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Abstract 

Quality control focuses on identifying defects in products and monitoring activities to verify 

that products meet the desired quality standard. Many approaches for quality inspection use 

specialized image processing software based on manually engineered features developed by 

domain experts to recognise objects and analyse images. However, these models are laborious, 

costly to develop, and difficult to maintain, while the produced solution is often brittle, 

requiring significant adjustments for slightly different use cases. For these reasons, it is still 

common for quality inspection in industries to be done manually, which is time-consuming and 

prone to various human errors. As a result, we propose a more general data-driven approach 

based on recent advances in computer vision technologies using convolutional neural networks 

to learn representative features directly from the data. While traditional methods use 

handcrafted features to recognise individual objects, deep learning approaches learn 

generalizable features directly from the training samples to recognise different objects. 

This dissertation develops models and techniques for the automated detection of defects in light 

optical microscopy images from materialographically prepared sections. We develop models 

for defect detection, which can be broadly categorised into supervised and unsupervised deep 

learning techniques. In particular, various supervised deep learning models are developed to 

detect defects in the microstructure of lithium-ion batteries, from binary classification models 

based on a sliding window approach using limited training data to complex defect detection 

and localization models based on one-stage and two-stage detectors. Our final model can detect 

and localize multiple classes of defects in large microscopy images with high accuracy in near 

real-time. 

However, successfully training supervised deep learning models typically requires a 

sufficiently large set of labelled training examples that are often not readily available and can 

be very costly to acquire. Therefore, we propose two approaches based on unsupervised deep 

learning for anomaly detection in the microstructure of sintered NdFeB magnets without the 

need for any labelled training data. The models are able to detect defects by learning from the 

training data indicative features of only “normal” microstructure patterns. We show 

experimental results of the proposed defect detection systems by performing quality evaluation 

on commercial samples of both lithium-ion batteries and sintered NdFeB magnets. 
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Chapter 1 Introduction 

 

Introduction 

 

1.1 Motivation 

Quality assessment is an integral aspect of many manufacturing processes. It generally involves 

evaluating a process to achieve a defined quality standard. Quality control (QC) and quality 

assurance (QA) are two closely related aspects of quality assessment. QC mainly focuses on 

identifying defects in products and monitoring activities to verify that the products meet a 

certain quality standard. While, QA aims to prevent defects by focusing on the process, 

techniques, and methods used to conceptualize and design the products. In other words, both 

QC and QA ensure that the design and manufacture of products and services meet consumer 

expectations.  

Nevertheless, due to increasing competition in the manufacturing market, producers have no 

choice but to increase their production rate while maintaining strict quality control measures. 

This is especially true for many safety-critical applications, such as in the medical, aerospace, 

or automobile industry, where the aim is often to realize 100% quality assurance. However, 

humans often perform these quality inspection tasks manually, which is repetitive and prone to 

fatigue-induced error. In addition, the analysis can be very subjective and too time-consuming 

for fast-moving production lines. Therefore, for manufacturers to remain competitive and meet 

the growing demand for high-quality products, sophisticated visual inspection systems are 

becoming essential in many production lines. 

Furthermore, acquiring relevant information about product quality prevents shipping inferior 

or faulty products, which can result in substantial financial loss and reputation damage. 

However, it can also aid with the continuous improvement of existing processes or help to 

reveal a regression in the current production process. Provided there are suitable measurement 

techniques for capturing the relevant data, appropriate algorithms for analyzing these data still 

need to be developed. The basis of most algorithms for automatic surface inspection reply on 

manually engineered features, which are commonly statistical and filter-based [1]. Even though 

expert knowledge often allows for powerful features to be created, the process can be laborious 

and often brittle, needing modification for each new task. Thus, more general solutions which 

can automatically adapt to new cases would yield significant time and cost savings. 

Recent results of applying deep learning [2] have proven to be transformative for various fields, 

especially in visual recognition tasks. Many state-of-the-art models for image recognition 

based on deep convolutional neural networks (CNNs) [3] have been able to achieve (and in 

some specific cases surpass) human-level performance at distinguishing thousands of visual 
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categories [4]. Unsurprisingly, this progress also extends to many other computer vision tasks 

such as semantic image segmentation [5], object detection [6], and depth estimation [7]. 

Together, these advances have facilitated many real-world applications, including facial 

recognition, automated medical image analysis, perception in robotics, and self-driving cars. 

Recent examples of successful applications of convolutional neural networks on industrial 

surface inspection problems include steel strip inspection, aluminium profiles, railway track 

inspection, fabric inspection, LED chips, and LCD panels [8]. 

In most cases, the defect detection process involves framing the task as either an image 

classification, object localization, or image segmentation problem [9]. The task is essentially a 

binary classification or multiclass classification problem for the image classification approach. 

The object localisation approach aims to draw a tight-fitting bounding box around each 

detected defect in the image. While in the image segmentation approach, we aim to classify 

each image pixel as either a defect or not. However, one major prerequisite for successfully 

training a CNN model is the availability of a sufficiently large set of training data. In fact, 

depending on the intra-class (instances within the same class) and inter-class (instances from 

different classes) variance between non-defective areas and the different types of defects, this 

could require hundreds or up to several thousand training samples. Often, this is an issue since 

there is usually an abundance of non-defective samples for many properly optimized processes 

compared to a minimal amount of defective samples, thus making it very difficult to train a 

supervised machine learning model. The large imbalance between classes often seriously limits 

the application of classification techniques for defect detection problems. One way to resolve 

this issue is by switching the training objective from defect classification to anomaly detection, 

alleviating the need for defective samples during model development. Moreover, a good 

anomaly detection algorithm would also detect previously unknown classes of defects, thereby 

constituting a more general solution for quality inspection [10]. In this thesis, we demonstrate 

the effectiveness of both approaches for automatically detecting microstructural defects in two 

energy-related technologies. First, we examine the electrodes of lithium-ion batteries and then 

the microstructure of sintered NdFeB magnets from light optical microscopy images and 

present this as a new approach for performing a quality assessment.  

Lithium-ion battery (LIB). With the increasing demand for energy-storage devices for mobile 

and stationary storage applications and the advances in renewable energy technology, highly 

efficient and more cost-effective energy storage solutions are required. Viable electric 

automobiles and portable electric devices that can operate for long periods without recharging 

also require more lightweight and more powerful batteries to be developed. Lithium-ion 

batteries are the most widely adopted energy storage solution compared to other battery 

technologies. They combine several important benefits such as high energy density, exhibit no 

memory effects, have low self-discharge rate, and a relatively cheap production cost [11]. As 

a result, the demand for high-quality lithium-ion batteries is proliferating. The ability of a 

battery to resist ageing, maintain a good shelf and usage life, and operate well under a variety 

of conditions are the direct result of adequate quality control measures. However, despite its 

many advantages, lithium-ion batteries pose safety concerns due to the flammable electrolyte 

and oxidizing agents present [12]. Internal defects due to poor manufacturing processes, such 

as low-quality separators, material contaminants, and improperly arranged constituents, can 
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further aggravate the safety risks. Several reports of failure incidents associated with lithium-

ion batteries in various battery-powered systems ranging from smartphones and laptops to 

hoverboards and electric cars include premature battery drain and ageing, overheating, 

swelling, fires, and explosions. While large customers, such as car manufacturers, are working 

in direct partnerships with established battery manufacturers to meet their needs and implement 

their quality requirements, smaller customers of Li-ion batteries reply on the open market 

supply. Therefore, quality comparison between different battery cells and battery 

manufacturers becomes indispensable. In addition, early detection of electrode defects can help 

battery manufacturers to reduce scrap rates after fabrication and testing.    

Issues with current approaches. Various destructive and non-destructive examination 

techniques are used to assess a battery's quality and investigate failure causes at different stages 

of a battery’s lifetime. Non-destructive examination methods do not affect the battery’s 

performance. Therefore, they are commonly used to study the battery degradation process 

during its operating lifetime and for manufacturing quality control. Electrochemical impedance 

spectroscopy (EIS) [13], electrical testing methods such as capacity test [14] and incremental 

capacity analysis (ICA) [15] are the classic non-destructive examination techniques used to 

characterize battery performance and investigate possible failure causes. For example, by 

analysing the internal resistance or the charging and discharging behaviour over several 

charging cycles to determine the loss of capacity due to cell ageing mechanisms. However, 

despite their prevalence, these methods only provide a summarized view of the battery’s 

performance; they do not provide detailed knowledge about the cause of possible performance 

and capacity loss. For instance, localized design or material defects such as metallic 

protrusions, material contaminants, or non-uniform electrode layer structure, which could 

eventually lead to battery failure, are impossible to detect using these non-destructive 

examination techniques [16]. As a result, there is increasing use of non-destructive two-

dimensional (2D) X-ray analysis and three-dimensional (3D) computed tomography (CT) 

imaging methods to inspect the internal structure of batteries visually. Figure 1-1 shows a CT 

scan of an e-cigarette battery containing foreign particles at different locations. The origination 

of these foreign particles could occur in many ways, for instance, during the coating and 

assembly process from contaminations existing in the slurries of the active materials. 

Alternatively, contaminants can emerge during laser cutting of the electrode foils, introducing 

burrs and metal particles in the electrode material. The welding spatters from the current 

collector tabs or nickel plating on the casing can also introduce foreign particles into the 

electrodes. In any case, such foreign particles can pierce the separator and create a short circuit 

inside the battery, resulting in complete failure. However, even though X-ray analysis can 

provide fast imaging of large sample areas the resolution is very often too low to properly 

visualize detailed microstructural properties, thus making it very difficult to distinguish or even 

detect various types of defects. On the other hand, local microstructure and elemental 

compositions of each battery component can be directly observed through destructive 

examination techniques involving battery disassembly. Then, methods such as optical 

microscopy can be used to obtain a high resolution overview of the microstructure of the 

sample, while scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy 

(EDX) can be used to verify the elemental composition of the active material and to detect the 

presence of additional phases [17]. 
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Figure 1-1: CT scan of battery sample with foreign particles (bright points) at different places 

inside [16]. 

 

Sintered neodymium-iron-boron (𝐍𝐝𝐅𝐞𝐁) magnets. Due to their excellent hard magnetic 

properties, sintered NdFeB magnets have diverse applications, including electric motors, 

cordless drills, generators, sensors, and hard disc drives [18]. One fundamental property of 

permanent magnets is their ability to resist demagnetization, known as coercivity. However, 

the thermal degradation of coercivity limits their application in high-temperature 

environments, for example, in the traction motors of (hybrid) electric vehicles and wind power 

generators [19]. In order to meet this criterion, higher coercivity NdFeB magnets are required 

[20]. The two main extrinsic properties of permanent magnets, remanent magnetization 𝑀𝑟 and 

the coervcive field 𝐻𝑐 depend on the intrinsic magnetic properties of the main hard magnetic 

phase (i.e. 𝑁𝑑2𝐹𝑒14𝐵) and various microstructural features, particularly microstructure defects 

[18]. The most commonly used approach for developing magnets which can operate in high-

temperature environments is by increasing the magnetocrystalline anisotropy of the 

𝑁𝑑2𝐹𝑒14𝐵 phase through direct alloying with heavy rare-earth element dysprosium (𝐷𝑦) 

thereby, replacing a fraction (~10 at.%) of the 𝑁𝑑 atoms with 𝐷𝑦 [19]. However, due to the 

antiferromagnetic coupling between 𝐹𝑒 and 𝐷𝑦 this inevitably leads to a reduction in the 

remanent magnetization 𝑀𝑟  and, consequently, in the maximum energy product (𝐵𝐻)𝑚𝑎𝑥. In 

addition, 𝐷𝑦 is an expensive and scarce natural resource, most of which is mined in China, 

therefore, direct alloying to produce high-coercivity magnets results in very high material cost. 

Hence, producing high coercivity NdFeB magnets with less or no 𝐷𝑦 content is strongly 

desired.  



5 

Introduction 

 

Nevertheless, since the coercivity of NdFeB permanent magnets is to a large extent determined 

by the microstructure, especially the grain boundary structure and chemistry, which in turn is 

determined by the production process, a better understanding of the relationship between the 

microstructure and coercivity is essential for developing higher-coercivity magnets [20]. 

Microstructural factors which affect the hard magnetic properties include the mean and 

standard deviation of the grain size distribution, the orientation degree of the grains, the 

distribution of the 𝑁𝑑-rich phase, and the residual amount of secondary phases (e.g. 𝛼-

𝐹𝑒, 𝑁𝑑𝐹𝑒4𝐵4, and other borides) present [21]. All kinds of defects, especially soft magnetic 

phases present in the microstructure, can easily deteriorate the hard magnet properties. Soft 

magnetic phases provide an easy starting point for a reverse domain, resulting in lower 

coercivity. Other physical defects, such as irregularly shaped grains and phase boundaries, are 

also potential sites for demagnetizing fields [19]. Therefore, by eliminating these sites, 

coercivity can be significantly increased. Alternatively, a quantitative analysis of these sites 

can aid in comparing the quality of different magnets.   

Proposed solution. With materialographically prepared sections combined with microscopy 

methods, one can obtain information about the frequency and distribution of individual defects 

from high-resolution images. However, it is still standard practice for materials scientists to 

visually evaluate the acquired images, where it is easy to overlook inconspicuous faults. 

Therefore, motivated by the recent achievements of various deep learning methods in computer 

vision, this dissertation aims to develop deep learning models for automating the detection of 

microstructural defects from high-resolution microscopy images of lithium-ion batteries and 

sintered magnets. For instance, given a light microscopy image of a battery’s cross-section, the 

model should accurately identify and categorize all the different types of defects present in the 

image. It should also provide a concise summary of the defects in an easy-to-view “worst” 

picture gallery, along with a frequency distribution graph. 

Challenges of this approach. In the case of lithium-ion batteries, one common criticism is that 

destructive methods are not particularly suitable for quality control assessments related to 

battery fabrication and production because the analysed battery sample cannot be used 

afterwards [18]. Nevertheless, they are helpful for control measures accompanying the 

production process. The disassembly of the battery can alter the original failure cause or 

introduce new types of defects into the electrodes. Hence this approach is more often used in 

post-mortem analysis of cell components and for investigating the effects of the ageing 

mechanism on the electrode materials [17], [22]. Due to the highly delicate structure of the 

battery components, achieving cross sections free of preparation artefacts or the possibility of 

easily differentiating genuine manufacturing defects from preparation artefacts is another 

major challenge. In addition, extrapolating the distribution of defects across the entire sample 

from analysing only a few cross-sections requires some effort to obtain reasonable accuracy. 

Lastly, compared to many academic research studies that use already prepared datasets, a 

considerable amount of time and effort is required to collect and label sufficient examples for 

training a supervised deep learning model. In this case, there is often an abundance of non-

defective samples compared to a minimal number of defective samples.  
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1.2 Contributions and outline 

This dissertation develops deep learning computer vision models for detecting microstructural 

defects from light microscopy images. The outline for the rest of the dissertation is as follows. 

Chapter 2 provides relevant fundamentals of lithium-ion battery and sintered NdFeB magnet, 

describing different types of defects found in both technologies and general techniques for 

defect detection in image data. Subsequently, we provide relevant mathematical background 

for neural networks, backpropagation, and various optimization methods. Then a description 

of the various building blocks of deep learning models for processing images using 

convolutional neural networks.  

Chapter 3 describes the experimental procedure for obtaining high-resolution images from 

raw samples. It describes the metallographic preparation process for Li-ion battery and sintered 

magnet, image acquisition, and the tools and software packages used. Subsequently, we 

develop a deep learning model for defect detection in Li-ion batteries based on image 

classification to establish a baseline and compare the performance to commonly used 

traditional approaches based on hand-crafted features. However, an image classification model 

is typically unsuitable for detection and quantification tasks because it is usually limited to 

detecting only one object in a given frame, thus resulting in a lower estimation. In addition, 

since the object can be located anywhere in the frame, it is more difficult to perform correlative 

analysis to verify the composition of any foreign inclusion. Thus, to specifically address this 

problem, we develop object detection models based on state-of-the-art architectures, which 

predict tight-fitting bounding boxes around each detected object along with a category and 

confidence score.  

For detecting defects in sintered magnets, we developed two unsupervised models. The first 

approach is based on a variational autoencoder network, and the second is based on a 

conditional generative adversarial network for performing image-to-image translation. The 

model takes the edge map of the magnet micrograph as input and learns to reconstruct the 

original image. Since the model is trained on only images without any defects, we can 

determine the images the model finds more challenging to reconstruct by comparing the 

reconstruction error between the original images and the reconstructed versions, which would 

indicate the presence of some anomaly.  

Chapter 4 presents the results of the proposed defect detection systems by performing quality 

evaluation on commercial samples of both Li-ion battery and sintered NdFeB magnets. 

Specifically, we perform a quality assessment of 18650 round cells and compare three different 

production batches from the same battery manufacturer. Then, we compare two samples of 

magnets, one with high magnetic coercivity to one with low magnetic coercivity, produced by 

different manufacturers. The results are presented using various visualization techniques such 

as the spatial distribution of the detected regions to get a big picture overview and individually 

cropped images of defects in a “worst” picture gallery for more detailed analysis. For the 

unsupervised approach, a heat map visualization of the entire cross-section is calculated based 

on the anomaly score of each patch.   
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Chapter 5 discusses how the proposed models perform compared to manual human inspection 

and traditional approaches. Then we discuss the relevance, benefits, and advantages of the 

proposed methods. We assess the various models in terms of their speed-accuracy trade-offs, 

and finally, we discuss the limitations of the proposed methods.  

In chapter 6, we make overall conclusions, discuss the application of this technology, identify 

the remaining challenges, discuss some extensions and other applications of the proposed 

methods, and suggest directions for future work.   
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Chapter 2 Fundamentals  

 

Fundamentals  

 

2.1 Relevant fundamentals of lithium-ion battery 

A pressing concern of the present fossil fuel energy economy is the associated carbon dioxide 

(CO2) emissions which have increased at a constant rate, with a remarkable increase over the 

last 30 years [23]. From 1970 to 2005, the CO2 level has almost doubled, resulting in a global 

rise in temperature with associated series of effects due to climate changes, whose impacts are 

expected to intensify in the coming decades if significant changes are not made. As a result, 

the continuous need for energy renewal requires a much higher level of clean energy sources 

than what is presently in force. Amidst stricter emission rules and governments offering 

generous incentives, electric vehicle (EV) sales have accelerated rapidly in recent years. The 

increasing market penetration of EVs has led to enormous demand for energy storage systems 

with improved performance, longevity, and reliability. Accordingly, investments in the 

exploitations of renewable energy sources are increasing worldwide, with particular attention 

to wind and solar power energy plants.  

Moreover, the intermittence of these resources also requires highly efficient energy storage 

solutions. Electrochemical systems, such as batteries and supercapacitors, can efficiently store 

and deliver energy on-demand in stand-alone power plants and provide good power quality and 

load levelling of the electrical grid in integrated systems. These systems are already playing an 

important role in the field, with major benefits exhibited for various renewable energy projects 

[23], [24]. Nevertheless, the effectiveness of batteries in these applications is directly related 

to their energy content and lifetime, of which there are various types, such as lithium-ion, 

sodium-ion, lead-acid, nickel-metal hydride, zinc-air batteries etc. Of these technologies, 

lithium-ion batteries have become ubiquitous due to an unmatched combination of high energy 

and power density, relatively long cycling life, and portability, which makes it the technology 

of choice for many portable electronics, power tools, and electric vehicles [25].  

Regarding sustainable power supply, Li-ion batteries also play an important role in stationary 

storage of energy produced by renewable sources. The high energy efficiency of Li-ion 

batteries allows their use in various electric grid applications. This includes improving the 

quality of energy harvested from wind, solar, geothermal, and other renewable sources and 

contributing toward the wider adoption for building an energy-sustainable economy [11]. As a 

result, Li-ion batteries are of major interest to industry and government funding agencies, 

whereby research in this field has thrived in recent years. The goal of current energy storage 

device developments can be grouped into five categories [26]: (1) lowering the cost, (2) 
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improving performance and efficiency, (3) promoting reliability and durability, (4) ensuring 

usage safety, (5) reducing the environmental impact.  

In certain applications such as electromobility and electric grid, Li-ion batteries are currently 

costly, which is a major factor inhibiting its widespread adoption. A shortage of lithium and 

some other transition metals currently used in Li-ion batteries may also become an issue one 

day. At present, lithium is not a major factor in the cost of Li-ion batteries. The use of lithium 

is mainly in the cathode and electrolyte, which makes up only a small fraction of the overall 

cost [11]. The majority of the cost can be attributed to two main contributing factors, the cost 

of processing the components and the cost of cobalt used in the cathode. Nevertheless, Li-ion 

batteries have certain fundamental advantages over other chemistries. Lithium has the lowest 

reduction potential of any element, allowing batteries based on Li to have the highest possible 

cell potential. In addition, Li is the third lightest element and possesses one of the smallest ionic 

radii of any single charge ion, enabling Li-based batteries to have high gravimetric and 

volumetric capacity and power density [11]. For these reasons, Li-ion batteries will most likely 

continue to dominate the portable electrochemical energy storage space for many years to 

come. Therefore, improving the cost and performance will greatly expand their applications 

and facilitate new technologies which depend on energy storage.  

Much of the research in Li-ion batteries focuses on the electrode (anode and cathode) materials. 

Research on electrodes with higher rate capability, higher charge capacity, and cathodes with 

sufficiently high voltage can improve the energy and power densities of Li-ion batteries and 

make them smaller and cheaper. However, a more pressing development objective is to 

enhance cell quality and service life since requirements in the new fields of application are 

considerably more stringent in terms of higher cost and safety standards. In addition, the 

operating conditions are more demanding than with existing ones [27]. The cycle life of a 

battery is governed by a wide range of factors [28], [29], which include the temperatures the 

cells are exposed to [30], rate of operation [31] and the depth of discharge of each cycle [32]. 

However, of utmost significance is the manufacturing quality of the electrodes and the 

electrode winding (jelly-roll), which essentially determines 80-90% of the cell quality [27].  

Moreover, the electrodes are fundamentally defined by the active materials used in the active 

mass (e.g., chemical composition, crystal structure), the microstructure (e.g., the content of 

porosity, phase fractions), and the fine geometry (e.g., the thickness of the coating material). 

Furthermore, various studies have shown that initial defects in the jelly-roll are nucleation 

points for electrode deformation, which can be correlated to cell ageing and untimely failure 

[33]–[35]. However, in battery manufacturing, mostly in-line mechanisms are applied to 

evaluate and ensure the quality, which does not provide any information on the microstructure 

of the electrodes, which ultimately determines the battery quality. Many varied degradation 

mechanisms can reduce the performance of a battery, and there are several similarly varied 

techniques for tracing them, including acoustic time-of-flight measurements [36], 

electrochemical methods [37], and X-ray computed tomography (CT) among others. X-ray CT 

is a powerful non-destructive technique for investigating batteries, with various studies 

highlighting its effectiveness in identifying cell failures [38], [39]. However, the resolution is 

often not detailed enough to properly visualize various microstructural properties. Therefore, 

there is still a lack of appropriate characterization tools to facilitate the evaluation of 
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manufacturing processes and aid with further development and improvements of current 

manufacturing practices.  

Structure, function, and cell formats 

 

 

Figure 2-1: Schematic illustration showing the shape and components of various cell formats 

of lithium-ion batteries: (a) round cell, (b) button cell, (c) prismatic cell, (d) pouch cell [40]. 

Li-ion cells, which are the basic electrochemical unit containing the electrodes, separator, and 

electrolyte, are designed and produced according to the specific application and thus are 

available in various formats, which can generally be divided into four groups: button cell, 

cylindrical cell, pouch cell and prismatic cell [40]. Li-ion batteries in button cell format are in 

high demand for applications such as measurement systems, Internet of Things (IoT) sensors, 

car locking systems, Bluetooth wireless headsets etc. Flat or pouch cells are commonly used in 

mobile phones, tablets, and power banks. Due to their relatively high gravimetric energy 

density, this cell format is also increasingly used in electric mobility. Cylindrical or round cells 

are the most common cell types used in many consumer applications. They are available in 

various sizes, such as the 18650 format (18 mm diameter x 65 mm height) used in power or 

gardening tools and e-bikes, with electric vehicles and stationary energy storage systems being 

the most popular application.  

On the other hand, prismatic cells were developed specifically for stationary storage systems 

and electric mobility. An illustration of these cell formats is shown in Figure 2-1. Due to their 

hard cases, cylindrical and prismatic cells are considered to be relatively safe and therefore 

chosen by most automotive OEMs for their batteries. On the other hand, Pouch cells have an 

arrangement of electrodes and separator layers packed in a compound foil, which usually 

consists of aluminium and polyolefin layers. The absence of a case gives pouch cells the highest 

gravimetric energy density. However, for many practical applications, they still require an 

external means of containment to prevent expansion when their state of charge level becomes 
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high and for general structural stability of the battery pack. This cell type is easy to build in 

laboratories in small numbers without significant investment in expensive production facilities. 

The pouch and prismatic cells provide a higher packing density on the battery system level than 

the cylindrical cells due to geometric constraints in most applications. However, the faster 

production speed is one of the main advantages of cylindrical cells compared to cells with 

stacked electrodes. 

Like other cell types, a Li-ion battery cell comprises an electrochemically coupled anode and 

a cathode. For rechargeable cells, the term anode (or negative electrode) refers to the electrode 

in which oxidation occurs during the discharge cycle, while the other electrode is the cathode 

(or positive electrode). The positive electrode becomes the anode during the charge cycle, and 

the negative electrode becomes the cathode. For most Li-ion cells, the lithium-oxide electrode 

is the positive electrode. The two electrodes are electrically isolated from each other by a 

separator through which lithium ions can pass; however, it prevents the direct exchange of 

electrons between the electrodes. In Li-ion cells, thin aluminium and copper foils (current 

collectors), coated on both sides with a porous active mass, serve as the electrodes. Lithium 

ions move from the negative electrode through the electrolyte to the positive electrode during 

discharge and back when charging. At the same time, the current collectors serve to emit and 

collect electrons, as shown in Figure 2-2. A more detailed description of the process involved 

during charging and discharging can be found in [23], [40], [41].  

The active mass of the anode and cathode mainly consists of the so-called active materials 

(storage particles), which store the lithium ions cycling between the negative and positive 

electrodes during charging and discharging in their crystal lattice structure in an intercalation 

process. Li-ion batteries use an intercalated lithium compound as the active material of the 

positive electrode. For commercial cells, graphite is often used as the active material of the 

negative electrode. Lithiated transition metal oxides with strongly differing stoichiometry are 

often used as the active material of the cathode. Previously, lithium cobalt oxide LiCoO2 (LCO) 

or lithium manganese oxide LiMn2O4 (LMO) were commonly used as the cathode active 

material. However, in the most recent generation of cell chemistries, mixed oxides are often 

used, in which individual Co atoms in LiCoO2 are substituted by either nickel and or 

manganese atoms. This formation of lithium nickel manganese cobalt oxide Li(NixCoyMnz)O2, 

commonly referred to as NMC, exhibits some very advantageous properties such as higher 

energy and power density with enhanced cycling stability compared to cells based on LCO 

intercalation material. The electrode and cell capacity are determined by the amount of lithium 

ions that these active materials can store. To ensure the integrity of the storage particles in the 

cathode coating, in addition to the active material, the active mass coating also comprises a 

polymer binder and conductive additives. The conductive additives (most often carbon blacks) 

improve the electrical contact between storage particles and the current collector, which helps 

to reduce the internal resistance of the cell. The polymer binder (for example, polyvinylidene 

fluoride PVDF) ensures the integrity (cohesion) of the entire coating and the adhesion of the 

active mass on the metallic current collector. Electrode coasting is compacted for optimal 

volumetric energy densities by calender rolls to determine the final coating thickness. This 

improves the electrical contact of the entire electrode coating and reduces the electrode 

porosity, which plays a significant role in regards to the quality of the active mass. During 
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operation, the porous space around the storage particles is filled with electrolytes, determining 

the cell's ionic conductivity and internal resistance. 

 

 

Figure 2-2: (a) Schematic representation of a sectioned cell. (b) Light microscope cross-section 

overview image. (c) Light microscope image details showing the structure of a 18650 type 

round cell. (d) Schematic flow of electron and ion during the discharging process. 

 

The manufacturing process of Li-ion cells 

First, basic materials such as anode and cathode active materials, electrolytes, additives, and 

binders are synthesized. The choice and purity of materials significantly determine the 

electrical and chemical properties of the cell. The active materials in the powder form are mixed 

with the conductive additives and the binder with a solvent to form the so-called slurry. A 

homogeneously dispersive slurry is aimed at using mixing tools and then coated onto the 

respective current collector foils using, for example, the slot-die method [42]. The slurry is 

coated on aluminium foils for the cathodes and copper foils for the anodes. The foil thickness 

is typically between 10 and 25 𝜇𝑚. After the coating, the active layer is heated in a controlled 

manner in order to dry out the solvent used for slurry production and to fix the coating on the 

foils through the binder. During the drying process, the coated electrodes are subject to multi-

stage temperature gradients, individually varied according to the wet layer thickness. The 

average drying temperatures are between 80°C and 160°C. After the drying process, the 

porosity of the electrode coating is typically around 50%.  

In the next phase, the electrodes are compacted through calendaring. The compression level 

determines the final active mass volume and other factors that considerably influence the cell’s 

performance. For instance, the electrical conductivity increases with a higher compaction 

gradient due to improved contacts between the storage particles, the conductive additives, and 

the current collector foils. On the other hand, the porosity and thus the ionic conductivity 

decreases due to poor penetration of electrolytes. Subsequently, the electrode layers are cut into 

appropriate sizes by either mechanical or laser cutting tools. Three different cell stacking 

methods exists, which differ in how the electrode and separator materials are processed. Single 

sheet stacking uses single electrodes and single separator sheets to isolate the anode and 

cathode, winding technologies process continuous electrode materials for use in cylindrical or 

prismatic cells. On the other hand, Z-folding processes can use either continuous electrodes 



13 

Fundamentals 

 

and separators or only continuous separators combined with single electrode sheets to form the 

so-called jelly-roll.  

After building the stack, the cell is assembled by joining the current collectors using an 

ultrasonic or laser welding process. For prismatic or round cells, the cell stack is housed in 

compound foil or aluminium cases and filled with electrolytes before sealing the enclosure. In 

the final stage, the cell is charged and discharged for the first time in a process called formation. 

During this process, lithium is irreversibly deposited on the surface of the graphite structure, 

forming a boundary layer between the electrolyte and graphite known as the solid electrolyte 

interface (SEI), which is highly responsible for the operation quality and the cycle stability of 

the cell. However, since all the manufacturing steps described above can only be performed 

within a specific processing window, there are various stages in which potential faults may 

occur in the finished cells due to manufacturing errors or defects that negatively impact the cell 

quality.  

 

2.1.1 Quality control of lithium-ion battery 

Quality control (QC) in the production of Li-ion cells is fundamentally related to safety and 

cost reduction. Reducing the manufacturing cost of lithium-ion batteries remains a challenge 

in the industry, and detailed attention to fundamental and applied science is required [34]. 

Strategies for reducing the manufacturing cost of LIB include implementing low-cost 

processing, further development of new and existing testing methods, and adequate quality 

control tools to reduce the scrap rate. In addition to the quality control tools, it is also important 

to understand the correlation between manufacturing defects and the performance of the 

electrode in order to establish clear pass/fail criteria.  

Types of defects in Li-ion battery and their impact on performance 

The mechanism of defect-induced performance degradation in Li-ion batteries is diverse and 

can be primarily linked to various electrochemical processes and defect evolution. Several 

types of defects which can be introduced during the electrode manufacturing process are 

presented in Table 2-1.   

Table 2-1: Presents a list of possible defects during the cell manufacturing process [34], [43]. 

Component Sub-category Reason Worst-case 

outcome 

Electrode coating Homogeneity Non-uniform coating can lead to the 

variability of the local capacity of the 

electrode. 

Reduced cycle life 

 Thickness Thicker layers result in a higher 

capacity due to the higher amount of 

storage particles. However, at high 

discharge rates, they negatively 

impact the capacity and cycle stability 

of the cell.  

Unstable 

performance 

 Particle sizes The size of the particles of the active 

materials is essential for the 

performance and capacity of the cell. 

Insufficient 

performance 
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 Phase components Inhomogeneous mixing of two active 

materials can lead to uneven phase 

contents and thus brings the potentials 

out of balance 

Capacity losses, 

Li deposition 

 Blisters/agglomerates Agglomerates of inactive components 

such as binders and carbon black can 

lead to higher content of inactive 

components and lower gravimetric 

capacity. 

Capacity losses 

 Porosity Highly compressed electrode coating 

makes it difficult for electrolytes to 

lubricate the storage particles.  

Reduced 

performance 

 Divots/pinholes Areas with missing coating caused by 

captured bubbles in the slurry reduce 

the amount of active materials and can 

expose the current collector to the 

electrolyte.  

Reduced Capacity 

 Cracks/fracture Fracture of storage particles during 

calendaring or cracks in the electrode 

coating during winding can result in 

reduced connectivity  

Insufficient 

performance, 

Capacity fading 

 Water Contamination by water can lead to a 

chemical reaction with the electrolyte 

resulting in abrasive hydrofluoric acid 

Reduced cycle life, 

HF Corrosion 

Foreign particles - Foreign particles (especially metal 

particle contaminants) can penetrate 

the separator membrane 

Internal cell short-

circuit 

Separator  Thickness Particles exceeding a size equivalent 

to the thickness of the separate can 

penetrate  

Internal cell short-

circuit 

Current collector 

foil 

Collector thickness Excessively thick collector foils lead 

to lower gravimetric and volumetric 

energy density, while the opposite 

may result in the foils cracking due to 

stress.  

Tearing of the 

collector foil 

 Number of current 

collectors 

Missing current collectors can lead to 

heat accumulation 

Insufficient heat 

dissipation 

 Structure of current 

collector 

Deformation or burrs in the current 

collector foils due to laser cutting can 

damage the separator  

Internal cell short-

circuit 

 Electrode contacting Welding burrs can damage the 

separator foil 

Internal cell short-

circuit 

 Positioning Misalignment can lead to the 

deformation of protruding anode 

layers  

Internal cell short-

circuit 

Housing Sealing Escaping of hazardous substances 

such as electrolyte 

Corrosion, 

Ecologically 

critical 

 Diameter Insufficient inner diameter of the cell 

housing can lead to telescoping of the 

electrode winding during cell 

assembly 

Internal cell short-

circuit 

 Electrode contacting A poor connection can lead to high 

electrical resistance  

Local hotspots 
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 Height Insufficient height can lead to 

incorrect positioning of cell windings 

and deformation of protruding layers 

Internal cell short-

circuit 

Safety valve - Inactivation can lead to the build-up of 

internal pressures 

Explosion 

Cell winding Telescoping Telescoping can lead to the 

deformation of protruding anode 

layers 

Internal cell short-

circuit 

 

2.1.2 Application of machine learning in battery technology 

Given the high number of factors that could influence the overall performance, efficiency, 

safety, and cost of Li-ion batteries, researchers are increasingly looking to apply machine 

learning techniques to guide their performance analysis and design choices by distilling useful 

information from a large amount of measured data. For example, this could be relevant for 

selecting appropriate structural and processing parameters, influencing the choice of materials, 

and designing operational strategies. This section will look at various applications of machine 

learning in the development and management of batteries. The types of problems that machine 

learning is applied to in this area include state estimation and prediction [44]–[47], property 

analysis, and classification [48], lifetime prediction [49]–[51], fault detection and diagnosis 

[52]–[58], together with modelling [59], [60], design [61], [62] and optimization [63].  

In the work of [44], they applied Gaussian process regression (GPR) to forecast the state of 

health (SOH) of batteries. In [64], they applied GPR to estimate the in-situ capacity of Li-ion 

batteries. The work of [45] applied various GPR models (including regular GPR model, 

recurrent GPR model, and autoregressive recurrent GPR model) to estimate the state of charge 

(SOC) of Li-ion batteries. In [46], a random forest regression model was applied to estimate 

on-line SOH with a mean square error (MSE) below 1.3%. Models based on artificial neural 

networks (ANN) are also widely used for battery state estimation. In [47], the voltage, 

temperature, average current, and average voltage of the battery at time t are used to train a 

deep neural network to estimate the SOC of Li-ion batteries with an average MAE of 1.10% at 

25°C and 2.17% at -20°C. In the work of [49], a linear regression model was used to predict 

the battery cycle life before capacity degradation based on data from the early discharge cycle. 

In the work of [50], a k-NN regression algorithm was used to estimate the remaining useful life 

(RUL) of Li-ion batteries by estimating from cells sharing a similar degradation trend. Another 

notable application of machine learning approaches is detecting battery defects and classifying 

abnormal batteries. In the work of [52], several machine learning algorithms, including k-NN, 

kernel-SVM, logistic regression, Gaussian naïve Bayes (GNB) and artificial neural networks, 

were applied to classify the unbalanced and damaged Ni-MH battery cells into two classes 

based on 28 discharging voltage curves. In [53], a hierarchical clustering algorithm was applied 

to time series data to detect defects in lead-acid batteries. Approaches based on deep learning 

are also commonly used for detecting and classifying batteries with abnormal behaviours. In 

[54], a deep belief network model was used to detect anomalies in the voltage of storage 

batteries. A wavelet-neural network system containing discrete wavelet transform (DWT) and 

general regression neural (GRNN) network were used to detect faults in Li-ion batteries for 

electric vehicles [55]. The machine learning approaches mentioned above are mainly applied 
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to low dimensional structured data as the input for training the model. In some other 

application, the input to the machine learning model is in the form of images, such as a high 

resolution picture of the battery electrode microstructure. In this case a convolutional neural 

network (CNN) which is capable of extracting relevant features from high dimensional 

unstructured data is typically applied. For example in the work of [56] a CNN model was used 

to classify the voltage of fully charged LiPo batteries after a period of usage based on RGB 

images obtained from signal reading of a Walabat sensor in order to learn images of “battery 

face”. In the work of [57] various CNN based models were trained to detect microstructural 

defects such as the presence of foreign particles and layer deformation in the electrodes of Li-

ion batteries due to various manufacturing errors in order to evaluate the battery quality. They 

also compared the performance of CNN based models to those of classical machine learning 

approaches based on handcrafted features. In a different study [58], several machine learning 

algorithms including SVM, NN, CNN, and RCNN models were applied to detect blister defect 

in sheets of polymer Li-ion battery. It was found that the CNN model achieved the best 

classification performance with an F1-score of 0.988. 

 

2.2 Relevant fundamentals of sintered NdFeB magnet 

Neodymium-iron-boron (NdFeB) magnets have been employed in various applications from 

sensors, actuators, motors, generators etc., due to their excellent magnetic properties [65]. For 

one, they are the strongest type of permanent magnets available commercially and provide the 

best saving in weight per joule of energy supplied [66]. In recent years, there has been an 

increasing demand for higher coercivity magnets for various reasons, one of which is the 

increasing demand for electromobility, which requires a transition from fossil fuel-powered 

combustion engines to electric drive motors. For such applications, there are several ways to 

develop an electric motor. An electrically excited coil set or a permanent magnet (PM) can 

generate a magnetic field within the electric motor. Nevertheless, the motor must be able to 

operate at high temperatures and exhibit high torque while minimizing cost and weight [67].  

Permanent magnets are materials that retain a usefully large magnetic moment after being 

exposed to an external magnetic field. Electric vehicles are considered one of the largest 

markets for permanent magnet materials. The main benefits of using a brushless permanent 

magnet in automotive motors include no excitation losses, higher torque per volume, higher 

magnetic flux density in the air gap, and reduced maintenance [68], [69]. In addition, the 

material must also have enough coercivity to resist demagnetization. For this reason, 

neodymium-iron-boron materials (NdFeB) are typically used. 

For a permanent magnetic material to succeed technologically, it must have a high Curie 

temperature. Furthermore, for application in higher temperature environments, materials with 

increasingly higher values of Curie temperatures are required, such that the magnetic properties 

must be reasonably stable for long periods in adverse environments. However, pure NdFeB 

magnets have low operating temperatures ranging from 80 °C to 100 °C, which can be 

increased by including additives [70]. Many efforts have been carried out to enhance the 

temperature stability of NdFeB magnets. Direct alloying with heavy rare-earth elements (HRE) 
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like terbium and dysprosium can be used to significantly raise the temperature stability by 

partially replacing Nd in the 2:14:1 phase lattice to increase the coercivity [18]. For instance, 

adding 10 wt % of dysprosium can extend the temperature stability up to 200 °C.  Likewise, 

terbium has a greater effect on coercivity than dysprosium but has a higher price and lower 

availability. However, dysprosium and terbium are expensive and scarce resources such that 

direct alloying significantly raises the material cost. The largest amount of rare earth containing 

ores is located in China, which has 75% of the world’s reserves. The USA has 13% of the 

world’s reserves followed by India and Australia, which have 4% and 1.5%, respectively [66]. 

Therefore, producing high coercivity NdFeB magnets with less or no rare-earth content is of 

high strategic interest. For these reasons, optimal control of the magnet’s microstructure 

becomes increasingly important.  

Magnet properties 

The tendency for ferromagnetic materials to remember their magnetic history is called 

hysteresis. Figure 2-3 shows a hypothetical hysteresis loop for a permanent magnet. It is a 

measure of magnetization (M) versus applied magnetic field (H), which effectively measures 

the internal response of the magnet to an externally applied field. Hysteresis curve also 

measures magnetic flux density (B) versus applied magnetic field (H). The following equation 

describes the relationship between magnetic flux density and magnetization: 

 𝐵 = 𝜇0(𝐻 + 4𝜋𝑀) (2.1) 

Some useful properties for characterizing a magnetic material can be obtained from the 

hysteresis behaviour. This includes: 

Saturation Magnetization (MS). It is the maximum magnetization that a material possesses 

once fully magnetized. It is denoted by the maximum magnetization value on a hysteresis 

curve.  

Remanent Magnetization (MR). After magnetization with an externally applied field, the 

magnetization that persists when the external field is removed is called the remanence. This is 

represented by the point where the hysteresis curve crosses the positive vertical axis. 

Intrinsic Coercivity (Hci). This is the opposing magnetic field required to completely 

demagnetize the material. It is signified by the point where the M versus H curve crosses the 

negative horizontal axis.  

Technical Coercivity (Hc). Denoted by the point where the B versus H curve crosses the 

negative horizontal axis. It is the opposing magnetic field needed to reduce the magnetic flux 

density to zero.  

Curie Temperature (Tc). The temperature at which the material no longer displays long-range 

ordering or hysteretic magnetic properties due to thermal agitation.  

Maximum Energy Product (BHmax). Is a measure of the maximum potential energy that can 

be stored within the magnet. It is determined from the demagnetization behaviour of the 

material.  
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These properties arise from several sources that can be either intrinsic or extrinsic. Some 

properties are derived from the composition and the crystal structure of the material, while 

others are based on a combination of the composition and crystal structure as well as the 

microstructure of the material. Properties that occur independently of the microstructure are 

known as intrinsic properties. Magnetocrystalline anisotropy, saturation magnetization and 

Curie temperature are examples of intrinsic properties. In contrast, extrinsic properties are 

those that are dependent on the microstructure or other external factors. Remanent 

magnetization and energy product are two such examples. Coercivity depends on intrinsic 

factors such as magnetocrystalline anisotropy and is also greatly affected by the microstructure.  

 

Figure 2-3: Example model of magnetization M against magnetic field H [67]. 

 

A NdFeB magnet is the most widely used type of rare-earth magnet. It is made from an alloy 

of neodymium, iron and boron to form the Nd2Fe14B tetragonal crystalline structure. Since its 

discovery in 1984, it has developed rapidly into a technologically important material and 

replaced other magnet types in many applications that require strong permanent magnets. In 

pure form, neodymium is also a ferromagnetic material, which means it can be magnetized to 

become a magnet, but its Curie temperature is extremely low. However, compounds of 

neodymium with transition metals such as iron can have a much higher value of Curie 

temperature and thus are used to make neodymium magnets. The cost and abundance of the 

starting materials, in addition to the intrinsic properties, are what make NdFeB magnets 

technologically successful. The 2:14:1 phase consists of approximately 72 wt % Fe, which is 

very cheap and nonstrategic, while neodymium, a rare-earth element, is still more abundant 

than many common metals such as tin, lead, and silver. On the other hand, boron is expensive 

but is only required in small amounts. The strength of neodymium magnets is due to several 

contributing factors, of which the most important is the tetragonal Nd2Fe14B crystal structure 

which possesses remarkably high uniaxial magnetocrystalline anisotropy [71]. This basically 

means that the material's crystal magnetizes along a specific crystal axis and is very difficult 

to magnetize in other directions. The magnet alloy is composed of microcrystalline grains 

aligned in a strong magnetic field during production, so their magnetic axes all point in the 

same direction.  
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Depending on the manufacturing process, significant differences can exist in the microstructure 

found in NdFeB magnets produced by sintering or melt-spinning. In sintered magnets, 80 to 

85% of the magnet comprises the 2:14:1 phase, while in melt-spun magnets, over 95% of the 

volume is the 2:14:1 phase. The ideal microstructure for sintered magnets would be such that 

the nucleation of reverse domains is inhibited. The optimum grain sizes in sintered magnets 

are determined to be between 5 and 10 𝜇𝑚. Defects are potential sites for the nucleation of 

reverse domains and the reduction of energy product. In addition, a nonmagnetic rare-earth 

eutectic phase (grain boundary phase) should surround each grain to magnetically insulate each 

grain to prevent the nucleation of one grain from spreading to neighbouring grains. Figure 2-4 

shows the microstructure of a NdFeB magnet along with the different phases.  

                     

Figure 2-4: (Left) Schematic illustration of NdFeB magnet microstructure [72]. (Right) Actual 

microstructure of NdFeB magnet acquired using a light optical microscope. It is characterized 

by grains on the order of 10 𝜇𝑚 or less, surrounded by a thin layer of a secondary rare-earth 

phase. 

 

The manufacturing process of sintered NdFeB magnets 

The conventional production process for sintered NdFeB magnets generally consists of the 

following steps: vacuum induction melting, crushing, milling, pressing and sintering of the 

magnet material. Nd-Fe and Fe-B master alloys are used as the input material. In the first step, 

the alloys are subjected to vacuum induction melting. Then the ingot obtained from the melting 

of the alloys is crushed and milled to < 5 𝜇𝑚 sized powders before the monocrystals can be 

aligned in a magnetic field of approximately 1 Tesla [66]. The aligned powder is then cold-

pressed using pressures on the order of 200 MPa to approximately 70% density to ensure that 

there is enough contact between particles to prevent rotation. The compacted material is then 

sintered at approximately 1100 °C in an argon-protected atmosphere to full density. Usually, a 

lower temperature post heat treatment in the 700 °C to 900 °C range is necessary to achieve 

proper grain boundary phases. In the next step, the material is machined into its final shape, 

and finally, the material is magnetized [70]. The magnet can either be coated with organic resin 

or metallic coatings such as Al or Zn to increase the resistance to corrosion. The final 

microstructure is characterized by grains on the order of 5 to 10 𝜇𝑚, surrounded by a thin layer 

of a secondary rare-earth rich phase.  



20 

Fundamentals 

 

2.2.1 Quality control of sintered NdFeB magnets 

As described in the previous section, coercivity is an integral property of a permanent magnet 

since, without substantial coercivity, the magnet would be easy to demagnetize and therefore 

would not be very useful in many applications. A magnetic material must have anisotropy in 

order to have coercivity. Magnetocrystalline anisotropy comes from the energy difference 

between the easy and hard magnetization directions. In materials containing rare-earth 

elements, the magnetocrystalline anisotropy can be very large. Therefore, demagnetization 

typically occurs through domain processes which can be either domain nucleation or domain 

growth. Domain nucleation typically occurs first in areas that contain chemical or physical 

defects. Chemical defects such as soft magnetic phases with lower magnetocrystalline 

anisotropy provide an easy starting point for a reverse domain, leading to low coercivity. At 

the same time, physical defects typically from surface irregularities, abnormally shaped grains, 

dislocation or phase boundaries are also sites for demagnetizing fields. Therefore, coercivity 

can be increased in material controlled by domain nucleation by eliminating or minimizing the 

number of defect sites that reverse domains nucleate. A single domain particle can be formed 

if the grain size is significantly reduced. In addition, the presence of secondary phases at grain 

boundaries can help to isolate the particles and smooth the grain boundaries. This is often used 

in NdFeB type magnets. Another approach for improving coercivity is through domain wall 

pining. Once domains are nucleated, they can be prevented from growing by incorporating 

defects into the bulk of the material. These defects are often secondary particles that can interact 

with the domain walls, reducing the total wall energy. The most effective defects must be sized 

within the same order of magnitude of the domain wall thickness and dispersed throughout the 

structure. The distribution and size of the pinning centres and the flexibility of the domain walls 

will therefore determine the coercivity in pinning controlled magnets. In general, the main areas 

for microstructural improvements in sintered magnets focus on reducing the number of defects, 

grain size, and magnetic coupling between the grains [73]. Figure 2-5 shows some examples 

of defects found in NdFeB type magnets. 

 

2.2.2 Application of machine learning in rare-earth magnets 

This section outlines various applications of machine learning in the characterisation, design, 

and development of magnets. In [74], a regression model based on XGBoost [75] and an 

evolutionary algorithm were used to accurately predict magnetic characteristics, such as iron 

loss and permeability, in order to suggest optimal processing parameters which can be used for 

selective laser melting (SLM) based on the given magnetic characteristics. For both targets, 

iron loss and permeability, they achieved 𝑅2 scores above 0.9. An approach that uses 

composition to estimate coercivity and maximum energy product in (PrNdLa-Ce)2Fe14B melt-

spun magnets through data-driven techniques were explored in [76]. They investigated several 

machine learning algorithms to build property prediction models of which the model based on 

Gradient Boosted Regression Trees achieved the best performance for predicting both 

coercivity and maximum energy product with 𝑅2 = 0.88 and 0.89, respectively. In [77], a 

random forest predictor model was used to identify the importance of microstructure 

characteristics in causing magnetization reversal in ideally structured large-grained Nd2Fe14B 
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permanent magnets. The most important features explaining magnetization reversal were the 

misorientation and the position of the grain within the magnet. [78] investigated the most 

influential parameters for coercivity in SmFe12-based melt-spun ribbons using machine 

learning approaches. V-addition was found to be the most influential to coercivity. Various 

supervised machine learning algorithms such as Kernel ridge regression (KRR), support vector 

regression (SVR), and artificial neural networks (ANN) regression were employed to predict 

values of coercivity and maximum magnetic energy product of granular NdFeB magnet based 

on their microstructural attributes such as inter-grain decoupling, average grain size, and 

misalignment of easy axes from micromagnetic simulations datasets [79]. In [80], a decision 

tree algorithm was trained to predict nucleation fields calculated by micromagnetic simulation 

of a quasi-three-dimensional system constructed from a two-dimensional image to identify 

weak spots in the magnets and observe trends in the nucleation field distribution. In [81], 

higher-dimensional features such as colour, texture and edge information were used to train a 

classification model to segment different regions in Kerr microscope images of sintered NdFeB 

magnet. Subsequently, the segmented images were used to quantify grain sizes and orientation 

of domain patterns present in each grain.  

 

 

Figure 2-5: Examples of defects found in NdFeB type magnet microstructure. 

 

2.3 Microscopy analysis 

There are various microscopy techniques used in a metallographic analysis, such as light 

optical microscope (LOM), scanning electron microscope (SEM), transmission electron 

microscope (TEM) and X-ray diffraction techniques. In general, it is usually recommended to 

first perform light optical microscopy examinations prior to any electron metallographic 

analysis since those are usually more time-consuming to perform, and the equipment is much 

more expensive. Conversely, light optical microscopy is fast and can cover a much larger area.  
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2.3.1 Metallographic preparation 

Microscopy analysis has been successfully utilized to examine samples and microstructures for 

a long time. The aim is to solve a wide range of issues and support product development by 

evaluating the influence of numerous parameters and for quality assurance in various fields, 

from medicine to metallography. Similar techniques can be applied to high-resolution images 

of sectioned Li-ion cells and sintered magnets to facilitate quality assessment through 

quantitative and qualitative microstructural analysis. Although metallography is a relatively 

mature field, substantial progress has been made in recent years to automate the preparation of 

samples and quantify microstructural measurements. The primary objective is the preparation 

of artefact-free representative samples suitable for microstructural examination. The basic 

steps for proper metallographic specimen preparation include documentation, sectioning, 

mounting, planar grinding, polishing, etching and microscopic analysis. However, the 

particular choice of sample preparation depends on the sample and the focus of the 

examination, which could be for process optimization, alloy design, reverse engineering, 

failure analysis or quality assurance. The main focus of this thesis addresses the automation of 

microscopic analysis for quality assurance using computer vision techniques. 

 

2.3.2 Quantitative microscopy 

Metallographic observation has been largely qualitative for most of its history, whereby 

structures and microstructures are described based on their appearance. However, qualitative 

microstructure assessment is primarily based on the examiner's knowledge and experience, 

which can be very subjective. In quantitative metallography, the constituents of the sample’s 

microstructure are measured to provide more reliable information for an objective assessment. 

Some of the most basic measurements include estimation of the volume fraction of a phase or 

constituent, measurement of grain sizes, assessment of the shape of particles, measurements of 

the size and distribution of features or the relative amount of a structure or phase. Nonetheless, 

it can be very tedious to manually carry out such quantitative assessments without the risks of 

fatigue-induced error or bias. Various digital image analysis equipment and software packages 

have been developed to automate the collection and reporting of quantitative data. However, 

when it comes to detecting defects, this is typically performed manually, mainly due to the 

sheer number of possible outcomes. Nevertheless, as a first step towards developing a robust 

automated defect detection solution, the digitised cross-sections of the specimens investigated 

in this thesis are visually inspected under the microscope for various inclusions and noticeable 

irregularities. Then the number of inclusions and anomalies are quantified and sorted into 

different categories based on visual similarities and expert opinion. This analysis forms the 

basis of the data used to develop our automated inspection systems in Chapter 3. 
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2.4 Textural defect detection 

The general approach for automated visual inspection in digital image data typically involves 

texture and colour analysis followed by pattern classification. The former is mainly concerned 

with extracting and representing features in addition to data perception and modelling, while 

the latter is concerned with pattern representation, discriminant analysis, or cluster analysis. 

Texture analysis is one of the most important characteristics for identifying defects or flaws. 

Texture provides essential and unique information for visual detection and identification 

systems. It also provides important information for recognition and interpolation. To a large 

extent, the defect detection problem has been mostly regarded as a texture analysis problem 

since before any defects can be detected, unique features that describe a particular texture first 

need to be extracted, which can be a challenging task. Therefore, much research effort has been 

put into extracting useful texture features over the years. 

In most cases, features with large inter-class variations and small intra-class variations are 

required to differentiate various textures better. After briefly describing the most common 

approaches used for texture feature extraction, we compare such fixed feature extractors to 

CNN-based methods. The techniques for extracting texture features for visual inspection tasks 

can be categorized into four main categories [82]: statistical, structural, spectral and model-

based approach. In the following section, a summary of some of the main texture analysis 

methods applied to defect detection tasks is presented, of which the statistical and spectral-

based approaches have been most commonly used for feature extraction. 

 

2.4.1 Standard approaches for texture analysis 

Most conventional inspection systems rely extensively on hand-crafted feature extraction. The 

following describes the most widely used algorithm for general texture feature extraction.  

Statistical approaches 

Statistical texture analysis methods aim to measure and analyse the spatial distribution of pixel 

values in a given image. Numerous proposed techniques that fall under this category range 

from first-order statistics to higher-order statistics, such as histogram statistics, local binary 

patterns (LBP), co-occurrence matrices, and autocorrelation functions.  

 

Structural approaches 

Whereas the statistical approach appears to work well for microtextures, the structural approach 

works better for macrotextures. Structural approaches (SA) are primarily concerned with the 

spatial location of the texture elements, also known as texture primitives. In the structural 

approach, an image is described by the number and types of its primitives and the spatial 

organization or layout of its primitives. Structural texture is mainly composed of two steps: (1) 

the extraction of texture elements and (2) the inference of the placement rule [83]. Through 

specific placement or spatial arrangement rules, the texture is replicated by primitives, resulting 
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in a dynamic texture model. The texture primitives can be individual pixels, line segments, or 

a uniform grey-scale region.  

 

Spectral approaches 

In textures with regular uniform patterns, this regularity can be observed in the frequency 

domain, such that when there is a defect, the regularity is lost. High-frequency components can 

be observed in the image when there is a defect, thus making it easier to find in the frequency 

domain. However, it is typically no longer possible to classify defects once in the spectral 

domain as the spatial coordinates are lost. Thus, the image needs to be re-transformed into the 

spatial domain. This approach includes methods such as filter-based approaches, Fourier 

Transform (FT), Gabor Transform (GT) and Wavelet Transform (WT). 

 

Model-based approaches   

The topic of image modelling involves the construction of models or procedures for the image 

specification. The model can both describe the observed images and synthesise artificial images 

from the model parameters. Whereas statistical-based methods can be relatively sensitive to 

noise and spectral-based methods are affected by the absence of local information, model-based 

methods tend to achieve better performance for various types of defect detection tasks by using 

a structurally unique model enhanced by parameter learning to project the original texture 

distribution of image blocks into low-dimensional distribution. They assume some kind of 

dependence a pixel has on its neighbourhood. Amongst others, some of the most popular 

model-based methods include autoregressive, random field, and fractal models. 

 

2.4.2 Learning-based approaches for defect detection 

The previous section mainly focused on extracting features to discriminate specific texture 

features or patterns. However, the primary goal of visual inspection is ultimately the detection 

and classification of these extracted features to perform tasks such as segmentation, 

quantification, or defects detection. Therefore, an appropriate decision-making scheme needs 

to be selected, typically referred to as pattern classification. Depending on their processing 

mechanics, this can be divided into two groups: (1) supervised and (2) unsupervised or semi-

supervised classification. For this approach, the system is first trained to recognize specific 

features which can be obtained from any of the methods discussed in the previous section, such 

as filtering, thresholding, and other statistical methods, or it can be obtained directly from the 

image data as is more common nowadays using convolutional networks. A typical computer 

vision pipeline is as follows: Find points of interest in an image, crop patches around these 

regions of interest, represent each patch with a sparse local descriptor, and finally combine the 

descriptors into a representation of the image. While this can be a powerful technique, it has a 

few drawbacks. First, a lot of expert knowledge and effort is required to extract meaningful 

and representative features from the images. Second, it is often susceptible to slight deviations 

such as changes in lighting conditions, background colours and noise. Furthermore, since the 

features identified via handcrafted techniques are not sufficiently discriminative, they are often 
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challenging to scale, especially for complex datasets. However, learning the features directly 

from the data helps make the system more applicable to domains where prior knowledge of 

acceptable and defect patterns is not well consolidated.  

Visual inspection through supervised classification 

In supervised classification, the detectable features are predefined, and the classifier must be 

trained to recognize those features. Supervised learning aims to model a conditional 

distribution between the input vector (surface image or extracted features) and target vector 

(defect label). Different types of classifiers exist for recognising patterns, such as linear 

discriminators, distance-based classifiers, Bayesian classifiers, neural networks, and others. K-

Nearest Neighbour [84], support vector machine (SVM) [85], [86], and neural network are 

classical examples commonly used for defect detection [87]–[89]. We will discuss neural 

networks at length in Section 2.5. 

Visual inspection through unsupervised classification  

A large amount of labelled training data is often required to train a supervised machine learning 

model, of which the collection of both positive (examples with defects) and negative samples 

(examples without defects) can be complicated and time-consuming. On the other hand, 

unsupervised approaches that do not require any labelling of the training data often suffer from 

high false alarms and low detection rates [90]. Nevertheless, normal samples are often much 

easier to obtain for many real-world applications than anomalous samples, which are very 

expensive to collect. The automated detection of anomalies has become a vital issue in many 

industrial applications due to the ever-increasing amount of data that needs to be analysed. 

These problems are characterized by instances of interest being heavily underrepresented in 

the data, often accounting for less than one case in a thousand [91]. Some classic examples of 

anomaly detection problems include intrusion detection in computer networks [92], detection 

of fraud in credit card transactions [93], detection of oil spills in satellite images [94] and 

detection of rare diseases in health care systems [95]. Thus, anomaly detection refers to the 

problem of discovering patterns in a data set that do not conform to the expected behaviour, 

which can otherwise be referred to as outliers or novelties. Furthermore, since anomalies are 

rare and diverse, obtaining a labelled dataset that represents all possible outcomes is not 

feasible. Therefore, a successful approach for anomaly detection would be to learn a model of 

the normal class with the assumption that the training data consists entirely of normal 

observations, such that if an observation deviates from the learned model, it is classified as an 

anomaly. Addressing this task using machine learning methods requires a redesign of the 

learning strategy given the reduced amount of flawed cases available for training compared to 

the normal instances, which have been shown in several cases to hinder the performance of 

traditional classification algorithms. 

There are three main approaches for building one-class classifiers: density estimation methods, 

boundary methods, and reconstruction methods [96]. However, most of the successful 

approaches for anomaly detection are designed for low-dimensional datasets and suffer 

significant challenges as the dimensions of the data increase. High-dimensional datasets pose 

significant challenges for anomaly detection due to several factors [97]: (1) the number of 
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potential feature subspaces grows exponentially as the input dimension increases, resulting in 

an exponential search space. (2) Every point in a high-dimensional space appears as an 

anomaly. In other words, given enough alternative subspaces, it is possible to find at least one 

feature subspace for each point where it appears as an anomaly. (3) The true anomalies are 

effectively masked by the high proportion of irrelevant features creating noise in the input data. 

As a result, direct applications of these approaches to high-dimensional datasets may produce 

undesired results. The extremely high dimensionality of image data makes the underlying 

properties difficult to capture by density estimation or boundary methods.  

One widely used technique to address this challenge is by mapping high-dimensional data into 

lower-dimensional subspace using various dimensionality reduction techniques such as 

principal component analysis [98], linear discriminant analysis [99] and machine learning 

methods [97], in order to efficiently process the resulting data with standard detection 

algorithms. For high-dimensional data such as images, autoencoder neural networks have 

shown promising results in anomaly detection problems [100]. This type of network consists 

of an encoder network, which can perform linear and nonlinear transformations from the input 

into a lower-dimensional latent representation, which is then decoded back into the original 

image by the decoder network. As a result, autoencoders do not require label information since 

the input image also represents the target output. Through the reconstruction of the original 

image, the network is able to learn representative features that can generalize to the 

reconstruction of images similar to those in the training dataset with low reconstruction errors. 

On the contrary, images that deviate significantly from those observed during training will 

produce higher residual errors. Therefore, this reconstruction error can be used as an anomaly 

score to distinguish normal images from outliers.  

Autoencoder learns to map an input image 𝑥 ∈ 𝒳 =  ℝ𝑛 to an output image 𝑥′ ∈ 𝒳, by 

reconstructing the original image from an intrinsic lower dimensional latent representation. It 

comprises two modules, an encoder network 𝑓 ∶  𝒳 → 𝑍 and a decoder network 𝑔 ∶ 𝑍 →  𝒳, 
both implemented as a multi-layer neural network. Both modules are jointly trained to compute 

𝑥′ = 𝑔(𝑓(𝑥)), where the output of the encoder 𝑧 = 𝑓(𝑥) ∈ 𝑍 = ℝ𝑚 (𝑚 ≪ 𝑛) is a low-

dimensional latent representation of 𝑥. The low-dimensional latent representation is a 

bottleneck that prevents the autoencoder from learning a trivial identity function that directly 

maps the input to the output.  The autoencoder is trained to minimize the reconstruction error 

𝐿(𝑥, 𝑥′), which is usually the mean squared error between the pixel values of the original image 

and the reconstructed image. Once the training is complete, anomalies can be detected by 

comparing 𝐿(𝑥, 𝑥′) to a decision threshold 𝑇𝑟𝑒𝑐 , where all images 𝑦 with 𝐿 (𝑦, 𝑔(𝑓(𝑦))) >

𝑇𝑟𝑒𝑐 are classified as anomalies. The value of 𝑇𝑟𝑒𝑐 is typically chosen based on the distribution 

of all reconstruction errors 𝐿𝑡𝑟𝑎𝑖𝑛 on the training set 𝑋𝑡𝑟𝑎𝑖𝑛 which can be either the maximum 

reconstruction error 𝑇𝑟𝑒𝑐 = 𝑚𝑎𝑥𝑥∈𝑋𝑡𝑟𝑎𝑖𝑛
𝐿(𝑥, 𝑥′) or a large percentile 𝑇𝑟𝑒𝑐 =

𝑝0.95(𝐿(𝑥, 𝑥′)|𝑥 ∈ 𝑋𝑡𝑟𝑎𝑖𝑛) for the 95th percentile, which is generally more robust. By this, we 

assume that all training examples should only consist of normal observations and should have 

low reconstruction errors. Therefore, for the autoencoder to be used for detecting anomalies, it 

needs to learn an implicit model of the data distribution seen during training, such that it can 

reconstruct previously unseen normal images with minimal error while reconstructing 
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anomalous images with maximum error. However, only the first criteria can be directly 

optimised if the training dataset consists of just the normal cases and the autoencoder is trained 

to minimise the reconstruction error.  

Secondly, autoencoder-based anomaly detection methods are susceptible to the slightest 

presence of anomalies in the training set. That is, given enough training iterations, the 

autoencoder will learn to reconstruct anomalous observations as well as normal ones if even a 

small number of anomalies leak into the training data. Techniques like reducing the model 

capacity and early stopping have been proposed to prevent the network from being able to 

reconstruct the anomalies so that it only focuses on reconstructing the majority class. However, 

these techniques also prevent the autoencoder from learning a model that can accurately 

reconstruct the majority of normal training observations and may lead to higher false detection 

rates. On the other hand, generative models aim to learn the true data distribution in order to 

generate new data points that are similar to the training set, albeit with some variations. 

Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) are the two 

most common and efficient generative techniques for processing image data. Thus, by 

leveraging the ability to learn the input data distribution, these techniques can be more effective 

at identifying anomalies on high-dimensional and complex datasets. 

 

2.5 Neural networks and deep learning 

In what follows, we review the basic building blocks for building a deep learning network, 

starting from the simplest linear model, the perceptron, which consists of a single neuron from 

which we build the multilayer perceptron. For a task such as image classification or object 

localization, we require more specialized models. A large part of the following section is 

dedicated to convolutional neural networks that we use to classify defect images and later for 

object detection and image generation. 

 

2.5.1 Artificial neural networks 

The simplest neural network is the perceptron, consisting of only a single neuron. 

Conceptually, the perceptron functions similarly to a biological neuron. A biological neuron 

receives electrical signals from its dendrites, modulates the signals and if the total strength of 

the input signal exceeds a certain threshold, it fires an output signal through its synapses which 

are fed as input to another neuron. Similarly, the artificial neuron performs two consecutive 

functions to model the phenomenon in the biological neuron. First, the weighted sum of the 

inputs is calculated to represent the total strength of the input signals, and then an activation 

function is applied to the result to determine the output value of the neuron. However, even 

though the inspiration from biology is evident, it would be misleading to overemphasize the 

connection between biological neurons and artificial neurons. In the perceptron diagram shown 

in Figure 2-6, the neuron 𝑘 receives 𝑚 input parameters 𝑥𝑗 . The neuron also has 𝑚 weight 

parameters 𝑤𝑘𝑗 which is used to represents the importance of different input data points. The 
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weight parameters often include a bias term with a fixed value of 1. A linear combination of 

the inputs and weights is fed to an activation function 𝜑 that produces the output 𝑦𝑘 of the 

neuron:  

 𝑦𝑘 = 𝜑(∑ 𝑤𝑘𝑗𝑥𝑗).

𝑚

𝑗=0

 (2.2) 

The neuron is trained by repeatedly updating the weights to produce the desired output for each 

input controlled by the types of activation functions.  

 

Figure 2-6: An artificial neuron 

 

A neural network consists of many such neurons structured into layers to predict an output. For 

example, a simple feed-forward network illustrated in Figure 2-7 consists of a series of fully 

connected layers where each output layer of neurons is fed as input to neurons in the subsequent 

layer. This type of architecture is also often referred to as a multi-layer perceptron (MLP). 

Thus, a multi-layer network is typically composed of an input, an output and one or more 

intermediate layers, also known as hidden layers. Each layer consists of a linear function 

followed by a non-linear transformation. The output layer converts the activations in the hidden 

layer to an output value such as a probability distribution for classification tasks or continuous 

values for regression. There are other types of network connections, for example, in 

convolutional networks, which make use of parameter sharing and thus have much fewer 

parameters than fully connected networks. 

In other words, a neural network can be described as a mathematical model for information 

processing, which is defined by: 

1. The neural network architecture: This describes the set of connections between the 

neurons (feed-forward, convolutional or recurrent), the number of neurons in each 

layer, and the number of layers. 

2. The learning protocol: Typically referred to as model training, where the weights 

between the neurons are updated. Over the years, various methods for updating the 

weights have been developed, from energy level training to back-propagation. 
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3. The activity function: The capacity of the neural network to approximate any function, 

especially non-convex, is essentially due to the non-linear activation function. It 

determines the final output of each neuron and under what conditions it will activate.  

 

Figure 2-7: A fully connected multi-layer neural network. 

 

The following function describes a multi-class logistic regression:  

 𝑓(𝑥) = 𝑊𝑥 + 𝑏          
(2.3) 

 𝑔(𝑦) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦) 

where 𝑊 ∈ ℝ𝐶×𝑑, 𝑥 ∈ ℝ𝑑 , 𝑏 ∈ ℝ𝐶 , 𝑦 ∈ ℝ𝐶 , 𝐶 is the number of classes and 𝑑 is the 

dimensionality of the input. From now, 𝑊 is used to denote a matrix of weights, while 𝜃 ∋

𝑊, 𝑏 is the set of parameters of the model. Logistic regression can be seen as a composition of 

the function 𝑔(𝑓(𝑥)) where 𝑓(∙) is the affine function and 𝑔(∙) is the activation function.  

A neural network is a construct of multiple such affine functions interleaved with non-linear 

activation functions. The ReLU [101] is a common activation used in-between multiple layers, 

while the sigmoid and softmax are typically used at the output layer of the network to obtain a 

Bernoulli and categorical distribution, respectively. A network with only one hidden layer and 

a softmax output can thus be represented as follow: 

 ℎ =  𝜎1(𝑊1𝑥 + 𝑏1) 

(2.4) 

 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2ℎ + 𝑏2) 

where 𝜎1 is the activation function of the first hidden layer. Each layer in the network is 

parameterized with its own weight matrix 𝑊 and bias vector 𝑏. However, in some cases, layers 

can set their parameters to be the same values, known as weight tying or sharing. This is 

typically used to introduce an inductive bias into the model, leading to better generalization.  
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2.5.2 Loss functions  

To evaluate how well the network is performing, we need to compare the output from the model 

with the ground truth label. The loss function provides a method for measuring the error in the 

predicted output value in order to minimize it. We are searching for the set of weights that 

achieve the lowest score. Please note that we may interchangeably use the terms loss function, 

cost function, object function, and error function but still refer to the same thing. The choice of 

the loss function is determined by the type of problem we are trying to solve, and more 

importantly, it is directly related to the activation function used in the output layer of the neural 

network. In this section, we present some of the most commonly used loss functions to train 

deep neural networks for regression and classification: 

L1 loss or mean absolute error loss can be defined as: 

 ℒ(𝑦, 𝑦′) =  ∑ |𝑦𝑖 − 𝑦𝑖
′| 

𝑖

 (2.5) 

L2 loss or mean squared error loss is a common loss function used for regression. It is defined 

as follows: 

 ℒ(𝑦, 𝑦′) = ∑(𝑦𝑖 − 𝑦𝑖
′)2

𝑖

 (2.6) 

Cross-entropy loss. For classification problems, the mean squared error (MSE) used to be the 

primary choice of loss function. However, a model trained using this objective suffered from 

saturation and slow learning when using sigmoid or softmax activations. The cross-entropy 

loss has mostly replaced the MSE loss function for most multi-class classification problems. 

The cross-entropy between the empirical conditional probability 𝑝(𝑦|𝑥) and the probability of 

the model 𝑝̂(𝑦𝑖|𝑥; 𝜃) for each example 𝑥 is: 

 𝐻(𝑝, 𝑝̂; 𝑥) =  − ∑ 𝑝(𝑦𝑖|𝑥) log

𝐶

𝑖=1

𝑝̂(𝑦𝑖|𝑥; 𝜃) (2.7) 

for binary classification, this can be simplified to: 

 𝐻(𝑝, 𝑝̂; 𝑥) = −(1 − 𝑦) log(1 − 𝑦̂) − 𝑦 log 𝑦̂ (2.8) 

as the loss function 𝐽(𝜃), the average cross-entropy is minimized over all examples in the data: 

 𝐽(𝜃) =
1

𝑛
∑ 𝐻(𝑝, 𝑝̂; 𝑥𝑖)            

𝑛

𝑖=1

 (2.9) 

Maximum likelihood estimation (MLE). While the squared error is generally easy to 

compute, it is not the most appropriate in some cases. A more general principle for estimation 

is the maximum likelihood estimation. It provides a framework for finding the best statistical 

estimates of parameters from the training data. An MLE model is defined as a function 
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𝑝𝑚𝑜𝑑𝑒𝑙(𝑥; 𝜃) that maps an input 𝑥 to a probability using a set of parameters 𝜃. Consider a set 

of 𝑚 examples 𝑋 = {𝑥(1), … , 𝑥(𝑚)} drawn independently from the true data distribution 

𝑝(𝑥) which is unknown, we approximate the true probability 𝑝(𝑥) with the probability 

𝑝̂𝑑𝑎𝑡𝑎(𝑥).  

The maximum likelihood estimator is defined as: 

 
𝜃𝑀𝐿𝐸 =  arg max

𝜃
𝑝𝑚𝑜𝑑𝑒𝑙(𝑌|𝑋; 𝜃)     

(2.10)  

𝜃𝑀𝐿𝐸 = arg max
𝜃

∏ 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑖; 𝜃)

𝑛

𝑖=1

 

Many of the probabilities in the product can be small and lead to numerical instabilities. Thus 

to obtain a more convenient optimization problem, the product can be converted to a sum by 

taking the logarithm of the likelihood function, which does not change the arg max [2].  

 
𝜃𝑀𝐿𝐸 = arg max

𝜃
∑ log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑖; 𝜃).

𝑛

𝑖=1

 
(2.11) 

The arg max does not change if we divide the log-likelihood function by 𝑛 or (any constant 

value). Then we can obtain an expectation with respect to 𝑝̂𝑑𝑎𝑡𝑎 as defined by the training data. 

 𝜃𝑀𝐿𝐸 = arg max
𝜃

𝐄𝑥~𝑝𝑑𝑎𝑡𝑎
𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖 | 𝑥𝑖; 𝜃). (2.12) 

The maximum likelihood can therefore be seen as an attempt to make the model distribution 

match the empirical distribution 𝑝̂𝑑𝑎𝑡𝑎. 

 

Kullback-Leibler divergence. The maximum likelihood can also be seen as minimizing the 

dissimilarity between the empirical distribution 𝑝̂𝑑𝑎𝑡𝑎 and the model distribution, 𝑝𝑚𝑜𝑑𝑒𝑙 [2]. 

This dissimilarity is defined by the Kullback-Leibler (KL) divergence [102] as: 

 𝐷𝐾𝐿(𝑃̂𝑑𝑎𝑡𝑎 ∥ 𝑃𝑚𝑜𝑑𝑒𝑙) = 𝐄𝑥~𝑝𝑑𝑎𝑡𝑎
[log 𝑝̂𝑑𝑎𝑡𝑎(𝑥) − log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦 | 𝑥; 𝜃)] (2.13) 

where E is the expectation. Since the term on the left is only a function of the data generating 

distribution and not a function of the model, the model can be trained to minimize the KL 

divergence by only minimizing the term on the right-hand side: 

 −𝐄𝑥~𝑝𝑑𝑎𝑡𝑎
[log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦 | 𝑥; 𝜃)]. (2.14) 

The minimization of the KL divergence is equivalent to the maximization of the MLE since 

minimizing a negative term is the same as maximizing the term; hence this objective is the 

same as the MLE objective in Equation (2.12).  
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 𝜃𝑀𝐿𝐸 = arg min
𝜃

−𝐄𝑥~𝑝𝑑𝑎𝑡𝑎
[log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑖; 𝜃)]. (2.15) 

Furthermore, minimizing the KL divergence is equivalent to minimizing the cross-entropy 

(Equation (2.9)) between the empirical distribution 𝑝̂𝑑𝑎𝑡𝑎 and the model distribution 𝑝𝑚𝑜𝑑𝑒𝑙. 
Hence, cross entropy is prevalent in machine learning and the objective function that is most 

commonly used in neural networks. As a result, we will frequently use it throughout this thesis.  

 

Huber loss. Lastly, the Huber loss is a piecewise loss function that is less sensitive to outliers 

than squared error:  

ℒ𝛿 = {

1

2
(𝑦 − 𝑦̂)2             

𝛿 (|𝑦 − 𝑦̂| −
1

2
𝛿) ,

  

   for |𝑦 − 𝑦̂| < 𝛿 

(2.16)    otherwise 

It is quadratic for small differences between the label 𝑦 and the prediction 𝑦̂ and linear for large 

values. It is used later for bounding box regression. 

 

2.5.3 Forward and backpropagation 

A neural network learns a mapping of input to output from the training data. Due to the large 

number of parameters needed in any practically useful model, it is impossible to calculate the 

exact weights for solving a particular problem analytically. Instead, the problem is cast as an 

optimization problem where an algorithm is used to search the space of possible sets of weights 

that sufficiently solves the problem. The neural network is typically trained using an 

optimization algorithm such as stochastic gradient descent, and the weights are updated using 

the backpropagation of error algorithm [103].  

When training a neural network, the first step involves a forward pass of information from the 

input, propagating through all the hidden units at each layer to the output. This is called forward 

propagation. All the intermediate variables from the input to the output are calculated and 

stored within the model. During training, in the forward pass, the weighted sum of each unit’s 

input is calculated, the activation function is applied, and the output is passed to the next layer 

until the final output layer is reached and the network predicts an outcome. The error rate is the 

difference between the predicted and actual values. For feed-forward networks and other deep 

neural networks, the most efficient way to train the model is to compute a cost function based 

on the misclassification error and minimize the loss function with respect to the model's 

parameters. Therefore, since the error is a function of the weights in the network, we want to 

minimize the error with respect to the weights. For an input value 𝒙 ∈ ℝ𝑑  and assuming there 

is no bias term for simplicity, mathematically, this can be written as:  

 𝑧 = 𝑊1𝑥 (2.17) 

where 𝑊1 ∈ ℝℎ×𝑑, 𝑧 ∈ ℝℎ  is the weight parameter of the hidden layer and the intermediate 

variable, respectively. If we apply an activate 𝜎 we obtain a hidden layer variable ℎ ∈ ℝℎ 
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ℎ = 𝜎(𝑧) (2.18) 

if we also assume the parameter of the output layer 𝑊2 ∈ ℝ𝑞×ℎ, we obtain the output variable 

with a vector of 𝑞,  

 𝑜 = 𝑊2ℎ (2.19) 

lastly, assuming a loss function 𝑙 and the target label 𝑦, the loss term for a single data point can 

be calculated as, 

      𝐿 = 𝑙(𝑜, 𝑦) (2.20) 

the ℓ2norm regularization term of the network weights can be written as, 

 𝑠 =
𝜆

2
(‖𝑊1‖𝐹

2 +  ‖𝑊2‖𝐹
2 ), (2.21) 

finally, the network’s regularized loss is given as, 

 𝐽 = 𝐿 + 𝑠 (2.22) 

where 𝐽 is referred to as the objective function. 

 

Backpropagation and partial derivatives 

Many training algorithms involve an iterative procedure for minimising an error function, with 

adjustments to the weights being made in a sequence of steps. As each model consists of 

multiple layers, calculating the gradient of the loss function with respect to each parameter is 

non-trivial. A dynamic programming algorithm known as backpropagation is used to compute 

the gradient. In the first stage, the derivatives of the error function with respect to the weights 

are evaluated, and in the second stage, the derivatives are used to compute the weight 

adjustments. The backpropagation algorithm provides a computationally efficient method for 

evaluating these derivatives. Furthermore, the second stage of the weight adjustment using the 

calculated derivative can be achieved using a variety of optimization schemes besides the 

simple gradient descent, which we will discuss in the next section. The goal is to minimize the 

error rate calculated after the forward pass. Mathematically, the error is formulated in terms of 

a loss function 𝐸(𝑦̂, 𝑦) where 𝑦̂ is the predicted label, and 𝑦 is the ground truth. The loss 

function is minimized based on the weights and biases in the network.  

If we consider a simple linear model where the outputs 𝑦𝑘 are linear combinations of the input 

variables 𝑥𝑖: 

 𝑦𝑘 = ∑ 𝑤𝑘𝑖𝑥𝑖

𝑖

 
(2.23) 

In the forward pass, each unit computes a weighted sum of its inputs in the form: 
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 𝑎𝑗 = ∑ 𝑤𝑗𝑖𝑧𝑖

𝑖

 (2.24) 

Where 𝑧𝑖  is the activation of a unit connecting unit 𝑗 , and 𝑤𝑗𝑖 is the associated weight. A 

nonlinear activation function ℎ(∙) transforms the sum in Equation (2.24) above to give the 

activation 𝑧𝑗 of unit 𝑗 as:  

 𝑧𝑗 = ℎ(𝑎𝑗) (2.25) 

Through the successive application of Equation (2.24) and Equation (2.25), each input vector 

in the training set can be propagated through the network. Now, assuming the error function 

𝐸𝑛 for a particular input pattern 𝑛, and note that 𝐸𝑛 depends on the weight 𝑤𝑗𝑖 only through the 

summed input 𝑎𝑗. We can therefore apply the chain rule for partial derivatives to give: 

 
𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
=  

𝜕𝐸𝑛

𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑤𝑗𝑖
 (2.26) 

which can be rewritten as: 

 

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
= 𝛿𝑗𝑧𝑖  (2.27) 

where the error signal 𝛿𝑗 for the hidden unit 𝑗 is 

 𝛿𝑗 =
𝜕𝐸𝑛

𝜕𝑎𝑗
   and  

𝜕𝑎𝑗

𝜕𝑤𝑗𝑖
= 𝑧𝑖 (2.28) 

and for the output units, we have 

 𝛿𝑘 = 𝑦𝑘 − 𝑡𝑘 (2.29) 

to evaluate the 𝛿′𝑠 for the hidden units, we can use the chain rule for partial derivatives. 

 𝛿𝑗 =
𝜕𝐸𝑛

𝜕𝑎𝑗
= ∑

𝜕𝐸𝑛

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝑎𝑗
𝑘

 (2.30) 

Finally, the backpropagation formula can be obtained as  

 𝛿𝑗 = ℎ′(𝑎𝑗) ∑ 𝑤𝑘𝑗𝛿𝑘

𝑘

 (2.31) 

 

2.5.4 Optimization methods 

Unlike linear regression with the mean square error loss, there is typically no closed-form 

solution to obtain the optimal weights for most losses. Instead, the model's error is minimized 

iteratively using an algorithm known as gradient descent. Gradient descent is one of the most 

popular and efficient methods for training neural networks. Given an objective function 
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𝐽(𝜃; 𝑋, 𝑌), where 𝜃 ∈ ℝ𝑑 is a vector of network parameters, 𝑋 the input vector and 𝑌 the 

corresponding target values. Gradient descent updates the parameters in the opposite direction 

of the gradient ∇𝜃𝐽(𝜃) of the loss function. The gradient is the vector containing all the partial 

derivatives 
𝛿

𝛿𝜃𝑖
𝐽(𝜃). Where the 𝑖-th element of the gradient is the partial derivative of 𝐽(𝜃) with 

respect to 𝜃𝑖. Depending on the size of the data used to calculate the gradient, there are three 

primary variants of the gradient descent algorithm: 1) batch gradient descent, 2) stochastic 

gradient descent, and 3) mini-batch gradient descent. 

Batch gradient descent. In batch gradient descent, the entire training set is used to update the 

parameters of the model according to 

 𝜃 = 𝜃 − 𝜂 ∙ ∇𝜃𝐽(𝜃) (2.32) 

where 𝜂 is the learning rate that determines the magnitude of each parameter update.  

In practice, 𝜂 is one of the most important hyperparameters that need to be correctly tuned to 

guarantee convergence of the algorithm. If the value is set too low, the training will take a long 

time to converge, and if it is set too high, the gradient might become very large.  However, 

there are a few techniques for finding an appropriate learning rate, such as those proposed in 

[104] and [105].  

Stochastic gradient descent (SGD). Alternatively, stochastic gradient descent is when each 

sample from the dataset is used to make individual updates to the model parameters. The update 

rule is given as: 

 𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃; 𝑥𝑖; 𝑦𝑖) (2.33) 

where 𝑥𝑖  and 𝑦𝑖  are the 𝑖𝑡ℎ training samples. While this is cheaper to compute, the resulting 

gradient estimate is a lot noisier due to the stochasticity.   

Mini-batch gradient descent. A more common approach is to take a mini-batch of 𝑛 examples 

from the training set to compute the gradients and update the model parameters. This is known 

as mini-batch gradient descent or stochastic gradient descent with mini-batches, and it usually 

results in a much smoother loss curve than SGD. 

 𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃; 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛)) (2.34) 

The size of the mini-batch 𝑛 can range from 2 to a few hundred depending on the available 

physical memory of the hardware, which enables the training of large models on vast datasets 

with millions of examples.  

Adaptive methods 

Even though mini-batch gradient descent works well in practice and is one of the primary 

methods for training neural networks, it has a few weaknesses. 1) It does not allow automatic 

learning rate adjustment during training, which means the same learning rate is used for all its 

parameters. 2) It does not remember its previous steps, which makes it susceptible to getting 

trapped in saddle points due to near-zero gradients around them. In order to overcome the 
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limitations of mini-batch gradient descent, several other optimization methods and 

improvements have been proposed, such as Nesterov Accelerated Gradient [106], Root Mean 

Square Propagation and Adaptive Moment Estimation [107].  

 

2.5.5 Dealing with class imbalance 

Over the last two decades, several class imbalance learning techniques have been developed. 

They can be divided into two main categories: data-level and algorithm-level [108]. 

Resampling approaches [109]–[112] are the most common data-level techniques that aim to 

balance the distribution of classes in the training data. Furthermore, depending on the method 

used for balancing class distribution, the resampling technique can be further divided into three 

subgroups [113].  

- Over-sampling method: this aims to increase the minority class samples. Randomly 

duplicating minority samples and generating synthetic minority samples are two 

commonly used methods.  

- Under-sampling method: some of the majority class samples are discarded from the 

dataset in this method. The simplest form of this method, random under-sampling, 

involves randomly removing samples from the majority class. 

- Hybrid method: is a combination of both over-sampling and under-sampling methods.  

 

The cost-sensitive learning method [114]–[116] is a typical algorithm-level approach for 

learning from an imbalanced dataset. In this approach, a higher misclassification cost is 

assigned to the minority class, essentially forcing the classifier to focus more attention on 

examples from the minority class. Several approaches [117]–[120] have been developed that 

implement new loss functions for handling imbalanced datasets, which have shown some good 

results. Nevertheless, some drawbacks are associated with both cost-sensitive learning and 

resampling approaches. For instance, in the resampling approaches, randomly over-sampling 

the minority class can easily result in over-fitting, while important information may be 

discarded in the under-sampling of the majority class. On the other hand, a cost-sensitive 

learning approach is more computationally efficient. However, assigning an appropriate cost 

for each class can be difficult. We evaluate the effectiveness of the resampling and the cost-

sensitive approaches for our defect detection task and compare the performances to when no 

modification is made to compensate for the class imbalance. For the resampling approach, we 

compare both the over-sampling and under-sampling techniques, and for the cost-sensitive 

approach, we selected the weighted cross-entropy loss function and focal loss function.  

 

The focal loss function [120] was originally designed for object detection tasks to tackle the 

extreme foreground-background class imbalance encountered during the training of dense 

detectors. This is accomplished by reshaping the standard cross-entropy loss to down-weigh 

the loss associated with well-classified examples to allow the detector to focus training on the 

sparse set of harder examples. This prevents a large amount of easy negative examples from 

overwhelming the network during training. The focal loss function has been widely used in 
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various applications, from mitosis detection in medical images [121] to semantic segmentation 

of high-resolution aerial images [122].   
 

2.6 Convolutional neural networks 

Convolutional neural networks (CNNs or convnets) are neural networks with one or more 

convolutional layers. They are hierarchical models that alternate between two basic operations, 

convolution and subsampling, inspired by the local receptive fields and the hierarchical 

structure of simple and complex cells in the primary visual cortex [123]. Convnets are primarily 

used for solving fundamental image processing problems in computer vision, such as image 

classification, object detection, localisation and segmentation. However, it can be more 

generally used to handle data with some spatial topology (e.g. videos, sound spectrograms in 

speech processing, character sequence in texts, or 3D voxel data). In many of these cases, the 

input dimensionality is often high. For example, a 256 × 256 colour image contains 196,608 

pixels (256 × 256 × 3 ) for 3 colour channels. If each pixel intensity of this image is input 

separately to a fully connected network, each neuron requires 196,608 weights. For a 

512 × 512 colour image, each neuron will require 786,432 weight connections. As a result, 

the network's overall number of free parameters greatly increases as the image size increases. 

This is not only inefficient in terms of the number of parameters and processing time, but such 

large models will also result in overfitting.  

Convolutional neural networks originally formulated in [124], [125] and later in [3] were 

developed precisely to address this issue. They are aware of the spatial layout of the input and 

use specific local connectivity and weight sharing to significantly reduce the number of free 

parameters. This means each node only connects to spatially adjacent nodes in the next layer, 

making them useful for image processing, as it is reasonable to assume that each pixel exhibits 

some correlation with neighbouring pixels. Furthermore, because convnets share weights, the 

number of free parameters does not grow proportionally to the input dimension. Therefore, 

they are well suited for normal-sized images and are responsible for many recent computer 

vision breakthroughs. The parameters of a convolutional layer called receptive fields or 

convolutional kernels are replicated across the entire visual field, making it particularly suited 

for local feature extraction. This fundamental characteristic gives convnets two important 

properties: 1) They learn translation-invariant patterns, which means that after learning a 

specific pattern in one part of an image, a convnet can recognize it anywhere else in the image. 

This makes convnets data efficient when processing images. 2) They learn spatial hierarchies 

of patterns. This means that each successive layer learns patterns made of the features of the 

preceding layer, allowing convnets to learn increasingly complex and abstract visual concepts 

efficiently. In contrast, a fully connected network fails to consider this kind of structure. A 

schematic illustration of a convnet is shown in Figure 2-8. In this thesis, we investigate the use 

of convolutional networks for accurately detecting defects in the microstructure of Li-ion 

batteries and sintered NdFeB magnets.  

 



38 

Fundamentals 

 

2.6.1 Layers 

We will now describe some layers and models commonly applied to computer vision tasks that 

will be used throughout this thesis. 

Convolutional layers. The core computational building block of a convnet is the convolutional 

layer which takes an input tensor and produces an output tensor by convolving the input with 

a set of kernels. The convolutional layer implements a similar concept to the convolution 

operation in mathematics, more commonly seen in signal processing and Fourier analysis. A 

2D convolution of two functions, 𝐼 and 𝐾 is defined as: 

 𝑆(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

 (2.35) 

Where 𝑋 is the input, and 𝐾 is the convolution kernel. The negative signs for the 𝑚 and 

𝑛 indices of 𝐾 indicate that the kernel is flipped both in the vertical and horizontal directions 

and therefore translated over the input. However, flipped kernels do not hold any significance 

in the learning process of convolutional networks; therefore, in practice, this is most often 

implemented using a non-flipped convolution operation known as cross-correlation [2]. Which 

can be expressed as: 

 𝑆(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑚, 𝑛)𝐾(𝑖 + 𝑚, 𝑗 + 𝑛)

𝑛𝑚

 (2.36) 

where the kernel 𝐾 operates only on a small region of the input, defined by its size (𝑚 × 𝑛).  

Suppose that our input is a colour image represented by a 3D tensor 𝑋. The convolution 

operates by sliding the kernel across all spatial positions of the input tensor and computing the 

dot product between a small patch of 𝑋 and the kernel 𝐾 at each position. The convolution 

operation for images can therefore be represented as: 

 𝑆(𝑖, 𝑗) = (𝑋 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ ∑ 𝑋(𝑙, 𝑚, 𝑛)𝐾(𝑖 + 𝑙

𝐶

𝑛=1

𝐾2

𝑚=1

𝐾1

𝑙=1

, 𝑗 + 𝑚, 𝑛) (2.37) 

The input image is a 3D tensor of size [𝐷1, 𝐷2, 𝐶] where 𝐷1 is the height, 𝐷2 is the weight, and 

𝐶 is the number of channels. The corresponding kernel is also a 3D tensor of size 

[𝐾1, 𝐾2, 𝑃], where 𝐾1, 𝐾2 and 𝑃 are the height, weight and output channels, respectively. The 

result of the convolution operation is called an activation or feature map. For example, consider 

a colour image of width and height of 256 – i.e. 256 × 256 × 3 tensor 𝑋 and a 5 × 5 × 3 kernel 

𝐾, which contains 75 parameters that will be automatically learnt. The result of the convolution 

operation will be an activation map of dimensions 252 × 252 × 3 (252 is the number of unique 

positions that a filter of 5 elements can be placed over an input of size 256). It is also common 

to pad the input with a border of zeros to control the output dimension. In this case, if we pad 

the borders with zeros of thickness 2, this will result in a 256 × 256 × 3 activation map. 

Similarly, a kernel of size 5 × 5 × 𝑛 will produce an activation map of size 252 × 252 ×
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𝑛 with zero padding of the borders. It is also possible to perform convolution with some strides. 

The stride is the number of pixels the kernel shifts at each step. A larger stride will result in 

smaller sized output. For example, applying the 5 × 5 × 3 kernel to the 256 × 256 × 3 input 

tensor with a stride of 2 and no padding will instead result in an output activation map of 

size 126 × 126 × 3. Systematically applying the same kernel across the entire image allows 

the kernel to discover similar features anywhere else in the image; this capability is commonly 

referred to as translation invariance. For instance, if a kernel is designed to detect a specific 

type of texture, then the application of that kernel across the entire image enables that particular 

texture to be detected anywhere in the image. The parameters that make up the filters are learnt 

through backpropagation.  

In general, a convolutional layer for images: 

- Accepts a tensor of size 𝑊1 × 𝐻1 × 𝐷1 (i.e. assuming input tensor with three spatial 

dimensions) 

- Requires four hyperparameters: The number of out channels 𝐾, the kernel size 𝐹, the 

stride 𝑆, and the amount of zero padding on the borders of the input 𝑃. 

- Produces an output with a spatial dimension  𝑊2 × 𝐻2 × 𝐷2, where  

𝑊2 =
(𝑊1−𝐹+2𝑃)

𝑆
+ 1, 𝐻2 =

(𝐻1−𝐹+2𝑃)

𝑆
+ 1, and 𝐷2 = 𝐾 (2.38) 

- The number of parameters in each kernel is 𝐹 × 𝐹 × 𝐷1 and the total number of 

parameters in the convolutional layers is thus (𝐹 × 𝐹 × 𝐷1) × 𝐾 weights + 𝐾 biases.  

 

Pooling layers. In a convolutional network, a pooling layer is typically used to provide some 

degree of translation invariance to slightly different inputs and to reduce the dimension of the 

feature response from preceding convolutional layers.  It also helps to minimize the likelihood 

of overfitting. The pooling layer operates on each feature map separately and downsamples 

them spatially by summarizing the presence of some features in patches of the activation map. 

There are two commonly used types of pooling operation which determine how the 

downsampled feature map is aggregated: Average pooling calculates the average value within 

a patch on the activation map. Maximum pooling (max pooling) calculates the maximum value 

for each patch of the activation map. A pooling layer is defined by specifying two parameters, 

the size and the stride. The size parameter specifies the window over which the pooling 

operation is performed, and the stride specifies the number of pixels by which the pooling 

window shifts after each operation, similar to that of the convolution layers. It is common to 

observe a 2 × 2  window using a stride of 2 and applying the max pooling operation. Max 

pooling is typically preferred as it avoids cancelling negative elements and prevents blurring 

of the activation maps.  

Fully Connected layers (FC). The final layers of a convnet are typically made up of one or 

more fully connected layers. This is the standard feed-forward neural network where all the 

input neurons are connected to all the output neurons. The main difference between a fully 

connected layer and a convolutional layer is that the fully connected layer learns global patterns 

in its feature space, whereas a convolutional layer learns local patterns. The output feature maps 
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from the convolutional layers are flatted into a 1D vector before feeding the fully connected 

layers. The objective of the fully connected layer is to take activation maps from the 

convolutional layers and predict the class labels. These layers have a non-linear activation 

(hidden layers) or a softmax activation (output layer) to output a probability of class 

predictions. They are used to perform a non-linear combination of features and make final 

predictions by the network. Thus, while the convolutional layers are used for feature extraction, 

the fully connected layers act as classification layers. The parameters of the fully connected 

layers are specified according to the number of inputs and outputs required. The number of 

units in the output layers is equal to the number of classes. Thus, for an input vector of size 

𝑚 and output vector of size 𝑛, a 𝑚 × 𝑥 parameter matrix is required. As a result, due to these 

highly dense connections, a few fully connected layers can easily account for a large subset of 

the network’s weights.  

Residual connections. One of the major benefits of neural networks is the ability to represent 

various complex functions simply by stacking more layers. However, after a certain depth, very 

deep networks often have a gradient signal that goes to zero during training, commonly known 

as vanishing gradient. If we consider a convolutional layer as mapping 𝐻(𝑥) of input 𝑥 from 

one feature space to another. Instead of directly finding the mapping 𝐻(𝑥) we find another 

mapping 𝐹(𝑥) = 𝐻(𝑥) − 𝑥, which can be rewritten as 𝐻(𝑥) = 𝐹(𝑥) + 𝑥. The idea is to add a 

residual or skip connection [126] which allows information to flow more easily by preserving 

the characteristics of the original vector 𝑥 before its transformation by some layers 𝐹(𝑥) and 

simply performing the sum 𝐹(𝑥) + 𝑥. The authors claim that, since the gradient is additive, it 

is unlikely to vanish for a large number of layers.  

ConvNet architecture. The basic building block of a convolutional neural network consists 

primarily of the components discussed in the previous sections. Typically, convnets are built 

using blocks of convolutional layers (Conv), activation function (AF), and possibly pooling 

layers (Pool) to control the computational complexity of the architecture, followed by a series 

of fully connected layers (FC). It is also possible to use strided convolutions instead of pooling 

layers to reduce the spatial resolution of the feature maps. For image classification, the 

convolution, ReLU and pooling layers are typically interleaved to increase the expressive 

power of the network. Having two or three sets of Conv-ReLU combinations is common before 

having a max pooling layer. This entire pattern can be repeated a few times to create deep 

convolutional networks. As the depth of the network increases, recent architecture designs also 

use skip connections between layers [126].  A convnet architecture with two convolutional 

layers, two pooling layers and two fully connected layers might take the form illustrated in 

Figure 2-8. In theory, the convolutional layers closer to the input learn to recognize low-level 

features of the image. For instance, the first layer may learn to detect edges and corners, while 

the second may learn to detect more complex shapes formed by combining different edges, 

such as rectangles and circles, etc. The layers closer to the output would learn to combine the 

features generated in the previous layer to recognize much more complicated objects [127]. 

Thus, the power of convolutional neural networks lies in the ability to construct complex and 

interpretable visual features by piecing together these primitive representations layer by layer.  
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Figure 2-8: An example of a convolutional neural network. 

 

2.6.2 Fully convolutional networks 

So far, the neural network architectures we have seen are usually designed for image 

classification and feature learning tasks. In order to adapt these models for other computer 

vision problems such as semantic segmentation, instance segmentation, depth estimation or 

optical flow, one must configure the architecture in such a way that it outputs images instead 

of class labels or feature vectors. In other words, the model needs to learn a pixel-to-pixel 

transformation from an input image to an output image. For example, we need to determine the 

class of each pixel within an image in semantic segmentation tasks. This type of architecture 

is often referred to as a fully convolutional network [128] because it is built only from locally 

connected components, such as convolution, pooling and upsampling layers. Since there are 

no dense layers in this type of architecture, the number of parameters and computation time is 

reduced. Furthermore, the network can operate on images of various sizes. In image 

classification, an input image is downsampled via convolution with strides, or pooling layers, 

then passes through a fully connected layer to output the class probabilities. However, to obtain 

a segmentation map, the spatial resolution of the original image needs to be recovered to predict 

the class label for each pixel. Therefore, this usually involves two parts: 1) a downsampling 

path to capture semantic or contextual information and 2) an upsampling path to recover precise 

spatial information. There is usually a lot of low-level information shared between the input 

and output for many image translation problems lost in the pooling or downsampling layers. 

Thus, a skip connection is often used to shuffle this information directly across the network. 

This is done by concatenating or element-wise addition of feature maps from the downsampling 

path with feature maps from the upsampling path. Upsampling of the feature maps can be 

achieved via bilinear interpolation or convolution with fractional input strides known as 

deconvolution [129]. 

 

2.6.3 Variational autoencoder 

Variational autoencoder (VAE) emerged as an important method for unsupervised 

representation learning of complex distributions, which can also be used as a generative model. 
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It was simultaneously proposed in [130] and [131]. In a classical autoencoder [132], the input 

vector is mapped to a latent vector space through the encoder module, which is then decoded 

back to the original dimension by the decoder.  In other words, given an input 𝑥 the autoencoder 

tries to generate an output 𝑥̂ that is as similar as possible to 𝑥. We are usually not interested in 

the decoded output for most applications but rather in the internal representations learned by 

the network. However, this thesis will fully utilise the decoded output to detect defects using 

an unsupervised learning approach. Initially, the VAE was introduced as a constrained version 

of the autoencoder that learns an approximation of the underlying data distribution. Thus, 

instead of compressing the input data into a fixed latent code, it turns the data into the 

parameters of a statistical distribution that can be sampled to generate new data. Like a standard 

autoencoder, a variational autoencoder consists of an encoder and a decoder trained to 

minimize the reconstruction error between the input data and the decoded output. However, 

instead of encoding the input as a single point in latent space, it is encoded as a regularized 

latent distribution, constrained to be close to a standard Gaussian distribution. The network is 

trained as follows: 

- the input data is first encoded as a distribution over the latent space  

- then we sample a point from this distribution  

- and decode the sampled point back to the original input  

- then the reconstruction error is calculated and backpropagated through the network. 

The stochasticity of this process forces the latent space to encode meaningful representation 

across it, such that any point sampled from the latent space can be decoded to a valid output. 

In practice, the encoder is trained to learn the parameters of a latent unit Gaussian distribution 

and return the mean and covariance matrix that describes this Gaussian distribution that can 

best regenerate the input data. The final loss function is the sum of the reconstruction error and 

the regularization loss, which is the Kullback-Leiber (KL) divergence between the 

reconstructed latent variable and the Gaussian distribution. The KL divergence is used as a 

regularization technique to enforce two main properties: continuity (i.e. two close points in the 

latent space should decode to similar outputs) and completeness (i.e. any point sampled from 

the latent space of the chosen distribution should produce meaningful content when decoded).  

 

Figure 2-9: The encoder compresses the input data into a latent space z, and the decoder 

reconstructs the data from the hidden representation. 
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We now provide a mathematical definition as follows: consider input data 𝑥 generated from a 

latent variable 𝑧 which is not directly observable. Let us denote the probabilistic encoder 

𝑞𝜃(𝑧 | 𝑥) which has parameters 𝜃, takes input 𝑥 and outputs hidden representation 𝑧. We 

denote the probabilistic decoder 𝑝𝜙(𝑥 | 𝑧) with parameters 𝜙, which takes the hidden 

representation 𝑧 and outputs the parameter to the probability distribution of the data (see Figure 

2-9). The loss function 𝑙𝑖 for data point 𝑥𝑖 𝑖𝑠:  

𝑙𝑖(𝜃, 𝜙) = −𝐸𝑧~𝑞𝜃(𝑧|𝑥𝑖)[log 𝑝𝜙(𝑥𝑖 | 𝑧)] + 𝐾𝐿(𝑞𝜃(𝑧 | 𝑥𝑖) || 𝑝(𝑧)).  (2.39) 

The first term is the expected negative log-likelihood or reconstruction loss of the i-th data 

point, used to encourage the decoder to reconstruct the original input data. The second term is 

the KL divergence between the encoder’s distribution 𝑞𝜃(𝑧 | 𝑥) and a standard Gaussian 

distribution 𝑝(𝑧) = 𝒩(0, 1). However, a reparameterization trick is required to ensure that the 

network is differentiable in practice. This consists of setting 𝑧 = 𝜇 + 𝜎 ⊙ 𝜖, where 

𝑧~𝒩(𝜇, 𝜎) and 𝜖~𝒩(0, 1). It allows the randomness of a normally distributed random 

variable  𝑧 to be pushed into 𝜖, which is sampled from a standard normal distribution.  

 

2.6.4 Generative adversarial networks  

Generative adversarial networks (GANs) are another form of generative modelling based on 

deep neural networks. The GAN architecture was proposed in [133] to leverage the power of 

discriminative learning to train good generative models. The main idea behind GANs is that if 

we have a good enough data generating model, we should not be able to distinguish fake data 

(generated data) from real data. This is similar to the two-sample test in statistics which tries 

to determine whether the difference between two datasets 𝑋 = {𝑥1, … 𝑥𝑛} and 𝑋′ = {𝑥1
′ , … , 𝑥𝑛

′ } 

is statistically significant.  The GAN model architecture involves two sub-models trained 

simultaneously Figure 2-10: 1) a generator model used to generate new examples from the 

problem domain. 2) A discriminator model is used to classify examples as either real (from the 

original data distribution) or fake (a generated example). That is, the generator model is given 

an input 𝑧 drawn randomly from a Gaussian distribution and outputs a sample 𝑥 from an 

implicit probability distribution 𝑃𝑔. While the discriminator model is a classifier which takes 

an input 𝑥 and outputs a binary class label which determines if 𝑥 is from the original data 

distribution 𝑃𝑑𝑎𝑡𝑎 or from 𝑃𝑔.  The real examples are obtained from the training set, and the 

generated examples are produced by the generator model. The training process, therefore, 

involves the generator attempting to “fool” the discriminator with the generated examples, and 

the discriminator network is constantly adapting to newly generated fake data, which in turn is 

used to improve the generator model in a two-player minimax game with the value function 

𝑉(𝐺, 𝐷) defined as: 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑔(𝑧)[log (1 − 𝐷(𝐺(𝑧)))] (2.40) 
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where 𝐷(𝑥) is the discriminator’s estimate of the probability for real images, 𝐸𝑥 is the expected 

value over all real data instances, 𝐺(𝑧) is the generator’s output when given input 𝑧, 𝐷(𝐺(𝑧)) is 

the discriminator’s estimate of the probability for generated images and 𝐸𝑧 is the expected 

value over all generated fake instances 𝐺(𝑧).  This can be summarized as follows: the 

discriminator seeks to maximize the average of the log probability of real images and the log 

of the inverse probability for generated images. While the generator seeks to minimize the log 

of the inverse probability predicted by the discriminator for generated images. Which basically 

encourages the generator to generate realistic samples with low probabilities of being classified 

as fake. However, during the early stages of training, when the generator's performance is poor, 

the discriminator can very easily distinguish generated samples from real samples with high 

confidence causing the loss function for the generator to saturate and the generator to stop 

updating. The original GAN publication [133] suggests one approach to solving the saturation 

problem is to modify the generator loss so that the generator tries to maximize 

log 𝐷(𝐺(𝑧)) instead of minimizing log(1 − 𝐷(𝐺(𝑧)). This essentially means that instead of 

the generator seeking to minimize the probability of generated images being predicted as fake, 

it now seeks to maximize the probability of those images being predicted as real. This new 

objective function results in better gradient information for updating the generator’s weights 

and more stable training dynamics.  

 

 

Figure 2-10: Generative adversarial network framework. 

 

The most successful application of GANs has been on image data, where a convolutional neural 

network is used as the generator and the discriminator model. In this case, the generator learns 

a compressed representation of the set of images from the training data distribution and can 

generate plausible images. Since the originally proposed framework, many other types of GAN 

architectures have been invented for tackling domain-specific problems, such as Deep 

Convolutional GAN (DCGAN) [134], Conditional GAN (CGAN) [135], CycleGAN [136], 

InfoGAN [137] and many more.  GANs have also been used for many real practical 

applications. For example, Multi-Condition GAN (MC-GAN) [138] was used for conditional 

synthesis to perform a text-to-image transformation. In cases with limited training data, GANs 

can be used to generate many additional examples for data augmentation. Other use cases 
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include style transfer and image manipulation, e.g. inpainting, face ageing [139] and generating 

high-resolution versions of the input images [140].  

Conditional GAN. In the original implementation of the GAN, there was no control over the 

modes of data being generated. However, in many cases, such as the text-to-image or image-

to-image synthesis, we are interested in generating outputs of a specific type for a given input 

signal. This can be achieved by conditioning the model on additional information such as class 

labels or data from other modalities to direct the data generating process [135]. We can 

therefore extend the generative model of a GAN to a conditional model if the generator and the 

discriminator are both conditioned on some auxiliary information 𝑦. The input to the generator 

model thus becomes the random vector 𝑧 and the additional input 𝑦. The discriminator is also 

provided with an input that is either real or generated and the additional input 𝑦. Suppose the 

conditional input was a class label; the discriminator would expect that the input would be from 

that class, which encourages the generator to generate examples from the same class. The 

conditioning can be performed by feeding 𝑦 into both the generator and the discriminator 

through an additional input layer, as illustrated in Figure 2-11. The value function from 

Equation (2.40) of the two-player minimax game therefore becomes: 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥 | 𝑦)] + 𝐸𝑧~𝑝𝑔(𝑧)[log (1 − 𝐷(𝐺(𝑧 | 𝑦)))] (2.41) 

 

 

Figure 2-11: Conditional generative adversarial network. 

 

2.7 Convolutional object detection and localisation 

Due to the rapid developments in deep learning, particularly convolutional neural networks for 

image classification, more powerful techniques have emerged in recent years to solve object 

detection tasks that address the problems facing traditional approaches. These methods can 

learn semantic, high-level, deeper features to realize significant performance improvements 

over previous methods. Object detection aims to determine where objects are located in an 

image (object localisation) and which category the objects belong to (object classification). The 

general approach for CNN-based object detection models can be categorized into two main 

types: (1) a two-stage approach, which involves generating region proposals and classifying 

each proposal into different object classes. This includes methods such as R-CNN, SPP-net, 

Fast R-CNN, Faster R-CNN, R-FCN, FPN and Mask R-CNN etc. (2) One-stage approach that 

regards the object detection task as a regression or classification problem. This includes 

MultiBox, AttentionNet, YOLO, SSD, RetinaNet, DSSD etc. This section compares different 

CNN-based object detection methods relevant to this thesis.  
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Two-stage Detectors 

OverFeat [141] is one of the most prominent approaches among the earlier attempts at object 

detection using CNN. This method inspired most modern region-based object detectors since 

it pioneered the integration of image classification and regression tasks into one CNN model. 

To achieve this, a CNN is used to perform image classification at different locations on multiple 

scales of an image through a sliding window, and then it performs bounding box regression on 

the topmost feature map after obtaining the confidence of each object category. First, a CNN 

model is trained for image classification then the top classifier network is replaced with a class-

specific regression network, which is used to refine the boundaries of bounding boxes at each 

spatial location. Next, a greedy merging algorithm aggregates the resulting class scores and 

regressed bounding boxes. Despite the success of this method, it had a few drawbacks. For 

instance, there was significant redundancy in the number of processed windows containing any 

objects, which considerably increased the running time. Nevertheless, the combination of 

image classification and regression from OverFeat has been extended in modern object 

detection frameworks, where the main idea is to localize objects in an image by combining 

region proposals with CNNs using multiple regions of interest.  

 

2.7.1 Region-based Convolutional Neural Networks 

In [142], the first region-based object detector called Regions with CNN  features (R-CNN) 

was proposed. The R-CNN architecture consists of three modules. In the first step, regions of 

interest (RoI or region proposals) are generated using an external algorithm to scan the input 

image for possible regions containing objects. The region proposals are category independent 

bounding boxes with a high probability of containing an object of interest. There are various 

methods for generating region proposals such as selective search [143], Edge Boxes [144], 

objectness [145], Constrained Parametric Min-Cuts (CPMC) [146], Category-Independent 

Object Proposals [147], Multi-Scale Combinatorial Grouping [148] etc. Selective search is 

most commonly used among these methods because it is fast and has a high recall.  

R-CNN adopts selective search to generate around 2000 category independent region proposals 

from each input image. The selective search algorithm is based on computing hierarchical 

grouping of similar regions based on colour, texture, size and shape compatibility to provide 

more accurate candidate boxes of arbitrary sizes to reduce the search space for object detection. 

In the second module, each sub-image contained in the region proposal is warped or cropped 

into a fixed dimension to match the input size of the pre-trained CNN used to extract a fixed 

length (4096 dimensional) feature vector. Lastly, the third module scores the extracted feature 

vectors using a set of pre-trained class-specific linear support vector machines (SVMs) into a 

set of positive regions or negative (background) regions. The scored regions are then filtered 

using a greedy non-maximum Suppression (NMS) algorithm and adjusted with bounding box 

regression to produce the final bounding boxes of objects in the input image.  

Although the R-CNN showed significant improvements over traditional methods, it also 

suffered some drawbacks that have been improved upon by later methods. Training the R-CNN 

involves multiple stages. First, the convolutional network is fine-tuned on object proposals then 
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the classification layer is replaced with SVMs to fit the extracted features before bounding box 

regressors are trained. This makes the pipeline difficult to train. The process of generating 

region proposals is time-consuming (around 2 seconds to generate 2000 region proposals), and 

a lot of the proposals are redundant. Another major drawback is the fixed input size of region 

proposals, which is achieved by warping or cropping the sub-image irrespective of its original 

size or aspect ratio to a pre-defined dimension before input to the CNN. Lastly, the approach 

is very computationally expensive in terms of storage requirements and processing time. This 

results from storing features extracted from each region proposal (~2000 per image) for later 

processing during training and passing warped sub-images individually through a deep 

network. Consequently, this usually requires many days of computation and hundreds of 

gigabytes of storage space. At test time, features are individually extracted from each object 

proposal in the test image, resulting in a slow inference speed taking about 47 seconds per 

image.  

 

2.7.2 Fast Region-based Convolutional Neural Network  

An improved and more practical method for object detection called Fast Region-Based 

Convolutional Neural Network (Fast R-CNN) [149] was proposed to address some of the 

limitations of R-CNN.  Instead of extracting features for each region proposal individually as 

in R-CNN, the entire image is processed with the CNN to produce feature maps. The method 

receives an image and a set of object proposals computed using an external method as input. 

Then for each region proposal, the corresponding location on the feature map is extracted and 

resized to a fixed-length feature vector using a region of interest (RoI) pooling layer. Each 

feature vector forms the input to a sequence of fully connected layers which branches into two 

output layers: a softmax layer responsible for producing probabilities for all 𝐾 + 1 categories 

(𝐾 objects classes plus one ‘background’) and a real-valued layer that encodes refined 

bounding box co-ordinates computed using regression. Consequently, the Fast R-CNN 

architecture jointly trains the CNN, classifier and bounding box regressor end-to-end in a single 

model using backpropagation. This results in more efficient use of storage space, computation 

time, and improvements in detection accuracy. The parameters of the model, excluding the 

method for generating region proposals, are optimized jointly for classification and bounding-

box regression using a multi-task loss 𝐿 defined as: 

 𝐿(𝑝, 𝑢, 𝑡𝑢 , 𝑣) = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑡𝑢, 𝑣) (2.42) 

where 𝐿𝑐𝑙𝑠(𝑝, 𝑢) = − log 𝑝𝑢 calculates the log loss for ground truth class label, 𝑢 ∈

0,1, … , 𝐾; by convention, the catch-all background class has 𝑢 = 0.  The discrete probability 

distribution (per RoI) 𝑝 = (𝑝0, … , 𝑝𝐾) computed by a softmax over the 𝐾 + 1 outputs from the 

final fully connected layer. 𝐿𝑙𝑜𝑐(𝑡𝑢, 𝑣) is defined over the predicted offsets 𝑡𝑢 =

(𝑡𝑥
𝑢, 𝑡𝑦

𝑢, 𝑡𝑤
𝑢 , 𝑡ℎ

𝑢) and ground-truth bounding-box regression targets 𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑤, 𝑣ℎ), where 

𝑥, 𝑦, 𝑤, ℎ denote the two coordinates of the box centre, width, and height, respectively. 

[𝑢 ≥ 1] evaluates to 1 when 𝑢 ≥ 1 and otherwise 0 is employed to exclude all “background” 

RoIs. The hyperparameter 𝜆 controls the balance between the two task losses. For more 
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robustness against outliers and to eliminate sensitivity to exploding gradient, a smooth 𝐿1 loss 

is adopted for bounding-box regression, which is defined as follows: 

 𝐿𝑙𝑜𝑐(𝑡𝑢, 𝑣) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖
𝑢 − 𝑣𝑖)

𝑖𝜖𝑥,𝑦,𝑤,ℎ

 (2.43) 

where 

 
𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {

0.5𝑥2             𝑖𝑓|𝑥| < 1
|𝑥| − 0.5       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.44) 

During the training of the Fast R-CNN model, mini-batches of 𝑁 images are sampled randomly 

and 𝑅 𝑁⁄  RoIs are sampled from each mini-batch, where 𝑅 is the number of RoIs. If the 

intersection over union (IoU) of an RoI with a ground-truth box is over 0.5, the RoI samples 

are assigned to a class; otherwise, they are assigned to the background class. Furthermore, RoIs 

from the same image share computation and memory usage in the forward and backward pass. 

As a result, Fast R-CNN can achieve a much shorter detection time than R-CNN, taking less 

than a second on a recent GPU, mainly due to using the same feature map for each RoI. 

However, with a decrease in detection time, the overall time spent on computation now depends 

mainly on the performance of the method used for generating region proposals. Consequently, 

RoI generation can easily become a computational bottleneck that affects the network's overall 

performance.  

 

2.7.3 Faster Region-based Convolutional Neural Network 

R-CNN and Fast R-CNN both rely on an external method such as selective search or Edge 

Boxes to generate a candidate pool of region proposals. However, as mentioned previously, the 

region proposal computation is time-consuming and effectively becomes the computational 

bottleneck in improving performance. Both object detection methods use CPU based selective 

search algorithm, which takes around 2 seconds per image, consuming as much running time 

as the detection network. Faster Region-based Convolutional Neural Network (Faster R-CNN) 

[150] was developed as a successor to Fast R-CNN to address the computational bottleneck 

caused by using an external region proposal algorithm. Faster R-CNN is an integrated method 

that uses shared convolutional layers to generate regional proposals and object detection. The 

external region proposal method in Fast R-CNN is replaced with a Region Proposal Network 

(RPN), which proposes and refines region proposal as part of the training process, and the Fast 

R-CNN architecture is used as the detection network. Since RPN shares convolutional layers 

with the object detection network, generating regional proposals becomes almost cost-free. The 

authors mainly observed that feature maps used by object detection networks could also 

generate region proposals. This reduces the region proposal time from 2s to 10ms per image 

and sharing the convolutional layers between region proposal and detection results in an overall 

improvement in feature representation. Therefore, we can consider the Faster R-CNN as the 

combination of a region proposal network (RPN) and a Fast R-CNN object detector, unified in 

a single model which can be trained end-to-end or by alternating between fine-tuning for region 

proposal task and then fine-tuning for object detection task while keeping the proposal fixed. 
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This results in a unified network that shares convolutional features for both tasks. The 

architecture of Faster R-CNN is shown in Figure 2-13. 

Region Proposal Network (RPN). The RPN is a fully convolutional network that predicts 

bounding box coordinates and objectness scores at each position of an image, which is 

subsequently used as region proposals for the object detector network. It is specifically trained 

end-to-end for generating high-quality region proposals. Whilst other object detection 

networks such as OverFeat, Spatial Pyramid Pooling, Fast R-CNN etc., make use of a pyramid 

of scaled images or a pyramid of different filter sizes, RPN uses a pyramid of regression 

reference scheme. This enables Faster R-CNN to deal with detection windows of different 

shapes and sizes and achieve a much better running speed performance when trained on single-

scale images since it avoids enumerating images or filters of multiple scales or aspect ratios.  

First, an input image is fed into the backbone convolutional neural network to extract feature 

maps. The RPN takes these feature maps as input and outputs a set of rectangular object 

proposals, each associated with an objectness score used to determine whether the proposal 

contains an object or not. Computation is shared with the Fast R-CNN detector by employing 

the same convolutional layers of the backbone network for feature extraction. For every point 

in the output feature map, the RPN needs to predict whether an object is present in the input 

image at this corresponding location and estimate its size. This is done by sliding a small CNN 

over the output feature map from the last shared convolutional layer, producing multiple object 

proposals at each sliding-window location (see Figure 2-12). The maximum number of possible 

region proposals at each location is denoted as 𝑘 and parametrized relative to 𝑘 so called 

anchors (references boxes). These anchors are designed to accelerate and improve region 

proposals at each location by pre-defining possible objects of various scales and aspect ratios. 

An anchor is centred at each sliding window location, with each anchor having 3 

scales (1282, 2562, 5122) and 3 aspect ratios (1:1, 1:2, 2:1), yielding a total of 𝑘 = 9 anchors 

at each sliding position. As the RPN moves through each pixel in the output feature map, we 

check if the anchor contains any objects and refine the coordinates of the anchors to produce 

bounding boxes as object proposals. Next, a 3 × 3 convolution with 512 output units is applied 

to the output feature map, thus mapping each sliding window to a lower-dimensional feature 

space. This produces a 512-d feature map for every anchor box, which is fed into two sibling 

layers: a 1 × 1 convolution layer with 4𝑘 output units for bounding-box regression (reg) and a 

1 × 1 convolution layer with 2𝑘 output units for object classification (cls). For a convolutional 

feature map of size 𝐻 × 𝑊, there are (𝐻 × 𝑊) × 𝑘 anchors in total. The regression layer has 

an output of size (𝐻 × 𝑊 × 36) which give the 4 regression coefficient (centre coordinates, 

height and width) of each of the 9 anchors for every point in the feature map. These coefficients 

are used to refine the coordinates of the anchors containing any objects. Likewise, the 

classification layer has an output size (𝐻 × 𝑊 × 18) which gives the probability of a proposal 

containing an object or not at each point in the feature map within all 9 of the anchors at that 

point.   
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Figure 2-12: How the RPN works [150]. 

 

Loss functions. Each anchor box is assigned a binary label (object or not object). An anchor 

is assigned a positive label if it satisfies either of two conditions: 1) the anchor has the highest 

IoU (intersection over union) overlap with a ground-truth box. 2) The anchor has an IoU higher 

than 0.7 with any ground-truth box. It is also possible that the same ground-truth box may cause 

multiple anchors to be assigned positive labels. The first condition is adopted in rare cases 

where the second condition fails to find any positive samples. On the other hand, when an 

anchor has an IoU less than 0.3 for all ground-truth boxes, it is assigned a negative label. The 

remaining anchors (neither positive nor negative) are ignored for RPN training. During 

training, all anchors that cross the image boundary are disregarded, avoiding any contribution 

to the total loss. If the boundary-crossing anchors are not ignored, they introduce large error 

terms in the objective, which are difficult to correct, thus preventing the training from 

converging. Each mini-batch (256 samples) for training the RPN is obtained from a single 

image. If all the anchors from the image are sampled, this will bias negative samples in the 

learning process. Therefore 128 positive and 128 negative samples are randomly chosen to 

form a mini-batch, and in case of an insufficient number of positive samples, the mini-batch is 

padded with additional negative samples. With this, the training loss for the RPN for an image 

is given by: 

 
𝐿({𝑝𝑖}, {𝑡𝑖}) =

1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖

∗) + 𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)

𝑖𝑖

 
(2.45) 

where 𝑖 is the index of the anchor in the mini-batch. 𝑝𝑖 is the predicted probability of anchor 

𝑖 being an object from the classification branch and 𝑝∗is the ground-truth label (1 for positive 

anchor and 0 for negative one). 𝐿𝑐𝑙𝑠 is the log loss over two classes (object vs not object) for 

classification. The regression loss 𝐿𝑟𝑒𝑔 is activated only for positive anchors i.e. 𝑝𝑖
∗ = 1 and 

disabled otherwise. 𝑡𝑖 is a vector representing the output prediction of the regression layer, 

which consists of four variables [𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ]  and 𝑡𝑖
∗ represents the coordinates of the ground-

truth box associated with a positive anchor, calculated as: 

𝑡𝑥
∗ = (𝑥∗ − 𝑥𝑎) 𝑤𝑎,⁄   𝑡𝑦

∗ = (𝑦∗ − 𝑦𝑎) ℎ𝑎 ,   𝑡𝑤
∗ = log(𝑤∗ 𝑤𝑎),⁄⁄   𝑡ℎ

∗ = log(ℎ∗ ℎ𝑎)⁄  (2.46) 
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where 𝑥, 𝑦, 𝑤, and ℎ represent the anchor box’s centre coordinates, width and height, 

respectively. 𝑥∗, 𝑥𝑎  represent the coordinates of the ground-truth box and the anchor box 

(likewise for 𝑦, 𝑤, ℎ). The classification loss is normalized by the size of the mini-batch 

𝑁𝑐𝑙𝑠 and the regression loss is normalized by the number of anchor locations 𝑁𝑟𝑒𝑔. The two 

terms are weighted by a balancing parameter 𝜆. The learned regressor output 𝑡𝑖  is applied at 

test time to its corresponding anchor box, and the parameters 𝑥, 𝑦, 𝑤 and ℎ for the predicted 

object proposal can be calculated from: 

𝑡𝑥 = (𝑥 − 𝑥𝑎) 𝑤𝑎,⁄   𝑡𝑦 = (𝑦 − 𝑦𝑎) ℎ𝑎,   𝑡𝑤 = log(𝑤 𝑤𝑎),⁄⁄   𝑡ℎ = log(ℎ ℎ𝑎)⁄  (2.47) 

Non-maximum suppression (NMS) is adopted for some highly overlapping region proposals 

to reduce redundancy based on their class score. The IoU threshold is set to 0.7 for NMS. The 

bounding box proposals from the RPN are used to pool features from the output convolution 

feature map, which forms the input for the Fast R-CNN detector network.  

Training methods 

Separately training the RPN and Fast R-CNN networks will cause them to learn different 

features in their convolutional layers. Therefore, a training method is required to facilitate 

sharing convolutional layers between the two networks, rather than learning two isolated 

networks. This section looks at different techniques for training Faster R-CNN as a unified 

network.  

Alternate training. In this approach, the RPN is trained end-to-end to generate region 

proposals. Then the proposals are used to train the detector network. The tuned object detector 

network is again used to initialize the RPN, and the process is repeated alternatingly.  

Approximate joint training. This approach merges the RPN and the Fast R-CNN network 

into a unified network, as shown in Figure 2-13. When training the Fast R-CNN detector, 

during the forward pass, the RPN generates region proposals which are treated as fixed, pre-

computed proposals, and during the backward pass, the backward propagated signal from the 

RPN loss and the Fast R-CNN loss are combined for the shared layers. However, by doing so, 

we ignore the derivatives with respect to the coordinates of the generated region proposals, 

which are also the network’s response, thus making it an approximate solution. Nonetheless, 

the approach is easier to implement and reduces training time by 25-50% compared with the 

alternate training method while producing comparable results. Therefore, we adopt this method 

for all related experiments in this thesis.  

Non-approximate joint training. Given that the region proposals generated by the RPN are 

also functions of the input, but the gradients with respect to the bounding boxes’ coordinates 

are ignored in the approximate joint training approach, a differentiable RoI pooling layer with 

respect to the bounding boxes’ coordinates is required in a non-approximate training approach 

while the remaining training procedure is the same as above.  
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Figure 2-13: Illustration of the Faster R-CNN model architecture.  

 

2.7.4 Single Shot MultiBox Detector (SSD) 

One-stage Detectors 

All the above methods for object detection we previously discussed (R-CNN, Fast R-CNN and 

Faster R-CNN) are all region-based frameworks, whereby one part of the network is dedicated 

to generating region proposals while the other part classifies these proposals. The detection 

typically happens in two stages: First, the model proposes a candidate pool of regions of interest 

(RoIs) through a selective search or region proposal network. Features are extracted from the 

input image with a deep CNN, and then classification and bounding box regression are 

performed on the region candidates. These steps are usually performed separately, and even in 

the case of Faster R-CNN, an alternate training scheme is often required for the RPN and 

detector networks to share convolutional parameters. Even though they can achieve high 

detection accuracy, the computational cost of handling different components may become a 

major drawback for some real-time applications due to the low frame rate. Combining these 

two stages into one network is a different approach for performing object detection known as 

a one-stage approach. The region proposal is completely eliminated in the one-stage approach, 

and detection is run directly over a dense sampling of possible locations. Thus, classification 

and regression are done in a single shot using dense sampling of pre-defined boxes to locate 

objects at various scales and aspect ratios. Since the whole detection pipeline is a single 

network, optimization can be performed directly end-to-end based on detection performance. 

Consequently, this approach is much faster (both for training and inference) and easier to 

implement. However, this is often at the cost of slightly worse detection accuracy. 

The Single Shot MultiBox Detector (SSD) [151] is one of the most commonly used one-stage 

detectors. The main components consist of a base network and several multiscale convolutional 
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feature layers added in series to the end of the base network, as illustrated in Figure 2-14. The 

base network, typically a deep CNN, is used to extract features from the input image. The 

original implementation uses a truncated VGG-16 architecture [152], replacing the fully 

connected layers with a set of auxiliary convolutional layers to progressively decrease the size 

of the input feature map at each subsequent layer while extracting features at multiple scales. 

However, in recent implementations, the base network is commonly replaced with variations 

of the ResNet architecture [126]. The network fuses predictions from multiple feature maps 

with different resolutions to process objects of various sizes. Similarly to Faster R-CNN, SSD 

utilizes a set of default boxes (anchors) with different aspect ratios and scales to discretize the 

output space of bounding boxes. 

Each anchor box has a fixed size and position in relation to its corresponding cell, and the 

whole feature map is tiled with pre-defined anchor boxes. SSD generates a different number of 

anchor boxes with different aspect ratios based on the output feature size of the base network 

and each multiscale feature block to detect objects of various sizes. The multiscale feature 

layers are responsible for predicting the offsets to the default boxes (anchors) and their 

associated confidence scores for every location of the feature map. They can be seen as a 

pyramid representation of the input image at different scales where each multiscale feature 

block reduces the height and width of the feature map provided by the previous layers (i.e. the 

size of the feature map is halved). The base network can be designed such that the output feature 

map has a larger height and width. This enables more anchor boxes to be generated based on 

this feature map, thus allowing smaller objects to be detected. Each element in the feature map 

is used to expand the receptive field on the input image so that multiscale feature blocks closer 

to the output have a smaller coarse-grained feature map and generate fewer anchor boxes. As 

a result, they have a larger receptive field and are better suited for detecting larger objects. On 

the other hand, earlier layers have larger fine-grained feature maps, which are good at capturing 

small objects. Since feature maps at different levels have receptive fields of different sizes, we 

rescale the anchor boxes on different levels so that one feature map is only responsible for 

detecting objects at a particular scale. At each location (𝑖, 𝑗) of the 𝑙-th feature layer 𝑙 =

1, … , 𝐿 of size 𝑚 × 𝑛, 𝑖 = 1, … 𝑛, 𝑗 = 1, … 𝑚, the anchor boxes are defined according to a 

unique linear scale proportional to the layer level as: 

 𝑠𝑙 = 𝑠𝑚𝑖𝑛 +
𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛

𝐿 − 1
(𝑙 − 1) (2.48) 

and 5 aspect ratios 𝑟 ∈ {1, 2, 3, 1 2,⁄ 1 3⁄ } with an additional scale 𝑠𝑙
′ = √𝑠𝑙𝑠𝑙+1 when the 

aspect ratio is 1, this gives a total of 6 anchor boxes per feature cell. The width 𝑤𝑙
𝑟 and height 

ℎ𝑙
𝑟 are given by 𝑠𝑙√𝑟 and 𝑠𝑙 √𝑟⁄  respectively with centre location (𝑥𝑙

𝑖 , 𝑦𝑙
𝑗
) = (

𝑖+0.5

𝑚
,

𝑗+0.5

𝑛
).  

For each of 𝑘 anchor boxes, the model outputs 4 offsets and 𝑐 class probabilities by applying 

3 × 3 convolutional filters. Therefore, for a given feature map of size 𝑚 × 𝑛, we need 

𝑘𝑚𝑛(𝑐 + 4) prediction filters. During training, SSD selects one box from the set of anchor 

boxes by matching each ground-truth box with the default box with the highest overlap 

according to a specified threshold. The network is trained end-to-end to minimize the cost 
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function, which is a weighted sum of the localization loss ℒ𝑙𝑜𝑐 and confidence loss ℒ𝑐𝑜𝑛𝑓 

according to:  

 
ℒ(𝑥, 𝑐, 𝑙, 𝑔) =

1

𝑁
(ℒ𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼ℒ𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)) (2.49) 

where 𝑁 is the number of matched default boxes. If 𝑁 = 0 (no default box was found), the total 

loss is set to 0. 𝛼 balances the weights between the two losses (picked by cross-validation). The 

localization loss is a smooth L1 loss between the parameters of the predicted box 𝑙 and the 

ground truth box 𝑔. SSD also regresses to offsets for the centre (𝑐𝑥, 𝑐𝑦) of the default bounding 

box 𝑑, with width 𝑤 and height ℎ, similar to Faster R-CNN bounding box regression.  

ℒ𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) = ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ}

𝑁

𝑖∈𝑃𝑜𝑠

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖
𝑚 − 𝑔̂𝑗

𝑚) 

(2.50) 
 𝑔̂𝑗

𝑐𝑥 = (𝑔𝑗
𝑐𝑥 − 𝑑𝑖

𝑐𝑥) 𝑑𝑖
𝑤⁄  𝑔̂𝑗

𝑐𝑦
= (𝑔𝑗

𝑐𝑦
− 𝑑𝑖

𝑐𝑦
) 𝑑𝑖

ℎ⁄   

 𝑔̂𝑗
𝑤 = log(𝑔𝑗

𝑤 𝑑𝑖
𝑤)⁄  𝑔̂𝑗

ℎ = log(𝑔𝑗
ℎ 𝑑𝑖

ℎ)⁄   

The confidence loss is the softmax loss over multiple class confidences 𝑐: 

ℒ𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − ∑ 𝑥𝑖𝑗
𝑝 log(𝑐̂𝑖

𝑝) − ∑ log(𝑐̂𝑖
0)

𝑖∈𝑁𝑒𝑔

𝑁

𝑖∈𝑃𝑜𝑠

 (2.51) 

where 

𝑐̂𝑖
𝑝 =

exp(𝑐𝑖
𝑝)

∑ exp(𝑐𝑖
𝑝)𝑝

 
(2.52) 

where 𝑥𝑖𝑗
𝑝

 indicates whether the 𝑖-th default box and the 𝑗-th ground truth box are matched for 

an object in class 𝑝. Pos is the set of matched (positive) bounding boxes, and Neg is the set of 

negative examples selected through hard negative mining. During training, as most of the 

default boxes will have low IoUs, negative examples outweigh the number of positive ones. 

Therefore, all the negative default boxes are sorted according to their confidence loss, and the 

model picks the top candidates with the highest confidence for training so that the ratio between 

negative and positive samples is at most 3:1. Conceptually, SSD is simpler than the region-

based detectors as it eliminates proposal generation and any subsequent feature resampling, 

making it faster at test time.  
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Figure 2-14: Illustration of the SSD model architecture. 
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Experimental procedure and proposed solutions 

 

3.1 Investigated lithium-ion battery specimens 

All investigations were performed on commercial lithium-ion round cells of type 18650, 

typically used in power tools and plug-in electric vehicles. For developing the supervised defect 

detection models, all training samples were obtained from specimens with the cathode 

comprising lithium, nickel, manganese, and cobalt oxide (NMC) coating, while the anode 

coating consists mainly of graphite. The specific mixing ratio of the cathode materials is 

LiNi0.6Mn0.2Co0.2O2, often abbreviated as NMC-622. Table 3-1 describes all the battery 

specimens used in our experiments.  

Table 3-1: Listing of all the examined battery cells and their properties. 

Sample 

designation 
Manufacturer Model 

Nominal 

capacity mAh 

Positive 

electrode 

material 

Negative 

electrode 

material 

INSP_018 LG Chem INR18650MG1 2850 NMC Carbon 

INSP_026 LG Chem ICR18650B4 2600 NMC Carbon 

INSP_030 LG Chem INR18650MG1 2850 NMC Carbon 

INSP_033 LG Chem ICR18650B4 2600 NMC Carbon 

INSP_038 LG Chem ICR18650B4 2600 NMC Carbon 

INSP_042 LG Chem INR18650HB6 1500 NMC Carbon 

INSP_044 LG Chem ICR18650B4 2600 NMC Carbon 

INSP_047 LG Chem ICR18650B4 2600 NMC Carbon 

INSP_051 LG Chem ICR18650B4 2600 NMC Carbon 

INSP_007 Samsung INR18650-30Q 3000 NCA Carbon 

INSP_004 Sanyo UR18650W2 1500 NMC, MnO Carbon 

INSP_001 Sony US18650VTC5A 2600 NCA Carbon, 

SiO 

 

3.2 Lithium-ion battery sample preparation 

Before commencing with the sample preparation, the open-circuit voltage of the cell is 

measured and documented, then discharged with an incandescent lamp at ≤ 2.5 𝑉. For the light 

microscope examination, cross-sections were prepared based on the detailed preparation 

instructions described in [153]. First, the cell is fixed in a bespoke sample holder and sectioned 

across the marked indications, as illustrated in Figure 3-1, inside a glove box under an argon-

flooded atmosphere using a band saw. Subsequently, the sample pieces are subjected to a 

cascade washing in dimethyl carbonate (DMC) for at least 24 hours before evacuating at 
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approximately 0.06 bar in the CitoVac (Struers) to vaporise residues of solvent and electrolyte. 

Afterwards, the samples are embedded in epoxy resin with the separating plane facing 

downwards to improve the stability of the microstructure. Then successively finer silicon 

carbide (SiC) abrasive papers are applied to remove material from the sample surface until the 

desired surface quality is achieved. First, the aim is to remove at least 2mm from the splitting 

plane to reduce any artefacts to a minimum (see Figure 3-2). Further preparation steps include 

gentle lapping, fine grinding and polishing with different lubricants and diamond suspensions. 

After polishing, various microstructural constituents can be easily visualized under the 

microscope.   

 

 

Figure 3-1: Schematic representation of a cell sample and its division into test pieces. 

 

 

Figure 3-2: Shows cylindrical cross-sections obtained from three cells after the initial grinding 

step with the SiC abrasive paper. 

 

3.3 Investigated sintered NdFeB magnet specimens 

Similar to the experiments on Li-ion batteries, all investigations were performed on commercial 

NdFeB magnets. Specifically, for training and evaluating the unsupervised defect detection 

models, the magnets obtained for the investigations were produced by sintering using powder 

metallurgical processes as described in Section 2.2. Table 3-2 lists all the specimens used in 

our experiments and their magnetic properties. 
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Table 3-2: Listing of all the examined magnets and their properties. Note that the exact 

chemical composition of specimen 6 is not known.  

Specimen Manufacturer 
Cross-

section label 
Remanence Br Coercivity HcJ Max. energy product 

   T kA/m kJ/m3 

1 Manufacturer 1 HS17051_15 1.19 2532 273 

2 Manufacturer 2 HS17051_22 1.14 2945 252 

3 Manufacturer 1 HS17051_35 1.21 1080 281 

4 Manufacturer 2 HS17051_90 1.14 2945 252 

5 Manufacturer 3 HS17051_75 1.38 2046 369 

6 Manufacturer 4 HS17051_03 1.34 1569 350 

 

Specimen Chemical composition [at %] 

 Fe Nd Dy Cu Co Pr Ga Al Ti Gd 

1 81.4 9.6 3.4 - 2.4 2.8 - 0.3 - - 

2 81.2 12.0 5.5 - 1.3 - - - - - 

3 83.4 9.2 - - 0.7 2.5 - 0.9 - 3.3 

4 81.2 12.0 5.5 - 1.3 - - - - - 

5 82.7 10.7 1.3 0.2 0.8 2.4 0.1 1.7 0.1 - 

 

3.4 Sintered NdFeB magnet sample preparation 

For the light microscope examination, cross-sections of the magnet samples were prepared 

based on standard metallographic procedure. First, the specimens were embedded using 

PolyFast (Struers), a conductive hot mounting medium suitable for fast mounting, in sections 

with an outer diameter of 30mm. Next, the grinding preparation is carried out in RotoPol-31 

(Struers) up to a grit size of #1200, using SiC abrasive paper. This was followed by several 

polishing steps with a diamond suspension of 9 𝜇𝑚, 3 𝜇𝑚, 1 𝜇𝑚 up to 
1

4
 𝜇𝑚 grit size. Examples 

of embedded cross-sections of the prepared magnet specimens suitable for light microscope 

examination are shown in Figure 3-3.  

 

 

Figure 3-3: Cross-sections of prepared magnet specimens. 
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3.5 Light microscopy, image acquisition and processing 

After achieving the desired sample grinding surface quality, high-resolution images of the 

relevant areas of the specimens are acquired in bright-field illumination using a light 

microscope of the type Carl Zeiss Axio Imager.Z2m Vario with the aid of the image analysis 

software Zen core 2.5 and the image acquisition settings listed in Figure 3-4. Once the 

acquisition is finished the complete image of the cross-section surface is saved in the software’s 

czi format. The file size typically ranges from around 20 GB to over 100 GB depending on the 

size of the sample and bit depth. Subsequently, the large image files are converted to smaller 

patches better suited for image processing with open source deep learning software packages.   

          

Figure 3-4: Axio Imager.Z2m Vario light microscope (Zeiss) for automated image acquisition 

of prepared specimen (left). Acquisition parameters for digital imaging of the prepared 

specimen (right). 

 

3.6 Software and hardware specification 

Aside from the sample preparation and image acquisition steps described above, all subsequent 

image processing and computer vision experiments were carried out using python 3.6 and the 

scientific computing open-source libraries. Simple Big Image (SBI) software library [154] was 

used to convert large czi image files into png image patches. Apache MXNet v1.5.0 with the 

Gluon high-level framework was used to develop neural network models and experiment with 

various deep learning architectures. The models were trained on a Dell workstation with a 24 

GB NVIDIA Quadro M6000 graphics processing unit (GPU). 

 

3.7 Detecting defects in lithium-ion battery 

Building a robust image classifier or object detection model involves several steps regarding 

the training data set selection, network architecture design, evaluation criteria, hyperparameters 

optimization etc. This section starts with an overview of the design steps required for 

developing such a model, and each step is discussed in more detail in subsequent sections. Our 

main objective is to build a tool for quality assessment of Li-ion battery electrodes, whereby a 

large cross-section micrograph is fed as input, and the output is an image gallery containing all 

the detected defects with their corresponding statistics. The problem is approached from a data-
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driven perspective, using state-of-the-art computer vision techniques (convolutional neural 

network) to extract and classify features from the images into the appropriate category. 

However, due to the limited number of examples of defects in our initial data set, in the first 

step, a sliding window classifier is used to scan the entire cross-section for defects. Note that 

this is a limited setup for defect detection because we can only detect defects that fall within 

the specific window size. Nonetheless, this is used to iteratively build up our data set in order 

to develop more complex approaches. Section 3.10 describes approaches to detect defects of 

various sizes not constrained by the window size and can perform near real-time analysis.  

In summary, our approach for defect detection can be divided into three parts: in the first part, 

a limited amount of examples of images with defects and without defects are collected for 

training a binary classifier to distinguish both classes. Subsequently, the trained classifier is 

applied to several full cross-section images and manually sorted the results into five defect 

categories. However, not every class contained enough representative examples after sorting 

the defect into their various classes. Therefore, the new data set consisting of multiple defect 

classes is used in the second part to train a multiclass classification model to give us a better 

overview of typical defect types. Finally, an object detection model is developed using a more 

substantial and representative data set to improve the accuracy of the detection model and to 

characterize each type of defect by verifying the chemical composition through correlative 

analysis techniques.  

Overview of the design steps 

The process for developing the quality evaluation model can be divided into three stages: 

- Sliding window binary image classifier  

- Multiclass sliding window classifier 

- Real-time object detection model  

Each stage of the model development process involves multiple iterations of the steps 

illustrated in Figure 3-5. The steps can be summarized as follows: first, a small amount of data 

is collected and labelled to train a model. Next, the data is cleaned to remove duplicates or bad 

images. Then the model is trained on the data set, and the best version based on the evaluation 

criteria is selected. Subsequently, the trained model is applied to the entire overview image of 

the battery; the result is analyzed and used to generate more labelled examples. The new 

examples are added to the initial data set, and the process is repeated several times until we 

achieve satisfactory performance.  

 

 

Figure 3-5: Illustrates the steps involved in developing the defect detection model. 
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3.8 Sliding window binary image classifier 

A simple approach for localizing objects in an image is to slide a classifier over the image, 

independently classifying each image patch as being an object of interest or not. This typically 

involves four simple steps: scanning every location in the image with fixed-sized sliding 

windows, extracting features from each window position, and feeding the features into a 

classifier (e.g. SVM or MLP). Since objects can be of very different scales, the image is 

scanned at different scales forming an image pyramid. Lastly, non-maximum suppression 

(NMS) is used to ignore redundant, overlapping bounding boxes. A similar sliding window 

technique is developed for our first approach to detect defects in the electrodes of LIBs. 

Although more modern object detection techniques have superseded this approach, it is adopted 

to simplify the processing pipeline and keep the computational complexity low while building 

out the data set. The structure of the proposed framework is illustrated in Figure 3-6. For the 

training phase, patches of equal sizes are manually extracted from large micrographs of LIB 

electrodes and sorted into two categories, defect and no-defect, to create the initial training 

dataset. Once the model is trained, the performance is evaluated using a sliding window to scan 

the entire micrograph for new defects. This way, the effectiveness of the model can be quickly 

tested, and a larger data set containing more examples of defects can be collected within a 

reasonable amount of time and effort.   

 

 

Figure 3-6: Structure of the proposed framework. (a) Large overview image of electrode 

micrograph. (b) Extracted patches. (c) Pretrained CNN. (d) New classification layer. (e) Defect 

detection and localisation. (f) Cropped output. 
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3.8.1 Dataset for training the binary classification networks 

The initial dataset (Dataset-A) used for training the sliding window classifier contains 1540 

RGB colour images of electrode patches. The images were extracted from four cross-section 

images of two batteries with the same chemistry (INSP_026 and INSP_033). Subsequently, the 

images were labelled and sorted into two categories; images without defects (1220) and images 

containing microstructural defects (320), such as foreign particle inclusion, pores, cracks and 

inhomogeneous coating. Examples of images from both classes are shown in Figure 3-7. One 

of the main challenges for training a supervised model for detecting defects is the large class 

imbalance between the number of examples without defects and examples with defects. 

Moreover, training on an imbalanced data set can bias the model towards the majority class. In 

our case, due to the infrequency of defects (~1 in 1 mm2) in the electrode samples, the data 

from the collection process are usually imbalanced. Obtaining examples without 

microstructural defects was much easier than the effort required to collect sufficient examples 

with defects. Also, because many of the defects have similar morphology to the electrode active 

material, this makes the problem even more challenging for manual visual inspection and a 

machine learning model. Nevertheless, in this classification task detecting rare defects while 

minimizing the number of false positives is essential.  

 

 

Figure 3-7: Examples of images from the binary classification data set. (a) Shows some 

examples of images that do not contain any defects. (b) Show examples of images containing 

at least one type of electrode defect. 

 

3.8.2 Classification network architectures  

In the past decade, many deep CNN architectures have been developed and evaluated on the 

ImageNet dataset and achieved outstanding results. A very effective and commonly used 

approach in deep learning to achieve good classification performance on relatively small 



63 

Experimental procedure and proposed solutions 

 

datasets is to modify a network pretrained on a large dataset such as ImageNet and fine-tune 

the weights on the smaller dataset. Therefore, ResNet [126] and VGG [152] models were 

selected because they are one of the top-performing models on the ImageNet dataset and are 

also commonly used for many transfer learning and defect detection problems. In addition, 

their architectures are relatively simple compared to some other state-of-the-art models, which 

reduces the chance of the network overfitting to our much smaller imbalanced dataset. The 

performances of both models are evaluated using a standard cross-entropy loss function that 

gives equal importance to each class and to specifically designed loss functions and techniques 

for handling imbalanced data.  

Residual Network (ResNet)  

Previously, when training very deep neural networks using gradient-based learning and 

backpropagation, the gradient became very small to the point where it vanishes after a certain 

depth. Thus effectively preventing the weights from changing values and ultimately stopping 

the network from learning. This is commonly known as the vanishing gradient problem. The 

ResNet architecture was designed to prevent many of the issues that affected very deep neural 

networks, including the vanishing gradient problem, predominantly through residual 

connections, which allows the model to easily pass useful information from a previous layer to 

the next. There are several variants of the ResNet architecture named according to the number 

of layers, such as ResNet-18, ResNet-50, ResNet-101 and ResNet-152. We selected the smaller 

ResNet-50 model with 50 layers for our experiments because of our relatively small dataset. 

The ResNet-50 architecture is shown in Figure 3-8.   

 

 

Figure 3-8: Shows various ResNet model architectures [126]. 

 

Visual Geometry Group (VGG) 

The VGG architecture has been one of the most widely used models in computer vision over 

the last few years. It mainly consists of stacked convolutional and max pooling layers. The 

VGG model improves over prior state-of-the-art models by replacing large kernel-sized filters 

(11 and 5 in the first and second convolutional layers) with multiple 3x3 kernel-size filters. The 

main idea is that using a smaller receptive field is better than using a large filter size because 
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multiple non-linear layers can be incorporated, allowing the network depth to be increased and 

more complex features to be learned while decreasing the number of parameters. In addition, 

the representations learnt by the model are known to generalise well to other datasets. There 

are two common variants of the VGG model, namely, VGG-16 and VGG-19, which have 16 

and 19 layers, respectively. The VGG-19 architecture was selected for our experiments since 

it achieved the best performance in one of our previous studies on a similar data set [57]. The 

VGG-19 architecture is shown in Figure 3-9.   

 

 

Figure 3-9: VGG model architectures. The convolutional layer parameters are denoted as 

“conv(receptive field size)-(number of channels)” [152]. 

 

3.8.3 Evaluation metrics and loss functions for the image classifiers 

We evaluate the predictive performance of each method against the ground truth labels using 

the following standard metrics: 

- Accuracy 

- F1-score 

- Area under receiver operating characteristic curve (AUROC) 

- Area under precision recall curve (AUPRC) 

- Confusion matrix 

 

Accuracy. Classification accuracy is the most frequently used metric to evaluate the 

performance of a learning system on classification problems. Accuracy is calculated as the 
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number of examples in the test set that were correctly predicted, divided by the total number 

of samples in the test set.   

 

Accuracy =
Correct predictions

Total Predictions
 (3.1) 

However, when the dataset is severely skewed, accuracy can become an unreliable measure of 

model performance because the impact of the least represented but more important examples 

is reduced compared to the majority class. For instance, considering a data set with a 100:1 

class imbalance, 99% classification accuracy can be achieved by simply predicting the majority 

class for all examples in the test set, which is clearly undesired and can lead to erroneous 

conclusions. Therefore, the model performance is also evaluated using F1-score and AUROC, 

which are frequently used measures for imbalanced data problems.  

F1-score. The F1-score is a metric to evaluate the accuracy of the predictions. It combines as a 

weighted average (harmonic mean) both the precision and recall to compute the score, 

featuring a score of 1 as the best score and 0 as the worst score. The relative contribution of 

precision and recall to the F1-score are equal.  

 

F1score =
2 x precision x recall

precision + recall
 (3.2) 

Precision is the fraction of true positive (TP) results among the true and false positive (TP + 

FP) results returned by the classifier.  

 

precision =
TP

TP + FP
 (3.3) 

Recall is the fraction of true positive (TP) results among all the samples that should have been 

identified as positive (TP + FN).  Note that we do not use the true negatives when calculating 

precision and recall. They are only concerned with the correct predictions for each class. For a 

good model, both precision and recall should be high.  

 

recall =
TP

TP + FN
 (3.4) 

AUROC. The receiver operating characteristic (ROC) curve is a plot of the false positive rate 

(FPR) on the x-axis and the true positive rate (TPR) on the y-axis for various thresholds 

between 0 and 1. The area under the curve (AUROC) can be used to summarize the model’s 

predictive performance, where a larger area under the curve is often better. In the top left corner 

of the plot, a false positive rate of zero and a true positive rate of one is the “ideal” point. 

Likewise, since we would like to maximize the true positive rate while minimizing the false 

positive rate, the ‘steepness’ of the ROC curve is also important. AUROC values close to 1 are 

considered good, while AUROC values close to 0 imply the model is bad.  

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹𝑃𝑅 =

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (3.5) 
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AUPRC. The model outputs a probability distribution for each class, and a threshold of around 

0.5 is typically chosen to make a prediction, which is not always ideal. Depending on the 

selected threshold, the value of precision and recall can change significantly. Therefore, it is 

possible to create a plot between these sets of values by calculating the precision and recall 

values for various threshold values. This curve is known as the precision-recall curve, and the 

area under the curve is the AUPRC. Both AUPRC and AUROC are useful metrics because the 

curves of different models can be directly compared. However, AUPRC is preferred when there 

is a large class imbalance in the data set [155].  

 

Confusion matrix. The confusion matrix 𝐶 is a specific table layout that allows for easy 

visualization of the performance of a machine learning algorithm. Each row of the matrix 

corresponds to instances in the true class, while each column represents instances in the 

predicted class. In other words, entry 𝐶𝑖,𝑗 is equal to the number of observations which should 

be in group 𝑖 and predicted to be in group 𝑗.  An example of a confusion matrix is shown in 

Figure 3-10. The confusion matrix should only be filled diagonally from left to right when all 

examples are correctly predicted.     
 

 

Figure 3-10: Example of a confusion matrix for three classes (right). The last row and the last 

column (light grey) show each class's precision and recall, respectively. 

 

Weighted cross-entropy.  The weighted cross-entropy (WCE) is a variant of the cross-entropy 

loss function where all positive examples are weighted by some coefficient such that poor 

predictions of the minority class are penalised more heavily. It is typically used when there is 

a class imbalance. For instance, if the majority to minority class ratio is 100:1, the regular cross-

entropy does not compensate for this imbalance and could bias the model towards the majority 

class. WCE can be defined as follows: 

𝑊𝐶𝐸(𝑝, 𝑝̂) = −(𝛼𝑝 log(𝑝̂) + (1 − 𝑝) log(1 − 𝑝̂)) (3.6) 

where 𝑝̂ is the prediction probability of the model, and 𝑝 is the ground truth label. 𝛼 is the 

weight term used to balance the importance of positive and negative examples. A value of 𝛼 >

1 is used to decrease the number of false negatives, and 𝛼 < 1 is used to decrease the number 

of false positives.  
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Focal loss. While 𝛼 balances the importance of positive and negative examples, it does not 

differentiate between easy and hard examples. The focal loss (FL) tries to compensate for this 

by adding a modulating factor (1 − 𝑝̂)𝛾 to the cross-entropy loss. Thus FL can be defined as 

follows: 

𝐹𝐿(𝑝, 𝑝̂) =  −(𝛼(1 − 𝑝̂)𝛾𝑝 log(𝑝̂) + (1 − 𝛼)𝑝̂𝛾(1 − 𝑝) log(1 − 𝑝̂))  (3.7) 

where 𝛾 ≥ 0 is a focusing parameter that reshapes the loss function to down-weight the 

contribution of easy examples so that the model focuses training on the hard examples. When 

𝛾 = 0, this gives the balanced cross-entropy function. The hard examples are those samples the 

model misclassifies with a high probability, thereby producing large error signals.  When an 

example is correctly classified with a high probability (ground truth label is 1 and 𝑝̂ → 1), the 

value of (1 − 𝑝̂) is small. When this term is raised to the power of 𝛾, the modulating factor 

goes to 0, and the loss for easily classified examples is down-weighted, effectively reducing 

the loss contribution from easy examples. On the other hand, if an example is misclassified 

with low probability, the modulating factor is close to 1, and the cross-entropy loss is 

unaffected.  
 

3.8.4 Experiment settings for the binary classifier models 

First, the data set is randomly split such that 80% is used for training and the remaining 20% 

is used for testing. The training set consists of 1232 images, of which 976 have no defects, and 

256 contain defects. The test set consists of 308 images, 244 images with no defects and 64 

images with defects. During training, the images are resized to 256 x 256 pixels, and the pixel 

values are rescaled in the range [0, 1]. Five-fold cross-validation is used to evaluate the settings 

and tune the hyperparameters of the models on the training set. The model weights are 

initialized with pretrained weights from the ImageNet dataset and fine-tuned using our training 

set. The image pixels are normalized by subtracting the mean (0.485, 0.456, 0.406) and 

dividing by the standard deviation (0.229, 0.224, 0.225) of the ImageNet dataset. The batch 

size is set to 16 and trained for 60 epochs. The network is trained using Nesterov accelerated 

gradient (NAG) descent optimizer with the initial learning rate set to 0.001 for the first 20 

epochs, which we subsequently decay after every 20 epochs by a factor of 0.75. The momentum 

and weight decay parameters were set to 0.9 and 0.0001, respectively.  

 

During training, various data augmentation techniques are used to prevent overfitting, such as 

randomly flipping the image both horizontally and vertically, colour jittering, and randomly 

changing the image intensity. For the focal loss function, there are two hyperparameters, 𝛼 and 

𝛾, namely. Various values for 𝛼 in the range of [1, 2, 3, 4] and 𝛾 in the range [1, 2, 5] were 

evaluated. After obtaining the optimal set of parameters, the model was trained on all samples 

in the training set and evaluated on the test set. In addition, a model trained with focal loss 

function is compared to one trained with a class weighted cross-entropy loss function. For the 

weighted cross-entropy loss function, the balancing term 𝛼 is set to 4 since the ratio of the 

majority class to the minority class is 4:1. Furthermore, over-sampling and under-sampling 

techniques are used to balance the majority and minority class ratio. For the over-sampling 
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approach, defects from various positions and zoom levels are cropped from the original cross-

section image to artificially increase the number of samples in the minority class to equal the 

number of samples in the majority class. Two examples of the same defects from this data set 

are shown in Figure 3-11. For the under-sampling approach, samples are randomly removed 

from the majority class until the number of samples in the training set for the majority and 

minority classes are equal.   

 
 

 

Figure 3-11: Shows two examples of the same defect cropped from different positions to 

artificially increase the size of the dataset for oversampling. 

 

3.9 Sliding window multiclass image classifier 

In this section, further improvements to the defect detection model are made by collecting more 

examples of defects using the networks developed in the previous section and manually 

labelling and sorting the results into five main categories: foreign particle, crack, pore, 

geometric irregularity and preparation artefact. Including the examples with no defects, there 

are now six classes of images in total. Subsequently, both classification models, ResNet-50 and 

VGG-19, are retrained to classify image patches into one of the six categories.  

 

3.9.1 Dataset for training the multiclass classification networks 

The improved dataset (Dataset-B) contains 4908 image patches collected from 15 cross-section 

images of 5 battery samples with similar chemistry (INSP_018, INSP_026, INSP_030, 

INSP_033 and INSP_038). The categories of defects are distributed as follows: 1311 images 

with no defects, 749 images with foreign particle inclusions, 362 images with pores, 334 

images with cracks in the active materials, 529 images with geometric abnormalities and 1623 

images with preparation artefacts. Any object which does not have the same appearance as 

either the cathode or anode active material is categorized as a foreign particle. Pores are small 

holes or void spaces not occupied by the main active material. However, in some cases, the 

pores can be filled during the sample preparation process, making it inconspicuous and more 

difficult to detect. The cracks are small splits in the active material, mostly occurring at the 

corner of the inner windings of the electrode layers. Non-uniform electrode coating, a 

separation between the anode and cathode layer and deformation of the current collector are 

categorized as geometric irregularities. Other defects, including breakout of cathode active 

material, delamination, water and ethanol contamination, are categorized as preparation 
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artefacts. Some representative examples of images from each defect category are shown in 

Figure 3-12.  
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Figure 3-12: The five categories of electrode defects considered in this experiment. 

 

3.9.2 Experiment settings for the multiclass classifier models 

As described in the previous experiment, the dataset is randomly split using 80% for training 

and the remaining 20% for testing. This dataset contains 3926 images in the training set and 

982 images in the test set. All the images are resized to 256 x 256 pixels during training, and 

the pixel values are rescaled in the range [0, 1]. The weights of the convolutional layers were 

initialized with the pretrained weights of the best model from the previous dataset (Dataset-A), 

and the output layer weights were initialized using the Xavier initializer [156] before fine-

tuning all the layers using the new training set. The image pixels are normalized by subtracting 

the mean and dividing by the standard deviation of the ImageNet dataset. The network is trained 

using a batch size of 16 samples for a maximum of 60 epochs with early stopping criteria and 

Nesterov accelerated gradient (NAG) descent optimizer. The initial learning rate is set to 0.001 

for the first 20 epochs, decaying by a factor of 0.75 after every 20 epochs. The momentum and 

weight-decay parameter were set to 0.9 and 0.0001, respectively. Various data augmentation 

techniques such as randomly flipping the image horizontally and vertically, randomly rotating 

the image between -180 and 180°, colour jittering, and randomly changing the image intensity 

were also applied during training to prevent overfitting. Values for 𝛼 in the set [1, 2, 3, 4] and 

𝛾 in the set [1, 2, 5] were evaluated. For the weighted cross-entropy loss function, weights of 

𝛼 = [4, 3, 1, 2, 4, 1] were applied for the crack, geometric irregularity, no defect, foreign 

particle, pore and preparation artefacts, respectively, based on the sample size distribution. 

Lastly, the over-sampling technique's effect on balancing the majority and minority class ratio 

was investigated. We did not investigate the effect of the under-sampling technique in this 

experiment as it did not improve the performance of the binary classifier.  

 

3.10 Automatic localization of electrode defects using CNN 

The following sections develop defect localisation models that overcome the limitations of 

approaches for detecting electrode defects described in Sections 3.8 and 3.9. Our main 

approach is based on recent successful CNN-based object detection models for feature 

extraction and object localization. While many neural network architectures have been 

proposed for object detection, there is still no consensus on the best method for any given task.  

Therefore, the primary focus here is investigating the effectiveness of the two-stage detector 

Faster R-CNN and one-stage detector SSD described in Section 2.7.3 and Section 2.7.4, 
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respectively, for the defect detection task. Though these architectures were originally presented 

with a particular feature extractor module, both the ResNet and VGG network are investigated 

as the backbone feature extractor network since they effectively extracted useful features for 

classifying the electrode defects. These feature extraction modules are responsible for 

transforming raw image pixels of the input image into high-level featurized representation in 

order to generate tight-fitting bounding-box coordinates around each detected defect in the 

image along with their respective class labels. In the next section, the dataset used in the 

experiments to evaluate the effectiveness of the object detection models is described, followed 

by a description of the evaluation criteria used to judge the performance of each model and 

then the specific implementation details of each model architecture. Afterwards, the training 

procedure and the hyperparameter settings used in the experiments are presented. The 

performances of the models are evaluated in Section 4.1.4.     

 

3.10.1 Dataset for training the defect localization networks 

The sliding window multiclass classification model developed in the previous section was 

applied to full cross-section images to discover patterns in the detection results and build up 

our data set. The detected defects were manually categorized based on whether they occurred 

in the anode or the cathode. This results in 10 classes of defects, namely: anode carbon particle 

(ACP), anode oxide particle (AOP), anode filled pore (AFP), anode hollow space (AHS), 

cathode fluoride agglomerate (CFA), cathode round particle (CRP), cathode oxide particle 

(COP), geometry, crack, and preparation artefacts. The complete dataset consists of 3296 RGB 

colour images. The distribution of defects present in the dataset is shown in Figure 3-19. 

Defects are named based on where they occur in the electrode, the main component present in 

the defect if known and the type of defect. For instance, cathode fluoride agglomerate (CFA) 

refers to an agglomerate with a high fluoride content present in the cathode. Subsequently, the 

images are annotated with tight-fitting bounding boxes using the labelling software LabelImg, 

which saves the category and coordinates of each defect in corresponding XML files.  Figure 

3-13 shows some examples of defects from the new categories, and Figure 3-15 presents some 

annotated examples used to train the defect detection and localisation model.  
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Figure 3-13: Examples of the new categories of defects included in the dataset. 

 

3.10.2 Evaluation metrics for the defects localization networks 

Different evaluation criteria are required for defect detection and localisation than for image 

classification since we are not just predicting the class of a single defect in an image but now 

want to detect multiple defects in the same image and their respective locations. As a result, 

the performance of the model is typically evaluated using the following metrics: 

Intersection over Union (IoU). The IoU is used as a standard metric to determine whether a 

bounding box prediction is considered a true positive. A detection is considered a true positive 

if the IoU with the ground-truth box is greater than a defined threshold. The true positive in 

this case refers to the amount of correctly predicted ground-truth boxes; false positive is the 

number of non-defects that are wrongly predicted as defects, and false negative refers to the 

number of real defects which are missed. In object detection, true negative does not exist. Every 

detected box is considered a true positive or false positive by evaluating the area of overlap 

between the ground truth and the predicted box. If the area of overlap 𝑎𝑜 is above the defined 

threshold, typically 0.5, the predicted box is regarded as true positive. The IoU is calculated as 

follows: 

 
𝑎𝑜 =

𝑎𝑟𝑒𝑎(𝐵𝑝 ⋂ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ⋃ 𝐵𝑔𝑡)
 (3.8) 

where 𝐵𝑝 ∩  𝐵𝑔𝑡 denotes the intersection of the predicted bounding boxes and ground truth 

bounding boxes, while 𝐵𝑝 ∪  𝐵𝑔𝑡 denotes their union, as illustrated in Figure 3-14.   

Average precision (AP). The average precision for each class is calculated by computing the 

area under the precision-recall curve. First, divide the recall value from 0 to 1.0 into 11 points 

– 0, 0.1, 0.2 …1.0, then compute the average of the maximum precision value for these 11 

recall values. This is defined as: 

 
𝐴𝑃 =

1

11
∑ max

𝑟̃≥𝑟
𝑝(𝑟̃)

𝑟∈{0,0.1,0.2,…,1.0}

 
(3.9) 

where 𝑝(𝑟) is the measured precision at recall 𝑟.  

Mean average precision (mAP). Considering that there are target objects from different 

classes in the dataset, first compute the average precision for each class separately, then average 
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over the number of classes to obtain the mean average precision. This value allows us to 

compare the robustness of different models for all classes easily and is defined as follows: 

 
𝑚𝐴𝑃 =

1

𝑁𝑐𝑙𝑠
∑ 𝐴𝑃𝑖

𝑖

 
(3.10) 

where 𝑁𝑐𝑙𝑠 is the number of classes and 𝐴𝑃𝑖  is the average precision value for class 𝑖. 

 

 

Figure 3-14: Illustration of the intersection over union metric used to train the defect 

localization models. 

 

 

Figure 3-15: Examples of tight-fitting ground-truth bounding box labels. 

 

3.10.3 Implementation details of the defect localization networks 

Faster R-CNN based detection system 

As described in Section 2.7.3, Faster R-CNN is an integrated method that generates regional 

proposals using the Region Proposal Network (RPN) and then performs object detection using 

a shared convolutional base for feature extraction. This section describes the implementation 
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details used to design the Faster R-CNN model architecture for defect detection. We compared 

the VGG-19 architecture to the ResNet-50 architecture used for image classification in the 

previous sections for the feature extraction module. Features are extracted from the last layer 

of the “conv4” block of the ResNet-50 network and from the last layer of the fourth block of 

the VGG-19 network and used as input to the RPN. In order to generate region proposals, the 

RPN convolves a CNN with kernel size 3 × 3, padding 1, stride 1 with 1024 output units on 

the output feature map of the feature extraction network. This produces a 1024-d feature map 

for every anchor box, which is fed into two sibling layers: a 1 × 1 convolution layer with 

4𝑘 output units for bounding box regression and a 1 × 1 convolution layer with 2𝑘 output units 

for object classification.  

For instance, given an input image of 600 × 800 pixels and passing it through the feature 

extraction module, after a subsampling ratio of 16, the output will have a dimension of 

[1024 × 38 × 50]. It is common to use anchor boxes with areas of (1282, 2562, 5122) pixels 

and aspect ratios of (1:1, 1:2 and 2:1) to detect common objects like tables and cars. However, 

many of the defects in our dataset are on the scale of 25 × 25 pixels or smaller. Therefore, in 

this work, anchors are generated with 5 scales (2, 4, 8, 16, 32) and 3 aspect ratios (0.5, 1, 2) in 

order to match the size and scale of objects in our dataset and detect defects of very different 

scales and aspect ratios, with the smallest anchor box chosen to be 16 × 16 pixels, thus yielding 

a total of 𝑘 = 15 anchors at each sliding position and 28500 (38 × 50 × 15) anchors in total. 

Then the RPN is applied on the output feature map, which generates proposals with output 

dimension (28500 × 4) for bounding box regression and their respective objectness score with 

dimension (28500 × 2) for object classification, as shown in Figure 3-16. As a result, the RPN 

produces proposals for each anchor box and their objectness scores. An anchor box is assigned 

a positive label if it has the highest IoU overlap with a ground truth label or IoU greater than 

0.7 with any ground truth label. A non-positive anchor box is assigned a negative label 

(background) if it has IoU less than 0.3 for all ground truth boxes. All the other anchor boxes 

with IoU values between 0.3 and 0.7 and anchor boxes that fall outside the image are ignored 

and do not contribute to the training objective. Since a much larger ratio of the generated anchor 

boxes will have negative labels, we randomly sample 128 positive anchors and 128 negative 

anchors, giving a total of 256 anchors for training using the smooth L1 loss for bounding box 

regression and cross-entropy loss for classification, as shown in Equation (2.45). The 

regression outputs are offset with anchor box locations using Equation (2.47). 

 

Figure 3-16: The Region proposal network takes a feature map as input and outputs a set of 

rectangular object proposals, each having a score describing whether the region contains an 

object or not. 
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Once the RPN outputs are generated, before sending to the ROI pooling layer for extracting 

fixed-length feature vector, the region proposals need to be pre-processed since there is a high 

degree of overlap between the generated bounding box proposals. Therefore to reduce 

redundancy, non-maximum suppression (NMS) is applied to the region proposals based on 

their class scores, using an overlapping threshold of 0.7 to define the minimum area required 

to remove overlapping bounding boxes. This results in about 2000 region proposals per image, 

and we select the top-N ranked proposals for detection (2000 proposals while training and 300 

proposals while testing). This gives the final region proposals used as input to the Fast R-CNN 

detector, which tries to predict the locations of defects for the proposed boxes and the 

corresponding class label for each proposal. Note that since each mini-batch is collected from 

a single image containing many positive and negative proposals, but the vast majority of 

samples will be negative and not have any defects, there will be an extreme class imbalance 

while training that could bias the network towards negative samples. Therefore, a random 

sample of 128 boxes from the top 2000 region proposals is taken to form a mini-batch, and the 

losses are computed only for these boxes. A positive ratio of 0.25 is used to select the number 

of positive examples out of the 128 samples. If there are more than 32 positive samples in an 

image, 32 proposals are sampled from the positive ones, and if there are fewer positive boxes, 

the samples are padded with negative boxes. For a region proposal to be positive, the minimum 

overlap with any ground truth label is set to 0.5. Next, ROI pooling is used to extract features 

from the output of the base feature extractor network for each of the sampled regions proposed 

by the RPN. Note that the input image is passed only once, and the computed features are 

shared across all the region proposals. Considering that we have objects of various sizes in the 

input image, the ROI pooling layer takes a section of the output feature map corresponding to 

the region proposal and scales it to a pre-defined size of 7 × 7. This is done by dividing the 

region proposal into sections with the same dimension as the desired output and computing the 

largest value in each sub-window using the max pooling operation. Therefore, we get consistent 

feature maps with fixed sizes from proposals of different sizes, which saves a lot of processing 

time since the same input feature map for all the regions can be used. Each feature vector from 

the ROI pooling layer is fed into a sequence of fully connected layers that branch into a 

classification and regression head, as shown in Figure 3-17. The output vector from the 

classification head contains probability estimates for each of the 𝐾 defect classes plus an 

additional background class, while the regression head outputs refined bounding-box positions 

for one of the 𝐾 classes. Finally, the two sibling output layers are used to compute the multi-

task loss on each labelled ROI using Equation (2.42) to jointly train for classification and 

bounding-box regression, using the approximate joint training approach described in Section 

2.7.3. 

 

Figure 3-17: The Faster R-CNN model. 
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Single shot multibox detector based detection system 

Compared with Faster R-CNN, SSD is conceptually simpler to understand and implement as it 

eliminates the region proposal generation steps and the subsequent resampling of feature step, 

thus making it quicker than Faster R-CNN at test time. As described in Section 2.7.4, SSD 

architecture uses feature maps from multiple layers of the feature extractor to detect objects of 

various sizes and aspect ratios. Similar to the Faster R-CNN, we compare the ResNet-50 

architecture and the VGG-19 architecture for the base feature extractor network, removing the 

last two layers (global average pooling and fully connected layer) and appending four 

additional convolutional layers known as Extra Feature Layers with a decaying spatial 

resolution of depths [512, 512, 256, 256] respectively on top of the base network. Each 

multiscale feature block reduces the height and width of the feature map from the previous 

layer by half. So instead of using one feature map for predicting the classification scores and 

bounding box coordinates, features are extracted from these extra feature layers, in addition to 

feature maps from the last layer of the “conv4” and “conv5” blocks of the base feature extractor 

network to generate prediction maps of different resolution for multi-scale detection. In this 

way, large fine-grained feature maps at the earlier levels can detect small defects, while the 

smaller coarse-grained feature map closer to the output with large receptive fields can detect 

larger objects. The resolution of the detection is equal to the size of its feature map. For 

example, for an image of size 512 x 512, the network outputs six feature maps of resolutions 

32 x 32 and 16 x 16 from the base feature extractor network and 8 x 8, 4 x 4, 2 x 2 and 1 x 1 

from the extra feature layers respectively. For each location in the feature map, there are 

𝑘 default bounding boxes having different sizes and aspect ratios associated with each cell of 

the feature map. The default boxes are designed such that each feature map corresponds to a 

specific scale of default boxes with a predefined list of aspect ratios for each scale, as described 

in Section 2.7.4. 𝑘 is set to [4, 6, 6, 6, 4, 4] for each of the six prediction layers, respectively, 

giving a total of (322 × 4 + 162 × 6 + 82 × 6 + 42 × 6 + 22 × 4 + 12 × 4) =  6132 anchor 

boxes were generated for each image at the six prediction layers. The minimum and maximum 

scales, 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are set to 0.2 and 0.9 respectively. This means that the scale at the lowest 

prediction layer is 0.2, and the scale at the highest prediction layer is 0.9, while the other layers 

in between are regularly spaced. Then, for each of the bounding boxes, we need to compute 

𝑐 classification scores, including the background class and 4 offset values (∆𝑐𝑥, ∆𝑐𝑦, 𝑤 and 

ℎ) representing the offsets from the centre of the default box and its dimensions. Thus, each 

prediction is represented by (𝑐 + 4) values. To achieve this, for a feature map with 𝑘 default 

boxes per cell, we apply a prediction layer with 3 x 3 convolutional with 𝑘 ∗ (𝑐 + 4) channels 

and padding of 1 to predict the categories and offsets of the default anchor boxes. By doing 

this, the height and width of the input and output of the convolutional layer remain the same.  

However, since feature maps from multiple scales are used to generate anchor boxes to predict 

their categories and offsets, the prediction output at different scales could have different shapes 

because the number and shape of anchor boxes centred on the same element are different for 

feature maps of different scales. As a result, we need to first transform the output of the 

prediction layer into a consistent format and concatenate the predictions of multiple scales to 

simplify subsequent computation. Therefore, considering that the format of the prediction 

output is (batch size, number of channels, height, width), where the channel dimension contains 
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the predictions for all anchor boxes having the same centre, we first transpose the channel 

dimension to the final dimension and convert the prediction results to the format (batch size, 

height x width x number of channels). Subsequently, the predictions are concatenated on the 

first dimension since all scales have the same batch size. In order to train the network, all the 

default boxes are matched to the ground truth boxes. First, each ground truth box is matched 

to the default box with the highest IoU overlap. Doing this ensures that each ground truth box 

is matched to at least one corresponding default box. Then each default box is matched to any 

ground truth box with an IoU overlap greater than 0.5. The default boxes which were not 

matched to any ground truth box are considered negative and contribute only to the confidence 

loss Equation (2.51), while the positively matched boxes contribute to both the confidence and 

localization loss. The final objective Equation (2.49) is given by combining these two losses, 

where the relative weighting of the confidence loss and localization loss 𝛼 is obtained through 

cross validation. However, note that out of the 6132 default boxes, most of them are negative 

and including them all would lead to a severe class imbalance during training. Therefore, after 

matching the default boxes, they are sorted according to their confidence loss, and only the top 

ones are picked so that the ratio between the negatives and positives is at most 3:1, which helps 

stabilize training and leads to faster optimization. 

 

3.10.4 Experiment settings for the defect localization networks 

The dataset was randomly split into a training and testing set using an 80/20 split, as we did in 

the previous experiments. The training set contains 2,657 images with 3081 annotated defects, 

while the testing set consists of 639 images with 750 annotated defects. The distribution of the 

defect classes in the training and testing set is shown in Figure 3-19. Since all the images in the 

dataset have different sizes, during training of the Faster R-CNN model, the images are resized 

such that the smaller side has a dimension of 600 pixels and the larger side has a maximum 

size of 1000 pixels. For the SSD model, which requires all inputs to have a fixed size, all the 

images are resized to 512 x 512 pixels. The pixel values are rescaled in the range [0, 1]. It was 

difficult to train the object localization models on only this defect dataset in the initial 

experiments due to the relatively small size. Therefore, transfer learning was used to improve 

the model's accuracy and reduce the total training time taken for the model to converge. The 

main issue was that the localization model did not learn any useful features and simply 

overfitted the training dataset despite using various regularization techniques.  

Nonetheless, there are various ways to apply transfer learning for object localization models. 

For instance, the feature extractor module of the localization model can be initialized with 

weights from feature extractor models that were trained on the ImageNet dataset or with the 

weights from our multiclass classification networks, while the rest of the network would be 

initialized with random weights. This way, the top layers of the localization network would 

already have a good starting point for extracting relevant features before training on our defect 

localization dataset. However, in order to prevent the large error signals in the early training 

iteration from effectively destroying the learned representation in the feature extractors since 

the rest of the network is initialized with random weights, all the weights of the feature extractor 
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module are frozen, and just the weights of the localization module is fine-tuned. Afterwards, 

the feature extractor module weights are unfrozen then the whole network is jointly trained.  

Alternatively, the weights of the entire object localization network can be initialized with 

pretrained weights from some other localization tasks such as the Pascal Visual Object Classes 

(VOC) [157] or Microsoft Common Object in Context (COCO) [158] dataset and fine-tune the 

weights of the entire model end-to-end. This ensures that the model is first initialized to localize 

common objects before training it to localize defects. Our initial experiments showed that 

initializing the object localization model with pretrained weights from a previous detection task 

tends to be more relevant and adaptive, as all the weights have been jointly learned. This makes 

fine-tuning the model converge significantly faster with higher accuracy than initializing only 

the feature extractor network with pretrained weights. Therefore, we adopt the second approach 

for all our subsequent experiments.  

The hyperparameters used for training the Faster R-CNN model followed by those used for 

training the SSD model are described next. Following the same procedure as in the previous 

experiments, we apply five-fold cross-validation to evaluate the settings and tune the model’s 

hyperparameters based on the result of the validation set. First, the training images are 

normalized by subtracting the mean and dividing by the standard deviation of the ImageNet 

dataset. The batch size for the Faster R-CNN model is set to 1, and the maximum number of 

epochs is set to 100. The network was trained using Nesterov accelerated gradient (NAG) 

descent as the optimizer, and the initial learning rate was set to 0.0005. The optimal learning 

rate was determined using a learning rate finder function which gradually increases the learning 

rate from a very small initial value until the training loss diverges. That is, training is done for 

one batch at a time, starting with a very small learning rate of 1 × 10−6 recording the training 

loss and gradually increasing it using a multiplier of 1.1 on every iteration until the training 

loss diverges. As shown in Figure 3-18, there is little change in the value of the loss for very 

small learning rates since the parameter updates are negligible. At a learning rate of 0.0001, 

the loss value starts to fall, and a drop in the loss value to about 0.001 can be seen, where the 

loss flattens and then starts to diverge. However, since the optimal initial learning rate should 

be as high as possible before the loss becomes unstable, the learning rate is chosen to be around 

the midpoint of these two values.  

A second-degree polynomial scheduling function that gives a smooth decay gradually 

decreases the learning rate from the initial value of 0.0005 to 0 after 150000 iterations. The 

momentum and weight decay parameters are set to 0.9 and 0.0001, respectively. During 

training, the only data augmentation used was to flip the image horizontally with a probability 

of 0.5 randomly. For the SSD model, a batch size of 16 was used, and training was done for a 

maximum of 100 epochs. Here, the NAG optimizer was also used with the same weight-decay 

and momentum value but with a learning rate of 0.001, which was also discovered using the 

same learning rate finder function described earlier. Similarly, a second-degree polynomial 

schedule gradually decreased the learning rate from 0.001 to 0 after 20000 iterations. During 

the training of the SSD model, various data augmentations were applied, such as random colour 

jittering, randomly cropping areas around the defect location, randomly zooming with a 

probability of 0.5, randomly resizing the image, and randomly flipping the image horizontally 
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with a probability of 0.5. These augmentations are only applied during the training phase, while 

the original images are used at test time. An early stopping value of 30 epochs was set, after 

which the model stops training if there is no improvement in the loss value. For the validation, 

the area of overlap (IOU) threshold between the predicted bounding box and ground truth for 

positive detection is set to 0.45, and the NMS threshold for overlapping bounding boxes is set 

to 0.5.  

 

Figure 3-18: Graph showing how the loss value changes when increasing the value of the 

learning rate for (a) the Faster R-CNN network and (b) the SSD network. 

 

 

Figure 3-19: Distribution of defect classes in the training and testing set for the defect 

localization models. 
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3.11 Detecting defects in sintered NdFeB magnet 

The following section develops a CNN-based generative pattern recognition algorithm based 

on variational autoencoders to detect defects in an unsupervised approach. Our objective is to 

develop a large-scale, high-dimensional anomaly detection algorithm that is sufficiently robust, 

such that it can generate an accurate model for data drawn from a wide range of probability 

distributions and is not overly affected by small departures from the trained model. 

Subsequently, based on the findings from the first approach, we improve the system's 

performance by using a conditional generative adversarial network (cGAN) to detect defects 

in the microstructure of sintered NdFeB magnet using only examples of normal structures 

without any prior information of defective cases.  

 

3.11.1 Variational Autoencoder 

As we described in Section 2.6.3, a VAE encodes an input image 𝑥 to a latent vector 𝑧 =

𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥) ∼ 𝑞(𝑧|𝑥) using an encoder network, and then decodes the latent vector 𝑧 back to 

an image 𝑥̅  = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑧) ∼ 𝑝(𝑥|𝑧) which is similar to the original image using the decoder 

network. Unlike a regular autoencoder, which maps the input onto a latent vector, a VAE maps 

the input data into the parameters of a probability distribution, such as the mean and variance 

of a Gaussian distribution. An important property of the VAE is the ability to control the 

distribution of the latent vector 𝑧 learned by the network in the bottleneck layer, which is 

independent unit Gaussian random variables, i.e., 𝑧 ∼ 𝒩(0, 1). Thus, by minimizing the 

negative expected log-likelihood of each observation (pixel) in 𝑥 using the reconstruction loss 

𝐿𝑟𝑒𝑐 and the KL Divergence 𝐿𝑘𝑙  to regularize the encoder network to control the distribution 

of the latent variable 𝑧, the network is able to learn a generative model of the underlying data 

distribution 𝑝𝑑𝑎𝑡𝑎(𝑥). Due to the constraint imposed on the latent vector 𝑧 the network learns 

a compressed representation of the input data such that only samples obtained from the same 

underlying data distribution as the training set can be decoded back to the original input data. 

Thus, if a sample that does not belong to the same data generating distribution, such as an 

anomaly or a defect, is fed into the model, the latent vector cannot be meaningfully decoded 

back to the original input. Therefore, we can determine if an image contains a defect by 

comparing the reconstruction error between the input data and the decoded output. An 

illustration of the VAE is displayed in Figure 3-20.  

 

Figure 3-20: Illustration of a variational autoencoder network. 
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3.11.2 Dataset for training the variational autoencoder network 

Since the VAE is trained in an unsupervised approach where the input to the model is also used 

as the target, obtaining a large amount of training data is straightforward since every single 

image does not need to be labelled. However, the training set must contain only images of 

normal samples. Therefore, the data set must be cleaned to ensure that it does not contain any 

images with defects since even a small amount of anomalies can significantly affect the model's 

performance. As illustrated in Figure 3-21, the training dataset was obtained by splitting two 

large cross-section images of magnet samples (HS17051_15 and HS17051_22) into 26,197 

smaller patches of size 512 x 512 RGB colour images. Subsequently, any image containing 

defects is removed from the training dataset and set aside for testing. The testing set consists 

of 6000 images, of which only 50 samples contain defects or irregularities, while the other 

5950 images are normal samples. Some examples of images with and without defects used for 

training and evaluating the model's performance are shown in Figure 3-22. 

 

Figure 3-21: Shows a large image cross-section split into smaller patches of size 512 x 512 to 

obtain the training dataset. 

 

Figure 3-22: (a) Shows normal examples of images from the training dataset, and (b) shows 

examples of images with defects included in the testing set. 
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3.11.3 Model architecture and implementation details 

For the encoder network, which takes as input an image and outputs a set of parameters for 

specifying the conditional distribution of the latent variable 𝑧, we use five convolutional layers 

with 3 x 3 kernels and a stride of 2 to achieve spatial downsampling instead of using a 

deterministic spatial function such as the max pooling operation. Each convolutional layer is 

followed by a Leaky ReLU activation layer. Two fully connected output layers follow the last 

convolutional layer in the encoder network to parameterize the mean and variance used to 

compute the KL divergence loss and sample latent variable 𝑧. For the decoder network, which 

takes the latent sample 𝑧 as input and outputs the parameters for a conditional distribution of 

the observation, the encoder architecture is mirrored by using a fully connected layer followed 

by five transpose convolutional layers for upsampling with 5 x 5 kernels using a stride of 2 

with each layer followed by a Leaky ReLU activation. The output layer is a convolutional layer 

with 5 x 5 kernels using a stride of 1 with 3 output channels to map the input to the number of 

channels in the original image, followed by a Tanh activation function. No batch normalization 

layers were included to avoid destabilizing the network during training. The architecture of the 

variational autoencoder is shown in Figure 3-23. To train the VAE, the KL divergence loss 

𝐿𝑘𝑙  and per pixel mean squared error 𝐿𝑟𝑒𝑐 were jointly minimized to obtain the total 

reconstruction loss, which is defined as: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝑟𝑒𝑐 + 𝛽𝐿𝑘𝑙 (3.11) 

where 𝛼 and 𝛽 are weighting parameters for the image reconstruction and KL divergence, 

respectively.  

 

 

Figure 3-23. The variational autoencoder network architecture. The encoder network is on the 

left side, and the decoder network is on the right. 
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3.11.4 Evaluation metrics for unsupervised defect detection models 

In order to determine how well the network can reconstruct the input data, we need a way to 

meaningfully compare the similarity between the original input and the regenerated output.  

Structural similarity index measure (SSIM) [159]. Unlike the mean squared error (MSE), 

which directly compares pixel-by-pixel differences and thus is not highly indicative of the 

perceived similarity between two images, SSIM measures the perceptual difference between 

two similar images based on the visible structures in the image while taking texture into 

account. This is often a better measure of a human perceptual judgement of image quality. The 

SSIM is calculated on various windows of an image, where the measure between two windows 

𝑥 and 𝑦 of the same size 𝑁 × 𝑁 is: 

 SSIM(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
 (3.12) 

where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥
2, 𝜎𝑦

2, 𝜎𝑥𝑦  are the average, variance and covariance of 𝑥 and 𝑦, respectively. 

𝑐1 = (𝑘1𝐿)2, 𝑐2 = (𝑘2𝐿)2 are used to stabilize the division; 𝐿 is the dynamic range of the pixel-

values and 𝑘1 = 0.01 and 𝑘2 = 0.03. The resulting index is a decimal value between 0 and 1, 

where a value of 1 indicates that the two images are identical and 0 indicates no structural 

similarity.  

 

3.11.5 Experiment settings for the VAE network 

The input images are resized to 256 x 256 pixels during training, and the pixel values are 

rescaled between -1 and 1. The model is trained with a batch size of 16 for 100 epochs over the 

training dataset using RMSprop optimizer with a learning rate of 0.0001. The dimension of the 

latent vector 𝑧 is set to 128. Other values such as 256 and 512 were also investigated but did 

not significantly improve performance. The loss weighting parameters 𝛼 and 𝛽 are set to 1 and 

0.5, respectively. To generate a sample 𝑧 for the decoder during training, we can sample from 

the latent distribution defined by the parameters output by the encoder for a given input 

observation 𝑥. However, sampling is a stochastic process, and therefore the gradient cannot be 

backpropagated through a random node. Therefore, a commonly used reparameterization trick 

is applied to approximate 𝑧 using the encoder parameters and an auxiliary independent random 

variable 𝜖 ∼ 𝒩(0, 1) as follows 𝑧 = 𝜇 + 𝜎 ⊙ 𝜖 where 𝜇 and 𝜎 represent the mean and 

standard deviation of a Gaussian distribution respectively and ⊙ is the element-wise product. 

Thus we make the model trainable by learning the mean and variance of the distribution in the 

encoder network through backpropagation while maintaining stochasticity through 𝜖. The 

experimental results are presented in Section 4.3.1. 

 

3.12 Conditional Generative Adversarial Network 

After analysing the results of the VAE model, we observed that the model could detect most 

images with defects correctly; however, the model also produced many false positives. 
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Therefore, since each magnet sample we analyse consists of several thousand tile images, it is 

essential to minimize the false-positive rate for the system to be helpful in practice. Thus, after 

examining the false positive results from the VAE model, the results showed that image tiles 

with more objects or patterns tend to produce a higher reconstruction error even though they 

do not contain any defects. Nevertheless, this is expected since the input image is highly 

compressed into a 128-dimensional latent vector space, resulting in some spatial and structural 

information loss. On the other hand, if a non-generative model such as a simple autoencoder 

were used, the model would be equally able to reconstruct images with defects and without 

defects. Hence, we need an approach that can preserve the spatial information of structures in 

the image and a loss function that produces sharp and realistic images to reduce the number of 

false positives.  

GANs can generate realistic images by learning a function that tries to classify if an image is 

real or fake (synthesized by the generator) while simultaneously training a generative model to 

minimize this function. As a result, unrealistic or blurry images that are obviously fake are not 

acceptable as the discriminator model easily detects them. However, since GANs learn a 

generative model of the training data in order to produce new samples from the same 

underlying data distribution, which are different from the input data, we need to learn a 

conditional generative model of the input data to ensure that the generated outputs bear some 

close resemblance to the input. Conditional GANs (cGANs) learn a conditional generative 

model of the input data making them particularly suitable for many image-to-image translation 

tasks, where we condition an input image and generate a corresponding output image. In 

contrast to the per-pixel mean squared error loss function used in the previous approach, where 

each output pixel is considered independently from all other pixels for a given input image, 

conditional GANs learn a structured loss which penalizes the joint formation of the output 

image as a whole [160]. As described in Section 2.6.4, GANs learn a mapping from random 

noise vector 𝑧 to output image 𝑦, 𝐺 ∶ 𝑧 → 𝑦 while cGANs learn a mapping from observed 

image 𝑥 and random noise vector 𝑧, to output 𝑦, 𝐺 ∶  {𝑥, 𝑧} → 𝑦. To achieve this, the generator 

𝐺 is trained to generate realistic outputs that cannot be easily differentiated from real images 

by an adversarially trained discriminator, 𝐷, which is simultaneously trained to detect real from 

fake images produced by the generator. This procedure is illustrated in Figure 3-24. Therefore, 

the objective of the conditional GAN can be expressed as follows: 

 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥,𝑦[log 𝐷(𝑥, 𝑦)] +  𝔼𝑥,𝑧[log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧))], (3.13) 

where 𝐺 tries to minimize this objective while 𝐷 tries to maximize it, that is:  

 𝐺∗ = arg min
G

max
𝐷

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷).   (3.14) 

In addition, a 𝐿1 loss is included in the training objective to capture low-frequency details, 

which encourages less blurring compared to 𝐿2 loss. This also forces the generator to produce 

outputs that are near the ground truth label: 

 ℒ𝐿1(𝐺) = 𝔼𝑥,𝑦,𝑧[‖𝑦 − 𝐺(𝑥, 𝑧)‖1]. (3.15) 

Thus our final objective is given as follows: 
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 𝐺∗ = arg min
G

max
𝐷

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺).   (3.16) 

where 𝜆 is a weighting term hyperparameter to determine the contribution of the 𝐿1 loss.  

 

 

Figure 3-24: Illustrates the procedure for training a conditional GAN to map edges to images. 

The discriminator, D, learns to classify between the real and fake (produced by the generator) 

edge-image pairs, while the generator, G, learns to deceive the discriminator by generating 

convincing samples for given edge maps.  

 

In essence, the aim here is to train a conditional generative model to map images from one 

domain to another with the overall goal of detecting images with defects by comparing the 

reconstruction errors. Therefore, a unique representation of the original image is needed to 

condition the model to deterministically generate an accurate reconstruction of normal images 

as the desired output. A simple albeit not obvious idea is to use the edges of the structure in the 

image as the conditional input and train the model to map edges to images, as illustrated in 

Figure 3-24. The intuition behind this is that the morphology of the edges of the structures in 

the image will provide subtle cues to the model of what type of structure is most likely to 

generate such an outline. Moreover, since the model never sees the complete picture, it cannot 

simply copy the input to the output and is forced to learn a good mapping. As a result, the 

model can simply focus on learning the relationship between edges and structures and does not 

have to encode the positions of each structure in the image, which is a more difficult problem. 

Furthermore, since the outline of regions with defects would, in principle, be anomalous 

compared with the other structures in the image, the model will have no representation for 

mapping such edges to meaning structures while accurately mapping all the normal ones. 

Therefore, this will likely result in a higher reconstruction error solely for regions with defects, 

and less error will be due to compression artefacts.    

 

3.12.1 Dataset for training the cGAN network 

For training the conditional GAN, we used the same dataset used to train the VAE model in 

the previous section with one fundamental difference. Since our aim in this section is to train 
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a model to map edges to images, these edge maps are generated by applying a Sobel filter to 

the original images. This was done in three steps: first, we convert the images to greyscale, 

then apply the Sobel filter to the images and finally normalize the edge maps to values between 

0 and 1. Figure 3-25 shows some images with their corresponding edge maps for examples 

with and without defects. Note that no images with defects were used for training the model, 

and they are only included for evaluation purposes.  

 

 

Figure 3-25: (a) Shows some examples of normal images and the corresponding edge maps. 

(b) Shows some examples with defects and the corresponding edge maps. 

 



88 

Experimental procedure and proposed solutions 

 

3.12.2 Model architecture and implementation details 

This problem can be described as an image-to-image translation problem where the input and 

output simply differ in surface appearance, but both renderings are essentially representations 

of the same underlying structures. For instance, there is a large amount of low-level information 

shared between the input edge map and the output image, such as the shape, texture and position 

of certain structures, and it would be highly desirable to pass this information directly across 

the network. Therefore, we base the architecture for the generator and discriminator on those 

in [160].  

Generator architecture 

As such, the architecture for the generator network is based on these considerations. Many 

previous approaches [161]–[164] to similar problems have used an encoder-decoder network 

like the one described in Section 2.4.2. We use a similar design here, but the generator is given 

the means to circumvent the bottleneck layer by adding skip connections following the general 

shape of a U-Net architecture [165]. In particular, skip connections are added between each 

layer 𝑖 and layer 𝑛 − 𝑖, where 𝑛 is the total number of layer. The skip connections concatenate 

activation outputs of all channels at layer 𝑖 with those at layer 𝑛 − 𝑖 to shuffle low-level features 

closer to the input layer across the network. The details of the U-Net encoder-decoder 

architecture is shown in Figure 3-26. In all the convolutional layers kernels of size 4 × 4, stride 

2 and padding 1 are used followed by a Leaky ReLU activation with a slope of 0.2 in the 

encoder network and a ReLU activation in the decoder network. After the last layer in the 

decoder network, a convolution layer with 3 output channels is applied to map the output to 

the number of channels in the original image followed by a Tanh activation function. 

Convolutions in the encoder network downsample the input by a factor of 2, while in the 

decoder they upsample by a factor of 2 using a convolution transpose operation. Except for the 

first convolution layer in the encoder, batch normalization (BN) with momentum 0.1 is applied 

after all the other convolution layers. Noise is provided to the generator network by applying 

dropout with a rate of 50% to several layers of the decoder.  

Discriminator architecture 

The architecture of the discriminator is much simpler than that of the generator since it 

essentially just needs to classify if an image is real or fake (synthesised by the generator). 

Moreover, considering that a 𝐿1 loss is included in the generator objective to capture low-

frequency details, the discriminator only needs to model high-frequency structures. 

Accordingly, to capture high frequencies, it is sufficient to limit the attention of the 

discriminator to only penalize structures in local image patches [160]. That is, the discriminator 

only needs to classify each 𝑁 × 𝑁 patch in an image as either real or generated and we average 

all the responses to calculate the final output. There are several advantages to classifying 

patches compared to a single binary output. For one, the training dynamics of the model are 

more stable and, therefore, faster to train due to the rich feedback from the patch discriminator 

compared to regular GANs, which can be very difficult to train. In addition, a fixed-size path 

discriminator can be applied to arbitrarily large images. Analogous to the generator model, 

kernel of size 4 × 4, stride 2 and padding 1 are used in all the convolution layers, followed by 
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Leaky ReLU activation. Except for the first layer, batch normalization is applied after all the 

other layers. Lastly, a 1 × 1 convolution is used to map the channels in the last layer to a 1-

dimensional output followed by a sigmoid activation function. The details of the discriminator 

model architecture are shown in Figure 3-27.  

 

 

Figure 3-26: U-Net generator network architecture. “conv” stands for the convolution 

operation, “convt” stands for the convolution transpose operation, and “BN” stands for bach 

normalization.  

 

   

Figure 3-27: Discriminator network architecture. “conv” and “BN” stand for the convolution 

and batch normalization operation, respectively. 
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3.12.3 Experiment settings for the cGAN network 

Similar to the training of the VAE model, all the images are resized to 256 × 256 pixels. The 

pixel values for the ground truth images are normalized to values between -1 and 1, while those 

of the edge map have values between 0 and 1. For training the networks, the standard approach 

from [133] was followed, where we alternate between one gradient descent step for 𝐷, then one 

step for 𝐺. First, a batch of fake images is fed to 𝐷 and the loss is calculated using binary cross-

entropy loss function, then a batch of real images is fed to 𝐷, and the average of the two losses 

is taken. As suggested in the original GAN paper, 𝐺 is trained to maximize 

log 𝐷(𝑥, 𝐺(𝑥, 𝑧)) rather than trained to minimize log (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧))) . After some initial 

investigations on the hyperparameter settings, the model was trained with a batch size of 64 for 

100 epochs using Adam optimizer with a learning rate of 0.00002 and momentum parameters 

𝛽1 = 0.5, 𝛽2 = 0.999. Various values for 𝜆 were investigated but a value of 100 produced the 

best results. Both networks were trained from scratch with the weights initialized from a 

Gaussian distribution with mean 0 and standard deviation of 0.02. No data augmentations were 

applied during training as this only destabilises the networks. The experimental results are 

presented in Section 4.3.2. 
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4.1 Experimental evaluation of supervised defect detection 

models for Li-ion batteries 

We conducted several experiments while developing our defect detection model for Li-ion 

batteries, and this section presents the results of those experiments. First, the results of the 

binary classifier model developed in Section 3.8 are presented, followed by the multiclass 

classifier model developed in Section 3.9. Subsequently, visualizations of the model’s 

activations are presented using a class activation mapping technique, which helps identify 

regions in the image where the model focuses its attention when making a prediction. Lastly, 

experimental results of the defect localisation models developed in Section 3.10 are presented.  

 

4.1.1 Experimental results of binary classifier models  

First, let us look at the effect of the focal loss function hyperparameters for various values of 

𝛼 and 𝛾 on the performance of the two models. Although the bests value of 𝛾 reported in [120] 

was 2, values 1 and 5 were also investigated. The optimal value of 𝛾 for the ResNet-50 model 

was found to be 2 and for the VGG-19 model 1. Values of 𝛼 in the range of 1 to 4 with a step 

size of 1 were also compared. The F1-score, accuracy, and AUROC are shown in Table 4-1.  

The F1-score for both models increases as the value of 𝛼 increases, with ResNet-50 achieving 

a peak value at 𝛼 = 3  and VGG-19 at 𝛼 = 4. ResNet-50 with focal loss function surpassed the 

model with standard cross-entropy loss function in three out of four cases, while VGG-19 with 

focal loss function did so in two out of 4 cases. Both ResNet-50 and VGG-19 models trained 

with standard cross-entropy loss function achieved the same performance with an F1-score of 

0.94. 

In contrast, ResNet-50 trained with the weighted cross-entropy loss function achieved an F1-

score of 0.976, outperforming the VGG-19 model F1-score 0.961 trained with the same loss 

function. The performance of the two models using both re-sampling techniques and standard 

cross-entropy loss function were also investigated (see Table 4-1). Overall, the ResNet-50 

model with focal loss function achieved the best performance with an F1-score of 0.976, 

slightly outperforming the same model with weighted cross-entropy, as it could detect more 

positive samples. Nevertheless, it can be seen that employing the cost-sensitive learning 

methods improved the model performances of both models compared with simply using the 

standard cross-entropy loss function. In both cases, the over-sampling technique performed 
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better than the under-sampling technique, probably due to fewer training samples left after 

undersampling the majority class. In fact, for the VGG-19 models, using standard cross-entropy 

in combination with the over-sampling technique achieved a better performance than both the 

weighted cross-entropy loss and the focal loss function with an F1-score of 0.968 and only 

slightly behind the best ResNet model. However, this is at a higher computational cost since 

the over-sampling technique increases the number of samples in the training phase. The 

validation losses for both models are shown in Figure 4-1.  

 

Figure 4-1: Shows the validation loss of the top-performing models compared with the model 

trained using the standard cross-entropy loss function.  

 

Table 4-1: Shows the F1-score, Accuracy, AUROC and AUPRC achieved by the binary 

classification models for each training technique and each hyperparameter in the focal loss. 

The best performances are shown in bold text.  

Model 

architecture 

Method Hyper- 

parameter 

F1-score Accuracy AUROC AUPRC TP FN FP TN 

  𝛼 𝛾  (%)       

ResNet-50 Focal loss 1 2 0.852 94.1 0.952 0.901 57 7 13 231 

  2  0.962 98.2 0.992 0.984 59 5 0 244 

  3  0.976 99.0 0.997 0.987 62 2 1 243 

  4  0.954 97.7 0.989 0.973 61 3 3 241 

 Cross entropy - - 0.944 97.7 0.986 0.966 59 5 2 242 

 Weighted CE - - 0.976 99.0 0.998 0.993 61 3 0 244 

 Under-sampling - - 0.918 96.8 0.971 0.949 56 8 2 242 

 Over-sampling - - 0.952 98.1 0.990 0.982 60 4 2 242 

VGG-19 Focal loss 1 1 0.918 96.8 0.987 0.971 56 8 2 242 

  2  0.938 96.9 0.981 0.973 59 5 3 241 

  3  0.944 97.7 0.983 0.970 59 5 2 242 

  4  0.960 98.4 0.978 0.972 60 4 1 243 

 Cross entropy - - 0.944 97.7 0.984 0.969 59 5 2 242 

 Weighted CE - - 0.961 98.4 0.983 0.976 62 2 3 241 

 Under-sampling - - 0.838 92.9 0.970 0.934 57 7 15 229 

 Over-sampling - - 0.968 98.7 0.975 0.971 61 3 1 243 
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4.1.2 Experimental results of multiclass classifier models 

Similar to the previous experiments, the effect of various values of 𝛼 and 𝛾 hyperparameters 

on the focal loss function was investigated. For both the ResNet-50 and VGG-19 models, the 

optimal value for 𝛾 was found to be 1. Again, the value of 𝛼 was varied from 1 to 4 in step 

sizes of 1. However, the results did not show similar improvements in the model performance 

as the value of 𝛼 was increased. Thus, the optimal value for the ResNet-50 model was found 

to be 𝛼 = 1 and for the VGG-19 model 𝛼 = 2. The F1-score, accuracy and AUROC are shown 

in Table 4-2, and the loss curves are shown in Figure 4-2. ResNet-50 with focal loss function 

surpassed the model with standard cross-entropy loss function in 2 out of 4 cases, while VGG-

19 with focal loss surpassed in 1 out of 4 cases. Surprisingly, both the ResNet-50 model trained 

with a weighted cross-entropy loss function and the oversampling technique achieved an F1-

score of 0.972, which is slightly below the model trained with a standard cross-entropy loss 

function F1-score 0.973. Overall, ResNet-50 with focal loss function with 𝛼 = 1 and 𝛾 =

1 achieved the best performance of 0.976 F1-score, outperforming the model trained with 

standard cross-entropy loss. The graphs of the ROC and PR curves of the top-performing model 

are shown in Figure 4-3 and Figure 4-4, respectively. Lastly, the confusion matrix of the 

ResNet-50 models and the VGG models developed using the various training techniques are 

presented in Figure 4-5 and Figure 4-6, respectively. These results are discussed in Section 

5.1.1.  

 

Table 4-2: Shows the F1-score, Accuracy, AUROC and AUPRC achieved by the multiclass 

classification models for each training technique and each hyperparameter in the focal loss. 

The best performances are shown in bold text. 

Model 

architecture 

Method Hyper- 

parameter 

F1-score Accuracy AUROC AUPRC 

  𝛼 𝛾  (%)   

ResNet-50 Focal loss 1 1 0.976 97.6 0.995 0.985 

  2  0.974 97.4 0.995 0.981 

  3  0.965 96.5 0.992 0.977 

  4  0.963 96.2 0.991 0.966 

 Cross entropy - - 0.973 97.3 0.994 0.980 

 Weighted CE - - 0.972 97.2 0.994 0.986 

 Over-sampling - - 0.972 97.2 0.995 0.985 

VGG-19 Focal loss 1 1 0.955 95.6 0.990 0.977 

  2  0.964 96.4 0.992 0.980 

  3  0.957 95.7 0.993 0.983 

  4  0.949 95.0 0.990 0.972 

 Cross entropy - - 0.958 95.8 0.992 0.979 

 Weighted CE - - 0.959 96.0 0.991 0.978 

 Over-sampling - - 0.961 96.1 0.990 0.980 
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Figure 4-2: Shows the validation loss of the top-performing models compared with the model 

trained using the standard cross-entropy loss function. 

 

Figure 4-3: Comparison of ROC curves for each defect category achieved by the model with 

cross-entropy loss function (a) and the model with focal loss function (b). The model achieved 

a similar performance in terms of AUROC with both loss functions. 

 

Figure 4-4: Comparison of PR curves for each defect category achieved by the model with 

cross-entropy loss function (a) and the model with focal loss function (b). The model trained 
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with focal loss achieved a higher AUPRC for all classes except the geometric irregularity 

class than those achieved with a standard cross-entropy loss function. 

  

 

 

Figure 4-5: Comparison of the confusion matrices for the ResNet-50 models using the various 

training techniques. 
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Figure 4-6: Comparison of the confusion matrices for the VGG-19 models using the various 

training techniques. 

 

4.1.3 Visualization of the class activation mapping 

Up to this point, only the structures of the defect detection models, the number of defect classes 

and the evaluation functions of the models have been defined. It would be insightful to know 

what features the model learns from the data or given an image which parts lead the model to 

arrive at a particular decision. This would allow us to understand better the remaining sources 

of error in the model’s decision process and focus our attention on those cases.  

This section will show that despite training the network on only image-level labels, the global 

average pooling (GAP) layer [166] enables the convolutional network to accurately localize 

the discriminative image regions through a technique called class activation mapping (CAM) 
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[167]. A class activation map of a specific image category indicates the discriminative regions 

the CNN can identify. Although the global average pooling was originally proposed as a 

structural regularizer to prevent overfitting during training, it encodes a generic localizable 

deep representation that reveals the implicit attention of the CNN on an image. In other words, 

the global average pooling layer enforces the learning of category-level feature maps in the 

network and encourages the network to identify the complete extent of the object. Naturally, 

we expect that the largest activations will be observed in the feature map, which corresponds 

to the ground-truth label of the input image, which is directly enforced by global average 

pooling. Furthermore, it is also expected that the strongest activations appear approximately at 

the same location as the object in the original image within the feature map of the ground truth 

category. Therefore, through visualization of these feature maps, it is possible to understand 

where in the image the network focuses its attention when making a prediction by highlighting 

exactly which regions of the image are important for discrimination.  

Also, with this approach, a simple form of object localization can be done by directly adapting 

these feature maps without training on any bounding box annotations. The procedure for 

generating the CAM is illustrated in Figure 4-7. An input image is fed to the network, and on 

the convolutional feature maps just before the final output layer, we perform global average 

pooling and use those as features for the fully connected layer to make the final class prediction. 

The global average pooling layer outputs the spatial average of the feature map for each unit at 

the last convolutional layer. Thus, to obtain the class activation maps, simply compute a 

weighted sum of the feature maps of the last convolutional layer and upsample the result to the 

size of the input image. Overlaying the resulting heatmap on the original image makes it 

possible to identify the most relevant regions for that particular category. Next, the CAM 

visualization for each defect class from the best ResNet-50 model trained using the focal loss 

function is shown. Afterwards, the visualizations for some misclassified examples are shown, 

and lastly, we show how this visualization technique can be used for object localization.  

 

 

Figure 4-7: Illustrates the Class Activation Mapping where the predicted class score in the 

output layer is projected back to the previous convolutional layer to generate the CAM to 

highlight the class-specific discriminative regions [167]. 
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Using the above approach, we show in Figure 4-8 some examples of the CAM outputs for each 

category of defects. The results show that only the discriminative regions used for classification 

are highlighted (in red) with remarkable accuracy. For example, the first image with two 

cracked regions in the anode material shows that the network focuses its attention on both 

cracks. Likewise, for the example of geometric irregularity, the first image shows that the 

network focuses its attention on the gap between the two electrodes, while in the second image, 

it focuses on the absence of the other half of the cathode coating material. Moreover, looking 

at the examples with no defects, the majority of the image is highlighted, which shows that for 

an image to be categorized as having no defects, the network essentially has to focus its 

attention on the entire image as one would expect, as opposed to focusing on specific parts of 

the image like in the other examples. In general, by training the network on just categorical 

information, the network can discover the discriminative region in the image and accurately 

localize the extent of these regions without being trained explicitly on any bounding box 

annotation. These visualizations demonstrate the effectiveness of the proposed approach for 

accurately detecting defects in complex microstructural images of Li-ion batteries.  

 

 

 

Figure 4-8: The CAMs for each defect class. The heat maps highlight the discriminative image 

regions used for image classification. Bright red colour indicates the strongest activations for 

a particular class, and blue regions indicate weak activation. Notice how the strongest 

activations are centred on the defects while the entire image is highlighted for the images with 

no defect. 
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Figure 4-9 shows examples of images that were misclassified by the best model and the top-3 

predicted probabilities. By examining the result of the model predictions, we can observe two 

things: firstly, there are at least two or more types of defects in the same image for most 

misclassified examples. For example, in the first image, there is a crack in the top right corner 

of the cathode active material, there are some breakouts of active material in the cathode due 

to the sample preparation process, and the second half of the cathode active material is missing, 

which can be categorized as a geometric irregularity. In fact, for the first image in Figure 4-9, 

the model predicted a probability of 0.483 for geometric irregularity, 0.480 for preparation 

artefact and 0.024 for crack as the top three choices. However, a patch can only be assigned a 

single class label; therefore, the model is forced to pick the class with the highest predicted 

probability. Nonetheless, the results show that the ground truth label is consistently among the 

top-3 predicted probabilities, although due to the hard labels used for training (1 for true labels 

and 0 for everything else), the model is more likely to assign a high probability to one class 

and a low probability to all the other classes. This observation is one of the main reasons for 

developing an object localization model to detect multiple defects within the same image.  

 

Figure 4-9: Examples of the class activation maps of some misclassified images. The predicted 

class and the score of the top-3 predictions are shown above each CAM image. Bright red 

colour indicates the strongest activation for a particular class, and blue indicates weak 

activation.  

 

In order to perform object localization, tight-fitting bounding boxes need to be placed around 

the object of interest as well as the associated object category. A simple approach can be 

achieved through the class activation maps. Using the CAMs, a bounding box can be generated 

by applying a simple thresholding technique to segment the heatmap. To implement this, first, 

segment the regions with a value above 45% of the maximum value of the CAM, then generate 

a bounding box surrounding the largest connected component in the segmentation map. Figure 

4-10 shows some example bounding boxes generated using this technique. The result is quite 

impressive, considering the model was only trained on categorical labels without any bounding 

box annotations, which can be time-consuming to acquire. For example, in the first image in 

Figure 4-10, three distinct cracks in the active material coatings can be detected by segmenting 

the regions with the highest activation level. However, for smaller objects, the size of the 

generated bounding boxes tends to be overestimated compared to the ground truth annotations, 
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while those of larger objects are more closely fitting. Nonetheless, this technique provides a 

simple approach for improving the estimation of defect distribution and a method for estimating 

the size of the defects.   

 

 

Figure 4-10: Examples of defect localization using the heatmap generated from the CAMs. The 

ground truth boxes are green, and the predicted bounding boxes from the class activation map 

are in red. 

 

4.1.4 Experimental results of defect localization models 

This section compares the performance of each model architecture using the mean of average 

precision (mAP) score on the testing set shown in Table 4-3. The evaluation speed of each 

architecture when using either the CPU or the GPU is also presented. For this, each image in 

the test data set is processed individually, and we report the average evaluation time per image, 

including the time taken to pre-process and post-process each image. Some example outputs 

from the trained model are shown in Figure 4-11. The models predict tight-fitting bounding 

boxes with high confidence around the detected defects irrespective of the size of the defect or 

the number of defects in the same image. Overall, the Faster R-CNN model with the ResNet-

50 feature extractor achieved the best performance with an mAP of 0.87 on the testing set. 

While the Faster R-CNN model with VGG-19 feature extractor achieved an mAP of 0.83, and 

the SSD model with ResNet-50 and VGG-19 feature extractors achieved an mAP of 0.81 and 

0.78, respectively.  

In general, the defect localization models using the ResNet feature extractor performed much 

better than those using the VGG feature extractors, which is not surprising as the ResNet 

architecture was shown in our previous experiments to outperform the VGG architecture on 

the defect classification tasks. However, the evaluation time varies significantly between the 

networks, as shown in Table 4-3. The SSD model with ResNet-50 feature extractor is the 

fastest, with an evaluation time of 1.07 seconds per image using the CPU and 0.12 seconds per 

image on the GPU. The Faster R-CNN model with VGG-19 feature extractor is the slowest, 

requiring 23.46 seconds per image on the CPU and 0.52 seconds per image on the GPU. This 

is not surprising as the SSD architecture was originally designed to prioritize speed over 
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classification accuracy. Nevertheless, the result is interesting because the evaluation times 

seem to be inversely correlated with the mAP, thus showing the speed/accuracy tradeoff 

described in [168]. The average precision (AP) for each of the defect categories of each network 

architecture is shown in Table 4-4. The results show that the lowest average precision values 

were obtained on the geometry and artefact classes, respectively. This can be attributed 

primarily to the fact that compared with the other defect classes, both the geometry and artefact 

classes tend to occupy a larger proportion of an image when present, and lack a clearly defined 

boundary, thus making it difficult for the network to predict a bounding box which closely 

matches the ground truth label. Furthermore, when compared with the other defect classes, 

there are many variations in the data set as to what is categorized as an artefact or geometric 

irregularity, which would obviously impact the performance of the models. Some examples of 

such predictions are shown in Figure 4-15. Here the Faster R-CNN model with ResNet-50 

feature extractor predicted the class label correctly; however, the coordinates of the bounding 

boxes are incorrectly predicted, resulting in a low IoU score.  

On the other hand, we observe high AP values for classes with homogeneous structures and 

well-defined boundaries, such as the AHS class and the foreign particle inclusions. Figure 4-16 

provides three examples where the network makes false detections. In the first two examples, 

the network makes two predictions on the same defect region, a true positive and a false 

positive detection. The network correctly predicts the defect as an artefact with a high score; 

however, the score for the second prediction is also higher than the detection threshold. In the 

third example, the network predicts a score that is lower than the detection threshold; hence the 

defect was not detected in this case. The training loss for the fine-tuning of the network weights 

is shown in Figure 4-12. The results show that the ResNet variant achieved a lower loss value 

for both defect localisation networks and converged faster, which is particularly obvious when 

comparing the SSD network with the ResNet-50 feature extractor to the one with the VGG-19 

feature extractor. Also, note that the SSD networks take a much smaller number of training 

steps to converge than the Faster R-CNN models. This is mainly because the Faster R-CNN 

network uses a batch size of 1, and in a lot of the images in our dataset, there is a very high 

ratio of background to foreground class, causing the network to learn the desired features much 

slower due to the imbalance. In contrast, the SSD networks can train with a larger batch size (a 

batch size of 16 was used during training) which reduces the imbalance in the data set and thus 

leads to faster convergence.  

Next, the influence of the training data size on the model performance is evaluated. Many tasks 

involving deep learning usually take a large amount of labelled training data to achieve a good 

performance, either for image classification or image segmentation. Therefore, to compare the 

data efficiencies and requirements of the various model architectures, we train the defect 

localization models several times, each with different amounts of training data and observe 

how this affects each model's performance. Figure 4-13 shows how the training data size affects 

the mAP of each defect localisation model given the same testing set.  The result shows that 

the defect detection accuracy increases linearly with the size of the data set, and extrapolating 

the result suggests that with a larger training data set, a higher mAP could be achieved. For the 

SSD network, the mAP increases significantly when the training data size reaches 2500 images. 
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Thus, it appears that the SSD networks require more training data to achieve comparable 

performance to the Faster R-CNN networks.  

Earlier, we observed that there appears to be a tradeoff between the speed and accuracy of the 

object detection models. In particular, the number of region proposals generated by the region 

proposal network is known to affect the speed and accuracy of the Faster R-CNN architecture, 

whereby increasing the number of region proposals generated increases the chance that all 

defects will be found; however, this also increases the computational requirements of the 

network. In order to determine the optimal amount of region proposals required during test 

time without a significant drop in the detection accuracy of the model, several experiments 

were conducted by varying the number of proposals generated by the RPN from 50 to a 

maximum of 6000 and observing the effect on the model performance. Figure 4-14 shows the 

relationship between mAP, evaluation time, and the number of region proposals. Based on 

these results, the optimal number of region proposals that provides a good balance between 

speed and precision is 3000. In other words, we can reduce the number of region proposals 

generated by the RPN by half, which effectively reduces the evaluation time from 0.438 

seconds to 0.341 seconds per image while maintaining the same mAP.  

Lastly, two additional training methods for leveraging transfer learning are compared to 

investigate the influence of transfer learning on the training dynamics of the models and how 

it can help achieve faster convergence. The defect detection networks are trained with 

randomly assigned weights in the feature extraction layers using the Xavier initialization in the 

first training method. In the second approach, the feature extraction layers of the networks are 

initialized using weights pretrained on the ImageNet dataset. While in the third approach, the 

entire network is initialized with weights pretrained on the Pascal VOC dataset as described in 

Section 3.10.4. The result of each training approach is shown in Table 4-5, where each trained 

model is evaluated on the same testing set. The training method that does not leverage transfer 

learning achieved the lowest mAP and took the highest number of epochs to converge of all 

the models. In the second training approach, where the feature extractors are initialized with 

weights pretrained on ImageNet, the models achieve higher performance while taking fewer 

epochs to converge compared with the first training approach. Finally, the third training scheme 

that takes full advantage of transfer learning achieves the best performance of the three training 

methods while taking the least number of epochs to converge. These experiments clearly 

demonstrate how transfer learning helps the model generalize better to unseen data, especially 

when the size of the training set is relatively small.  

 

Table 4-3: Shows the mean average precision and evaluation time per image on the testing set 

for each model on the defect detection task. 

Architecture Feature extractor Evaluation time per 

image using CPU [s] 

Evaluation time per 

image using GPU [s] 

mAP 

Faster R-CNN ResNet-50 21.571 0.438 0.87 

Faster R-CNN VGG-19 23.462 0.517 0.83 

SSD ResNet-50 1.073 0.121 0.81 

SSD VGG-19 2.672 0.133 0.78 
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Table 4-4: Compares the average precision scores of each model for the ten defect categories. 

Architecture Feature 

extractor 

Average precision 

  ACP AFP AOP AHS CFA CRP COP Crack Geometry Artefact 

Faster R-CNN ResNet-50 0.964 0.909 0.851 0.947 0.922 0.881 0.963 0.801 0.715 0.764 

Faster R-CNN VGG-19 0.923 0.841 0.855 0.915 0.869 0.841 0.914 0.775 0.704 0.711 

SSD ResNet-50 0.862 0.832 0.825 0.837 0.833 0.832 0.813 0.816 0.724 0.720 

SSD VGG-19 0.824 0.813 0.793 0.811 0.791 0.717 0.802 0.783 0.719 0.704 

 

Table 4-5: Shows the effect of different initialization schemes on the performance of the defect 

localization models. It demonstrates the benefits of transfer learning on model generalization 

and enables faster convergence. 

 Mean Average Precision (mAP) 

Architecture Feature extractor Xavier Initialization 

(Random) 

ImageNet Pretrained 

Weights 

Pascal VOC Pretrained 

Weights 

Faster R-CNN ResNet-50 0.82, epochs 51 0.84, epochs 49 0.87, epochs 36 

Faster R-CNN VGG-19 0.80, epochs 55 0.81, epochs 52 0.83, epochs 36 

SSD ResNet-50 0.77, epochs 96           0.80, epochs 80 0.81, epochs 68 

SSD VGG-19 0.76, epochs 99           0.76, epochs 96 0.78, epochs 85 

 

 

 

Figure 4-11: Examples of true positive defect detections from the trained Faster R-CNN 

model with ResNet-50 feature extractor. 
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Figure 4-12: Smoothed training loss for the defect localization networks during the fine-tuning 

process. Note that the loss function for the Faster R-CNN networks is different from that of the 

SSD networks; thus, the relative magnitude of the loss is not relevant. 

 

 

Figure 4-13: Shows the mean average precision (mAP) on the same testing set for different 

training data sizes for each defect localization network. 

 

 

Figure 4-14: Relationship between the mean average precision, evaluation time and the number 

of region proposals for the Faster R-CNN ResNet-50 network for the defect detection task. 
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Figure 4-15: Examples where the Faster R-CNN model with ResNet-50 feature extractor 

correctly detected the defect but incorrectly predicted the bounding box coordinates. For 

instance, the model assigned several bounding boxes (green box) to the same defect in the first 

image, while in the second image, the assigned bounding box is much larger than the ground 

truth (red box). This would affect the total number of defects reported by the system. 

 

 

Figure 4-16: Examples where the Faster R-CNN model with ResNet-50 feature extractor makes 

either a false detection (left, middle) or no detection (right). 

 

4.2 Performance assessment on full cross-section images of 

lithium-ion batteries 

This section presents the results of the automated defect localization models for Li-ion batteries 

developed in Section 3.10 from the analysis of full cross-section battery images. The results 

based on the Faster R-CNN architecture with ResNet-50 feature extractor are compared to 

those of the SSD model with ResNet-50 feature extractor. Our main goal is to automate the 

extraction of relevant defect information from a vast amount of image data in an accurate and 

reproducible manner to gain valuable insights for evaluating the quality of a battery. In order 

to achieve this, full cross-section images are analysed with the proposed defect localization 

system, and the final results are presented in the form of a picture gallery of defects. In other 

words, if a set of battery cross-sections are fed into the system for analysis, the final output 

would be a gallery of images categorized according to the type of defects with their 
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corresponding statistics. This will essentially provide a snapshot summary of the state of each 

battery cell, allowing for visual qualitative and quantitative assessment of the samples to 

facilitate various quality inspection tasks such as analysing trends in the production quality of 

a particular producer or comparing the production quality of various manufacturers in a much 

shorter time.   

 

4.2.1 Types of defects in Li-ion batteries 

In order to assess the performance of the proposed defect detection systems, a quality 

evaluation of commercial 18650 round cells is performed, and three different production 

batches are compared, as described in Table 4-6. For each batch, two cross-sections 

(~457 mm2) are obtained from each cell, and the entire cross-section is analysed using the 

detection models. The main focus of our analysis in this section is on seven categories of 

defects whose origin can be later verified through cross correlative analysis, namely: anode 

carbon particle (ACP), anode oxide particle (AOP), anode filled pore (AFP), anode hollow 

space (AHS), cathode round particle (CRP), cathode oxide particle (COP) and cathode fluoride 

agglomerate (CFA) as shown in Figure 4-17.  

Table 4-6: Relevant information about the three commercial cells analysed for quality 

assessment. 

LG Chem-ICR18650B4 (NMC-622-C) 2600 mAh 

Production date Sample designation Cross-section label 

08.02.2018 INSP_044 HS18020_45, HS18020_46 

27.02.2017 INSP_047 HS18020_47, HS18020_48 

14.01.2017 INSP_051 HS18020_49, HS18020_50 

 

 

Figure 4-17: Shows an example image from each category of defect. Note that the images have 

been resized to have the same dimension. 

 

4.2.2 Machine learning results of analysing full cross-section 

images of Li-ion batteries 

Figure 4-18 shows a side-by-side comparison of the total number of defects detected in each 

cross-section of a battery sample by the detection systems based on both the Faster R-CNN and 

SSD model architectures. The highest number of defects, 335 in the cathode and 75 in the 

anode, were detected in cross-section HS18020_46, closely followed by cross-section 

HS18020_45 with 334 defects in the cathode and 70 defects in the anode, both from the same 
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sample INSP_044. The least amount of defects was detected in cross-section HS18020_48, 

with 93 defects in the cathode and 48 in the anode, closely followed by cross-section 

HS18020_47, with 73 defects in the cathode and 74 in the anode, also from the same sample 

INSP_047. In general, the results show that a considerably higher number of defects were 

detected in the cathode layers compared with the anode layers. Furthermore, we also observed 

that a similar amount of defects were found in both cross-sections from the same battery 

sample. Lastly, the system based on Faster R-CNN detected more defects than the system based 

on SSD for all the analysed cross-sections. 

Next, Figure 4-19 shows a breakdown of the distribution of each type of defect detected for 

each sample. Compared to the other categories of defects, a large proportion of the total defects 

were cathode fluoride agglomerates and cathode round particles, while cathode oxide particles 

were the least amount. More precisely, for the Faster R-CNN based system, the distribution of 

each type of defect is as follows: in sample INSP_044 CRP 48.9%, CFA 33.3%, AHS 8.6%, 

AFP 4.9%, ACP 3.2%, AOP 1.1% and no COP was detected. In sample INSP_047 the defect 

distribution is CFA 48.3%, AHS 22.9%, ACP 13.2%, CRP 9.4%, AFP 5.6%, AOP 0.7%, and 

no COP was detected. Finally, in sample INSP_051 we have CFA 42.9%, CRP 29.4%, ACP 

11.7%, AHS 7.8%, AFP 4.4%, AOP 2.3% and COP 1.6%. For the system based on SSD, the 

distribution of defects is as follows: in sample INSP_044 CRP 44.5%, CFA 34.5%, AHS 9.9%, 

AFP 5.7%, 3.6%, AOP 1.3% and no COP was detected. For sample INSP_047 we have CFA 

48.5%, AHS 23.4%, ACP 12.6%, CRP 8.2%, AFP 6.1%, AOP 0.9% and COP 0.4%. Lastly, 

for sample INSP_051 the defect distribution is CFA 43.4%, CRP 28.8%, ACP 12.2%, AHS 

7.9%, AFP 4.5%, AOP 2.6% and COP 0.5%. Except for the one instance in sample INSP_047 

where the system based on Faster R-CNN did not detect any COP defect and the SSD model 

detected 1 COP defect, the Faster R-CNN based system detected more or the same amount of 

defects as the SSD based system in all the other cases. 

 

 

Figure 4-18: Compares the total number of defects detected in each cross-section (HS18020_45 

to HS18020_50) by the Faster R-CNN with ResNet-50 and SSD with ResNet-50 based defect 

detection system for three different production batches. 
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Figure 4-19: Shows the total amount of each type of defect detected in each sample for both 

cross-sections and compares the results for both Faster R-CNN with ResNet-50 and SSD with 

ResNet-50 models. 

 

4.2.3 Spatial distribution of defects in the Li-ion battery samples 

Figure 4-20 shows both cross-sections from each sample with the marked positions of the 

detected defects in orange dots for each defect category. This allows for further investigation 

of the detected defects using cross correlative analysis approaches such as using optical 

microscopy to obtain a high-resolution overview of the surface and then using scanning 

electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) to verify the 

chemical composition of only selected regions, as we will see in Section 5.1.4. In addition, 

with an overview image, it is easier to discover possible trends in how defects are typically 

distributed given enough samples.  
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Figure 4-20: Shows the spatial distribution of detected defects for each defect category (a)-(g). 

The defects are marked with orange dots on the electrode coating material for each cross-

section of the three production batches, INSP_044, INSP_047 and INSP_051, presented in 

Table 4-6.  

 

4.2.4 Picture gallery of defects detected in the samples of Li-ion 

batteries by the proposed system 

A complete picture gallery of all the detected defects from the analysed samples is presented 

in Figure 4-21. Note that each image in the gallery corresponds to an orange dot in Figure 4-20 

above, and these images have been rescaled to the same dimension in order to save some space.  

 

  

(a) ACP 
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(b) AOP 
 

  

(c) AFP 
   

 

 

(d) AHS 
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(e) CRP 
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(f) COP 
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(g) CFA 

 

Figure 4-21: Complete picture gallery of all the detected defects from each sample’s cross-

section. The images are cropped from the bounding box coordinates predicted by the detection 

system. 

 

4.3 Experimental evaluation of unsupervised defect 

detection models for sintered NdFeB magnets  

Similarly, we conducted several experiments while developing our unsupervised defect 

defection model for sintered NdFeB magnets, and the results of those experiments are 

presented in subsequent sections. The following section presents the results of the defect 

detection model based on the variational autoencoder architecture developed in Section 3.11.1. 

Then we present the results of the model based on the conditional generative adversarial 

network developed in Section 3.12. 

 

4.3.1 Experimental results of VAE defect detection model  

As discussed earlier, a common problem with unsupervised or semi-supervised approaches is 

the high amount of false positives produced by the model due to the lack of a well-defined 

target variable. Therefore, it is equally important to assess both the true and false detection to 

evaluate how effective the trained model is at detecting defects. In addition, the F1-score of the 

model is also evaluated on the testing set. However, in order to compute these metrics, a 

decision threshold 𝑇𝑟𝑒𝑐 needs to be determined such that all images with SSIM < 𝑇𝑟𝑒𝑐 are 

classified as defects. The SSIM is calculated using a sliding Gaussian window of size 

11 × 11 with a width of 1.5. In Figure 4-22, some examples of images without any defects and 

the reconstructed versions are shown. The results show that the model can reconstruct most 

parts of the input image, albeit with some loss of fine detail. On the other hand, some examples 
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of images with defects and the reconstructed output are shown in Figure 4-23. The model 

clearly finds it difficult to decode the latent vector for these images into meaningful 

representations, leading to a higher reconstruction error or a lower SSIM value between the 

input and the reconstructed output. Next, the decision threshold is determined based on the 

distribution of all the reconstruction errors in the training dataset and setting the value of 

 𝑇𝑟𝑒𝑐 as the minimum of these values, which is 0.75 in this case. Thus, any image with an SSIM 

less than 0.75 will be classified as a defect. For evaluation purposes, the labels of images are 

used but not during training. A box plot of the SSIM values for all the images in the training 

and testing set is shown in Figure 4-24 (a). The model can clearly reconstruct some of the 

images in the training set better than others, as shown by the distribution of reconstruction 

errors (SSIM_train) in Figure 4-24 (a). Likewise, the model can also reconstruct the normal 

images in the test set that were never seen during training, albeit with a slightly higher 

reconstruction error or lower SSIM. 

On the other hand, the result shows a much lower SSIM value between images in the test set 

that have defects and the reconstructed output. The result also shows a higher spread between 

the reconstruction errors in the samples with defects than those without defects. This indicates 

that some samples are more irregular than others, which can be helpful in quickly finding the 

most severe defects when the images are presented in order of decreasing SSIM value. We 

explore this further in Section 4.4. Thus, with the decision threshold set at 0.75, the model can 

detect almost all the images with defects in the test set. However, the model also detects many 

false positives due to higher reconstruction errors for some images in the test set that do not 

contain any defects. This is a fundamental limitation of the approach because the input image 

is compressed by a factor of 1536 into a latent vector of size 128, which is then decoded back 

to the original input, resulting in some information loss. Likewise, during training, the 

difference between the predicted and ground truth pixels are compared using the 𝐿2 loss which 

tends to produce blurry output. This is because pixel-by-pixel loss does not capture the 

perceptual difference and spatial correlation between two images. For example, the same image 

offset by a few pixels will have little visual perceptual difference for humans but could have a 

very high pixel-by-pixel loss. As a result, there is some loss of spatial and structural information 

such that only the most relevant information for reconstructing the input image in the training 

data is encoded in the latent vector, which therefore leads to higher reconstruction errors for 

unseen images without any defects but that are slightly different from the training data.  

To address this issue, various values for 𝑇𝑟𝑒𝑐  were investigated to determine the optimal 

threshold value, which balances true and false positive detections. Figure 4-24 (b) shows the 

graph of true positives, false positives and false negatives for different threshold values. A 

threshold value of 0.69 gives the highest F1-score of 0.70, which gives a good balance between 

true and false detection. A higher threshold increases the number of false positives, while a 

lower threshold increases the number of false negatives. In general, the optimal value for the 

decision threshold 𝑇𝑟𝑒𝑐 ultimately depends on the role that false negatives (i.e. missed defects) 

and false positives have for the task we are trying to solve. Nevertheless, given that we typically 

analyse thousands of image tiles, it is important to keep the number of false positives as low as 

possible while still accurately detecting the true positives. Therefore, in the next section, we 

present the results of the unsupervised defect detection model based on generative adversarial 
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networks that can more accurately reconstruct the input image with less information loss 

(higher fidelity), thereby significantly reducing the reconstruction error for images without any 

defect. 

 

Figure 4-22: Compares the input image and the reconstructed output for examples without 

defects in the test set. The per-pixel loss results in blurry output. 

 

 

Figure 4-23 compares the input image and the reconstructed output for examples containing 

defects. 
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Figure 4-24: (a) Show the reconstruction errors for images in the training and testing set. The 

SSIM values for the original images and the reconstructed outputs are compared for the 

samples in the training set (SSIM_train) and test set, which contains both normal 

(SSIM_test_ok)  and defect (SSIM_test_defect) samples. The decision threshold 𝑇𝑟𝑒𝑐 is set to 

0.75 which is the minimum SSIM value of the training set. (b) Shows the number of true 

positives, false positives, and false negatives for various threshold values, where a threshold 

value of 0.69 gives the highest F1-score. 

 

4.3.2 Experimental results of cGAN defect detection model  

The model is evaluated in the same manner as during the training phase. That is, for any given 

image 𝑦, the edge map 𝑥 is first generated by applying a Sobel filter and fed as input to the 

generator. Subsequently, the output of the generator 𝐺(𝑥) is compared to the original image 

𝑦 using the SSIM metric to determine if the image contains a defect or not based on a 

determined threshold value 𝑇𝑟𝑒𝑐 . Figure 4-26 shows some qualitative results of the cGAN 

model on randomly chosen examples from the test set that do not contain any defects. It is 

immediately obvious that the generator can accurately fill in the structure for a given edge map 

that closely matches the ground truth image. Figure 4-26 also shows the heatmap of the 

reconstruction errors calculated using the squared difference between the original and 

generated output pixels, where regions with low error values have a blue colour and regions 

with high residual errors are coloured red. The results show that the model is able to learn a 

good mapping between the edge map and the respective structure within the image such that 

most of the error in examples without any defect is primarily due to slight differences in pixel 

intensities, which is impressive considering the generator never actually observes the original 

image. 

On the other hand, Figure 4-27 shows some examples of images with defects and the 

reconstructed output along with their corresponding heatmaps. Interestingly, the model can 

accurately reproduce every aspect of the original image except for the anomalous regions 

containing defects, which is precisely the desired output. Subsequently, the model is applied to 

all the images in the testing set, and a box plot of the SSIM values is plotted to determine if we 

succeeded in significantly reducing the number of false positives while still accurately 

detecting the images with defects. The result is shown in Figure 4-25. First, the result shows 
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only a slight drop in the SSIM value between images in the training and testing set for examples 

without defects, which indicates that the model can generalize better to unseen examples than 

the VAE model. Secondly, the decision threshold 𝑇𝑟𝑒𝑐 is set to 0.82 which is much higher than 

the threshold value set for the VAE model, thus allowing for all images with defects to be 

detected without detecting any false positives and leaving some room for detecting even more 

elusive defects. Section 5.2.1 further investigates how well the model can generalize to new 

magnet samples whose structures differ considerably from the original training data.  

 

 

Figure 4-25: Show the reconstruction error for images in the training and testing set. The SSIM 

values between the original images and the reconstructed outputs are compared for the samples 

in the training set (SSIM_train) and test set, which contains both normal (SSIM_test_ok)  and 

defect (SSIM_test_defect) samples. The decision threshold 𝑇𝑟𝑒𝑐 is set to 0.82 which is the 

minimum SSIM value of the training set. 
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Figure 4-26: Shows examples of normal images from the test set and the corresponding output 

produced by the generator model. The per-pixel error value is shown in the coloured heat map, 

where the colour red indicates a large error and the blue colour indicates a small difference. 

 

 

Figure 4-27: Shows examples of images from the test set which contain defects and the 

corresponding output produced by the generator model. The per-pixel error value is shown in 
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the coloured heat map where the red colour indicates a large error and the blue colour indicates 

a small difference. 

 

4.4 Performance assessment on full cross-section images of 

sintered NdFeB magnets 

This section presents the results of the unsupervised defect detection system developed in 

Section 3.12 from the analysis of full cross-section magnet images. Following a similar 

motivation for the system developed for detecting defects in Li-ion battery electrodes, our 

primary goal is to automate the extraction of relevant defect information in sintered NdFeB 

magnet microstructures. That is, extracting regions containing anomalies from very large image 

data to evaluate the quality of a given sample. However, compared to the system developed for 

detecting defects in battery samples, the model developed for analysing magnet images did not 

require ground truth labels. Although this typically results in a less accurate model due to the 

high number of false positives and the difficulty of selecting an appropriate detection threshold. 

Nevertheless, with an unsupervised model, there is a higher potential for discovering unknown 

patterns in the data. To this end, the cGAN model was applied to two magnet samples produced 

by different manufacturers, one with high magnetic coercivity (HS17051_90) and one with low 

magnetic coercivity (HS17051_35), in order to investigate the relationship between the 

microstructure of a magnet, in particular the number of defects and the magnetic performance. 

 

4.4.1 Types of defects in NdFeB magnets 

Figure 4-28 shows typical examples of defects in the microstructure of various NdFeB 

magnets, which we aim to detect automatically using the unsupervised machine learning 

model. This includes defects such as accumulations of oxides, large oxides, large pores, and 

fluorides. Moreover, it is immediately apparent that even though these magnets have similar 

chemical composition, their microstructures look rather different, and so do the type and 

structure of the defects present, which can be attributed in some extent to slightly different 

manufacturing conditions. 

 

 

Figure 4-28: Typical examples of microstructural defects in sintered NdFeB magnets. 
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4.4.2 Machine learning results of analysing full cross-section 

images of NdFeB magnets 

To examine the full cross-section of the samples, we apply the generator of our cGAN model 

as a sliding window classifier using a stride of size 384 (0.75 x 512). At each window location, 

a patch of size 512 × 512 pixels is extracted and fed as input to the defect detection system, 

which subsequently produces an output score of the reconstruction error. If the score exceeds 

the selected threshold, the patch is classified as containing a defect, and the patch and its 

corresponding coordinates are saved for further analysis. However, since the system can only 

analyse one window at a time, defects spanning multiple windows are typically split into 

separate sections resulting in a higher number of true positives. Nevertheless, out of 40448 

patches analysed for the HS17051_90 sample, the system reported 75 patches as containing 

defects. However, only 21 of the 75 patches are true positives (actual defects), 37 are 

preparation artefacts, and 17 are false positives (see Figure 4-32). False positives refer to 

images that do not contain any defects or preparation artefacts but were still reported by the 

system. For the HS17051_35 sample, 112 patches were reported as containing defects out of 

57760 total patches, of which 95 are true positives, 11 are preparation artefacts, and 6 are false 

positives, as shown in Figure 4-29. This means that for the HS17051_35 samples, 1 in every 

608 patches contained a defect, while for the HS17051_90 sample, we have only 1 in every 

1926 patches. This clearly shows that there are much fewer defects in the higher quality magnet 

than in the magnet with lower quality. 

 

Figure 4-29: Shows the number of true positives, false positives and preparation artefacts 

detected for sample (a) HS17051_90 (b) HS17051_35. Note that preparation artefacts 

(Artefact) are manually separated from the true positives for a fairer comparison of the two 

samples.   

 

4.4.3 Spatial distribution of defects in the NdFeB magnet samples 

Figure 4-30 and Figure 4-31 show the spatial distribution of the detected defects enclosed in 

red bounding boxes and the corresponding heat map calculated from the residual error between 

the original and reconstructed image. A bright red spot indicates a large reconstruction error, 
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and a dark blue indicates minimal differences. Furthermore, besides simply comparing the 

number of detected boxes, which can indicate how the two samples compare, the heatmap also 

provides another means to evaluate the samples by providing a quick overview of the severity 

of the defects indicated by the distribution of bright spots in the heatmap. 

 

 

 

 
 

 

Figure 4-30: Shows the spatial distribution of detected defects in red bounding boxes and the 

corresponding heatmap for the sample HS17051_90.  

 

                  
 

 

 

Figure 4-31: Shows the spatial distribution of detected defects in red bounding boxes and the 

corresponding heatmap for the sample HS17051_35. 
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4.4.4 Picture gallery of defects detected in the samples of NdFeB 

magnets by the proposed system 

Figure 4-32 presents a picture gallery of all the detected regions in the two examined magnet 

samples. The images are cropped from the bounding box coordinates predicted by the detection 

system. Note that the images are ordered according to their reconstruction errors from highest 

in the top left to lowest in the bottom right. However, since the results have several preparation 

artefacts and false positives, Figure 4-33 shows only the true positives after manually removing 

the false detection. Nevertheless, the number of detected defects in the low coercivity magnet 

HS17051_35 is much higher than in the high coercivity magnet HS17051_90.  

 

  

 
 

Figure 4-32: Picture gallery of all the detected regions in the HS17051_90 and HS17051_35 

magnet samples before removing the false positives and preparation artefacts. 
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Figure 4-33: Picture gallery of all the detected regions in the HS17051_90 and HS17051_35 

magnet samples after manually removing the false positives and preparation artefacts.  
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Chapter 5 Discussion 

 

Discussion 

 

5.1 Detecting defects in lithium-ion batteries 

During the development of our proposed defect detection system for Li-ion batteries, several 

experiments were conducted to better understand the system's performance under various 

conditions. This chapter discusses the results of those experiments and explores the various 

properties of our proposed system. First, the performance of the underlying deep learning 

model will be evaluated, and the impact of factors such as network depth, data requirements, 

classification versus object localisation, single-stage versus two-stage detection and runtime 

evaluation will be discussed. In subsequent sections, the performance of our proposed system 

will be compared to manual visual inspection in addition to classical image processing 

methods. Then the relevance and benefits of the proposed system will be discussed, and lastly, 

some drawbacks and areas for further improvements will be considered.  

 

5.1.1 Performance assessment of the proposed methods 

Chapter 3 explored various model architectures, from simple image classifiers using a sliding 

widow detector to more complex object detection and localisation models. Various methods 

were investigated to cope with the highly imbalanced data set using under-sampling, over-

sampling and weighted loss functions. Nevertheless, some models still performed better than 

others. Therefore, in this section, we will look at certain aspects of the underlying defect 

detection problem in relation to the model architectures and examine which aspects have the 

most influence on the overall performance.  

Network depth 

Deep convolutional networks have been mainly responsible for the recent breakthroughs in 

image recognition tasks in the last decade. A lot of evidence [152], [169]–[171] has shown that 

network depth is of utmost importance for achieving top performance, and the top results on 

the ImageNet dataset all exploit very deep models. Most of the problems which in the past 

plagued the training of deep networks and prevented the models from converging have been 

largely mitigated by using better activation functions in intermediate layers and with 

normalized initialization [156], [170], [172], [173] and intermediate normalization layers 

(batch norm). Therefore, it is relevant to ask whether we can achieve better performance on 

our defect detection task simply by using a deeper network. For VGG-style networks where 

each layer is directly connected to the next layer, it has been experimentally shown in [174], 
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[175] that for a given task, there is an optimal number of layers, after which accuracy gets 

saturated, and the training and test error starts to increase. This is called the degradation 

problem. However, note that this is not the result of overfitting since adding more layers also 

causes the training error to increase. 

On the other hand, in residual networks (ResNet), where some of the layers do not directly 

operate on the input from the previous layer alone, instead, the input is passed on unchanged 

for several layers using shortcut connections, whereby the following layers operate on the 

residual of the passed input and the output of the previous residual layer. This is particularly 

relevant for our defect detection tasks since most of the categories of defects we aim to detect 

often occupy only a very small area of the whole image. Furthermore, the texture and 

appearance of these defects are typically very similar to the rest of the active material, which 

makes the problem even more challenging. Therefore, considering that a much smaller number 

of pixels are available to represent the information of these small defects, which is also much 

fewer than the non-defective regions, this means that there is less representative information 

for the detector to operate on. Besides, key features of the much smaller area containing defects 

are vulnerable and even progressively lost when going through various kinds of layers in the 

deep networks, such as convolutional or pooling layers. For example, in the VGG-19 network, 

if the defect occupies an area of 32 × 32 pixels, after going through 5 pooling layers, it will be 

represented by at most 1 pixel. Whereas, with the use of shortcut connections in the ResNet-

50 network, most of the relevant features can simply be shuffled across without any loss of 

information.  

In a subsequent experiment, we trained a ResNet-101 network which has 101 layers, in order 

to investigate whether an even deeper model will lead to a performance boost. However, we 

did not observe any significant performance improvement compared to the ResNet-50 network, 

which could be due to the relatively small size of the dataset, such that the ResNet-50 model is 

already able to learn most of the relevant features from the data and the addition of more layers 

will only increase the chances of overfitting.  

Evaluation of the multiclass classifier models  

In Section 4.1.2, the results of our experiments while developing the multiclass classification 

models for detecting defects in Li-ion batteries were presented. From the results, we observed 

the same performance between the ResNet-50 model trained with a weighted cross-entropy 

loss function and the model trained with the oversampling technique, which was surprisingly 

below the performance of the model trained with the standard cross-entropy loss function. This 

is probably because the weight terms might have slightly biased the model towards the minority 

class, while the over-sampling technique suffered from overfitting, as shown in Figure 4-2.  

Thus, both techniques did not improve the model performance compared with the baseline 

cross-entropy loss function. However, for the VGG-19 model, modifying the loss function and 

balancing the data helped improve the performance of the models compared with using 

standard cross-entropy loss, although the performance is still much lower than the ResNet-50 

models.  
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Next, the AUROC and AURPC of the top-performing models are discussed. Figure 4-3 shows 

that both ResNet-50 models trained with focal loss and standard cross-entropy achieve similar 

AUROC. However, the model trained with focal loss achieved a higher AUPRC for all classes 

except the geometric irregularity class than those achieved with a standard cross-entropy loss 

function (see Figure 4-4).  This indicates that the model with focal loss was more confident in 

its class predictions, as shown by the high precision and recall for various threshold values. 

The confusion matrices for the ResNet-50 model are presented in Figure 4-5, and those for the 

VGG-19 model are presented in Figure 4-6. First, note that both the ResNet-50 and VGG-19 

models achieved precision and recall greater than 90% for all the defect classes. The ResNet-

50 model trained with standard cross-entropy misclassified 6 examples containing foreign 

particles as no defect class compared to only 2 misclassified examples for the same model 

trained with focal loss. In addition, 5 images with no defect were misclassified as preparation 

artefacts compared to 3 images for the model trained with focal loss. This could indicate that 

the model trained with standard cross-entropy was slightly biased toward the majority class in 

both cases.  

From the confusion matrices in Figure 4-5, there is no strong evidence that the model had 

difficulty classifying any particular class when comparing the model trained with standard 

cross-entropy with those trained to deal with class imbalance. This is probably because the 

class imbalance between the majority and minority classes is not severe. However, the results 

show an improvement in the model performance when using the focal loss function. The 

validation losses of both models using all four training methods are compared in Figure 4-2. 

The results show that the networks trained with focal loss function converged to the minimum 

much faster than the other training methods. Lastly, the ResNet-50 model trained with standard 

cross-entropy achieved a better performance than all the VGG-19 models.    

Classification vs object detection model 

Ultimately, our goal is to analyse very large images to detect and quantify the number of defects 

present in a given cross-section. Therefore, in our initial attempt, a multiclass classification 

model was trained to detect defects and then applied to full cross-section images using a sliding 

window approach. This was done as follows: at each sliding window location, an image patch 

is extracted, scaled and fed through the CNN, and then the class with the highest probability is 

selected before sliding the window to the next location and repeating the process. However, 

since defects may appear in various sizes, the images also need to be processed at different 

scales. Furthermore, to avoid misclassifying objects at the image border, image patches will 

have a lot of overlap. As a result, the CNN will repeatedly compute the same features, making 

the entire process extremely slow. Then NMS is applied to reduce the amount of non-

informative, duplicate detection, which is characteristic of this strategy. In addition, for a given 

image patch containing more than one defect category, the model will simply assign the patch 

to any one of the defect categories present, eventually leading to underestimating the defect 

population. Moreover, given that the output of the classification model is simply the predicted 

class probability, there is no easy way to determine the exact location of the defect in the image 

without resorting to methods such as extracting regions from CAM heatmaps, which can 

become very cumbersome. Furthermore, the CAM approach can only detect defects from the 

same class in one image; it cannot detect defects from different classes. As a result, it is not 
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feasible to perform correlative analysis with this approach. Although this is a reasonable first 

attempt at defect detection, it has several flaws:  

- It is relatively slow, making it impractical for processing very large images. 

- The accuracy of the bounding box depends heavily on the parameters selected for the 

sliding window, the image pyramid and the ROI size. 

- It is impossible to train the entire architecture end-to-end, which means that errors in 

bounding-box predictions are not backpropagated through the network to produce 

better, more accurate detections in subsequent iterations through weight updates. 

Instead, the model weights are fixed and only used for prediction.  

Nevertheless, this demonstrates the effectiveness of the proposed approach for detecting 

various defects in the electrodes of LIBs. Furthermore, the network needs to perform well on 

image classification tasks to achieve high performance on localization as it involves identifying 

both the object category and accurately predicting the bounding box coordinates. Subsequently, 

we investigated end-to-end trainable object detectors, which can classify and localize many 

objects at varying scales in a single forward pass. We developed two defect localization models 

based on one-stage and two-stage approaches, which can detect multiple defects of different 

sizes and place tight-fitting bounding boxes at each defect location in the same field of view in 

near real-time.   

One-stage vs two-stage detection 

Many detection methods based on deep networks have been proposed to tackle object detection 

problems in the past years. They typically suffer from the speed-accuracy trade-off and can 

generally be categorized into one-stage or two-stage detectors. Most of these state-of-the-art 

detectors typically have some difficulty detecting small objects [176]. Therefore, in our 

experiments, we investigated both one-stage and two-stage detectors, namely SSD and Faster 

R-CNN, to detect and localise microstructure defects. Building on the results of the multiclass 

classification model, we evaluated our defect detection models using both ResNet and VGG 

backbones to determine how much they affect the model's overall performance. In general, 

from our experiments, Faster R-CNN achieved a better performance than SSD, particularly on 

the defects with smaller areas irrespective of the backbone feature extraction network, which 

is consistent with the findings in [176], [177]. Figure 5-1 shows the predicted scores of both 

the Faster R-CNN and SSD models on the same set of images. For each defect category, the 

predicted score or confidence of the Faster R-CNN network is typically higher than those of 

the SSD network. This can be mainly attributed to two factors: 1) the region proposal network 

(RPN), which generates high-quality region proposals, and avoids the need to generate an 

excessive number of proposal boxes. This reduces the number of false positives and improves 

accuracy, mostly leaving the bounding box refinement and classification to the Fast R-CNN 

network. On the other hand, SSD eliminates the need for the proposal network to enhance the 

runtime speed, which consequently results in a drop in detection accuracy. However, this is 

compensated for by generating many default boxes and making predictions on multiscale 

feature maps, using earlier layers to detect small objects and lower resolution layers to detect 

larger objects. This approach is faster than using a separate network to generate region 

proposals because computations of the convolutional layers are effectively utilized to create a 
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feature pyramid from a single image scale. However, the problem with this is that the low-level 

activation maps of the convolutional network contain less semantic information than the high-

level activation maps. Consequently, the high-resolution scales of the feature pyramid contain 

less relevant information for detection than lower resolution scales of the pyramid. 2) One-

stage methods such as SSD use a soft sampling method that uses all the information in each 

batch to update the network parameter rather than selecting samples from the training set. Two-

stage detectors, on the other hand, such as Faster R-CNN, employ hard sampling methods that 

randomly sample a certain number of positive and negative bounding boxes and try to balance 

the ratio between the two sets to update the network parameters. Therefore, considering there 

is a high imbalance between defective and non-defective regions, this makes a significant 

difference in the model performance since the one-stage detector is more likely to misclassify 

defects with a similar appearance to the more dominant background class.  

Next, when comparing the backbone networks, the models with ResNet-50 backbone 

outperforms the one based on VGG-19 in both one-stage and two-stage detection networks. 

This is unsurprising since the ResNet-50 also performed better on the classification task.  Other 

approaches, such as SOD-MTGAN [178], have been proposed to detect small objects by taking 

cropped regions as input. However, they also rely on pre-processing steps obtained from a 

baseline detector such as Faster R-CNN. An alternative approach that was also investigated is 

based on a system called Feature Pyramid Network (FPN) [179], which proposes a solution to 

detecting objects at different scales by performing a top-down computation step after 

generating the feature maps in a bottom-up computation. In order to achieve this, the top-down 

pathway generates higher resolution features by upsampling spatially coarser but semantically 

more interesting high-level low resolution activation maps from higher pyramid levels and 

summing them with low-level high resolution features from the bottom-up pathway through 

the lateral connections. The idea is to combine low level activations which are more accurately 

localized since they have been subsampled fewer times with higher level features maps to 

detect objects at different scales with improved precision and at marginal extra computation 

time. However, in our experiments we found that they provided a slight improvement in 

precision (mAP 0.85) compared to the baseline of one scale, but the precision-time (0.63 

second per image on GPU) trade-off was not advantageous. 

 

Faster R-CNN 
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SSD 

 
Figure 5-1: Shows the prediction confidence for Faster R-CNN with ResNet-50 and SSD 

with ResNet-50 on the same set of images. 
 

Data requirements 

Data availability is another critical factor to consider when selecting a model for any machine 

learning problem. More importantly, in the case of defect detection, where it can become very 

time-consuming and expensive to obtain sufficient training data, is the data efficiency of the 

learning algorithm. For simple tasks like differentiating cats from dogs, humans take very few 

examples to differentiate the two. However, CNNs typically require at least a few hundred 

examples to get reasonable performance and thousands of examples to get to human-level 

performance. A simple explanation for this is that the network cannot focus on what we know 

to be relevant, and they only generalize by finding common patterns in the given examples. 

For instance, if all the images of dogs shown to the network were taken on green grass, the 

network will learn to associate the green colour with the dog class. Only when the network is 

presented with examples of dogs from other surroundings will the network start to ignore those 

irrelevant features. Therefore, in general, the more difficult the underlying pattern is to 

recognise, the more diverse examples the networks typically need to be shown. In our case, we 

took a top-down approach where we first trained a simple classification network to differentiate 

images with defects from images without defects. This allowed two things: 1) it allowed us to 

develop a baseline model to compare the performance of the deep learning model to classic 

image process approaches. 2) The trained network was used to collect more training examples 

for retraining and improving the model. By doing this, we were able to increase the complexity 

of the task and the complexity of the network since we now have a larger training dataset. In 

Figure 4-13, we showed how the size of the training dataset affects the mAP on the testing set 

for the Faster R-CNN and SSD model. In this case, the performance of the two-stage model 

was much better (Faster R-CNN mAP 0.78, SSD mAP 0.52) for smaller datasets (less than 

1600 images), while the single-stage network only started to catch up as the size of the dataset 

increased (greater than 2400 images). However, compared with the image classification 

models, it is much more time-consuming to label tight-fitting bounding box annotations for 

training object detection models.  
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Runtime evaluation 

For most modern object detection systems, there is an inherent trade-off between speed and 

accuracy [168], and we observed a similar behaviour as shown in Figure 4-14, where the 

number of region proposals generated by the RPN affects the speed and accuracy of the Faster 

R-CNN network. Nevertheless, it was possible to reduce the number of proposals from 6000 

to 3000 without any drop in mAP. Consequently, this reduced the time taken to evaluate a 

single image of size 800 x 600 pixels from 438 ms to 341 ms. However, this is still much higher 

than the 121 ms it takes the SSD model to process a single image, making the Faster R-CNN 

network ~3 times slower. It takes the Faster R-CNN based system ~35 minutes and the SSD 

based system ~12 minutes to process an entire cross-section using a GPU. On the other hand, 

the sliding window classifier takes almost 3 hours to process a full cross-section image.   

 

5.1.2 Comparison between manual inspection and the proposed 

method 

In our previous experiments, we evaluated the performance of the defect detection system 

based on a set of ground truth annotations provided by a human inspector. However, this only 

checks how well the system performs on annotated examples; it does not give any indications 

of missed defects since they were not annotated. Therefore, this section will compare the 

performance of the model to manual inspection on two cross-sections, which will give a better 

indication of the general performance of the model and the time taken for the analysis. Figure 

5-2 shows a side-by-side comparison of the Faster R-CNN with the ResNet-50 based defect 

detection system to the results of manual inspection for each defect category. In general, both 

results are highly comparable; however, on average, it takes ~1.5 hours to manually inspect 

each cross-section image compared to ~35 minutes taken by the defect detection system. 

Moreover, we also observe the speed-accuracy trade-off here, where the more time spent 

manually analysing the images, the more accurate the result is. However, this level of 

concentration cannot be sustained for too long without the possibility of fatigue-induced error, 

which is not the case for our defect detection system.  
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Figure 5-2: Compares the number of defects detected by the proposed system and manual 

inspection for the three battery samples INSP_044, INSP_047 and INSP_051 (two cross-

sections each) presented in Table 4-6. 

 

5.1.3 Comparison between the proposed methods and classical 

approaches 

In [57], we compared the performance of various CNN models built from scratch with 

randomly initialised weights to state-of-the-art models initialised with pretrained weights and 

traditional machine learning approaches using general texture extraction methods with shallow 

classifiers. Concretely, first, a baseline model was developed as a reference to the traditional 

approaches and based on the results, two optimised models were developed, one with a sigmoid 

layer at the output and the other with a softmax layer at the output. For the traditional approach, 

two models were evaluated; the first method uses a Gray-level co-occurrence matrix (GLCM) 

as the feature extractor and a support vector machine classifier, while the second model was 

based on a multiresolution local binary pattern (MLBP) with a gradient boosting classifier 

[180]. In addition, we also evaluated the performance of state-of-the-art models, which were 

pre-trained on millions of images from the ImageNet dataset and fine-tuned for our defect 

detection task. The results are summarised in Table 5-1. In general, the fine-tuned models pre-

trained on millions of images achieved a much better performance than the CNN models 

trained from scratch with randomly initialized weights, with the VGG-19 model achieving the 

best performance overall (F1-score 0.99 for defect class and 1.0 for no defect class). On the 

other hand, the traditional method based on GLCM with SVM classifier achieved the lowest 

performance (F1-score 0.46 for defect class and 0.91 for no defect class), while the model based 
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on MLBP with gradient boosting classifier achieved a comparable result to the baseline model 

but performed significantly worse compared to the other CNN models. These results 

demonstrate the major benefits of transfer learning, where low-level features learnt from one 

dataset can be transferred to another dataset, especially when only a few examples are available 

in the downstream task. In contrast, the CNN models trained from scratch directly on the 

battery data could not learn sufficiently general features due to the small dataset and therefore 

are more likely to overfit the training data. On the other hand, the features extracted by the 

traditional approaches are generally fixed and aim at a specific pattern, lacking adaptability 

and robustness for such classification tasks. However, due to the large model size, the inference 

speed is much slower for the fine-tuned models.  

Table 5-1: Classification results for the Li-ion battery micrographs dataset. Class 0 represents 

examples with defects, and Class 1 represents examples with no defects. Fine-tuned VGG-19 

model performed best, followed by the InceptionV3 [57]. 

Model F1-score AUPRC AUROC 

 Class 0 Class 1 Class 0 Class 1  

GLCM + SVM 0.46 0.91 0.372 0.859 0.653 

MLBP + Gradient Boosting 0.73 0.95 0.614 0.918 0.810 

Baseline 0.71 0.91 0.815 0.977 0.930 

Sigmoid 0.86 0.97 0.957 0.996 0.980 

Softmax 0.85 0.96 0.924 0.992 0.970 

VGG-19 fine-tuned 0.99 1.00 0.999 1.000 1.000 

InceptionV3 fine-tuned 0.97 0.99 0.993 0.999 1.000 

Xception fine-tuned 0.95 0.99 0.960 0.989 0.980 

 

5.1.4 Benefits of the proposed method for quality assessment of 

batteries 

Besides the ability to quantitatively and qualitatively analyse a battery sample for the presence 

of defects and compare samples from various producers for quality assessment, another major 

benefit of the proposed approach is that we also obtain the exact coordinates of the detected 

defects. These can later be used to verify the chemical composition of the detected region using 

correlative analysis techniques. Moreover, for battery producers and researchers, there is little 

benefit in simply being able to visually observe the presence of something without the ability 

to eventually determine its origin since further information would be needed to take corrective 

measures. Therefore, in this section, a simple workflow is presented to demonstrate the benefits 

of the proposed detection system.  

As described in Section 3.10, our defect localisation network produces three outputs for each 

detected defect: the class of the defect, the confidence score and the bounding box coordinates. 

Subsequently, we can use the bounding box coordinates to crop the whole defect region and 

automatically sort the defects into various categories using the predicted class labels to obtain 

a picture gallery such as those shown in Section 4.2.4 and produce a statistical report. In the 

next step of the workflow, our image selection tool is used to select a subset of defects from 

the picture gallery in order to mark the regions corresponding to the selected defects on the full 

cross-section, as shown in Figure 5-3. This is much faster than trying to locate each of those 

areas manually. Finally, with the marked image of the battery cross-section and the 
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corresponding prepared battery sample, we can perform correlatively analysis with the 

scanning electron microscope by using the markers on the light microscopy image to locate the 

equivalent points on the battery sample for analysis. Figure 5-4 shows the results of using EDX 

analysis to determine the chemical composition of a selected number of detected defects. For 

example, in Figure 5-4 (a), the detected defect at point A1-P1 contains a higher oxygen content 

(7.0%) than the graphite particles at points A1-P4 (3.9%) and A1-P5 (4.2%). Likewise, in 

Figure 5-4 (b), the detected defect at point A1-P1 contains a higher oxygen (25.0%) and 

fluorine (5.9%) content but a lower carbon (64.6%) content than the graphite particle at point 

A1-P6 (4.2%, 0.3% and 91.9%, respectively). However, the main component is carbon which 

is why defects of this kind were named anode carbon particles (ACP). In Figure 5-4 (c), the 

detected particle contains a high content of silicon (17.0%) and zirconium (14.4%), while the 

highest component is oxygen (67.3%), hence the name anode oxide particles (AOP). Following 

this approach, we were not only able to identify and properly categorize the detected defects, 

but we were also able to detect possible cross-contamination of different NMC compositions. 

For example, in Figure 5-4 (d), the results of the EDX analysis of the large round particles in 

the cathode show that the coating material of the cell has a chemical composition consisting of 

NMC-622 at point A1-P3 (Ni 46.6%, Mn 16.2%, Co 16.6%,) while the large round particle 

contains a different chemical composition consisting of NMC-424 at point A1-P1 (Ni 28.6%, 

Mn 15.0%, Co 24.2%,). Furthermore, we observed that the number of these large round 

particles also varies significantly depending on the production date, as shown in Figure 5-5, 

which would indicate possible cross-contamination from a different production batch. 

 

 

Figure 5-3: This depiction shows the image selection process for correlative analysis. Our 

image selection tool (left) can be used to select a subset of defects from the picture gallery 

containing all the detected defects. The coordinates of those selected defects are subsequently 

marked in red circles on the large overview image (right).  
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(a) 

 

Phase fractions at. % 

A1-P1 C 92.6, O 7.0, S 0.2, Au 0.2 

A1-P4 C 95.3, O 3.9, F 0.6, Au 0.2 

 

(b)  

 

Phase fractions at. % 

A1-P1 C 64.6, O 25.0, F 5.9, Ni 2.4 

A1-P6 C 91.9, O 4.2, F 0.3 

 

(c)  

 

Phase fractions at. % 

A1-P1 C 0.5, O 67.3, Si 17.0, Zr 14.4 

 

 

(d)  

 

Phase fractions at. % 

A1-P1 O 31.1, Mn 15.0, Co 24.2, Ni 28.6 

A1-P3 O 19.4, Mn 16.2, Co 16.6, Ni 46.6 
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(e) 

 

 

 

 

Phase fractions at. % 

A1-P1 C 86.0, O 2.8, F 1.7, S 2.0, Cu 6.3 

A1-P2 C 98.7, O 0.1, F 0.2, Cu 0.9 

A1-P3 C 68.5, O 11.3, F 15.4, Cu 2.5 

 

(f)  

 

Phase fractions at. % 

A1-P1 C 3.5, O 35.3, F 55.0, Cu 4.7, Al 0.7 

A1-P3 C 75.3, O 16.9, F 7.1, P 0.5, Au 0.2 

 

Figure 5-4: Correlative analysis using light microscopy (left) and SEM (middle) to determine 

the chemical composition of detected defects. The result of the EDX analysis is shown on 

the right. Point A1-P1 corresponds to the defect detected by the model, and the other points 

are for comparison.  

 

Regarding robustness, an important question is how well the detection system works when it 

receives images from batteries with different chemistries or microstructures than that of the 

model training data set? Figure 5-7 shows the microstructures of four battery samples with 

different chemistries from the one with which our system was originally trained. The sample 

with the most similar microstructure to the LG Chem ICR 18650 B4 NMC is the Samsung INR 

18650 30Q NCA, which we use to test the generalizability of our detection system. For the 

other samples, such as the Sony US 18650 VTC5A NCA with silicon/carbon composite in the 

anode or the Sanyo UR 18650 W2 NMC/MnO with blend cathode to enhance the energy 

density and thermal stability, the microstructure of these batteries look significantly different 

from those of the LG Chem ICR and when presented to the detection system results in a lot of 

false positive detection. This is unsurprising since large particles in the cathode or foreign 

particles in the anode are often labelled as defects in our training data. As a result, in such 

cases, we cannot directly apply the system without retraining with some new examples to adjust 

the models' weights to adapt to the new microstructure. Nevertheless, we can leverage transfer 

learning for a much quicker training process. On the other hand, the system worked directly 

without retraining on the Samsung INR18650-30Q NCA samples, which have different 

chemistry to our original training data. The distribution of the detected defect from two cross-
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sections of this sample is shown in Figure 5-6. We can immediately observe significant 

differences in these results from those of the LG Chem ICR in Section 4.2.2. For instance, the 

number of CRP and CFA defects is much lower in comparison, while the quantity of ACP 

defects is much higher than in the LG Chem ICR samples.  

 

 
 

Figure 5-5: shows the quantity of CRP 

defects detected in samples INSP_044, 

INSP_047 and INSP_051 with production 

dates 08.02.2018, 27.02.2017 and 

14.01.2017, respectively. 

Figure 5-6: Shows the distribution of defects 

detected in 2 cross-sections of the Samsung 

INR-18650-30Q (NCA) sample. 

 

 

Figure 5-7: Example images of microstructure from batteries with different chemistry. 

 

5.1.5 Limitations of the proposed method for quality assessment of 

batteries 

This section will discuss some of the limitations associated with the proposed defect detection 

system. First and foremost, since the image acquisition process is destructive, the packaged 

cell needs to be sectioned (cut open) to reveal the electrodes; therefore, it is impossible to carry 

out any further investigation to determine the effects of these defects on the performance of the 
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battery. For example, we cannot perform cycling tests to find specific correlations between the 

defects and the lifetime of the cell. Secondly, the sample preparation and image acquisition 

process can be time-consuming. Nevertheless, we envision a use case where a small batch of 

samples is randomly picked from a large production batch for analysis or a few samples from 

various producers are periodically compared for quality assessment. However, with a 

sufficiently high-resolution camera, such a system can be deployed during production since the 

detection model can operate in near real-time. In addition, due to the delicate composition of 

materials within the battery, preparing cross-sections free of artefacts can be very challenging. 

However, the model can be trained to identify certain artefacts and ignore them, while the 

origin of other types of defects such as cracks and geometric irregularities can be more difficult 

to determine since they might be actual defects or introduced during the sample preparation 

process. Lastly, as discussed in the previous section, in order to apply the system on a battery 

with different chemistry or microstructure from the one with which the model was originally 

trained, the model will need to be retrained or fine-tuned with examples of the new battery 

microstructure. Although our training dataset consists of examples from only one type of 

battery chemistry, with a sufficiently diverse training set, the system can probably be applied 

to a broader range of microstructures without the need for retraining. 

 

5.2 Detecting defects in sintered NdFeB magnets 

In the previous sections, we looked at various techniques for automated defect detection using 

a supervised learning approach and discussed several advantages of using this method. 

However, one of the main limitations of using this approach is the need for a relatively large 

amount of labelled data, and depending on the type of supervised learning approach, this can 

range from simple class labels to time-consuming bounding box annotations. Furthermore, in 

certain situations where one class is abundant and very few examples of the other class exist, 

it is typically not feasible to train a supervised learning model or in cases where prior 

knowledge of what constitutes acceptable or defect pattern is not well consolidated. For these 

reasons, two unsupervised learning approaches were investigated to learn the structure of 

normal images from the vast quantity of unlabelled data to detect irregularities in the 

microstructure of sintered NdFeB magnets. In this section, the performance of these two 

models will be evaluated and compared to manual inspection and other anomaly detection 

techniques. Then the relevance and benefits of the proposed systems will be discussed, and in 

the final section, some of the limitations will be presented.   

 

5.2.1 Performance assessment of proposed methods 

Variational autoencoders (VAEs) are designed to learn both an encoder and decoder network, 

which often results in a good ability to reconstruct the training data as well as the ability to 

quantify a bound on the log-likelihood fit of the model to data [130], [131], [181]. Moreover, 

the inferred latent codes can be utilized in downstream tasks in a semi-supervised learning 

approach for image classification [182]. However, new images synthesized by the VAE tend 
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to be rather unspecific and blurry with relatively low resolution, as we saw in Section 4.3.1. 

This is because the VAE seeks to maximize a lower bound on the log-likelihood of the 

generative model, which means they inherit the limitations of maximum-likelihood learning 

[183]. In particular, for training the VAE, we optimize the Kullback-Leibler (KL) divergence 

between the underlying data distribution and the distribution of the model. In such a setting, 

the learning approach does not penalize the model for generating outputs that are different from 

those used for training, which is compensated for by adding the mean squared error to the final 

loss. Nevertheless, compared to a normal autoencoder where latent variables’ distribution for 

different classes are not very well distributed and with continued training, the autoencoder 

inevitably reduces the reconstruction error of outliers. This allows the autoencoder to easily 

reconstruct any input image from the training dataset, which is not particularly useful for 

detecting anomalies in images due to data leakage [184], [185]. On the other hand, the VAE 

can learn a better distribution of the underlying data where the distribution of latent variables 

for different classes are evenly spread and overlap slightly with each other to create a 

continuous transition. This ensures to some extent that images not drawn from the same 

distribution as the training data will typically have a much higher reconstruction error. 

However, for our particular application, which involves analysing thousands of tile images, the 

fact that VAEs tend to generate unspecific and blurry images results in an undesirable amount 

of false positives, where images that do not contain any defects sometimes have a high 

reconstruction error due to randomness in the data generation process.  

On the other hand, GANs are the state-of-the-art approach for generating photorealistic images, 

and we leverage this approach to improve our defect detection models based on the practical 

limitations of the VAE model. In particular, due to the constraint imposed on the latent vector 

z, which forces the network to learn a compressed representation of the input data, resulting in 

blurry and sometimes random outputs, we use a conditional GAN to learn a direct mapping 

from edges to images. Furthermore, the U-Net generator, which uses skip connections to 

shuffle low-level features shared between the input and output across the network, allows the 

model to generate high-resolution outputs. Another major benefit of this approach is that the 

model produces deterministic outputs for a given set of input images. Although various image-

to-image translation approaches with conditional GANs try to mitigate this by either providing 

Gaussian noise as an input to the generator or including several dropout layers in the generator 

during training and testing, they observed only minor stochasticity in the output of the network 

[160], [164], [186]. However, for anomaly detection, it is highly beneficial for all parts of the 

original and generated image to be identical except for the anomalous regions, which helps 

reduce the amount of false positive detections significantly.  

Next, in order to investigate how well our model generalises to other types of magnet 

microstructures and imaging conditions, our defect detection model based on the conditional 

GAN was applied to two new NdFeB magnet samples, HS17051_75 and HS17051_03, which 

have a slightly different microstructure and contrast to those initially used for training the 

model. A comparison of the microstructures of the new testing samples with the original ones 

used for training is shown in Figure 5-8. The model was directly applied to the two samples 

without retraining with example images from the new dataset to determine how well the model 

performs on new microstructures. Figure 5-9 shows some examples of the detected defects 
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from both samples. For HS17051_03, out of 35489 patches analysed, the system reported 169 

patches containing defects, of which 125 were true positives, 29 were false positives, and 15 

were preparation artefacts. For the HS17051_75, out of 20321 patches analysed, the system 

reported 396 patches containing defects, of which 349 were true positives, 43 were false 

positives, and 3 were preparation artefacts. The results indicate that the model can generalise 

to new magnet microstructures without any retraining; however, we observed a drop in the 

model performance when there is a significant difference in image contrast. Nevertheless, this 

can be solved by either fine-tuning the model with some examples from the new dataset or 

retraining the original model using grayscale images.  

 

 

Figure 5-8: Compares the microstructure of the samples used for training the model to two 

new samples, HS17051_75 and HS17051_03, with different microstructures for testing.  

 

 

Figure 5-9: Shows some examples of defects detected by the cGAN model (without retraining) 

in the magnet samples HS17051_75 and HS17051_03, which have a different microstructure 

from those originally used for training the model. 

 

Runtime evaluation  

Both defect detection approaches take nearly the same amount of time to analyse a full cross-

section image. For example, to analyse the HS17051_03 sample, which contains 35489 
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patches, it took the VAE based system ~2.35 hours while the system based on conditional GAN 

took ~2.5 hours. The time it takes to analyse an image heavily depends on the size of the 

window strides, where a stride of 1 indicates no overlap between adjacent patches and a stride 

of 0.5 indicates a 50% overlap between adjacent patches. Using a certain amount of overlap 

helps to handle border effects and improves model performance. Thus, we used an overlap of 

75% in all our analyses to balance speed and detection accuracy.  

 

5.2.2 Comparison between manual inspection and the proposed 

method 

Next, the performance of the conditional GAN model is compared to manual visual inspection 

to evaluate how well the model performs compared to a human examiner. For this, the samples 

HS17051_90 and HS17051_35 were visually inspected, and the time taken for each analysis 

was recorded. The results of the analyses are shown in Figure 5-10. For the sample 

HS17051_90, a similar number of true positives were detected through manual inspection and 

our unsupervised model. The difference in the number of reported defects is mainly because 

some defects are split across multiple windows and hence counted separately by our detection 

system, while those are only counted once during the manual inspection (see Figure 4-32 and 

Figure 4-33). Note that preparation artefacts are counted during manual inspection only to 

compare the result with the automated system. However, for the HS17051_35 sample, more 

defects were detected through manual inspection than our detection system reported. 

Nevertheless, as shown in Section 4.4.4, a considerable amount of the detected defects were at 

the border of the sliding window, which means that only a smaller part of the defect is 

considered in the reconstruction error for that window. This indicates that we can increase the 

model's accuracy by simply using a smaller stride to increase the amount of overlap between 

adjacent windows so that defects are more likely to fall in the centre of a window. Therefore, 

the window stride was reduced from 0.75 to 0.5, and the result is shown in Figure 5-11. Here 

it can be seen that the model’s performance improves, although at the cost of a much longer 

processing time due to higher overlap between adjacent tiles.   

 

 

Figure 5-10: Compares the number of defects detected by the proposed system to manual visual 

inspection for the samples HS17051_90 and HS17051_35. Note that the number of preparation 
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artefacts (Artefact) was counted during manual inspection simply to compare the result with 

the trained model.   

 

Figure 5-11: Shows the number of defects detected in the samples HS17051_90 and 

HS17051_35 by the proposed system compared to manual visual inspection after adjusting the 

window stride from 0.75 to 0.5.  

 

5.2.3 Comparison between the proposed methods and classical 

approaches 

Many of the methods available for identifying anomalies focus mainly on small datasets with 

a low number of features. One-Class Support Vector Machines (OC-SVM) [187]–[189], 

Isolation Forest [190], and Local Outlier Factor [191] are popular techniques for unsupervised 

anomaly detection. Of the three techniques, OC-SVM is the most common approach for 

anomaly detection. These techniques generally aim to model the underlying distribution of 

normal data while being insensitive to noise or anomalies in the training data. For instance, in 

the case of OC-SVMs, a kernel function is used to implicitly map the input space to a higher 

dimensional feature space in order to clearly separate normal and anomalous data. 

Theoretically, SVMs are appealing because they provide good generalisation when the 

parameters are properly configured. Since the loss function is convex, they deliver a unique 

solution, and they can model any training set in principle when an appropriate kernel is chosen 

[192], [193]. However, these methods often fail in high-dimensional, data-rich settings due to 

bad computational scalability and the curse of dimensionality [97], [194]. The curse of 

dimensionality implies that for a model to obtain good generalization, the number of training 

samples must grow exponentially with the number of features [195], [196].  

However, SVMs are non-parametric models whose complexity scales quadratically with the 

number of records, making the training both memory and time-intensive. Hence they are best 

suited to small datasets with few features since a large number of features, for example, in 

image data, results in the curse of dimensionality, which causes the generalization error of 

shallow architectures such as SVMs, to increase with the number of irrelevant and redundant 

features. In addition, shallow architectures have practical limitations for modelling certain 

types of input functions. In order to avoid these issues, it is necessary to generate a compact 

representation of the underlying data distribution, which can capture most of the variations in 
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the input data to alleviate the curse of dimensionality and reduce the computational complexity 

of the algorithm. A common approach to address this problem is through a hybrid approach 

where dimensionality reduction techniques such as principal component analysis (PCA) [197], 

independent component analysis (ICA) [198] or Deep Belief Nets (DBNs) [132], [199], [200] 

is used to extract features for training a One-Class SVM [97], [201]. Another common 

approach used for defect detection in textured surfaces involves the extraction of second-order 

statistical attributes (Haralick features) derived from grey-level co-occurrence matrices 

(GLCM) to train a One-Class SVM to learn a general description of normal texture from defect-

free samples [202]. However, such shallow methods typically require substantial feature 

engineering to be effective. Moreover, as we have seen previously, techniques that rely on 

traditional hand-crafted features tend to have much lower accuracies when compared to deep 

learning based methods.  

On the other hand, deep hybrid models for anomaly detection mainly use autoencoders for 

feature extraction, whereby the features learnt within the hidden representations of 

autoencoders are fed as input to anomaly detection algorithms such as OC-SVM to detect 

outliers [203]–[205]. The feature extractor greatly reduces the curse of dimensionality, which 

makes hybrid models more scalable and computationally efficient since the linear or nonlinear 

kernel models operate on reduced input dimensions. However, a hybrid approach is unable to 

influence representations learnt within the hidden layers of the feature extractors since generic 

loss functions are typically employed instead of customized objectives for anomaly detection; 

hence these models often fail to extract differential features to detect outliers.  

 

5.2.4 Benefits of the proposed method for quality assessment of 

magnets 

We proposed a generic unsupervised learning approach capable of anomaly or defect detection 

in image data. The proposed method can handle high-dimensional data without making any 

prior assumptions on the underlying data distribution, besides ensuring that the training dataset 

consists of only defect-free examples. In contrast, most unsupervised anomaly detection 

models require priors to be assumed on the distribution of anomaly, which typically makes the 

models less robust to handle noisy data. Compared to conventional autoencoder-based anomaly 

detection approaches, which are highly sensitive to even the slightest violations of the clean-

dataset assumptions, if a small number of anomalies contaminate the training set, our approach 

will not necessarily learn to reconstruct anomalous observations as well as normal ones. In 

addition, our approach is not unduly affected by small deviations from the training distribution. 

That is, it is robust enough to deal with microstructures from different samples of magnets 

without requiring further retraining. Unlike the supervised learning models we discussed in the 

previous sections, our unsupervised models can discover unknown defect patterns in the data, 

making it very useful, especially in cases where the knowledge of what constitutes a defective 

sample is not well established. Furthermore, supervised deep learning techniques often require 

many training samples with accurate labels to effectively learn discriminative features for 

various classes. However, accurate labels for various normal and anomalous instances are often 

not readily available for many practical applications, particularly for defect detection. In many 
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cases, they are costly and time-consuming to acquire, which can make training a robust 

supervised model a very challenging task. Nevertheless, as shown in Section 4.4, by using our 

proposed method, we can obtain a picture gallery of all the detected defects, which provides a 

snapshot of the state of the magnet and therefore facilitates qualitative and quantitative 

assessments of magnets of different grades from various producers which is highly beneficial 

for many industrial applications. For example, original equipment manufacturers can make 

more informed decisions based on the types and quantity of defects in the analysed magnet 

samples; since a high population of defects will normally correlate with a worse manufacturing 

process and hence a lower quality magnet that easily loses its magnetic properties.  

 

5.2.5 Limitations of the proposed method for quality assessment of 

magnets 

High-dimensional problem domains still pose significant challenges for anomaly detection. 

This is mainly due to the presence of many irrelevant features which conceal the presence of 

anomalies and the absence of a clear objective function for learning anomaly detection, which 

still typically relies on reconstruction error based heuristics. Nevertheless, we have been able 

to successfully mitigate this problem by developing a model that can reconstruct high-

resolution versions of the input data and using a good similarity measure that is less sensitive 

to slight deviation in pixel values. However, there are still certain scenarios in which our model 

is suboptimal. For instance, with our approach, detecting low contrast defects such as the 

presence of secondary phase and regions with large grains will be challenging since they appear 

very similar to the main hard magnetic phase Nd2Fe14B. A possible solution would be to use 

other imaging techniques which normally have higher contrast, such as Kerr microscopy or by 

staining the sample with compounds that give these regions higher contrasts. Nonetheless, it is 

also possible to train a supervised model to detect the secondary phase since these defects are 

often of much higher quantity than the large grains or oxides. Another limitation of the 

proposed approach is the time taken to evaluate a sample (~2.5 hours), which can easily become 

a bottleneck if lots of samples need to be analysed. However, using various optimisation 

techniques and parallel processing can reduce the evaluation time significantly.  
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Chapter 6 Conclusion 

 

Conclusion 

 

Throughout this thesis, we have investigated various methods for automating the detection of 

microstructural defects in two types of energy-related technologies, namely: lithium-ion 

batteries and sintered NdFeB magnets. In this final chapter, we will review the initial problem 

and recapitulate the proposed methods (Section 6.1), summarize our findings (Section 6.2), 

discuss the impact of machine learning on microscopy (Section 6.3) and provide an outline of 

future research directions (Section 6.4).  

 

6.1 Synopsis 

Quality control focuses on identifying defects in products and monitoring activities to verify 

that products meet the desired quality standard. However, quality inspection of components is 

often labour intensive and can be error-prone due to the limits of human visual perception. As 

a result, automated vision systems are becoming essential in many production facilities. For 

this task, it is often common to develop solutions predominantly based on manually engineered 

features that rely on expert knowledge to handcraft useful features. However, this process can 

be laborious and costly while the produced solution is still brittle, needing significant 

modifications for slightly different use cases. Moreover, quality evaluation techniques for 

assessing the quality of electrode foils of lithium-ion cells currently applied in the industry do 

not provide sufficient detail or spatial resolution on microstructural features that are critical for 

battery performance. To this end, we proposed a more general data-driven approach based on 

recent advances in computer vision technologies using convolutional neural networks to learn 

representative features directly from the given data. 

In chapter 3, we developed models for defect detection, which can be broadly categorized into 

supervised and unsupervised deep learning techniques. In Section 3.8, a simple binary image 

classifier based on a sliding window approach was developed to detect defects in the 

microstructure of Li-ion batteries. This approach was later extended to handle multiple classes 

of defects in Section 3.9. Our final model enabled the detection of defects with high accuracy 

and allowed us to visually inspect the model’s predictions and investigate possible sources of 

ambiguities in the data. However, due to certain limitations and, more importantly, our findings 

from these initial models, in Section 3.10, more complex object detection and localisation 

models were developed based on one-stage and two-stage detectors that can detect and localize 

multiple classes of defects in the same image with high accuracies in near real-time. All the 

above techniques fall under the supervised learning approach, which primarily relies on having 
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a relatively large labelled training dataset. However, in many cases, such datasets are not 

readily available. Therefore, in Section 3.11.1, an unsupervised model was developed for 

anomaly detection in the microstructure of sintered NdFeB magnets without the need for any 

labelled training data. The model can detect defects by learning from the training data the 

underlying distribution for “normal” microstructure patterns in order to reconstruct the original 

image. Therefore, when the model receives an image with an unusual pattern (defect), it 

generates a high reconstruction error. Finally, in Section 3.12, the anomaly detection accuracy 

was significantly improved by developing a system that can better reconstruct the original input 

image in high resolution by combining two networks in an adversarial framework.  

 

6.2 Summary of findings 

This thesis aimed to develop new approaches for performing the quality evaluation of Li-ion 

battery electrodes and sintered NdFeB magnets by detecting various microstructural defects 

from light optical microscopy images. Various deep learning model architectures were 

investigated for detecting defects in Li-ion batteries, and with our proposed solution, we 

successfully detected various categories of defects with high accuracy. For the binary classifier 

model, which categorizes images into a defect or no defect class, the ResNet-50 model trained 

with the focal loss objective using hyperparameter 𝛼 = 3 and 𝛾 = 2 achieved the best 

performance with an F1-score of 0.976. For the multiclass image classifier model, which 

categorizes images into one of six defect categories, the ResNet-50 model trained with focal 

loss function using hyperparameter 𝛼 = 1 and 𝛾 = 1 achieved the best performance with an 

F1-score of 0.976. In addition, we investigated both one-stage and two-stage object localization 

models to obtain more precise results, and our proposed methods based on the Faster R-CNN 

architecture with a ResNet-50 and VGG-19 feature extractor achieved an mAP of 0.87 and 

0.83, respectively, on the testing set for ten defect categories. 

In comparison, the detection system based on SSD architecture with a ResNet-50 and VGG-19 

feature extractor achieved an mAP of 0.81 and 0.78, respectively. In general, the systems which 

use a ResNet feature extractor performed much better than those using a VGG feature extractor. 

We also investigated how the systems perform compared to a human examiner and found the 

Faster R-CNN system's performance to be highly comparable to manual inspection while 

taking ~35 minutes to assess a full cross-section image compared to ~1.5 hours for manual 

inspection (see Section 5.1.2). One major benefit of this data-driven approach is that it can be 

easily extended to more defect categories by simply including representative examples of the 

new defect categories in the training data and retraining the model. The results showed that 

transfer learning from a pre-trained model helps to speed up the training process and enables 

the model to generalize better even if the previous task is unrelated. This is especially important 

for defect detection tasks where a sufficiently large training dataset is often difficult and time-

consuming to acquire. However, one limitation of this approach is that the model will likely 

need to be retrained for batteries with different chemistry and microstructures.  

Besides various foreign inclusions and irregularities that the proposed model detected, one 

notable outcome of our experiments is that we discovered possible cross-contamination in the 
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active material coating of the examined specimen of the Li-ion batteries, which would not have 

been possible otherwise. However, the evaluation of two cross-sections per battery cell is not 

sufficient for making a conclusive statement about the quality of the entire cell. Therefore, 

more cross-sections will need to be evaluated to make a statistically significant statement on 

the entire sample. Nevertheless, our proposed solution facilitates a new way of performing 

microscopy analysis for quality assessment. It enables automatic categorization, quantification, 

and visualization of regions of interest in a format (defect picture gallery) that allows the end-

user to easily discover patterns from very large image data and draw insightful conclusions. 

For instance, it is not uncommon for materials scientists to look under the microscope to 

manually count the number of inclusions in a steel sample, which is extremely time-consuming 

for just one sample. With this approach, the purchasing or incoming goods department of an 

automotive manufacturer, for example, can compare the electrode quality of different 

production batches of a supplier or even compare the electrode quality of different 

manufacturers. This way, many more samples can be analysed in a few hours, and the detection 

system can be easily scaled by leveraging the vast amount of computing resources available in 

data centres. However, the complex electrode microstructure requires an elaborate preparation 

and image acquisition step to obtain a high-resolution image of the various components, which 

is a prerequisite for any quantitative or qualitative analysis. Nevertheless, the proposed solution 

can be deployed in addition to existing cell quality assessment methods.  

Even with the successful results of the previously mentioned supervised learning approaches, 

the main drawback is the large number of labelled training samples required, which makes 

them impractical in certain situations. Improving the training data efficiencies and convergence 

capabilities of neural networks is an ongoing research area. However, unlike the models based 

on supervised learning, unsupervised models can discover previously unknown defect patterns 

in the data, making them particularly useful when properly designed. Although, anomaly 

detection in high-dimensional data remains a challenging and open research topic. 

Nevertheless, our proposed unsupervised method for detecting defects in sintered NdFeB 

magnets based on a variational autoencoder architecture achieved an F1-score of 0.70 using a 

reconstruction threshold value of 0.69. However, due to the pixel-by-pixel loss, the output of 

the VAE model tends to be blurry and unspecific, resulting in a higher number of false positives 

depending on the selected threshold value. Subsequently, the system performance was 

improved by using a conditional generative adversarial network to reconstruct higher resolution 

output, which allows the decision threshold to be increased to 0.82. With this threshold value, 

we detected all the images with defects in the testing set without detecting any false positives. 

In addition, with the trained model, we could detect and compare the number of defects in a 

high quality magnet to those of a lower-grade magnet (see Section 4.4). This is of particular 

interest since all types of defects, especially soft magnetic phases, are nucleation points for 

domain reversal, resulting in lower coercivity and eventual demagnetisation. However, due to 

the various pre-processing and post-processing steps, the proposed unsupervised method is 

considerably slower (~2.5 hours per sample) than the supervised method. Furthermore, the 

unique contrast between the darker defects and the bright Nd2Fe14B phase components in the 

microstructure of the magnet is particularly suited for the proposed unsupervised method. For 

example, with this approach, detecting defects such as a secondary phase and regions with large 

grains would be challenging since they have very similar appearances to the main hard 
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magnetic phase Nd2Fe14B. In addition, such an approach would also not be successful in 

detecting defects in the microstructure of Li-ion ion batteries since the foreign inclusions and 

active material components often have very similar features. Lastly, a high-quality sample 

preparation procedure is of utmost importance for a reliable analysis using the proposed 

methods as it can often be difficult to differentiate real defects from preparation artefacts.  

 

6.3 Impact of machine learning on microscopy 

Advances in imaging technologies have enabled the acquisition of large volumes of 

microscopy images and made it possible to conduct large-scale, image-based experiments in 

various fields, from bioinformatics to material science. Computer vision and machine learning 

have a huge potential in automating the analysis and understanding of such large datasets. 

Compared to other domains involving images, the major advantage of using machine learning 

for microscopy image analysis is that microscopy provides a very controlled environment 

where performance can be showcased by using a carefully prepared training data set. As a 

result, the analysis can focus solely on the tasks the model is trained for without interference 

from unexpected external factors. Compared with traditional microscopy solutions, like 

deconvolution and convex optimisation, for example, once a machine learning model is trained, 

the inference is non-iterative and very fast to compute without the need for any parameter 

optimisations, even on modest computers and processors. Therefore, considering the current 

growth of tools employing machine learning in analytical microscopy, it is not difficult to 

predict that this trend will continue to expand further with machine learning used to tackle more 

ambitious tasks and the majority of manually programmed pipelines being gradually replaced 

with automated analytical solutions. For example, an automated process could convert either 

single micrographs or a series of micrographs into a microstructure representation that is easy 

to store, search and mine for feature similarity. Consequently, this will introduce new 

approaches that will increase processing output and accelerate new scientific discoveries. 

However, since most of the major advances in computer vision are happening in the field of 

computer science, it is often very difficult for experts in other fields to reproduce the same 

results. Therefore, computer scientists would need to work closely with domain experts such 

as material scientists or biologists since they have a better knowledge of which problems 

actually need solving. In addition, domain experts can provide a greater context to a problem 

that cannot necessarily be determined by simply accessing the data sets from a public repository 

without relevant background. Lastly, it is important to emphasize that the proposed systems 

are not a replacement for scientists but instead are meant to support scientists with various 

assistive functionalities in getting their work done.  

 

6.4 Future work 

As we become more cognizant of the limitations of our proposed methods, we hope that more 

work will be done to make them more robust. For example, performance evaluation on 

specimens from other research groups should be investigated to test the model robustness since 
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it is common for deep learning models to rely on the specific imaging condition of a particular 

environment. In an ideal scenario, a dedicated generalisation set should be created in addition 

to a random test set when creating a new dataset. This generalization set will contain examples 

collected under various conditions from various research groups using different microscopes 

and settings. This will enable a thorough evaluation of how well our models generalize. 

Another important future research direction could be on how to improve the data efficiency of 

these models. Our proposed methods benefited considerably from transfer learning of pre-

trained models. Therefore, we can imagine that specialized pre-training tasks that encode 

specific knowledge into the model will dramatically reduce the required amount of labelled 

training data and make developing better defect detection models more feasible. Furthermore, 

in the long run, other downstream models will benefit from a wide range of pre-trained 

representations either based on the cell chemistry or sample preparation method, making the 

approach more computationally efficient than starting from scratch. In addition, since acquiring 

representative training data is likely to remain a major bottleneck for developing accurate 

defect detection models, further development on unsupervised and self-supervised methods 

will be needed to deal with such low-resource scenarios. As we have shown, current 

unsupervised methods are still less performant than supervised approaches; thus, developing 

more robust unsupervised methods is an important research direction. For example, recent 

studies on texture and style transfer [161], [206] have shown that the hidden representations of 

a convolutional network can capture various spatial correlation properties in an image. 

Therefore, instead of direct pixel-wise subtraction of the original and reconstructed image, the 

subtraction can be carried out in the feature space of a pre-trained deep convolutional network.  

Lastly, what is even more important in future experiments will be to evaluate the effects of the 

detected defects on the overall performance of the cells and magnets, which will help make 

more informed decisions. For instance, how many square millimetres of the cross-sections must 

be analysed in order to make conclusions about the total sample volume. However, such 

activity will require many specimens and cross-sections to be evaluated and quantified in a 

reasonable amount of time. Hence, an automated assessment of these samples using our 

proposed methods, for instance, is a prerequisite for such analyses. 
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