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Abstract
Key performance indicators (KPIs) are widely used to monitor and control the production in industry. On an aggregated level, 
often represented as graphs or interrelated KPI systems, a comprehensive overview is given. However, missing or inaccurate 
sensor data and KPIs, as well inconsistencies in KPI based management are a major hurdle disturbing operations. To counter 
the impact of such missing KPIs, we propose a value optimization based approach to reconstruct the values of missing KPIs 
within a KPI system. While the approach shows successful reconstruction in the case study, the value optimization can be 
sped up through a random forest prediction of the initial optimization set. Thus, the inclusion of previous knowledge about 
the system behavior proves beneficial and superior to the pure optimization based approach, as validated by both randomized 
and simulation-based measurement data.

Keywords  KPI System · Graph machine learning · KPI prediction · Optimization

1  Introduction

1.1 � Motivation

Reaching and maintaining companies’ strategic goals is 
always of highest priority to managers and can be monitored 
and managed through key performance indicators (KPIs). 
KPIs offer effective measurements to translate business 

models into well-defined and comparable parameters [1]. Nev-
ertheless, the selection of suitable KPIs remains a complex 
problem [2], in particular regarding interrelations between cer-
tain indicators and the need to cover all levels sufficiently, from 
machinery [3], production systems [4] to entire companies [1]. 
In the field of logistics, production and operations manage-
ment, a set of 34 important KPIs is formulated in form of the 
ISO-22400-2:2014 standard [5], was conceived. However, 
the interrelations within such KPI systems are hardly under-
stood [6]. To mitigate this lack of understanding, a hierarchical 
approach of a KPI graph model recently became presented by 
Kang et al. [4] and extended by Stricker et al. [2]. This permits 
further understandability, but also leads to imperfect shopfloor 
optimization measures in the case of missing KPIs [7], due to 
sensor failure, manual intervention [8] or overall missing data 
acquisition [9]. In addition to a hierarchical approach, graphi-
cal KPI models help to address a better and precise under-
standing [10]. However, the challenge of accurately reflecting 
production system behavior, given missing or additional rel-
evant KPIs, still prevail. Brundage et al. additionally mention 
the need to take special care of the KPIs’ dependencies [11]. 
Against this background, this paper proposes a novel, value 
optimization based method to make use of the interrelations 
between KPIs in a KPI system to reconstruct incomplete KPI 
systems stemming from sensor failure, manual interventions or 
missing KPIs. This is extend by a random forest to initialize 
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the value optimization and improve convergence, as shown 
in the case study.

The problem can be exemplified with Fig. 1, where a few 
KPIs are missing (red), due to data inconsistencies, sensor 
failures, incomplete KPI capturing and other reasons. KPIs 
that neighbor missing KPIs (blue), i.e. that are relevant for 
its calculation or vice versa, should remain at their known 
value while the red KPI values should be identified in order 
to fully reconstruct the incomplete KPI system.

1.2 � Research questions and main contribution

In this paper the following research questions are addressed: 

1.	 How can an incomplete KPI system be accurately com-
pleted, so that both dependencies and mutual influences 
are respected during the completion?

2.	 How can knowledge about a complex production system 
and its previous behavior be used to properly facilitate 
the KPI system completion?

2 � Literature review

Defining KPIs and KPI systems is a common topic in litera-
ture, where KPIs describe a set of parameters [11] and KPI 
systems describe a set of KPIs with inherent relationships 
[2]. The latter can have a holistic structure [12] and is often 
used to improve the robustness of entire production systems. 
Other KPI systems use a hierarchical structure [4] and focus 
on the continuous improvement and management of smart 
manufacturing systems.

First, KPI systems are often used to observe and manage 
production, ranging from single processes [13] and machines 
to large-scale systems [12]. Hence, a major problem is the 

selection of the KPIs such that they not only monitor low-
level processes [14] but are also suitable for overall perfor-
mance measurements [15]. Nevertheless, such graph-based 
systems are rarely regarded holistically [10].

Secondly, the derivation of KPIs and their relationships 
in KPI systems commonly follow a mathematical approach. 
Most commonly, matrices [16], pairwise relations [11] or the 
direct incorporation of standardized ISO 2240 [5] are used. 
Alternatively, systematic relations are conveyed in graph-
based approaches, e.g. Stricker et al. [12] use nodes and 
links to express the interconnections within KPI sets. This 
brings along the advantage of a clear relationship definition 
[17].

Given the complex interrelations between KPIs [4] it is 
important to make the hidden mathematical interrelations 
between KPIs understandable by a dimensional analysis 
[19]. For a similar goal, but focused on sustainable manu-
facturing, Amrina et al. [21] use structural modeling for KPI 
relationship analysis. In order to incorporate the different 
information content of KPIs under different circumstances 
Stricker et al. [2] select KPIs through a linear programming 
approach. Approaches that focus on describing KPI system 
interrelations are presented in Table 1.

In spite of optimizing the production, the relevance of 
predicting future or unknown values of KPIs is of particu-
lar importance [25]. While the application of Bayesian net-
works (BN) [26] to obtain optimal KPI values and predict 
their development or a locally weighed regression for KPI 
prognosis [27] recently gained interest, the majority, i.e. 
Zhang et al. [28], focus on an analysis of static and dynamic 
relationships between process parameters and KPIs. Such 
approaches are enhanced by factorization [29] for fault prog-
nosis or Modified Kernel Ridge Regression [30] for process 
parameter decomposition. Thus, the integration of Machine 
Learning approaches, such as Wu et al. [31], who apply 
Hidden Markov Models for machine deterioration estima-
tion and remaining useful life prediction based on multiple 
KPIs, show promising results. A holistic overview is shown 
in Table 2.

A third body of knowledge is focused on monitoring and 
improving the performance of production systems by regard-
ing its corresponding KPIs. For instance, Cao et al. [26] and 
Kornas et al. [22] add a feedback obtained by bottleneck 
analysis to overcome the production system’s weakness. 
Furthermore, Tahir, Mahmoodpour, and Lobov [18] use an 
extensible visible language to allow decision makers to iden-
tify improvement potential within the defined KPI system.

The application of KPI systems to accurately steer pro-
duction systems has still not been widely accepted within 
industry [4]. One major drawback of KPI systems, however, 
is their instability towards missing, tampered or inaccurate 
signals. Thus, a research gap in filling missing information 
within KPI Systems arises, and, additionally, the integration Fig. 1   Exemplary KPI set with missing (red) and relevant (blue) KPIs
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as well as usage of previous knowledge about KPI systems 
is not yet regarded holistically [6].

3 � Selected KPI system

The paper considers the KPI system presented by Kang et al. 
[4], as it encompasses all KPIs mentionend in the ISO stand-
ard [5] and additionally is the largest regarded holistic KPI 
set. It is widely known [2] and for reference the KPI list is 
introduced in Table 5 in the appendix. Nevertheless, certain 

corrections, with respect to the KPI’s calculations as pre-
sented by Kang et al. [4] have to be made: 

1.	 CMR = CMT∕PMT  is corrected to
	   CMR = CMT∕(CMT + PMT) according to the defini-

tion of CMR: ”ratio of the total corrective maintenance 
time CMT to the sum of CMT and the preventive main-
tenance time PMT” [4].

2.	 Some KPIs such as AUIT = ADET  , TTF = TBF or 
MTTF = MTBF have the same definition and mathemat-
ical calculation expressions in the regarded production 

Table 1   Comparison of different KPI relationship descriptions

Table 2   Comparison of different KPI prediction approaches
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system. In order to keep the prediction system stable and 
avoid unnecessary problems by formulating the optimi-
zation problem, only ADET , TBF, MTBF are kept in the 
KPI system.

The following requirements for missing KPI sets can derived 
from the literature: According to ISO-222400 [5] there are 
34 relevant manufacturing KPIs, divided hierarchically into 
3 groups, which we distinguish: low level KPIs (directly 
measured from production lines), basic KPIs (calculated 
from low level KPIs) and comprehensive KPIs (calcu-
lated by using basic and low level KPIs). Kang et al. [4] 
and Stricker et al. [2] have illustrated the interrelationships 
between each KPI set on all levels and extended the set to 59 
interrelated KPIs. KPIs can be easily calculated by means 
of the formal definition from ISO-22400 [5], Stricker et al. 
[2] and Kang et al. [4]. Thus, if only few KPI values are 
missing and these are mathematically independent from one 
another, the same calculation logic can be applied. Hence, 
there is no need to use the developed comprehensive combi-
nation of a random forest and subsequent value optimization 
under low dimension scales. However, the more complex the 
interaction between missing KPIs and the larger the set and 
relationships among these is, the more difficult it is to find 
the optimal solution. In particular, this counts for KPIs that 
result in equations with more than one unknown impede con-
vergence. For instance, if CMR is known and the given rela-
tionship is: CMR = CMT∕PMT  , there are infinitely many 
possible solutions to satisfy this one condition. Thus, KPI 
sets with few missing KPIs can be solved easily and, there-
fore, in this case study there are only KPI sets with more 
than ten missing KPIs and a graph based distance larger than 
one between two missing KPIs considered. Otherwise, solely 
the less accurate random forest prediction approach can be 
used, which means that no subsequent value optimization 
is performed.

Furthermore, the KPIs to be predicted are randomly 
selected from the whole KPI system according to ISO-
22400 [5] and the extensions from both Kang et al. [4] and 
Stricker et al. [2], obeying the selection rules mentioned 
before: mathematically independent from each other and 
graphically distanced at least two edges, which are easily 
identifiable through the corresponding adjacency matrix.

4 � Methods

The ability to find the values of missing KPIs within a KPI 
system is targeted by using mathematical relationships 
between the nodes of the corresponding KPI graph. Hence, 
the core of the approach is twofold: (1) predicting miss-
ing KPIs based on previous observations and (2) defining 
an objective function that minimizes the error between 

contradicting KPI definitions which is optimized to obtain 
the value of missing KPIs. The initial values for the KPI 
value optimization can be obtained either by a random ini-
tialization (referred as cold start) or by a random forest based 
KPI prediction (referred to as warm start). Random forests 
are selected as bagging and bootstrapping allow success-
ful handling of high dimensional data with low bias and 
moderate variance as well their robustness towards outliers 
and nonlinearity [35]. The applied methods are presented in 
detail in the following.

4.1 � Optimization

Value optimization is based on the application of mathe-
matical search to find the convergence point of an objective 
function. It offers significant efficiency on convex functions 
and can be divided into constrained and unconstrained opti-
mization. In this paper the performance and suitability to 
solve the described KPI optimization problem with the fol-
lowing two different optimization methods is investigated: 
unconstrained optimization and constrained optimization, 
i.e. constraining the solution space to meaningful KPI val-
ues. Due to their superior results in application the following 
algorithms are applied: Nelder-Mead as an unconstrained 
algorithm [36, 37] and L-BFGS-B (Limited-memory (L-) 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm 
with bound constraints (-B)) for the constrained optimiza-
tion [38].

The problem of finding the missing value of a KPI that is 
defined by given and known KPIs is trivial by application of 
the describing functions. However, in a KPI system if more 
than one KPI is missing, a KPI value is defined twofold: 

1.	 The numerical, known (i.e. measured) value of the KPI 
i (denoted as Ai ), and

2.	 the value obtained by the interrelationships with it’s 
defining neighboring KPIs x and their values: vi = vi(x) , 
where x is the vector of relevant neighboring KPIs, 
excluding i itself.

Thus, finding the true value of an unknown KPI i is simi-
lar to ensuring that the known or estimated value Ai equals 
the defined value vi . Since several KPIs must be miss-
ing to regard non trivial cases, the following total objec-
tive function can be set up by using a quadratic derivation 
punishment:

where f (⋅) signifies the total objective function, which is 
accumulated from each optimization expression of KPIs that 
are relevant for finding the missing KPIs. Hence, i refers 

min f (⋅)i =
∑

(
Ai − vi(x)

Ai

)2
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to the index of the KPI to be optimized for and A is the 
value of the KPI that is either known (A remains constant) 
or unknown (A converges over time). The parameter v(x) is 
the new value of the KPI in the current optimization step, 
which usually is used to improve A within each iteration.

Based on the newly defined objective function f, the appli-
cable solution space is subject to the constraints gi and hj . 
Given that f , gi and hj are real-valued functions on X includ-
ing at least one nonlinear term, a nonlinear value optimiza-
tion problem is formulated as:

The variable xi ∈ R refers to measurable variables, i.e. 
KPIs, with n missing KPIs. Equality constraints ( hj ) and 
inequality constraints ( gi ) can be used to integrate further 
domain or system specific knowledge about the KPI sys-
tem. For instance are upper bounds ( Ai ≤ 100% ) for an 
individual KPI i implemented through the inequality con-
straint gi(x) = vi(x) ≤ 100% . In application the problem in 
general appears not only once but whenever the KPI system 
was recorded, so that each individual KPI system solution 
according to the above describe value optimization can be 
regarded as a sample of the overall problem.

The optimization problem, when considering known 
bounds of the missing values, can efficiently be solved by 
the application of L-BFGS-B, which operates on an approxi-
mated Hessian matrix and belongs to the field of Newton 
methods. Thus, in cases with vastly differing boundaries, 
the optimization can stop immediately as the second order 
partial derivatives might be, falsely, considered to be equal 
to zero. Without additional boundaries, the optimization is 
solved through a more stable Nelder-Mead solver, imple-
mented in Python by [39].

4.2 � Optimization initialization

Solving the above described optimization problem with 
constrained or unconstrained value optimization requires 
feasible initial values for the missing KPIs. Better initiali-
zation values decrease the number of value iterations and, 
hence, can significantly improve the speed of convergence. 
To that end, random initialization values for unknown KPIs 
can be used, i.e. standard implementations, or alternatively 
knowledge acquired by observation of previous KPI values 
can be used. The former is regarded as the base case, while 
the latter can be approached by taking the known or opti-
mized KPI values of KPI system at time t as the initialization 
value of the succesor at time t + 1 . Due to the sensitivity of 
minor derivations between the values of each KPI at time t 

(1)

min f (X)

s.t. gi(X) ≤ 0∀i ∈ (1, 2, 3, ...,m),

hj(X) = 0∀j ∈ (1, 2, 3, ..., p),

where X =
[

x1, x2, ..., xn
]T

∈ Rn.

and t + 1 , this simple, time invariant approach approach is 
rejected. However, the dynamics of KPI systems and the 
individual KPI values could be estimated based on a large 
observed time frame, to predict accurate, well-performing 
initialization values.

4.3 � Random forest for initialization improvement

A random forest [35] can be used as a method for classi-
fication and regression problems. Random forests do bag-
ging on decision trees [40], i.e. by creating many random 
regression trees. These types of decision trees, with leaves 
representing numeric output values, search for a function 
H(X) ∶ Xi ⟶ yi , that maps from a given KPI system Xi 
excluding the values yi to the missing values yi . ( Xi,yi ) is 
referred to as a sample and denotes the incomplete KPI 
system at a certain time. Within the bagging process, ran-
dom forests introduce two sources of randomness for each 
regression tree: First, a bootstrap sample (i.e. sampling with 
replacement from the training data set) is used to construct 
each individual regression tree. Second, during splitting a 
node when constructing the tree, the best split is randomly 
drawn from all input feature (here Xi ) or a random subset. 
The size of the random subset can be controlled, yet, in the 
regarded case equal to 90% of the input feature size.

Random forests use bagging and, as outlined, is a simple 
machine learning algorithm with few parameters, (partial) 
interpretability, good generalizability, non-linearity [35] that 
is well established [40]. For the subsequent validation, the 
random forest implementation of sci-kit learn [41] is used. 
Note, that in contrast to original work, which averages on 
each classifier vote or regression [35], their average proba-
bilistic prediction, or regression, is used [41].

In this paper a random forest is applied as a warm start 
tool for the optimization based prediction of certain miss-
ing KPIs delivering start values in a very likely region. In 
contrast to simple cold start optimization, where the initial 
values are randomly selected or based on previous values 
the idea is to boost the optimization by selecting more likely 
well performing initial optimization values. Random For-
est algorithms have many advantageous properties: Train-
ing speed is quick, even with high dimensional attributes, 
results are acceptable concerning stability and, thus, it is not 
required to frequently retrain from scratch, while storing is 
also easy to perform. To compare the performance, a cold 
start refers to a random initial value generation. Thus, the 
searching space in the cold start is larger assuming a suf-
ficiently well-performing random forest prediction. Using 
the warm start method, the optimizations obtains certain 
benefits:

•	 The value overflow errors exhibited by Nelder-Mead can 
be widely reduced.
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•	 The value optimization process can be significantly short-
ened due to a faster convergence resulting in a prediction 
system with quicker responses.

•	 Contribution to the stability by high dimension scale KPI 
prediction model.

•	 Partially restrain the local minimum problem.

5 � Results

In order to compare the proposed methods, four control test 
are performed. The performance and the number of iteration 
steps of the value optimization process are compared regard-
ing the following ceteris paribus tests:

Test 1: Warm Start vs. Cold Start with the same number 
of prediction KPIs
Test 2: Warm Start vs. Cold Start with the same number 
of samples
Test 3: Nelder-Mead vs. L-BFGS-B with the same num-
ber of prediction KPIs
Test 4: Nelder-Mead vs. L-BFGS-B with the same num-
ber of samples

Each iteration number in the case study refers to the aver-
age result from 20 identical tests with random missing KPI 
set selections, where the number of KPIs to be predicted, 
i.e. prediction KPIs, is controlled. In addition, a perfor-
mance check of the objective function under the influences 
of the number of prediction KPIs and samples is carried 
out. This targets the performance of the optimization 
methods under a high dimension scale and with plenty of 
data samples. For all of these investigations large KPI data 
sets based on random realizations of various production 

systems are used. At last, the performance of the predic-
tion methods is validated on simulation-based data. For 
this purpose, simulated KPI sets of a real production sys-
tem are provided by running an ontology based discrete 
event simulation [42] initialized with a real-world produc-
tion system data set. Given the incompleteness, random 
noise and time variant KPI tracking and calculation in 
reality, applying the OntologySim is beneficial as the KPI 
sets introduced by both [5] and [4] are tracked [42].

5.1 � Initialization with warm start (Tests 1 & 2)

In this section the influence of the initialization methods 
(i.e. warm start and cold start) on the performance of KPI 
predicting system, with respect to the number of samples 
and prediction KPIs, is discussed.

Figure 2a illustrates, that the parameters iteration steps 
and number of samples show a nearly linear relationship 
using both cold start and warm start. Note, that the num-
ber of iteration steps is used to compare performance, as 
time measurements depend greatly on the used hardware. 
Clearly, the warm start offers a significant advantage in 
terms of average required iteration steps compared to the 
cold start. It is obvious that with an increasing number 
of missing KPIs, both optimization procedures require 
more iteration steps. Nevertheless, the number of needed 
iterations till convergence increases slower using the warm 
start. However, this speed up in optimization only becomes 
significant dealing with more than 12 missing KPIs, as 
shown in Fig. 2b.

Overall, the warm start delivers a better performance than 
the cold start on both, iteration steps and convergence time 
respectively.

Fig. 2   Comparison of the per-
formance between Warm Start 
and Cold Start in iteration steps 
for different numbers of missing 
KPIs and samples, showing 
the improvements in runtime 
achieved through warm start
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5.2 � Comparison of the value optimization 
algorithms (Tests 3 & 4)

In this section, the performance of the two value optimi-
zation algorithms (Nelder-Mead and L-BFGS-B) is com-
pared. Figure 3a shows again a nearly linear relationship 
between the required iteration steps and the number of 
samples. However, the L-BFGS-B needs significantly less 
iteration step to converge towards a solution. Hence, the 
quasi newton method L-BFGS-B provides a more efficient 
optimization algorithm for this application. Additionally, 
this accentuates the worth of including domain knowledge, 
i.e. reasonable bounds for the unknown KPIs.

Regarding the number of predicted KPIs, the L-BFGS-
B still delivers the better results compared to Nelder-
Mead, as demonstrated in Fig. 3b. This performance gap 
widens for higher numbers of prediction KPIs. However, 
Nelder-Mead has a relative stable performance when the 
number of prediction KPIs increases using the improved 
high dimension adaptive function mentioned in [37].

In addition to the two above visible effects, the iteration 
steps also vary due to the settings of the objective function 
tolerance: the smaller the tolerance of the iteration process 
is, the more calculation steps are needed.

With respect to the value optimization process we recall 
that each number of missing KPI trials consists of 20 tests 
with different KPI sets. Figure 4 illustrates, how many times 
the value optimization method successfully reaches the con-
vergence point.

Nelder-Mead shows a very stable optimization process, 
when the dimension scale of the objective function, i.e. the 
number of missing KPIs, is under 13. Beyond that the opti-
mization process easily becomes unstable, and in some cases 
Nelder-Mead even failed to find the optimal solution before 
the process reached the termination criterion. On the other 
hand L-BFGS-B less often provides a stable result even if 
the dimension scale of the objective function is at a low 
level. The reason might be an invalid Hessian matrix during 
the value optimization process, which terminates the process 
improperly. Another typical optimization problem occurs in 
cases of (partly) non-convex objective functions.

Fig. 3   Comparison of the per-
formance between Nelder-Mead 
and L-BFGS-B
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5.3 � Performance regarding the objective function 
value

In this section the comprehensive performance of the KPI 
prediction system is analyzed, considering the influence of 
the number of samples and KPIs that are predicted. In Fig. 5, 
which show the normalized value of the objective function 
for an exemplary study of the influence of sample size and 
missing KPI number, there are two trends clearly visible: 

1.	 The value of the objective function is nearly independent 
from the number of samples. Once the number of predic-
tion KPIs is set, the value of objective function keeps 
almost the same level despite some small oscillations, 
as the number of samples is (almost) irrelevant.

2.	 The number of prediction KPIs affects the accuracy 
of the KPI prediction system. If the number of predic-
tion KPIs increases, the value of the objective function 
rises significantly. However, the value oscillation is not 
dependent on the number of missing KPIs. Otherwise, 
the number of samples has a relative small contribution 
to the oscillation on the value of objective function or 
the accuracy of the KPI prediction system.

5.4 � Individual KPI performance comparison

In the following, a comparison of the predictability, i.e. the 
deviation from the original value for a missing KPI, is pre-
sented. For this experiment, 500 randomly selected sets of 
missing KPIs per missing number, each consisting out of 
20 samples, are optimized. The number of missing KPIs 

is varied to identify the effects of larger numbers of miss-
ing effects on the prediction quality. The resulting deviation 
is reported in a log10 scale, which is illustrated in Fig. 6. 
Apparently, there are certain KPIs that are prone to deviate 
largely, especially the earlier mentioned problematic KPIs, 
as well as ratios. These KPIs can easily result in sub-optimal 
points satisfying a reasonably low optimization function. 
With a higher number of missing KPIs, in general, the error 
remains similarly small or increases, as expected. The over-
all performance is consistently high, even for larger numbers 
of missing KPIs. Thus, the proposed method can be effec-
tively applied to complement missing KPIs in KPI systems 
that are standardized and widely applied in industry.

5.5 � Validation on industrial use‑case simulation 
data

Since the combination of random forest initialization and 
subsequent optimization shows significantly superior results, 
the validation focuses on the warm start method comparing 
the two different optimization algorithms. The KPI data sets 
are generated using a multi-machine simulation of a real 
production system implemented with OntologySim [42]. 
The comparison itself targets the prediction accuracy and 
the convergence speed per iteration. Concerning the opti-
mization result, the mean squared relative error (MSRE) is 
regarded, where every single KPI of the presented KPI sys-
tem is included in 100 missing KPI sets varying the predic-
tion number. Tables 3 and  4 show the results of the iteration 
speed comparison and the accuracy respectively.

Fig. 5   Influence of sample num-
ber and missing KPI number on 
function value



Production Engineering	

1 3

In both categories the Nelder-Mead algorithm reveals its 
strengths compared to the L-BFGS-B. Despite a significantly 
larger number of iteration steps, the Nelder-Mead predicts 
the KPI-system faster. For 20 missing KPIs it even converges 
more than four times faster than the L-BFGS-B. L-BFGS-
B may have got the more efficient algorithm but also is way 
more complex to calculate, resulting in a slower optimization 
convergence. The comparison of the accuracy demonstrates 
the second advantage of using Nelder-Mead. The maximum 
MSRE stays close to zero even up to 15 missing KPIs. Consid-
ering high scaled problems with 20 missing KPIs, the Nelder-
Mead still predicts 54 KPIs with a MSRE below one percent. 
The L-BFGS-B on the other hand cannot compete with this 
performance.Moreover, the stability of Nelder-Mead is higher, 
yet it lacks the ability of L-BFGS-B to incorporate boundary 
values for KPIs.

Besides the two presented comparisons, the effects pointed 
out in previous sections are also visible during the validation 
with real simulation data. This especially includes the stabil-
ity and the needed amount of iterations steps per algorithm. 
Table ?? summarizes the validation of both optimization strat-
egies. Overall, the presented prediction technique allows to 
reconstruct almost half of KPI system, which is a remarkable 
performance.

Fig. 6   Deviation between optimized and true values in log
10

 per indi-
vidual KPI depending on number of missing KPIs

Table 3   Speed comparison of 
both optimization methods w.r.t. 
the number of missing KPIs (n)

n Nelder-mead L-BFGS-B

10 10,03 s 14,25 s
15 30,47 s 127,02 s
20 95,25 s 415,99 s

Table 4   Accuracy comparison of both optimization algorithms w.r.t. 
the number of missing KPIs (n)

n MSREmax KPIs with 
MSRE < 0.01 
(of 59)

Nelder-mead
10 2⋅10−4 59
15 5⋅10−4 59
20 4,66 54
L-BFGS-B
10 11,85 47
15 40,97 36
20 73,32 29
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6 � Conclusion and outlook

6.1 � Conclusion

This paper presents a KPI system prediction model that 
can be used with KPI systems that are calculated based 
on a graphical approach as introduced by Kang et al. [4] 
for missing data in a manufacturing environment. Given 
the mathematical relationships of KPIs, a random forest 
can be trained to initialize the value optimization, dubbed 
warm start. A subsequent optimization predicts the miss-
ing KPI values, handling different sizes of missing KPI 
sets. The proposed method performs suitably well and 
allows the identification of KPI values that are only indi-
rectly observed in the form of its neighboring KPIs in the 
KPI system. The method is robust when increasing the 
sample size and applying different optimizers, however, 
best results are obtained in the warm start scenario with 
Nelder-Mead. The presented approach is validated based 
on simulation data of a real production system and is able 
to accurately predict almost half of the comprehensive KPI 
structure.

6.2 � Outlook

In future work, it is possible to extend the method by inte-
grating a very small 𝜖 > 0 in the prediction formula for 
KPIs in order to improve the accuracy of the prediction 
and in rare cases avoid an invalid Hessian matrix. For deal-
ing with the stochastical influences in real-world applica-
tions, where sensors or gathered KPIs might not perfectly 
fit to one another, this can alleviate the shortcoming of 
hardly being able to reduce the actual prediction error to 
zero. Furthermore, the integration of knowledge about the 
previous behavior of the KPI system can be extended, as 
the training model of the random forest can become more 
comprehensive and abundant to provide the value initiali-
zation with a better start point. The internal interdepend-
ence within the KPI system follows the patterns effectively 
used by the random forest. In future, the interdependence 
within a KPI system should be further evaluated. Addi-
tionally, beyond random forests alternative predictors can 
be evaluated, however, the core of the approach lies not 
in the predictor application. Also, it can be considered to 
effectively use L-BFGS-B, as this should avoid large value 
ranges of missing KPIs, that could help in calculating the 
Hessian matrix significantly better and faster. However, a 
more comprehensive approach requires the transition from 
this simulation based-data gathering approach towards a 
real world application. Further research shall also focus 
on the actual effects of implementing a more detailed KPI 

system that can be completed in the case of missing KPIs. 
Managerial implications and value adding tasks have to be 
rigorously analyzed. Nonetheless, this research can enable 
a suitable comparison of different products according to 
their, then completed, KPI representation. Including more 
product-based KPIs for multi-product production systems 
can amplify the methods real-world applicability.

Appendix

An overview of the KPIs and abbreviations used is intro-
duced in Table 5.

Table 5   Abbreviations for KPIs according to [2, 4]

Abbreviation KPI

NEE Net equipment effectiveness
OEE Overall equipment effectiveness
CMR Corrective maintenance ratio
MSET Mean setup time
MDET Mean delay time
MOTBF Mean operating time between failures
MTBF Mean time between failure
MTTR​ Mean time to repair
QBR Quality buy rate
FTQ First time quality
FR Fall off ratio
RR Rework ratio
SR Scrap ratio
SQR Actual to planned scrap ratio
ST Starvation ratio
BL Blockage ratio
TR Throughput rate
PR Production process ratio
AR Allocation ratio
SeR Setup ratio
E Effectiveness
UE Utilization efficiency
WE Worker efficiency
TE Technical efficiency
AE Allocation efficiency
A Availability
PMT Preventive maintenance time
CMT Corrective maintenance time
FE Failure events
TTR​ Time to repair
TTF Time to failure
OTBF Operating time between failures
POET Planned order execution time
PUST Planned unit setup time
PRI Planned run time per item
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