed. Modify the sent message as follows: Add 𝑡 ′ to the message.

• The verifier’s check (e.g. after Line 8) is changed as follows. Let the “synthesized” challenge and
responses be:

1. 𝛾 ′ =
∑︁𝑅
𝑘=1 𝛾𝑘 (Γ + 1)𝑘−1 ∈ [0, (Γ + 1)𝑅 − 1]

2. 𝑧′𝑖 =
∑︁𝑅
𝑘=1(Γ + 1)𝑘−1 · 𝑧𝑘,𝑖

Add the following computations and checks:

3. Compute the “synthesized” 𝛾 ′ and 𝑧′𝑖 for 𝑖 ∈ [1, 𝑁 ].

4. Compute 𝐹 ′𝑥 = −𝛾 ′𝐶′𝑥 + 𝑡 ′𝑥 ·𝐺 ′0 +
∑︁𝑁
𝑖=1 𝑧

′
𝑖 ·𝐺 ′𝑖

5. With the hash optimization, modify the check of Δ by including 𝐹 ′𝑥 in the list of messages.
(Without it, check 𝐹 ′𝑥 = 𝐷𝑥 .)
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A.3.2.2. Necessary Modifications to SharpPoSO

For SharpPoSO, the analogous changes of SharpGS are applied to Phase 2. Since there are no repetitions
in Phase 2, no “synthesized” 𝛾 ′ needed, hence 𝛾 ′ = 𝛾 and [0,ˆ︁Γ] is used as challenge space. We stress,
that maskings which are shared with H (concretely, 𝑧𝑖 = mask𝑥 (𝛾𝑥𝑖 ,˜︁𝑥𝑖)) must now be computed over
Z (and not modulo 𝑝 , since the group orders of H and Gcom are “incompatible”).

A.3.2.3. Efficiency

We consider the schemes with hash optimization applied. Then, compared to SharpGS (resp. Sharp
Po
SO),

the additional communication is a single element in H (namely 𝐶′𝑥 ), and the integer 𝑡 ′𝑥 ∈ R′𝑟 . Additional
computation for the prover’s is computing𝐶′𝑥 and 𝐷 ′𝑥 . For the verifier, it is the computation of 𝐹 ′𝑥 . Other
changes are negligible.

A.3.2.4. Security

Sharp+HOGS is correct, non-abort SHVZK and provides a strengthened relaxed soundness guarantee.
Informally, the committed 𝑥𝑖 are guaranteed to have rational representatives in [− 1

4𝐵 , 𝐵 +
1
4𝐵 ]Q, where

due to hardness of (Γ, 𝑒, 𝑁 )-relaxed DLOG-relations in H, 𝑥𝑖 is of the form𝑚/𝑒ℓ for𝑚 ∈ [−2(𝐵Γ +
1)𝐿, 2(𝐵Γ + 1)𝐿], ℓ ≤ log(Γ). To deal with the lack of invertible sampling in the class group setting,
we consider an explicit sampling algorithm Sample for uniform group elements, and hardness of
assumptions w.r.t. Sample.

Theorem A.3.1. Let Sample be a sampling algorithm for G. The scheme Sharp+HOGS has correctness error
at most 1 − (1 − pr′)𝑁 [(1 − pr)3 · (1 − px)𝑁 ]𝑅 . It is non-abort SHVZK under the SEI assumptions on G
and the SEI and the SI assumptions on H. Is has relaxed soundness for the relation

RExt =
{︁
(𝑥1, . . . , 𝑥𝑁 , 𝑟 ) : 𝐶𝑥 = 𝑟𝑥𝐺0 +

𝑁∑︂
𝑖=1

𝑥𝑖𝐺𝑖

∧ ∃𝑚𝑖 ∈ Z, 𝑘 ∈ N0 : −
1
4𝐵 ≤

𝑚𝑖

𝑒𝑘
≤ 𝐵 + 1

4𝐵
∧ 𝑥𝑖 ≡𝑞

𝑚𝑖

𝑒𝑘
∧ |𝑚𝑖 | ≤ (𝐵Γ + 1)𝐿𝑥 ∧ 1 ≤ 𝑒𝑘 ≤ Γ

}︁
.

under the DLOG, SEI assumptions on G, and the DLOG, SEI, SI, assumption and hardness of (Γ, 𝑒)-relaxed
DLOG-relations in H, where all asumptions are all w.r.t. to Sample. The knowledge error is ( 2

Γ+1 )
𝑅 .

Concretely, with the hash-optimization, we have following reductions:

• For every adversary A against non-abort SHVZK, there are adversaries BG,SEI, BH,SEI, BH,SI whose
runtime is roughly that ofA and so that Advna-hvzkA ≤ AdvseiH,BGcom,SEI + Adv

sei
H,BH,SEI

+ AdvsiH,BH,SI .

• For every adversaryA against knowledge which runs at most 𝑇 steps, there are adversaries B𝐶𝑅 ,
BG,DLOG, BH,DLOG, BH,SI, BH,rlxDLOG, whose expected runtime is roughly 3 · 𝑅 · 𝑇 , and so that
AdvkeA ≤ (

2
Γ+1 )

𝑅 + AdvcrhfHash,B𝐶𝑅
+ Advdlog

G,BG,DLOG
+ Advdlog

H,BH,DLOG
+ Advrlx-dlog

H,(Γ,𝑒,𝑁 ),BH,rlxDLOG
.

To be precise, we consider the 𝑆-bounded SEI assumption in G and the 𝑆-bounded SEI assumption in H.

The analogous adaption of Theorem A.5.1 holds for Sharp+HOPoSO, where the same additional terms for
reductions in H appear.
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Correctness follows by inspection. The soundness follows essentially as for the unmodified SharpGS
(Theorem A.5.1), except that hardness of (Γ, 𝑒)-relaxed DLOG-relations is used to additionally argue
that 𝑥𝑖 ∈ Z[1/𝑒] as sketched in Appendix A.3.1. Zero-knowledge follows almost exactly as for SharpGS.
The full proof is in Appendix A.5.3.

A.4. Proofs for Shortness Testing

A.4.1. Proof of Lemma 3.3.7

Lemma 3.3.7 (Regular Spacing of S𝑑 ). Suppose 1 < 𝑑 < 𝑝 and gcd(𝑑, 𝑝) = 1 and consider the set

S𝑑 ≡𝑝 {
𝑖

𝑑
mod 𝑝 | 𝑖 ∈ [0, . . . , 𝑑 − 1]} ⊆ Z𝑝 . (3.3.5)

Then S𝑑 = {⌈𝑖𝑝/𝑑⌉ | 𝑖 ∈ [0, . . . , 𝑑 − 1]} and the minimal distance 𝛿 = min𝑥≠𝑦∈S𝑑 |𝑥 −𝑦 | satisfies 𝛿 = ⌊ 𝑝
𝑑
⌋.

Proof. Define 𝑠𝑖 ≔ ⌈ 𝑖𝑝𝑑 ⌉ for 𝑖 = 0, . . . , 𝑑 − 1. Observe that, by Eq. (3.3.3),

𝑠𝑖 =

⌈︃
𝑖𝑝

𝑑

⌉︃
=
𝑖𝑝

𝑑
+ 𝑖𝑝 mod 𝑑

𝑑

and after multiplication by 𝑑 ,
𝑑𝑠𝑖 = 𝑖𝑝 + (𝑖𝑝 mod 𝑑) .

This equality holds over Z. Modulo 𝑝 , we find 𝑑𝑠𝑖 ≡𝑝 (𝑖𝑝 mod 𝑑). Since gcd(𝑑, 𝑝) = 1, all 𝑖𝑝 mod 𝑑 are
distinct, hence [0, 𝑑 − 1] = Z𝑑 = {𝑖𝑝 mod 𝑑 | 𝑖 ∈ [0, 𝑑 − 1]}. Dividing by 𝑑 (over Z𝑝 ), we find that

{𝑠0, . . . , 𝑠𝑑−1} ≡𝑝 { 𝑗/𝑑 ∈ Z𝑝 | 𝑗 ∈ [0, 𝑑 − 1]}

Thus, we have shown that the set S𝑑 indeed consists of the 𝑠𝑖 = ⌈ 𝑖𝑝
𝑑
⌉. The closest elements to 𝑠𝑖

are 𝑠 (𝑖+1mod𝑑 ) or 𝑠 (𝑖−1mod𝑑 ) , and (since the space is “circular”) it suffices to consider the distances
𝑠 (𝑖+1mod𝑑 ) − 𝑠 (𝑖mod𝑑 ) to lower-bound the minimal distance 𝛿 in S𝑑 . For 𝑖 = 0, . . . , 𝑑 − 2, we find⌊︂𝑝

𝑑

⌋︂
≤

⌈︃
(𝑖 + 1)𝑝
𝑑

⌉︃
−

⌈︃
𝑖𝑝

𝑑

⌉︃
= 𝑠𝑖+1 − 𝑠𝑖 ≤

⌈︂𝑝
𝑑

⌉︂
as claimed. For 𝑖 = 𝑑 − 1, we find 𝑠0 − 𝑠𝑑−1 ≡𝑝 𝑝 − 𝑠𝑑−1, and since 𝑝 =

⌈︂
𝑑𝑝

𝑑

⌉︂
, the claim follows as above.

In fact, 𝑝 − ⌈ (𝑑−1)𝑝
𝑑
⌉ = ⌊ 𝑝

𝑑
⌋, since ⌈ (𝑑−1)𝑝

𝑑
⌉ + ⌈𝑝

𝑑
⌉ = 𝑝 + 1 (since 𝑑 ∤ 𝑝). □

A.4.2. Proof of Lemma 3.3.8

Lemma 3.3.8. Suppose 𝑑 ∈ N and gcd(𝑑, 𝑝) = 1 and 𝑢 $← [0, . . . , 𝑑 − 1]. Let 𝜇, 𝐾 ∈ N be arbitrary. Then
for 1 < 𝑑 < 𝑝 we have

Pr
[︂𝑢
𝑑
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︂
≤ 1
𝑑

⌈︄
𝐾 + 1
⌊ 𝑝
𝑑
⌋

⌉︄
(3.3.6)

and for 𝑑 > 𝑝 , we have

Pr
[︂𝑢
𝑑
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︂
≤ 2𝐾 + 1

𝑝
(3.3.7)
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where the probability is over 𝑢. Combining the conditions gives

Pr
[︂𝑢
𝑑
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︂
≤ 1
𝑑
+ 2𝐾 + 1

𝑝
(3.3.8)

Proof. First we show Eq. (3.3.6). By Lemma 3.3.7, the distance between points in S𝑑 = { 𝑖
𝑑
mod 𝑝 | 𝑖 ∈

[0, . . . , 𝑑 − 1]} is at least 𝛿 = ⌊𝑝/𝑑⌋. Consequently, at most
⌈︁
𝐾+1
𝛿

⌉︁
points can lie in an interval with 𝐾 + 1

elements, e.g. [0, 𝐾]Z𝑝 + 𝜇, by a simple counting argument.

The next claim, Eq. (3.3.7) follows by a simple direct analysis. Namely, 𝑢 mod 𝑝 is distributed almost
uniformly over [0, 𝑝 −1], in particular 𝜌sup(𝑢/𝑈Z𝑝 ) ≤ 2. Moreover, multiplication with 1/𝑑 is a bijection
modulo 𝑝 since gcd(𝑑, 𝑝) = 1, so 𝑈Z𝑝/𝑑 mod 𝑝 is distributed as 𝑈Z𝑝 . Consequently, Pr[𝑢/𝑑 ∈Z𝑝
[0, 𝐾]Z𝑝 ] ≤ 𝜌sup(𝑢/𝑈Z𝑝 ) · Pr[𝑈Z𝑝 ∈Z𝑝 [0, 𝐾]Z𝑝 ] ≤ 2𝐾+1

𝑝
.

Finally, Eq. (3.3.8) follows by case distinction. Let ˆ︁𝐾 ≔ 𝐾 + 1. For 𝑑 > 𝑝 , it follows immediately from
Eq. (3.3.7). For 𝑑 < 𝑝/2, we get⌊︄ ˆ︁𝐾

𝛿

⌋︄
=

⌊︄ ˆ︁𝐾
⌊ 𝑝
𝑑
⌋

⌋︄
≤

ˆ︁𝐾
⌊ 𝑝
𝑑
⌋
≤

ˆ︁𝐾
𝑝/𝑑 − 1 ≤ 𝑑 ·

ˆ︁𝐾
𝑝 − 𝑑 ≤ 𝑑 ·

2(𝐾 + 1)
𝑝

since 𝑝/𝑑−1 = (𝑝−𝑑)/𝑑 and 𝑝−𝑑 ≥ 𝑝/2. Using ⌈ˆ︁𝐾/𝛿⌉ ≤ 1+⌊ˆ︁𝐾/𝛿⌋ it follows that 1
𝑑
⌈ˆ︁𝐾/𝛿⌉ ≤ 1

𝑑
(1+2𝑑 𝐾+1

𝑝
).

For 𝑝/2 < 𝑑 < 𝑝 , we have 𝛿 = ⌊𝑝/𝑑⌋ = 1 and 1/𝑑 < 2/𝑝 , hence 1
𝑑
⌈ˆ︁𝐾/𝛿⌉ = ˆ︁𝐾

𝑑
≤ 2𝐾+1

𝑝
. □

A.4.3. Proof of Lemma 3.3.9

Lemma 3.3.9. Let 𝑝, 𝑑, 𝑎, 𝑏, 𝜇, 𝐷, 𝐾 ∈ N and suppose 𝑢 $← [0, 𝐷] is a uniform random variable. Let
S𝑑 ≡𝑝 {𝑖/𝑑 | 𝑖 ∈ Z𝑑 } ⊆ Z𝑝 as usual, and likewise S𝑏 . Suppose that gcd(𝑑, 𝑝) = 1, and 𝑏 | 𝑑 , and that

𝑏 (𝐾 + 1) + 𝐷𝑎 <

⌊︃
𝑝

𝑑/𝑏

⌋︃
. (3.3.9)

Then we have ∑︂
𝑠∈S𝑑

Pr
[︂
𝑢
𝑎

𝑏
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇 + 𝑠

]︂
≤

⌈︃
𝑏 (𝐾 + 1)

𝑎

⌉︃
1

𝐷 + 1 . (3.3.10)

Proof. Consider
Pr

[︁
𝑢
𝑎

𝑏
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇 + S𝑑

]︁
≤ Pr

[︁
𝑢𝑎 ∈Z𝑝 [0, 𝑏𝐾]Z𝑝 + 𝜇′ + 𝑏 · S𝑑

]︁
≤ Pr

[︁
𝑢𝑎 ∈Z𝑝 [0, 𝑏𝐾]Z𝑝 + 𝜇′ + S𝑑/𝑏 + [0, 𝑏 − 1]

]︁
≤ Pr

[︁
𝑢𝑎 ∈Z𝑝 [0, 𝑏 (𝐾 + 1) − 1]Z𝑝 + 𝜇′ + S𝑑/𝑏

]︁
where we used that 𝜇′ = 𝑏𝜇, 𝑏 · [0, 𝐾] ⊆ [0, 𝑏𝐾], and 𝑏 · S𝑑 ⊆ S𝑑/𝑏 + [0, 𝑏 − 1]. (The latter follows since
𝑏 · 𝑖/𝑑 = 𝑖/𝑑 ′ where 𝑑 ′ = 𝑑/𝑏, and 𝑖 < 𝑑 , so 𝑖/𝑑 ′ = (𝑖 mod 𝑑 ′)/𝑑 ′ + ⌊𝑖/𝑑 ′⌋ ∈ S𝑑/𝑏 + [0, 𝑏 − 1].) For
brevity, define 𝐾 ′ = 𝑏 (𝐾 + 1) − 1.

Claim A.4.1. If 𝑢′𝑎 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′ + 𝑠′ for some choice 𝑢′ ∈ [0, 𝐷] and 𝑠′ ∈ S𝑑/𝑏 , then 𝑠′ is unique,
i.e. there exists no other choice 𝑢′′ ∈ [0, 𝐷], 𝑠′′ ∈ S𝑑/𝑏 with 𝑠′ ≠ 𝑠′′ and 𝑢′′𝑎 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′ + 𝑠′′.
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Proof. Suppose otherwise. Observe that 𝑢𝑎 ∈ [0, 𝐷𝑎]. Hence the distance of 𝑢′′𝑎 and 𝑢′𝑎 is at most 𝐷𝑎,
Considering the “slack” of [0, 𝐾 ′], the points 𝑠′, 𝑠′′ ∈ S𝑑/𝑏 can therefore be as most 𝐾 ′ + 𝐷𝑎 far apart.
The minimal distance in S𝑑/𝑏 is ⌊𝑝/(𝑑/𝑏)⌋. However, by assumption (Eq. (3.3.9)) 𝐾 ′ + 𝐷𝑎 < ⌊𝑝/(𝑑/𝑏)⌋.
Thus, 𝑠′ ≠ 𝑠′′ must be too far from each other, which is a contradiction. □

We have just shown that there is a at most one 𝑠′ ∈ S𝑑/𝑏 for which 𝑢′𝑎 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′ + 𝑠′ can
happen. Thus, we find

Pr
[︁
𝑢𝑎 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′ + S𝑑/𝑏

]︁
≤ Pr

[︁
𝑢𝑎 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′′

]︁
where 𝜇′′ = 𝜇′ + 𝑠′. But it is clear that at most ⌈(𝐾 ′ + 1)/𝑎⌉ choices of 𝑢 can lie in an interval with 𝐾 ′ + 1
elements (since 𝐷𝑎 < 𝑝). With 𝐾 ′ + 1 = 𝑏 (𝐾 + 1), it follows that

Pr
[︁
𝑢𝑎 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′′

]︁
≤

⌈︃
𝑏 (𝐾 + 1)

𝑎

⌉︃
1

𝐷 + 1 .

□

A.4.4. Proof of Lemma 3.3.11

Lemma A.4.2. Suppose 1 ≠ 𝑑 ∈ N and let 𝑢𝑖 be random variables in Z𝑑 = [0, . . . , 𝑑 − 1] for 𝑖 = 1, . . . , 𝑁 .
Fix some arbitrary 𝑎𝑖 ∈ [0, 𝑑 − 1] with lcm(𝑎1, . . . , 𝑎𝑁 ) = 𝑑 . Define

𝐹 : Z𝑑 → Z𝑑 , 𝐹 (𝑢1, . . . , 𝑢𝑁 ) =
𝑁∑︂
𝑖=1

𝑢𝑖 · 𝑎𝑖 mod 𝑑 (A.4.1)

There exist 𝑞1, . . . , 𝑞𝑁 ∈ N such that

1. All 𝑞𝑖 are coprime.

2. 𝑞𝑖 | ordZ𝑑 (𝑎𝑖).

3.
∏︁𝑁
𝑖=1 𝑞𝑖 = 𝑑 .

Define 𝑍 =
∏︁𝑁
𝑖=1 Z𝑞𝑖 and following homomorphisms:

• The projections 𝜋𝑖 : Z𝑑 → Z𝑞𝑖 and the CRT map 𝜋 : Z𝑑 → 𝑍 with 𝜋 (𝑥) = (𝜋1(𝑥), . . . , 𝜋𝑁 (𝑥)).

• The injections 𝜄𝑖 : Z𝑞𝑖 → Z𝑑 defined by 𝑥 ↦→ 𝛼𝑖 · 𝑥 mod 𝑑 , where 𝛼𝑖 ≔ 𝑑
𝑞𝑖
· (( 𝑑

𝑞𝑖
)−1 mod 𝑞𝑖) ∈ Z,

and the combined injections 𝜄 : 𝑍 → Z𝑁
𝑑
as 𝜄 ((𝑥1, . . . 𝑥𝑁 )) = (𝜄1(𝑥1), . . . , 𝜄𝑁 (𝑥𝑁 )).

• The CRT map 𝜙 : 𝑍 → Z𝑑 , 𝜙 ((𝑥1, . . . , 𝑥𝑁 )) =
∑︁𝑁
𝑖=1 𝜄𝑖 (𝑥𝑖) =

∑︁𝑁
𝑖=1 𝛼𝑖𝑥𝑖 .

Recall that 𝜋 and 𝜙 are the bijections of the Chinese remainder theorem (CRT).

With this, we have:

4. Restricted to 𝜄 (𝑍 ), the map 𝑓 : 𝜄 (𝑍 ) → Z𝑑 , 𝑓 = 𝐹 |𝜄 (𝑍 ) is an isomorphism.

5. For uniform (𝑣1, . . . , 𝑣𝑁 ) $← 𝑍 , we find that

𝐹 (𝜄 (𝑣1, . . . , 𝑣𝑁 )) = 𝑓 (𝑣1, . . . , 𝑣𝑁 ) =
𝑁∑︂
𝑖=1

𝜄𝑖 (𝑣𝑖) · 𝑎𝑖 mod 𝑑

is uniform in Z𝑑 . Consequently, for uniform (𝑢1, . . . , 𝑢𝑁 ) $← 𝜄 (𝑍 ) ≤ Z𝑁
𝑑
, also 𝐹 (𝑢1, . . . , 𝑢𝑁 ) is

uniform in Z𝑑 .
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The lemma is essentially an application of the Chinese remainder theorem (CRT) and some standard
computations. We provide a small example: Suppose 𝑁 = 2 and 𝑑 = 300 = 22 · 3 · 52, 𝑎1 = 15 and 𝑎2 = 4.
Then ordZ𝑑 (𝑎1) = 300/15 = 22 · 5 and ordZ𝑑 (𝑎2) = 300/20 = 3 · 52. Thus, let 𝑞1 = 22 and 𝑞2 = 3 · 52 (i.e.
gather the largest prime powers in the 𝑞𝑖 ’s). Clearly, Z300 ≅ Z4 × Z75 by the CRT. It’s easy to check the
claims as well; they are almost directly implied by the CRT.

Proof. First, we show the existence of 𝑞𝑖 ’s as claimed and some resulting properties. For this, let
ℎ𝑖 = ordZ𝑑 (𝑎𝑖). Let ℎ𝑖 = 𝑝

𝑒𝑖,1
1 · . . . 𝑝

𝑒𝑖,𝑟
𝑟 for distinct primes 𝑝 𝑗 and exponents 𝑒𝑖, 𝑗 ∈ N0. Define 𝑞1 as the

product of those 𝑝𝑒1, 𝑗
𝑗

where 𝑒1, 𝑗 is the maximal exponent (over all 𝑗 = 1, . . . 𝑟 ). The other 𝑞𝑖 are defined
analogously. If for fixed fixed 𝑗 , there are multiple 𝑖 such that ℎ𝑖 has the maximal exponent 𝑒𝑖, 𝑗 for
𝑝 𝑗 , then 𝑝

𝑒𝑖,𝑗
𝑗

is part of (only!) the 𝑞𝑖 with the smallest index 𝑖 . By construction, 𝑞1, . . . , 𝑞𝑁 satisfy the
required properties.

Conversely, the required properties enforce this structure, up to choices where for fixed 𝑗 , multiple
indices 𝑖 have the maximal prime power 𝑝𝑒𝑖,𝑗

𝑖
. This essentially follows from 𝑞𝑖s being coprime, hence

each prime (power) appears in at most one 𝑞𝑖 , and
∏︁𝑑
𝑖 𝑞𝑖 = 𝑑 , hence each prime (power) appears in at

least one 𝑞𝑖 .

Lastly, note that from the abstract properties, we get (𝑎𝑖 mod 𝑞𝑖) ∈ Z×𝑞𝑖 . This can be seen via the CRT:
We have Z𝑑 = Z𝑑/𝑞𝑖 × Z𝑞𝑖 via the CRT, since gcd(𝑞𝑖 , 𝑑/𝑞𝑖) = 1 by definition of 𝑞𝑖 . Moreover, projecting
𝑎𝑖 to Z𝑞𝑖 , 𝑎𝑖 is must be generator of Z𝑞𝑖 (or 𝑞𝑖 ∤ ordZ𝑑 (𝑎𝑖), a contradiction).

Now we turn to Item 4. By the CRT, we have 𝑍 =
∏︁𝑁
𝑖=1 Z𝑞𝑖 ≅ Z

∏︁
𝑖 𝑞𝑖

= Z𝑑 , and the isomorphism
connecting 𝑍 and Z𝑑 are 𝜋 and 𝜙 . Moreover,

𝐹 (𝜄 (𝑣1, . . . , 𝑣𝑁 )) =
𝑁∑︂
𝑖=1

𝜄𝑖 (𝑣𝑖) · 𝑎𝑖 =
𝑁∑︂
𝑖=1

𝛼𝑖𝑣𝑖 · 𝑎𝑖 =
𝑁∑︂
𝑖=1

𝑣𝑖 ·
𝑑

𝑞𝑖
𝑎′𝑖

where 𝑎′𝑖 = 𝑎𝑖 (( 𝑑𝑞𝑖 )
−1 mod 𝑞𝑖) by definition of 𝛼𝑖 . The order of 𝑑

𝑞𝑖
𝑎′𝑖 = 𝛼𝑖𝑎𝑖 in Z𝑑 is exactly 𝑞𝑖 (since

𝛼𝑖 is invertible modulo 𝑞𝑖 ). As Z𝑑 is cyclic, each subgroup is uniquely identified by its order, and we
conclude that the image 𝐹 (𝜄 (0, . . . ,Z𝑞𝑖 , 0, . . .)) is the subgroup of order 𝑞𝑖 in Z𝑑 . Since

∏︁𝑁
𝑖=1 𝑞𝑖 = 𝑑 ,

these subgroups span Z𝑑 (again, by the CRT) and therefore 𝑓 is surjective (and hence, bijective since
|𝑍 | = |Z𝑑 |).

Lastly, item 5 follows immediately from 𝑓 : 𝑍 → Z𝑑 being an isomorphism, so in particular a bijection.
□

A.4.5. Proof of Lemma 3.3.12

Lemma 3.3.12 (Core Lemma). Let 𝐷,𝑀 ∈ N and suppose 2𝐷𝑀 < 𝑝 . Let 𝑥𝑖 =
𝑚𝑖
𝑑𝑖

where 𝑑𝑖 ∈ [1, 𝐷] and
𝑚𝑖 ∈ [−𝑀,𝑀] for 𝑖 = 1, . . . , 𝑁 . Let 𝛾𝑖

$← [0, 𝐷]. Define

𝑆 =

𝑁∑︂
𝑖=1

𝛾𝑖 ·
𝑚𝑖

𝑑𝑖
mod 𝑝 (3.3.11)

Let 𝐼 ⊆ [1, 𝑁 ] denote the set of indices which minimizes 𝑑 ≔ lcm({𝑑𝑖 | 𝑖 ∈ 𝐼 }) under the constraint
that 𝑑 > 𝐷 , or 𝐼 = [1, 𝑁 ] if lcm(𝑑1, . . . , 𝑑𝑁 ) ≤ 𝐷 . Let 𝐾 ∈ N, let 𝛽 = min( |𝐼 |, primlmin(𝐷 + 1)), and let
𝐾 ′ ≔ 𝐾 + 2𝛽𝑀 . Then, for arbitrary 𝜇 ∈ Z𝑝 , we have

Pr
[︁
𝑆 ∈ [0, 𝐾]Z𝑝 + 𝜇

]︁
≤ 4 ·

{︄
1
𝑑

if 𝑑 (𝐾 ′ + 1) < 𝑝
1
𝑑
+ 2𝐾 ′+1

𝑝
always

(3.3.12)
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Now, suppose additionally that 𝑑 ≤ 𝐷 and 𝐷 (𝐾 ′ + 𝐷𝑀 + 2) < 𝑝 . If 𝑑
𝑑𝑖
|𝑚𝑖 | > 𝐾 ′ for some 𝑖 ∈ [1, 𝑁 ], then

Pr
[︁
𝑆 ∈ [0, 𝐾]Z𝑝 + 𝜇

]︁
≤ 8
𝐷 + 1 . (3.3.13)

Proof. We assume w.l.o.g. that 𝐷 ≥ 2, 𝐾 ≥ 1, 𝑑 > 1 and 𝑁 > 1; the excluded cases are straightforward.
As a first step, we impose conditions on 𝐼 , 𝑁 and 𝑑 .

Claim A.4.3. We can w.l.o.g. assume that 𝐼 = {1, . . . , 𝑁 } and that for any subset 𝐼 ′ of 𝐼 , lcm(𝑑𝑖′ | 𝑖′ ∈
𝐼 ) < lcm(𝑑𝑖 | 𝑖 ∈ 𝐼 ), that is, 𝐼 is a minimal subset w.r.t. the least common multiple 𝑑 = lcm(𝑑𝑖 | 𝑖 ∈ 𝐼 ).

Proof. First of all, we show that w.l.o.g. 𝐼 = {1, . . . , 𝑁 }. For this, note that
𝑁∑︂
𝑖=1

𝛾𝑖
𝑚𝑖

𝑑𝑖
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇 ⇐⇒

∑︂
𝑖∈𝐼

𝛾𝑖
𝑚𝑖

𝑑𝑖
∈Z𝑝 [0, 𝐾]Z𝑝 + (𝜇 −

∑︂
𝑖∉𝐼

𝛾𝑖
𝑚𝑖

𝑑𝑖
)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

𝜇′

.

Thus, if the lemma holds only for the “partial-sum” 𝐼 ⊆ {1, . . . , 𝑁 }, it follows for the “complete sum”
over {1, . . . , 𝑁 }, by conditional probability and using that the bounds in Eq. (3.3.12) must hold for
arbitrary 𝜇, in particular 𝜇′ (by induction over the instance size 𝑁 ). Thus, w.l.o.g. 𝐼 = {1, . . . , 𝑁 }.

Now, suppose removing some 𝑑𝑖 , w.l.o.g. 𝑑𝑁 , does not affect the least common multiple, i.e. lcm(𝑑𝑖′ |
𝑖′ ∈ 𝐼 \ {𝑁 }) = 𝑑 . Then instead of 𝐼 we could use 𝐼 ′ = 𝐼 \ {𝑁 }. By the above, w.l.o.g. we can assume
𝐼 ′ = {1, . . . , 𝑁 } again. Overall, we can assume “minimality” of 𝐼 and 𝑁 = |𝐼 |. □

Since w.l.o.g. 𝐼 = {1, . . . , 𝑁 }, from now on we will mostly ignore the index set 𝐼 .

Before diving into the proof, recall that

𝑎

𝑏
=
𝑎 mod 𝑏

𝑏
+

⌊︂𝑎
𝑏

⌋︂
. (A.4.2)

Let 𝑑 = lcm({𝑑𝑖 | 𝑖 ∈ 𝐼 }) as in the claim. To motivate our approach, we first rewrite Eq. (3.3.11) with
common denominator 𝑑 and apply Eq. (A.4.2) to find

Pr
[︁
𝑆 ∈ [0, 𝐾]Z𝑝 + 𝜇

]︁
= Pr

[︄
𝑁∑︂
𝑖=1

𝛾𝑖 ·
𝑚𝑖

𝑑𝑖
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︄
= Pr

[︄
1
𝑑

(︄
𝑁∑︂
𝑖=1

𝛾𝑖 ·𝑚𝑖

𝑑

𝑑𝑖

)︄
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︄
= Pr

[︄
1
𝑑

(︄(︄
𝑁∑︂
𝑖=1

𝛾𝑖 ·𝑚𝑖

𝑑

𝑑𝑖

)︄
mod 𝑑

)︄
+

⌊︄
𝑁∑︂
𝑖=1

𝛾𝑖𝑚𝑖

1
𝑑𝑖

⌋︄
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︄
Observe that we now have a sum modulo 𝑑 and are almost in the situation of Lemma A.4.2, which in
turn would allow us to apply Lemma 3.3.8. But

∑︁𝑁
𝑖=1 𝛾𝑖 ·𝑚𝑖

𝑑
𝑑𝑖

mod 𝑑 need not be uniform modulo 𝑑 ,
and ⌊∑︁𝑁

𝑖=1 𝛾𝑖𝑚𝑖
1
𝑑𝑖
⌋ is a stochastically dependent “error term”. Thus, we will change the distribution of

the 𝛾𝑖 in a suitable manner to obtain two independent sums.

For better tightness, we use the distribution suggested by Lemma A.4.2. Let 𝑞𝑖 be as in Lemma A.4.2.
Together with Claim A.4.3, we get the following properties.
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Claim A.4.4. We have that all 𝑞𝑖 are coprime, 𝑞𝑖 > 1 for all 𝑖 ,
∏︁𝑁
𝑖=1 𝑞𝑖 = 𝑑 , 𝑞𝑖 | ordZ𝑑 (𝑚𝑖𝑑/𝑑𝑖) | 𝑑𝑖 | 𝑑 ,

and 𝑁 ≤ primlmin(𝐷 + 1).

Proof. Directly from Lemma A.4.2, we see that all 𝑞𝑖 are coprime, 𝑞𝑖 | ordZ𝑑 (𝑚𝑖𝑑/𝑑𝑖), and
∏︁𝑁
𝑖=1 𝑞𝑖 = 𝑑 .

The divisibility chain is completed via ordZ𝑑 (𝑚𝑖𝑑/𝑑𝑖) | ordZ𝑑 (𝑑/𝑑𝑖) = 𝑑𝑖 | 𝑑 . To see 𝑞𝑖 > 1, suppose to
the contrary that some 𝑞 𝑗 = 1. Then

∏︁
𝑖≠𝑗 𝑞𝑖 = 𝑑 = lcm({𝑑𝑖}𝑖≠𝑗 ). But this contradicts the minimality of

the index set 𝐼 (and 𝑁 ) which we established w.l.o.g. in Claim A.4.3.

To see 𝑁 ≤ primlmin(𝐷 + 1), observe that each 𝑞𝑖 contributes different prime factors, and therefore
priml(𝑘) = ∏︁𝑘

𝑖=1 𝑝𝑖 ≤
∏︁𝑘
𝑖=1 𝑞𝑖 = 𝑑 , where 𝑝𝑖 denotes the 𝑖-th prime number. Hence, if priml(𝑘) ≥ 𝐷 + 1,

then 𝑑 > 𝐷 , and therefore 𝑘 ≤ primlmin(𝐷 + 1). □

ClaimA.4.4 explainswhy 𝛽 = min( |𝐼 |, primlmin(𝐷+1)) is used in Lemma 3.3.12, because in Lemma 3.3.12
no assumptions on “minimality” of 𝐼 (and 𝑁 ) were made (in particular 𝑁 > primlmin(𝐷 +1) is possible).

Now, we change the distribution which we consider from 𝛾𝑖
$← [0, 𝐷] to 𝛾 ′𝑖

$← [0, 𝑞𝑖 ⌈(𝐷 + 1)/𝑞𝑖⌉ − 1].
(Observe that 𝑞𝑖 ⌈(𝐷 + 1)/𝑞𝑖⌉ ≥ 𝐷 + 1 is the smallest multiple of 𝑞𝑖 which is larger or equal to 𝐷 + 1,
and 𝛾 ′𝑖 mod 𝑞𝑖 is uniformly distributed.)

To simplify notation, let ˆ︁𝐷 ≔ 𝐷 + 1, i.e. ˆ︁𝐷 is the cardinality of [0, 𝐷]. One quickly computes

𝜌sup(𝛾𝑖/𝛾 ′𝑖 ) =
1ˆ︁𝐷 ·

(︄
1

𝑞𝑖 ⌈ˆ︁𝐷/𝑞𝑖⌉
)︄−1

=
𝑞𝑖 ⌈ˆ︁𝐷/𝑞𝑖⌉ˆ︁𝐷 ≤ 1 + 𝑞𝑖 − 1ˆ︁𝐷

where we use that
0 ≤ 𝑞𝑖 ⌈ˆ︁𝐷/𝑞𝑖⌉ − ˆ︁𝐷 = (ˆ︁𝐷 mod 𝑞𝑖) ≤ 𝑞𝑖 − 1.

Observe that we can sample and write 𝛾 ′𝑖
$← [0, 𝑞𝑖 ⌈(𝐷 + 1)/𝑞𝑖⌉ − 1] as

𝛾 ′ = 𝑢𝑖 + 𝑞𝑖𝑣𝑖 where 𝑢𝑖
$← [0, 𝑞𝑖 − 1], 𝑣𝑖

$← [0, ⌈ˆ︁𝐷/𝑞𝑖⌉ − 1] .
For future reference, we record the following definitions and facts.

Claim A.4.5. Let 𝑢𝑖
$← [0, 𝑞𝑖 − 1], 𝑣𝑖 $← [0, ⌈ˆ︁𝐷/𝑞𝑖⌉ − 1] with 𝑞𝑖 as above. Define

𝑆𝑢 ≔
𝑁∑︂
𝑖=1

𝑢𝑖𝑚𝑖

𝑑

𝑑𝑖
and 𝑆𝑣 ≔

𝑁∑︂
𝑖=1

𝑣𝑖𝑚𝑖

𝑞𝑖

𝑑𝑖
(A.4.3)

Then 𝑆𝑢 mod 𝑑 is uniform in Z𝑑 .

Proof. The claim is immediate by Lemma A.4.2 (and definition of 𝑞𝑖 , 𝑢𝑖 ). □

Now, let

𝜌 ≔ 𝜌sup((𝛾1, . . . , 𝛾𝑁 )/(𝛾 ′1, . . . , 𝛾 ′𝑁 )) ≤
𝑁∏︂
𝑖=1
(1 + 𝑞𝑖 − 1ˆ︁𝐷 ) (A.4.4)

Claim A.4.6. It holds that 𝜌 ≤ 4.

Proof. As Claim A.4.6 follows from unrelated technical computations, we prove this separately in
LemmaA.4.10, which only needs the following constraints, already observed in (the proof of) ClaimA.4.4,
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• 1 < 𝑞𝑖 ≤ 𝐷 for all 𝑖 = 1, . . . , 𝑁 .

•
∏︁𝑁
𝑖=1 𝑞𝑖 < 𝐷2 and for all subset products over 𝐼 ′ ⊊ {1, . . . , 𝑁 } it holds that ∏︁𝑖∈𝐼 ′ 𝑞𝑖 ≤ 𝐷 .

□

Now that notation and setup are in place, we turn to the following central claim.

Claim A.4.7. It holds that

Pr
[︁
𝑆 ∈ [0, 𝐾]Z𝑝 + 𝜇

]︁
≤ 𝜌 · Pr

[︃
1
𝑑
(𝑆𝑢 mod 𝑑) + 𝑆𝑣 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′

]︃
where

𝐾 ′ = 𝐾 + 2𝛽𝑀 and 𝜇′ = 𝜇 − 𝛽𝑀, (A.4.5)

for 𝛽 = min(𝑁, primlmin(𝐷 + 1)).

Proof. From our definition of 𝛾 ′𝑖 and Eq. (A.4.4), we get

Pr
[︁
𝑆 ∈ [0, 𝐾]Z𝑝 + 𝜇

]︁
= Pr

[︄
𝑁∑︂
𝑖=1

𝛾𝑖 ·
𝑚𝑖

𝑑𝑖
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︄
≤ 𝜌 · Pr

[︄
𝑁∑︂
𝑖=1

𝛾 ′𝑖 ·
𝑚𝑖

𝑑𝑖
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︄
= 𝜌 · Pr

[︄
𝑁∑︂
𝑖=1
(𝑢𝑖 + 𝑞𝑖𝑣𝑖) ·

𝑚𝑖

𝑑𝑖
∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︄
= 𝜌 · Pr

[︃
1
𝑑
𝑆𝑢 + 𝑆𝑣 ∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︃
(A.4.6)

where we first use the properties of 𝜌sup(·/·) to replace 𝛾𝑖 by 𝛾 ′𝑖 , then we use 𝛾 ′𝑖 = 𝑢𝑖 + 𝑞𝑖𝑣𝑖 and rewrite
the sum. As usual (by Eq. (A.4.2)), we have

1
𝑑
𝑆𝑢 =

1
𝑑
(𝑆𝑢 mod 𝑑) +

⌊︃
𝑆𝑢

𝑑

⌋︃
=

1
𝑑

(︄
𝑁∑︂
𝑖=1

𝑢𝑖 ·𝑚𝑖

𝑑

𝑑𝑖
mod 𝑑

)︄
+

⌊︄
𝑁∑︂
𝑖=1

𝑢𝑖 ·𝑚𝑖

1
𝑑𝑖

⌋︄
.

We first derive a bound for
⌊︂
𝑆𝑢
𝑑

⌋︂
. Note that⌊︄

𝑁∑︂
𝑖=1

𝑢𝑖 ·𝑚𝑖

1
𝑑𝑖

⌋︄
≤

⌊︄
𝑁∑︂
𝑖=1

𝑚𝑖

𝑞𝑖 − 1
𝑑𝑖

⌋︄
≤

⌊︄
𝑀 ·

𝑁∑︂
𝑖=1

𝑞𝑖 − 1
𝑑𝑖

⌋︄
≤

⌈︄
𝑁∑︂
𝑖=1

𝑞𝑖 − 1
𝑑𝑖

⌉︄
·𝑀

where 𝛼 = ⌈∑︁𝑁
𝑖=1

𝑞𝑖−1
𝑑𝑖
⌉ ≤ 𝑁 , since (𝑞𝑖 − 1)/𝑑𝑖 < 1 by choice of 𝑞𝑖 (namely, 𝑞𝑖 | 𝑑𝑖 ). Analogously,⌊︄

𝑁∑︂
𝑖=1

𝑢𝑖 ·𝑚𝑖

1
𝑑𝑖

⌋︄
≥

⌊︄
−𝑀 ·

𝑁∑︂
𝑖=1

𝑞𝑖 − 1
𝑑𝑖

⌋︄
≥ −

⌈︄
𝑁∑︂
𝑖=1

𝑞𝑖 − 1
𝑑𝑖

⌉︄
·𝑀
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hence −𝛼𝑀 is a lower bound. Thus, we find⌊︃
𝑆𝑢

𝑑

⌋︃
=

⌊︄
𝑁∑︂
𝑖=1

𝑢𝑖 ·𝑚𝑖

1
𝑑𝑖

⌋︄
∈ [−𝛼𝑀, 𝛼𝑀] . (A.4.7)

That is, the possible values of the sum lie in the interval [−𝛼𝑀, 𝛼𝑀] = [0, 2𝛼𝑀] − 𝛼𝑀 . Note that, by
Claim A.4.4 and our simplifying assumptions on𝑁 and 𝐼 in Claim A.4.3, 𝛼 ≤ min(𝑁, primlmin(𝐷+1)) =
𝛽 holds.

Now, we can continue Eq. (A.4.6) with

𝜌 · Pr
[︃
1
𝑑
𝑆𝑢 + 𝑆𝑣 ∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︃
= 𝜌 · Pr

[︃
1
𝑑
(𝑆𝑢 mod 𝑑) +

⌊︃
𝑆𝑢

𝑑

⌋︃
+ 𝑆𝑣 ∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︃
≤ 𝜌 · Pr

[︃
1
𝑑
(𝑆𝑢 mod 𝑑) + 𝑆𝑣 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′

]︃
where we first used Eq. (A.4.2) as usual, and then Eq. (A.4.7), as well as the definition 𝐾 ′ = 𝐾 + 2𝛽𝑀
and 𝜇′ = 𝜇 − 𝛽𝑀 . This proves Claim A.4.7. □

We are now in a position to prove Lemma 3.3.12. We first show Eq. (3.3.12) of Lemma 3.3.12.

Claim A.4.8. It holds that

Pr
[︁
𝑆 ∈ [0, 𝐾]Z𝑝 + 𝜇

]︁
≤ 𝜌 ·

{︄
1
𝑑

if 𝑑 (𝐾 ′ + 1) < 𝑝
1
𝑑
+ 2𝐾 ′+1

𝑝
always

From Claim A.4.8 the first claim of the core lemma, Eq. (3.3.12), follows using 𝜌 ≤ 4 from Claim A.4.6.

Proof. Using Claim A.4.7, it suffices to prove that

𝜀 ≔ Pr
[︃
1
𝑑
(𝑆𝑢 mod 𝑑) + 𝑆𝑣 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′

]︃
≤ 1
𝑑
+ 2𝐾

′ + 1
𝑝

and 𝜀 ≤ 1/𝑑 if 𝑑 (𝐾 ′ + 1) < 𝑝 .

Since by construction, 𝑢𝑖 and 𝑣𝑖 are stochastically independent, we find

𝜀 ≤
∑︂
𝑡 ∈Z𝑝

Pr
[︃
1
𝑑
(𝑆𝑢 mod 𝑑) ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′ − 𝑡

]︃
· Pr

[︁
𝑆𝑣 ≡𝑝 𝑡

]︁
.

Now, recall that 𝑆𝑢 mod 𝑑 is uniformly distributed in Z𝑑 (cf. Claim A.4.5), indeed, this was the reason
for switching from 𝛾𝑖 to 𝛾 ′𝑖 . Thus,

Pr
[︃
1
𝑑
𝑆𝑢 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝑧′

]︃
= Pr

[︃
1
𝑑
·𝑈Z𝑑 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝑧′

]︃
≤ 1
𝑑
+ 2𝐾

′ + 1
𝑝

where 𝑧′ = 𝜇′ − 𝑡 and the inequality follows from Lemma 3.3.8. Hence,

𝜀 ≤
∑︂
𝑡 ∈Z𝑝

1
𝑑
· Pr

[︁
𝑆𝑣 ≡𝑝 𝑡

]︁
=

1
𝑑
+ 2𝐾

′ + 1
𝑝
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and this part of the claim follows. Moreover, by Eq. (3.3.6) of Lemma 3.3.8, if ⌈(𝐾 ′ + 1)/⌊𝑝/𝑑⌋⌉ ≤ 1, then
𝜀 ≤ 1/𝑑 (by the same argument). Since ⌊𝑥⌋ ≤ 𝑥 , we can simplify to ⌈(𝐾 ′ + 1)/⌊𝑝/𝑑⌋⌉ ≤ ⌈𝑑 (𝐾 ′ + 1)/𝑝⌉ ≤
1, and thus, 𝑑 (𝐾 ′ + 1)/𝑝 ≤ 1, as claimed. □

Finally, we turn to proving Eq. (3.3.13) of Lemma 3.3.12.

Claim A.4.9. Suppose 𝑑 ≤ 𝐷 and there is some 𝑖∗ such that 𝑑𝑚𝑖∗/𝑑𝑖∗ > 𝐾 ′ = 𝐾 + 2𝛽𝑀 . Then

Pr
[︁
𝑆 ∈Z𝑝 [0, 𝐾]Z𝑝 + 𝜇

]︁
≤ 8
𝐷 + 1 .

Proof. Again, we continue from Claim A.4.7 and use independence of the 𝑢𝑖s and 𝑣𝑖s to find

Pr
[︃
1
𝑑
(𝑆𝑢 mod 𝑑) + 𝑆𝑣 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′

]︃
=

∑︂
𝑡 ∈S𝑑

Pr
[︃
1
𝑑
(𝑆𝑢 mod 𝑑) = 𝑡

]︃
· Pr

[︁
𝑆𝑣 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′ − 𝑡

]︁
=

1
𝑑

∑︂
𝑡 ∈S𝑑

Pr
[︁
𝑆𝑣 ∈Z𝑝 [0, 𝐾 ′]Z𝑝 + 𝜇′ − 𝑡

]︁
where S𝑑 = {𝑖/𝑑 mod 𝑝 | 𝑖 ∈ [0, 𝑑 − 1]} ⊆ Z𝑝 . In the last equality, we use again that 𝑆𝑢 mod 𝑑 is
uniform in Z𝑑 by Claim A.4.5. Using the independence of the 𝑣𝑖 ’s we further condition on all but 𝑖∗,
and find

1
𝑑

∑︂
𝑡 ∈S𝑑

Pr
[︁
𝑆𝑣 ∈ [0, 𝐾 ′]Z𝑝 + 𝜇′ − 𝑡

]︁
=

1
𝑑

∑︂
𝑡 ∈S𝑑

Pr
[︄
𝑁∑︂
𝑖=1

𝑣𝑖 ·𝑚𝑖

𝑞𝑖

𝑑𝑖
∈ [0, 𝐾 ′]Z𝑝 + 𝜇′ − 𝑡

]︄
=

∑︂
𝑦∈Z𝑝

(︃
Pr

[︃∑︂
𝑖≠𝑖∗

𝑣𝑖 ·𝑚𝑖

𝑞𝑖

𝑑𝑖
= 𝑦

]︃
·

1
𝑑

∑︂
𝑡 ∈S𝑑

Pr
[︃
𝑣𝑖∗ ·𝑚𝑖∗

𝑞𝑖∗

𝑑𝑖∗
∈ [0, 𝐾 ′] + 𝜇′ − 𝑡 − 𝑦

]︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

(★)

)︃
(A.4.8)

To improve readability, we abbreviate terms with index 𝑖∗ as 𝑣∗, 𝑚∗, etc. Now, we want to apply
Lemma 3.3.9 to (★), where 𝑎 ˆ︁= 𝑞∗ · |𝑚∗ | and 𝑏 ˆ︁= 𝑑∗, and 𝐷 ˆ︁= ⌈(𝐷 +1)/𝑞∗⌉ −1, and 𝐾 ˆ︁= 𝐾 ′ and 𝜇 ˆ︁= 𝜇′−𝑦.
First, observe that the requirement

(𝐾 + 1) + 𝐷𝑎
𝑏
<

1
𝑏
·
⌊︃
𝑝

𝑑/𝑏

⌋︃
of Lemma 3.3.9 is satisfied when the corresponding variables are inserted (by our premise on 𝐾, 𝑁, 𝐷, 𝑝).
Namely, since 1

𝑏
· ⌊ 𝑝

𝑑/𝑏 ⌋ ≤
𝑝

𝑑
− 1
𝑏
and 1

𝑏
≤ 1, it suffices to see 2 + 𝐾 + 𝐷 𝑎

𝑏
≤ 𝑝

𝑑
. With 𝑑 ≤ 𝐷 , 𝑎

𝑏
≤ 𝑀 we

arrive at 𝐷 (𝐾 ′ +𝐷𝑀 + 2) < 𝑝 , which holds by assumption. Thus, by the conclusion of Lemma 3.3.9, we
find

1
𝑑
·
∑︂
𝑡 ∈S𝑑

Pr
[︃
𝑣∗ ·𝑚∗𝑞

∗

𝑑∗
∈ [0, 𝐾 ′] + 𝜇′ − 𝑡 − 𝑦

]︃
≤ 1
𝑑
·
⌈︃
𝑑∗(𝐾 ′ + 1)
𝑚∗𝑞∗

⌉︃
1

⌈(𝐷 + 1)/𝑞∗⌉ .
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Since, by assumption 𝑑𝑚∗/𝑑∗ < 𝐾 ′, one can check that2

1
𝑑

⌈︃
𝑑∗(𝐾 ′ + 1)
𝑚∗𝑞∗

⌉︃
1

⌈(𝐷 + 1)/𝑞∗⌉ ≤
𝑞∗

𝑑
+ 𝑑

∗ (𝐾 ′+1)
𝑑𝑚∗

𝐷 + 1 ≤ 2
𝐷 + 1 .

Plugging that bound back into Eq. (A.4.8), we obtain

1
𝑑

∑︂
𝑡 ∈S𝑑

Pr
[︁
𝑆𝑣 ∈ [0, 𝐾 ′]Z𝑝 + 𝜇′ − 𝑡

]︁
≤ 2
𝐷 + 1

and the claim follows since

Pr
[︁
𝑆 ∈ [𝜇, 𝜇 + 𝐾]Z𝑝

]︁
≤ 𝜌 · 1

𝑑

∑︂
𝑡 ∈S𝑑

Pr[𝑆𝑣 = 𝑡] ≤
8

𝐷 + 1 .

□

This finishes the proof of Claim A.4.9, and hence of the Lemma 3.3.12. □

Lemma A.4.10. Let 𝐷, 𝑁 ∈ N and 𝑞𝑖 ∈ N with 2 ≤ 𝑞𝑖 ≤ 𝐷 for 𝑖 = 1, . . . , 𝑁 . Suppose that
∏︁𝑁
𝑖=1 𝑞𝑖 < 𝐷2,

that 𝑞1 ≥ . . . ≥ 𝑞𝑁 , and that any subset product is at most 𝐷 . Then

𝑁∏︂
𝑖=1
(1 + 𝑞𝑖 − 1

𝐷 + 1 ) ≤
𝑁∏︂
𝑖=1
(1 + 𝑞𝑖

𝐷
) ≤ 4

Unfortunately, we cannot provide much intuition for Lemma A.4.10 besides a proof overview: Namely,
either 𝑁 = 2, in which case the claim holds since 1 + 𝑞𝑖/𝐷 ≤ 2. Or 𝑁 > 2. In that case,

∏︁𝑁
𝑖=2 𝑞𝑖 ≤ 𝐷

and 𝑞2 ≤
√
𝐷 (since 𝑞1 ≥ 𝑞2), by the “subset product premise”. From this, it is easy to show that∏︁𝑁

𝑖=2(1 +
𝑞𝑖
𝐷
) ≤ 2 holds for “big enough” 𝐷 (namely 𝐷 > 4). The remaining cases (namely 𝐷 ≤ 4) are

checked exhaustively.

Proof. We start with a simpler claim.

Claim A.4.11. Let 𝑎 ≥ 𝑏 ≥ 1 and 𝜏 = 𝑎𝑏. Let 𝑎′ ≥ 𝑏′ ≥ 1 with 𝑎′ > 𝑎 and 𝑎′𝑏′ = 𝜏 . Then

(1 + 𝑎/𝐷) (1 + 𝑏/𝐷) ≤ (1 + 𝑎′/𝐷) (1 + 𝑏′/𝐷) . (A.4.9)

Proof. This follows by multiplying out both sides, subtracting the common term 1 + 𝜏/𝐷2 on both sides,
and multiplying with 𝐷 to obtain the equivalent condition 𝑎 + 𝑏 ≤ 𝑎′ + 𝑏′. Using 𝑎𝑏 = 𝑎′𝑏′ = 𝜏 , this
becomes

𝑎 + 𝜏/𝑎 ≤ 𝑎′ + 𝜏/𝑎′

and for 𝑓 (𝑥) = 𝑥 + 𝜏/𝑥 it is readily seen that 𝑓 is monotonely increasing on domain [
√
𝜏,∞). Thus, the

claim follows from 𝑎′ > 𝑎 and 𝑎 ≥
√
𝜏 (which holds since 𝑎𝑏 = 𝜏 and 𝑎 ≥ 𝑏). □

2 Let 𝐴 = 1
𝑑
⌈𝑑
∗ (𝐾 ′+1)
𝑚∗𝑞∗ ⌉. Let 𝐵 = 1/⌈(𝐷 + 1)/𝑞∗⌉. We have to show 𝐴/𝐵 ≤ 2/(𝐷 + 1). First, note that 𝐵 ≤ 𝑞∗/(𝐷 + 1) since

1/⌈𝑥⌉ ≤ 1/𝑥 . Using ⌈𝑥⌉ ≤ 𝑥 + 1 in 𝐴, we find 𝐴/𝐵 ≤ 1
𝐷+1 (

𝑑∗ (𝐾 ′+1)
𝑑𝑚∗ + 𝑞

∗

𝑑
). Using 𝑞∗ | 𝑑∗ | 𝑑 and 𝑑∗ ≠ 𝑑 (since 𝑁 > 1), we

know 𝑞∗

𝑑
≤ 𝑑∗

𝑑
≤ 1

2 . Moreover, since 𝑑𝑚∗/𝑑∗ < 𝐾 ′, i.e. 𝑑𝑚∗/𝑑∗ ≤ 𝐾 ′ + 1, holds by assumption, we find 𝑑𝑚∗ ≤ 𝑑∗ (𝐾 ′ + 1)
and hence 𝑑

∗ (𝐾 ′+1)
𝑑𝑚∗ ≤ 1. All in all, 𝐴/𝐵 ≤ (1 + 1

2 )/(𝐷 + 1) ≤ 2/(𝐷 + 1).
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The claim extends to products
∏︁𝑁
𝑖=1(1 +

𝑎𝑖
𝐷
) in the following manner: Consider (𝑎1, . . . , 𝑎𝑁 ) with 𝑎1 ≥

. . . ≥ 𝑎𝑁 ≥ 1 and
∏︁𝑁
𝑖=1 𝑎𝑖 = 𝜏 and (𝑎′1, . . . , 𝑎′𝑁 ) with analogous constraints. Suppose that (𝑎𝑖)𝑖 and (𝑎′𝑖 )𝑖

differ only in components 𝑗1 and 𝑗2 with 𝑗1 < 𝑗2, and that 𝑎 𝑗1 < 𝑎′𝑗1 . Then
∏︁𝑁
𝑖=1(1+𝑎𝑖/𝐷) <

∏︁𝑁
𝑖=1(1+

𝑎′𝑖
𝐷
)

by Claim A.4.11.

As a simple consequence, to maximize a product of the form
∏︁𝑁
𝑖=1(1+𝑎𝑖/𝐷) with constraints𝑎𝑖 ∈ [2, 𝑀]R

and
∏︁𝑁
𝑖=1 𝑎𝑖 = 𝜏 , one must use a (permutation of) (𝑀, . . . , 𝜏/(2𝑁−ℓ−1𝑀 ℓ ), 2, . . . , 2), where ℓ is maximal.

Now, we return to prove the lemma. Let 𝜏 =
∏︁𝑁
𝑖=1 𝑞𝑖 and note that the product

∏︁𝑁
𝑖=1(1+

𝑞𝑖
𝐷
) is maximized

by maximizing 𝑞1 and 𝑞2 (due to 𝑞𝑖 ≤ 𝐷 and 𝑞1𝑞2 ≤ 𝜏 < 𝐷2).

It is useful to deal with following special case first:

Claim A.4.12. Suppose that 𝐷 ≥ 5, 𝑞1 ≤
√
𝐷 and

∏︁𝑁
𝑖=1 𝑞𝑖 ≤ 𝐷 . Then

∏︁𝑁
𝑖=1(1 +

𝑞𝑖
𝐷
) ≤ 2.

Proof. The claim evidently holds for 𝑁 = 1. It also holds for 𝑁 = 2. Indeed, for 𝑁 = 2 and any (fixed)
𝑞1 ≥ 𝑞2, setting 𝐷 = 𝑞1𝑞2 is the worst case. For this, one obtains (1 + 𝑞1𝐷 ) (1 +

𝑞2
𝐷
) = 𝑞1+1

𝑞1

𝑞2+1
𝑞2

, and for
𝐷 ≥ 5, this is at most 2.3 The claim also holds for arbitrary 𝑁 if 5 ≤ 𝐷 ≤ 15.4 Thus, suppose 𝐷 ≥ 16
and 𝑁 ≥ 3. By the discussion after Claim A.4.11, we find

𝑁∏︂
𝑖=1
(1 + 𝑞𝑖

𝐷
) ≤

(︄
1 +
√
𝐷

𝐷

)︄
·
(︄
1 +
√
𝐷/2𝑁−2
𝐷

)︄
·
(︃
1 + 2

𝐷

)︃𝑁−2
≤

(︄
1 + 3/2

√
𝐷 + 1
𝐷

)︄
·
(︃
1 + 2

𝐷

)︃𝑁−2
where we maximized 𝑞1 and 𝑞2 (over R) under the constraints that 𝑞𝑖 ≥ 2 and

∏︁𝑁
𝑖=1 𝑞𝑖 ≤ 𝐷 and 𝑞1 ≤

√
𝐷

for all 𝑖 . From (1 + 𝑥/𝑘)𝑘 ≤ 𝑒𝑥 for 𝑥 ≥ 0, 𝑘 ∈ N, we find(︃
1 + 2

𝐷

)︃𝑁−2
=

(︄(︃
1 + 2

𝐷

)︃𝐷 )︄ (𝑁−2)/𝐷
≤ 𝑒2(𝑁−2)/𝐷 .

From, 𝐷 ≥ ∏︁𝑁
𝑖=1 𝑞𝑖 ≥ 2𝑁 , we get 𝑁 ≤ log(𝐷), and thus 2(𝑁 − 2)/𝐷 ≤ 2(log(𝐷) − 2)/𝐷 . Moreover,

𝑓 (𝑥) = 2(log(𝑥) − 2)/𝑥 is maximized at 𝑥 = 4𝑒 ≤ 11, with 𝑓 (4𝑒) ⪅ 0.2654 we find

𝑒2(𝑁−2)/𝐷 ≤ 𝑒2(log(𝐷 )−2)/𝐷 ≤ 𝑒0.2654 ≤ 4/3.

Furthermore (1 + 3/2
√
𝐷+1
𝐷
) is monotonely decreasing, hence (1 + 3/2

√
𝐷+1
𝐷
) ≤ 1 + 7

16 for 𝐷 ≥ 16. Thus,
for 𝐷 ≥ 16, we find

𝑁∏︂
𝑖=1
(1 + 𝑞𝑖

𝐷
) ≤

(︃
1 + 7

16

)︃
· 4/3 < 2

This proves Claim A.4.12. □

3 The claim does not hold for 𝐷 = 4, as (1+ 2/4)2 = 9/4. Since 𝐷 = 5 is prime, only 𝑞1 = 5, 𝑞2 = 1 is possible, but this violates
𝑞2 ≥ 2, so there is nothing to check. For 𝐷 = 6, choosing 𝑞1 = 3, 𝑞2 = 2 yields (1 + 𝑞1

𝐷
) (1 + 𝑞2

𝐷
) = 2. Moreover, 𝑞1+1𝑞1

𝑞2+1
𝑞2

only decreases for larger 𝑞1 or 𝑞2, so the claim holds for 𝑞1𝑞2 > 6 (with 𝑞1, 𝑞2 ≥ 2) as well.
4 Cases with 2 terms were already covered. Cases with more terms, i.e., 𝑁 = 3, still work and are most easily checked

programmatically. Cases with 4 or more terms are irrelevant since 24 = 16 already exceeds 15.
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Now, we prove the lemma by case distinction. First, note that it is easily verified for 𝐷 ≤ 4, so we can
make use of Claim A.4.12 in the following. Since (1 + 𝑞1/𝐷) ≤ 2 for any 𝑞1, we only need to show that
𝜌 ′ =

∏︁𝑁
𝑖=2(1 + 𝑞𝑖/𝐷) ≤ 2. Moreover, we know, by the premise on subset products, that

∏︁𝑁
𝑖=2 𝑞𝑖 ≤ 𝐷 .

• Case: 𝑞2 ≤
√
𝐷 . Then Claim A.4.12 applies to 𝑞2, . . . , 𝑞𝑁 and yields 𝜌 ′ ≤ 2.

• Case: 𝑞2 >
√
𝐷 . Then 𝑞1𝑞2 > 𝐷 , so 𝑁 = 2, and 𝜌 ′ ≤ (1 + 𝑞2/𝐷) ≤ 2.

This completes the proof. □

A.4.6. Proof of Theorem 3.3.3

Theorem 3.3.3. Let RAST be the random affine shortness test with uniform distribution D over [0, 𝐷]𝑁 ,
dimension 𝑁 , range bound 𝐾 , and any offset 𝜇 ∈ Z𝑝 . Let 𝐾 ′ = (1 + 2𝛽)𝐾 where 𝛽 = min(𝑁, primlmin(
𝐷 + 1)) and suppose that 2𝐷 (𝐾 ′ + 𝐷𝐾 + 2) < 𝑝 . Then RAST is fractionally (𝐾 ′, 𝐷)-sound with error
8/(𝐷 + 1),

Proof. Let 𝑥 ∈ Z𝑁𝑝 and 𝜇 ∈ Z𝑝 . We have to show that if 𝑥 is not uniformly (𝐾 ′, 𝐷)-short, i.e. if there is
no 𝑑 ∈ [1, 𝐷] with 𝑑𝑥 ∈ [−𝐾 ′, 𝐾 ′]𝑁Z𝑝 , then Pr

[︂
𝜇 +∑︁𝑁

𝑖=1 𝑥𝑖𝛾𝑖 ∈ [0, 𝐾]Z𝑝
]︂
≤ 8/(𝐷 + 1). Since this must

hold for all 𝜇, in particular −𝜇, it is equivalent to show

Pr
[︂ 𝑁∑︂
𝑖=1

𝑥𝑖𝛾𝑖 ∈ [0, 𝐾]Z𝑝 + 𝜇
]︂
≤ 8/(𝐷 + 1) .

We derive this inequality from the core lemma (Lemma 3.3.12). But in order to apply Lemma 3.3.12,
we need that all 𝑥𝑖 are of the form 𝑥𝑖 ≡𝑝 𝑚𝑖

𝑑𝑖
with |𝑚𝑖 | ≤ 𝑀 for suitable 𝑀 . We choose 𝑀 = 𝐾 , so we

have to show 𝑥𝑖 ∈ Q𝐾,𝐷 . Thus, we make a case distinction, based on following observation: Consider
any fixed choice of 𝑥1, . . . 𝑥𝑁 ∈ Z𝑝 . Suppose there are two distinct challenges (𝛾1, . . . , 𝛾𝑁 ), (𝛾 ′1, . . . , 𝛾 ′𝑁 )
which are accepting and differ only in the 𝑖-th component, i.e. 𝛾 𝑗 = 𝛾 ′𝑗 except for 𝑗 = 𝑖∗, and w.l.o.g.
𝛾𝑖∗ > 𝛾

′
𝑖∗ . Let 𝜁 ≡𝑝

∑︁𝑁
𝑖=1 𝑥𝑖𝛾𝑖 and 𝜁 ′ ≡𝑝

∑︁𝑁
𝑖=1 𝑥𝑖𝛾

′
𝑖 . Then 𝜁 − 𝜁 ′ ≡𝑝

∑︁
𝑖=1 𝑥𝑖 (𝛾𝑖 − 𝛾 ′𝑖 ) ≡𝑝 𝑥𝑖 (𝛾𝑖∗ − 𝛾 ′𝑖∗). Thus

𝑥𝑖∗ ≡𝑝 𝜁−𝜁 ′
𝛾𝑖∗−𝛾 ′𝑖∗

∈ Q𝐾,𝐷 , since 𝜁 − 𝜁 ′ ∈ [−𝐾,𝐾] and 𝛾𝑖∗ − 𝛾 ′𝑖∗ ∈ [0, 𝐷]. Now, we distinguish two cases.

Case 1: For every 𝑖∗ there exist two accepting (𝛾 𝑗 ) 𝑗 ≠ (𝛾 ′𝑗 ) 𝑗 which differ only in the 𝑖∗-th component. In
that case, we argued above that 𝑥𝑖 ∈ Q𝐾,𝐷 for every 𝑖 . Thus, Lemma 3.3.12 is applicable with𝑀 ˆ︁= 𝐾 and
𝐷 . Moreover, we use that 𝐷 (𝐾 ′ + 𝐷𝑀 + 2) = 𝐷 (𝐾 ′ + 𝐷𝐾 + 2) < 𝑝 , which is a premise of Theorem 3.3.3
(and also implies 𝐷 · (𝐾 + 2𝛽𝑀) = 𝐷 · (1 + 2𝛽)𝐾 < 𝑝). The claim then follows from Lemma 3.3.12.
(By choice of the index set 𝐼 in Lemma 3.3.12, either the common denominator 𝑑 of the 𝑥𝑖s satisfies
𝐷 < 𝑑 < 𝐷2, in which case Eq. (3.3.12) and 𝐷2(𝐾 ′ + 1) < 𝑝 implies an error of at most 4/(𝐷 + 1), or
𝑑 ≤ 𝐷 , in which case Eq. (3.3.13) implies an error of at most 8/(𝐷 + 1).)
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Case 2: The opposite of Case 1, i.e. there exists some 𝑖∗ for which no two accepting (𝛾 𝑗 ) 𝑗 ≠ (𝛾 ′𝑗 ) 𝑗 which
differ only in the 𝑖∗-th component exist. Then Pr[∑︁𝑖≠𝑖∗ 𝑐𝑖𝑥𝑖 + 𝛾𝑖∗𝑥𝑖∗ ∈ [0, 𝐾] + 𝜇] ≤ 1/(𝐷 + 1) for any
choice 𝑐𝑖 ∈ [0, 𝐷] for 𝑖 ≠ 𝑖∗. Thus, we get

Pr
[︂∑︂
𝑖≠𝑖∗

𝛾𝑖𝑥𝑖 + 𝛾𝑖∗𝑥𝑖∗ ∈ [0, 𝐾] + 𝜇
]︂

=
∑︂

𝑐𝑖 ∈[0,𝐷 ],𝑖≠𝑖∗
Pr[∀𝑖 ≠ 𝑖∗ : 𝛾𝑖 = 𝑐𝑖] · Pr

[︂∑︂
𝑖≠𝑖∗

𝑐𝑖𝑥𝑖 + 𝛾𝑖∗𝑥𝑖∗ ∈ [0, 𝐾] + 𝜇
]︂

≤
∑︂

𝑐𝑖 ∈[0,𝐷 ],𝑖≠𝑖∗

(︂ 1
𝐷 + 1

)︂𝑁−1
· 1
𝐷 + 1

=
1

𝐷 + 1
Thus, the probability 𝜀 that the test (falsely) accepts satisfies 𝜀 ≤ 1/(𝐷 + 1). The claim follows. □

A.5. Security Reductions

A.5.1. Security Proof of SharpGS

In the following theorem, we show that SharpGS is secure.

Theorem A.5.1. The scheme SharpGS has correctness error at most 1 − [(1 − pr)3 · (1 − px)4𝑁 ]𝑅 . It is
non-abort SHVZK under the SEI assumption. Suppose now that 2(𝐵Γ2 + 1)𝐿 < 𝑝 and 18𝐾2 < 𝑞 with
𝐾 = (𝐵Γ + 1)𝐿. Then it has relaxed soundness under the DLOG and SEI assumptions in Gcom and G3sq

with knowledge error ( 2
Γ+1 )

𝑅 for the relation

RExt =
{︁
(𝑥1, . . . , 𝑥𝑁 , 𝑟 ) : 𝐶𝑥 = 𝑟𝑥𝐺0 +

𝑁∑︂
𝑖=1

𝑥𝑖𝐺𝑖

∧ ∃𝑚𝑖 , 𝑑 ∈ Z : 𝑥𝑖 ≡𝑞
𝑚𝑖

𝑑
∧ − 1

4𝐵 ≤
𝑚𝑖

𝑑
≤ 𝐵 + 1

4𝐵
∧ |𝑚𝑖 | ≤ (𝐵Γ + 1)𝐿𝑥 ∧ 1 ≤ 𝑑 ≤ Γ

}︁
.

Concretely, with the hash-optimization, we have following reductions:

• For every adversary A against non-abort SHVZK, there are adversaries BGcom , BG3sq whose runtime
is roughly that of A and so that Advna-hvzkA ≤ AdvseiGcom,BGcom + 𝑅 · Adv

sei
G3sq,BG3sq

.

• For every adversaryA against knowledge which runs at most 𝑇 steps, there are adversaries B𝐶𝑅 ,
BGcom , BG3sq whose expected runtime is bounded roughly by 3 · 𝑅 ·𝑇 , and so that AdvkeA ≤ (

2
Γ+1 )

𝑅 +
AdvcrhfHash,B𝐶𝑅

+ Advdlog
Gcom,BGcom

+ Advdlog
G3sq,BG3sq

.

• For witness relationRExt ∨RGcomBind ∨R
G3sq
Bind ∨RColl, whereR𝐺

Bind is a binding-break relation in group
𝐺 (i.e. a non-trivial DLOG relation), and RColl is a non-trivial collision for Hash, the knowledge
error is ( 2

Γ+1 )
𝑅 .

To be precise, we consider the 𝑆-bounded SEI assumption in Gcom and G3sq.

Proof. Throughout this proof, we have 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3], 𝑘 ∈ [1, 𝑅].
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Correctness. As 𝑥𝑖 , 𝑦𝑖, 𝑗 ∈ [0, 𝐵] and 𝛾𝑘 ∈ [1, Γ], we have 𝑧𝑘,𝑖 , 𝑧𝑘,𝑖, 𝑗 ∈ [0, (𝐵Γ + 1)𝐿𝑥 ] (see Section 3.2.4),
unless masking aborts. The other checks of the verifier succeed due to the homomorphic properties of
MPed and the fact that 𝑧𝑘,𝑖 = 𝛾𝑘 · ˜︁𝑥𝑘,𝑖 + 𝑥𝑘,𝑖 , etc., holds if the prover did not abort. It is then easy to see,
that all of the verifier’s checks pass.

Honest-Verifier Zero-Knowledge. We define a simulator for valid transcripts as follows. On input of
the public parameters and the statement (𝐶𝑥 , 𝐵), the simulator Sim proceeds as follows:

• Sample 𝛾𝑘 $← [0, Γ]

• Set 𝐶𝑦 ≔ 𝑟𝑦𝐺0 for 𝑟𝑦 $← [0, 𝑆]

• Set 𝐶𝑘,∗ ≔ 𝑟 ∗
𝑘
𝐻0 for 𝑟 ∗𝑘

$← [0, 𝑆]

• Set 𝑧𝑘,𝑖 = mask𝑥 (0,˜︁𝑥𝑘,𝑖) and 𝑧𝑘,𝑖, 𝑗 = mask𝑥 (0,˜︁𝑦𝑘,𝑖, 𝑗 ) for ˜︁𝑥𝑘,𝑖 ,˜︁𝑦𝑘,𝑖, 𝑗 $← R𝑥

• Set 𝑡𝑘,𝑥 = mask𝑟 (0,˜︁𝑟𝑘,𝑥 ), 𝑡𝑘,𝑦 = mask𝑟 (0,˜︁𝑟𝑘,𝑦) and 𝑡∗𝑘 = mask𝑟 (0,˜︁𝑟 ∗𝑘 ) for˜︁𝑟𝑘,𝑥 ,˜︁𝑟𝑘,𝑦,˜︁𝑟 ∗𝑘 $← R𝑟

• If any masking failed, then abort, i.e. output ⊥.

• Compute 𝐷𝑘,𝑥 = −𝛾𝑘𝐶𝑥 + 𝑡𝑘,𝑥𝐺0 +
∑︁𝑁
𝑖=1 𝑧𝑘,𝑖𝐺𝑖 and 𝐷𝑘,𝑦 = −𝛾𝑘𝐶𝑦 + 𝑡𝑘,𝑦𝐺0 +

∑︁𝑁
𝑖=1

∑︁3
𝑗=1 𝑧𝑘,𝑖, 𝑗𝐺𝑖, 𝑗

• Compute 𝑓 ∗
𝑘,𝑖

= 4𝑧𝑘,𝑖 (𝛾𝑘𝐵 − 𝑧𝑘,𝑖) + 𝛾2𝑘 −
∑︁3
𝑗=1 𝑧

2
𝑘,𝑖, 𝑗

• Compute 𝐷𝑘,∗ = −𝛾𝑘𝐶∗,𝑘 + 𝑡∗𝑘𝐻0 +
∑︁𝑁
𝑖=1 𝑓

∗
𝑘,𝑖
𝐻𝑖

• Set Δ = Hash({𝐷𝑘,𝑥 , 𝐷𝑘,𝑦, 𝐷𝑘,∗}𝑅𝑘=1)

• Output Δ,𝐶𝑦,𝐶𝑘,∗, 𝛾𝑘 , 𝑧𝑘,𝑖 , 𝑧𝑘,𝑖, 𝑗 , 𝑡𝑘,𝑥 , 𝑡𝑘,𝑦, 𝑡𝑘,∗
It is easy to check that the output of Sim is indistinguishable from non-aborting real transcripts. We do
so in game hops.

Game 1: Output a transcript 𝑡𝑟 from an interaction of an honest verifier and prover from the definition
of SharpGS. If the transcript is aborting, output ⊥ instead.

Game 2: Act as in game 1 but instead of computing 𝐷𝑘,𝑥 , 𝐷𝑘,𝑦 and 𝐷𝑘,∗ as in the real protocol, compute
them as Sim. A quick computation shows that game 1 and game 2 are perfectly indistinguishable.

Game 3: Act as in game 2 but instead of sampling 𝑧𝑘,𝑖 , 𝑧𝑘,𝑖, 𝑗 , 𝑡𝑘,𝑥 , 𝑡𝑘,𝑦, 𝑡𝑘,∗ as in the real protocol, sample
them as Sim, i.e. via mask(0, ·). The games game 2 and game 3 are statistically indistinguishable.
Namely, their statistical distance is bounded by 𝑅𝑁 (1 + 3)𝜀𝑥 + 𝑅𝜀𝑟 , where the masking errors 𝜀𝑥 and
𝜀𝑟 correspond to the masking schemes mask𝑥 and mask𝑟 (see Section 3.2.4). Due to uniform rejection
sampling, 𝜀𝑥 = 𝜀𝑟 = 0. (Note that, if, say 𝑧𝑘,𝑖 = ⊥ we cannot define the corresponding 𝐷𝑘,𝑥 . This is not a
problem, since we consider non-abort SHVZK, hence a transcript where 𝑧𝑘,𝑖 = ⊥ is replaced by ⊥, both
in game 2 and 3.)

Game 4: Instead of computing the commitments 𝐶𝑦,𝐶𝑘,∗ as in the real protocol, compute them as Sim.
Game 3 and game 4 are indistinguishable under the hiding property of the commitment scheme. More
precisely, the we need 1 reduction to the SEI assumption in Gcom for 𝐶𝑦 , and 𝑅 in G3sq for 𝐶𝑘,∗.

As the output of game 4 is equal to the output of Sim, SharpGS is non-abort SHVZK.
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Soundness. We assume that we are given a number of accepting related transcripts, and first show the
statement for a single repetition, i.e. 𝑅 = 1. After that, we discuss how repetitions change the security
proofs and how to obtain the transcripts. For readability, we omit 𝑘 (denoting the current repetition) in
the following as index from the transcripts. Assume that a PPT adversary can interactively produce
three valid transcripts tr , tr′, tr′′ with fixed first message Δ, 𝐶𝑦 , 𝐶∗, and distinct challenges 𝛾 , 𝛾 ′, 𝛾 ′′
and masked terms [𝑧𝑖 , 𝑧𝑖, 𝑗 , 𝑡𝑥 , 𝑡𝑦, 𝑡∗], [𝑧′𝑖 , 𝑧′𝑖, 𝑗 , 𝑡 ′𝑥 , 𝑡 ′𝑦, 𝑡 ′∗] and [𝑧′′𝑖 , 𝑧′′𝑖, 𝑗 , 𝑡 ′′𝑥 , 𝑡 ′′𝑦 , 𝑡 ′′∗ ]. We define 𝐹𝑥 , 𝐹 ′𝑥 , 𝐹 ′′𝑥 as in
the verification, similarly for 𝐹𝑦 , 𝐹∗, 𝑓 ∗𝑖 . We denote by 𝑋 and 𝑋 the differences 𝑋 ′ − 𝑋 and 𝑋 ′′ − 𝑋
respectively for 𝑋 ∈ [𝛾𝑘 , 𝑧𝑖 , 𝑧𝑖, 𝑗 , 𝑡𝑥 , 𝑡𝑦, 𝑡∗, 𝐹𝑥 , 𝐹𝑦, 𝐹∗, 𝑓𝑖]. Without loss of generality, 𝛾,𝛾 > 0. Note that
𝑝 = ord(Gcom) and 𝑞 = ord(G3sq).

Step 1 – Opening the Commitments: First, we extract openings of 𝐶𝑥 ,𝐶𝑦,𝐶∗. By collision resistance of
Hash, we have 𝐷𝑥 ≔ 𝐹𝑥 = 𝐹 ′𝑥 = 𝐹 ′′𝑥 . Further, the check of the verifier guarantees:

𝐷𝑥 = −𝛾𝐶𝑥 + 𝑡𝑥𝐺0 +
∑︂

𝑖∈[1,𝑁 ]
𝑧𝑖𝐺𝑖

= −𝛾 ′𝐶𝑥 + 𝑡 ′𝑥𝐺0 +
∑︂

𝑖∈[1,𝑁 ]
𝑧′𝑖𝐺𝑖

Rearranging this equation leads to the following equality:

𝛾𝐶𝑥 = 𝑡𝑥𝐺0 +
∑︂

𝑖∈[1,𝑁 ]
𝑧𝑖𝐺𝑖

=⇒ 𝐶𝑥 = 𝑡𝑥/𝛾𝐺0 +
∑︂

𝑖∈[1,𝑁 ]
𝑧𝑖/𝛾𝐺𝑖 .

Thus, 𝐶𝑥 commits to values 𝑥𝑖 ≡𝑝 𝑧𝑖/𝛾 ∈ Z𝑝 . With the same calculation, we can show that 𝑥𝑖 ≡𝑝 𝑧𝑖/𝛾 .
Note that 𝑥𝑖 is well defined asMPed is binding. (We reduce to DLOG in Gcom and G3sq for binding.5)
Similarly, we find openings for the remaining commitments

𝐶𝑦 = 𝑡𝑦/𝛾𝐺0 +
∑︂

𝑖∈[1,𝑁 ], 𝑗∈[1,3]
𝑧𝑖, 𝑗/𝛾𝐺𝑖, 𝑗 and

𝐶∗ = 𝑡∗/𝛾𝐻0 +
∑︂

𝑖∈[1,𝑁 ]
𝑓 ∗
𝑖
/𝛾𝐻𝑖 .

So 𝐶𝑦 commits to values 𝑦𝑖, 𝑗 ≡𝑝 𝑧𝑖, 𝑗/𝛾 ≡𝑝 𝑧𝑖, 𝑗/𝛾 ∈ Z𝑝 and 𝐶∗ to 𝛼∗1,𝑖 ≡𝑞 𝑓 ∗𝑖 /𝛾 ≡𝑞 𝑓 ∗𝑖 /𝛾 ∈ Z𝑞 .

Step 2 – Decomposition: We now show that the three-square decomposition holds and that [𝑥𝑖]Q is
indeed in the range [− 1

4𝐵 , 𝐵 +
1
4𝐵 ]Q. We proceed similarly to [CKLR21b] but our proof is more subtle, as

we argue over two different groups with incompatible (prime) modulus. Nonetheless, we can conclude
[𝑥𝑖]Q ∈ [− 1

4𝐵 , 𝐵 +
1
4𝐵 ]Q since the rational representative is unique in both groups.

First, we define ˆ︁𝑥𝑖 ≡𝑞 𝑧𝑖/𝛾 ≡𝑞 𝑧𝑖/𝛾 . Note that ˆ︁𝑥𝑖 is computed modulo 𝑞, but since all values are short
we find

𝑧𝑖/𝛾 ≡𝑝 𝑧𝑖/𝛾 =⇒ 𝑧𝑖𝛾 ≡𝑝 𝑧𝑖𝛾 =⇒ 𝑧𝑖𝛾 = 𝑧𝑖𝛾 over Z

=⇒ 𝑧𝑖𝛾 ≡𝑞 𝑧𝑖𝛾 =⇒ 𝑧𝑖/𝛾 ≡𝑞 𝑧𝑖/𝛾 .

In particular, ˆ︁𝑥𝑖 is well-defined (modulo 𝑞) and as short rationals, we have 𝑥𝑖 = ˆ︁𝑥𝑖 .
5 Note that due to random self-reducibility of DLOG, we need not incur a loss of 𝑁 in the reduction.
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Now, we set ˜︁𝑥𝑖 ≡𝑞 𝑧𝑖 − 𝛾ˆ︁𝑥𝑖 . Using the definition of ˆ︁𝑥𝑖 , we have˜︁𝑥𝑖 ≡𝑞 𝑧𝑖 − 𝛾ˆ︁𝑥𝑖 ≡𝑞 𝑧𝑖 + 𝑧′𝑖 − 𝑧′𝑖 − 𝛾ˆ︁𝑥𝑖 ≡𝑞 −𝑧𝑖 + 𝑧′𝑖 − 𝛾ˆ︁𝑥𝑖
≡𝑞 𝛾ˆ︁𝑥𝑖 + 𝑧′𝑖 − 𝛾ˆ︁𝑥𝑖 ≡𝑞 (𝛾 ′ − 𝛾)ˆ︁𝑥𝑖 + 𝑧′𝑖 − 𝛾ˆ︁𝑥𝑖 ≡𝑞 𝑧′𝑖 − 𝛾 ′ˆ︁𝑥𝑖 .

Also, ˜︁𝑥𝑖 ≡𝑞 𝑧′′𝑖 − 𝛾 ′′ˆ︁𝑥𝑖 follows accordingly. We similarly set ˆ︂𝑦𝑖, 𝑗 ≡𝑞 𝑧𝑖, 𝑗/𝛾 and𝑚𝑖, 𝑗 ≡𝑞 𝑧𝑖, 𝑗 − 𝛾ˆ︂𝑦𝑖, 𝑗 ≡𝑞
𝑧′𝑖, 𝑗−𝛾 ′ˆ︂𝑦𝑖, 𝑗 = 𝑧′′𝑖, 𝑗−𝛾 ′′ˆ︂𝑦𝑖, 𝑗 , where the equalities follow as above. Inserting these equalities and interpreting
𝑓 ∗𝑖 (similarly (𝑓 ∗𝑖 )′, (𝑓 ∗𝑖 )′′) as a polynomial with variable 𝛾 , we obtain:

𝑓 ∗𝑖 ≡𝑞 𝛾2 [4ˆ︁𝑥𝑖 (𝐵 − ˆ︁𝑥𝑖) + 1 − ∑︂
𝑗∈[1,3]

ˆ︂𝑦𝑖, 𝑗 2] + 𝛾𝛼1,𝑖 + 𝛼0,𝑖 ,
(𝑓 ∗𝑖 )′ ≡𝑞 (𝛾 ′)2 [4ˆ︁𝑥𝑖 (𝐵 − ˆ︁𝑥𝑖) + 1 − ∑︂

𝑗∈[1,3]
ˆ︂𝑦𝑖, 𝑗 2] + 𝛾 ′𝛼1,𝑖 + 𝛼0,𝑖

(𝑓 ∗𝑖 )′′ ≡𝑞 (𝛾 ′′)2 [4ˆ︁𝑥𝑖 (𝐵 − ˆ︁𝑥𝑖) + 1 − ∑︂
𝑗∈[1,3]

ˆ︂𝑦𝑖, 𝑗 2] + 𝛾 ′′𝛼1,𝑖 + 𝛼0,𝑖
for some appropriate 𝛼1,𝑖 , 𝛼0,𝑖 . (In fact, 𝛼∗1,𝑖 = 𝛼1,𝑖 .) We can subtract the first from the second (third)
equation and then divide the resulting equation by 𝛾 (𝛾 ) respectively. This leads to:

𝑓 ∗
𝑖
/𝛾 ≡𝑞 (𝛾 ′ + 𝛾) [4ˆ︁𝑥𝑖 (𝐵 − ˆ︁𝑥𝑖) + 1 − ∑︂

𝑗∈[1,3]
ˆ︂𝑦𝑖, 𝑗 2] + 𝛼1,𝑖 ,

𝑓 ∗𝑖 /𝛾 ≡𝑞 (𝛾 ′′ + 𝛾) [4ˆ︁𝑥𝑖 (𝐵 − ˆ︁𝑥𝑖) + 1 − ∑︂
𝑗∈[1,3]

ˆ︂𝑦𝑖, 𝑗 2] + 𝛼1,𝑖 .
As 𝛼∗1,𝑖 ≡𝑞 𝑓 ∗𝑖 /𝛾 ≡𝑞 𝑓 ∗𝑖 /𝛾 (see first step), we obtain:

(𝛾 ′′ − 𝛾 ′) [4ˆ︁𝑥𝑖 (𝐵 − ˆ︁𝑥𝑖) + 1 − ∑︂
𝑗∈[1,3]

ˆ︂𝑦𝑖, 𝑗 2] ≡𝑞 0

=⇒ 4ˆ︁𝑥𝑖 (𝐵 − ˆ︁𝑥𝑖) + 1 ≡𝑞 ∑︂
𝑗∈[1,3]

ˆ︂𝑦𝑖, 𝑗 2
=⇒ 4𝑧𝑖 (𝛾𝐵 − 𝑧𝑖) + 𝛾2 ≡𝑞

∑︂
𝑗∈[1,3]

𝑧𝑖, 𝑗
2

Setting 𝐾 = (𝐵Γ + 1)𝐿𝑥 and noting |𝑧𝑖 | ≤ 𝐾 , we find |4𝑧𝑖 (𝛾𝐵 − 𝑧𝑖) + 𝛾2 | ≤ 4𝐾2 + 4𝐾2 + 𝐾2 < 𝑞/2 and∑︁
𝑗∈[1,3] 𝑧𝑖, 𝑗

2 ≤ 3𝐾2 < 𝑞/2. Thus, the equation holds over the integers and as a result, it holds that
4𝑧𝑖 (𝛾𝐵 − 𝑧𝑖) + 𝛾2 ≥ 0. Dividing by 𝛾 yields 4𝑧𝑖

𝛾
𝑖 (𝐵 − 𝑧𝑖

𝛾
) + 1 ≥ 0. Now, Lemma A.2.2 implies that

𝑧𝑖
𝛾
∈ [− 1

4𝐵 , 𝐵 +
1
4𝐵 ]Q.

Step 3 – Repetitions: Consider a setting with repetitions. Suppose we are given three related transcripts
such that in repetition 𝑘 , the challenges 𝛾𝑘 , 𝛾 ′𝑘 , 𝛾

′′
𝑘
are pairwise distinct. Then the previous steps apply,

and we conclude the same soundness guarantees. Note that it suffices to have such related transcripts
for any of the 𝑘 repetitions. Further, since the same commitment𝐶𝑥 is used in all iterations, extractions
𝑥𝑘,𝑖 (of 𝑥𝑖 ) for differing 𝑘 must coincide, or the binding property and hence DLOG is broken in Gcom.

Step 4 – Obtaing the transcripts: It is well-known how to obtain related transcripts, but we give a brief
sketch for the sake of completeness. First, run the (malicious) prover with a random challenge. If the
honest verifer rejects, the extractor has nothing to do; it just outputs this view. So assume otherwise.
If 𝑅 = 1, rewind the (malicious) prover and try (fresh) random challenges (without repetition) until 3
transcripts are found or all challenges exhausted. For 𝑅 > 1, a very naive strategy exploits that the
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protocol is (2𝑅 + 1)-special sound, but this degrades the knowledge error. A less wasteful approach
works with about 3𝑅 expected rewinds. The basic idea is to not pick all challenges 𝛾𝑘 fresh, but keep all
but one fixated, and do that for all 𝑘 = 1, . . . , 𝑅 in parallel. See [BBC+18; ACK21] for concrete examples.

□

A.5.2. Proof of SharpPoSO

In this section, we prove the security of SharpPoSO. As usual, we consider the optimized variant which
uses a CRHF.

Theorem A.5.2. The scheme SharpPoSO has correctness error at most 1 − (1 − 1/𝐿)3+2𝑅+4𝑁 . It is non-abort
SHVZK under the SEI assumption. Let𝐾 ′ = (1+2𝛽)𝐾 where𝐾 = (𝐵Γ+1)𝐿 and 𝛽 = min(4𝑁, primlmin(Γ+
1)). Suppose 9(𝐾 ′)2 < 𝑞/2 and (Γ + 1)𝑅 − 1 < 𝑝 . Then SharpPoSO has relaxed soundness under the DLOG
and SEI in Gcom and G3sq with knowledge error 2+8𝑅

(Γ+1)𝑅 for relation

RExt =
{︁
(𝑥1, . . . , 𝑥𝑁 , 𝑟 ) : 𝐶𝑥 = 𝑟𝑥𝐺0 +

𝑁∑︂
𝑖=1

𝑥𝑖𝐺𝑖

∧ ∃𝑚𝑖 , 𝑑 ∈ Z : 𝑥𝑖 ≡𝑞
𝑚𝑖

𝑑
∧ − 1

4𝐵 ≤
𝑚𝑖

𝑑
≤ 𝐵 + 1

4𝐵
∧ |𝑚𝑖 | ≤ 𝐾 ′ ∧ 1 ≤ 𝑑 ≤ Γ

}︁
.

Concretely, with the hash-optimization, we have following reductions:

• For every adversary A against non-abort SHVZK, there are adversaries BGcom , BG3sq whose runtime
is roughly that of A and so that Advna-hvzkA ≤ AdvseiGcom,BGcom + 𝑅 · Adv

sei
G3sq,BG3sq

.

• For every adversaryA against knowledge which runs at most 𝑇 steps, there are adversaries B𝐶𝑅 ,
BGcom , BG3sq whose expected runtime is bounded roughly by 6 · 𝑅 ·𝑇 , and so that AdvkeA ≤

2+8𝑅
(Γ+1)𝑅 +

AdvcrhfHash,B𝐶𝑅
+ Advdlog

Gcom,BGcom
+ Advdlog

G3sq,BG3sq
.

• For witness relation RExt ∨RGcomBind ∨R
G3sq
Bind ∨RColl, where R𝐺

DL-rel is a non-trivial DLOG relation in

group 𝐺 , and RColl is a non-trivial collision for Hash, the knowledge error is 2+8𝑅
(Γ+1)𝑅 .

The rest of this section consists of a proof of Theorem A.5.2.

Correctness. Correctness follows by a straightforward check. Whenever an honest prover does not
abort (due to masking), the honest verifier will accept.

Non-Abort SHVZK This follows almost as for SharpGS in Theorem A.5.1. Namely, Phase 2 can be
argued identically (except, that there are no repetitions now). Once Phase 2 is replaced by a simulation,
Phase 1 can be simulated by using 𝑥𝑖 = 0 instead of the real witness. Since 𝜁𝑘 are masked terms, this
incurs 𝑘 masking errors, which however are 0 for uniform rejection sampling.

Soundness. The rest of this section is dedicated to proving the soundness error.
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A.5.2.1. Step 1: Extracting Phase 2.

We begin as described in the outline. Let G0 be the knowledge soundness game from Definition 2.3.16.
As the first step, define G1 which only differs from G0 by replacing the malicious prover with an
extractor in Phase 2. More concretely, note that Phase 2 is a 3-special sound Σ-protocol for the relation
(where 𝑦𝑖,0 ≔ 𝑥𝑖 )

RExt =
{︁
(𝐶𝑥 ,𝐶𝑦, {𝜁 }𝑘∈[1,𝑅 ] ; {𝑥𝑖}𝑖∈[1,𝑁 ], {𝑦𝑖, 𝑗 }𝑖∈[1,𝑁 ], 𝑗∈[0,3],
𝑟𝑥 , 𝑟𝑦, {𝜇𝑘 }𝑘∈[1,𝑅 ]) :

𝐶𝑥 = 𝑟𝑥𝐺0 +
𝑁∑︂
𝑖=1

𝑥𝑖𝐺𝑖

∧ ∀𝑘 ∈ [1, 𝑅] :
𝑁∑︂
𝑖=1

3∑︂
𝑗=0
𝑦𝑖, 𝑗𝛾𝑖, 𝑗 + 𝜇𝑘 = 𝜁𝑘

∧𝐶𝑦 = 𝑟𝑦𝐺0 +
𝑁∑︂
𝑖=1

3∑︂
𝑗=1
𝑦𝑖, 𝑗𝐺𝑖, 𝑗 +

𝑅∑︂
𝑘=1

𝜇𝑘 ˜︁𝐺𝑘
∧ ∀𝑖 ∈ [1, 𝑁 ] : 1 + 4𝑥𝑖 (𝐵 − 𝑥𝑖) ≡𝑞

∑︂
𝑗∈[1,3]

𝑦2𝑖, 𝑗
}︁
.

or a hash-collision or DLOG relation, i.e. RExt ∨R
Gcom
Bind ∨R

G3sq
Bind ∨RColl. This follows analogously to

Theorem A.5.1 for SharpGS, up to standard changes. Thus, as in Theorem A.5.1, we find that, the
runtime changes from strict runtime 𝑡0 to expected time 𝑡1 ≈ 3𝑡0 and the knowledge error is 2/(Γ + 1)𝑅 .
In game G1, we return 1 iff the extraction succeeded as well. Overall, it follows that

Pr[G0 = 1] ≤ Pr[G1 = 1] + 2/(Γ + 1)𝑅 and 𝑡1 ≈ 3𝑡0.

A.5.2.2. Step 2: Extracting Phase 1.

Recall that Phase 2 of the protocol is actually a proof of knowledge forRExtwith statement (𝐶𝑥 ,𝐶𝑦, {𝜁𝑘 }𝑘 ).
In game G1, we always try to extract Phase 2, so now, we are almost in the setting of (random affine)
shortness testing. The main difference is, that in the latter setting, the choice of ({𝑥𝑖}, {𝑦𝑖, 𝑗 }) would be
fixed beforehand, whereas in our case, it is only committed to. Thus, we need to account for the case of
a binding break.

Looking ahead, the completed extractor works as follows:

1. Pick a uniform challenge 𝛾 (𝑘 )
𝑖, 𝑗

$← [0, Γ] (𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [0, 3], 𝑘 ∈ [1, 𝑅]) for Phase 1 and run the
extractor for Phase 2.

2. If extraction (of Phase 2) fails, also output failure, i.e. ⊥ext.

3. If the verifier did not accept the run, output the generated view. (There is nothing to do.)

4. If the extracted witness (𝑦𝑖, 𝑗 )𝑖, 𝑗 (where 𝑦𝑖,0 = 𝑥𝑖 ) is of the form 𝑦𝑖, 𝑗 =
𝑚𝑖,𝑗

𝑑
for 𝑑 ∈ [1, Γ] and

𝑚𝑖 ∈ [0, 𝐾 ′] with 𝐾 ′ = (1 + 2𝛽𝐾), output (𝑥𝑖)𝑖 .6 In this case, 𝑥𝑖 = 𝑚𝑖
𝑑
∈ [0, 𝐵] as claimed.

5. Else, the extracted (𝑥𝑖)𝑖 are “invalid”. Try to obtain a DLOG relation as follows:

6 Note that we need an efficient algorithm to check this. But as noted in Remark 3.2.5, for any choice of 𝑀,𝐷 ∈ N with
𝑀𝐷 < 𝑝/2 we can efficiently [FSW03] compute (𝑚,𝑑) for 𝑥 ≡𝑝 𝑚

𝑑
if 𝑥 ∈ Q𝑀,𝐷 . In our setting,𝑀 = 𝐾 ′ and 𝐷 = Γ satisfies

Γ𝐾 ′ < 𝑞/2 by assumption.
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• Rewind before sending the challenge (in Phase 1) and pick fresh uniform challenges˜︁𝛾 (𝑘 )
𝑖, 𝑗

$←
[0, Γ] (with repetition) for Phase 1 and run the extractor for Phase 2. Repeat until again a
witness (𝑦′𝑖, 𝑗 )𝑖, 𝑗 is output.

• If (𝑦𝑖, 𝑗 )𝑖, 𝑗 ≠ (𝑦′𝑖, 𝑗 )𝑖, 𝑗 , return the non-trivial DLOG relation corresponding to (𝑦𝑖, 𝑗 − 𝑦′𝑖, 𝑗 )𝑖, 𝑗 .

• Otherwise, output failure, i.e. ⊥ext.

Let us now analyze this extraction and the soundness of the protocol. Extraction failure (item 2) and
verifier rejection (item 3) are trivial to account for. So let us assume that a witness ({𝑥𝑖}, {𝑦𝑖, 𝑗 }) was
extracted from Phase 2. Each test

∑︁𝑁
𝑖=1

∑︁3
𝑗=0 𝛾

(𝑘 )
𝑖
𝑦𝑖, 𝑗 + 𝜇𝑘 ∈ [0, 𝐾] (where 𝑦𝑖,0 = 𝑥𝑖 ) is a random affine

shortness test (Definition 3.3.2), where 𝜇𝑘 plays the role of the constant offset 𝜇 and 4𝑁 elements
are checked at once. The parameters of this test are dimension 𝑁 ˆ︁= 4𝑁 , and range bound 𝐾 , test
distribution𝑈 [0,Γ ]4𝑁 and offset 𝜇𝑘 . As shown in Theorem 3.3.3, the test is fractional (𝐾 ′, Γ)-sound with
error 𝛿snd ≤ 8/(Γ + 1), where 𝐾 ′ = (1 + 2𝛽)𝐾 and 𝛽 = min(4𝑁, primlmin(Γ + 1)). The probability to
cheat (in all of them) is therefore 𝛿𝑅snd ≤ (

8
Γ+1 )

𝑅 . Now there are two cases:

Case 1 (Item 4): There exists some 𝑑 ∈ [1, Γ] such that 𝑑𝑦𝑖, 𝑗 ∈ [−𝐾 ′, 𝐾 ′] for all 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [0, 3],
where 𝑦𝑖,0 ≔ 𝑥𝑖 . For this case, consider the quadratic relations in Phase 2, which are known to hold
over Z𝑞 (for all 𝑖):

1 + 4𝑥𝑖 (𝐵 − 𝑥𝑖) ≡𝑞
∑︂
𝑗∈[1,3]

𝑦2𝑖, 𝑗

⇐⇒ 𝑑2 + 4𝑑𝑥𝑖 (𝑑𝐵 − 𝑑𝑥𝑖) ≡𝑞
∑︂
𝑗∈[1,3]

(𝑑𝑦𝑖, 𝑗 )2

Since and 𝑑𝑦𝑖, 𝑗 ∈ [−𝐾 ′, 𝐾 ′] (where 𝑦𝑖,0 = 𝑥𝑖 ), the left-hand side has absolute value at most Γ2 +4𝐾 ′(𝐵Γ +
𝐾 ′) ≤ 9(𝐾 ′)2 < 𝑞/2. The right-hand-side is at most 3(𝐾 ′)2 < 𝑞/2. Thus, the right equality holds over
the integers, and the left equality holds over the rationals. Consequently, we find 𝑥𝑖 ∈ [− 1

4𝐵, 𝐵 +
1
4𝐵]Q

(by Lemma A.2.2). Since additionally 𝑑𝑥𝑖 ∈ [−𝐾 ′, 𝐾 ′] for all 𝑖 , we have found a witness for RExt, which
completes this case.

Case 2 (Item 5): There is no 𝑑 ∈ [1, Γ] such that 𝑑𝑦𝑖, 𝑗 ∈ [−𝐾 ′, 𝐾 ′] for all 𝑖, 𝑗 , but the shortness tests
failed to catch this. In this case, the extractor rewinds and retries Phase 1 (with fresh challenges and
still running the extractor for Phase 2) until a second extracted run is found; denote the extracted
witness by (𝑦′𝑖, 𝑗 )𝑖, 𝑗 . Let 𝜀1 = Pr[G1 = 1]. It is easy to check that the expected number of retries is 1
and that, overall, the expected time 𝑡2 for the extractor is roughly bounded by 2𝑡1 ≤ 6𝑡0. Since the
soundness error of the repeated shortness test is 𝛿𝑅snd, with probability at least (𝜀1 − 𝛿𝑅snd)/𝜀1, it happens
that (𝑦𝑖, 𝑗 )𝑖, 𝑗 ≠ (𝑦′𝑖, 𝑗 )𝑖, 𝑗 or 𝜇𝑘 ≠ 𝜇′

𝑘
for the second accepting transcipt. In that case, a non-trivial DLOG

relation can be derived from the binding break, i.e. the two different witnesses.7

Define G2 as a run of the complete extractor, and let it output 1 if and only if the verifier was convinced
in the initial run and a valid witness is outputted. Note that G0 resp. G2 now correspond to the real
resp. ideal executions in the definition of knowledge soundness (Definition 2.3.16). We see that, except
with probability at most 𝜀1 ·

𝛿𝑅snd
𝜀1

= 𝛿𝑅snd, where 𝜀1 = Pr[G1 = 1], game G2 succeeds in producing a valid
witness RExt ∨RGcomBind ∨R

G3sq
Bind ∨RColl. Thus, overall we find

Pr[G2 = 1] ≤ Pr[G1 = 1] + 𝛿𝑅snd ≤ Pr[G0 = 1] + 2/(Γ + 1)𝑅 + 𝛿𝑅snd

7 The complete extracted witnesses �⃗�, �⃗� ′ also contain components 𝑟𝑥 , 𝑟𝑦 .
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If the extractor does not fail, it returns a witness forRExt∨RGcomBind ∨R
G3sq
Bind∨RColl, whereR𝐺

Bind = R𝐺
DL-rel

is a binding break, i.e. a non-trivial DLOG relation in 𝐺 ∈ {Gcom,G3sq}, and RColl is a non-trivial
collision forHash. The knowledge error for this witness relation is 2/(Γ +1)𝑅 +𝛿𝑅snd ≤ (2+8

𝑅)/(Γ +1)𝑅 ,
as claimed in last item of Theorem A.5.2. Witnesses for RGcomDLog, R

G3sq
DLog and RColl can instead be viewed

as adversaries against DLOG and collision resistance, showing the second item. This completes the
proof of knowledge soundness.

A.5.3. Security Proof of SharpHO

Here, we prove the security of Theorem A.3.1.

Theorem A.3.1. Let Sample be a sampling algorithm for G. The scheme Sharp+HOGS has correctness error
at most 1 − (1 − pr′)𝑁 [(1 − pr)3 · (1 − px)𝑁 ]𝑅 . It is non-abort SHVZK under the SEI assumptions on G
and the SEI and the SI assumptions on H. Is has relaxed soundness for the relation

RExt =
{︁
(𝑥1, . . . , 𝑥𝑁 , 𝑟 ) : 𝐶𝑥 = 𝑟𝑥𝐺0 +

𝑁∑︂
𝑖=1

𝑥𝑖𝐺𝑖

∧ ∃𝑚𝑖 ∈ Z, 𝑘 ∈ N0 : −
1
4𝐵 ≤

𝑚𝑖

𝑒𝑘
≤ 𝐵 + 1

4𝐵
∧ 𝑥𝑖 ≡𝑞

𝑚𝑖

𝑒𝑘
∧ |𝑚𝑖 | ≤ (𝐵Γ + 1)𝐿𝑥 ∧ 1 ≤ 𝑒𝑘 ≤ Γ

}︁
.

under the DLOG, SEI assumptions on G, and the DLOG, SEI, SI, assumption and hardness of (Γ, 𝑒)-relaxed
DLOG-relations in H, where all asumptions are all w.r.t. to Sample. The knowledge error is ( 2

Γ+1 )
𝑅 .

Concretely, with the hash-optimization, we have following reductions:

• For every adversary A against non-abort SHVZK, there are adversaries BG,SEI, BH,SEI, BH,SI whose
runtime is roughly that ofA and so that Advna-hvzkA ≤ AdvseiH,BGcom,SEI + Adv

sei
H,BH,SEI

+ AdvsiH,BH,SI .

• For every adversaryA against knowledge which runs at most 𝑇 steps, there are adversaries B𝐶𝑅 ,
BG,DLOG, BH,DLOG, BH,SI, BH,rlxDLOG, whose expected runtime is roughly 3 · 𝑅 · 𝑇 , and so that
AdvkeA ≤ (

2
Γ+1 )

𝑅 + AdvcrhfHash,B𝐶𝑅
+ Advdlog

G,BG,DLOG
+ Advdlog

H,BH,DLOG
+ Advrlx-dlog

H,(Γ,𝑒,𝑁 ),BH,rlxDLOG
.

To be precise, we consider the 𝑆-bounded SEI assumption in G and the 𝑆-bounded SEI assumption in H.

The analogous adaption of Theorem A.5.1 holds for Sharp+HOPoSO, where the same additional terms for
reductions in H appear.

Proof. Here, we demonstrate correctness, soundness and zero-knowledge of Sharp+HOGS in more detail.
We note that all assumptions are w.r.t. to Sample, in particular, we assume the adversary has access to
the random coins 𝜌𝑖 used to generate the hidden order group elements in the CRS. (This is not the case
for elements of Gcom and G3sq. There, we still assume invertible sampling.)
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Correctness. The rejection probability is increased by a factor of (1 − pr′) ≤ (1 − 1/𝐿) due to the
additional masking of 𝑡 ′𝑥 . It is straightforward to see that all “old” checks will pass, as the computations
and checks for 𝑧𝑖 , 𝐹𝑖 are unmodified. The modified computation of the hash of Δ will pass, if 𝐷 ′𝑥 = 𝐹 ′𝑥
holds. Hence, it remains to show that 𝐷 ′𝑥 = 𝐹 ′𝑥 , i.e.

𝐷 ′𝑥 =˜︁𝑟 ′𝑥𝐺 ′0 + 𝑁∑︂
𝑖=1
(Γ + 1)𝑘−1˜︁𝑥 ′𝑖𝐺 ′𝑖

!
= −𝛾 ′𝐶′𝑥 + 𝑡 ′𝑥 ·𝐺 ′0 +

∑︂
𝑖∈[1,𝑁 ]

𝑧′𝑖 ·𝐺 ′𝑖

= 𝐹 ′𝑥

holds, where 𝛾 ′ =
∑︁𝑅
𝑘=1 𝛾𝑘 (Γ + 1)𝑘−1 ∈ [0, (Γ + 1)𝑅 − 1], and ˜︁𝑥 ′𝑖 =

∑︁𝑅
𝑘=1(Γ + 1)𝑘−1˜︁𝑥𝑘,𝑖 and 𝑧′𝑖 =∑︁𝑅

𝑘=1(Γ + 1)𝑘−1 · 𝑧𝑘,𝑖 . We have

𝐹 ′𝑥 = −𝛾 ′𝐶′𝑥 + 𝑡 ′𝑥 ·𝐺 ′0 +
∑︂

𝑖∈[1,𝑁 ]
𝑧′𝑖 ·𝐺 ′𝑖

= −𝛾 ′𝐶′𝑥 + (𝛾 ′𝑟 ′𝑥 +˜︁𝑟 ′𝑥 ) ·𝐺 ′0 + ∑︂
𝑖∈[1,𝑁 ]

𝑧′𝑖 ·𝐺 ′𝑖

=˜︁𝑟 ′𝑥 ·𝐺 ′0 + (−𝛾 ′𝐶′𝑥 + 𝛾 ′𝑟 ′𝑥 + ∑︂
𝑖∈[1,𝑁 ]

𝑧′𝑖 ·𝐺 ′𝑖 )

Plugging in 𝛾 ′ =
∑︁𝑅
𝑘=1(Γ + 1)𝑘−1 · 𝛾𝑘 , we find that

− 𝛾 ′𝐶′𝑥 + 𝛾 ′𝑟 ′𝑥 +
∑︂

𝑖∈[1,𝑁 ]
𝑧′𝑖 ·𝐺 ′𝑖

=

𝑅∑︂
𝑘=1
(Γ + 1)𝑘−1 ⎛⎜⎝−𝛾𝑘𝐶′𝑥 + 𝛾𝑘𝑟 ′𝑥 ·𝐺 ′0 +

∑︂
𝑖∈[1,𝑁 ]

𝑧𝑘,𝑖 ·𝐺 ′𝑖
⎞⎟⎠

=

𝑅∑︂
𝑘=1
(Γ + 1)𝑘−1

𝑁∑︂
𝑖=1
(−𝛾𝑘𝑥𝑖 + 𝑧𝑘,𝑖)𝐺 ′𝑖

=

𝑅∑︂
𝑘=1
(Γ + 1)𝑘−1

𝑁∑︂
𝑖=1

˜︁𝑥𝑘,𝑖𝐺 ′𝑖
since by construction 𝐶′𝑥 = 𝑟 ′𝑥𝐺0 +

∑︁𝑁
𝑖=1 𝑥𝑖𝐺

′
𝑖 and 𝑧𝑘,𝑖 = 𝛾𝑘𝑥𝑖 + ˜︁𝑥𝑘,𝑖 . Thus,

𝐹 ′𝑥 =˜︁𝑟 ′𝑥𝐺 ′0 + 𝑅∑︂
𝑘=1

𝑁∑︂
𝑖=1
(Γ + 1)𝑘−1˜︁𝑥𝑘,𝑖𝐺 ′𝑖 = 𝐷 ′𝑥 .

Soundness. The argument for soundness of Sharp+HOGS is basically the same as for SharpGS in Theo-
rem A.5.1, except, that the properties of theMPed commitment in H must be exploited additionally.

Let ˆ︁Γ = (Γ + 1)𝑘 − 1. Observe that, by construction, the synthetic challenge 𝛾 ′ is uniform in [0,ˆ︁Γ].
Moreover, the synthesized proof of short opening is almost the same of the simple PoSO,8 and our
soundness argument as well, with the only difference being the choice of masking. Namely, the

8 That is, usual the Σ-protocol for opening with short challenge and shortness check, as used in SharpGS for example.
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distributions of the mask ˜︁𝑥 ′𝑖 is not the usual one. However, for soundness, the distribution of the mask
does not matter at all (it may be adversarially chosen anyway). Consequently, the argument for the
PoSO in Theorem A.5.1 applies without change. That is, either two9 accepting transcripts tr and ˆ︁tr with
same first message but different challenges yield witnesses 𝑥 ′𝑖 =

𝑧′𝑖−ˆ︁𝑧′
𝑖

𝛾 ′−ˆ︁𝛾 ′ of the form 𝑥 ′𝑖 = 𝑎𝑖/2𝑒𝑖 for 𝑒𝑖 ≥ 0,
𝑎𝑖 ∈ Z or a (Γ, 𝑒)-relaxed DLOG relation in H was found. By assumption, finding a (Γ, 𝑒, 𝑁 )-relaxed
DLOG relation w.r.t. Sample is hard. (Note we use a hatˆ︁· to distinguish the transcripts, since primes ·′
are already used to indicate elements of our augmentation.)

Recall that we argued in particular, that in each iteration,

• either 𝛾𝑘 = ˆ︁𝛾𝑘 and 𝑧𝑘,𝑖 = ˆ︁𝑧𝑘,𝑖 , i.e. this repetition “does not extract”, or

• we extract 𝑥𝑘,𝑖 and 𝑥𝑖 = 𝑥𝑘,𝑖 is unique for all “extracted” repetitions 𝑘 .

or a non-trivial DLOG relation was found. Now, we have to show that 𝑥 ′𝑖 = 𝑥𝑖 , i.e. the extracted witness
of the synthesized hidden order proof of small opening coincides with the other extractions. For this,
note that

𝑥 ′𝑖 =
𝑧′𝑖 − ˆ︁𝑧′𝑖
𝛾 ′ − ˆ︁𝛾 ′ =

∑︁𝑅
𝑘=1(Γ + 1)𝑘−1(𝑧𝑘,𝑖 −ˆ︁𝑧𝑘,𝑖)∑︁𝑅
𝑘=1(Γ + 1)𝑘−1(𝛾𝑘 −ˆ︁𝛾𝑘 )

=

∑︁𝑅
𝑘=1(Γ + 1)𝑘−1(𝑥𝑘,𝑖 (𝛾𝑘 −ˆ︁𝛾𝑘 ))∑︁𝑅

𝑘=1(Γ + 1)𝑘−1(𝛾𝑘 −ˆ︁𝛾𝑘 )
= 𝑥𝑖 ·

∑︁𝑅
𝑘=1(Γ + 1)𝑘−1(𝛾𝑘 −ˆ︁𝛾𝑘 )∑︁𝑅
𝑘=1(Γ + 1)𝑘−1(𝛾𝑘 −ˆ︁𝛾𝑘 ) = 𝑥𝑖

where we used that 𝑥𝑘,𝑖 = 𝑥𝑖 for all 𝑘 .10 Thus, 𝑥 ′𝑖 = 𝑥𝑖 and the extracted witnesses of all repetitions
coincide. This finishes the proof.

For Sharp+HOPoSO, an analogous reasoning applies, though simpler since “synthesized” variables are not
needed.

Non-Abort SHVZK The simulator works as the simulator in Theorem A.5.1 (resp. Theorem A.5.2), with
following additional steps:

1. Compute 𝛾 ′ =
∑︁𝑅
𝑘=1 𝛾𝑖 (Γ + 1)𝑘−1.

2. Set 𝐶′𝑥
$← H.

3. Let 𝑧′𝑖 =
∑︁𝑅
𝑘=1(Γ + 1)𝑘−1 · 𝑧𝑘,𝑖 (using the simulated 𝑧𝑘,𝑖 ).

4. Set 𝑡 ′𝑥 = mask𝑟 ′ (0,˜︁𝑟 ′).
5. If masking fails, then abort, i.e. output ⊥.

6. Compute 𝐷 ′𝑥 = −𝛾 ′𝐶′𝑥 + 𝑡 ′𝑥𝐺 ′0 +
∑︁𝑁
𝑖=1 𝑧

′
𝑖𝐺
′
𝑖 .

7. Adapt the output to include the additional messages.

9 To show that 𝑥𝑖 is of the form 𝑥 ′ = 𝑎/2𝑒 , two transcripts suffice. The soundness of the full argument still needs three
transcripts.

10 Strictly speaking, if 𝛾𝑘 = ˆ︁𝛾𝑘 , then 𝑥𝑘,𝑖 is not defined. By our assumption, we may assume it exists and equals 𝑥𝑖 . This is a
mere simplification, as the contribution of repetition 𝑘 to the sum is 0 anyway, since (again by assumption) 𝑧𝑘,𝑖 −ˆ︁𝑧𝑘,𝑖 = 0.
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Table A.1.: Overview of parameters (where 𝑆 = 2256 − 1 always) and proof sizes of variants of SharpGS in Bytes with
correctness error 1 − 𝑝succ. We give the proof size with the 3-square decomposition (𝜋 ), the amortized proof size (𝜋amor),
the proof size with the 4-square decomposition (𝜋4sqr), the proof size for the augmentation with an additional RSA group
element (𝜋RSA) and the proof size for the augmentation with an additional class group element (𝜋CL).

𝜆 𝜅 𝐵 Γ 𝐿 𝑁 𝑝 𝑞 𝑅 𝑝succ 𝜋 𝜋amor 𝜋4sqr 𝜋RSA 𝜋CL

128 40 32 41 10 1 256 256 1 0.993 234 234 244 667 455
128 40 32 41 10 4 256 256 1 0.982 358 90 400 792 579
128 40 32 41 10 8 256 256 1 0.966 524 66 607 958 745
128 40 32 41 10 16 256 256 1 0.937 856 54 1022 1290 1077
128 40 64 41 10 1 256 256 1 0.993 250 250 264 683 471
128 40 64 41 10 4 256 256 1 0.982 422 106 480 856 643
128 40 64 41 10 8 256 256 1 0.966 652 82 767 1086 873
128 40 64 41 10 16 256 256 1 0.937 1112 70 1342 1546 1333
128 80 32 81 10 1 256 256 1 0.993 254 254 269 687 475
128 80 32 81 10 4 256 256 1 0.982 438 110 500 872 659
128 80 32 81 10 8 256 256 1 0.966 684 86 807 1118 905
128 80 32 81 10 16 256 256 1 0.937 1176 74 1422 1610 1397
128 80 64 81 10 1 256 315 1 0.993 285 285 304 718 505
128 80 64 81 10 4 256 315 1 0.982 517 130 595 950 738
128 80 64 81 10 8 256 315 1 0.966 827 104 982 1260 1048
128 80 64 81 10 16 256 315 1 0.937 1447 91 1757 1880 1668
128 128 32 129 10 1 301 347 1 0.993 318 318 339 751 538
128 128 32 129 10 4 301 347 1 0.982 574 144 660 1007 795
128 128 32 129 10 8 301 347 1 0.966 916 115 1087 1349 1137
128 128 32 129 10 16 301 347 1 0.937 1600 100 1942 2033 1821
128 128 64 129 10 1 333 411 1 0.993 360 360 385 793 580
128 128 64 129 10 4 333 411 1 0.982 664 166 766 1097 885
128 128 64 129 10 8 333 411 1 0.966 1070 134 1273 1503 1291
128 128 64 129 10 16 333 411 1 0.937 1882 118 2288 2315 2103

It is easy to check that the output is indistinguishable from non-aborting real transcripts. The justifica-
tion is almost identical to the one in Theorem A.5.1. Namely, starting from the honest computation,
first compute 𝐷 ′𝑥 is in step 6 above (with otherwise honest values). This change is only conceptual.
Then, compute 𝑡 ′𝑥 as in step 4 above. Finally, an additional step is required to justify the switch from
computing 𝐶′𝑥 = 𝑟 ′𝑥𝐺

′
0 +

∑︁𝑁
𝑖=1 𝑥𝑖𝐺

′
𝑖 to 𝐶′𝑥

$← H. Since 𝑟 ′𝑥 is not used anymore, we can reduce this to SI
and SEI assumptions (w.r.t. Sample). By SEI we can replace the term 𝐴 = 𝑟 ′𝑥𝐺

′
0 by 𝐴

$← ⟨𝐺 ′0⟩. Then, by
SI we can replace𝐴 $← ⟨𝐺 ′0⟩ by𝐴

$← H. Now,𝐶′𝑥 is uniform distributed inH. So we can sample𝐶′𝑥
$← H

instead. This is done by the simulator in step 2, and indeed, this game is the simulation, completing the
proof. □

A.6. Additional Tables

Here, we provide some tables with an overview of the parameters and proof sizes of SharpGS in Table A.1
and SharpPoSO in Table A.2.
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Table A.2.: Overview of parameters (where 𝑆 = 2256 − 1 always) and proof sizes of variants of SharpPoSO in Bytes with
correctness error 1 − 𝑝succ. We give the proof size with the 3-square decomposition (𝜋 ), the amortized proof size (𝜋amor),
the proof size with the 4-square decomposition (𝜋4sqr), the proof size for the augmentation with an additional RSA group
element (𝜋RSA) and the proof size for the augmentation with an additional class group element (𝜋CL).

𝜆 𝜅 𝐵 Γ 𝐿 𝑁 𝑝 𝑅 𝑝succ 𝜋 𝜋amor 𝜋RSA 𝜋CL

128 40 32 43 10 1 256 1 0.991 300 300 734 521
128 40 32 43 10 4 256 1 0.980 556 139 989 777
128 40 32 43 10 8 256 1 0.964 896 112 1329 1117
128 40 32 43 10 16 256 1 0.935 1576 99 2010 1797
128 40 64 43 10 1 256 1 0.991 324 324 758 545
128 40 64 43 10 4 256 1 0.980 628 157 1061 849
128 40 64 43 10 8 256 1 0.964 1032 129 1465 1253
128 40 64 43 10 16 256 1 0.935 1840 115 2274 2061
128 80 32 43 10 1 256 2 0.989 323 323 757 544
128 80 32 43 10 4 256 2 0.978 579 145 1013 800
128 80 32 43 10 8 256 2 0.963 920 115 1353 1141
128 80 32 43 10 16 256 2 0.933 1600 100 2034 1821
128 80 64 43 10 1 256 2 0.989 355 355 789 576
128 80 64 43 10 4 256 2 0.978 659 165 1093 880
128 80 64 43 10 8 256 2 0.963 1064 133 1497 1285
128 80 64 43 10 16 256 2 0.933 1872 117 2306 2093
128 128 32 67 10 1 256 2 0.989 335 335 769 556
128 128 32 67 10 4 256 2 0.978 591 148 1025 812
128 128 32 67 10 8 256 2 0.963 932 117 1365 1153
128 128 32 67 10 16 256 2 0.933 1612 101 2046 1833
128 129 64 46 10 1 256 3 0.987 389 389 822 609
128 128 64 35 10 4 256 4 0.974 714 179 1148 935
128 128 64 35 10 8 256 4 0.959 1119 140 1553 1340
128 128 64 35 10 16 256 4 0.929 1928 121 2362 2149

128 40 32 1 10 1 256 40 0.919 777 777 – –
128 40 32 1 10 16 256 40 0.866 2092 131 – –
128 40 64 1 10 1 256 40 0.919 1113 1113 – –
128 40 64 1 10 16 256 40 0.866 2668 167 – –
128 128 32 1 10 1 256 128 0.773 1877 1877 – –
128 128 32 1 10 16 256 128 0.729 3280 205 – –
128 128 64 1 10 1 256 128 0.773 2917 2917 – –
128 128 64 1 10 16 256 128 0.729 4560 285 – –
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B.1. From Batch Proofs to Folding

We briefly discuss how one can interpet the folding technique of [BCC+16; BBB+18] as a form of
composing batch verification protocols. We only consider a commitment key [𝒈] ∈ G1×𝑚 and the
statement K𝒘 : [𝒈]𝒘 = [𝒕], and fix 𝑘 = 2 as reduction factor for simplicity. The idea is as follows:

Step 1 (Preparation of Statement). Notice that the statement [𝒈]𝒘 = [𝒕] is not directly batch verifiable
— it is a single statement. Thus, as a first step, split the statement K𝒘 : [𝒈]𝒘 = [𝒕] into [𝒈] =

[︁ 𝒈0
𝒈1

]︁
,

𝒘 =
(︁ 𝒘0
𝒘1

)︁
and let [𝒕𝑖] = [𝒈𝑖]𝒘𝑖 . Observe that proving K𝒘𝑖 : [𝒈𝑖]𝒘𝑖 = [𝒕𝑖] for 𝑖 ∈ {0, 1} implies the

original claim if [𝒕0] + [𝒕1] = [𝒕]. However, a batch proof for the two statements (for 𝑖 = 0 and 1) is still
not possible, as the matrices disagree ([𝒈0] ≠ [𝒈1]). Fortunately, this can be salvaged by introducing
redundancy, namely, by considering

K𝒘 𝑗 :
[︃
𝒈0
𝒈1

]︃
𝒘 𝑗 = [𝒗 𝑗 ]

where [𝒗0] =
[︁ 𝒕0
𝒈1𝒘0

]︁
and [𝒗1] =

[︁ 𝒈0𝒘1
𝒕1

]︁
. In total, {[𝒈𝑖]𝒘 𝑗 }𝑖, 𝑗∈{0,1} must be sent additionally to the

verifier.1 But now, both statements use the same matrix [𝑮] =
[︁ 𝒈0
𝒈1

]︁
.

Step 2 (Batch-Verification of Statements). By using a batch proof of knowledge, e.g. Protocol 4.3.12,
the statement

K𝒘𝑖 : [𝑮]𝒘𝑖 = [𝒗𝑖] (B.1.1)

is reduced to
Kˆ︁𝒘 : [𝑮]ˆ︁𝒘 = [ˆ︁𝒗] (B.1.2)

where ˆ︁𝒘 ∈ F𝑚/2𝑝 , i.e. the dimension of the witness was halved. However, as a trade-off, the height of the
matrix was doubled, i.e. [𝑮] ∈ G2×𝑚/2 whereas [𝒈] ∈ G1×𝑚 .

Step 3 (Batch-Verification Within a Statement). At this point, we batch together the rows of [𝑮], e.g.
with Protocol 4.3.8. As a result, the verification of

K𝒘 : [𝑮]ˆ︁𝒘 = [ˆ︁𝒗] (B.1.3)

Eq. (B.1.2) is reduced to
K𝒘 : [ˆ︁𝑮]ˆ︁𝒘 = [ˆ︁𝒕]

where [𝑮] ∈ G2×𝑚/2 and [ˆ︁𝒗] ∈ G2, and [ˆ︁𝑮] ∈ G1×𝑚/2 and [ˆ︁𝒕] ∈ G.
1 Since

∑︁
𝑖∈{0,1} [𝒈𝑖 ]𝒘𝑖 = [𝒈]𝒘 , it suffices to send 3 instead of 4 elements.
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Recursion. Notice that after Step 3, the statement is similar to Step 1, namely [ˆ︁𝒈]ˆ︁𝒘 = [ˆ︁𝒕] (with
[ˆ︁𝒈] ˆ︁= [ˆ︁𝑮]) except that the dimension of ˆ︁𝒘 is half of ˆ︁𝒘 . As such, by recursively applying these steps,
we obtain a logarithmic-size argument of knowledge of a preimage or a non-trivial kernel element of
[𝒈].

Security Analysis. The security of this scheme is relatively straightforward. (It does not provide HVZK,
only knowledge.) Namely, it follows by composing the security of the subprotocols, Protocol 4.3.12 and
Protocol 4.3.8, and it is also clear that short-circuit extraction is inherited.

Comparison to Folding. The (optimized) folding approach can be viewed as specialization of the above
protocol, where the challenges in Steps 2 and 3 are not independent.

B.2. An Efficient Proof of Correctness of a Shuffle

A proof of correctness of a shuffle is a proof that two (multi-)sets of ciphertexts decrypt to the same
multi-set of plaintexts. This is especially interesting in settings with rerandomisable ciphertexts,
because the “shuffling party” does not need to decrypt. For electronic voting, a shuffle achieves a certain
unlinkability between the originally encrypted votes, and the (in a final step) decrypted votes, while
the proofs of correctness of the shuffle ensure that the voting result is unaffected.

With our tools, it is possible to prove the correctness of a shuffle in logarithmic communication for
ElGamal ciphertexts in a very straightforward manner. Namely, we commit to a permutation matrix
(as part of𝒘) and rerandomisation randomness for the ElGamal ciphertexts (also part of𝒘). Then we
prove that [𝑨]𝒘 = [𝒄], where [𝑨] is constructed from the old ciphertexts and the ElGamal public key,
and [𝒄] is the vector of shuffled ciphertexts. We also add a proof that (the relevant part of)𝒘 commits
to a permutation matrix, as sketched in Section 4.3.6. This all neatly fits into our framework, giving a
logarithmic size proof overall. However, there is a huge drawback: The size of the permutation matrix,
hence𝒘 , is 𝑁 2 for 𝑁 ciphertexts. Thus, the computation grows quadratically in 𝑁 . This is unacceptable
in practice.

Remark B.2.1 (Related work). Shuffle arguments already appear in [BBB+18]; they are built from a
sorting circuit and comparing the sorted sequences. In an independent work [AVY] implementing
Bulletproofs, an improved shuffle argument (for committed values) is constructed by introducing
and using randomized R1CS constraints which are possible due to the commit-and-prove structure of
Bulletproofs. Both works [BBB+18; AVY] do not claim to shuffle ElGamal ciphertext, but seem to work
on Pedersen commitments, which is insufficient for many applications. Our shuffle proofs and [AVY]
use the techniques from [Nef01; TW10] to avoid sorting circuits.

Unlike [BBB+18] our setting concerns (ElGamal) encrypted values (e.g. votes), not (Pedersen) committed
values, though the choice of commitment or encryption scheme is easily modified in our construction.
While it is likely that Bulletproofs can be suitably modified to cover ElGamal ciphertexts as well, e.g.
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by building on their follow-up work [BAZB20], none of the works [BBB+18; AVY; BAZB20] offer an
explicit solution.2

Lastly, we note that given any log-communication proof system, theoretically “efficient” (polynomial
time) and short shuffle proofs are essentially a triviality. Just prove the relevant statements (e.g. ElGamal
randomisation) in a non-black-box manner. Since we have O(log(poly(𝜆, 𝑛))) = O(log(𝜆) + log(𝑛)),
communication is almost logarithmic in 𝑛 (and if 𝑛 ∈ Ω(𝜆), it is logarithmic).

B.2.1. Adapting the Shuffle Argument of Bayer–Groth

The shuffle argument of Bayer and Groth [BG12] is built from two sub-arguments, a “product argument”
and a “multi-exponentiation argument”. A generic proof of security is given in [BG12, Theorem 5]. The
former argument can be instantiated byQESAZK, or more precisely, QESACopy. The latter argument can
be instantiated by LMPAZK. Since our arguments have logarithmic communication and need linearly
many exponentiations, so does the resulting shuffle argument. We give a more detailed explanation
below.

• CRS: ck = (ck𝑄 , ck𝐿), where ck𝑄 = ( [𝒈′,𝒈′′, 𝑄]) is the commitment key forQESAZK and ck𝐿 = [𝒉]
is the commitment key for LMPAZK (or empty if a simple zero-knowledge LMPA version is used).
Here [𝒈′] ∈ F𝑛𝑝 , where 𝑛 ≥ 𝑁 + 2 is a (suitably large) power of 2. Note that our commitment keys
consist of random group elements.

• Common input: Old and new ciphertexts [ctold𝑖 ], [ctnew𝑖 ] ∈ G2 for 𝑖 = {0, . . . , 𝑁 − 1} and ElGamal
public key [pk] ∈ G2.

• Prover’s witness: The random permutation 𝝅 ∈ {0, . . . , 𝑁 − 1}𝑁 and rerandomisation random-
nesses 𝜌𝑖 ∈ F𝑝 such that [ctnew𝑖 ] = [ctold𝜋𝑖 ]+𝜌𝑖 [pk]. (Recall that EncElG(0; 𝜌𝑖) = 𝜌𝑖 [pk] for ElGamal
encryption.)

• P→ V: Compute and send the commitment [𝑐𝝅 ] to 𝜋 :

[𝑐𝝅 ] = Comck𝑄 (𝝅 ; 0, 𝑟𝝅 )

= [𝑔′1 | 𝑔′2, . . . , 𝑔′𝑁+1 | 𝑔′𝑁+2, . . . , 𝑔′𝑛−2 | 𝑔′𝑛−1, 𝑔′𝑛]
⎛⎜⎜⎜⎜⎜⎝
0
𝝅
0
0
𝑟𝝅

⎞⎟⎟⎟⎟⎟⎠
(Remember that [𝑔′𝑛−1] and [𝑔′𝑛] are reserved for randomness in QESAZK commitments, and [𝑔1]
is reserved for the constant 1.)

• V→ P: Send 𝒙 = (𝑥0, . . . , 𝑥𝑁−1) $← 𝜒𝑁 .

• P→ V: Send [𝑐𝒚] = Comck𝑄 (𝒚; 0, 𝑟𝒚), where [𝒚] ≔ 𝝅 (𝒙) = (𝒙𝜋𝑖 )𝑖 = (𝑥𝜋0, . . . , 𝑥𝜋𝑁 −1).

• V→ P: Send 𝜁 , 𝑧 $← F𝑝 .

• P↔ V: Prove following statements using (logarithmic communication) sub-protocols QESACopy
and LMPAZK:

2 It may be tempting to argue that one part [𝑐1] of an ElGamal ciphertext [𝑐1, 𝑐2] “is” a Pedersen commitment, and thus it
suffices to consider only the component [𝑐1]. But then problem appears, that ElGamal ciphertext are only (information-
theoretically) binding when the full ciphertext is considered, or the secret key is secure. In particular the component [𝑐1] is
not binding if corruption of the secret key is possible. Hence, the soundness guarantee of such a shuffle argument (which
disregards [𝑐2]) seems to be useless.
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– [𝑐𝝅 ] is a permutation and [𝑐𝒚] is a commitment to 𝝅 (𝒙): The prover shows (in zero-
knowledge) that

𝑁−1∏︂
𝑖=0
(𝜁𝜋𝑖 + 𝑦𝑖 − 𝑧) =

𝑁−1∏︂
𝑖=0
(𝜁𝑖 + 𝑥𝑖 − 𝑧).

Note that 𝜁 [𝑐𝝅 ] + [𝑐𝒚] is a commitment to 𝜁𝝅 + 𝒚, which can be used for QESAZK, or
more precisely, QESACopy. Also note that the right-hand side is computable from public
information.

– [ct⃗new] is a rerandomised permutation of [ct⃗old]: The prover shows (in zero-knowledge)
that ∑︂

𝑖

[ctold𝑖 ]𝑦𝑖 + [pk]
∑︂
𝑖

𝜌𝑖𝑥𝑖 =
∑︂
𝑖

[ctnew𝑖 ]𝑥𝑖 .

This fits into our matrix multiplication proofs (with witness
(︂

𝒚
𝒙⊤𝜌

)︂
∈ F𝑁+1𝑝 ). Concretely, the

prover commits to 𝜎 ≔ 𝒙⊤𝜌 via [𝑐𝜎 ] = Comck𝑄 (
(︁ 0
𝜎

)︁
; 𝑟𝜎 , 0) = [𝑔′𝑁+2, 𝑔′𝑛−1]

(︁ 𝜎
𝑟𝜎

)︁
for 𝑟𝜎 $← F𝑝 .

He sends 𝑐𝜎 to the verifier and engages in a LMPAZK protocol for⎡⎢⎢⎢⎢⎢⎢⎣
𝑔′2, . . . , 𝑔

′
𝑁+1 𝑔′

𝑁+2 𝑔′𝑛−1 𝑔′𝑛
𝑔′2, . . . , 𝑔

′
𝑁+1 0 0 𝑔′𝑛

0 𝑔′
𝑁+2 𝑔′𝑛−1 0

ctold0 . . . ctold
𝑁−1 pk 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎝
𝒚
𝜎

𝑟𝜎
𝑟𝒚

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑐𝒚 + 𝑐𝜎
𝑐𝒚
𝑐𝜎
𝒖

⎤⎥⎥⎥⎥⎥⎥⎦
where [𝒖] ≔ ∑︁

𝑥𝑖 [ctnew𝑖 ]. The top row is added so one can run LMPAbatch, reducing to a 2×𝑛
matrix. Since [𝒈′] has hard kernel relation, so has [𝑨]. (This is a “commitment-extension”,
see Remark 4.3.6.) The LMPA proof ensures in particular, that all ElGamal ciphertexts are
well-formed.

Honest verifier zero-knowledge of this protocol follows from honest verifier zero-knowledge of the
subprotocols. Soundness (and extraction) follows from soundness (and extraction) of the subprotocols.
Namely, for fixed 𝝅 , randomly chosen 𝒙 and arbitrary 𝒚, the probability that

∏︁𝑁−1
𝑖=0 (𝜁𝜋𝑖 + 𝑦𝑖 − 𝑧) =∏︁𝑁−1

𝑖=0 (𝜁𝑖+𝑥𝑖−𝑧) holds for 𝜁 , 𝑧 ← F𝑝 if𝑦𝑖 ≠ 𝑥𝜋 (𝑖 ) is negligible thanks to the Schwartz–Zippel lemma.3

In [BG12], intuition and a detailed security argument is given. Despite our minor modifications, their
proof adapts seamlessly to our setting. The idea of using (permutation invariant sets of) roots of
polynomials to prove that one set of roots is a permutation of another goes back to [Nef01] and was
extended to restricted permutations in [TW10].

A rough efficiency estimate of our scheme is 30𝑁 exponentiations for the prover and 10𝑁 exponentia-
tions for the verifier. These are roughly twice the numbers of [BG12], when trading interaction for
efficiency. However [BG12] has 𝑂 (

√
𝑁 ) size proofs, while we have 𝑂 (log(𝑁 )) size proofs.

B.3. Proof of Lemma 4.4.6

Lemma 4.4.6. Let crs = ( [𝒈′,𝒈′′, 𝑄]) be uniformly random and as in Protocol 4.4.3 (IPAalmZK) and 𝑘 = 2.
Suppose that 𝑛 ≥ 4𝑘 and letM+𝑛 be as in Definition 4.4.5. Suppose𝒘 ′ is chosen such that some component

3 In more detail: The degree of the (difference) polynomial in 𝑧 is at most 𝑁 . The two polynomials are equal if and only if
they have the same roots (with multiplicity). So the sets {𝜁𝜋𝑖 + 𝑦𝑖 }𝑖 and {𝜁𝑖 + 𝑥𝑖 }𝑖 must be equal. The probability that
𝜁𝑖 +𝑦 = 𝜁 𝑗 + 𝑥 if 𝑖 ≠ 𝑗 is negligible (for any fixed choice of 𝑥,𝑦). Hence if the sets are equal, with overwhelming probability
we find that the sets {(𝜋𝑖 , 𝑦𝑖 )}𝑖 and {( 𝑗, 𝑥 𝑗 )}𝑖 are equal. In other words, 𝜋 is a permutation of the roots. With probability
1 − 𝛿snd (𝜒𝑁 ) all 𝑥 𝑗 are distinct, see Remark B.5.3. Hence 𝜋 is a permutation of {0, . . . , 𝑁 − 1}.
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of 𝑤 ′1, 𝑤
′
2, 𝑤

′
𝑛−1, or 𝑤

′
𝑛 is uniformly random independent of [𝒈′′]. Then IPAalmZK is 𝜀-statistical HVZK

with 𝜀 = 2/𝑝 + 2(𝑘 − 1) log2(𝑛)/𝑝 for such witness distributions.

More generally, we have the following: For arbitrary but fixed 𝒘 ′, 𝒘 ′′, 𝑥1, 𝑥2, consider the combined
transition and constraint matrix

⎛⎜⎜⎜⎜⎜⎝
𝑥1 id𝑛/2 𝑥2 id𝑛/2
𝒈′′2 0
0 𝒈′′1

𝒘 ′⊤1 𝒘 ′⊤2
𝒓 ′⊤1 𝒓 ′⊤2

⎞⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
≕˜︁𝑴 ′′

(︃
𝒓 ′′1
𝒓 ′′2

)︃
=

⎛⎜⎜⎜⎜⎜⎝
ˆ︁𝒓 ′
𝑢′′−1
𝑢′′+1

−⟨𝒓 ′,𝒘 ′′⟩
0

⎞⎟⎟⎟⎟⎟⎠
.

where 𝒓 ′ $← M+𝑛 . Let 𝑴 ′′ be defined by ˜︁𝑴 ′′ but restricted to non-zero components of 𝒓 ′′ resp.ˆ︁𝒓 ′′, i.e. to
columns in M+𝑛 resp. in to rows in M𝑛/2 in upper block of ˜︁𝑴 ′′. Let 𝑪 ′′ be 𝑴 ′′ except that the last row
(𝒓 ′⊤1 , 𝒓⊤) of 𝑴 ′′ is removed. Let A be an unbounded HVZK adversary which picks the witnesses (𝒘 ′,𝒘 ′′)
(given ( [𝒈′,𝒈′′, 𝑄])). Let 𝛿 be an upper bound on the probability that A chooses (𝒘 ′,𝒘 ′′) such that 𝑪 ′′ is
not surjective. Then the advantage against HVZK ofA is at most 𝛿 + (1 + 2(𝑘 − 1) log(𝑛))/𝑝 .

Proof of Lemma 4.4.6. We restrict to 𝑘 = 2 in the proof. We first and foremost concentrate on the
subprotocol run of IPAnoZK for ⟨𝛽𝒘 ′ + 𝒓 ′, 𝛽𝒘 ′′ + 𝒓 ′′⟩. We analyse the rounds of this subprotocol, similar
to Lemma 4.3.23. That is, we consider the transitionmatrix and the probability for it to be surjective. as in
Lemma 4.3.23 surjectivity ensures that [𝑢±1] are uniform. We will analyze the transition matrices for 𝒓 ′
and 𝒓 ′′ separately; this only strengthens our claim, since if [𝑢′′ℓ ] is uniform, then clearly [𝑢ℓ ] = [𝑢′ℓ ]+[𝑢′′ℓ ]
is. For 𝒓 ′, we need not analyze anything, except in the round where 𝑛 = 𝑘 Thus, we concentrate on
𝒓 ′′ and its constraints. As in Lemma 4.3.23, we treat the execution of the masked protocol as a linear
combination, namely, in each round we reduce from 𝛽𝒘 ′ + 𝒓 ′ to 𝛽ˆ︁𝒘 ′ +ˆ︁𝒓 ′ and likewise for 𝒓 ′′.

The First Round. Recall that, if 𝑴 ∈ F𝑛𝑝 → F𝑚𝑝 is surjective, then the image a uniformly drawn
element is uniformly distributed. The formal claim and proof this are given in Lemma B.4.4 and trivially
generalize to surjective linear maps in the setting where some outputs are prescribed, i.e. where some
rows are used for constraints (as in our case). As such, we aim to show surjectivity of 𝑴 . By definition,
the matrix ˜︁𝑴 ′ (resp. ˜︁𝑴 ′′) is constructed essentially as in Lemma B.4.5:

• The top block is the transition matrix for a run of LMPAnoZK. (Recall that IPAnoZK is sends
messages as a linear combination two such runs, one for 𝒓 ′ and one for 𝒓 ′′.)

• The two bottom rows correspond to the constraints ⟨𝒓 ′, 𝒓 ′′⟩ = 0 and ⟨𝒘 ′, 𝒓 ′′⟩ = −⟨𝒓 ′,𝒘 ′′⟩

Removing the zero-rows (w.r.t.ˆ︁𝒓 ) and columns (w.r.t. 𝒓 ) leads to

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 id2 0 0 𝑥2 id2 0
0 𝑥1 iddim(M𝑛/4 )−2 0 0 0
0 0 𝑥1 id2 0 𝑥2 id2

𝒈′′
𝑛/2+1,𝑛/2+2 𝒈′′

𝑛/2+M𝑛/4\{1,2}
𝒈′′𝑛−1,𝑛 0 0

0 0 0 𝒈𝑛/2+1,𝑛/2+2 𝒈′′
𝑛/2−1,𝑛/2

𝒘′1,2 𝒘′
M𝑛/4\{1,2}

𝒘′
𝑛/2−1,𝑛/2 𝒘′

𝑛/2+1,𝑛/2+2 𝒘′𝑛−1,𝑛

𝒓 ′1,2 𝒓 ′
M𝑛/4\{1,2}

𝒓 ′
𝑛/2−1,𝑛/2 𝒓 ′

𝑛/2+1,𝑛/2+2 𝒓 ′𝑛−1,𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
≕𝑴

⎛⎜⎜⎜⎜⎝
𝒓 ′′1,2

𝒓 ′′
M𝑛/4\{1,2}
𝒓 ′′
𝑛/2−1,𝑛/2

𝒓 ′′
𝑛/2+1,𝑛/2+2
𝒓 ′′𝑛−1,𝑛

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
ˆ︁𝒓 ′′1,2ˆ︁𝒓 ′′M𝑛/4\{1,2}ˆ︁𝒓 ′′𝑛/2−1,𝑛/2
𝑢′′−1
𝑢′′1

−⟨𝒓 ′,𝒘′ ⟩
0

⎞⎟⎟⎟⎟⎟⎠
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where the subscripts indicate which component the components of the vector slices. Note thatM𝑛/4 =
M𝑛/2 \ {𝑛/2− 1, 𝑛/2}. Clearly, the block with 𝑥1 idM𝑛/4\{1,2} can be eliminated. The analysis of the result
is essentially identical to the analysis of the case 𝑛 = 8, for which the transition matrix is

𝑴 ≔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 𝑥2
𝑥1 𝑥2

𝑥1 𝑥2
𝑥1 𝑥2

𝑔5 𝑔6 𝑔7 𝑔8 0 0 0 0
0 0 0 0 𝑔1 𝑔2 𝑔3 𝑔4
𝑤1 𝑤2 𝑤3 𝑤4 𝑤4 𝑤6 𝑤7 𝑤8
𝑟1 𝑟 ′2 𝑟 ′3 𝑟 ′4 𝑟 ′4 𝑟 ′6 𝑟 ′7 𝑟 ′8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The analysis of surjectivity of 𝑴 ′′ is complicated by the fact that 𝒘 may depend on [𝒈′,𝒈′′, 𝑄]. If
we simply assume thatA picks surjective 𝑪 ′′ (which is 𝑴 ′′ with the last row removed) except with
probability 𝛿 , then 𝑴 ′′ is surjective except with probability 𝛿 + 1/𝑝 (due to 𝒓 ′ being uniform inM+𝑛).
This is the easy case.

Now suppose that (by assumption) some𝑤𝑖 is uniformly random and stochastically independent of the
other𝑤𝑖 . W.l.o.g. the other𝑤 𝑗 ( 𝑗 ≠ 𝑖) are a deterministic function 𝑓 of 𝒈 and 𝑥1, . . . , 𝑥𝑘 . (Dealing with a
probabilistic 𝑓 works by conditioning on its randomness.) We compute the determinant by Lagrange
expansion. Suppose for concreteness, that𝑤8 is the uniformly random term. Then the determinant is
of the form

det(𝑴) = 𝑤8 · det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 𝑥2
𝑥1 𝑥2

𝑥1 𝑥2
𝑥1

𝑔5 𝑔6 𝑔7 𝑔8 0 0 0
0 0 0 0 𝑔1 𝑔2 𝑔3
𝑟1 𝑟 ′2 𝑟 ′3 𝑟 ′4 𝑟 ′4 𝑟 ′6 𝑟 ′7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
≕𝜂

+poly(𝒈, 𝑥1, 𝑥2,𝑤1, . . . ,𝑤7)

where poly is a polynomial in the given variables (which notably exclude 𝑤8). It is easy to see that
Pr[𝜂 = 0] ≤ 3/𝑝 , e.g. by further expanding 𝑟 ′7, 𝑔5 and 𝑔6 and using that 𝑥1, 𝑥2 ≠ 0 by construction.
Importantly,𝑤8 and 𝜂 are stochastically independent; here we exploit HVZK to ensure that 𝑥1, 𝑥2 are
independent of𝑤8. Thus, except with probability 3/𝑝 , det(𝑴) is a non-zero linear polynomial in𝑤8,
hence except with probability 4/𝑝 the determinant det(𝑴) is non-zero and thus𝑴 is surjective. Dealing
with the case where another𝑤𝑖 is the independently uniform one is completely analogous.

Finally observe, that (ˆ︁𝒓 ′,ˆ︁𝒓 ′′, 𝑢′′−1, 𝑢′′1 ) has statistical distance of at most 4/𝑝 from uniformly random,
since it is uniformly distributed whenever 𝑴 ′′ is surjective. Also recall that without the constraints,
the distance would have been 2/𝑝 instead of 4/𝑝 . This additional term 2/𝑝 appears the lemma’s claim,
and it is the main difference to Lemma 4.3.23.

Recursive Rounds. From this point on, we are working with the same masking set M𝑛/2 as in
Lemma 4.3.23. Moreover, there are no more constraints placed on 𝒓 ′′. Thus, the “transition matrix” 𝑴 ′′
for 𝒓 ′′ is completely analogous to the one in Lemma 4.3.23, and hence each [𝑢′′ℓ ] is uniformly random
unless 𝑴 ′′ is not surjective. Clearly, if [𝑢′′ℓ ] is uniformly random, so is [𝑢ℓ ]. As in Lemma 4.3.23, the
probability that 𝑴 ′′ is not surjective (assuming uniform 𝒈′′ and 𝒓 ′′) is at most 2(𝑘 − 1)/𝑝 per recursion.
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The Last Round. Finally, consider the last recursive round, i.e. the reduction from 𝑛 = 𝑘 to 𝑛 = 1.
Since by assumption, we started with 𝑛 > 𝑘 (hence there are no constraints on 𝒓 ′ and 𝒓 ′′), and since
M𝑘 = {1, . . . , 𝑘}, in this case both 𝒓 ′ and 𝒓 ′′ are uniformly random masks for 𝒘 ′ and 𝒘 ′′. Thus, even
𝛽𝒘 ′ + 𝒓 ′ and 𝛽𝒘 ′′ + 𝒓 ′′ reveals nothing about the original witness (𝒘 ′,𝒘 ′′).

HVZKSimulation. Simulationworks as follows: The simulator chooses random𝒘 ′,𝒘 ′′ for round𝑛 = 𝑘 ,
and honestly computes the response. The previous rounds are simulated in reverse, as usual. Namely,
by picking [𝑢±1] uniformly at random and computing [𝑢0] from this and the challenge. Eventually, the
simulator reaches [𝑐] = [𝑢0] and computes the unique [𝑐𝒓 ] = [𝑐]−(𝛽 [𝑐𝒘]+𝛽2 [𝑄]𝑡). As in Lemma 4.3.23,
each recursive round accumulates (via union-bound) an error of 2(𝑘 − 1)/𝑝 , except for the first round,
which contributes 4(𝑘−1)/𝑝 , and the last round (𝑛 = 𝑘), which contributes no error (since the witness is
already fullymasked). Overall, the statistical distance is at most 𝜀 = 2/𝑝+2(𝑘−1) log2(𝑛)/𝑝 . For themore
general case whereA chooses𝒘 , the statistical distance is at most 𝜀 = 𝛿 + 1/𝑝 + 2(𝑘 − 1) log2(𝑛)/𝑝 . □

B.4. LMPAZK for general [𝑨]

In this section, we provide the details on how to add zero-knowledge to LMPAnoZK for general adversarial
[𝑨] following the outline in Section 4.3.5.3. Our proof system separates the masking randomness from
the actual witness and is a linear combination of multiple protocol instances of LMPAnoZK, namely:
The actual protocol for [𝑨] ≕ [𝑯 (0) ], and protocols for [𝑯 (𝑖 ) ], 𝑖 = 1, . . . ,𝑚, where [𝑯 (𝑖 ) ] essentially
contains a Pedersen commitment key in the 𝑖-th row and is zero otherwise.

To keep things simple, we let𝑚 = 1, 𝑘 = 2 in the following discussion. Intuitively, we want to run a
“randomness-extended” protocol for [𝑩] = [𝑨|𝑯 ] ( 𝒘𝒓 ). The intuition is that 𝒓 will randomise all [𝑢±1]’s
(because [𝑯 ] is not adversarial). Unfortunately, this intuition is wrong: [𝑢1] = [𝑯 ]𝒘 is certainly not
zero-knowledge. The problem is how LMPAnoZK divides the statement. Appropriate shuffling of [𝑩]
and ( 𝒘𝒓 ) would solve this. Instead, we work with a linear combination of LMPAnoZK instances.

More precisely, we run two arguments, one for [𝑨]𝒘 = [𝒕 ′] and one for [𝑯 ]𝒓 = [𝒕 ′′]. The messages
[𝑢−1] and [𝑢1] are the sums of the messages which individual protocols would send, e.g. [𝑢−1] =
[𝑨2]𝒘1 + [𝑯 2]𝒓1. Concretely[︃

𝑢′−1
𝑢′1

]︃
=

[︃
𝑨2𝒘1
𝑨1𝒘2

]︃
,

[︃
𝑢′′−1
𝑢′′1

]︃
=

[︃
𝑯 2𝒓1
𝑯 1𝒓2

]︃
,

[︃
𝑢−1
𝑢1

]︃
=

[︃
𝑢′−1
𝑢′1

]︃
+

[︃
𝑢′′−1
𝑢′′1

]︃
This ensures that the [𝑢′′±1] are uniformly random in every round, because [𝑢′′±1] is. In the base case
of the recursion, i.e. small 𝑛, the prover proves [𝑨]𝒘 + [𝑯 ]𝒓 = [𝒕] in zero-knowledge, using (for
concreteness) Protocol Σstd.

To keep our protocol modular, we split it into two steps. In the first step, we only introduce masking to
achieve HVZK at the price of relaxed soundness. In the second step, we strengthen soundness again.

Protocol B.4.1 (LMPAalmSnd). The following is a protocol to prove K𝒘 : [𝒕 (0) ] = [𝑨]𝒘 . Common input is
( [𝑨], [𝒕 (0) ]) ∈ G𝑚×𝑛 × G𝑛 and some [𝒉] ∈ G𝑛 (typically derived from the CRS when this protocol is
used as a subprotocol). We assume 𝑛 = 𝑘ℓ . Moreover, we let [𝑯 (𝑖 ) ] ∈ G𝑚×𝑛 for 𝑖 = 1, . . . ,𝑚, be defined
as the matrix with [𝒉] in the 𝑖-th row and zeroes elsewhere, i.e. [𝑯 (𝑖 ) ] = 𝒆𝑖 [𝒉]⊤. We use a superscript
0 for terms related to [𝑨], e.g. [𝑯 (0) ] ≔ [𝑨]. The prover’s witness is some𝒘 ∈ F𝑛𝑝 , also written 𝒓 (0) ,
with [𝑨]𝒓 (0) = [𝒕 (0) ].
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• P→ V: (Step 1: Prepare masking.) Pick 𝒓 (𝑖 ) $← M𝑛 ≤ F𝑛𝑝 and compute [𝒕 (𝑖 ) ] = [𝑯 (𝑖 ) ]𝒓 (𝑖 ) . Send
[𝒕 (𝑖 ) ] for 𝑖 = 1, . . . ,𝑚.

• Both prover and verifier now consider the effective statement

[𝑨|𝑯 (1) | . . . |𝑯 (𝑚) ]
⎛⎜⎜⎝
𝒘
𝒓 (1)

...

⎞⎟⎟⎠ = [𝒕] ≔
𝑚∑︂
𝑖=0
[𝒕 (𝑖 ) ] .

• P → V: (Step 2: Shrinking AoK.) Let [𝑯 (𝑖 ) ] = [𝑯 (𝑖 )1 | . . . |𝑯
(𝑖 )
𝑘
] with 𝑯 (𝑖 )

𝑗
∈ G𝑚×𝑛/𝑘 . Compute

[𝒖ℓ ] =
∑︁𝑚
𝑖=0 [𝒖

(𝑖 )
ℓ
], where [𝒖 (𝑖 )

ℓ
] is computed as usual, i.e. [𝒖 (𝑖 )

ℓ
] = ∑︁

𝑗−𝑖=ℓ [𝑯
(𝑖 )
ℓ
]𝒓 (𝑖 )
ℓ
. Send [𝒖ℓ ]

for ℓ = ±1, . . . ,±(𝑘 − 1).

• V→ P: Pick 𝒛 $← ˜︁𝜒mon
2𝑘−1 (with associated 𝒙,𝒚). Send (𝒙,𝒚, 𝒛).

• P → V: As in LMPAnoZK, compute 𝒘 = 𝒙⊤�⃗� =
∑︁
𝑗 𝑥 𝑗𝒘𝑖 and ˆ︁𝒓 (𝑖 ) = 𝒙⊤𝒓 (𝑖 ) =

∑︁
𝑗 𝑥 𝑗 𝒓

(𝑖 )
𝑗

and

[ˆ︁𝑨] = 𝒙⊤ [�⃗�] = ∑︁
𝑗 𝑥 𝑗 [𝑨𝑗 ], [ˆ︁𝑯 (𝑖 ) ] = ∑︁

𝑗 𝑥 𝑗 [𝑯
(𝑖 )
𝑗
], and [ˆ︁𝒕] = 𝒛⊤𝒖 =

∑︁
ℓ 𝑧 𝑗𝒖ℓ , for the reduced

statement (which V also computes).
If 𝑛 > 𝑘 , engage recursively in the AoK for this statement, i.e. goto Step 3. If 𝑛 ≤ 𝑘 , engage in
(for concreteness) Protocol Σstd to prove the statement.

It is easy to check that Protocol B.4.1 is complete.

Remark B.4.2. Suppose that [𝒉] is chosen such that [𝒉] is zero outside of M𝑛 . (An honest prover
would never use some 𝒓 (𝑖 ) which is non-zero outsideM𝑛 , so this is a sensible assumption.) Then the
overhead in exponentiations and randomness introduced by LMPAalmSnd compared to LMPAnoZK is
roughly 2𝑚#M𝑛 ≈ 4𝑚𝑘 log𝑘 (𝑛), hence O(𝑚 log𝑘 (𝑛)) which can be much less than full masking O(𝑛).

Lemma B.4.3. Protocol LMPAalmSnd has (2𝑘 − 1, . . . , 2𝑘 − 1, 2)-special (relaxed) soundness for find-
ing a preimage 𝒗 ∈ (F𝑛𝑝)𝑚 with [𝑨|𝑯 (1) | . . . |𝑯 (𝑚) ]

(︂
𝒗0
...
𝒗𝑚

)︂
= [𝒕 (0) ], or a non-trivial kernel element of

[𝑨|𝑯 ′(1) | . . . |𝑯 ′(𝑚) ]. Here, [𝑯 ′(𝑖 ) ] consists only of the non-zero components of [𝑯 (𝑖 ) ]. (It is easy to find
non-trivial kernel elements if [𝒉] has zeroes, so we exclude them, cf. Remark 4.2.2.)

Moreover, LMPAalmSnd has (𝑘, . . . , 𝑘, 2)-quick (2𝑘, . . . , 2𝑘, 2)-short extractability for the same relation.

Note Lemma B.4.3 does not assert a witness𝒘 ∈ F𝑛𝑝 for [𝑨]𝒘 = [𝒕 (0) ]. That will be assured by an extra
step in a later protocol.

Proof. We only sketch the proof. Let tree be a valid 𝜇-tree of transcripts. First of all, we can extract
the base subprotocol of Step 3. Using these witnesses, we can extract the linearly combined argument
essentially as in Lemma 4.3.19.4 There is only a minor technicality: 𝑯 (𝑖 ) has 0-columns and, a priori,
an extracted 𝒗𝑖 may be non-zero in such a column. However, w.l.o.g. 𝒗𝑖 is zero in any 0-column of 𝑯 (𝑖 ) ,
as this does not affect the result. Thus, the argument is indeed completely analogous. As the submatrix
[𝑯 ′(𝑖 ) ] in Lemma B.4.3 is defined by “omitting” the irrelevant 0-components, the claim follows. □

4 Indeed, after suitably permuting the columns of [𝑨|𝑯 (1) | . . . |𝑯 (𝑚) ], witness, and randomness, the exact same reasoning
as in Lemma 4.3.19 works for the recursive step.
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To prove HVZK for Protocol LMPAalmSnd, we first show that the prover’s messages [𝒖ℓ ] in the recur-
sive steps are almost always uniformly distributed. This yields statistical HVZK via straightforward
simulation.

As a preparation, note following (easy) linear algebra facts:

Lemma B.4.4. Let V ≅ F𝑛𝑝 andW ≅ F𝑚𝑝 be some vector spaces. Let 𝑳 : V→ W be a linear map (i.e. a
matrix 𝑳 ∈ F𝑚×𝑛𝑝 ). Then 𝒓 ↦→ 𝑳𝒓 for 𝒓 $← V uniformly random induces the uniform distribution onW if
and only if 𝑳 is surjective. (Equivalently, if the rows of 𝑳 (as a matrix) are linearly independent.)

Proof. Every 𝑦 ∈ im(𝑳) has the same number of preimages, namely 𝑃 = #ker(𝑳). Thus, if 𝒖 ∈ V is
uniformly distributed, then for every 𝑦 ∈ im(𝑳) we have Pr[𝑳𝒖 = 𝒚] = 𝑃/#V. Hence, if 𝑳 is surjective,
then im(𝑳) =W, 𝑃 = #V/#W and thus Pr[𝑳𝒖 = 𝒚] = 1/#W = 𝑝−𝑚 , as claimed. □

Lemma B.4.5. Consider Protocol B.4.1 (LMPAalmSnd). Suppose that (at least) all components of [𝒉] inM𝑛
are distributed uniformly random (and the rest may be 0).

Denote by 𝑼 the list consisting of messages [𝒖ℓ ] of all recursive rounds of an honest execution. Then, 𝑼 is
𝜀-close to uniformly random for 𝜀 ≤ 2𝑚(𝑘 − 1) log𝑘 (𝑛)/𝑝 .

The lemma is proven almost exactly like the simpler case where 𝑘 = 2,𝑚 = 1 in Lemma 4.3.23. Namely,
the different rows of [𝑨] are masked by the different [𝑯 (𝑖 ) ] in a completely independent manner,
except that “randomization failures” can now happen in every row, which explains the factor𝑚 in the
statistical HVZK error. Moreover, in Lemma 4.3.23 we implicitly used that the masking behaved like a
linear combination, so that we could reduce to studying [𝒈]𝒓 . In the current case, we handle a linear
combination by definition. Overall, the one major difference in the analysis is that we take care of
the case 𝑘 > 2, which is more technical. Another difference is that we do not mask𝒘 directly (i.e. the
protocol does not run on 𝛽𝒘 + 𝒓 , but instead 𝒘 is extended to ( 𝒘𝒓 )). This affects the handling of the
base case for 𝑘 = 2, which now uses Σstd.

As in Lemma 4.3.23, in the proof we will consider the “transition maps”, prove that they are surjective
(with high probability), and then by induction derive that (with high probability) the total transcript
[𝑼 ] of masks is uniformly random. The proof follows.

Proof. It suffices to consider𝑚 = 1, because the matrices 𝑯 (𝑖 ) are constructed such that they mask
the 𝑖-th row only (they are zero in all other rows). Evidently, there is also no “interference” between
rows in the protocol because ˆ︁𝑯 (𝑖 ) is again only non-zero in the 𝑖-th row (𝑖 ≠ 0). However, as the
transition matrix can fail to be surjective in each row separately, we must compensate for this in the
final statistical error, which we do by a union bound. Consequently, we now consider [𝑨], [𝑯 ] ∈ G1×𝑛

and drop the superscripts.
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As a first step, we consider the case where the masking randomness is simply taken from F𝑛𝑝 uniformly,
i.e.M𝑛 = {1, . . . , 𝑛}. By construction, we have (for 𝑠 = 𝑛/𝑘)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 id𝑠 𝑥2 id𝑠 . . . 𝑥𝑘−1 id𝑠 𝑥𝑘 id𝑠
𝑯𝑘 0 . . . 0 0
𝑯𝑘−1 𝑯𝑘 . . . 0 0
...

...
...

...
...

𝑯 1 𝑯 2 . . . 𝑯𝑘−1 𝑯𝑘

...
...

...
...

...

0 0 . . . 𝑯 1 𝑯 2
0 0 . . . 0 𝑯 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
≕𝑳′

⎛⎜⎜⎜⎜⎜⎜⎝

𝒓1
𝒓2
...

𝒓𝑘−1
𝒓𝑘

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ˆ︁𝒓
𝑢1−𝑘
𝑢2−𝑘
...

𝑢0
...

𝑢𝑘−2
𝑢𝑘−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.4.1)

Let 𝑳 be the matrix where the row (𝑯 1, . . . ,𝑯𝑘 ) corresponding to 𝒖0 is removed from 𝑳. If 𝒓1, . . . , 𝒓𝑘
are uniformly distributed, then by Lemma B.4.4 the matrix-vector product

𝑳
⎛⎜⎝

𝒓1
𝒓2
...

𝒓𝑘−1
𝒓𝑘

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ˆ︁𝒓
𝑢1−𝑘
𝑢2−𝑘
...
𝑢−1
𝑢1
...

𝑢𝑘−2
𝑢𝑘−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(B.4.2)

is also uniformly distributed if 𝑳 is surjective. However, this depends on the 𝑯 𝑖 . We (will) see:

• If 𝑯 is uniformly random, then with high probability 𝑳 is surjective, i.e. has independent rows.

• If 𝑳 is surjective, then 𝑢ℓ (for ℓ ≠ 0) andˆ︁𝒓 are jointly uniformly distributed.

• The property is “preserved by reduction”, i.e. even after “application” of 𝒙 to 𝑯 , ˆ︁𝑯 is uniformly
distributed again, and the transition matrix for ˆ︁𝑯 is again surjective (with high probability), and
so on.

Claim B.4.6. If the 𝑯 𝑖s are uniformly random (of dimension 𝑠 ≥ 2), then except with probability
probability at most 2(𝑘 − 1)/𝑝 , the matrix 𝑳 is invertible.

Proof. One quickway to see this is following observation: Let 𝑓 be the determinant of a square submatrix
𝑳, which is a polynomial in the coefficient of 𝑯 . If 𝑓 is not constantly 0, then by Schwartz–Zippel,
with probability at least deg(𝑓 )/𝑝 , we have 𝑓 (𝑯 ) ≠ 0, i.e. 𝑳 is bijective, in particular surjective. Thus,
it suffices to find (for fixed 𝒙) a single choice of 𝑯 such that 𝑳 is invertible. The claim follows since
deg(𝑓 ) = 2(𝑘 − 1).

We argue the case of 𝑠 = 2 in more detail. If 𝑠 = 2, then 𝑳 is already square. Thus, it suffices to see that
det(𝑳) is a non-zero polynomial in 𝑯 of degree at most 2(𝑘 − 1). The degree bound is automatic, since
there are only 2(𝑘 −1) rows with coefficient in 𝑯 (and 𝑠 = 2 rows with 𝑥𝑖s, which are arbitrary but fixed
and non-zero). Thus, it suffices to see that 𝑳 is non-zero. For this, observe that there is only a single
choice of rows and column for Laplace expansion which leads to a coefficient of 𝐻𝑘−1

𝑘,1 𝐻
𝑘−1
1,1 , namely, the

one which results in 𝐻𝑘−1
𝑘,1 𝐻

𝑘−1
1,1 𝑥1𝑥𝑘 which is a non-zero monomial. Hence, indeed, det(𝑳) is a non-zero

polynomial in 𝑯 and the claim follows. (We note that, to apply the Schwartz–Zippel lemma, we also
use that the 𝑥𝑖 are stochastically independent from 𝐻𝑘,1, 𝐻1,1. This holds since we consider HVZK.) □

234



B.4. LMPAZK for general [𝑨]

Now, let us consider the case whereM𝑛 is as in Definition 4.3.21. Recall thatM𝑛 has following structural
properties (for general 𝑘):

• M𝑘ℓ ,𝑖 ≔ M𝑘ℓ ∩ {𝑖𝑘ℓ−1, . . . , (𝑖 + 1)𝑘ℓ−1 − 1} satisfiesM𝑛,1 = M𝑛/𝑘 andM𝑘ℓ ,𝑖 = {𝑖𝑘ℓ−1 − 1, 𝑖𝑘ℓ−1}.

• Split 𝒓 ∈ F𝑘ℓ𝑝 into𝑘 pieces 𝒓𝑖 as usual, and defineˆ︁𝒓 as usual. Then the components in {𝑘ℓ−1−1, 𝑘ℓ−1}
of each 𝒓𝑖 are linearly combined inˆ︁𝒓 .

Observe that,ˆ︁𝒓 lies in the “correct” subspace of F𝑛/𝑘𝑝 , namely inM𝑛/𝑘 . We will show that, the distribution
of (ˆ︁𝒓, [𝑢±1], . . . , [𝑢±(𝑘−1) ]) is uniformly random inM𝑛/𝑘 × G2(𝑘−1) .

To this end, we now analyze the surjectivity of transition matrix 𝑳. First of all, we remove the columns
not in M𝑛 from 𝑳. (The respective columns are “useless” for randomisation, since 𝒓 (and 𝑯 ) is only
non-zero for components inM𝑛 .) Second, we remove the rows not inM𝑛/𝑘 from the upper part of 𝑳
(corresponding toˆ︁𝒓 ). (Again, sinceˆ︁𝒓 need only be non-zero for components in M𝑛/𝑘 , we only need
surjectivity in those components.) Note that now all remaining components of 𝒓 and 𝑯 were chosen
uniformly at random (as part of the induction hypothesis).

We denote this submatrix of the relevant parts of 𝑳 by 𝑴 . Note that 𝑴 has dimensions dim(M𝑛) ×
(dim(M𝑛/𝑘 ) + 2(𝑘 − 1)), where dimM𝑛/𝑘 stems fromˆ︁𝒓 and 2(𝑘 − 1) from [𝑢±𝑖] (for 𝑖 = 1, . . . , 𝑘 − 1).
Since dim(M𝑛) = dim(M𝑛/𝑘 ) + 2(𝑘 − 1), we see that 𝑴 is in fact a square matrix.

As in Lemma 4.3.23, we now split 𝒓1 into (𝒓 ′1, 𝒓 ′′1 ), where 𝒓 ′1 corresponds to componentsM𝑛/𝑘 \ {𝑘ℓ−1 −
1, 𝑘ℓ−1} and 𝒓 ′′1 corresponds to components {𝑘ℓ−1 − 1, 𝑘ℓ−1}. Similarly, we define 𝒓 ′′𝑖 corresponding to
the components {𝑘ℓ−1 − 1, 𝑘ℓ−1} in 𝒓𝑖 . We also defineˆ︁𝒓 ′,ˆ︁𝒓 ′′ and 𝑯 ′𝑖 , 𝑯 ′′𝑖 analogously. Thus, we only
consider components which are not always zeroed (by an honest prover). Note that we exploited the
structure ofM𝑛 here. Now, the transition during a recursive step is the following:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 iddim(M𝑛/𝑘 )−2 0 0 . . . 0 0
0 𝑥1 id2 𝑥2 id2 . . . 𝑥𝑘−1 id2 𝑥𝑘 id2
𝑯 ′
𝑘

𝑯 ′′
𝑘

0 . . . 0 0
𝑯 ′
𝑘−1 𝑯 ′′

𝑘−1 𝑯 ′′
𝑘

. . . 0 0
...

...
...

...
...

...

𝑯 ′2 𝑯 ′′2 𝑯 ′′3 . . . 𝑯 ′′
𝑘

0
0 0 𝑯 ′′1 . . . 𝑯 ′′

𝑘−2 𝑯 ′′
𝑘−1

...
...

...
...

...
...

0 0 . . . . . . 𝑯 ′′1 𝑯 ′′2
0 0 . . . . . . 0 𝑯 ′′1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
≕𝑴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝒓 ′1
𝒓 ′′

𝒓 ′′2
...

𝒓 ′′
𝑘−1
𝒓 ′′
𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ˆ︁𝒓 ′ˆ︁𝒓 ′′
𝑢1−𝑘
𝑢2−𝑘
...

𝑢−1
𝑢1
...

𝑢𝑘−2
𝑢𝑘−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.4.3)

To prove surjectivity of this transition matrix, we can remove the left block with iddim(M𝑛/𝑘 )−2. What
remains is a matrix which looks exactly like the one we dealt with in Claim B.4.6 for 𝑠 = 2. Thus, we
have shown the following claim.

Claim B.4.7. If 𝑯 𝑖 are uniformly random in all components ofM𝑛 , then except with probability at most
2(𝑘 − 1)/𝑝 , the matrix 𝑳 is invertible.

The lemma now follows, since (by induction) the statistical distance is overall at most 2 log𝑘 (𝑛) (𝑘−1)/𝑝 .
More formally, each round 𝑖 is a (probabilistic) function 𝑓𝑖 applied to an input distribution 𝐷𝑖 . Here
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𝐷𝑖 includes all previous 𝑢±𝑗 (for 𝑗 = 1, . . . , 𝑘 − 1), and the current 𝒓 and 𝑯 .5 Initially, 𝐷𝑖 is uniform.
By Claim B.4.7 the round function 𝑓𝑖 applied to a uniform distribution has statistical distance of at
most 2(𝑘 − 1)/𝑝 from a uniform output distribution. Thus, by induction, 𝑓1(. . . (𝑓ℓ (𝐷ℓ ))) has statistical
distance at most 2ℓ (𝑘 − 1)/𝑝 from uniform. □

Lemma B.4.8. LMPAalmSnd is 𝜀-statistical HVZK for 𝜀 ∈ 2𝑚(𝑘 − 1) log𝑘 (𝑛)/𝑝 .

Proof. The base case of the protocol (as part of Step 2), simply relies on Σstd, for which a perfect simulator
exists. Thus, we only need to simulate the recursive steps. For any recursive step, it is possible to
efficiently compute [𝒖0] in reverse, given the challenge and all [𝒖±ℓ ] for ℓ = 1, . . . , 𝑘−1. By Lemma B.4.5,
all [𝒖±ℓ ] in all rounds are jointly statistically 𝜀-close to uniform for 𝜀 ≤ 2𝑚(𝑘 − 1) log𝑘 (𝑛)/𝑝 . Thus, if
the simulator chooses all [𝒖±ℓ ] in all rounds uniformly, the distribution will be 𝜀-close to an honest
execution.

Lastly, we handle Step 1 of the protocol, where [𝒕 (𝑖 ) ] for 𝑖 = 1, . . . ,𝑚 is sent. Concretely, given [𝒕]
and [𝒕 (0) ] the simulator must find suitable [𝒕 (𝑖 ) ] ∈ G𝑚 for 𝑖 = 1, . . . ,𝑚 such that [𝒕] = ∑︁𝑚

𝑖=0 [𝒕 (𝑖 ) ].
Since [𝒕 (𝑖 ) ] is zero, except in the 𝑖-th component (for 𝑖 ≠ 0), it is uniquely (and efficiently) defined by
[𝒕] − [𝒕 (0) ]. This completes the simulation. □

The soundness of Protocol LMPAalmSnd is weakened by the fact that 𝑨 is adversarially chosen, and
hence finding a non-trivial kernel element of [𝑨|𝑯 ′(1) | . . . |𝑯 ′(𝑚) ] does not reduce to breaking a hard
kernel assumption. This can be avoided by a similar construction as in Protocol LMPAbatch, namely
first extending [𝑨] to [𝑨′] ≔

[︁
𝑔0 𝒈
0 𝑨

]︁
where [𝑔0,𝒈] = [𝒈], extending 𝒘 to 𝒘 ′ ≔ (𝑟𝒘,𝒘) for 𝑟𝒘 $← F𝑝 ,

and extending [𝒕] to [𝒕 ′] =
[︁
𝑐𝒘
𝒕

]︁
where [𝑐𝒘] = [𝑔0]𝑟 + [𝒈]𝒘 . That is, the prover sends [𝑐𝒘] as its

first message. As in Protocol LMPAbatch, we batch down all rows of [𝑨′] (except [𝒈]) to a single one
to reduce communication. Then, with the modified and extended statement K𝒘 : [ˆ︁𝑨]𝒘 = [ˆ︁𝒕], prover
and verifier engage in LMPAalmSnd. Now, a non-trivial kernel element of [ˆ︁𝑨,𝑯 ′(1) ,𝑯 ′(2) ] implies a
non-trivial kernel element of [𝒈,𝒉] (as the first of the two rows is [𝒈,𝒉, 0]). Since [𝒈,𝒉] is part of the
CRS, we can rely on a hard kernel assumption. Thus, this protocol achieves computational soundness.
More concretely, the protocol is correct, 𝜀-statistical HVZK with 𝜀 ≤ 4(𝑘 − 1) log𝑘 (𝑛)/𝑝 , and special
sound with short-circuit extraction. We leave the (straightforward) details to the reader.

Lemma B.4.9. The protocol described above is correct and 𝜀-statistical HVZK with 𝜀 ≤ 4(𝑘 −1) log𝑘 (𝑛)/𝑝 .
It has (𝑚+1, 2𝑘−1, . . . , 2𝑘−1, 2)-special (relaxed) soundness for finding a witness𝒘 ∈ F𝑛𝑝 with [𝑨]𝒘 = [𝒕],
or a non-trivial kernel element of [𝒈,𝒉].

Moreover, the protocol has (1, 𝑘, . . . , 𝑘, 2)-quick (𝑚 + 1, 2𝑘, . . . , 2𝑘, 2)-short extraction for the same relaxed
soundness relation.

Proof. We leave the (straightforward) proofs to the reader. We merely remark that 𝜀 is independent of𝑚
due to batch-verification (which reduces [𝑨] to 2 rows, i.e.𝑚 = 2) prior to engaging in the (sub)protocol
LMPAalmSnd. □

5 While we did not explicitly keep track of 𝑯 before, we must also ensure the after each reduction step, ˆ︁𝑯 is again uniformly
distributed (in order to apply Claim B.4.7). But that is obvious, by definition of 𝑯 and ˆ︁𝑯 .
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B.5. Further Notes on Knowledge Soundness and Testing Distributions

This section is a mingle-mangle of further discussion related to knowledge soundness and extraction.

B.5.1. Lower bounds for black-box extraction

In this section, we show that it is unlikely to obtain (significantly) sublinear extraction with black-box
extraction for many relation of interest. Intuitively, we define a form of hardness which implies “witness
incompressibility”. A direct consequence is, that an extractor must receive enough “response material”
from the prover, or extraction would violate the “incompressibility” assumption. The rest of this section
is slightly informal, as the primary goal is merely to point out obstructions for better extractors.

Definition B.5.1. Let R be an efficient relation and Sample(1𝜆) be an efficient algorithm sampling
(hard) instances (x,w) from R. For simplicity, let the size of (x,w) be the bit-length |w| of w. Let
𝛼 ∈ N → [0, 1], 𝑡 ∈ N → N be efficiently computable functions and consider following game with
adversary (A, 𝐹 ):

1. (x,w) ← Sample(1𝜆)

2. Compute the hint ℎ = 𝐹 (1𝜆,x,w; 𝑟 ), where 𝑟 is the random tape of 𝐹 .

3. A (1𝜆,x, ℎ, 𝑟 ) must output some w′. If (x,w′) ∈ R, return 1 (A wins) else 0 (A loses).

The advantage of the pair (A, 𝐹 ) is defined as the probability that A wins the game. We say R is
(𝛼, 𝑡)-hard w.r.t. Sample, if for every pair of 𝑡-time algorithms (A, 𝐹 ) playing the above game, the
advantage ofA is negligible.

Corollary B.5.2. Let Ext be an expected polynomial time black-box extractor with negligible knowledge
error for some efficient proof system (GenCRS, P,V) for relationR which is (𝛼, 𝑡)-hard for superpolynomial
𝑡 (or for every polynomial 𝑡 ). Let 𝑠 = 𝑠 (𝜆) bound the size of the responses Ext received from its black-box
access to the honest prover P. Then, 3𝑠 (𝜆) > 𝛼 ( |w|) |w|

Note that we bound the required number of transcripts for honest provers. Clearly, for malicious
provers, the situation only gets worse.

Proof sketch. Let 𝜀 (𝜆) be the success probability of Ext in the knowledge soundness experiment with the
honest prover. Since we consider honest provers and negligible knowledge error, 𝜀 (𝜆) is overwhelming,
so at least 1/2 for large enough 𝜆. Suppose also that Ext has expected time bounded by a polynomial
𝑡Ext(𝜆). Since R is (𝛼, 𝑡)-hard w.r.t. Sample for every polynomial 𝑡 , and since the proof system is
efficient, our idea is to run the extraction experiment within 𝐹 . The output of 𝐹 consists of all messages
which Ext would have received from its prover oracle. Since 𝐹 ’s randomness is always passed toA,
the view of Ext is available and A can re-run the experiment, in particular re-run Ext, to compute w′.
Whenever Ext succeeds, so doesA. Since 𝐹 is strictly 𝑡-time, but Ext is an expected time algorithm, we
must truncate the execution of Ext in 𝐹 to make this idea work. By Markov’s inequality, truncating the
execution of Ext after 2𝑡Ext/𝜀 steps will only lead to a timeout with probability 𝜀

2 . Since 𝜀 (𝜆) ≥ 1/2 for
large enough 𝜆, we can let 𝐹 truncate Ext after 𝑡 = 4𝑡Ext and get a success probability of A which is at
least 𝜀2 infinitely often. Lastly, since the responses which Ext received from its black-box access to P (in
the simulation of 𝐹 ) have a length of 𝑠 (𝜆) bits, they can be encoded in the output of 𝐹 in at most 3𝑠 (𝜆)
bits.
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All in all, we have constructed a 𝑡-time adversary (A, 𝐹 ) fromA with non-negligible success probability.
Since R is (𝛼, 𝑡)-hard w.r.t. Sample for any polynomial 𝑡 , this implies (by contradiction) that 3𝑠 (𝜆) >
𝛼 ( |w|) |w|. □

As a consequence of Corollary B.5.2, we see that if a there exists a system of quadratic equations with
(𝛼, poly)-hardness for some constant 𝛼 and all polynomials poly, then to extract a witness of dimension
𝑛, hence size𝑚 = O(𝑛𝜆) (due to F𝑛𝑝 with log(𝑝) ∈ O(𝜆)), the total response size must be Ω(𝛼𝑚). In an
extraction tree of depth 𝑑 , every leaf in the tree corresponds to at most 𝑑 responses. In fact, in general,
much fewer since most paths in the tree share some responses. If every response has maximal size
𝑠 ∈ O(𝜆), the number of leaves must be Ω( 𝛼𝑚

𝑑𝑠
) = Ω( 𝛼𝑛

𝑑
).

To conclude, we see that under certain (very strong) hardness assumptions, extractors for succinct
proofs must query their oracle often to be able to extract. While such assumptions may not hold for
actual problems of interest, they present a significant obstruction for “generic” means of extraction,
which do not explicitly exploit the “compressibility” of the witness. To circumvent these obstructions,
very strong cryptographic hardness assumptions or model assumptions seem necessary, e.g. extractable
hash functions or random oracles, seem to be necessary. With such powerful cryptographic assumptions
it is well-known how to achieve succinct proofs with straight-line extractability.6

B.5.2. Properties of Testing Distributions

Remark B.5.3. Let 𝜒𝑚 be a testing distribution. Then the probability that 𝑥𝑖 = 𝑥 𝑗 for 𝒙 $← 𝜒𝑚 is smaller
than 𝛿snd(𝜒𝑚). This holds since the vectors with 𝑥𝑖 = 𝑥 𝑗 are the set 𝐵 = ker(𝒛⊤) for 𝒛 = 𝒆𝑖 − 𝒆 𝑗 ≠ 0.
And Pr𝒙 $←𝜒 [𝒙⊤𝒛] ≤ 𝛿snd(𝜒) holds by definition.

Remark B.5.4. The above argument in Remark B.5.3 generalises to other relations/properties of vectors
which affect invertibility. Thus, a testing distribution must be “well-spread” over a vector space to
achieve high information-theoretic soundness.

Remark B.5.5. As another measure for the soundness error of a testing distribution 𝜒𝑚 , one may look
at the probability Pr𝑿 $←𝜒𝑚𝑚 [det(𝑿 ) ≠ 0], i.e. the probability that𝑚 challenges are linearly independent.
This measure, while clearly related to our definition of information-theoretic soundness error, behaves
quite differently. For example, consider a testing distribution which picks uniformly from {0, 1}𝑚 . A
well-known conjecture for random binary 𝑛×𝑛 matrices over the reals, states that only a (1+𝑜 (1))𝑛22−𝑛
fraction is singular. However, the probability that 𝑥𝑖 = 𝑥 𝑗 is 1

4 in this case, and hence by Remark B.5.3
the information-theoretic soundness error is at least 1/4. While in our case, the matrices are not over
the reals, but modulo 𝑝 , it is very plausible that only a small portion, perhapsO(1/𝑝), of random binary
matrices fail to be invertible over F𝑝 but are invertible over R — indeed, this failure happens if and only
if the determinant det(𝑿 ) ∈ 𝑝Z.

Remark B.5.6. Instead of analyzing testing distributions over F𝑚𝑝 , one can do so over the projective
space (F𝑚𝑝 \ {0})/F×𝑝 , i.e. one can identify all “test vectors” which are non-zero scalar multiples of
another and exclude 0. The main reason this works is, that linear independence can be checked on these
equivalence classes, and the information-theoretic soundness error as well. By fixing one component
to 1 (as e.g. in monomimial testing distributions), one already ensures no scalar multiples exist.

6 While straight-line extractability does not imply tightness in the usual sense, e.g. “extracting” a hash function may be very
expensive, it is a first step towards the goal. In the ROM, extractability is free.
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B.5. Further Notes on Knowledge Soundness and Testing Distributions

B.5.3. Tensor-Based Testing Distributions

Recall that, in a sense, construction of tensor-based testing distributions corresponds to multiple
challenges, or the unrolling of the recursive steps in our proof systems. The following lemma tightly
characterizes their information-theoretic soundness error.

Lemma B.5.7. Let 𝜒 = 𝜒1 ⊗ . . . ⊗ 𝜒ℓ be the tensor product of ℓ testing distributions 𝜒𝑖 on F𝑘𝑖𝑝 with 𝛿snd(𝜒𝑖).
Then 𝜒 has

𝛿snd(𝜒) ≤ 1 −
ℓ∏︂
𝑖=1
(1 − 𝛿snd(𝜒𝑖)) ≤

ℓ∑︂
𝑖=1

𝛿snd(𝜒𝑖) .

Proof. By induction, it suffices to consider ℓ = 2. Let 𝛿𝑖 ≔ 𝛿snd(𝜒𝑖). Recall that

𝛿snd(𝜒) = max
𝒛

Pr𝒙 $←𝜒 [𝒙⊤𝒛 = 0] = max
𝐻

Pr𝒙 $←𝜒 [𝒙 ∈ 𝐻 ]

where 𝐻 ranges over all hyperplanes. Recall that for every hyperplane 𝐻 ≤ F𝑚𝑝 , there is a (non-zero)
linear maps 𝜙 : F𝑚𝑝 → F𝑚𝑝 with 𝐻 = ker(𝜙). That is, 𝜙 (𝒙) = 0 ⇐⇒ 𝒙 ∈ 𝐻 . Let 𝜑 : F𝑘1𝑝 ⊗ F𝑘2𝑝 → F𝑝 be
such a linear map and 𝐻 = ker(𝜑). Recall that any element 𝒛 in supp(𝜒) is an elementary tensor 𝒙 ⊗𝒚
by definition of 𝜒 = 𝜒1 ⊗ 𝜒2.

Considering the induced linear map 𝜑 ( · ⊗𝒚) : F𝑘1𝑝 → F𝑝 , we find that, for any choice of 𝒚,

Pr𝒙←𝜒1 [𝜑 (𝒙 ⊗𝒚) = 0] ≤ 𝛿1

by definition of 𝛿snd(𝜒1), except if 𝜑 (_ ⊗𝒚) = 0 as a map. But 𝜑 (_ ⊗𝒚) = 0 implies

𝒚 ∈ 𝐾 ≔ {𝒃 | 𝜑 (_ ⊗ 𝒃) = 0} ≤ F𝑘2𝑝 .

Observe that 𝐾 is a subspace of dimension at most (𝑘2 − 1), (else 𝜑 = 0, a contradiction). Thus, we get

Pr𝒚←𝜒2 [𝜑 (_ ⊗𝒚) = 0] = Pr𝒚←𝜒2 [𝒚 ∈ 𝐾] ≤ 𝛿2.

Then we from 𝒛 = 𝒙 ⊗𝒚 that

Pr𝒛←𝜒 [𝒛 ∈ 𝑉 ] = Pr𝒙 $←𝜒1,𝒚 $←𝜒2 [𝜑 (𝒙 ⊗𝒚) = 0]
≤ (1 − Pr𝒚 $←𝜒2 [𝒚 ∉ 𝐾])max

𝒚∉𝐾
Pr𝒙 $←𝜒1 [𝜑 (𝒙 ⊗𝒚)] + Pr𝒚 [𝒚 ∈ 𝐾]

≤ (1 − 𝛿2)𝛿1 + 𝛿2
= 1 − (1 − 𝛿1) (1 − 𝛿2)
≤ 𝛿1 + 𝛿2.

The claim follows for ℓ = 2 and by straightforward induction for general ℓ . □

Our recursive arguments actually have a tensor structure, namely they reduce F𝑛𝑝 = (F𝑘𝑝)ℓ to (F𝑘𝑝)ℓ−1
in one step, i.e. they apply a linear map to one of the factors of the tensor product. It is not hard to
see that in Section 4.3.6, Protocol 4.3.18, one applies 𝒙1 ⊗ . . . ⊗ 𝒙ℓ to [𝑨] and 𝒚1 ⊗ . . . ⊗𝒚ℓ to𝒘 when all
batching steps are taken together.
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B. Appendix for Chapter 4

B.6. Further Remarks on our Implementation

B.6.1. Arithmetic Circuits

We useQESAZK to prove arithmetic circuits. In contrast to existing techniques,QESAZK is not restricted
to R1CS circuits, but can also handle quadratic equations. Hence we include a preprocessing step in
Python, which transforms arithmetic circuits generated by the Pinocchio compiler [PGHR13] or jsnark7
into quadratic equations.

Preprocessing. We preprocess the arithmetic circuit in order to better make use of “quadratic equation
gates” (quad gates in the following). To this end, we perform a series of transformations, which in the
end yield an equivalent circuit comprised almost entirely of quad gates.

The transformations follow a few simple observations. Some gates can be represented directly by
(quadratic) constraints. For example, xor(𝑋,𝑌 ) can be represented as (1−𝑋 )𝑌 +𝑋 (1−𝑌 ) = 0. We refer
to these as isolated gates in the following. Other gates, such as pack with pack(𝑥1, . . . , 𝑥𝑘 ) =

∑︁𝑘
1 𝑥𝑖2𝑖 =

𝑥0 + 2(𝑥1 + 2(. . . + 2𝑥𝑘 . . .)), can be decomposed into a series of arithmetic gates, hence we coin them
decomposable gates. The remaining basic gates, i.e., add, sub, const-mul, and const-mul-neg, can be
merged if they precede a mul gate, resulting in a quad gate computing

∑︁
𝑖, 𝑗 𝑤𝑖Γ𝑖, 𝑗𝑤 𝑗 = 𝑤𝑘 . Such a quad

gate 𝔤 can be represented by 𝚪𝔤 =
∑︁
𝑖 𝒂𝔤,𝑖𝒃

⊤
𝔤,𝑖 − 𝒆𝟞𝒆⊤𝔤 ∈ F𝑛×𝑛𝑝 , where 𝒂𝔤,𝑖 , 𝒃𝔤,𝑖 are constants describing

the gate. We find that𝒘⊤𝚪𝔤𝒘 = 0 iff 𝔤 is satisfied by the wire assignment𝒘 .

Based on these observations, our preprocessing applies the following steps: First, decomposable gates
are replaced with other gates depending on their functionality.

Then, each wire𝑤 that is either a global output wire or an input wire of an isolated gate, is prepended
with a new mul gate where one input is 𝑤 and the other is the constant-1 wire. Naturally, this is
only applied if𝑤 is not already the output of a mul gate. The insertion allows for later aggregation of
preceding logic into a single quad gate.

Now, all remaining basic gates are merged into quad gates of the form
∑︁
𝑖, 𝑗 𝑎𝑖𝑤𝑖Γ𝑖, 𝑗𝑏 𝑗𝑤 𝑗 = 𝑤𝑘 . This

aggressive optimisation may result in several gates with constant𝑤𝑘 = 0. Therefore, constant zeros are
propagated through the circuit, eliminating affected gates and wires. Finally the circuit is stripped of
floating gates where no output is connected any more and for each remaining gate the corresponding
𝚪𝑖 is extracted.

Results. We evaluate QESAZK using the same 512-bit SHA256 circuit without padding as in [BBB+18].
The preprocessed circuit consists of 25657 wires, i.e. ,𝒘 ∈ F25657𝑝 and 25840 matrices 𝚪𝑖 ∈ F25657×25657𝑝 .
If the 𝚪𝑖 would have been stored without the sparse matrix optimisation, this would require the
implementation to hold 25840 · 256572 > 243 F𝑝 elements in memory just for the matrices. The sparse
representation reduces this to 197465 F𝑝 elements. Since QESAZK expects 𝑛 to be a power of two, we
set 𝑛 = 215 = 32768 and the witness is zero-extended accordingly. As a result, the implementation took
84.2s for P and 38.1s for V on average.

7 See: https://github.com/akosba/jsnark
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B.7. Overview of Protocols

Parameters Bulletproofs Bulletproofs with IPAnoZK
P V P V

60 bit 0.26 0.17 0.23 0.11
60 bit × 2 0.47 0.29 0.42 0.21
60 bit × 32 7.4 4.5 6.3 3.7
60 bit × 128 28.9 17.9 26.6 14.2
60 bit × 512 116 78.7 105 55.5
124 bit 0.46 0.29 0.41 0.22
124 bit × 32 14.9 9.2 13.6 7.0
124 bit × 128 59.7 36.8 54.1 29.7
124 bit × 512 238 147 219 117
252 bit 0.95 0.59 0.79 0.46
252 bit × 32 30.2 18.6 26.1 14.3
252 bit × 128 121 74.3 105 58.4
252 bit × 512 484 297 426 227

Table B.1.: Comparison of non-optimised prover runtime in seconds of aggregate range proofs from [BBB+18] with the
original IPA and with IPAnoZK. Verification times are only included for completeness, since powerful optimziations equalize
efficiency, see Section 4.5 for details.

B.6.2. Bulletproofs with IPAnoZK

One of our main contributions is the improvement of the original IPA from [BBB+18]. In order to
practically evaluate the impact of said improvements, we benchmarked Bulletproofs aggregate range
proofs with the same parameters as in Table 4.3, but this time used IPAnoZK instead. Table B.1 shows
the results.

B.7. Overview of Protocols

In the following, we give an overview of the protocols for with several choices fixed. In particular,
we fix 𝑘 = 2. Otherwise, the respective setting is as in the definition of the protocols. Let S ⊆ F×𝑝 .
Note that S does not contain zero. For simplicity, we use the testing distribution 𝜒 (𝛽≠0) , which draws
𝛼

$← S and returns (𝛼, 1). (Indeed, 𝜒 (𝛽≠0) = 𝜒 (𝛽 ) since 0 ∉ S.) Moreover, we write 𝛼 $← 𝜒 (𝛽≠0) instead.
For other testing distributions 𝜒𝑛 , we consider 𝒙 $← {1} × S𝑛−1, that is 𝑥1 = 1 always and the other
components are random (small) exponents in S. These choices are compatible with the restrictions
posed in some protocols. For ˜︁𝜒2𝑘−1 we use an explicit choice (𝒙,𝒚, 𝒛), namely (1, 𝛽) = 𝒙 $← 𝜒 (𝛽≠0) ,
𝒚 = (𝛽, 1) and 𝒛 = (1, 𝛽, 𝛽2).

In our presentation, we use following conventions:

• Inputs, which must be known to both parties are common inputs.

• Inputs, which a party (generally the prover) can derive from other inputs, are removed from
common inputs.

For example, the target value 𝑡 in IPAalmZK is not a treated as a common input, since P can recompute
𝑡 = ⟨𝒘 ′,𝒘 ′′⟩ via the witness. This makes data flow (and some optimisations) more explicit, e.g.
Remark 4.4.8.
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B. Appendix for Chapter 4

IPAnoZK(Protocol 4.4.1)
Common Input: crs = ( [𝒈′,𝒈′′, 𝑄])

Prover P Verifier V
Input: 𝒘 ′,𝒘 ′′ Input: [𝑐], 𝑡

𝛼
$← 𝜒 (𝛽≠0)

𝛼←−−−−−−−−−−−−
[𝑄] ≔ 𝛼−1 [𝑄] [𝑄] ≔ 𝛼−1 [𝑄]

[𝑐] ≔ [𝑐] − (𝛼 − 1)𝑡 [𝑄]
Recursive step. Suppose 𝑛 > 1

split𝒘 ′ in halves𝒘 ′1,𝒘 ′2
split𝒘 ′′,𝒈′,𝒈′′ analogously
[𝒖′−1] ≔ [𝒈′2]𝒘 ′1, [𝒖′+1] ≔ [𝒈′1]𝒘 ′2
compute [𝒖′′±1] analogously
𝑣−1 ≔ ⟨𝒘 ′2,𝒘 ′′1 ⟩
𝑣+1 ≔ ⟨𝒘 ′1,𝒘 ′′2 ⟩
[𝒖−1] ≔ [𝒖′−1] + [𝒖′′+1] + 𝑣+1 [𝑄]
[𝒖+1] ≔ [𝒖′+1] + [𝒖′′−1] + 𝑣−1 [𝑄]

[𝒖−1 ],[𝒖+1 ]−−−−−−−−−−−−→
𝜉

$← 𝜒 (𝛽≠0)

𝜉
←−−−−−−−−−−−−

[𝒈′] ≔ [𝒈′1] + 𝜉 [𝒈′2] [𝒈′] ≔ [𝒈′1] + 𝜉 [𝒈′2]
[𝒈′′] ≔ 𝜉 [𝒈′′1 ] + [𝒈′′2 ] [𝒈′′] ≔ 𝜉 [𝒈′′1 ] + [𝒈′′2 ]
𝒘 ′ ≔ 𝜉𝒘 ′1 +𝒘 ′2 [𝑐] ≔ 𝜉2 [𝒖−1] + 𝜉 [𝑐] + [𝒖+1]
𝒘 ′′ ≔ 𝒘 ′′1 + 𝜉𝒘 ′′2
𝑛 ≔ 𝑛/2 𝑛 ≔ 𝑛/2

Start next recursion iteration.

Base case. Suppose 𝑛 = 1
𝒘′,𝒘′′−−−−−−−−−−−−→

return true iff:
[𝑐] ?

= [𝒈′]𝒘 ′ + [𝒈′′]𝒘 ′′ + 𝑡 [𝑄]
where 𝑡 ≔ ⟨𝒘 ′,𝒘 ′′⟩

B.8. A Short Note on R1CS and QE

The work [AC20] uses a simple linearization technique to replace the inner product argument (IPA), by
its basic building block, a linear map preimage argument (LMPA). The improvement of [AC20] is mostly
conceptual and does not offer efficiency improvements (computation- or communication-wise). The
encoding of [AC20] is based on multiplication-triples, and it does not seem to immediately generalize
to systems of (general) quadratic equations (QE), and appears limited to rank-1 constraint systems
(R1CS).

In this section,

• we point out a simple way to efficiently reduce QE to R1CS (almost for free);
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B.8. A Short Note on R1CS and QE

IPAalmZK (Protocol 4.4.3)
Common Input: crs = ( [𝒈′,𝒈′′, 𝑄])

Prover P Verifier V
Input: 𝒘 ′,𝒘 ′′ Input: [𝑐𝒘], 𝑡

𝒓 ′ $← ker(𝒘 ′′⊤) ∩M+𝑛
𝒓 ′′ $←{︃
𝒗 ∈ M+𝑛

|︁|︁|︁|︁ ⟨𝒓 ′, 𝒓 ′′⟩ = 0
∧⟨𝒘 ′, 𝒓 ′′⟩ = −⟨𝒓 ′,𝒘 ′′⟩

}︃
[𝑐𝒓 ] ≔ [𝒈′]𝒓 ′ + [𝒈′′]𝒓 ′′

[𝑐𝒓 ]−−−−−−−−−−−−→
𝛽

$← 𝜒 (𝛽 )

𝛽
←−−−−−−−−−−−−

𝑡 ≔ 𝛽2𝑡
𝒘 ′ ≔ 𝛽𝒘 ′ + 𝒓 ′ [𝑐] = [𝑐𝒓 ] + 𝛽 [𝑐𝒘] + 𝑡 [𝑄]
𝒘 ′′ ≔ 𝛽𝒘 ′′ + 𝒓 ′′

Engage IPAnoZK(crs, P(𝒘 ′,𝒘 ′′), V( [𝑐], 𝑡))

QESAInner (part of Protocol 4.4.7)
Common Input: crs = ( [𝒈′,𝒈′′, 𝑄]), {𝚪𝑖}

Prover P Verifier V
Input: 𝒘, 𝒓 ′ Input: [𝑐′𝒘]

𝒘 ′ ≔
(︁ 𝒘
𝒓 ′

)︁
𝒙 $← 𝜒𝑁

𝒙←−−−−−−−−−−−−
𝚪 ≔

∑︁𝑁
𝑖=1 𝑥𝑖𝚪𝑖 𝚪 ≔

∑︁𝑁
𝑖=1 𝑥𝑖𝚪𝑖

𝛽 ≔ 𝑥2 𝛽 ≔ 𝑥2
[𝑔′1] ≔ 𝛽−1 [𝑔′1] [𝑔′1] ≔ 𝛽−1 [𝑔′1]
𝒘 ′′ ≔

(︁
𝚪𝒘
𝑹𝒓 ′

)︁
[𝑐′𝒘] ≔ [𝑐′𝒘] − (𝛽 − 1) [𝑔′1]

[𝑐′′𝒘] ≔ [𝒈′′]𝒘 ′′
[𝑐′′𝒘 ]−−−−−−−−−−−−→

(1, 𝒔, 𝒃) $← 𝜒𝑛 , 𝒔′ ≔ ( 𝒔𝒃 )
𝒔′←−−−−−−−−−−−−

𝑡 ≔ −⟨𝒔, 𝚪⊤𝒔⟩
𝒘 ′ ≔ 𝒘 ′ − 𝒔′ [𝑐𝒘] ≔ [𝑐′𝒘] − [𝒈′]𝒔′ + [𝑐′′𝒘] +

[𝒈′′]𝚪′⊤𝒔′
𝒘 ′′ ≔ 𝒘 ′′ + 𝚪′⊤𝒔′

Engage IPAalmZK(crs, P(𝒘 ′,𝒘 ′′), V( [𝑐𝒘], 𝑡))

• we show a direct encoding of for QE which does not go through multiplication-triples/Lagrange
basis (but still multiplication of univariate polynomials of high degree, unlike IPA-based encodings
of R1CS or QE).

Recall that, while R1CS and QE are closely related (and both NP-complete), there is a difference in
expressivity. For example, when an inner product (e.g. the 2-norm) between 𝑛-dimensional vector must
be computed, this requires 𝑛 − 1 auxiliary variables (and constraints) in R1CS, but no auxiliary variables
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QESAZK (Protocol 4.4.7)
Common Input: crs = ( [𝒈′,𝒈′′, 𝑄]), {𝚪𝑖}

Prover P Verifier V
Input: 𝒘 Input: ∅

𝒓 ′ $← F2𝑝
[𝑐′𝒘] ≔ [𝒈′]

(︁ 𝒘
𝒓 ′

)︁
[𝑐′𝒘 ]−−−−−−−−−−−−→

Engage QESAInner((crs, {𝚪𝑖}), P(𝒘, 𝒓 ′), V( [𝑐′𝒘]))

QESACopy(Protocol 4.4.17)
Common Input: crs = ( [𝒈′,𝒈′′, 𝑄]), {𝚪𝑖}, {˜︁ck (𝑖 ) }, {[˜︁𝑐 (𝑖 ) ]}

Prover P Verifier V
Input: 𝒘 , {𝒗 (𝑖 ) } Input: ∅

𝒓 ′ $← F2𝑝
𝒘 ′ ≔

(︁ 𝒘
𝒓 ′

)︁
[𝑐′𝒘] ≔ [𝒈′]𝒘 ′

[𝑐′𝒘 ]−−−−−−−−−−−−→
𝜶 $← 𝜒𝑀+1 with 𝛼0 = 1

𝜶←−−−−−−−−−−−−
[𝑐′𝒘] ≔ 𝛼0 [𝑐′𝒘] +

∑︁𝑀
𝑖=1 𝛼𝑖 [˜︁𝑐 (𝑖 ) ] [𝑐′𝒘] ≔ 𝛼0 [𝑐′𝒘] +

∑︁𝑀
𝑖=1 𝛼𝑖 [˜︁𝑐 (𝑖 ) ]

{𝚪𝑖}𝑖 ≔ {𝚪𝑖}𝑖 ∪ {𝚪 (𝑘 )copy for 𝑘 ∈ I} {𝚪𝑖}𝑖 ≔ {𝚪𝑖}𝑖 ∪ {𝚪 (𝑘 )copy for 𝑘 ∈ I}
𝒘 ′ ≔ 𝛼0𝒘 ′ +

∑︁𝑀
𝑖=1 𝛼𝑖𝒗

(𝑖 )

decompose (𝒘, 𝒓 ′) ≔ 𝒘 ′

Engage QESAInner((crs, {𝚪𝑖}), P(𝒘, 𝒓 ′), V( [𝑐′𝒘]))

(and a single constraint) in QEs. As such, it can be beneficial to express equations in terms of QE, even
if the underlying proofs systems reduces QE to R1CS (as per our first suggestion).

B.8.1. Preliminaries

Let 𝑝 be an (odd) (prime) number. Let Z𝑝 = Z/𝑝Z be the integers modulo 𝑝 . We write 𝑅 for some ring.
For simplicity, we assume 𝑅 = Z𝑝 , but it is sufficient if 𝑅 is well-behaved w.r.t. polynomials, Lagrange
interpolation and zero-testing with Schwartz–Zippel.

B.8.2. Comparing R1CS and QE

We will look at the question of how to linearize arbitrary quadratic equations (QE), and how systems of
QEs behave relative to rank 1 constraint systems (R1CS) [BCG+13]. Recall that a R1CS-type constraint
is of the form (∑︁𝑛

𝑖=1 𝑎𝑖𝑤𝑖) · (
∑︁𝑛
𝑖=1 𝑏𝑖𝑤𝑖) =

∑︁𝑛
𝑖=1 𝑐𝑖𝑤𝑖 , where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ∈ 𝑅 are constants and𝒘 ∈ 𝑅𝑛 is the

witness. Hence R1CS only allows “one multiplication per equation”. General quadratic equations are of
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LMPAnoZK(Protocol 4.3.18)
Common Input: [𝑨]

Prover P Verifier V
Input: 𝒘 Input: [𝒕]

Recursive step. Suppose 𝑛 > 1
[𝒖−1] ≔ [𝑨1]𝒘2
[𝒖+1] ≔ [𝑨2]𝒘1

[𝒖−1 ],[𝒖+1 ]−−−−−−−−−−−−→
𝜉

$← 𝜒 (𝛽≠0)

𝜉
←−−−−−−−−−−−−

[𝑨] ≔ [𝑨1] + 𝜉 [𝑨2] [𝑨] ≔ [𝑨1] + 𝜉 [𝑨2]
𝒘 ≔ 𝜉𝒘1 +𝒘2 [𝒕] ≔ [𝒖−1] + 𝜉 [𝒕] + 𝜉2 [𝒖+1]
𝑛 ≔ 𝑛/2 𝑛 ≔ 𝑛/2

Start next recursion iteration.

Base case. Suppose 𝑛 = 1
𝒘−−−−−−−−−−−−→

return true iff [𝑨]𝒘 ?
= [𝒕]

LMPAsimpleZK

Common Input: [𝑨]
Prover P Verifier V
Input: 𝒘 Input: [𝒕]

𝒓 $← F𝑛𝑝
[𝒂] ≔ [𝑨]𝒓

[𝒂 ]
−−−−−−−−−−−−→

𝛽
$← 𝜒 (𝛽≠0)

𝛽
←−−−−−−−−−−−−

Engage LMPAnoZK([𝑨], P(𝛽𝒘 + 𝒓), V(𝛽 [𝒕] + [𝒂]))

the form𝒘⊤𝚪𝒘 = 0 for𝒘 ∈ 𝑅𝑛 , 𝚪 ∈ 𝑅𝑛×𝑛 . For our constructions, we also allow 𝒙⊤𝚪𝒚 in the following,
and similarly “relax” R1CS.8

Clearly, any QE can be encoded as a set of R1CS-type equations. But this introduces an overhead, e.g.
an inner product of size 𝑛 is one QE, but 𝑛 − 1 R1CS equations are required (at least naively).

In the rest of this section, we briefly discuss the following:

1. A simple and relatively “black-box” reduction from QE to R1CS. This comes with a small overhead
for suitable argument systems (e.g., typical commit-and-prove argument systems). Namely, it

8 Since 𝑥𝑖 = 𝑦𝑖 is expressible as R1CS resp. QE, this does not affect the expressivity much, yet the number of variables
doubles.
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introduces auxiliary variables (but at most doubles the number of variables). It is explained in
Remark B.8.1 below.

2. A (polynomial encoding) linearization strategy which allows to prove QEs instead of R1CS
directly, using the low-level primitives. For this, we use an inner product encoding, which allows
to switching out R1CS with QEs basically for free. This is discussed in Appendix B.8.3.

3. A QE encoding which is applicable only in very special settings. It exploits strong symmetries to
reduce the amount of auxiliary variables by 50%. It is discussed in Appendix B.8.4.

4. In Remark B.8.2 we briefly highlight the effect of the languages considered, and how this is
perhaps the biggest factor in the comparison of R1CS and QE, and how it affects the variants and
tricks we consider. It is discussed more in Appendix B.8.5.

In the above and the following, we have in mind an application with commit-and-prove systems (or
an ideal linear commitment (ILC) setting). In that setting, one can verify any number of R1CS-type
equations (or QE-type equations) roughly at the price of one (and with small soundness loss) by using
probabilistic batch-verification techniques.

Remark B.8.1 (Simple efficient “black-box” reduction to R1CS). To transform QE to R1CS naively, one
introduces a new variable for every product. This has a quadratic overhead. By writing the quadratic
equation𝒘⊤𝚪𝒘 = 𝑡 as𝒘⊤(𝚪𝒘) = 𝑡 for 𝚪 ∈ 𝑅𝑚×𝑛 , it is becomes evident thatmin(𝑚,𝑛) auxiliary variables
and R1CS equations suffice. Namely,𝑤𝑖 · (𝚪𝒘)𝑖 = 𝑧𝑖 and

∑︁𝑛
𝑖=1 𝑧𝑖 = 𝑡 is an R1CS system for the quadratic

equation, where the 𝑧𝑖 are auxiliary variables.9 In the commit-and-prove setting, once the witness𝒘 is
committed, one can compute 𝚪 as a random linear combination of 𝚪1, . . . , 𝚪𝑁 in order to check a system
of quadratic equations at once (as outlined in Section 4.4.3 and applied in Protocol 4.4.7), thus reducing
as set of quadratic equations to a single quadratic equations, and that one to a rank-1 constraint system.

Observe that the increase in the number of variables seems best possible in the worst case, namely
proving an inner product with R1CS. The total number of variables in the R1CS instance is max(𝑚,𝑛)
for𝒘 and (at most) min(𝑚,𝑛) for 𝒛, hence at most𝑚 + 𝑛.

We recalled Remark B.8.1 because it is surprisingly simple to overlook the approach, especially, if one
only needs a few QEs over a few variables. We also stress that there are two different metrics at work.

Remark B.8.2 (The description matters). A problem, described as a rank-1 constraint systemmay require
a lot of (auxiliary) variables, whereas the same problem, described as a quadratic equation system may
require very few (auxiliary) variables. Matrix multiplication is one example.10 In Remark B.8.1 we
explained how to use a R1CS in an black-box-like manner to prove the quadratic equation system with
small overhead. Proving the (equivalent) R1CS does require the full overhead though, since the very
description in terms of R1CS imposes the overhead in terms of auxiliary variables and equations.

To summarize, Remark B.8.1 shows that there is “not too much” overhead to extend proving R1CS to
proving general QEs (at least in a commit-and-prove setting). Remark B.8.2 points out in which sense
QE can be “more expressive” than R1CS. That is, even though R1CS can prove QEs with little overhead,
the description certain relations, such as matrix multiplication, is inherently larger than the equivalent
description in terms of QEs. In that sense, expressivity affects practical efficiency.

9 This is one equation and variable too much. We can get rid of last equation and variable by using 𝑥𝑛 · (𝚪𝒚)𝑛 +
∑︁𝑛−1
𝑖=1 𝑧𝑖 = 𝑡 .10 Matrix multiplication means asserting lot of inner product constraints. So QEs require no auxiliary variables overhead at

all. For R1CS the naive systems of constraints require overhead cubic in the size of the matrix. However, more efficient
constraint choices, e.g., constraints based on Strassen’s algorithm require fewer multiplications.
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Now, we turn to the question of how to verify QEs without going through a R1CS encoding, by
looking more closely into the implementation of the argument system. For this, we look into one of
the linearization techniques used to prove R1CS, and show that it, basically for free, could prove QEs
instead.

B.8.3. Polynomially Encoded Inner Product Argument

The linearization technique of [AC20] uses (like many others) the Lagrange basis to encode coefficients
in evaluation points, and then applies a polynomial identity test to prove that 𝑓 · 𝑔 = ℎ, where 𝑓 , 𝑔, ℎ
are constructed from the coefficients so that this relation corresponds to multiplication triples, i.e.
𝑓 (𝑖) · 𝑔(𝑖) = ℎ(𝑖) for 𝑖 = 1, . . . , 𝑛. We ignore the necessity of random terms (i.e. “packed secret sharing”)
in this note. Consequently, we only describe the idea of encoding R1CS resp. QEs based on linearization.
Adding (special) honest-verifier zero-knowledge on top is then a standard exercise, e.g. as in [AC20].

Now, we turn to QEs. First we aim for something simpler, namely an inner product argument (IPA).
The IPA is easier to present in the standard basis (instead of the Lagrange bases), and we use {𝑋 𝑖}𝑖∈N0
in 𝑅 [𝑋 ] as standard basis. Let 𝒂, 𝒃 ∈ 𝑅𝑛 . We want to show that ⟨𝒂, 𝒃⟩ ≔ ∑︁

𝑖 𝑎𝑖𝑏𝑖 = 𝑡 .

Consider the product

(
𝑛−1∑︂
𝑖=0

𝑎𝑖𝑋
𝑖) (

𝑛−1∑︂
𝑗=0

𝑏 𝑗𝑋
𝑛− 𝑗 ) =

2(𝑛−1)∑︂
𝑘=0

𝑐𝑘𝑋
𝑘

and note that the term 𝑐𝑛 =
∑︁𝑛−1
𝑖=0 𝑎𝑖𝑏𝑖 by construction. Thus, to prove that ⟨𝒂, 𝒃⟩ = 𝑡 , it suffices to

know that 𝑐𝑛 = 𝑡 . Therefore, in the encoding, simply do not encode 𝑐𝑛 , and have it hardcoded to 𝑡 .
Now, a Schwartz–Zippel test allows to check this by using three linear forms to evaluate the above
polynomials. Thus, as in [AC20], 3 LPMAs are sufficient (and can be batched down to 1 again).

Now, we extend to QEs, i.e. we encode arbitrary quadratic constraints (or replace ⟨ · , · ⟩ by an arbitrary
bilinear form, if you prefer). For this, it is notationally convenient to write 𝑋 ↑𝑛 = (1, 𝑋, . . . , 𝑋𝑛−1),
𝑋 ↓𝑛 = (𝑋𝑛−1, . . . , 𝑋, 1). We want to check 𝒂⊤𝚪𝒃 = ⟨𝒂, 𝚪𝒃⟩ = 𝑡 . Let 𝜷 = 𝚪𝒃 and note that

(
𝑛−1∑︂
𝑖=0

𝑎𝑖𝑋
𝑖) (

𝑛−1∑︂
𝑗=0

𝛽 𝑗𝑋
𝑛− 𝑗 ) =

2(𝑛−1)∑︂
𝑘=0

𝑐𝑘𝑋
𝑘 (B.8.1)

has 𝑐𝑛 = 𝑡 iff ⟨𝒂, 𝚪𝒃⟩ = 0. And using
∑︁𝑛−1
𝑖=0 𝑎𝑖𝑋

𝑖 = ⟨𝒂, 𝑋 ↑𝑛⟩ and similarly for 𝒃 and 𝒄 , we find

(
𝑛−1∑︂
𝑖=0

𝑎𝑖𝑋
𝑖) (

𝑛−1∑︂
𝑗=0

𝛽 𝑗𝑋
𝑛− 𝑗 ) =

2(𝑛−1)∑︂
𝑘=0

𝑐𝑘𝑋
𝑘

⇐⇒ ⟨𝒂, 𝑋 ↑𝑛⟩⟨𝚪𝒃, 𝑋 ↓𝑛⟩ = ⟨𝒄, 𝑋 ↑2𝑛−1⟩
⇐⇒ ⟨𝒂, 𝑋 ↑𝑛⟩⟨𝒃, 𝚪⊤𝑋 ↓𝑛⟩ = ⟨𝒄, 𝑋 ↑2𝑛−1⟩

Again, these can be checked at a random point which involves 3 linear forms. Note that commitments
to 𝒂, 𝒃 and also 𝒄 are required. For “normal” QEs, we would have 𝒂 = 𝒃 = 𝒘 , so only commitments to 𝒂
and 𝒄 are required then.

Remark B.8.3. The argument for converting an inner product test to a test for an arbitrary equation is the
same as used for QESAZK, cf. Section 4.4. Testing multiple quadratic equations, in a commit-and-prove
setting setting can be done very efficiently by first committing to 𝒂 and 𝒃 , and then randomly batching
all 𝚪𝑖 into one 𝚪 which is checked. (Again, this is similar QESAZK, but there no term 𝒄 exists, since an
inner product argument is assumed as pivot, unlike the linear map preimage argument in [AC20].)
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Remark B.8.4. The folding technique of Bulletproofs uses ⟨𝒂0 + 𝒂1𝑋,𝑋𝒃0 + 𝒃1⟩ = 𝑐0 + 𝑐1𝑋 + 𝑐2𝑋 2 as
its central identity. When rolling out the recursion with different variables 𝑋𝑖 (for round-𝑖 challenge),
it becomes evident that ⟨∑︁𝑖∈{0,1}ℓ 𝑎�⃗�𝑋

�⃗� ,
∑︁
𝑗∈{0,1}ℓ 𝑏 �⃗�𝑋

�⃗� ⟩ = ∑︁
𝑘∈{0,1,2}ℓ 𝑐𝑘𝑋

𝑘 is verified (up to suitable
permutation of indices).11 Importantly, due to the recursion, 𝒄 need not be known and committed to
beforehand (and indeed, it’s size is 3ℓ , that is, quadratic in the length of 𝒂, 𝒃). This saves a lot of space.
And since ⟨𝒂𝑖 , 𝒃 𝑗 ⟩ ∈ 𝑅 is a scalar, the 𝑐𝑘 ’s are scalars.12 Hence they are just two auxiliary variables (as
𝑐1 = ⟨𝒂, 𝒃⟩ is implicitly known). By modifying the first step in the recursion to ⟨𝒂0 + 𝒂1𝑋, 𝜷0 + 𝜷1𝑋 ⟩
where 𝜷 = 𝚪𝒃 , it should be possible to avoid committing to 𝒄 the above construction as well.13

B.8.4. A Special Case

Consider the special case, where one wants to prove a self-inner product ⟨𝒘,𝒘⟩ = 𝑡 . In this case,
𝒃 = 𝒂 = 𝒘 , so 𝒃 need not be explicitly committed. For convenience, we change a few encodings and
conventions:

• 𝑤0 is a fixed unit, w.l.o.g.𝑤0 = 1 (hence need not be committed to).

• 𝒂(𝑋 ) = ∑︁𝑛
𝑖=0𝑤𝑖𝑋

𝑖 . (Note that we sum to 𝑛 now, but𝑤0 is a constant.)

• 𝒃 (𝑋 ) = ∑︁𝑛
𝑖=0𝑤𝑖𝑋

−𝑖 (i.e. 𝒃 (𝑋 ) = 𝑋 −𝑛𝒃′(𝑋 ), where 𝒃′ is the previous encoding).

Now let

𝒄 (𝑋 ) = 𝒂(𝑋 )𝒃 (𝑋 ) =
∑︂
𝑖, 𝑗

𝑤𝑖𝑤 𝑗𝑋
𝑖− 𝑗 =

𝑛∑︂
𝑘=−𝑛

𝑋𝑘
∑︂
𝑖− 𝑗=𝑘

𝑤𝑖𝑤 𝑗

and observe that 𝑐𝑖 = 𝑐−𝑖 for all 𝑖 = 1, . . . , 𝑛. Thus, it suffices to commit to 𝑐1, . . . , 𝑐𝑛 . (Note that
𝑐0⟨𝒘,𝒘⟩ = 𝑡 is a constant.)

More generally, consider a quadratic equation ⟨𝒘, 𝚪𝒘⟩ = 𝑡 . If 𝚪 = 𝑮⊤𝑮 , then 𝒄 (𝑋 ) is still symmetric,
and 𝑮𝒘 is a linear transformation of𝒘 , hence can be applied efficiently in our setting.

Unfortunately, computing this decomposition of 𝚪 (if it exists) is probably too expensive, especially
in higher dimensions. Moreover, this special case does not seem to generalize further, e.g. 𝒄 (𝑥) is not
symmetric just because 𝚪 is symmetric, going through ⟨𝑮𝒘, 𝑮𝒘⟩ (as described) seems necessary.

B.8.5. The Choice of Languages

We have now seen several aspects in the choice of languages, which are of relevance to and complicate
a comparison:

• There is a subtle difference between proving a certain language and reducing one language to an-
other. E.g., reducing QE to R1CS is very efficient (in certain settings) and increases “expressivity”.

• Languages have different “expressivity”. Intuitively, the more “expressive” a language, the fewer
“auxiliary” constructs (variables and constraints) are required to represent a high-level statement.
(We have do not offer a formal notion of “expressivity”.)

11 This not only looks like a sumcheck, the work [BCS21]) shows that it may in fact be described as a kind of sumcheck
protocol.

12 For general bilinear forms, e.g. an outer product, this is not true.
13 The term 𝒄 in Eq. (B.8.1) has size 2𝑛, not 3ℓ = 𝑛log(3) . This is a feature of using univariate polynomials, where the degree of
a product is at most the sum of the degrees.
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• High-level statements may be encoded differently even in a fixed language, resulting in different
efficiency characteristics which is not due to “expressivity”, e.g. naive matrix multiplication vs.
Strassen’s algorithm (Footnote 10).

Example B.8.5. For general R1CS (and also QE), the polynomial 𝒄 (𝑋 ) has no obvious structure. However,
for arithmetic circuits (AC) each 𝑐𝑖 for 𝑖 < 𝑛 is itself a wire, and thus half of 𝒄 (𝑋 ) is predetermined by
𝒘 , hence does not require additional variables [AC20]. This optimization does not seem to apply to
QE-encoded ACs in an obvious manner.

Besides the languages themselves, there is the question of how an argument system deals with its
“native” language. Namely, we saw that for R1CS and QE, auxiliary variables are necessary (concretely,
the term 𝒄 in Appendix B.8.3). This makes a simple comparison even more apples-to-oranges. Indeed,
as described, our simple QE construction always commits to a degree 2𝑛 polynomial 𝒄 (�⃗� ), whereas in
R1CS the degree of 𝒄 (�⃗� ) scales as 2𝑚, where𝑚 is the number of multiplications (which may be fewer
than 𝑛).14 For naive arithmetic circuit constructions, this may in fact suggest that R1CS is better. Then
again, once we start to exploit that we have equational reasoning, i.e. we verify statements and do not
compute outputs (as arithmetic circuits must), this “advantage” becomes much less clear. Indeed, inner
products and matrix multiplication as statements are examples where QEs seem far superior, both in
expressivity and actual efficiency.

Besides the clearly motivated questions above, we can go a bit further, asking: “What do we want
to prove, and what is the witness”? Most importantly, does the witness include auxiliary information
or not? E.g. to prove for arithmetic circuit 𝐶 that 𝐶 (𝑥) = 𝑦, one can consider only the input 𝑥 as the
witness, or consider all wire values𝑤 as the witness, or choose something in between. Protocols and
protocol comparisons depend strongly on such choices, even though all “encode” the same high-level
statement.

B.9. Tree-Finding for Short-Circuit-Extraction

In this section, we briefly discuss tree-finding in the setting of short-circuit extraction. We present
our candidate short-circuit extractors, whose knowledge error is easily analyzed, but whose runtime
analysis appears to more complex.

B.9.1. Generalizing Tree-Finding

Recall that our knowledge extractors for special sound protocols are composed of a tree-finder and
tree-extractor, cf. Section 2.4. A useful abstraction was to consider a (deterministic) algorithm A which
take as input a sequence of challenges (𝛾1, . . . , 𝛾ℓ ) and output 0 or 1. We used the output bit A(𝛾1, . . . , 𝛾ℓ )
to indicate whether or not the challenge sequence would make the verifier accept (when playing with
a deterministic prover). This abstraction simplified our discussion, allowing us to hide all details of
proof systems and tree-extraction entirely from tree-finding. For short-circuit extraction, we adapt this
concept. In this case, it can happen that a tree-extraction fails or short-circuits, and hence the tree (in
particular its final shape) must depend on these events. Concretely, after a a subtree was extracted,
and 𝜇 witnesses w1, . . .w𝜇 were obtained for the child nodes, if the (tree-)extractor fails to extract

14 It is plausible that a similar optimization applies to QE. Perhaps, the QE can be rewritten in the “virtual” coefficients of the
multiplication, where by “virtual” we mean any linear combination of “basic” coefficients𝑤𝑖 .
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a higher-level witness, then 𝜇′ witnesses from child nodes are required to engage in short-circuit
extraction.

We abstract failure of quick-extraction by using a predicate 𝜑 which takes as input a 𝜇-subtree of
challenges and outputs 0 to indicate that this subtree “quick-extracts” successfully, and it outputs 1 to
indicate that this subtree requires 𝜇′ children (to “short-circuit”). Observe that, given a deterministic
prover, the predicate can recompute the witnesses which a tree-extractor would (recursively) obtain
and check if quick-extraction would occur or not. Hence, studying tree-finding for a pair (A, 𝜑) of
deterministic algorithms is sufficient to handle deterministic provers. Moreover, as with our results
for special soundness, extending bounds on deterministic algorithms to probabilistic ones will be
straightforward.

As with tree-finding for special soundness, we will use a recursive construction and start by defining
and analyzing basic tree-finders.

B.9.2. Basic Tree-Finders

With special soundness, (only) two outputs could occur in a recursive call: Either extraction succeeded
or it failed. Hence, it was sufficient to distinguish between success (say, 1) and failure 0. To actually
build a tree recursively, we associated an auxiliary string 𝑧 which contained the extracted subtree to
the output, cf. Section 2.5.2. Since associating this auxiliary string is a mere formality necessary to
generate the desired output, we will ignore it when describing the basic tree-finders.

Unlike special soundness, we distinguish 4 different outcomes:

• ⊤ indicates a quick success.

• ⊤ indicates a short-circuit success.

• ⊥ indicates an immediate and cheap failure.

• ⊥ indicates an expensive failure.

The distinction between ⊥ and ⊥ will only become necessary later on, but we introduce it already now.
In order to recursively compose our basic tree-finders, we define them for algorithms A which map a
challenge 𝛾 ∈ C to an outcome 𝑜 ∈ {⊥,⊤,⊥,⊤}.

Our first candidate basic short-circuit extractor is the following modification of TreeFindNHG and
denoted QExtNHG. By construction, QExtbaseNHG immediately returns ⊤ whenever it is encountered — this
is the idea of short-circuiting. Otherwise, QExtbaseNHG simply samples without replacement, and after
finding 𝜇 accepting challenges checks if quick-extraction succeeds. If not, QExtbaseNHG continues sampling
until 𝜇′ accepting challenges are found and if so, outputs ⊤ to indicate short-circuiting. Observe that
QExtbaseNHG outputs ⊥ if extraction failed but at least 𝜇 accepting transcripts were found — this is an
“expensive” failure. Formally, QExtbaseNHG is defined as follows:

1. Pick 𝛾1 $← C uniformly. Let 𝑜 ≔ A(𝛾𝑖).

2. If 𝑜 = ⊥ return ⊥.

3. If 𝑜 = ⊥ return ⊥.

4. If 𝑜 = ⊤ return ⊤. Else let 𝑖 = 2.

5. Repeat until 𝑖 > 𝜇 or all of C was exhausted.
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a) Pick 𝛾𝑖 uniformly from C without replacement.

b) Let 𝑜 ≔ A(𝛾𝑖).

c) If 𝑜 = ⊤, increase 𝑖 to 𝑖 + 1.

d) If 𝑜 = ⊤, return ⊤.

6. If 𝑖 ≤ 𝜇, return ⊥.

7. If 𝜑 ({𝛾1, . . . , 𝛾𝑘 }) = 0 return (𝛾1, . . . , 𝛾𝑘 )

8. Repeat until 𝑖 > 𝜇′ or all of C was exhausted.

a) Pick 𝛾𝑖 uniformly from C without replacement.

b) Let 𝑜 ≔ A(𝛾𝑖).

c) If 𝑜 = ⊤, increase 𝑖 to 𝑖 + 1.

d) If 𝑜 = ⊤, return ⊤.

9. If 𝑖 ≤ 𝜇′, return ⊥. Else return ⊤.

Note that by construction, QExtbaseNHG effectively treats ⊥ and ⊥ the same. When the basic tree-finder
QExtbaseNHG is composed recursively, it yields our first candidate short-circuit extractor QExtNHG. It is
straightforward to see that QExtNHG for (𝜇1, . . . , 𝜇ℓ )-quick (𝜇′1, . . . , 𝜇′ℓ )-short extractability has knowl-
edge error at most that of TreeFindNHG for (𝜇′1, . . . , 𝜇′ℓ )-special soundness. While this may not be fully
optimal in the face of short-circuit extraction, it is the same as the knowledge error when only special
soundness is considered.15 Unfortunately, we do not have a provable bound on the expected runtime of
QExtNHG. Nevertheless, it is we find it plausible that its expected runtime is bounded by the maximal
number𝑀 of required transcripts (cf. Corollary 4.2.19).

To provide a more credible candidate, we consider a modified extractor QExtbaseearly and its recursive
composition QExtearly. This modification to QExtNHG introduces early exits, namely, it immediately
returns when ⊥ is encountered. It would be very surprising if QExtearly would exceed an expected
number of𝑀 queries to A, where𝑀 is as above. Indeed, heuristically, one can apply the same argument
as used in Corollary 4.2.19 to bound the runtime; technically, difficulties arise and the analysis become
more complex than the intuition suggest.

Definition B.9.1. QExtbaseearly is defined as QExtbaseNHG, except for the following change: Whenever ⊥ is
encountered, QExtearly immediately returns ⊥. That is, after lines “if 𝑜 = ⊥ return ⊥”, the line “if 𝑜 = ⊥
return ⊥” is appended.

The recursive composition, QExtbaseNHG is defined as in Section 2.5.2.

15We have seen examples where protocols are (𝜇′ − 1)-special sound, but 𝜇′-short extractable, leading to a small gap, e.g.
Lemma 4.3.19. Taking this into account, it may be possible to construct an even better extractor. For example, it may be
beneficial to immediately output a witness when it can be computed from a subset of accepting challenges, instead of
waiting until 𝜇′ accepting challenges were found (if quick-extraction failed). However, success and runtime analysis of
such protocols becomes even more complicated.
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The remainder of the section is to analyze the knowledge error of QExtearly. We will see that for
(𝜇1, . . . , 𝜇ℓ )-quick (𝜇′1, . . . , 𝜇′ℓ )-short extractability where the cardinality #C𝑖 of all challenge sets is
lower-bounded by 𝑁 , QExtearly has a knowledge error of roughly

∏︁ℓ
𝑖=1 𝜇

′
𝑖/𝑁 . While this is far from

optimal, it is often still reasonable. For example, with QESAZK or Bulletproofs in 256-bit groups with
full-sized challenges, the term is roughly 𝑛4/2256 where 𝑛 is the witness dimension. Hence, for 𝑛 = 232
there is still a provable knowledge error of roughly 2−128 for QExtearly, while the number of queries to
A is reduced from roughly 𝑛4 = 2128 to heuristically 𝑛 log(𝑛) ≤ 240.

B.9.3. Success Analysis of QExtearly

Before starting with the analysis, we record following result.

Lemma B.9.2. Let𝑚,𝑛, 𝑘 ∈ N and𝑚 ≥ 𝑘 . Then

1 −
𝑘−1∏︂
𝑖=0

𝑚 − 𝑖
𝑚 + 𝑛 − 𝑖 = 1 −

𝑛∏︂
𝑗=1

(︂
1 − 𝑘 1

𝑚 + 𝑗

)︂
≤ 𝑘 · 𝑛

𝑚 + 𝑛

We postpone the proof until Appendix B.9.3.1 and continue with the success analysis of QExtearly.
Following Lemma assures that the abort probability due to ⊥ only grows linearly in the size of the
𝝁-tree,i.e. in

∏︁ℓ
𝑖=1 𝜇ℓ .

LemmaB.9.3. LetΠ be a (𝜇′1, . . . , 𝜇′ℓ )-quick (𝜇1, . . . , 𝜇ℓ )-short extractable argument system with challenge
spaces size (𝑁1, . . . , 𝑁ℓ ) and let QExtbaseearly be as in Definition B.9.1 and QExtearly its recursive composition.
Let 𝑁 = min(𝑁1, . . . , 𝑁ℓ ). We call a (deterministic) algorithm A ordinary if it only outputs ⊥ and ⊤. Then
for any (deterministic) ordinary algorithm A, we have

Pr[QExtAearly = ⊥] ≤
𝜇1 · . . . · 𝜇ℓ

𝑁

Proof. As noted before Appendix B.9.1, we can interpret extraction and A as finding enough leafs with
A(𝛾1, . . . , 𝛾ℓ ) = ⊤ in a tree of challenges. On the other hand, if QExtearly encounters a single ⊥ (resp. ⊤)
during its recursion, it immediately completes the entire extraction with output ⊥ (resp. ⊤). To prove
the claim by induction over ℓ , the number of challenges, we first show following claim, which will
serve as both base case and induction step.

Claim B.9.4. First, we consider QExtbaseearly, i.e. ℓ = 1 and 𝜇 = 𝜇1, 𝑁 = 𝑁1. Let A an arbitrary (i.e. not
necessarily ordinary). In that case, we get

Pr[QExtAearly = ⊥] ≤ 𝜇 · Pr𝛾 $←{1,...,𝑁 } [A(𝛾) = 1] .

Proof. Let 𝑛⊥, 𝑛⊥, 𝑛⊤, 𝑛⊤ denote the number of challenges which yields this output, i.e. Pr[A(𝛾) =
𝑡] = 𝑛𝑡/𝑁 . Observe that the success probability only worsens if 𝑛⊤ = 0 (i.e. if we simply treat ⊤ as
⊤). Hence, we consider a setting with only challenges of type ⊥, ⊥ and ⊤, where a challenge 𝛾 has
type 𝑡 if 𝑡 = A(𝛾). Moreover, as a first step, we suppose 𝑛⊥ = 0, i.e. all outputs are either ⊥ or ⊤. In
this situation, the extraction will draw (at most) 𝑘 challenges, and succeed if and only if none of the
challenges are ⊥. Hence in this case we get

Pr[QExtAearly = ⊥] = 1−Pr[QExtAearly ≠ ⊥] = 1−
𝜇∏︂
𝑖=1

𝑛⊤ − 𝑖
𝑛⊤ + 𝑛⊥ − 𝑖

≤ 𝜇 · 𝑛⊥
𝑛⊤ + 𝑛⊥

= 𝜇 ·Pr[QExtAearly = ⊥] .
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where we also use Lemma B.9.2 for the inequality.

Now, we argue how challenges of type ⊥ affect this. Either the first challenge is ⊥, in which case
extraction outputs ⊥ ≠ ⊥, or it is not ⊥, in which case we are in the same setting as above since
challenges of type ⊥ are effectively ignored by the extractor (it simply draws another challenge). Let
𝐼 = A(𝛾1) be the type of the first challenge. Then we find:

Pr[QExtAearly = ⊥] = Pr[𝐼 ≠ ⊥] · Pr[QExtAearly = ⊥ | 𝐼 ≠ ⊥]

≤
𝑛⊤ + 𝑛⊥
𝑁

·
(︂
𝜇 ·

𝑛⊥

𝑛⊤ + 𝑛⊥

)︂
= 𝜇 · Pr[𝐼 = ⊥]

□

With Claim B.9.4 at hand, we can prove the Lemma by induction.

Base case (ℓ = 1). In the base case, ℓ = 1, the claim follows since no output of an ordinary A leads to ⊥.
Indeed, ⊥ and ⊤ are only introduced by QExtearly in non-leaf nodes; Claim B.9.4 considered generalized
A. Thus, in this case we know that to output ⊥ can only occur if there are at most 𝜇1 − 1 challenges
with A(𝛾1) = ⊤. Hence Pr[QExtAearly = ⊥] ≤

𝜇1−1
𝑁1
≤ 𝜇1

𝑁
as claimed.

Induction (ℓ − 1 to ℓ). By definition QExtearly is a recursive application of the basic extractor applied
to a A. By induction hypothesis, after extracting (ℓ − 1) rounds, the obtained A′ (generated by the
recursive applications of QExtbaseearly, cf. Section 2.5.2) satisfies:

Pr[A′(𝛾ℓ ) = ⊥] ≤
ℓ−1∏︂
𝑖=1

𝜇𝑖 · Pr[A(𝛾1, . . . , 𝛾ℓ ) = ⊥] .

By Claim B.9.4, the induction hypothesis extends to ℓ . This completes the proof of Lemma B.9.3. □

Corollary B.9.5. Consider the same setting as in Lemma B.9.3. Then the knowledge error of QExtearly is
bounded by

ℓ∑︂
𝑖=1

𝜇𝑖

𝑁𝑖
+ 𝜇1 · . . . · 𝜇ℓ

𝑁

Proof sketch. Let 𝐸 be the event that QExtAearly outputs ⊥. Conditioned on ¬𝐸, i.e. 𝐸 not happening,
QExtAearly behaves like TreeFindNHG, except that a few children are skipped. Since

∑︁ℓ
𝑖=1

𝜇𝑖
𝑁𝑖

is a (rough)
bound for the knowledge error of TreeFindNHG (cf. Section 2.5.2) and since Pr[𝐸] = Pr[QExtAearly ≠

⊥] ≤ 𝜇1 ·...·𝜇ℓ
𝑁

by Lemma B.9.3, the claim follows. □

B.9.3.1. Proof of Lemma B.9.2

Proof. The first equality follows by following equations

𝑘−1∏︂
𝑖=0

𝑚 − 𝑖
𝑚 + 𝑛 − 𝑖 =

∏︁𝑘−1
𝑖=0 (𝑚 − 𝑖)∏︁𝑘−1

𝑖=0 ((𝑚 + 𝑛) − 𝑖)
=

𝑚!/(𝑚 − 𝑘)!
(𝑚 + 𝑛)!/(𝑚 + 𝑛 − 𝑘)!

=
(𝑚 + 𝑛 − 𝑘)!/(𝑚 − 𝑘!)
(𝑚 + 𝑛)!/𝑚! =

∏︁𝑛
𝑗=1(𝑚 + 𝑗 − 𝑘)∏︁𝑛
𝑗=1(𝑚 + 𝑗)

=

𝑛∏︂
𝑗=1

(︂
1 − 𝑘 1

𝑚 + 𝑗

)︂ (B.9.1)
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With this rewriting, the claim for 𝑛 = 1 is immediate.

Claim B.9.6. The claim holds for 𝑛 = 1 (and any𝑚 ≥ 𝑘).

Let (for arbitrary but fixed𝑚,𝑘)

𝑓 (𝑛) = 1 −
𝑘−1∏︂
𝑖=0

𝑚 − 𝑖
𝑚 + 𝑛 − 𝑖

𝑔(𝑛) = 𝑘 · 𝑛

𝑚 + 𝑛

We have to show 𝑓 (𝑛) ≤ 𝑔(𝑛) for arbitrary𝑚,𝑛, 𝑘 . By Claim B.9.6, the claim holds for 𝑛 = 1. To extend
it to 𝑛 ≥ 1, we could show that 𝜕𝑓

𝜕𝑛
≤ 𝜕𝑔

𝜕𝑛
for 𝑛 ≥ 1. Instead, we show it for discrete steps, i.e. we show

following claim:

Claim B.9.7. For 𝑛 ≥ 1 and𝑚 ≥ 𝑘 , we have

𝑓 (𝑛 + 1) − 𝑓 (𝑛) ≤ 𝑔(𝑛 + 1) − 𝑔(𝑛)

Clearly, if Claim B.9.7 holds, then in particular 𝑓 (𝑛) ≤ 𝑔(𝑛) implies 𝑓 (𝑛 + 1) ≤ 𝑔(𝑛 + 1). Hence, the
lemma follows by induction using the base case 𝑓 (1) ≤ 𝑔(1) recorded in Claim B.9.6.

Now we prove Claim B.9.7. Let 𝜋𝑛 =
∏︁𝑛

𝑗=1(1 − 𝑘 1
𝑚+𝑗 ) (as in Eq. (B.9.1)) Then we have to show hat

𝑓 (𝑛 + 1) − 𝑓 (𝑛) = 1 − 𝜋𝑛+1 − (1 − 𝜋𝑛) = 𝜋𝑛+1 − 𝜋𝑛 = 𝜋𝑛
𝑘

𝑚 + 𝑛 + 1

is upper bounded by

𝑔(𝑛 + 1) − 𝑔(𝑛) = 𝑘
(︁ 𝑛 + 1
𝑚 + 𝑛 + 1 −

𝑛

𝑚 + 𝑛
)︁
= 𝑘

𝑚

(𝑚 + 𝑛) (𝑚 + 𝑛 + 1) .

We can simplify this to

𝜋𝑛
𝑘

𝑚 + 𝑛 + 1 ≤ 𝑘
𝑚

(𝑚 + 𝑛) (𝑚 + 𝑛 + 1) ⇐⇒ 𝜋𝑛 ≤
𝑚

𝑚 + 𝑛

Finally, switching to the equivalent product of 𝜋𝑛 in Eq. (B.9.1) and using that each factor is at most 1,
we observe that

𝜋𝑛 =

𝑘−1∏︂
𝑖=0

𝑚 − 𝑖
𝑚 + 𝑛 − 𝑖 ≤

𝑚

𝑚 + 𝑛 .

This concludes the proof of Claim B.9.7 and hence the lemma. □
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C.1. Machine Models

We do not want to go into much detail about the machine model, and will essentially assume that it is
admissible. Admissibility carries certain explicit semi-formal requirements. As our machine model,
we have some RAM-like model in mind. Indeed, “concrete efficiency” is relatively important when
dealing with expected time. Recall that there are (runtime) distributions 𝑇 over N0 with E [𝑇 ] < ∞
but E [𝑇 2] = ∞. Thus, we require that certain operations can be carried out efficiently (e.g. with
logarithmic overhead). Importantly, we require efficient arithmetic and the abilitiy to use standard
efficient construction, such as arrays or more sophisticated data structures, which allow efficient
computation in a RAM model (or multi-tape Turing machine). We also require efficient emulation of
(efficient) programs, oracles, or interactive systems in the sense that “emulating” an execution does
not affect the runtime too much. Moreover, emulation allows to truncate, suspend, resume, rewind,
or similarly affect executions based on efficiently computable events (such as the number of steps
emulated, or messages received).

Remark C.1.1 (Non-Halting). Non-halting computations are an irksome technical artefact. To deal
with them explicitly, we define the symbol nohalt as the “output” of such a computation, and
assume that any system which receives nohalt also outputs nohalt, if not specified otherwise.
Alternatively, one can follow [Gol10] and assume all algorithms halt after a finite number 𝑛(𝜆) of steps.
This introduces (arbitrarily) small deviations for “perfectness”, e.g. it is again impossible to sample from
Ber(1/3).

C.1.1. Systems, Oracles, Algorithms

Before considering machine models and specific properties, we sketch the high level abstractions. We
view algorithms and oracles as systems, which offer (communication) interfaces. Interfaces allow to
receive and/or send messages. For example, the input (resp. output) interface typically receives (resp.
sends) exactly one message, the input (resp. output). To model “laziness”, one may view the interface
less strictly, and allow the input (resp. output) interface to read symbol for symbol. Thus, a calling
algorithm need not provide the full input (resp. output) at once. This is relevant in our setting, where
input (resp. output) lengths are not a priori bounded.

We do not formalize the means of interfacing precisely, but argue in a hand-wavy manner. (In our case,
with many competing definitions of machine and communication models, we believe it is better to be
explicitly imprecise, than importing a lot of unnecessary details.)

We work with three related notions: Systems, oracles, and algorithms. A deterministic system
is defined by its interfaces and “input-output behaviour” only, i.e. it is a “mathematical object”. A
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(probabilistic) system is a random variable 𝑆 , such that any realization of 𝑆 is a deterministic system.1
A system has no notion of “runtime”, or “random tape”. By connecting interfaces, systems may interact.
This forms a new system. Any system has an implicit input, the security parameter. A system is closed
if the only input is its security parameter, and it offers only an output interface.

An algorithm is given by code (perhaps non-uniformly) and bound to a machine model. The code and
machine model describe its behaviour as a system, and impart it with a notion of runtime and “random
tape”. (Randomness need not be modelled by a random tape.)

By oracle or party, we denote systems or algorithms to which only interface access is used. For
example, black-box rewinding access (bb-rw) to an adversary means access to an oracle (with an
underlying algorithm in this case). If not indicated otherwise, an oracle O is an algorithm (to which
only interface access is provided).

In our setting, a convenient abstraction are timed oracles, which allow execution for an a priori bounded
time, and which report the elapsed time to the caller when answering a query (or report timeout, if it
did not complete in time). See Appendix C.1.3 for a more precise specification. Timed bb-rw simulators
can make use of this to truncate overlong executions, and this corresponds to extended black-box access
in [KL08].

Another useful abstraction, mostly for convenience in the setting of a posteriori efficiency, are timeful
oracles (or timeful systems). Timeful oracles are systems, which provide a purported elapsed runtime
to the machine model. Importantly, timeful oracles are not bound by complexity notions or machine
models, except satisfying consistency restrictions, e.g. their purported runtime must be long enough
to have written the answer to the interface. Hardness assumptions, such as timelock puzzles are void
against timeful oracles. Thus, they are a means to formalize unconditional runtime guarantees for
algorithms with oracle-access, e.g. bb-rw simulators, but also serve as a convenient abstraction, e.g. for
Lemma 5.3.12. A timeful oracle also yields a timed oracle in the obvious way.

C.1.2. Abstract Machine Model Operations and Interaction

From an abstract point of view, we want a machine model with following properties:2

Efficient arithmetic which does not thwart our results.

Efficient data structures such as arrays (i.e. random access), or something morally equivalent.

Abstract subroutines such as oracle calls, or a message sending function.

Abstract access to subroutine results. This is non-trivial, in particular if subroutines need not be effi-
cient. Thus, even for a RAM-model, accessing the result of an oracle needs some tape-like access
method.3

1 Our definition of system is ad-hoc. A compatible, precise notion was recently (concurrently) introduced in [LM20]. We
allow two probabilistic systems to behave identically, whereas in [LM20] equivalence classes are considered (and what we
call system is called “probabilistic discrete system”). We prefer to work with concrete representatives, as having a concrete
probability space at hand significantly simplifies definitions and reasoning, though it is not strictly necessary.

2 Another requirement, which is natural enough that we did not prominently require it, is that to send message of length 𝑛,
some time is required. We assume 𝑛 steps for length 𝑛 as a lower bound.

3 The problem here is: If the result of an oracle is huge, any access may exhaust the alloted runtime. This is nonsense (and
completely breaks our results). For that reason, some (trivial, efficient) encoding for such unbounded objects are necessary,
e.g. bitwise tape-like. Concretely, our runtime oracles might output gigantic runtimes, which a runtime distinguisher need
not completely read to discern them from polynomial time.
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Interactive machines which communicate and are activated in some sensible way.

Efficient emulation ensures that one can efficiently execute code and emulate many interacting algo-
rithms with little overhead.

A notion of runtime which is local, i.e. one can separate between time spent within some machine,
subroutine, or oracles, and account accordingly.

Let us formalize our wishes a bit. Concerning arithmetic and data structures, we want typical algorithms
to be efficient. In particular, distinguishing distributions by sampling often enough and computing the
empirical distribution should be “efficient” in the sample size 𝑛, see Appendix C.3.4. For data structures,
we may have to deal with excessively large inputs, thus, we may need suitable encodings, e.g. a tuple
should allow access to any of its components efficiently, even with tape-like access. For example,
representing (𝑥,𝑦) by concatenation only works if 𝑥 is guaranteed to be short, but is inefficient if 𝑥 is
very long. Interleaving always works for tuples of constant dimension.

Now, we formalize the locality of runtime. Let AO1,...,O𝑁 be an oracle machine (with access to 𝑁 oracles).
We require that

timeA+O1+O2+... (AO1,...,O𝑁 ) = timeA(AO1,...,O𝑁 ) + timeO1 (AO1,...,O𝑁 ) + timeO2 (AO1,...,O𝑁 ) + . . . (C.1.1)

though “morally equivalent” relaxation suffice for most results. (Note that our algorithm takes no input.
In case of randomized algorithms, the runtimes for A, O1, . . .O𝑁 are not stochastically independent.)

Finally, a sensible machine model guarantees efficient emulation. Namely, if timeA+O1+O2+... (AO1,...,O𝑁 )
is efficient so is the runtime of the algorithm B which emulates the execution of all oracles. In other
words, converting an (interacting) system of machines into a single machine B by emulating all parties
(or oracles) preserve efficiency. Furthermore, emulation should efficiently allow to gather (and act upon)
execution statistics, most importantly the elapsed runtime of the emulated code, and the possibility to
truncate an oracle emulation after a number of steps. Emulation should behave just like one expects
from a virtual machine, in particular, be possible step-for-step.

Note that preservation of efficiency depends on the machine model and the notion of efficiency itself.
For example, if emulation has a logarithmic overhead, then linear time is not preserved under emulation,
but quasi-linear time may be. Emulation overhead which is linear (or better sublinear) in the number of
emulated steps is a very convenient property of a machine model. We write emuovhd𝜆,𝑁 (𝑘) for the
time steps required to emulate 𝑘 steps (of a 𝑁 machine/oracle system in some implicit machine model).
Usually, the security parameter 𝜆 and number of oracles 𝑁 are suppressed.

The Communication Model. We will assume an communication model where messages of arbitrary
size can be sent, and parties have incoming messages queues. These do not count towards their space,
and they do not pay runtime for receiving a message, only for reading it. Tape-like access to messages
seems most natural, so we assume that. For technical reasons, one may wish provide the possibility
of dropping (i.e. skipping) a (partially read) message. This allows a party to ignore large messages,
keeping its runtime in check. Another possibility is to use fixed size messages (packages), and make the
transfer of longer messages an “explicit” protocol. With this approach, our simplified view of “inputs as
messages” is broken. This surfaces a technical detail, namely that reading from tapes and interacting
with an interface which provides the same information is essentially the same, but technically different.
By suitably restricting adversaries and algorithms, or introducing “unidirectional channels” (e.g. dummy
transmitter parties) for passing inputs (after termination), this can be reconciled.
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There are also different strategies for dealing with messages from super-constantly many parties, e.g.
one tape-like message queue for all, one message queue per party, etc. Since our focus is (essentially) a
two-party setting, we leave technical details, problems, solutions and their relations to the reader.

Non-Uniformity. For non-uniform machines, we propose an advice interface just like the randomness
interface.4 That is, the advice string has infinite length. This seems to be the most natural choice from
a machine-model perspective. Complexity classes can then restrict access further, e.g. to expected
or strict polynomial size advice. Note that non-uniformity comes with its own more or less subtle
anomalies, see e.g. [KM13].

C.1.3. Timed Black-Box Emulation with Rewinding Access

We define (timed) black-box emulation similar to [KL08], which differs from standard black-box emula-
tion essentially by making the “runtime/instruction counter” part of the visible black-box interface and
by allowing runtime truncation.

Definition C.1.2 (Timed black-box emulation with rewinding access (bb-rw)). A black-box emula-
tion oracle O gives oracle access to a “virtual machine” running some (once and for all) specified
program/code. The code may involve multiple (abstracted) parties. Unless otherwise specified, O
behaves deterministically in the sense that the randomness of the emulated programs is sampled and
fixed prior to interaction.5 We do not let the caller choose the randomness.

The black-box interface depends on the specific type.

• Fully black-box emulators take an input message𝑚 and return their program’s answer 𝑎.

• Timed black-box emulators take a pair (𝑚, 𝑡), where 𝑡 is a maximum time bound, and return
a pair (𝑎, 𝑠), where 𝑠 is the number of steps emulated. If 𝑠 would exceed the alloted time 𝑡 , the
emulation is aborted and timeout is returned. A time bound of 𝑡 = ∞ is allowed. (Execution
may be resumed after timeout.)

• Black-box emulation with rewinding access (bb-rw) allows the state of the emulated program
to be stored and loaded. While, a state is identified by its partial transcript of (previous) queries,
other means of identification, such as handles, are used to ensure efficiency. Loading, storing,
and deleting program states is done by special types of messages.6

Note that we distinguished black-box oracles with rewinding access from “normal” oracles. The reason
is that the “next-message” approach usually used to implement black-box access is not efficient enough
with expected time.

Example C.1.3 (Runtime squaring forNextMsg). Consider following interaction ⟨A(𝑛),B⟩ : First A sends
𝑛 to B. Then A pings B 𝑛 times, each times B returns a secret, which A uses in the next ping. Obviously,
this interaction runs in time 𝑂 (𝑛). Consider a distributions 𝑁 of inputs 𝑛 on N with the property that

4 The advice interface should follow the same restrictions as the “random tape’ (see Remark C.1.6), in particular it should not
provide memory to not conflate advice complexity with space complexity.

5 When such an oracle is implemented, the “random tape” (or the respective notion in the machine model) is sampled (and
fixed) lazily, just like a random oracle.

6 Note that all of the code and interfaces which are in our control, e.g. the interface of the black-box are assumed to be nice
and well-typed.
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E [𝑁 ] < ∞ but E [𝑁 2] = ∞. Then emulation with next-message-function NextMsg is not efficient. The
reason is that NextMsg always (re)computes from scratch, which needs about

∑︁𝑛
𝑖=1 𝑖 ≈ 1

2𝑛
2 steps.

Fortunately, most problems like this arise from repeated computations (or repeated copying) being
expensive, and are solved by making recomputing (or copying) superfluous. Computations can be
cached, as done in bb-rw implementations. Copying can be reduced by sharing memory access, or
passing around access to a machine or interface which implements such a shared memory access.

Remark C.1.4 (Cached UID NextMsg access). Caching (all) visited states and using short unique
identifiers (UID) for visited states (instead of resending the history of messages leading to a state), yields
a NextMsg-like function which is a suitable bb-rw oracle implementation (in all situations we have
tried). Cached state and short UIDs prevent the quadratic computational overhead, but require expected
polynomial space. Judiciously caching only important states is typically possible, so that usually strict
polynomial space solutions exist.

Keeping track of identifiers and the rewinding tree can be done with efficient data structures. (Polylog-
arithmic overhead is admissible by Corollary C.1.8.)

Remark C.1.5. For admissible models, emulation of algorithms allows (efficient) runtime cutoffs. Cloning
a machine’s state, and resuming from a given state should also be (efficiently) possible. (Or we may add
it as an new assumption.)

Remark C.1.6 (Space overhead). We have only considered time overhead of emulation. This is justified,
as it bounds the space/memory overhead. However, memory overhead is an interesting quantity on its
own. For example, one might argue that expected poly-time (EPT), but strict poly-space (SPS), is a “more
natural” class of feasible computation than expected poly-time and expected poly-space.7

While SPS seems to prevent many technical artefacts, it unveils certain others. Depending on the
implementation of the randomness interface (e.g. input, read-only tape, coin-toss, . . . ) emulation and
bb-rw oracle implementations may not be SPS, because space and randomness complexity are mixed.
If read-only access to an (infinite) random tape is given, then emulating two such tapes by “splitting”
one works well. If randomness is a coin-toss interface, which upon invocation returns a fresh random
bit, then emulation still works. However, to implement a bb-rw oracle bbrw(O), which gives access
to O with fixed randomness, requires to remember all used randomness. This can require expected
polynomial space.

How this can be resolved elegantly is an interesting question. One could rely on derandomization, e.g.
with an (a priori PPT) pseudorandom function, to simulate a long enough random string with small
space. Alternatively, one could try to work with probabilistic bb-rw oracles, which, when rewound to
a state use fresh randomness for new queries, i.e. the same query may yield different answers. Our
problem with deterministic versus probabilistic access seems related to [BG11].

Similar to randomness, non-uniform (infinite) advice may need to be saved by a bb-rw implementation,
leading to space overhead. Again, it depends on the concrete modelling.

7 Of course, the actual complexity class of interest allows EPT-SPS violation with negligible probability.
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C.1.4. (Probably) Admissible Machine Models

To the best of our knowledge, RAM models, and also multi-tape Turing machines, are admissible if one
works with polynomial time or larger runtime classes.8 Following trivial lemma is useful to see that
efficient emulation is not hard to achieve, even for expected time.

LemmaC.1.7. Let 𝑓 : N0 → N0 be any (monotone) strictly increasing function with (monotone) increasing
left-inverse 𝑔, i.e. 𝑔 ◦ 𝑓 = id (but not necessarily 𝑓 ◦𝑔 = id). Suppose𝑇 is a runtime and smaller than 𝑓 , i.e.
Pr[𝑇𝜆 > 𝑓 (𝜆)] = 0 (for all 𝜆). Let ℎ be another monotone function. Then E [ℎ(𝑔(𝑇𝜆))𝑇𝜆] ≤ ℎ(𝜆)E [𝑇𝜆].

Proof. Use ℎ(𝑔(𝑇𝜆)) ≤ ℎ(𝑔(𝑓 (𝜆))) ≤ ℎ(𝜆). □

Corollary C.1.8. Let poly be any monotone polynomial, and E [𝑇𝜆] ≤ 𝑡 (𝜆) for a polynomial bound 𝑡 ,
and 𝑇 ≤ 2𝜆 . Then E [poly(log(𝑇𝜆))𝑇𝜆] is polynomially bounded (namely by ≤ poly(𝜆)𝑡 (𝜆)).

Proof. Use Lemma C.1.7 with 𝑓 (𝜆) = 2𝜆 , 𝑔(𝜆) = log2(𝜆). and ℎ = poly, □

Note that 𝑇𝜆 ≤ 2𝜆 is easily achieved via a runtime cutoff after 2𝜆 steps.9 This induces a statistically
negligible change in the output of any expected polynomial time algorithm.10 Thus, we see that
polylogarithmic multiplicative overhead in emulation is not a problem for expected polynomial time
computations. By taking a smaller superpolynomial bound, e.g. 𝑓 (𝜆) = 𝜆log(𝜆) , we get we a bit more
freedom in the emulation overhead.

Remark C.1.9 (Interaction of Corollary C.1.8 and virtuality). CEPT and CPPT ignore negligible events,
because they can be hidden in the virtuality. So, Corollary C.1.8 may always be applied after conditioning
on the event {𝑇𝜆 ≤ 2𝜆}, i.e. after using the “virtuality slack”. Consequently, polylog overhead is not a
problem for CEPT.

We end our discussion of machine models by taking a closer look two exemplary machine models.

Example C.1.10 (Single-tape Turing machines are not admissible). Consider single-tape Turing machine
as the model of computation. It is easy to construct an interactive algorithm for computing whether
a string is a palindrome which runs in linear time (in the length of the input string). However, it is
well-known that single-tape Turing machines need quadratic time to recognize this language. Thus,
the emulation overhead is (at least) quadratic. Hence, it is single-tape Turing machines are not an
admissible model of computation.

Example C.1.11 (RAM models). Various RAM models seem appropriate for our cause. A model of
computation in which the RAM’s word size grows with the “problem size” seems particularly well-suited
for cryptography; indeed security parameter 𝜆 is a natural measure for the “problem size”.

8 We have not carried out formal proofs.
9 Technically, we have to do an earlier cutoff, since emulation and cutoff also consume runtime. But this is a minor issue.
10 Unfortunately, such a truncation can affect perfect properties, such as perfect correctness, leading to technical artefacts.
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C.2. Supplementary Definitions for Commitment Schemes

The commitment scheme used in [GK96] does not fit directly into our notion of non-interactive
commitments with setup (Section 2.2.4), since it is in the plain model. Moreover, in the preliminaries,
we only defined security of commitment schemes against a priori PPT adversaries. In this section, we
explain the small changes need to extend the definitions.

C.2.1. 3-move Commitments Without Trusted Setup

We briefly discuss 3-move commitment schemes in the plain model.

Remark C.2.1 (Plain-model 3-move Commitment Schemes). Our definitions assume that the commitment
key is set up by a trusted party. One can obtain almost-non-interactive commitments in the plain model,
by allowing the receiver or the committer to set up the commitment key. In this case, one needs an
additional algorithm VfyCK for verifying the well-formedness of a (purported) commitment key ck,
since it could now be (maliciously) malformed. To ensure security in this setting, a party must run
VfyCK(ck) before it ever commits, and if verification fails, it must not use the commitment to commit
values or accept commitment openings. Consequently, the definitions of binding and hiding are now
modified, and ck is provided by the responsible party (which is potentially malicious). Moreover, the in
both the binding and the hiding game, the adversary loses if VfyCK(ck) = 0.

Remark C.2.2 (Remark C.2.1 continued). The graph 3-colouring protocol G3CGK of Goldreich and Kahan
[GK96] relies on a weaker “a posteriori hiding” property for a statistically hiding 3-move commitment
scheme in the plain model. Here, VfyCKmay depend on secrets, e.g. the randomness of Setup, allowing
more candidates schemes. The verification secrets are only revealed after the binding property is not
needed anymore. The win condition in the binding game is modified accordingly.

Concretely, in the zero-knowledge proof system from Goldreich and Kahan [GK96], the verifier commits
to random challenges during the protocol. They challenge must be statistically hidden until it is unveiled.
However, it suffices that the verifier is ensured of this statistical hiding property at the end of the
protocol, since it can (and will) simply reject a purported proof the commitment key ck does not satisfy
the statistical hiding property. Thus, delaying VfyCK and using the random coins for Setup in VfyCK
makes sense in this special case.

C.2.2. Security Against Other Polynomial Runtime Classes

Security notions, i.e. binding and hiding, of commitments was only defined for a priori PPT ad-
versaries in Section 2.2.4. To adapt these notions to more other polynomial runtime classes, let
T ∈ {PPT, EPT,CPPT,CEPT}. Observe that the definition of advantage of an adversary A

against the binding or hiding property (Definitions 2.2.9 and 2.2.11) of a commitment scheme COM
does not depend on A’s runtime class. Thus, it is indeed straightforward to define binding and hiding
for T-time adversaries, as follows: COM is hiding (resp. binding) against T-time adversaries, if for
every T-time adversary A the advantage of A is negligible. Note that we do not need to decide
whether a T-time adversary is defined by using the runtime of A only, or by using runtime of the
whole experiment (including the challenger), because all algorithms of COM are a priori PPT anyway.

Finally, we note that CEPT adversaries are “no better” than a priori PPT adversaries.
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Lemma C.2.3. Suppose COM is computationally (resp. statistically, resp. perfectly) hiding (resp. binding)
against a priori PPT adversaries. Then it also is against CEPT adversaries.

Proof sketch. Use that COM consists of a priori PPT algorithms and a standard truncation to a priori
PPT to obtain an adversaryA′ with advantage at least half the advantage ofA infinitely often. □

C.3. ★Technical lemmata

In this section, we gather some lemmata for various purposes. Appendix C.3.2 contain some simple
facts on statistical distance. In Appendix C.3.3, some cryptographic results concerning distinguishing
and general hybrid arguments are given. And Appendix C.3.4 contains naive closeness tests.

C.3.1. Tail Bounds

Tail bounds for distributions are the core tool for (runtime) cutoffs. For example, they allow to estimate
how much the adversarial advantage suffers if we truncate.

DefinitionC.3.1 (Tail bounds). Let𝑋 be some distribution onR≥0. We call a (right-)continuous decreasing
function tail : R≥0 → R≥0 a tail bound of 𝑋 if ∀𝑥 ∈ R≥0 : Pr[𝑋 > 𝑛] ≤ tail(𝑛).

Moreover, we write tail† : R≥0 → R≥0 ∪ {∞} for tail†(𝛼) = inf{𝑛 | tail(𝑛) ≤ 𝛼}, which satisfies
tail(tail†(𝛼)) ≤ 𝛼 . More generally, we call an upper bound bnd of some sequence (𝑥𝑛)𝑛 a tail bound,
i.e. 𝑥𝑛 ≤ bnd(𝑛) for all 𝑛.

Tail bounds generalize to distributions over R≥0 ∪ {∞,timeout}, etc.

The optimal tail bound is tail(𝑛) = 1 − CDF𝑋 (𝑛), where CDF𝑋 is the cumulative distribution function
of 𝑋 . We use tail†(𝛼) to conveniently denote the minimal 𝑛𝛼 with tail(𝑛𝛼 ) ≤ 𝛼 , which exists due to
continuity of tail.

For strict runtimes, e.g. strict polynomial time, the time bound is an admissible tail bound. More
generally, we recall following lemma:

Lemma C.3.2 (Markov bound). Let 𝑋 be a distribution on R0 and suppose E [𝑋 ] ≤ 𝑡 . Then tail(𝑛) = 1
𝑛
𝑡

is an admissible tail bound and tail†(𝛼) = 1
𝛼
𝑡 . For ∥𝑋 ∥𝑝 = (E [𝑋𝑝])1/𝑝 ≤ 𝑡 with 𝑝 ≥ 1, we have

tail(𝑛) = ( 𝑡
𝑛
)𝑝 , and hence tail(𝑛) ≤ 𝑡

𝑛
if 𝑛 ≥ 𝑡 .

For simple corollaries concerning runtime truncation and bounds, see Appendix C.3.3.

C.3.2. Simple Facts

In this section, we state some simple facts. Most are used with, or about, random variables, conditional
variables, and the behaviour of statistical distance.
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C.3.2.1. Statistical Distance

Following lemma is useful to bound statistical distances of products of densities.

Lemma C.3.3. Let 𝑝𝑖 , 𝑞𝑖 ∈ [0, 1] for 𝑖 = 1, . . . , 𝑛. Then|︁|︁|︁ 𝑛∏︂
𝑖=1

𝑝𝑖 −
𝑛∏︂
𝑖=1

𝑞𝑖

|︁|︁|︁ ≤ 𝑛∑︂
𝑖=1
|𝑝𝑖 − 𝑞𝑖 |.

In particular, Δ(𝑋 × 𝑌,𝑋 ′ × 𝑌 ′) ≤ Δ(𝑋,𝑌 ) + Δ(𝑋 ′, 𝑌 ′) for random variables 𝑋,𝑌,𝑋 ′, 𝑌 ′ (not necessarily
independent).

More precisely, let 𝑝 (1,...,𝑘 ) ≔
∏︁𝑘
𝑖=1 𝑝𝑖 , and let 𝑞 (𝑘,... ) ≔

∏︁𝑛
𝑖=𝑘

𝑞𝑖 , and let 𝛿𝑖 ≔ |𝑝𝑖 − 𝑞𝑖 | then|︁|︁|︁ 𝑛∏︂
𝑖=1

𝑝𝑖 −
𝑛∏︂
𝑖=1

𝑞𝑖

|︁|︁|︁ ≤ 𝑛∑︂
𝑖=1

𝑝 (1,...,𝑖−1)𝛿𝑖𝑞 (𝑖+1,... ) .

Assuming the products are finite, this continues to hold for 𝑛 = ∞.

Proof. This follows from a straightforward induction (using |𝑝𝑖 |, |𝑞𝑖 | ≤ 1) to simplify. The claim
regarding statistical distance follows by an application of the inequality under the integral. □

Next, we note how conditional distributions and statistical distance are connected.

Remark C.3.4. Let 𝑋 be random variable and let 𝑌 independently distributed like 𝑋 conditioned on
some event of probability 𝜀. Then Δ(𝑋,𝑌 ) = 𝜀.

(This follows easily since 𝑌 has the density Pr[E]−11E as density w.r.t. 𝑋 , where 1E hence 2Δ(𝑋,𝑌 ) =
∥1 − Pr[E]−11E∥1 = Pr[E] + Pr[E] = 2𝜀.)

Following is a simple result of CDFs.

Corollary C.3.5. Let 𝑋 and 𝑌 be two random variables over N0 ∪ {∞} and let 𝑁 ∈ N0. Suppose 𝑋 (resp.
𝑌 ) are truncated to 𝑋 ≤𝑁 (resp. 𝑌 ≤𝑁 ) (i.e. they output timeout if they exceed 𝑁 ). Then

Δ(𝑋,𝑌 ) − Pr[𝑋 > 𝑁 ] ≤ Δ(𝑋 ≤𝑁 , 𝑌 ≤𝑁 ) ≤ Δ(𝑋,𝑌 ) .

Proof. We show Δ(𝑋,𝑌 ) − Δ(𝑋 ≤𝑁 , 𝑌 ≤𝑁 ) ≥ Pr[𝑋 > 𝑁 ]. The left-hand side is
∑︁∞
𝑘=𝑛
|𝑝𝑋 (𝑘) − 𝑝𝑌 (𝑘) | −

|∑︁∞
𝑘=𝑛

𝑝𝑋 (𝑘) −𝑝𝑌 (𝑘) |. This can be interpreted as ℓ1-norms and the claim follows by general inequalities,
see Lemma C.3.6. □

Lemma C.3.6. Let 𝑥,𝑦 be be two elements in a normed vector space and suppose ∥𝑦∥ ≤ 𝜀. Then

|∥𝑥 − 𝑦∥ − |∥𝑥 ∥ − ∥𝑦∥ | | ≤ 2∥𝑦∥ ≤ 2𝜀

The inequality is tight (𝑦 = −𝑥).

Proof. We consider two cases. Suppose ∥𝑥 ∥ ≤ ∥𝑦∥ . Then we find

∥𝑥 − 𝑦∥ − |∥𝑥 ∥ − ∥𝑦∥ | = ∥𝑥 − 𝑦∥ − ∥𝑥 ∥ + ∥𝑦∥ ≤ ∥𝑥 − 𝑦 − 𝑥 ∥ + ∥𝑦∥ = 2∥𝑦∥ .

For the case ∥𝑦∥ ≤ ∥𝑥 ∥ we find by symmetry (of |𝑎 − 𝑏 |) that

∥𝑦 − 𝑥 ∥ − |∥𝑦∥ − ∥𝑥 ∥ | ≤ 2∥𝑦∥ ≤ 2𝜀.

This finishes the proof. □
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C.3.2.2. Domination (with Slack)

We give some simple properties of domination (with slack).

Lemma C.3.7 (Properties of domination). Let R′ = R ∪ {∞,timeout}. Let 𝑋,𝑌 : Ω → R′ be random
variables and suppose 𝑋

𝑑
≤𝐿 𝑌 for 𝐿 ≥ 1. Then:

1. For any monotonely increasing continuous function 𝑓 : R′ → R′, we have 𝑓 (𝑋 )
𝑑
≤𝐿 𝑓 (𝑌 ).

2. In particular, for 𝑋,𝑌 : Ω → R′, we have 𝑋 ≤𝑡
𝑑
≤𝐿 𝑌 ≤𝑡 .

3. For any 𝜈 ∈ [0, 1], we have 𝑋 𝜈
𝑑
≤𝐿 𝑌 𝜈 . Moreover, even conditioned on ¬timeout, the respective

𝑋 ′, 𝑌 ′ satisfy 𝑋 ′
𝑑
≤𝐿 𝑌 ′

4. If 𝑋,𝑌 ≥ 0, ∥𝑋 ∥𝑝 ≤ 𝐿∥𝑌 ∥𝑝 for 𝑝 ∈ [1,∞].

5. For 𝑖 = 1, . . . , 𝑛 let 𝑋𝑖 , 𝑌𝑖 : Ω → R′ with 𝑋𝑖
𝑑
≤𝐿 𝑌𝑖 and 𝜆𝑖 > 1 with

∑︁𝑛
𝑖=1 𝜆𝑖 = 1. Then

∑︁𝑛
𝑖=1𝑋𝑖

𝑑
≤𝑀∑︁𝑛

𝑖=1 𝜆
−1
𝑖 𝑌𝑖 . In particular,

∑︁𝑛
𝑖=1𝑋𝑖

𝑑
≤𝐿 𝑛

∑︁𝑛
𝑖=1 𝑌𝑖 .

Proof. Let 𝑓 be as claimed. Let 𝑔+ be defined as 𝑔+(𝑦) = inf 𝑓 −1({𝑧 | 𝑦 ≤ 𝑧}) and let 𝑔− be defined as
𝑔+(𝑦) = sup 𝑓 −1({𝑧 | 𝑧 ≤ 𝑦})) Then 𝑔− (𝑓 (𝑥)) ≤ 𝑥 ≤ 𝑔+(𝑓 (𝑥)) by definition, and 𝑔± are monotone.
Since 𝑓 is right-continuous, 𝑓 (𝑥) ≤ 𝑦 ⇐⇒ 𝑥 ≤ 𝑔+(𝑦). Consequently, for all 𝑐 ∈ R′

Pr[𝑓 (𝑋 ) > 𝑐] = 1 − Pr[𝑓 (𝑋 ) ≤ 𝑐] = 1 − Pr[𝑋 ≤ 𝑔+(𝑐)] = Pr[𝑋 > 𝑔+(𝑐)] .

Now, we find for all 𝑐 ∈ R′

Pr[𝑓 (𝑋 ) > 𝑐] = Pr[𝑋 > 𝑔+(𝑐)] ≤ 𝐿 Pr[𝑌 > 𝑔+(𝑐)] = 𝐿 Pr[𝑓 (𝑌 ) > 𝑐],

which proves the first claim. The second follows immediately by setting 𝑓 appropriately. The last claim,
directly follows in simple cases (namely if quantile-truncation coincides with truncation at some 𝑐). In
general, we use that

Pr[𝑋 > 𝑐] ≤ 𝐿 Pr[𝑌 > 𝑐] ⇐⇒ Pr[𝑌 ≤ 𝑐] ≤ 𝐿 − 1
𝐿

Pr[𝑋 > 𝑐]

and the definition of quantile cutoff

Pr[𝑋 𝜈 ≤ 𝑐] = max{1, Pr[𝑋 ≤ 𝑐]}.

Conditioning on ¬timeout simply means using max{1, 1
1−𝜈 Pr[𝑋 ≤ 𝑐]} as the new CDF. In both

cases, the claim easily follows.

For the norm inequality, let 𝐹 = CDF𝑋 ( · ), 𝐺 = CDF𝑌 ( · ) and note that 1 − 𝐹 ≤ 𝐿(1 − 𝐺)
by assumption. Also recall that ∥𝑋 ∥1 = E [𝑋 ] =

∫ ∞
0 1 − 𝐹 (𝑥)d𝑥 for any distribution 𝑋 ≥ 0. We

assume 𝑝 < ∞, and leave 𝑝 = ∞ to the reader. Thus, ∥𝑋 ∥𝑝𝑝 = ∥𝑋𝑝 ∥𝑝1 =
∫ ∞
0 1 − 𝐹 (𝑥1/𝑝)d𝑥 . Finally∫ ∞

0 1 − 𝐹 (𝑥1/𝑝)d𝑥 ≤
∫ ∞
0 𝐿(1 −𝐺 (𝑥1/𝑝))d𝑥 = 𝐿𝑝 ∥𝑌 ∥𝑝𝑝 .

For item 5, note that
∑︁
𝑖 𝑋𝑖 > 𝑡 implies that there exists some 𝑖 such that 𝑋𝑖 > 𝜆𝑖𝑡 . Thus

Pr[
∑︂
𝑖

𝑋𝑖 > 𝑡] ≤
∑︂
𝑖

Pr[𝑋𝑖 > 𝜆𝑖𝑡] ≤
∑︂
𝑖

𝐿 Pr[𝑌𝑖 > 𝜆𝑖𝑡] ≤ 𝐿
∑︂
𝑖

Pr[𝜆−1𝑖 𝑌𝑖 > 𝑡]

and the claim follows. □

264



C.3. ★ Technical lemmata

C.3.3. Useful Lemmata

In this section, we give some simple lemmata, which are useful tools for moving back and forth between
strict and expected time. The results given in this section are not asymptotic, and given for simple
objects. Nevertheless, it is straightforward to show that all constructions can be directly applied in the
asymptotic setting.

C.3.3.1. Runtime Truncations

We give generic variants of runtime truncation lemmata.

Corollary C.3.8. Suppose A is some algorithm. Suppose A(𝑥) takes an expected number of 𝑡𝑥 steps on
input 𝑥 . Then the output distribution of A(𝑥)≤𝑁 , has statistical distance at most 𝑡𝑥

𝑁
from A(𝑥).

Corollary C.3.8 bounds the quality loss when converting expected to strict time algorithms. For example,
if A is a distinguisher with advantage 𝜀, and 𝑡𝑥 ≤ 𝑡 for all inputs, then truncating runtime after 2𝜀−1𝑡
steps yields a distinguisher with advantage 1

2𝜀. If 𝑡 = poly and 𝜀 ≥ 1/poly, then this transforms an
expected polynomial time distinguisher into a strict polynomial time distinguisher.

Corollary C.3.9 (Non-asymptotic generic “standard reduction”). Suppose DO is a distinguisher with
advantage 𝜀 for timed oracles O0, O1. Let𝑇0 = timeD+O (DO0), and let 𝑁 = tail†

𝑇0
( 𝜀4 ). Then there is anA

with runtime 𝑆𝑏 = timeD+O (AO𝑏 ) for 𝑏 = 0, 1 bounded roughly by 𝑁 (plus overhead for computing 𝑁
and emulating D), and A distinguishes O0 and O1 with advantage 𝜀

4 .

More precisely, A truncates the total time of D +O to at most 𝑁 steps, hence the runtime distribution of
A is close to that of D +O. Moreover, there are two possible candidates for A: One outputs the output of
D, and a random guess in case of timeout. The other outputs 1 in case of timeout and 0 else. At
least one of these algorithms has advantage 𝜀

4 .

We note again, that only the runtime with O0 and its tail bound are of importance for the runtime
cutoff. Also, one can trade-off runtime for advantage, e.g. by truncating at 𝑁 = tail†

𝑇0
( 𝜀
poly ). This

cutoff argument and its variations play the role of the standard reduction to PPT (Corollary 5.4.2)
in the general setting. We point out, that runtime is not the only (complexity) measure of interest
which can be used in Corollary C.3.9. Besides elapsed runtime of D + O, the elapsed runtime of
only D, consumed memory, number of queries, query length, etc., are possible measures to which
Corollary C.3.9 generalizes straightforwardly.

Proof sketch. Distinguisher A emulates D and truncates D’s and O’s combined steps to 𝑁 . That is,
A keeps track of the steps 𝑡D and 𝑡O and relies on O being a timed oracle to allow it a time bound
of 𝑁 − 𝑡O − 𝑡D when invoked. Note that A emulates an priori number bounded number of 𝑁 steps.
Truncating DO0 after 𝑁 steps w.r.t. oracle-included steps ensures that the output of DO0 has statistical
distance at most 𝜀4 .

Suppose the output ofAO1 has statistical distance 𝛿 ofDO1 . If 𝛿 ≥ 2𝜀
4 . then necessarily, the probability

that𝑇1 = timeD+O (DO1) exceeds 𝑁 steps is larger than 2𝜀
4 . Thus, this runtime statistic can be used as a

distinguishing property, with advantage at least 𝜀4 infinitely often. (Concretely, A returns 1 if 𝑁 steps
are exceeded and 0 otherwise.)
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Now suppose the probability that 𝑇1 = timeD+O (DO1) exceeds 𝑁 steps is less than 2𝜀
4 . LetA guesses

randomly in case of timeout. Then possible loss in advantage is bounded by 𝜀
4 +

2𝜀
4 = 3𝜀

4 . This leaves
an advantage of 𝜀4 and the claim follows. □

Importantly, the construction of the two distinguisher candidates is uniform, and translates to the
asymptotic setting. One of them has infinitely often advantage at least 𝜀4 .

C.3.3.2. Hybrid Lemmata

Hybrid arguments and therefore the hybrid lemma are omnipresent in cryptography. Unfortunately,
the standard hybrid lemma for strict polynomial time does not hold without change.

Example C.3.10 (Expected polynomial rounds). The need to deal with a priori infinitely many hybrids
arises naturally from expected polynomial interaction: We have

∑︁
𝑖≥1 2−𝑖 = 1, so repeating some

protocol (step) with probability 1
2 implies an expected constant number of repetitions. But replacing

each call by a simulation requires an infinite number of hybrid steps. Evidently, after replacing the
first 𝜆 protocols by simulations, the remainder can be replaced in a single step, because more than 𝜆
repetitions are necessary only with probability 2−𝜆 .

We state in general the truncation approach from Example C.3.10.

Corollary C.3.11 (Hybrid lemma). Let O0,O1, . . . ,O∞ be oracles. Let Z0, Z1 be two more oracles, and
let Z be an algorithm as follows: Z takes as input an integer 𝑖 ∈ N. Moreover, Z(𝑖,Z𝑏) is implements an
oracle which behaves exactly like O𝑖+𝑏 .

Let D be a distinguisher for O0 and O1 with advantage 𝜀, that is

|Pr[DO0
= 1] − Pr[DO∞ = 1] | ≥ 𝜀

and suppose that we have a (tail) bound bnd with

|Pr[DO𝑖 = 1] − Pr[DO∞ = 1] | ≤ bnd(𝑖) .

Then for every 𝛼 ≤ 𝜀 there is a distinguisher D′ which distinguishes Z0 and Z1 with advantage11

𝜀′ =
𝜀 − 𝛼
𝑁𝛼

where 𝑁𝛼 ≔ bnd†(𝛼) .

More concretely, D′ picks a random 𝑖
$← {0, 𝑁𝛼 − 1}, runs D on Z(𝑖,Z𝑏) and returns D’s guess bit as its

own. Thus, the runtime distribution of D′ is closely related to that of D and Z.

Proof of Corollary C.3.11. We reduce the proof to the standard hybrid lemma. Note that it suffices to
apply the standard hybrid lemma (with a finite number of steps) to O0, . . . ,O𝑁𝛼 . Because, by the very
definition 𝑁𝛼 we know that |Pr[DO0

= 1] − Pr[DO𝑁𝛼 = 1] | ≥ 𝜀 − 𝛼 = 𝜀′. Now, the standard hybrid
lemma yields our distinguisher and advantage. □

11We note that 𝑁𝛼 = ∞ is possible, in which case 𝜀′ = 0.
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Our statement of the hybrid lemma differs from the standard one in minor points.12 It allows an a
priori infinite number of hybrids. And it postulates a bound bnd on the closeness of the 𝑖-th and final
hybrid. Typically bnd bounds the statistical distance of the 𝑖-th and final hybrid and is derived as a tail
bound, e.g. Markov bound (Lemma C.3.2) on runtime or number of oracle queries.

While one may hope for an “expected number of hybrids” loss, this is impossible in general, since an
adversary could focus its advantage on the “tail hybrids”. Any black-box-like reduction is unlikely to
achieve better bounds.

Example C.3.12 (Optimality of the (truncated) hybrid argument). Consider following (non-adaptive)
distinguishing game: The adversary sends a number 𝑛 to the challenger. The challenger prepares 𝑛
truly random 𝑟𝑖 or 𝑛 pseudo-random 𝑟𝑖 = PRG(𝑠𝑖), and the adversary must distinguish. Consider an
adversary with distribution 𝑁 of 𝑛, so that E [𝑁 ] ≤ 3. The hope, that the hybrid argument may only lose
a factor of 3 in advantage, is false. One the one hand, it may be that all the advantage of an adversary is
in the tail of the distribution. Without a (non-obvious) way to reach the (distribution of) state, there
is no other way than to run the adversary long enough. This affects any black-box reductions. A
pathological adversary may furthermore distribute its advantage evenly over the hybrids as well, e.g.
by first picking the number 𝑞 of queries, and then breaking the 𝑖-th embedding with probability 1

𝑞
.

Consequently, improving on the hybrid lemma seems close to impossible. Better reductions have to
make use of more information.

As is well known and for completeness demonstrated in Example C.3.12, the tails of distributions are
a limiting factor for (hybrid) reductions. Nevertheless, Corollary C.3.11 is useful and generally good
enough, though it may have poor tightness properties.

C.3.4. Testing Closeness of Distributions

Given two distributions, we need a way to efficiently test how close they are. Again, we give a non-
asymptotic lemma. But we note that in the cryptographic setting, we will tell apart (families of)
distributions which are statistically far (in the asymptotic sense).

Problem C.3.13 (Closeness promise problem). Let 𝑋 , 𝑌 be distributions (typically on {1, . . . , 𝑛}). The
closeness promise problem (with parameter 𝜀 > 0) is the following: Decide whether 𝑋 𝑑≡ 𝑌 or
Δ(𝑋,𝑌 ) > 𝜀. A tester A is an algorithm which, given sample (oracle) access to 𝑋 and 𝑌 outputs a verdict
(i.e. a bit) whether 𝑋 = 𝑌 or not. The error of a tester is (at most) 𝛿 , if

Pr[D𝑋,𝑋 ′ = same] ≥ 1 − 𝛿 and Pr[D𝑋,𝑌 = different] ≥ 1 − 𝛿

We speak of testing instead of distinguishing since it is a slightly stronger notion. A distinguisher may
guess randomly if 𝑋 𝑑≡ 𝑌 , but always decide 𝑋 ≠ 𝑌 correctly, but a tester may not. In particular, a tester
with error 𝛿 has distinguishing advantage 1 − 2𝛿 .

12 Sometimes, the hybrid lemma is stated in a weaker form, merely ensuring the existence of an index 𝑖 where distinguishing
hybrids 𝑖 and 𝑖 + 1 has advantage ≥ 𝜀/𝑚. This does not naively extended to the asymptotic setting. Assuming that for all 𝑖 ,
O𝑖

𝑐≈ O𝑖+1 (asymptotically) does not imply O0 𝑐≈ O∞ (asymptotically). Trivial counterexamples exist. Hence, the reduction
to a (single) fixed indistinguishability assumption is essential for asymptotic usage of Corollary C.3.11.
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Lemma C.3.14. Let 𝑋 , 𝑌 be distributions with support contained in on {1, . . . ,𝑚} and consider the
closeness promise problem. Let 𝜀, 𝛿 ∈ (0, 1]. Then there is an algorithm A which solves the closeness promise
problem with error 𝛿 and requires

𝑁 = ⌈6𝑚𝜀−2 log(2𝛿−1)⌉

samples (of both 𝑋 and 𝑌 ). Moreover, A is makes a linear number of arithmetic operations (in 𝑁 ).

The result generalizes to any 𝑋 , 𝑌 with support contained in S, where card(S) =𝑚, since only comparison
operations for elements are needed.

We note that better closeness testing algorithms are known, namely in [CDVV14] an optimal closeness
tester is given. That tester has linear runtime in the number of samples 𝑁 as well.

Proof of Lemma C.3.14. Our tester simply uses the Kolmogorov–Smirnov test. That is, compute the
empirical CDF 𝐹𝑋 and 𝐹𝑌 (with 𝑁 samples each) and test whether ∥𝐹𝑋 − 𝐹𝑌 ∥∞ < 𝜀. By applying a
Chernoff bound argument in case 𝑋

𝑑
≢ 𝑌 , and using the sharp Dvoretzky–Kiefer–Wolfowitz inequality

by Massart in case 𝑋 𝑑≡ 𝑌 , we arrive at the claimed result. (Our constants are chosen so that we obtain
(𝜀/3, 𝛿/2) approximations of the true CDF’s. By a standard argument using the triangle inequality, one
obtains our claims.) □

As with the hybrid lemma, we have to deal with distributions with infinite support. Using tail bounds,
we stretch Lemma C.3.14 to this case.

Corollary C.3.15. Let 𝑋 , 𝑌 be distributions on N0 and consider the closeness promise problem. Let
𝜀, 𝛿 ∈ (0, 1] and let tail𝑋 (·) be a tail bound for 𝑋 . Suppose 𝜀′ = 𝜀 − 𝛼 , where 𝛼 > 0, let𝑚′ = tail†

𝑋
(𝛼).

Then there is an algorithm A which solves the closeness promise problem with error 𝛿 and requires

𝑁 ′ = ⌈6(𝑚′ + 1)𝜀′−2 log(2𝛿−1)⌉

samples (of both 𝑋 and 𝑌 ). Moreover, A is only requires a linear number of arithmetic operations (in 𝑁 ′).

We note that N0 ∪ {∞} (and the like) are also domains for which Corollary C.3.15 holds. It should also
be evident, that this generalizes, as long as we can approximate 𝑋 and 𝑌 suitably precise over a suitably
small domain. Hence tail bounds are just a special case, and replacing 𝑋,𝑌 by suitable close 𝑋 ′, 𝑌 ′
works as well.

Proof. The algorithm simply maps the distributions 𝑋 , 𝑌 to new distributions by mapping any sample
𝑠 to max{𝑠,𝑚}.13 This changes the statistical distance by at most tail𝑋 (𝑚), see Corollary C.3.5. Now,
apply Lemma C.3.14. □

Following remark, while a triviality, points out one core tool of this work.

13 Note that this mapping does not need to “read” all of 𝑠 (given e.g. tape-access starting from the least significant bit). In
particular, in suitable machine models, we do not run into problems where some values 𝑠 are gigantic and could not be
read without compromising efficiency.
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Important Remark C.3.16 (Statistical and computational indistinguishability coincide for “small” sup-
port). From Lemma C.3.14 and Corollary C.3.15, we already observe the following: Asymptotically,
any pair of (families of) distributions 𝑋 , 𝑌 , where one, say 𝑋 , has (essentially) polynomial sized sup-
port {0, . . . , poly(𝜆)} are computationally triple-oracle indistinguishable under repeated sampling in
polynomial time, if and only if, they are statistically triple-oracle indistinguishable under repeated
sampling.

Remark C.3.17. Merely considering the domain, independently of 𝑋 is a very rough point of view. After
all, 𝑋 could be concentrated on a tiny subset of {0, . . . , 𝑛}. In particular, relying on supp(𝑋 ) ⊆ N0 and
using a total ordering and tail bounds, is not at all necessary. We consider a more sensitive closeness
testing lemma a useful tool for more precise analysis. But the coarse (non-optimal) results stated here
are good enough for our purposes.

C.4. ★General Runtime Definitions

This section is (only) for the inclined reader. It contains our “general” treatment of runtime classes, that
is, our framework and the many definitions necessary to talk about runtime classes and their properties.
Unfortunately, we fall short of going beyond algebra-tailed runtime classes, hence by and large, nothing
of essence is covered that is not already visible for polynomial time, PPT, EPT and CEPT.

C.4.1. Preliminaries: Bound Algebras

Most of our arguments work for runtime classes related to bound algebras, for example, the algebra of
polynomials.

Definition C.4.1 (Bound algebras). A bound algebra B is a subset of RN0≥0, i.e. a subset of sequences in
R≥0, which satisfies:

• B is the subset of non-negative sequences of a subalgebra of RN0 . In particular, it is closed under
multiplication and it contains the constant 0 and constant 1 sequences.14

• B is closed under domination, i.e. (𝑥𝜆)𝜆 ∈ B, then so is any (𝑦𝜆)𝜆 with 𝑦𝜆 ≤ 𝑥𝜆 (for all 𝜆).

• B is “asymptotically monotone”: If (𝑥𝜆)𝜆 ∈ B, then so is (𝑦𝜆)𝜆 with 𝑦𝜆 ≔ max𝜆
𝑖=1 𝑥𝑖 .

A subset G ⊆ B is generates B if for any (𝑥𝜆) ∈ B there is a (𝑦𝜆) ∈ G with (𝑥𝜆) ≤ (𝑦𝜆). The set NeglB
of B-negligible functions, is defined as NeglB = {𝑓 | lim sup𝜆→∞ |𝑓 (𝜆)bnd(𝜆) | = 0}.

When we work with bounds we often implicitly assume they are monotone.

Example C.4.2. Suitable function algebras, e.g. polynomials, or polylogarithmic functions, or 𝑓 (𝜆) =
𝑛polylog(𝜆) , etc., induce a bound algebra. Importantly, there typically are monotone generating subsets
(of countable size), e.g. {(𝑐𝜆𝑐) | 𝑐 ∈ N0}, which generate B.

14 The associated subalgebra of B is unique.
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C.4.2. Runtime Distributions

Our definitions of (polynomial) runtime are such that an algorithm’s (or protocol’s) runtime is bounded
in the security parameter 𝜆 alone. The input space of an algorithm is (a family) X𝜆 .15 Often, our
algorithms have no (explicit) input, but receive implicit input via oracles, e.g. when distinguishing
distributions given sampling access. In any case, we focus on “a posteriori” runtime, i.e. consider
runtime timeA(A(𝑥)) where 𝑥 $← X for some input distribution (that is A(X) is a system without
inputs).

Caution C.4.3. Recall that we generally suppress mentioning dependencies on the security parameter,
i.e. we typically write A(𝑥) instead of A(𝜆, 𝑥) if 𝜆. The security parameter is (implicit) “input” to every
algorithm. In fact, usually, A is given no inputs (but 𝜆). Similarly, runtime obviously depends on the
machine model even though we do not mention this.

Definition C.4.4 (Runtime distribution). A (input-free) runtime (distribution) 𝑇 is a family (𝑇𝜆)𝜆
of distributions 𝑇𝜆 ∈ Dists(N0 ∪ {∞}) parameterized by 𝜆; more precisely, it is a map 𝑇 : N0 →
Dists(N0 ∪ {∞}) from security parameter to probability distributions over N0 ∪ {∞}. A runtime
𝑇 is induced by an algorithm A if 𝑇𝜆 = timeA(A(𝜆)). We typically suppress 𝜆 and simply write
𝑇 = timeA(A).

We allow the symboltimeout in a runtime distribution𝑇 (formally changing toDists(N0∪{timeout})).16

Remark C.4.5. Runtime (distributions) with input, or input-dependent runtimes are functions mapping
input 𝑥 ∈ X𝜆 to a runtime distribution, that is𝑇𝜆 : X𝜆 → Dists(N0 ∪ {∞}) for all 𝜆. It is induced by A
if 𝑇𝜆 (𝑥) = time(A(𝜆, 𝑥)). The definition of input-dependent runtime (as a random variable) is similar.

For now, we only consider the input-free setting, i.e.X = {★}. Input is implicitly made available via
oracle access.

Caution C.4.6. In this and future sections, we conflate runtimes (random variables) runtime distributions.
The reason is, that we almost always care only about the runtime distribution, except in cases where we
“split” up the runtime of an algorithm into a sum of stochastically dependent runtimes (e.g. of A andO).

C.4.3. Runtime Classes

To talk about “efficient” computation, we need to say which runtime distributions we consider “efficient”.
The set of all “efficient” runtimes then forms the respective runtime class. Exemplary runtime classes
are PPT and EPT. We refine Definition 5.2.4 here, to only include sets of runtimes which have some
basic properties.

Definition C.4.7. A runtime class T is a set of input-free runtime distributions so that:

Constants: The constant 0 and constant 1 runtime are in T.

Closed under domination: that is, if 𝑇 ∈ 𝑇 and 𝑆 ≤ 𝑇 then 𝑆 ∈ T.17

15 Recall a well-known problem: The input space may not be (efficiently) recognizable. Thus, an algorithm may be fed with
malformed input (or oracles/interaction). In general, this voids any runtime guarantees. Thus, for protocols, we want
strong runtime guarantees, which are not restricted do well-formed input.

16We could also allow∞ there, but generally timeouts stop overlong executions.
17 More precisely, 𝑆 ≤ 𝑇 iff for all 𝜆 we have 𝑆𝜆 ≤ 𝑇𝜆 , i.e. 𝑇𝜆 dominates 𝑆𝜆 in distribution.
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Closed under addition, i.e. T +T ⊆ T, where 𝑇 + 𝑆 is viewed as a sum of distributions.

An (oracle) algorithm A runs in T-time if time(A) ∈ T.

Closure under domination says that no “inefficient” algorithm (i.e. runtime outside T) can be made
efficient by doing more steps. Additive closure roughly ensures that independent execution of any
constant number of efficient algorithms is efficient. The definition of runtime class is most likely
incomplete. We just give enough properties so that our results hold. Sensible runtime classes should
offer more guarantees, but we have not identified the “right” properties.

Example C.4.8. We give some exemplary polynomial runtime classes.

Strict polynomial time: The runtime classPPT contains (by definition) all runtimes𝑇 for which there
exists a polynomial poly such that 𝑇 ≤ poly.

Expected polynomial time: The runtime class EPT contains (by definition) all runtimes 𝑇 for which
there exists a polynomial poly such that E [𝑇 ] ≤ poly, i.e. E [𝑇𝜆] ≤ poly(𝜆) for all 𝜆.

Polynomial ∥ · ∥𝑞-time: By polynomially bounding ∥𝑇 ∥𝑞 (for 𝑞 ∈ [1,∞]), we generalize both strict
(𝑞 = ∞) and expected time (𝑞 = 1). For example 𝑞 = 2 implies polynomially bounded variation
(and expectation).

Quasi-linear time: If we require 𝑇𝜆 ≤ 𝜆 · polylog(𝜆) we obtain quasi-linear runtime. This class only
satisfies weak composition properties, and is not covered by our results.

Now, we generalize polynomial time bounds to algebra bounds. For that, we need following definition.

Definition C.4.9. We say that a runtime class T is weakly compatible with a bound algebra B, if for
any bnd0 ∈ B, there is a bnd1 ∈ B so that bnd1 can be computed in T-time. More concretely, bnd1(𝜆)
can be computed in time 𝑇𝜆 for 𝑇 ∈ T.

We call T (strongly) compatible with B if additionally strict B-time (see Definition C.4.10 below) is
contained in T.

Compatibility ensures that T and B behave well in reduction arguments. (Strong) Compatibility is
simpler to work with than weak compatibility, since for example PPT is weakly compatible with
B = 2O (𝜆) , but does evidently not contain all strict B algorithms.

Definition C.4.10 (Bound algebras and runtime classes). Instead of polynomials, some (suitable) algebra
B may be used for time bounds, e.g. 𝑛polylog(𝑛) , see Definition C.4.1. By definition, we always require
that the defined runtime class T is compatible with the bound algebra B.

Algebra-bounded ∥ · ∥𝑞-time: We write RTC𝑞 (B) for the runtime class containing all runtimes𝑇 with
∥𝑇𝜆 ∥𝑞 ≤ bnd(𝜆) for some bnd ∈ B.

Algebra-tailed time: We generalize algebra-bounded time as follows: A runtime class T is B-tailed,
for a bound algebra B, if: For every 𝑇 ∈ T, for every bndtail ∈ B, there is a bnd𝑇 ∈ B, such that
Pr[𝑇𝜆 > bnd𝑇 (𝜆)] ≤ 1

bndtail (𝜆) for all 𝜆.
18

We also refer to algebra-bounded times via strict (or expected) B-time.

By Lemma C.3.2, any algebra-bounded runtime class is also algebra-tailed. Namely pick bnd𝑇 =

𝑡 · bndtail ≥ tail†( 1
bndtail
), where 𝑡 = ∥𝑇 ∥𝑞 . Also, Levin’s relexation of EPT is polynomially-tailed.

18 Recall that asymptotics, should be part of B, so we use for all 𝜆 (and not for almost all).
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We will focus on algebra-tailed runtime classes and runtime classes we derived from them.

Lastly, we define “abstract” runtime cutoffs.

Definition C.4.11 (Runtime truncation). Let 𝑇 be a runtime. We define the runtime cutoff or runtime
truncation𝑇 ≤𝑁 of𝑇 after 𝑁 steps as the distribution (or random variable) given by 𝑇 | ( · >𝑁 ) ↦→timeout,
i.e. by mapping any 𝑘 > 𝑁 to timeout (and the identity mapping otherwise). Runtime truncation is
assumed to be an efficient oracle-transformation in any suitable machine model.19

Remark C.4.12. We stress that an efficient implementation of runtime cutoffs is vital for any results
making use of them. We also note that this means that the truncation bounds themselves must be
efficiently computable. This is ensured by the compatibility requirement in Definition C.4.10.

C.4.4. T-time Triple-Oracle Indistinguishability

There are several notions of indistinguishability of distributions 𝑋0, 𝑋1 w.r.t. to T-time algorithms. We
choose indistinguishability under repeated sampling with additional sampling access to 𝑋0 and 𝑋1. The
decision to give oracle sampling access the distributions 𝑋0 and 𝑋1, as well as the challenge distribution
𝑍

𝑑≡ 𝑋𝑏 mirrors the fact that an algorithm can be (independently) executed many times, and should still
remain efficient.20 In particular, if 𝑋0 = time(A0) is the runtime distribution of an efficient algorithm,
and 𝑋1 = time(A1) is inefficient, then 𝑋1 is not efficiently samplable by emulating A1. To simplify,
we assume sampling access to both 𝑋0 and 𝑋1. Recall that we assume access to binary encodings of
runtime.21

Another simplification is that we require constant distinguishing advantage. By standard amplification
techniques, this is equivalent to non-B-negligible success for algebra-tailed runtime classes.

Definition C.4.13 (Triple-oracle distinguishing). Let O0 and O1 be sampling oracles for distributions 𝑋0,
𝑋1 (i.e. oracles which return a fresh sample distributed as𝑋𝑏 when queried). Consider the distinguishing
experiment Exp3-dist

A,O0,O1
.

Experiment Exp3-distA,O0,O1
(𝜆)

𝑏
$← {0, 1}

Instantiate an independent O∗ ≔ O𝑏

𝑏′ ←AO0,O1,O∗ (𝜆)

return 𝑏′ ?
= 𝑏

The distinguishing advantage of an algorithm D is defined as

Adv3-distD,O0,O1
(𝜆) ≔2 Pr[Exp3-distA,O0,O1

(𝜆) = 1]
=|Pr[DO0,O1,O∗1 (𝜆) = 1] − Pr[DO0,O1,O∗0 (𝜆) = 1] |,

19 This means that applying runtime cutoff to a runtime oracle is efficient. For example, given tape access to bit-encoded
oracle results, we can read the minimal number of bits necessary to recognize 𝑡 > 𝑁 and then return timeout.

20 Our notion behaves nicely in almost any aspect, and agrees with standard notions if 𝑋0 and 𝑋1 are efficiently samplable
(by a standard hybrid argument). We can amplify distinguishing advantage (as usual) and are guaranteed that statistically
indistinguishable distributions are statistically close. Neither of this holds for the usual notions of one-sample or 𝑘-sample
distinguishing, see for example [Mey94; GM98; GS98].

21 A unary encoding would work as well, since we always reduce (a a priori strict time) distinguishers which use a strictly
truncated version of the time. This truncated time can be read efficiently in both unary an binary.
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where O∗
𝑏
= O𝑏 , but independent. (The second equality only holds if D always returns a bit.) The

randomness is taken over the algorithms and oracles randomness.

A distinguisher D is T-time, if timeD (Exp3-distA,O0,O1
) ∈ T.22 We call O0 and O1 (T-time) computation-

ally (triple-oracle) indistinguishable, written O0
𝑐

∼∼∼T O1, if for all T-time distinguishers D,

Adv3-distD,O (𝜆) ∈ 𝑜 (1) .

that is, any distinguisher has asymptotically vanishing advantage. Put differently, a computational
distinguishermust have constant advantage 𝑐 > 0 (for infinitelymany 𝜆). We defineT-query statistical
indistinguishability as T-time indistinguishability, where we only count a query to an oracle as a
step (costing unit time).

We use Definition C.4.13 only for (runtime) distributions, and not general oracle-indistinguishability.

Remark C.4.14 (Why no general advantage classes?). For algebra-tailed runtime classes, using non-
constant advantage, namely non-B-negligible advantage, also works (due to amplification). We could
define general “advantage classes”, such as subexponentially negligible, polynomially negligible, or
1 − 1

𝜆
. One reason not to do this is our focus on indistinguishability of runtimes, not in general

distributions. We crucially rely on tail bounds and triple-oracle indistinguishability, which leads to
(maybe unnecessary) limitation. In the “low advantage regime”, e.g. subexponential advantage, it seems
that the arguments based tail bounds do not carry over. In the “high advantage regime”, e.g. advantage
of at most 1 − 1/poly, the use of triple-oracle (in particular repeated samples) makes possible results
uninteresting and useless (due to amplification to 1 − exp(𝜆)).

Alternative proof techniques, which do not rely on (repeated) sample access and tail bounds as their
central tool are required. It is likely, that the approach(es) in Appendices C.5.3.1 and C.5.3.2 could be
extended. This is out of scope for this work.

Since it is a useful point of view, we slightly generalize distinguishing. Namely, instead of directly
outputting a verdict, onemay output some processed information, which is fed into another distinguisher
(perhaps repeatedly).

Remark C.4.15 (Generalized distinguisher). Let us call a distinguisher, which outputs not only 0 or 1, but
different or additional information, a generalized distinguisher. Clearly, if two distributions are (compu-
tationally) indistinguishable, then the output of any generalized distinguisher is also (computationally)
indistinguishable.

The upshot of this deliberation is that any efficiently computable statistic of an execution of a distinguisher
D must be indistinguishable. Otherwise, there is a distinguisher D′ which emulates D and uses that
statistic to attack indistinguishability. In particular, runtime is such a statistic, and the number of oracle
queries is another.

Now, we apply the notion of T-time triple-oracle indistinguishability to runtimes.

Definition C.4.16. Suppose T is a (input-free) runtime class. Let 𝑇 resp. 𝑆 be (arbitrary) runtimes
and suppose O0 resp. O1 sample 𝑇 resp. 𝑆 . We call 𝑇 and 𝑆 (computationally) T-time (triple-
oracle) indistinguishable if the respective distributions are (computationally) T-time triple-oracle
indistinguishable. We also write 𝑇

𝑐

∼∼∼T 𝑆 . The definition of statistically T-query (triple-oracle)

indistinguishable runtimes is analogous, written 𝑇
𝑠

∼∼∼T 𝑆 .

22 Equivalently, timeD (DO0,O1,O𝑏 ) ∈ T for 𝑏 = 0, 1.
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In the following, we always mean triple-oracle indistinguishable, if not otherwise specified. We come
back to standard indistinguishability only in Appendix C.4.7

C.4.5. Closed Runtime Classes

Now, we come to a central definition, which applies the principle that T-time indistinguishable objects
should be considered “identical” for all cryptographic intents and purposes to T-time itself.

Definition C.4.17 (T-closed). Suppose T and S are runtime classes. We call S computationally (resp.
statistically) T-closed if following holds: For all runtimes 𝑆 , if there is a runtime ˜︁𝑆 ∈ T and 𝑆

𝑐

∼∼∼S ˜︁𝑆
(resp. 𝑆

𝑠

∼∼∼S ˜︁𝑆), then 𝑆 ∈ S.
We call a runtime class T computationally (resp. statistically) closed, if it is T-closed.

Example 5.1.5 demonstrates that neither PPT nor EPT is a closed runtime class. Before we define
the closure of a runtime class, we give some helpful definitions.

Definition C.4.18 (Generating set). Let U be a set of runtimes. We say U generates T if U ⊆ T and
for any runtime class T′ containing U, we have T ⊆ T′. Equivalently, 𝑇 ∈ T ⇐⇒ ∃𝑆 ∈ U : 𝑇 ≤ 𝑆 .
Equivalently, T is the minimal runtime class containing U.23

This shows that indistinguishability w.r.t. any generating subset U ⊆ T or w.r.t. T coincides. For
example, forPPT, the set {poly(𝜆) = 𝑛𝜆𝑛 | 𝑛 ∈ N} is generating, since every runtime is dominated by
a runtime in this set.

Remark C.4.19. We can translate generating sets to the setting of bound algebras. Indeed, in Defini-
tion C.4.10, we require a generating set of efficiently computable bounds.

The perhaps most important relation between sets of runtimes is the following.

Definition C.4.20 (D-dense). A subset of runtimesU ⊆ T is called computationally (resp. statistically)
distinguishing-dense (short d-dense) in runtime class T if for any pair of distributions 𝑋 , 𝑌 (over
N0 ∪ {∞}) we have

𝑋
𝑐/𝑠
∼∼∼ T 𝑌 =⇒ 𝑋

𝑐/𝑠
∼∼∼ U 𝑌

w.r.t. triple-oracle indistinguishability. In other words, if T can distinguish two distributions, so can U.
A weakening of d-dense is runtime d-dense, where 𝑋 must be in T.

We note that d-density of U ⊆ T is much different from being generating. For example, PPT ⊆ EPT

is d-dense, since any (successful) expected polynomial time distinguisher can be transformed into a
(still successful) strict polynomial time distinguisher, see Corollary C.3.8.

Lemma C.4.21. Let T ⊆ S be runtime classes. Suppose that S is computationally T-closed and that
T is computationally (runtime) d-dense in S. Then S is computationally closed. The same holds in the
statistical case.

23 It is easy to see that an arbitrary intersection of runtime classes is again a runtime class. Hence, the generated runtime
class of U is the intersection of all runtime classes containing U, in particular, it exists and is unique.
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Proof. Let ˜︁𝑇 ∈ S and let 𝑇 be some runtime. Suppose ˜︁𝑇 𝑐

∼∼∼S 𝑇 . Then ˜︁𝑇 𝑐

∼∼∼T 𝑇 , since T is runtime
d-dense in S and ˜︁𝑇 ∈ S. Then 𝑇 ∈ S, since S is computationally T-closed. The statistical case follows
analogously. □

We now give a (constructive) definition of the closure of a runtime class.

Definition C.4.22 (Closure). Let T and S be a runtime classes. We define the computational S-closure
Cls𝑐S (T) of T as

Cls𝑐S (T) ≔ {𝑆 : N0 → Dists(N0 ∪ {∞}) | ∃𝑇 ∈ T : 𝑆
𝑐

∼∼∼S 𝑇 }.

The statistical S-closure Cls𝑆S (T) is defined analogously. The closure T of T is Cls𝑐/𝑠
T
(T) (whether

computational or statistical will be clear from the context).

An abstract notion of closure (e.g. minimal closed runtime class containing T) and its equivalence with
Definition C.4.22 would be a good justification for our definition.

Lemma C.4.23 (Closures are closed). The closure T of a runtime class T is closed. (This holds in the
computational and the statistical case.)

Proof. Consider a runtime𝑇 ∈ T and some arbitrary runtime 𝑆 and suppose that𝑇
𝑐

∼∼∼T 𝑆 . To show that
T is closed, we need 𝑆 ∈ T. Since T ⊆ T, we have 𝑇

𝑐

∼∼∼T 𝑆 . By definition of T, there is some ˜︁𝑇 ∈ T
such that ˜︁𝑇 𝑐

∼∼∼T 𝑇 . Now, we have ˜︁𝑇 𝑐

∼∼∼T 𝑇
𝑐

∼∼∼T 𝑆 . This implies 𝑆 ∈ T by definition of T.24 This proves
the claim. The statistical case follows analogously. □

We would like a stronger result. We state this in following conjecture, which has little support for
general runtime classes.

Conjecture C.4.24 (Closures are small). For any “benign” runtime class T, T is runtime d-dense in T.

We expect that runtime classes where Conjecture C.4.24 fails behave rather strangely. While we do not
know what “benign” runtime classes are or how to prove Conjecture C.4.24 in general, it is simple for
algebra-tailed runtime classes.

Lemma C.4.25. Let B be a bound algebra and T be B-tailed. Then, strict B-time is d-dense in T. (This
holds in the computational and statistical case.)

Proof sketch. Suppose D is a T-time distinguisher of distributions 𝑋 and 𝑌 with advantage ≥ 𝜀 (for
infinitely many 𝜆 and constant 𝜀). Let 𝑇 = time(D). We know that 𝑇

𝑐

∼∼∼T ˜︁𝑇 for some ˜︁𝑇 ∈ T. Thus, for
any T-computable bound bnd, we have |Pr[𝑇𝜆 ≤ bnd(𝜆)] − Pr[˜︁𝑇𝜆 ≤ bnd(𝜆)] | ≤ 𝑜 (1). Otherwise 𝑇
and ˜︁𝑇 would be T-time distinguishable.

Since T is B-tailed, there exist an (efficiently computable) bound bnd(𝜆) ≥ tail†˜︁𝑇𝜆 ( 23𝜀). Consequently,
D≤bnd is strict B-time, hence T-time, and retains a distinguishing advantage of 2

3𝜀 − 𝑜 (1) (infinitely
often), which is at least 1

2𝜀 infinitely often. □

24 Triple-oracle indistinguishability is transitive for any constant number of hops.
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We note an interesting step in the argument: The connection to D’s runtime 𝑇 is indirect, since we
rely on ˜︁𝑇 instead. We only needed suitable bounds for truncation. Indeed, runtime truncation seems to
be the central (and only) tool at our disposal, and someway or another, it is what our proofs rely on.

Remark C.4.26 (Efficiency of truncations). Note that timeD (D≤bnd) ≤ timeD (D) (up to emulation
overhead), that is, the truncation is “as efficient as” D, and only loses advantage/output quality.

Remark C.4.27 (Non-negligible advantage). Lemma C.4.25 immediately extends to advantage 𝜀 =

1/bnd(𝜆) (for infinitely many 𝜆). Just replace 𝑜 (1) by neglB and note that tail†˜︁𝑇𝜆 (𝛼 1
bnd (𝜆) ) ∈ B for any

constant 𝛼 > 0 and bnd ∈ B. This direct “conversion” to the usual setting of non-negligible advantage
typically works for our results concerning algebra-tailed runtime classes.

Following lemma is useful to check if some runtime class S is the closure of T.

Lemma C.4.28 (Closures are minimal). Let T ⊆ S ⊆ T be runtime classes. Suppose that S is T-closed
and T is d-dense in S. Then S = T. (This holds in the computational and statistical case.)

Proof. Similar to Lemmas C.4.21 and C.4.23. (Any element in T also lies S.) □

Let us consider a simple concrete example.

Example C.4.29 (CPPT). Wedenote the closure ofPPT asPPT orCPPT and call it computationally
probabilistic polynomial time (CPPT). In Appendix C.4.6, we find that statistical and computational
closure coincide, hence “CPPT = SPPT”. By definition, CPPT is

CPPT = {𝑇 | ∃poly, negl : Pr[𝑇𝜆 ≥ poly(𝜆)] ≤ negl(𝜆)}.

In other words, CPPT relaxes PPT by allowing a negligible amount of superpolynomial executions.
Now, we check that CPPT = PPT. Clearly, CPPT contains PPT. It is easy to see that, PPT is
d-dense in CPPT and CPPT is PPT-closed. Since also CPPT ⊆ PPT, we find equality from
Lemma C.4.21 and Lemma C.4.28.

C.4.6. Equivalence of Runtime-Indistinguishability for Algebra-Tailed Runtime Classes

In this section, we establish that for an algebra-tailed runtime class T, statistical and computational
T-time indistinguishability coincide of runtime distributions. We give two such lemmata. The first one
is simple and illustrates underlying reasons using strict algebra-bounded runtime classes. The second
one extends this to algebra-tailed runtime classes. Both lemmata seem inherently limited to runtime
classes containing a large enough “strict” subclass.

Lemma C.4.30. Let B be a bound algebra and T = RTC∞(B) be the corresponding strict runtime

class. Let 𝑇 ∈ T and let 𝑆 be some runtime. Then 𝑇
𝑠

∼∼∼T 𝑆 implies 𝑇
𝑐

∼∼∼T 𝑆 . More generally, if 𝑋 and 𝑌
are distributions supported on a set 𝑆 with cardinality card(𝑆) in B, then statistical and computational
indistinguishability coincide. The (efficient) distinguisher is as in Lemma C.3.14 with parameters so that it
runs in strict B-time.

Let 𝑋 be a distribution or a random variable. For convenience, we write 𝑋 {𝑘 } for the 𝑘-fold product
distribution of stochastically independent products. That is, (𝑥1, . . . , 𝑥𝑘 ) $← 𝑋 {𝑘 } is distributed as 𝑥𝑖 $← 𝑋

for 𝑘 independent samples 𝑥𝑖 .
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Proof. Note that computational distinguishability implies statistical distinguishability. To prove the
converse, we invoke Lemma C.3.14. Let bnd0 ∈ B bound the support size of the distributions 𝑋 , 𝑌 .25

The key point is: If 𝑋 ̸
𝑠

∼∼∼T 𝑌 , then the statistical distance is lower-bounded by 1/bndstat for some
efficiently computable bndstat ∈ B. Otherwise Δ(𝑋 {bnd}, 𝑌 {bnd}) ≤ bnd · Δ(𝑋,𝑌 ) ∈ 𝑜 (1) for all bnd,
and hence 𝑋 {bnd} , 𝑌 {bnd} are statistically close, for any (statistical) distinguisher. A contradiction to
triple-oracle distinguishability.

We invoke Lemma C.3.14 with 𝑛 = bnd0, 𝜀 = 1
2bndstat , and 𝛿 small enough, say 𝛿 = 1/8. We ob-

tain a distinguisher D with runtime roughly 24bnd0(𝜆)bndstat(𝜆)2 plus the overhead for evaluating
bnd0(𝜆), bndstat(𝜆). Thus, D is efficient. □

As we have seen, the equivalence between statistical and computational indistinguishability of runtimes
follows because the support of a runtime distribution is “small”, compared to the allotted runtime for
distinguishers. This, of course, is by definition of runtime resp. “small”.

Now, we generalize Lemma C.4.30 just like we generalized Lemma C.3.14 to Corollary C.3.15.

Corollary C.4.31. LetB be a bound algebra and letT be aB-tailed runtime class. Let𝑋 ,𝑌 be distributions
over N0 ∪ {∞} and suppose that 𝑋 is B-tailed, i.e. we have a tail bound tail𝑋 such that

∀bnd ∈ B : tail†
𝑋𝜆
( 1
bnd(𝜆) ) ∈ B.

Then 𝑋
𝑠

∼∼∼T 𝑌 implies 𝑋
𝑐

∼∼∼T 𝑌 . In particular, any runtime distribution 𝑋 = 𝑇 ∈ T is B-tailed by
assumption. The (efficient) distinguisher is as in Corollary C.3.15 with parameters so that it runs in strict
B-time. In particular, RTC∞(B) is d-dense is in RTC𝑞 (B).

Proof. Step 1: We recall Corollary C.3.15 in our situation: Suppose Δ(𝑋𝜆, 𝑌𝜆) ≥ 𝜀 (𝜆), and let 𝛿 > 0, and
𝛼 ∈ [0, 𝜀]. Then there is a distinguisher with advantage at least 1 − 2𝛿 , which requires

𝑁 = ⌈6𝑁𝛼 (𝜀 − 𝛼)−2 log(2𝛿−1)⌉

samples, where 𝑁𝛼 ≔ tail†
𝑋
(𝛼) and has runtime quasi-linear in 𝑁 (in admissible machine models).

Step 2: Arguing that the statistical distance Δ(𝑋,𝑌 ) is lower-bounded by 1/bnd infinitely often, is not
as trivial as in Lemma C.4.30. Indeed, we rely on the general hybrid lemma (Corollary C.3.11) and hence
on tail bounds. Suppose the statistical distinguisher has advantage ≥ 𝑐 (infinitely often for constant 𝑐).
By a standard hybrid argument, Corollary C.3.11, we find a distinguisher which accesses the challenge
oracle only once, and has advantage at least

𝑐 − 𝛽
𝑁𝛽

where 𝑁𝛽 ≔ tail†
Dstat
(𝛽) for any 𝛽 ∈ [0, 𝑐] .

Consequently, Δ(𝑋,𝑌 ) ≥ 𝑐−𝛽
𝑁𝛽

for any choice of 𝛽 . (Note that 𝜀 and 𝑁𝛽 vary in 𝜆.)

Step 3: Putting Steps 1 and 2 together by (arbitrarily) choosing 𝛽 = 𝑐/2 we find 𝜀 = 𝑐
2𝑁𝛽 . and 𝛼 = 𝜀/2

we find
𝑁 = ⌈6𝑁𝛼 (

1
2𝜀)
−2 log(2𝛿−1)⌉ = ⌈24𝑁𝛼𝑁 2

𝛽
log(2𝛿−1)⌉ .

25 To be precise, it is lower-bounded only for infinitely many 𝜆.
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Our constructed distinguisherD needs 𝑁 samples and has advantage at least 1− 2𝛿 for infinitely many
𝜆. Now, 𝑁𝛼 = tail†

𝑋
(𝛼) ∈ B by assumption that 𝑋 is B-tailed. Also, 𝑁𝛽 = tail†

D
(𝛽) ∈ B for any constant

𝛽 , since Dstat is statistical T-time, hence the number of oracle-queries is B-tailed. Consequently,
𝑁𝛼𝑁

2
𝛽
∈ B, and we find that 𝑁 ∈ B for any suitable (e.g. constant) advantage 1 − 2𝛿 . We obtain a strict

B-time distinguisher as promised. □

As in Remark C.4.27, one can directly generalize to non-negligible advantage.

Corollary C.4.32. The result of Corollary C.4.31 extends to the closure T of any (suitable) B-time class
T. Moreover, it extends to any runtime class in which T is d-dense.

C.4.7. From Oracles to Emulation and Standard Indistinguishability

In this section, we abstract properties of runtimes induced by algorithms in what we call continuously
samplable. For such runtimes, we show the equivalence of standard indistinguishability and triple-oracle
indistinguishability, which was as introduced for specially runtimes.

Up until now, we treated runtimes as distributions which are samplable via oracle access. This helped
keep our options limited and the presentation clean. For applications, we deal with induced runtimes of
algorithms, and we pay a non-constant price for sampling them. To sample the runtime of an algorithm,
we emulate it. Fortunately, such induced runtimes have a very useful intrinsic property: They are
continuously samplable in following sense. To know whether a concrete realization of 𝑇 is larger than
𝑘 , we have to emulate at most 𝑘 steps. If emulation is efficient, and 𝑇 is efficient, we can therefore
sample efficiently. Similarly, if our runtime cutoff bnd is early enough to make𝑇 ≤bnd efficient, then our
sampling of 𝑇 ≤bnd is efficient. We abstract the central property in the following definition.

Definition C.4.33 (Continuously samplable). A runtime 𝑇 is continuously samplable with over-
head function sampovhd(𝑘) = sampovhd𝜆 (𝑘), which quantifies the time for sampling 𝑇 up to time
𝑘 ∈ N0 ∪ {∞}; that is: 𝑇 ≤𝑘 can be sampled in sampovhd(𝑘) steps for all 𝑘 . More concretely, there
is a subroutine Sample𝑇 (𝜆, 𝑘) with output distributed as 𝑇 ≤𝑘 and runtime (strictly) bounded by
sampovhd(𝑘).

Wewill not specify the overhead sampovhd(𝑘) and assume it to be “small enough” (e.g.O(𝑘polylog(𝑘))).26
In particular, for runtimes induced by algorithms, sample and emulation overhead essentially coincide if
one samples by emulation. Hence emulation overhead must be small enough to work with the runtime
class in question.

Notice that continuous samplability is not tied to any runtime classes per se. In particular, it does not
imply efficient samplability without further assumptions.

Example C.4.34. Any runtime which is induced by an algorithm is continuously samplable. Including
runtimes of inefficient algorithms.

26 For PPT, sampovhd (poly1 (𝜆)) ≤ poly2 (𝜆) would be good enough. For EPT, emulation requirements are stricter, since
runtime may explode under squaring. Interestingly, we reduce only to, and only require, strict algebra-bounded times.
Thus, the results in this section do not run into problems with expectation.
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Now, we show that for two continuously samplable runtimes 𝑇 , 𝑆 , where 𝑇 ∈ T (i.e. 𝑇 is efficient),
oracle-T-time (in)distinguishable and oracle-included T-time (in)distinguishable coincide. This, finally,
lets us relate the triple-oracle indistinguishability and standard indistinguishability (under repeated
sampling).

Lemma C.4.35. Suppose that B is a bound algebra and T is B-tailed. Suppose that 𝑇 ∈ T. Let 𝑆 be
any runtime. Furthermore, suppose thatD is a T-time (triple-oracle) distinguisher with advantage ≥ 𝑐
(infinitely often).

Then there is a distinguisher A with advantage ≥ 𝑐
4 (infinitely often) and (a priori) strict oracle-included

B-time. More concretely, timeA (AO0,O1,O∗) ≤ timeD (DO0,O1,O∗) up to overhead for emulation and
computing the strict bound bnd(𝜆).

SupposeA is a distinguisher with runtime strictly bounded by bnd and oracle queries strictly bounded
by bndquery Suppose 𝑇 and 𝑆 are continuously samplable. Then there is an A′ which emulates O0 and
O1 up to bndtrunc ∈ B “steps”, i.e. emulating 𝑇 ≤bndtrunc , 𝑆≤bndtrunc . By construction, A is strict B-time with
runtime bound roughly bnd + 16bndquery · bndtrunc (up to overheads) and advantage at least 𝑐

16bndquery
(infinitely often).

It is vital that 𝑇 ∈ T, and hence efficiently continuously samplable.

Proof. This first part of the claim is proven analogously to the “standard reduction to PPT”, Corol-
lary C.3.9. More concretely: Suppose O∗ = O0 and consider D. Since 𝑐 ∈ B, there exists for some
efficiently computable bnd ∈ B becauseT isB-tailed. The truncationA ofD has output with statistical
distance at most 1

4𝑐 (infinitely often). For O∗ = O1, we either obtain a statistical distance of 1
2𝑐 , or a

distinguishing of O0 and O1 which uses the runtime statistic Pr[𝑆 > bnd] > 1
2𝑐 of D as distinguishing

statistic, just as in Corollary C.3.9. In any case, we obtainA as claimed.

The second part of the claim follows by definition of continuously samplable and efficiency of𝑇 . Namely,
let bndtrunc so that Pr[𝑇 > bndtrunc] ≤ 𝑐

16bndquery , where bnd and bndquery are strict bounds for runtime
and number of queries of A. Since T is B-tailed and 𝑇 ∈ T, an efficiently computable bndtrunc ∈ B
exists. Suppose that Pr[𝑆 > bndtrunc] ≤ 𝑐

8bndquery . Otherwise, using this distinguishing statistic yields
A′ with advantage 𝑐

16bndquery Now letA′ runA with the each oracle call toO𝑏 emulating up to bndtrunc
“steps” via continuous sampling. The probability that an oracle call returns timeout is bounded by
bnd · 𝑐

8bndquery = 𝑐
8 . In that case,A′ returns a random guess. Thus,A′ has advantage 𝑐

8 □

Lemma C.4.35 reduces triple-oracle distinguishing to distinguishing w.r.t. repeated samples. It has no
requirements on the advantage 𝑐 of the distinguisher D and preserves the number of challenge queries
inA andA′. Thus, we can first use a hybrid argument in the triple-oracle setting, reducing to a single
challenge query. Then apply Lemma C.4.35. This finally yields the equivalence we wanted.

Corollary C.4.36 (Equivalence of triple-oracle and standard indistinguishability). Let B be a bound
algebra and T be B-tailed. Let 𝑇 ∈ T and let 𝑆 be an arbitrary runtime. Then 𝑇 and 𝑆 are triple-oracle
distinguishable with non-B-negligible advantage, if and only if 𝑇 and 𝑆 are standard distinguishable with
non-B-negligible advantage. (There is B-factor of loss involved in the reduction.)

Finally, we stress that Corollary C.4.36 is a very loose reduction.
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C.5. ★Technical Asides

C.5.1. Section 5.2

C.5.1.1. General Comments

Remark C.5.1 (Unary or binary encodings of runtime). The use of unary encodings in cryptography is
more of a compatibility “hack” than a necessity. On the on hand, it is often a convenient “hack”. On the
other hand, one has to keep in mind this implicit restriction, and for statistical indistinguishability a
distinction between binary or unary data is superfluous.

If runtimes were enocded in unary, rather than binary, this would implicity restrict access to a prefix
(i.e. a cutoff) which can be efficiently computed. This does not affect our results at all, since our
distinguishers and proofs rely on exactly that. Nevertheless, we use binary encoded runtimes and
explicit runtime restrictions.

Remark C.5.2 (Non-uniformity and efficiency). Non-uniform (in)security can affect whether an algo-
rithm is considered efficient or not: Suppose there exists an unkeyed collision-resistant hash function.
An algorithm’s runtime might explode when given colliding inputs. Thus, in the uniform setting,
the probability for runtime explosion is negligible, but with non-uniform advice, collisions are trivial.
Hence efficiency and security depend on (non-)uniformity. On the other hand, since our results and
proofs make only timed black-box use of (adversarial) algorithms, they work in both computational
models (with suitable adaptions).

Remark C.5.3 (A priori CPPT). For PPT (and CPPT), the distinction of a priori PPT and (a posteriori)
PPT is often insignificant. For example, any CPPT algorithm A with virtual runtime bound poly can be
truncated to poly steps, giving a (statistically) indistinguishable a priori PPT algorithm A′. Thus, we
can usually assume a priori PPT for PPT adversaries.

C.5.1.2. Non-Uniform Security

Our proposed notion of non-uniform security is still probabilistic. More concretely, we propose in
Appendix C.1 to give a probabilistic machine tape-like access to an infinite non-uniform advice string.
Usually, non-uniform adversaries are modelled as a priori polynomial time deterministic algorithms
with advice, or equivalently, polynomial size circuit families. For indistinguishability notions, allowing
probabilistic algorithms is typically irrelevant: By standard reductions, a priori PPT adversaries suffice,
and so does a priori polynomially bounded advice. By coin-fixing, i.e. fixing the optimal advice and
optimal adversarial randomness, one achieves a deterministic a priori non-uniform polynomial time
adversary with advantage which is lower-bounded by that of the original (probabilistic) adversary.

Example C.5.4. For oracle-distinguishing, we saw in Corollary 5.4.2, that CEPT distinguishers are no
better than a priori PPT distinguishers. For an a priori PPT distinguisher D, it is easy to see that fixing
optimal coins yields a deterministic distinguisher D′ with advantage lower-bounded by the advantage
of D.

Unfortunately, technical details regarding preservation of efficiency still enforce the use of input distri-
butions. More concretely, by runtime squaring, there are simulators which are efficient for any input
distribution with strictly polynomial input size, but become inefficient for distributions with expected
polynomial input size. see Example C.5.26. Thus, an equivalence with the standard setting of non-
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uniform security is only guaranteed if security with size-guarding is considered, see Appendix C.5.4.3.
While size-guarded security is a natural notion, imposing it when it is not needed is wasteful.

C.5.1.3. Oracle Indistinguishability and Games

We recall a (folklore) conversion between game-based notions and oracle-indistinguishability. Many
cryptographic assumption can be cast as (efficient or inefficient) games, in which an adversary interacts
with a challenger C (specifying the experiment or game), and at the end of the interaction, the challenger
outputs a verdict win/lose (or 1/0). A hardness assumption is an upper bound for Pr[outC⟨A,C⟩ =
win], e.g. negl for one-wayness or 1

2 + negl for IND-CPA, where negl depends onA.

It is generically possible to recast such games as oracle-indistinguishability assumptions: Let O𝑏
for 𝑏 = 0, 1 be defined as follows. The oracle acts as the game, until the verdict is output. If the
verdict is win, then O𝑏 sends 𝑏 to the adversary. If the verdict is lose, then O𝑏 sends ⊥ instead. A
straightforward calculation shows

Pr[outC⟨A,C⟩ = win] = Pr[DO1 = 1] − Pr[DO0 = 1]

where D is derived from A by emulating A until the verdict, and then outputting 𝑏 (if A won) or
guessing randomly (if ⊥ was received). Conversely, given D, one defines A by acting like D (until
the experiment ends). Since information-theoretically, D obtains learns about 𝑏 only when it wins the
game, A’s success probability is at least that of D. Applying the reverse conversion yields an D′ with
advantage equal the probability thatA wins. In other words, both formalizations are equivalent (in
any setting that allows the conversion, which encompasses any sensible setting).

The reverse transformation transforms oracle-indistinguishability into a “bit-guessing” experiment.
Since the success probability in the experiment is compared to 1

2 , the advantage is defined by twice the
success probability (so as to coincide with the distinguishing advantage).

C.5.2. Section 5.3

C.5.2.1. More on CEPT

Remark C.5.5 (Non-uniform advice). Observe that the proofs in this section used efficient approximation
of (suitably close truncated) distributions as their central tool. This can be effectively trivialized by
assuming non-uniform advice, which allows exponentially precise approximations of the truncated
distributions, or even simpler, encoding the optimal distinguishing decision for each of the possible
samples. Thus, non-uniform advice can replace sampling access, and triple-oracle and standard
indistinguishability of runtime coincide (if at least one runtime is efficient).

Remark C.5.6 (Generalizations). The results in this section relied effectively on tail bounds and very
natural properties of runtime classes (e.g., if 𝑇 ∈ T and 𝑆

𝑑
≤ 𝑇 , then 𝑆 ∈ T), and . They extend to any

setting, where existence of suitable tail bounds is guaranteed. In Appendix C.4, we discuss this more
formally, and define algebra-tailed runtime classes, to which the results extend in a suitable manner.

We also note that, as already seen in Corollary 5.3.10, it is not necessary that runtime are induced by
algorithms, just that they can be approximated up to any polynomial precision in polynomial time.
This can be viewed as the central requirement in other proofs and results as well, but it is tedious to
formulate and seems only useful in special occasions, e.g., Lemma 5.4.13.
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C.5.2.2. More on Timeout Oracles

We continue the discussion of Section 5.3.3 with a specific application to sequential composition.

Lemma C.5.7 (Sequential timeout oracles). Let A be an interactive algorithm and O1,O2 be a (probab-
listic) timeful oracles. Suppose O is the sequential composition of O1 and O2. That is, O first runs O1. At
some point, O1 terminates with input 𝑦 for O2, which is passed to O2 as initial input. Now, O continues to
run O2(𝑦). The results of Lemma 5.3.12 hold for O, where ΩO = ΩO1 × ΩO2 .

Moreover the probability 𝜀 for timeout decomposes as follows: Let event Etimeout,1 be the event for
timeout while running O1. Let event Etimeout,2(𝑦, 𝑡1) be the event for timeout while running O2
where O1 took 𝑡1 steps to output 𝑦. Let 𝑌 and 𝑇1 be the random variables for the output and number of
steps of O1. Let 𝜀1 = Pr[Etimeout,1] and let 𝜀2(𝑦, 𝑡1) = Pr[Etimeout,2(𝑦, 𝑡1) | (𝑌,𝑇1) = (𝑦, 𝑡)]. Then

𝜀 = Pr[Etimeout]
= Pr[Etimeout,1] +

∑︂
(𝑦,𝑡1 )

Pr[Etimeout,2(𝑦, 𝑡1) ∧ (𝑌,𝑇1) = (𝑦, 𝑡1)]

= 𝜀1 +
∑︂
(𝑦,𝑡1 )

𝜀2(𝑦, 𝑡1) Pr[(𝑌,𝑇1) = (𝑦, 𝑡1)]

Lemma C.5.7 follows essentially from Lemma 5.3.12 and the fact that the runtimes of O1 andO2 sum to
that of O. For the decomposition, one argues as in the proof of Lemma 5.3.12, and uses that knowledge
of (𝑦, 𝑡1) is good enough for the truncation construction, i.e.O′2 only needs to know the elapsed time in
O′1 to “continue” the truncation by incorporating the steps of O′1. The proof is left to the reader.

Remark C.5.8. In the setting of Lemma C.5.7, it is also possible to “separate” O1 and O2 instead of
treating them as one entity. That is, one can modify them separately, without telling O2 the runtime 𝑡1
spent in O1. (Implicit access to 𝑡1 is the only additional knowledge used in Lemma C.5.7.) Concretely,
assuming total virtuality 𝜀, one can apply Lemma 5.3.12 for an 𝜀-quantile cutoff to 𝑇1 = timeO1 (AO1,O2)
to obtain O′1, and then to 𝑇2 = timeO2 (AO′1,O2) to obtain O′2. (For this, note that the virtualities of 𝑇1
and 𝑇2 are certainly bounded by 𝜀.) Together, (O′1,O′2) have overall timeout probability of (at most) 2𝜀
and the expected runtime is 𝑡 +𝑂 (1). Unfortunately, the timeout probability of this construction is
larger than 𝜀. Except, if 𝑦 fixes 𝑡1, i.e. if there is a function 𝑓 such that 𝑓 (𝑦) = 𝑡1, then O′1 and O′2 are
“separated” by construction (also in Lemma C.5.7).

C.5.3. Section 5.4

C.5.3.1. Precision-Tightness Tradeoff

Most of our results, are very precise in handling the runtime of algorithms, approximating them, and
often show that the distribution of the runtime only changes negligibly. For example, we proceeded
like this in Lemmas 5.3.6, 5.3.8, 5.4.1 and 5.4.7 and Corollaries 5.3.9 and 5.3.10. However, this precision
is often unnecessary. Yet, for the sake of simplicity and self-containedness, we always reduced to
polynomial support by truncation, and we used a very naive closeness test (see Remark C.5.9 below).

Observe that approximation becomes more expensive (and less tight), the larger the support of the
distribution is. To improve the state of affairs, one can “coarsen” the time-steps in consideration.
Concretely, let 𝑓 (𝑥) = 2⌈log2 (𝑥 ) ⌉ , that is, 𝑓 (𝑥) rounds 𝑥 to the next power of 2 (and 0 ↦→ 0). Let 𝑋 by
some positive-valued random variable 𝑋 (e.g. a runtime). Then we have:

282



C.5. ★ Technical Asides

• E [𝑋 ] ≤ E [𝑓 (𝑋 )] ≤ 2 · E [𝑋 ], since 𝑥 ≤ 𝑓 (𝑥) < 2𝑥 .

• card(supp(𝑓 (𝑋 ))) ≤ log2(card(supp(𝑋 )))

In particular, consider an EPT or CEPT runtime𝑇 , and assume that𝑇𝜆 ≤ 2𝜆 . Then card(supp(𝑓 (𝑇 ))) ≤ 𝜆,
whereas card(supp(𝑇 ≤poly)) = poly(𝜆), for any polynomial poly. Thus, the coarser 𝑓 (𝑇 ) is, the more
efficient approximation (and closeness testing) becomes. However, precision is lost in the time-domain.
Generally, this is irrelevant, since efficiency is not affected at all by this uncertainty.

Remark C.5.9 (Closeness testing). Our analysis was not geared towards optimal tightness and precision
to begin with. And, for simplicity, we actually never made explicit, that we often merely require
closeness tests for distributions (see Appendix C.3.4 for a reminder). We used a naive approximation
of distributions as our closeness test, but there are much better alternatives. However, even for the
(optimal) closeness tester of [CDVV14], its precision depends on the size of the support. Hence,
using [CDVV14] further improves in tightness, is overall is still very loose.

C.5.3.2. Constructive Reductions

While we prove all of our results in a uniform complexity setting, hence avoid non-uniformity, almost
none of our proofs are constructive. In fact, almost all reductions depend on polyomial bounds,
which exist but are not computable in general. We will use following rough notion of constructive
reductions.

Remark C.5.10 (Constructive reduction). A reduction is constructive, if there is a (universal) efficient
algorithm, which is given the code of an adversary, and produces (the code of) an adversary against
some underlying assumption.

For simple results, such as the standard truncation argument, one can give constructive proofs in
restricted cases. We sketch how these can be obtained.

Remark C.5.11. A weakening of the standard reduction (Lemma 5.4.1 and Corollary 5.4.2) can be proven
constructively. We sketch how to transform the distinguisher D into a distinguisher A (where D, O0,
O1 are as the standard reduction). For the constructiveD, we have to merge the two distinguishersA1
(which usestimeout) andA2 (which uses the output ofD). One problem is, that the use of “unsigned”
advantage (i.e. absolute values instead of the (signed) differences) does not work well constructively,
since we cannot “know” the signs. Thus, we use standard sign-correction techniques. Consider some
distinguisher B. To sign-correct, the reduction runs BO0 and BO1 , emulating O0 and O1, to get output
(and runtime statistics). Using this, one corrects the output of BO∗ , so that Pr[BO𝑏 = 𝑏] ≥ 1

2 for 𝑏 = 0, 1.
This gives us a first restriction: We require that emulating BO𝑏 is efficient for O0 and O1. In particular,
O0 and O1 will have to be efficient in some sense.

Consider some efficiently samplable runtime distribution 𝑆 (to be chosen later). Our distinguisherA
works as follows:

• Pick 𝑠 ← 𝑆 .

• Set B ≔ D≤𝑠 .

• Emulate BO𝑏 to obtain runtimes 𝑡𝑏 and outputs out𝑏 for 𝑏 = 0, 1. (We assume out ∈ {0, 1}.)

• Emulate BO∗ and obtain (𝑡∗, out∗) and output a guess as follows:

– If 𝑡𝑏 = timeout ≠ 𝑡1−𝑏 : If 𝑡∗ = timeout return 𝑏, else return 1 − 𝑏.
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– If 𝑡0, 𝑡1 ≠ timeout and out0 ≠ out1: Return out∗ xor (out0 xor out1 xor 1).

– Else: Return 0.

By construction, A is a merge of a distinguisher based on timeout probabilites and a distinguisher
based on the output of D. Both are sign-corrected, so the advantages actually add up (and don’t cancel
out). To guarantee non-negligible advantage, whenD has non-negligible advantage, we must ensure
that the truncation B of D at 𝑠 gives B enough runtime with polynomial probability. For this, one can
use any distribution 𝑆 which is EPT and has fat tails, e.g. the distribution obtained from normalizing∑︁∞
𝑛=1 𝑛

−3. However, for A to be efficient overall, we additionally require the time spent to emulate O0
andO1 does not makeA inefficient (for the varying 𝑠 ← 𝑆). One possibility is to restrict to a priori PPT
O0, O1, but less strict choices are possible.27 All in all, this yields a weaker, less tight, more restricted,
but constructive, form of the standard reduction.

C.5.3.3. Relative Efficiency for Mappings of Systems

The definition of weak relative efficiently (Definition 5.4.5) does not strictly capture our actual applica-
tion. Indeed, a simulator takes as input an adversary, i.e. a system/oracle (or an algorithm/code), and acts
as (or outputs) a new system. Hence, (the existence of) a simulator is actually a mapping from admissible
adversaries to simulators. This is quite obvious for universal (resp. bb-rw) simulation, where the code
(resp. bb-rw access) are clear “inputs”. Since the simulator is independent of the input generation or
the distinguisher, i.e. of the “distinguishing environment”, it is also evident that Sim(code(V∗)) has an
input and output interface. The input is (x,w, aux), the output is the output of V∗. While Sim discards
w, it is necessary so that Sim(V∗) and ⟨P,V∗⟩ offer the same interface to the environment. We sketch a
general definition of the above.

Definition C.5.12. A mapping of systems (or algorithms) to systems (or algorithms) is a function
F : 𝐶𝐼 → 𝐷 𝐽 with maps system (or algorithms) with interface 𝐼 to systems (or algorithms) with interface
𝐽 .

With this, we can define when a mapping G is weakly efficient relative to a mapping F. This generalizes
Definition 5.4.5, which can be recovered from the constant mappings F = A, G = B.

Definition C.5.13. Let F,G: 𝐶𝐼 → 𝐷 𝐽 be mappings. We say G is weakly (T,S)-efficient relative to F
w.r.t. (implicit) runtime classes T, S, if for all distinguishing environments E,

∀A ∈ 𝐶𝐼 : timeE+F(A ) (⟨E, F(A)⟩) ∈ T =⇒ timeE+G(A ) (⟨E,G(A)⟩) ∈ S

Unfortunately, Definition C.5.13 is not strong enough to be used in reductions, which is why we
reserved the specification “weakly” for Definitions 5.4.5 and C.5.13 (More precisely, we cannot prove
or refute that it is (not) strong enough.) Therefore, we rely on following strengthening, where, the
runtime classes T and S are from {PPT, EPT,CPPT,CEPT}, and they decide whether strict or
expected time is measured.28

27 As seen with the runtime squaring problem and expected polynomial size inputs, relatively stringent requirements on O0,
O1 (or size-guarding, c.f. Appendix C.5.4.5) seem necessary in general.

28 This generalizes to other norms besides ∥ · ∥1 and ∥ · ∥∞ as measures of efficiency.
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Definition C.5.14. Let F, G, etc. be as in Definition C.5.13. We say that G is (T,S)-efficient relative
to F with runtime tightness (polytime, polyvirt), if: For all timeful environments E and all A ∈ 𝐶𝐼 ,
if timeF(A ) (⟨E, F(A)⟩) is virtually strict/expected (𝑡0, 𝜀0)-time, then timeF(A ) (⟨E,G(A)⟩) is virtually
strict/expected (𝑡1, 𝜀1)-time, with 𝑡1(𝜆) ≤ polytime(𝜆)𝑡0(𝜆) with 𝜀1(𝜆) ≤ polyvirt(𝜆)𝜀0(𝜆) (for all 𝜆).

We stress that Definition C.5.14 is unconditional w.r.t. the environment, i.e. uses timeful environments,
and that the tightness bounds depend only on 𝜆. Mixing strict and expected time (i.e. ∥ · ∥∞ and ∥ · ∥1)
in Definition C.5.14 is possible and useful. For example when strict PPT protocols and adversaries are
handled by EPT simulators.

(Weak) Relative efficiency is transitive in the obvious sense. Lastly, we mention that there are obvious
variations of relative efficiency, e.g. relative efficiency w.r.t. environments in a class 𝔈 of admissible
environments with restriction beyond runtime.

C.5.4. Section 5.5

In this section, we discuss some technical asides. It should be skipped on a first reading.

C.5.4.1. Definitional Choices

Remark C.5.15 (The adversary’s view). We did not use the view of the adversary to define zero-
knowledge for a reason. The usual definition of a view consists of input, randomness, and received
messages. This conflates different complexities, e.g. randomness and space, and thus prevents strict
polynomial space simulation, which may be of interest. For example, the simulator for G3CGK uses
expected polynomial randomness and space, even if V∗ requires only strict polynomial space (since
bbrw(V∗) chooses and fixes (i.e. remembers) the random coins) A slightly “improved” simulation
requires only strict polynomial space. For more discussion on interaction of (bb-rw) emulation with
strict versus expected space and randomness complexity, see Remark C.1.6.

Remark C.5.16. By a standard reduction to PPT (Corollary 5.4.2), we can assume that D is a priori PPT
in Definition 5.5.2. A formulation of zero-knowledge via indistinguishable ensembles,

{(x, aux, out, state) | (x,w, aux, state) ← I(𝜆); out ← outV∗ ⟨P(w),V∗(aux)⟩ (x)}𝜆
𝑐≈ {(x, aux, out, state) | (x,w, aux, state) ← I(𝜆); out ← Sim(code(V∗),x, aux)}𝜆

is then equivalent to Definition 5.5.2.

Remark C.5.17. There are other formulations of zero-knowledge, which can be obtained by swapping
the order of the quantifiers. To recover the “usual notions” (that is universal quantification over the
inputs), I should be instantiated by a non-uniform machine which regurgitates its advice.

(Timed) Black-box simulator: Timed bb-rw access to V∗. Most common form of simulation.

Universal simulator: ∃Sim∀V∗∀I∀D. Typical form of non-black-box simulation, e.g. in [Bar01].

Existential simulator: ∀V∗∃Sim∀I∀D. Typical definition of zero-knowledge, e.g. in [Gol01].

285



C. Appendix for Chapter 5

We see in Appendix C.5.4.4 below that existential simulation and universal simulation are equivalent
for auxiliary input zero-knowledge for a posteriori time.

There are also less common, weaker notions, such as distributional simulation (roughly “∀V∗∀I∃Sim∀D”),
weak simulation (roughly “∀V∗∀D∃Sim∀I”), weak distributional simulation (roughly “∀V∗∀D∀I∃Sim”),
see [DNRS03; CLP15]. Likewise, there are stronger notions, such as precise zero-knowledge [MP06;
DG12] where simulation and real execution must have similar runtime per execution. We have not
pursued an adaption to CEPT for these notions.

Remark C.5.18 (Non-uniform zero-knowledge). When considering non-uniformity, there are different
options. In any case, I and D (equivalently E) should be non-uniform. Now, V∗ can be uniform or
non-uniform. For Sim, there are two similar options. One is to insists on uniform simulation, in the
sense that the advice Sim is given the same as the advice of V∗. The other is to allow an existential
non-uniform Sim, whose advice may arbitrarily depend on V∗ and advcV∗ . Goldreich [Gol01] calls the
latter a “fully non-uniform” formulation of zero-knowledge, and argues that the former is preferable.
These choices do not affect our results based on black-box simulation. However, the existence of a
universal Vuniv is unclear, if V∗ has access to non-uniform advice.

Remark C.5.19 (Effects of “(non-)environmental” distinguishing). Let us consider the effect of “non-
environmental” environments (I,A,D), i.e. quantification over I which output no state (i.e state = ⊥
always). In this case case, Sim has the same information that is available toD, whereas in Definition 5.5.2
I can pass information to D directly.

Since a bb-rw simulator has no access to aux, aux can be used to pass “direct” messages to D, thus
both notions coincide in this case. It seems plausible, that simulators which do not “reverse-engineer”
V∗ and aux and are “non-environmentally” secure are also “environmentally” secure, i.e. we know of
no counterexamples even for non-black-box simulators. Intuitively, E and D may share a “key” (e.g. as
non-uniform advice or hardwired), and use a one-time pad to “encrypt” messages which are passed
from E to D. It is easy to see that, if Sim is not secure, then there is a (sequence of) “keys”, such that
the advantage of a suitable non-environmental (E′,D) is at least that of E (infinitely often), if the
“key” is long enough to one-time pad “encrypt” the state of E passed between input generation and
distinguishing. (Summing the advantage over hardwired or non-uniform key 𝑘 for (E′

𝑘
,D𝑘 ) over all

possible poly(𝜆)-bit keys, weighted by 2−poly(𝜆) is exactly the advantage of E. The claim follows.) Thus,
in a uniform model, constant size messages can be passed to D without affecting security, and in a
non-uniform model, polynomial size messages can be passed.

Remark C.5.20 (“Environmental” distinguishing and non-uniformity). The additional output state of
I in Definition 5.5.2 essentially makes (I,D) into a stateful distinguishing “environment”. This is a
visible difference from the direct translation of non-uniform zero-knowledge and [Gol93]

In a non-uniform CEPT setting, Definition 5.5.2 does coincide with the standard definition, if I and D

have non-uniform advice. To see this, observe that we can assume that successful I and D are a priori
PPT, and by coin-fixing (i.e. fixing the optimal coins for I and D in the advice), they are deterministic.
Now, state can simply be included in the non-uniform advice of D as well. Hence, in this non-uniform
PPT setting, the notions are equivalent.

More generally, if a successful I only chooses (x, aux) of strictly polynomially bounded size, then
there is an optimal choice and adaptions of the coin-fixing argument work. By Example C.5.26, we
know that for covering simulation efficiency, we cannot restrict to such strictly polynomially bounded
(x,w, aux, state). Perhaps, this can be salvaged this somewhat. However, we find such “non-uniformity
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hacks” very unsatisfactory (even if they work). They result in “less robust” definitions (which is the
reason we had to adapt the definitions in the first place).

Remark C.5.21 (Simulation tightness and inefficient provers). In Definition 5.5.2, we compare the
runtime of a simulator with the runtime of V∗ and P. We do so, because efficiency (and tightness) of
a simulation should be related to efficiency of the real execution.29 Alternatively, we could compare
timeV∗+P(. . .) and timeSim(. . .). This is equivalent, if the completed system with I, D was efficient.30

By viewing P as timeful and setting its runtime to the length of messages sent by it (which is the minimal
consistent choice for time), Definition 5.5.2 extends to inefficient provers. However, technical artefacts
occur, e.g. if a simulation must run in quadratic time, then inputs which are expected polynomial size,
can cause runtime explosions, and therefore the proof system is not zero-knowledge. If such problems
occur, they can usually be circumvented by resorted to size-guarded security, which ensures that inputs
are strictly polynomially bounded.31

Remark C.5.22 (Precomputation and different complexity classes). Non-uniform advice is often mo-
tivated as a means to strengthen attacks and allow arbitrary (even uncomputable) “precomputation”.
However, the practical meaning of non-uniformity is questionable [KM13]. Fortunately, precomputation
neatly fits into our model by using different complexity classes for input generators (and possibly
distinguishers or environments). This can be applied to our definitions of (sequential) zero-knowledge,
but was omitted for the sake simplicity.

C.5.4.2. Motivating Sequential Zero-Knowledge

Often, e.g. in [Gol93], only sequential repetition is considered for zero-knowledge. That is, the same
pair (𝑥,𝑤) ∈ R is used in multiple rounds of the interactive argument. The (stateful) adversary V∗

engages in these multiple rounds until it produces some output. To obtain zero-knowledge for such
a sequential repetition, the core property is the auxiliary input. Construct from V∗ a new V′ which
simply executes the code of V∗ on aux. (More precisely, aux encodes either a state of V∗ or, in the first
invocation of V′, it is the actual auxiliary input for V∗.) Thus, each protocol now runs with the same
adversary V′, but different auxiliary inputs. Applying auxiliary input zero-knowledge and a hybrid
argument, one sees that each interaction can be simulated.

In our setting, the universal adversary Vuniv could be used directly (due to a posteriori time). Specifying
and proving security of sequential repetition for varying statements is also possible along these lines.
However, for adaptive choices of varying statements, it’s not clear how to allow it with a “single”
adversary V∗. If V∗ provides (𝑥,𝑤) then simulation becomes meaningless. Thus, we introduce an
“environment”, which models the use of the protocol. The environment E can make repeated calls to
the protocol and choose the inputs (for both parties) and an adversary V∗. Then E obtains the output of
V∗ (since P has no output). Finally, E produces some output. The “environment” does not participate in
the computation. It is essentially a distinguisher for sequential real or ideal protocol executions.

Remark C.5.23. The weaker notion of sequential repetition, as sketched above, follows from auxiliary
input zero-knowledge, even if the “environmental” I is not allowed not output state, e.g. if always

29 This entails some technical artefacts, e.g. a prover may be badly behaved for invalid inputs, e.g. not halting. The complexity
class for “good protocols” should be robust and prevent such behaviour.

30 However, timeV∗+P (. . .) and timeSim (. . .) are more suitable for analyzing the tightness of simulation, which we did not
define (since we do not have a perfectly convincing definition).

31 An alternative “fix” is to prevent too efficient verifiers, e.g. using timelock puzzles.
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state = ⊥. This is in line with [Gol93], and uses that everything the adversary “knows” the simulator
“knows”. However, for two (or more) adaptive statements, the “environment” has “knowledge” which
the simulator has not. In the classical definition (with classical PPT), the power of non-uniformity still
allows to prove sequential composition. The non-uniform advice of I and D effectively establishes the
“shared state” between I and D.

C.5.4.3. Size-Guards and Size-Guarded Security

In our definition of zero-knowledge, due to fat tailed input distributions, a simulator is allowed almost
no runtime overhead in |x| compared with P, i.e. if a prover is linear-time in |x| the simulator must also
be. In [KL08; Gol10], the simplification 𝜆 = |x| is used, which alleviates this issue somewhat. We mirror
that by explicitly size-guarding a protocol. This means that prover (and verifier) reject inputs which
exceed the length of a (polynomial) size-guard gd(𝜆). Size-guards “decouple” efficiency of simulator
and prover w.r.t. |x|, simplify efficiency arguments, but slightly weaken security.

Definition C.5.24 (Size-guarded zero-knowledge). We define (uniform) zero-knowledge w.r.t. (input)
size-guarded security as follows: For any (monotone) polynomial bound gd (called size-guard), the
derived protocol, where prover and verifier abort with gderr on inputs (x,w) if |x| > gd(𝜆), is
zero-knowledge (in the above sense).

The definition of non-uniform (size-guarded) zero-knowledge is analogous to the above, but I(𝜆)
has access to an advice via an additional input interface.

Definition C.5.25. We define (non-)uniform sequential zero-knowledge w.r.t. (input) size-guarded
security (see Definition C.5.24) as follows: For any polynomial size-guard gd, the derived protocol,
where prover and verifier abort with gderr on inputs (x,w) where |x| > gd(𝜆), is sequential
zero-knowledge (in the above sense).

The use of (input) size-guarded security is meant to address certain situations, which we may want to
consider secure, but cannot due to runtime artefacts.

Example C.5.26. Namely, suppose the simulator has quadratic runtime in the instance size |x|, whereas
the prover’s runtime is linear. Then, a problematic fat-tailed input distribution renders simulation
inefficient. Consequently, without size-guarding, simulation must be “tight” in |x|. One technical
artefact, partially mitigated by size-guards, is that very efficient provers make simulation harder. That
is, by making a prover slower, e.g. adding a quadratic overhead, simulation becomes easier.

These problems may be of practical relevance: Given succinct argument systems, extraction comes
with an overhead which is often superlinear. Such argument systems can be incompatible with CEPT
under adversarial input distributions.

There are other means than size-guarding for solving the above problem. For example, one may quantify
only over admissible adversaries. Indeed, adversaries which only send strictly polynomial size inputs
are equivalent to size-guarded security.

See Appendix C.5.4.5 for more on size-guards.
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C.5.4.4. The Universal Adversary Vuniv

The universal adversary Vuniv is basically a virtual machine emulating some adversary, i.e. the input
to Vuniv is of the form (code, state, aux), and Vuniv continues execution of the code code in state state.
The universal adversary Vuniv contains the core hardness of simulation. An existential simulator
is a simulator which may depend arbitrarily V∗. The universal adversary shows that this arbitrary
“existential” dependency on V∗ does not weaken the notion of zero-knowledge. Thus, in Definition 5.5.2,
we do not give up any power.

Lemma C.5.27 (Equivalence of existential and universal simulation). Let (P,V) be an interactive
argument system. If this argument system is zero-knowledge against T-time designated adversaries w.r.t.
to S-time existential simulation, then it is zero-knowledge w.r.t. the universal simulator Sim defined as
follows.

Let Vuniv be the universal adversary and Simuniv be the existential simulator for Vuniv. Here, Sim is defined
by Sim(code(V∗),x, aux) emulating Simuniv(code(Vuniv),x, (code(V∗), state, aux)), where state is the
initial state of V∗.

Proof. First we define IV∗ , which samples (x,w, aux) ← I, and returns (x,w, (code(V∗)), state, aux),
where state is the initial state of V∗. Recall that for (I,V∗), the simulator Sim(code(V∗),x, aux) runs
Simuniv(code(Vuniv),x, (code(V∗), state, aux)), which corresponds to (IV∗,Vuniv). Moreover the real
executions RealI,V∗ , and RealIV∗ ,Vuniv are identical. Thus

IdealI,Sim(V∗ )
𝑑≡ IdealIV∗ ,Simuniv

𝑐≈ RealIV∗ ,Vuniv
𝑑≡ RealI,V∗ .

□

The upshot of the proof is, that an existential simulator cannot truly leverage its arbitrary dependency on
V∗. All the hardness of V∗ might be in the auxiliary input, which Sim cannot depend upon. Lemma C.5.27
extends to the non-uniform setting and to size-guarding.

Caution C.5.28. We crucially relied on our a posteriori runtime notion. For other notions of runtime,
Lemma C.5.27 may not hold! For example, if we assume a priori PPT algorithms, then Vuniv cannot
emulate every adversary V∗, since Vuniv must not exceed poly steps, for some fixed poly, whereas V∗
may run (much) longer, say poly+ 1 steps. (There is a family V𝑛univ with runtime bounds poly𝑛 (𝜆) = 𝑛𝜆𝑛 ,
so a morally equivalent result does hold.)

C.5.4.5. Size-Guards

We recall the need for size-guards, discuss two approaches to generalizing size-guarding, and mention
complexity classes for which size-guarding is superfluous, Then, we identify some problems with
size-guards, which may complicate their use. For we generality, consider a generic real-ideal setting,
and use zero-knowledge as an example. It is easy to see that both proposed notions of size-guarding
are efficient transformations (in any sensible machine model).32

32 The effect of size-guarding on runtime is minor. If a lazy size-guard implementation is used, instead of eagerly checking
the size, then up to emulation overhead, the runtime doubles at most. (Eager implementations may blow up runtime if the
time for writing the message is not accounted for, e.g. because of huge messages from (inefficient) oracles.)

289



C. Appendix for Chapter 5

A Case for Size-Guards. Recall that adversarial input distributions, which exploit expected polyno-
mial size via fat-tailed distributions, may yield simulators which are not CEPT, because the have a,
say quadratic, dependency on input length, whereas the real protocol (e.g. the prover) has a linear
dependency, see Example C.5.26. Bounding input length, or even message length, which honest parties
accept hardly affects the usefulness of a protocol. Indeed, these bounds are fixed a posteriori, i.e. after
the full system is built from its parts. We have no good example for a setting, where there is no suitable
polynomial bound one the input (or message) length of honest parties. So we expect that such a
posteriori restrictions do not affect real applications.

Size-Guarding Inputs. The most natural approach to size-guarding is arguably to size-guard inputs
to ideal functionalities, i.e. messages sent to the interface of real protocol or their ideal equivalent.
Size-guarding a functionality yields a new functionality, which aborts upon receiving inputs which
exceed the length allowed by the size-guard. (Adversarial parties should be allowed to ignore size-guard
restrictions. Also, other parties should be notified of such an abort.) As explained above, we know no
good example where a functionality cannot be replaced in such a way.

This simplistic sketch of size-guarding may be ill-defined, and lead to problems, as in pointed out in a
later paragraph.

Size-Guarding Communication. Instead of size-guarding only inputs, one may want to size-guard
all communication of honest parties. This may also be viewed as size-guarding all interfaces and the
communication channel. (We should not impose size-guards on adversarial communication, as there is
no justification for limiting their communication.) This kind of size-guarding is formally stronger, but
we expect that for most (all?) interesting protocols, it is equivalent with size-guarding inputs. However,
size-guarding communication affects everything, not just functionalities. Thus, we find the more local
notion of size-guarding inputs preferable, and less likely to lead to unpleasant surprises.

Strict Polynomial Space. An algorithm A has a priori strict (probabilistic) polynomial space (SPS) (in
analogy to PPT) if there exists a polynomial poly(𝜆) which bounds maximal used space/memory. We
count outgoing (but not incoming) message queues as part of an algorithms space/memory. With
this, any size-guard larger than poly does not affect the behaviour of A at all. Thus, for a priori SPS
adversaries, size-guarded security and normal security are equivalent.

For “classical” SPS, the space of Amay depend on the input size, i.e. poly(𝜆, |𝑥 |). All protocols of interest
satisfy SPS. We find (classical, a posteriori and a priori) EPT SPS algorithms an appealing complexity
class. Of course, the “negligible slack” of CEPT and CPPT is motivated for and applies to this setting
as well. Unfortunately, deterministic bb-rw oracles for EPT adversaries are not compatible with SPS,
hence our simulators are not PPT either. This can likely be fixed, see Remark C.1.6.

Composability and Definitional Issues. One major drawback of size-guarded security, is that it changes
the ideal functionality. This may break properties, such as correctness, of protocols using such sub-
protocols. As mentioned before, size-guards should be chosen after a system is composed, so that
such problems do not occur. Since a protocol may call a subprotocol with squared input length, for
composition, one needs to keep track of size-guards, and be aware that they may not be identical for all
protocols. That is, a protocol which is built from subprotocols imposes different size-guards on the
subprotocols than the size-guard which was imposed on itself.
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Another problem of size-guards is, that it may be convenient or relevant to have different or more fine-
grained size-guards for different interfaces. E.g. for zero-knowledge, we left the witness unguarded. A
more flexible approach than merely limiting the input length may be useful in a larger setting.

An Alternative to Size-Guards. The problems noted above seem to disappear if instead of size-guarding
inputs and changing protocol behaviour, one restricts to “admissible adversaries”, as mentioned in
Example C.5.26. The drawback is that now, one needs to specify admissibility variations for all notions,
e.g. rewinding strategies, relative efficiency, and so on. We also caution that, similar problems as for
size-guards may appear, just hidden deeper in security proofs.

C.5.5. Section 5.6

A simulator Sim is benign under size-guarding, if it is benign (Definition 5.6.20) whenever a polyno-
mial size-guard is imposed on the protocol. Analogous claims for Lemmas 5.6.23 and 5.6.26 hold w.r.t.
size-guarded zero-knowledge.

C.5.5.1. Connection Between Runtime and Probability Tightness

Following example illustrates, that normality is not automatic.

Example C.5.29 (Bad RWS). Consider a proof system with a (useless) preamble, where the prover sends
a random string 𝑠 $← {0, 1}𝜆 , the verifier acknowledges it, and the actual protocol begins. A rewinding
strategy RWS could send 0𝜆 as its first query, and then rewind. Against classical PPT adversaries, this
is no problem at all. However, this essentially notifies the adversary of being in a simulation. Indeed,
the probability tightness of RWS is 2𝜆 . Similarly, a rewinding strategy RWS, which “prefers” to output
lexicographically smaller transcripts, typically has (very) noticeable output skew.

For EPT adversaries, runtime tightness implies probability tightness asymptotically.

Remark C.5.30 (Necessity of probability tightness). Let RWS be a rewinding strategy for (P,V). Let V∗
be a deterministic malicious verifier. Suppose there is a (sequence of) logical queries query = query(𝜆)
such that prrws(query) > 1

negl ·prreal(query) infinitely often. By modifying V∗ to run an extra 1
prreal (query)

steps if queried with query, we obtain a new deterministic verifier V∗∗ whose expected runtime increases
by 1. But RWS incurs a superpolynomial runtime growth, as it cannot see the “trap”. Thus, runtime
tightness implies probability tightness.

The “attack idea” on RWS in Remark C.5.30 may also be viewed as an indication that almost(?) all
rewinding strategies in the literature are normal. More generally, even an a priori PPT adversary can
exploit a large probability tightness and give “bad” answers in such cases. So, even for a priori PPT
adversaries which cannot cause runtime explosion, there is no incentive to have large probability
tightness, because it is unclear how that could be usefully exploited.

Remark C.5.31 (Probability tightness does not imply runtime tightness due to stupid reasons). Let
RWS be some normal rewinding strategy. Construct RWS′ from RWS by running for 2𝜆 steps and
then emulate RWS. Clearly, RWS′ and RWS are equivalent systems, but runtime tightness of RWS′ is
exponential.

Nevertheless, for typical classes of well-behaved protocols and rewinding strategies, runtime tightness,
“query tightness”, and probability tightness are closely related.
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C.5.6. ★Absolute Notions of Relative Efficiency

In Section 5.4.2, we work with “relative notions of (relative) efficiency”, that is, we compare the
performance of two algorithms. A scrapped approach used “absolute notions of relative efficiency”,
which have no comparison point. Absolute relative efficiency ensures, that whenever the communication
partner of A is efficient, so is A. In other words, it allow us to “blame” a party for running too long.
While this is easier to describe than relative efficiency, the need to be absolute makes the notion brittle,
as we see at the end of this section.

We use the name absolute relative efficiency mostly due to a lack of a better name.

Definition C.5.32 (Weak absolute relative efficiency). Let T be a runtime class and A be an algorithm.
Then A is weakly absolutely relatively efficient (ar-eff) (w.r.t. T) if: For any timeful oracle O,
timeO (⟨A,O⟩) ∈ T implies timeA+O (⟨A,O⟩) ∈ T.

Definition C.5.33 (Absolute relative efficiency). Let A be an algorithm and O an oracle. Then A is
absolutely relatively efficient (ar-eff) w.r.t. ∥ · ∥𝑞 with rel-eff ratio polyarr(𝜆) if: For any timeful
oracle O, we have ∥timeA+O (⟨A,O⟩)∥𝑞 ≤ polyarr(𝜆) · ∥timeO (⟨A,O⟩)∥𝑞 .

If 𝑞 is not specified, we mean 𝑞 = ∞, i.e. ar-eff w.r.t. to strict time. To 𝑞 = 1, we say ar-eff w.r.t.
expectation.

Importantly, the notion of (weak) absolute relative efficiency is unconditional and amortized since O is
timeful and can abort at any time. In particular, if an algorithm is PPT (resp. EPT) per activation, it is
(weakly) ar-eff.

As a rule of thumb, the non-adversarial parties (e.g. challengers) should be ar-eff, so that runtime
problems can be traced back to the adversary. With this, one can exploit runtime explosions to break
hardness assumptions.

Remark C.5.34 (Relation to EPT in any interaction). At fist glance, ar-eff (w.r.t. expectation) seems to
be closely related to EPT in any interaction (EPTiai) [KL08; Gol10]. However, EPTiai has a different
flavour. It is a property imposed on the (ideal) adversary, so that a simulator’s runtime does not explode.
Katz and Lindell state in[KL08, Sec. 4.2] that they could not show that the simulator obtained by
modular sequential composition again satisfies EPTiai. This “prevents” further composition of this type.
Conversely, ar-eff is a property imposed “honest parties”, e.g. challenger in a security game.

Example C.5.35 (G3C is not ar-eff). The prover, verifier and simulator forG3CGK (Section 5.1.2) are ar-eff
under size-guarding, but not unguarded, assuming | (𝑉 , 𝐸) | ≈ card(𝑉 ) + card(𝐸). The problem is that
the Pmakes 𝜆 · card(𝐸) · card(𝑉 ) commitments, whereas the verifier only makes card(𝐸) commitments.
The factor card(𝑉 ) is not bounded by poly(𝜆), thus, there is no polyarr which depends only on 𝜆 and
the prover is not ar-eff.33

This problem is mitigated by size-guards. For a variation of G3CGK with graph hamiltonicity, this
problem would not occur as 𝜆 parallel repetitions suffice, independent of𝐺 . (Modulo technical compli-
cations.)

33 This can be seen as a technical artefact from not counting the commitments sent by the prover towards the runtime of
the verifier. An honest verifier would read the commitments, hence requiring roughly the same amount of “computation”
as the prover. A dishonest or timeful verifier is not bound by that. If we would count incoming messages towards the
runtime of the oracle, stupid problems like “message length doubling attacks” could appear. By sending a message𝑚, A
gets polyarr (𝜆) · |𝑚 | more time from O. If O discards messages which are too long, then O can remain efficient, whereas
A increases its runtime exponentially. Arguably, we do not want to view such an A as efficient in any sense.
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All in all, Example C.5.35 demonstrates how brittle unguarded ar-eff is. We see that not even the prover
of G3CGK satisfies ar-eff without size-guards. This is the core reason to replace ar-eff with the arguably
more complex notion of “efficiency relative to” another algorithm.

C.5.7. ★The Necessity of ∥ · ∥1

One may hope that there is a notion more stringent than expected time, which still allows rewinding-
based arguments of 3-move proofs of knowledge (based on special soundness), or 5-move zero-knowl-
edge such as [GK96], with black-box proofs of security. For example, one might hope for ∥ · ∥2 instead
of ∥ · ∥1, i.e. expected polynomial time and variation. Unfortunately, it is unlikely that a satisfying
solution exists, at least along this line of arguments, unless one allows a larger (constant) number of
rounds.

Concretely, consider the setting of 3-move proofs of knowledge. There, one can assume an adversary
which plays honestly, but aborts with probability 1−𝑝 ∈ [0, 1]. Suppose the 3-move proof of knowledge
is special sound and has large challenge space, so that it the soundness error is negligible. Consider
the typical extractor for special soundness: If the adversarial prover convinces the verifier, it rewinds
and uses honestly sampled challenges until the adversary produces a second convincing answer. With
overwhelming probability, the first and second challenge are distinct, and by special soundness a
witness can be computed.

It is evident that the number of rewinds for this extractor follows a geometric distribution. Indeed,
with probability 𝑝 , the first challenge is answered convincingly, in which case the extractor needs
𝑅 ∼ Geo(𝑝) rewinds to obtains a second convincing answer. Then the expectation of 𝑅 is

∥𝑅∥1 = (1 − 𝑝) · 0 + 𝑝
1 − 𝑝
𝑝
≤ 1.

If we consider ∥𝑅∥2, then we find the

∥𝑅∥22 ≥ 𝑝
1 − 𝑝
𝑝2
≥ 1
𝑝
.

Thus, if 𝑝 negligible, the ∥𝑅∥2 is superpolynomial. A first attempt is to exploit virtuality: If 𝑝 is negligible,
then in fact, 𝑅2 is virtually expected polynomial. Conversely, if 𝑝 is bounded below by 1

poly , then 𝑅
2 is

expected polynomial. However, things fall apart if 𝑝 = 𝑝 (𝜆) is not negligible, yet not bounded below by
any polynomial. For this, define 𝑝 (𝜆) as follows: 𝑝 (𝜆) = 𝜆−2𝑓 (𝜆) , where 𝑓 (𝜆) = 1 for all 2 ∤ 𝜆, 𝑓 (𝜆) = 2
for all 2 | 𝜆 ∧ 4 ∤ 𝜆, 𝑓 (𝜆) = 3 for all 4 | 𝜆 ∧ 8 ∤ 𝜆, and so on. (Let 𝑓 (0) = 0.) That is,

(𝑓 (𝜆))𝜆 = (0, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, . . .)

Thus, 𝑝 contains infinitely many terms of 𝜆−2𝑐 for any 𝑐 ∈ N. It is easy to see that 𝑝 is not negligible.
However, for any polynomial poly, we have 𝑝 < 1

poly infinitely often, i.e. 𝑝 is not polynomially bounded
away from 0. Thus, ∥𝑅∥2 > poly infinitely often. In other words, there is no polynomial which bounds
∥𝑅∥2. Allowing negligible virtuality does not help either. Thus, this choice of 𝑝 results in an adversary
which cannot be extracted in virtually expected polynomial ∥ · ∥2-time.

Repetitions can be used to “bring down exponents”, and hence, for any 𝑞 ∈ N, there should exist a
(constant) number 𝐶 of repetitions (and modified extractors) such that ∥𝑅∥𝑞 < poly, namely 𝐶 = 𝑞.
This may be interpreted as an intermediate result between proofs of knowledge with EPT extraction
(i.e. 𝑞 = 1), and “strong proofs of knowledge” with PPT extraction (i.e. 𝑞 = ∞). We also refer to [Pas06]
where this is discussed in the context of precise zero knowledge proofs (of knowledge).
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C.5.8. ★Measurability

In this section, we discuss questions of measurability, which we ignored elsewhere. Since all of our
constructions are simple and make no use of the axiom of choice, there is little reason to doubt that all
are measurable. Admittedly, we have not formally verified this for every construction, and merely spot-
checked some. We do note that some properties, e.g. “uniqueness” of events, were used in simplified
explanations. They are not used in actual constructions.

Stochastic Processes and Timeful Systems. The evolution of a computation or interaction for closed
systems should be viewed as a stochastic process. The random variables of interest are the exchanged
messages, and the purported elapsed time,34 namely the sequence of random variables (𝑍0, 𝑍1, . . .)
describing the progress of the computation. Concretely, 𝑍𝑖 consists of (𝑚0, 𝑡0, . . . ,𝑚𝑖 , 𝑡𝑖), which is
transcript up to the 𝑖-th message exchange, plus the elapsed runtime 𝑡 𝑗 for computing𝑚 𝑗 . One may
augment this with other (purported) values, such as memory usage, etc. Obviously, we also require
pr[1, . . . , 𝑗] (𝑍𝑖) = 𝑍 𝑗 for all 𝑖 < 𝑗 in N0. (And this implies 𝜎 (𝑍𝑖) ⊆ 𝜎 (𝑍𝑖+1) for the 𝜎-algebras.)

The image of 𝑍𝑖 lies is in a countable space, which we equip with the discrete 𝜎-algebra. The sample
space of process 𝑍 (𝑖, 𝜔) = 𝑍𝑖 (𝜔) is given the induced 𝜎-algebra, but is not countable anymore. (Recall
that the 𝜎-algebra on N∞ is constructed from the finite steps N𝑘 , 𝑘 ∈ N.)

We have ignored inputs and non-closed systems, but these are easily defined as functions, which take a
sequence of input messages and return output messages. (Technically, these may be partial functions,
since some input sequences may correspond to impossible executions. E.g. inputs for a system which
halted.) Letting two such systems A, B interact by connecting interfaces yields a new system, defined
in the obvious way. The resulting system ⟨A,B⟩ has an associated random process (which lives in the
product space of the random processes associated with A, B.)

An Alternative Description. One may alternatively describe the random process of individual systems
via “conditional transition probabilities”, roughly, 𝑝𝑖 (𝑦) = Pr[𝑍𝑖 = 𝑦 | 𝑍𝑖−1 = pr[1, . . . , 𝑖 − 1] (𝑦)]. This
approach always specifies independent processes. Dependency is (only) introduced by interaction.
While this would probably be sufficient, “extending” the probability space (as we did to achieve exact
𝜈-quantile cutoffs) is not immediately possible. One can introduce some “irrelevant action”, e.g. a zero-th
message, which has the desired distribution. We find this to be just as inconvenient as working with
underlying probability spaces explicitly. Moreover, for systems induced by algorithms and machine
models, the underlying probability space is usually explicit anyway.

Algorithms and Machine Models. Unlike (timeful) systems, algorithms and machine models have an
“explicit randomness-providing interface”. Thus, the underlying probability space for such systems
is simple to describe, usually {0, 1}N with “uniform” distribution (i.e. the “limit” of {0, 1}𝑘 , 𝑘 ∈ N,
with uniform distribution). Standard definitions of machine models (via transition functions) then
evidently imply that any algorithm yields systems which are very well behaved, in particular every
typical function of interest is measurable (e.g. messages, runtime, memory trace, . . . ).

34 In particular, a timeful system must have measurable purported runtime.
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Measurability of our Constructions. Most constructions merely relied on runtime statistics, and can
be defined on the process 𝑍𝑖 by (a consistent family of) measurable functions (for each 𝑖). Indeed, if the
domain of𝑍𝑖 has the discrete 𝜎-algebra, any function is measurable. Since these statistics are measurable
by assumption, and our functions are measurable as well, we therefore find that our constructions
are measurable. (More concretely, they are measurable for every 𝑖 , and hence the resulting process is
measurable.)

C.6. ★Extendability from Indistinguishable Queries

Our definition of benign simulators relies on structure of the proof of security for (PPT) simulation, and,
although it covers many examples, is therefore somewhat limited. In this section, we give a different
approach to benign simulation. Intuitively, we require that an “eavesdropping” environment cannot
distinguish the bb-rw interaction of a rewinding strategy or a simulator with V∗. This corresponds to
the properties of query-indistinguishability and zero-knowledge.

The upside of this approach is its apparent greater generality. The downside is, that using query-indis-
tinguishability is more technical, and requires a separate treatment of efficiency and indistinguishability.
Perhaps a better, general approach exists — yet we know none.

C.6.1. Query-Sequences Indistinguishability

Our notion of “indistinguishable queries” for simulators is similar in spirit to [KL08].

Definition C.6.1 (Query-indistinguishability). Let A and B be oracle algorithms. The distinguishing
advantage Advqseq(I,O,D ),A,B(𝜆) for queries including output of A,B by an adversary (I,O,D) is defined
as the distinguishing advantage AdvdistD,𝑋,𝑌 (𝜆) for the distributions

𝑋 ≔ {(𝑥,𝑦, 𝑟,AO (𝑦;𝑟 ) (𝑥 ; 𝑟A), qseqO (AO (𝑦;𝑟 ) (𝑥 ; 𝑟A))) | (𝑥,𝑦) ← I(𝜆)}𝜆
𝑌 ≔ {(𝑥,𝑦, 𝑟,BO (𝑦;𝑟 ) (𝑥 ; 𝑟B), qseqO (BO (𝑦;𝑟 ) (𝑥 ; 𝑟B))) | (𝑥,𝑦) ← I(𝜆)}𝜆

Here 𝑟 denotes the accessed randomness of O.35 (We make explicit the randomness 𝑟A and 𝑟B only to
make it evident, that the output and query sequence refer to the same run.)

We say that A and B satisfy (T-time) query-indistinguishability (Q-IND), if for all adversaries
(I,O,D) such that timeI+O+D (AO) ∈ T and timeI+O+D (BO) ∈ T the advantage Advqseq(I,O,D ),A,B(𝜆) is
negligible.

Size-guarded query-indistinguishability is defined by size-guarding A and B (as non-adversarial parties),
i.e. A and B reject inputs of length larger than their size-guard.

Definition C.6.1 requires jointly indistinguishable queries and outputs. This may not be strictly necessary,
but greatly simplifies sequential composition of Q-IND. All bb-rw zero-knowledge simulators we are
aware of satisfy this joint indistinguishability. Indeed, typically the last query induces the (purported)
view of the adversary.

35 Typical machine models offer an infinite pool of (independent) randomness, e.g. a random tape. Thus, we “restrict” to
accessed randomness.
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We stress that the distinguisherD learns the oracle randomness. This allowsD to replay the execution
of O, recover the complete transcript of the execution, and compute the runtime spent in O.

Remark C.6.2. For CEPT and CPPT, it suffices in Definition C.6.1 to require that𝑇 = timeI+O+D (AO) ∈
T. If timeI+O+D (BO) ∉ T, then this is a distinguishing statistic. Indeed, by a standard reduction to
PPT, any distinguisher (I,O,D) with advantage at least 𝜀 = poly−1 (infinitely often) can be truncated
to an a priori PPT distinguisher with advantage 𝜀

4 (infinitely often). (Just interpret D′ ˆ︁= (I,O,D) as
interacting with oracles A or B, and apply Corollary 5.4.2.)

Remark C.6.3 (“Universal” adversary, environments, sequential security). Using a universal machine
for O (and evenD) gives a universal adversary similar to zero-knowledge. Moreover, one can rephrase
Definition C.6.1 in terms of an “environment” E which encompasses I andD; E sends inputs (𝑥,𝑦), and
then gets access to randomness, output and query sequence. A sequential security version of Q-IND is
defined by this approach, following the definition of sequential zero-knowledge (i.e. E is given adaptive
repeated trials).

As in Remark C.6.2, we may assume E is a priori PPT. Also, (one-guess) “environmental” security is
equivalent to Definition C.6.1, because the state of E can be encoded as part of 𝑦.

C.6.2. Adapting the Result of Katz–Lindell

As a warm-up, we adapt the result of Katz and Lindell [KL08]. For that, we rely on bb-rw simulators
which are EPT for any adversary (not counting the adversary’s steps). In other words, we rely on
simulators which are normal in the sense of Goldreich [Gol10]. That covers most simulators in the
literature, but not our naive simulator for G3CGK. Moreover, the definition is not compatible with
expected polynomial input sizes, and thus restricted to size-guarded security.36 (For size-guards, see
Appendix C.5.4 and Appendix C.5.4.3) After this motivation, we generalize the result to our setting.

Definition C.6.4 (Goldreich-normal [Gol10]). A bb-rw simulator is normal in the sense of Goldreich,
short Goldreich-normal, if for any (not necessarily computable) timeful V∗ and any input (x,w, aux)
(with (x,w) ∈ R) there is a polynomial poly such that E [timeSim(Sim(x,V∗(aux)))] ≤ polySim( |x|),

There is no requirement of x ∈ L in [Gol10, Definition 6]. Since zero-knowledge only quantifies over
such statements, we have adapted the definition to fit.

Lemma C.6.5 (Auxiliary input zero-knowledge). Let (P,V) be an argument system. Let Sim be a
(timed) bb-rw simulator with associated rewinding strategy RWS. Suppose that RWS is normal, Sim is
Goldreich-normal, RWS and Sim have indistinguishable queries, and Sim handles PPT adversaries in EPT.

Then Sim handles CEPT adversaries in CEPT under size-guarding, and (P,V) is size-guarded zero-
knowledge.

Proof sketch. By a standard reduction, the output quality of Sim can be tested by an a priori PPT
adversary. By assumption, such output is indistinguishable from the real protocol. Thus, we only need
to ensure efficiency of Sim under size-guarding.

Due to size-guarding, we can assume that I outputs x with |x| ≤ polyI (𝜆). Therefore, by assumption,
Sim is a priori EPTwith bound polySim(polyI (𝜆)), excluding the time spent in the bb-rw oracle V∗. Thus,

36 These problems do no surface in [KL08; Gol10] since they define 𝜆 = |x|.
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it is sufficient to bound 𝑆V∗ = timeV∗ (Sim(x,V∗(aux))), where (x,w, aux) ← I. By normality of RWS
and query-indistinguishability, recomputing the time spent inV∗ by emulation (using inputs, queries and
randomness) is possible in CEPT for any CEPT adversary. Consequently, by query-indistinguishability,
switching from RWS to Sim results in an indistinguishable distribution of 𝑡 . Hence, 𝑆V∗ is CEPT and
the claim follows. □

We also demonstrate that sequential composition, i.e. sequential zero-knowledge, holds for this type of
simulator.

Lemma C.6.6 (Sequential zero-knowledge). Let (P,V) be a size-guarded zero-knowledge argument,
with a simulator satisfying the conditions in Lemma C.6.5. Then (P,V) is sequential size-guarded zero-
knowledge.

Proof sketch. Again, the main question is efficiency. Namely, if there is a distinguishing adversary for
zero-knowledge, then there is an a priori PPT adversary. This contradicts our assumptions, because
“classical” sequential composition against a priori PPT adversaries holds.

To prove efficiency, we prove, essentially, that query-indistinguishability composes sequentially. As in
Lemma C.6.5, this then implies that OSim is efficient because ORWS is.

Suppose the contrary, i.e. suppose query-indistinguishability does not hold for Sim. By Remarks C.6.2
and C.6.3, we know that there is an a priori PPT distinguisher (E,V∗) breaking “sequential query-
indistinguishability”. We leave the definition of sequential Q-IND, sketched in Remark C.6.3, to the
reader.

Since Sim is Goldreich-normal,OSim = rep(Sim( · )) handles PPT adversaries in EPT. (This is “classical”
sequential composition.) Sequential Q-IND of Sim and RWS for PPT distinguishers reduces, by a hybrid
argument, to standard Q-IND. The hybrid distinguisher is efficient, because Sim is Goldreich-normal
(and RWS normal). Consequently, Sim and RWS cannot be Q-IND. A contradiction. Hence, sequential
Q-IND holds for RWS and Sim. In particular, rep(Sim) satisfies all conditions in Lemma C.6.5 lifted to
the sequential setting, and the proof lifts as well. □

This warm-up demonstrates two things: First, with size-guarding, many arguments get simplified
and reduce to standard a priori PPT arguments. Second, the main difficulty for relaxations will be
to demonstrate efficiency. By the nature of CEPT, efficiency and indistinguishability are somewhat
entangled. We use unconditional guarantees, similar to Goldreich-normal in the above, to partially
disentangle that.

Proving a “full-fledged” CEPT simulation, i.e. getting rid of size-guarding and weakening Goldreich-nor-
mal is surprisingly cumbersome. We do so by introducing two properties. The first property, runtime
estimators, allows us to link together the runtime of RWS and Sim, assuming Q-IND holds. The second
property ensures efficiency if one truncates after polynomially many queries. This replaces Goldre-
ich-normal, and enables the hybrid argument which shows that Q-IND must hold under sequential
composition. Taken together, we find that the runtime of Sim cannot be too far from RWS, and thus
Sim is efficient whenever RWS is. This generalizes the proof of Lemma C.6.6.

297



C. Appendix for Chapter 5

C.6.3. Runtime Estimation

In the following, we give a definition of a “runtime estimator”, which allows to lower- and upper-bound
the expected runtime of an algorithm depending on oracle queries, or more precisely, on the information
available to a Q-IND adversary. The algorithms of interest are RWS and Sim. Typically, their runtime
is closely related, since both emulate the honest prover (with minor modifications). Consequently, their
runtime per activation is easy to lower- and upper-bound (if the prover’s runtime per activation is).

Definition C.6.7 (Runtime estimation). Let 𝜃 : N0 × 𝐷 × Ω𝜃 → N0, be a probabilistic algorithm with
randomness space Ω𝜃 , and where 𝐷 is the input space of a query distinguisher (as in Definition C.6.1).
Let A be an algorithm and O some oracle. Let 𝑧 ∈ 𝐷 and recall that 𝑧 = (𝑥,𝑦, 𝑟, out, qs), where 𝑥 (resp.
𝑦) is input to A (resp. O), 𝑟 is the oracle randomness, out is the output of AO (𝑦;𝑟 ) (𝑥), and qs is the
sequence of queries. Define

• 𝑡𝜃 (𝜆, 𝑧) ≔ E [time𝜃 (𝜃 (𝜆, 𝑧))], the expected runtime of 𝜃 given 𝑧.

• 𝑡A(𝜆, 𝑧) ≔ E [timeA(AO (𝑦;𝑟 ) (𝑥)) | AO (𝑦;𝑟 ) (𝑥) = out ∧ qseqO (AO (𝑦;𝑟 ) (𝑥)) = qs], the expected
runtime of A conditioned on 𝑧.

• 𝑡A+O (𝜆, 𝑧) like 𝑡A, but using timeA+O (. . .).

We say that 𝜃 is a runtime estimator if it satisfies efficiency, i.e. there exists some poly(𝜆) such that
for all 𝑧 ∈ 𝐷 and all 𝜆: 𝑡𝜃 (𝜆, 𝑧) ≤ poly(𝜆) · 𝑡A+O (𝜆, 𝑧). Moreover, 𝜃 is a lower bound estimator if there
exists some poly such that E [𝜃 (𝜆, 𝑧)] ≤ poly(𝜆) · 𝑡A(𝜆, 𝑧) for all 𝑧 ∈ 𝐷 and 𝜆 ∈ N0. Analogously, 𝜃 is
a upper bound estimator if there exists some poly such that 𝑡A(𝜆, 𝑧) ≤ poly(𝜆) · E [𝜃 (𝜆, 𝑧)] for all
𝑧 ∈ 𝐷 and 𝜆 ∈ N0.

Note that estimators are “unconditional” constructions; we quantify over all 𝑧 ∈ 𝐷 .

Remark C.6.8 (Sketched application of runtime estimators). Consider a simulator Sim and its rewinding
strategy RWS. If 𝑇 = timeRWS(RWSV

∗) is CEPT, then the (output of the) runtime estimate 𝜃 is CEPT if
it lower-bounds 𝑇 . If 𝜃 upper-bounds 𝑆 = timeSim(RWSV

∗), then 𝑆 is CEPT if (the output of) 𝜃 is. Since
𝜃 only depends on the information available to a Q-IND adversary, assuming RWS and Sim are Q-IND,
the runtime bound provided by 𝜃 only changes negligibly, hence if 𝑇 is CEPT, so is 𝑆 . This provides a
central link between the runtime RWS and Sim.

Remark C.6.9 (Convenience of size-guards). Arguing via runtime estimates requires that the algorithms
runtime per activation behave somewhat regularly (which is fortunately typical). Most convenient are
“essentially constant-time” algorithms (where runtime only depends on query/message length). With
size-guards this is usually immediate, as every round has an a priori polynomial upper bound for the
(expected) number of steps taken, both in RWS and Sim (not counting the black-box V∗). Hence 𝜃 is as
simple as the total number of queries. Without size-guards, the behaviour is more fickle.

C.6.4. Efficiency from Query-Truncation

We already saw in Lemmas C.6.5 and C.6.6 that Q-IND ensures that the time spent in V∗ only changes
negligibly between RWS and Sim. However, we cannot reuse the arguments to show that Q-IND
composes sequentially. The problem lies within efficiency of the hybrid distinguisher. As seen in
Lemma C.6.6, once we obtain an a priori setting, this problem “disappears”. Hence this is our solution.
We define what it means to be “Goldreich-normal for any polynomial query cutoff” of the interaction.
Intuitively, it means that any “polynomial prefix” of the interaction is Goldreich-normal.
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Definition C.6.10. Let A be an oracle-algorithm. Let BO (𝑥, 𝑞) be the oracle-algorithm which emulates
AO (𝑥) until the 𝑞-th query of A to O. After that, B returns timeout (otherwise B returns whatever
A returns). We say A is Goldreich-normal for any polynomial query cutoff (and input space X𝜆),
if for any polynomial poly0 there is a polynomial poly1, such that for any oracle O, and any inputs
(𝑥,𝑦) ∈ X𝜆 E [timeB(BO (𝑦) (𝑥, poly0(𝜆)))] ≤ poly1( |𝑥 |, 𝜆). In other words, B(·, poly0) is Goldreich-
normal for any poly0. For zero-knowledge, the input space is R × {0, 1}∗.

Example C.6.11. Our rewinding strategy and simulator of G3CGK are Goldreich-normal for any polyno-
mial query cutoff. Indeed, they are even PPT for any polynomial query cutoff. As a matter of fact, we
cannot point out any (natural) bb-rw simulator which does not satisfy this property.

Remark C.6.12 (Goldreich-normal for any polynomial query cutoff does not imply efficiency). Similarly
to size-guarding, restricting to a polynomial number of queries makes simulations efficient which
would otherwise not be. For example, a simulator which is a a priori PPT per activation, but never
halts, is Goldreich-normal for any polynomial query cutoff.

C.6.5. Query-Benign Simulators

Now, we bring together our definitions to define an alternative of benign, which we call query-benign.

Definition C.6.13 (Query-benign simulator). Let (P,V) be an argument system. Let Sim be a (timed)
bb-rw simulator with associated rewinding strategy RWS. Then Sim is query-benign if

1. RWS is a normal and has a runtime estimator 𝜃 ;

2. for all a priori PPT adversaries (I,V∗), RWS and Sim satisfy Q-IND;

3. Sim is Goldreich-normal for any polynomial query cutoff.

Query-Benign under size-guard gd is as usual (i.e. by query-benign w.r.t. the size-guarded prover).

Recall that Q-IND (i.e. condition item 2) implies that RWS and Sim have indistinguishable outputs by
definition, i.e Q-IND implies zero-knowledge. In 2 we use a priori PPT adversaries, since the security is
equivalent to CEPT anyway.

Now, we put our definitions to use. Since our arguments are very close to Lemma C.6.6, we directly
show sequential zero-knowledge.

Lemma C.6.14 (Query-benign implies sequential zero-knowledge). Suppose (P,V) is an argument
system. Let Sim be a query-benign simulator. Then (P,V) is sequential zero-knowledge. In particular, Sim
handles CEPT adversaries in CEPT. The analogous claim holds under size-guarding.

Our proof is only a sketch and somewhat hand-wavy. in particular, we leave sequential security
definitions, like “sequential Q-IND” and “sequential runtime estimators”, and many straightforward
arguments to the reader.
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Proof sketch. As usual, the proof consists of two parts. First, we prove that using Sim instead of P is
still CEPT. Then, by standard arguments, zero-knowledge follows. For simplicity, we argue assuming
the real execution halts with probability 1.

Step 1 (Replacing RWS): As in Lemma 5.6.26, using rep(RWS( · )) instead of rep(⟨P, · ⟩) in the
sequential zero-knowledge experiment is still CEPT and the output distribution is unchanged.37

Step 2 (Goldreich-normal for any polynomial query cutoff composes sequentially): It is
straightforward to verify that if an algorithm B is Goldreich-normal for any polynomial query cutoff, so
is its “repetition” rep(B). For this compare, the poly-query truncation of rep(B) with rep(B0), where
B0 is the poly-query truncation of B. Since B0 is Goldreich-normal, so is rep(B0). Consequently, rep(B)
is Goldreich-normal for any polynomial truncation.

Step 3 (Q-IND holds for rep(RWS) and rep(Sim)): Now, consider the “sequential Q-IND” experiment,
i.e. consider Q-IND of rep(RWS) and rep(Sim). More concretely, the distinguishing environment E
that can repeatedly invoke RWSV

∗ resp. SimV∗ , and obtains the output of an invocation, including the
query sequence and randomness of (that invocation of) V∗, as noted in Remark C.6.3. Note that E can
adaptively choose inputs to RWS resp. Sim and V∗.

W.l.o.g., we may assume that E is a priori PPT, say E makes at most polyE steps. Moreover, we may
assume that E linearly reads the outputs of each invocation. In particular, E cannot skip (parts) of the
outputs, and read only the final queries.38 Importantly, E only reads a strict polynomial prefix of the
full (sequential) query sequence.

If we replace Sim by a truncation Sim0, which stops after polyE queries, we know that Sim0 is EPT with
expected runtime bounded by some polySim0 (due to Sim being Goldreich-normal for any polynomial
query truncation, see also Step 2).

By construction, from the perspective of E, rep(Sim0) and rep(Sim) behave identically. Indeed, since
E only reads at most a prefix of length polyE of the (total) query sequence, E never encounters the
difference of Sim0 and Sim. For symmetry, let RWS0 be defined analogously to Sim0. (Formally, we
could use RWS, since there are no efficiency problems with RWS.)

Now, we can use that Sim0 is Goldreich-normal, to show via a hybrid argument as in Lemma C.6.6
that if E can distinguish RWS0 and Sim0 for “sequential Q-IND”, there is a Q-IND distinguisher D for
RWS0 and Sim0. And hence, there is a Q-IND distinguisher for RWS and Sim (since the constructed
hybrid distinguisher D also sees no difference between Sim0 and Sim (resp. RWS0 and RWS)). Thus,
“sequential Q-IND” holds.

Step 4 (Sim is CEPT if RWS is): Now we make use of the runtime estimator 𝜃 . More precisely, we
extend 𝜃 to the sequential setting by applying the underlying 𝜃 for each invocation separately, and
taking the sum of the estimates. It is easy to see that this preserves efficiency, lower-bounding and
upper-bounding.

Let (E,V∗) be a CEPT adversary. Since timeRWS(⟨E, rep(RWSV
∗)⟩) is CEPT, so is 𝜃 (by lower-bound-

ing of RWSV
∗ ). Since 𝜃 (𝑧RWS) is CEPT for 𝑧RWS = qseqV∗ (rep(RWSV

∗)) and since 𝑧RWS and 𝑧Sim =

37 In case of non-halting executions, argue as in Lemma 5.6.23.
38 This is a technical requirement. Depending on the machine model, E may have random access to the output. That would

make our later argument incomplete. To see that we can assume that E completely reads the outputs, just use the output
length as a distinguishing statistic. That is, if there is a PPT distinguisher E which skips parts of the output, then the
variation which reads all of the output is still CEPT for RWS. By standard truncation arguments, an a priori PPT truncation
of E′ retains non-negligible advantage. And E′ is a distinguisher of the kind we are interested in.
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qseqV∗ (rep(SimV∗)) are indistinguishable w.r.t. E (by “sequential Q-IND”), also 𝜃 (𝑧Sim) is CEPT. Since
𝜃 upper-bounds the runtime of timeSim(⟨E, rep(SimV∗)⟩), timeSim(⟨E, rep(SimV∗)⟩) is CEPT.

Finally, since the time spent in V∗ can be easily reconstructed from 𝑧 (by emulating the execution),
timeV∗ (⟨E, rep(RWSV

∗)⟩) 𝑐≈ timeV∗ (⟨E, rep(SimV∗)⟩) due to Q-IND.

All in all, replacing rep(⟨P, · ⟩) with rep(Sim( · )) preserves CEPT.

Step 5 (Output quality): Our definition of Q-IND included the outputs, so zero-knowledge follows.
□

The proof sketch should be interpreted as follows: Step 3 shows that Q-IND for A and B composes
sequentially ifB is Goldreich-normal for any polynomial query cutoff. (It uses Step 2, although somewhat
indirectly.) Step 4 shows that runtime estimators compose sequentially. Taken together, query-benign
composes sequentially. Lastly, (sequential) query-benign implies (sequential) zero-knowledge.

We remark that to prove Q-IND, for all of our examples, one essentially proves benigness as well.
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