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Abstract
In the course of increasing individualization of customer demand, configurable products are gaining importance. Nowadays, 
variant-specific bills of materials and routings for configurable products are created with the help of rule-based configuration 
systems, so-called low-level configuration systems. The rules and generic structures on which such configuration systems 
are based are created manually today. This is challenging because it can be difficult and sometimes impossible to directly 
transfer expert knowledge into those systems. Furthermore documents that have already been created by experts in the past 
such as bills of material and routings contain relevant information as well which may be exploited to compose configuration 
systems. However, in the literature, there are no approaches yet to systematically transfer expert knowledge into configuration 
systems or to consider existing documents. In addition, the creation of such configuration systems is prone to error due to 
their complexity. Although there are already numerous approaches to the formal testing of configuration systems, approaches 
based on data analysis to support the validation of such systems have not yet been considered. Therefore, in this paper an 
approach is presented to automatically create low-level configuration systems by means of exemplary variant-specific bill of 
materials and routings using machine learning. The super bill of materials and the super routing as well as the dependencies 
between the product characteristics and the components respectively the operations are learned. Furthermore, it is shown 
how errors in the input data as well as errors in the resulting low-level configuration system can be detected by means of 
anomaly detection.

Keywords Product configuration · Process configuration · Machine learning · Mass customization · Bill of materials · 
Routings

1 Introduction

The individualization of customer demand is a continuing 
trend [1]. In order to achieve the vision of mass customiza-
tion, the production of customized products at costs similar 
to mass production [2] on the one hand must be combined 
with economies of scale on the other. This is the advan-
tage of configurable products [3]. Configurable products are 
products that meet customer requirements with predefined 
technical solutions within a predefined solution space [4]. 
The Configurator Database (https:// www. confi gurat or- datab 
ase. com/) represents the entirety of product configurators 

available online and shows how diverse the industries are in 
which configurable products are used today, in B2B as well 
as in B2C. Comparing the number of 1636 configurators 
currently listed with 1200 in 2017 and 1050 in 2015 [5] an 
upward trend can be seen in the use of configurable products.

The variants of configurable products are described in 
practice by predefined characteristics, such as the through-
put of a pump, for which the customer can choose between 
predefined values, such as 45, 90 or 160 gallons per minute. 
The combinatorics of the characteristics’ values give rise to 
numerous configuration possibilities, e.g., in the order of 
 1021 in the automotive industry [6]. This is a challenge for 
production, since production-related documents such as, in 
particular, manufacturing bills of materials (manufacturing 
BOM, mBOM) and routings are required for each variant. 
Therefore, systems for the automatic configuration of vari-
ants, variant-specific bills of materials and variant-specific 
routings have become established in practice, especially as 
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part of ERP systems [7]. These configuration systems repre-
sent a form of rule-based expert systems that, among other 
things, establish a relationship between characteristic values 
selected by the customer and the design of the associated 
BOM and routing [8]. For certain use cases, 18,000 rules 
exist for BOM elaboration alone [9]. Creating such expert 
systems is costly and error-prone [10], with one challenge 
being the transformation of domain knowledge into a formal 
model [11]. Due to the extensive use of configuration sys-
tems in industry, this is a problem with high practical impor-
tance. In the following, an approach is presented to support 
the creation of systems for the configuration of BOMs and 
routings, referred to in the literature as product and process 
configuration. Furthermore, it is shown how errors in the 
input data as well as errors in the resulting configuration 
system can be detected by means of anomaly detection. For 
this purpose, methods from the state of the art are combined 
and suitably complemented by own methods.

2  State of the art and state of research

2.1  The challenge of transferring expert knowledge 
into models

According to Haug et al. [11], the process of creating config-
uration systems consists first of all of transferring knowledge 
from domain experts to knowledge engineers (elicitation), 
who then transfer it via an analysis model (translation) to a 
design model (formalization) before finally implementing 
it in a configuration program. Numerous works show chal-
lenges in transferring expert knowledge, referred to as exter-
nalization of tacit knowledge (see [12] for a comprehensive 
review). This term corresponds to Nonaka and Takeuchi’s 
SECI model according to which tacit knowledge can be 
transformed into explicit knowledge through externaliza-
tion [13]. Besides fundamental criticism of the empirical 
validation of the SECI model by Gourlay [14], Tsoukas [15] 
shows that the SECI model is based on a wrong interpreta-
tion of tacit knowledge according to Polanyi [16] and that 
tacit knowledge should actually be understood as knowl-
edge that cannot be transformed into explicit knowledge. 
According to this use of the term, which also corresponds 
to Haug’s [12] understanding, tacit knowledge can only be 
represented by a simplifying model which mimics decisions 
based on tacit knowledge but is not a one-to-one depiction of 
the tacit knowledge. Furthermore, Haug [12] shows that tacit 
knowledge in this sense plays a minor role for the creation of 
configuration systems. Thus, the overarching challenges in 
transferring expert knowledge as described in the literature 
are to transfer knowledge that is externalizable, but whose 
externalization is difficult. Aldanondo et al. [17], based on 
10 use cases, attribute this to communication between the 

domain expert and the knowledge engineer. The coincidence 
of the two roles is desirable, but hardly realizable in reality, 
since the qualification effort is high in each case. A method 
to transfer domain knowledge directly into a configuration 
system without the domain expert needing knowledge of 
formal modeling therefore seems promising. A secondary 
challenge is to represent tacit knowledge in a model even if 
this is of subordinate importance. Decisions made by experts 
may be based on tacit knowledge even if this knowledge can-
not directly be transferred. Therefore, Haug [12] mentions 
the approach of observing decisions of domain experts to 
create a model that mimics those decisions.

2.2  High and low level configuration systems

Configuration systems can be divided by their function into 
high-level and low-level configuration systems (HLCS and 
LLCS, respectively) [18]. In high-level configuration sys-
tems, the characteristics to be defined by the customer and 
their predefined values are stored [18]. Furthermore, there 
are constraints regarding the combination of characteristic 
values. I.e., certain characteristic values cannot be combined 
with other characteristic values or must always be combined 
with certain other characteristic values [18]. E.g., the cus-
tomer cannot order a convertible car with a sunroof. High-
level configuration systems allow to check the permissibility 
of the characteristic values selected by the customer or to 
suggest only permissible combinations of values to the cus-
tomer. They, thus, form the basis for interaction with the cus-
tomer. The product variant is defined by specifying the char-
acteristic values in the high-level configuration. Low-level 
configuration systems, on the other hand, enable the creation 
of production-related documents, such as bills of materials 
and routings in particular, depending on the selected vari-
ant. Low-level configuration systems store super BOMs and 
super routings on the one hand and dependencies on the 
other hand [8]. Super BOMs are BOMs that contain all com-
ponents that can occur in the configurable product across all 
variants. Similarly, super routings are routings that contain 
all operations that can occur in the configurable product 
across all variants. Dependencies are Boolean expressions 
that establish a relationship between the characteristics of a 
variant and the presence of a particular element in the BOM 
or routing. The focus of the presented approach is on the 
creation and validation of low-level configuration systems 
i.e., specifically on the creation of super BOMs, super rout-
ings, and dependencies. An approach for the creation and 
validation specifically of low-level configuration systems 
does not exist in the literature, which is why all approaches 
for the creation, validation or verification of models that 
allow the derivation of BOMs or routings are included in 
the following overview.
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2.3  Previous approaches for the creation 
and validation of systems for product 
and process configuration

The creation of models for the derivation of BOMs is done 
in the literature via super BOMs. Numerous approaches exist 
that address an efficient representation of super BOMs e.g., 
with plan skeletons [19] or object oriented [20]. Kashkoush 
and ElMaraghy [21] show an approach to generate a master 
assembly sequence that is comparable to a super BOM. It 
is created by calculating, through mathematical optimiza-
tion, the master assembly sequence that has the smallest 
distance to all variant-specific assembly sequences entered. 
Here, however, alternatives regarding the structure can-
not be depicted. Furthermore, an approach by Moussa and 
ElMaraghy [22] exists for the creation of master assembly 
sequences. However, when transferring this approach to the 
creation of super BOMs, the assemblies contained in the 
BOMs would not be preserved, which has the disadvantage 
for configurable products that assembly-specific configur-
able routings can no longer be assigned to the assemblies 
of the super BOM.

In the literature, the creation of models for generating 
routings can be rule-based (i.e., the user enters the model 
manually) or data-based (i.e., the model is created based on 
data using data analysis). On the one hand, rule-based crea-
tion is done for part manufacturing applications based on 
manufacturing feature models [23–25]. Here, a technology 
database is built that assigns a manufacturing technology and 
a processing station to individual manufacturing features. 
Inference is performed by creating a feature model for a 
new part—e.g., via feature recognition [26]—and deriving a 
routing via the technology database. On the other hand, rule-
based creation for assembly applications is based on CAD 
assembly models [27–30]. Here, the assembly sequence 
and assembly technology for an assembly are determined 
based on the interaction of its individual CAD models. All 
approaches assume manual creation of the underlying set 
of rules and do not address the difficulties described above 
when transferring expert knowledge into models. They fur-
ther do not consider that previously created BOMs and rout-
ings may contain relevant information that could be used to 
deduct rules. Data-based approaches generate models for 
the creation of routings based on routings already created 
in the past. For this purpose, there are approaches that also 
assume feature models and make data-based assignments 
of manufacturing technologies and processing stations to 
features [31–33]. In addition, approaches exist that assume 
that product variants are described by parameters [34, 35]. 
Even if this is not the focus of these approaches, they can 
in principle be applied to configurable products whose 
variants are also described by one-dimensional character-
istics. However, low-level configuration systems cannot be 

directly derived from the models of these approaches, as 
they are non-interpretable machine learning models in the 
sense of Rudin [36]. In addition, there are approaches for 
learning assembly precedence graphs [37–39], which have 
some analogy to a super routing. However, no dependencies 
are learned, which is why no variant-specific inference is 
possible. A different approach is taken by Tseng et al. [40] 
and Denkena et al. [41], who propose routings and BOMs 
for variants not yet produced using case-based reasoning 
based on variants already produced. However, the creation of 
routings and BOMs is done by the user. Lastly, approaches 
from decision mining [42–45], in which process models with 
variant-specific branches are learned, are particularly rel-
evant for the presented work. This is analogous to a super 
routing with associated dependencies. All in all the existing 
data-based approaches can only consider knowledge that is 
already documented in existing bill of materials, routings 
or case descriptions. Knowledge that is already explicitly 
described in the form of rules, cannot be taken into account, 
nor can expert knowledge that has not yet been externalized. 
Furthermore the results of those approaches aren’t LLCS as 
they are common in industry.

When checking models, a distinction must be made 
between verification and validation. Verification ensures 
that a model is correct in itself, i.e., that it does not con-
tain any logical contradictions [46]. Validation, however, 
ensures that the model correctly represents reality [46]. Sev-
eral approaches to verification of high-level configuration 
systems and of product configuration systems exist in the 
literature [47–49]. In this context, methods for checking the 
satisfiability of Boolean expressions are usually used (so-
called SAT problem) to ensure that contradictory expres-
sions of BOMs, such as double assignment of a BOM item, 
are not satisfiable. However, whether the resulting BOMs are 
correct with respect to reality cannot be checked automati-
cally so far. To the best of the authors’ knowledge, there are 
no approaches for checking process configuration systems 
and, thus, in particular, no approaches for their validation.

Table  1 summarizes on the one hand the necessary 
aspects to be covered by the presented approach and on 
the other hand to what extent existing approaches already 
take them into account. First, it should be possible to cre-
ate inference models with the existing approach (1). Both, 
the data used for this purpose and the resulting model shall 
be validated (2, 3). For the sake of completeness, previ-
ous work is also classified with respect to verification of 
models (4), although this is not considered in the presented 
approach. The resulting LLCS should be suitable to predict 
the elements and the structure of the bill of materials and 
the routings of a variant (5–8) and, thus, enable a complete 
creation of production related documents. For the creation 
of LLCS different types of knowledge shall be considered 
which have been differentiated in Sect. 2.1. Firstly there is 
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knowledge which is already externalized or is readily avail-
able for externalization in the form of rules (9). Secondly 
there are existing documents (10) i.e., BOMs and routings 
which contain relevant information and may have been cre-
ated by experts using their tacit knowledge. Thirdly there 
is expert knowledge (11) which may be difficult to transfer 
into a model or which is tacit and can therefore not directly 
be transferred but only indirectly as described in Sect. 2.1. 
Last, the resulting LLCS should be interpretable (12) i.e., 
consist of super BOM and super routings as well as rules as 
is common in industry and not be replaced by e.g., a black 
box machine learning model. This shall ensure the accept-
ance of the approach in practice.

Altogether it can be stated that in the literature there are 
no approaches yet.

 − For the creation of systems for product and process 
configuration that consider knowledge in form of rules, 
hardly transferable or tacit expert knowledge and existing 
documents, or
 − For the systematic validation of such configuration sys-
tems in the sense described above as well as the valida-
tion of the data used to create such configuration systems.

In the presented approach, these aspects are to be imple-
mented and, thus, these deficits are to be remedied. The 
verification of the resulting models may also require further 
research, especially with respect to process configuration, 
that is not addressed in the paper at hand.

3  Approach

Based on the deficits identified in the state of the art, this 
chapter presents an approach for the creation and valida-
tion of low-level configuration systems for BOMs and 
routings based on different types of knowledge as 
described above. The overall approach is illustrated in 
Fig. 1. The modules of the approach are detailed in the 
following section. In contrast to existing approaches 
according to the state of the art, in the presented approach 
LLCS are not to be built by entering rules and structures, 
but by entering variant-specific BOMs and routings from 
which, in turn, super BOMs, super routings and dependen-
cies are to be derived. Since experts can use both knowl-
edge that is difficult to transfer and tacit knowledge for the 
creation of variant-specific BOMs and routings, these 
forms of knowledge can also be indirectly used in the crea-
tion of LLCS. As described above, no direct transfer of 
tacit knowledge takes place in this way and the resulting 
LLCS is not a one-to-one representation of the expert’s 
tacit knowledge, but rather mimics decisions the expert 
makes based on tacit knowledge. For cases where the 
introduction of a HLCS precedes the introduction of the 
LLCS, some data is already available, i.e., BOMs and rout-
ings have already been created manually for certain vari-
ants. For cases where the HLCS and LLCS are introduced 
simultaneously, this data does not exist for the time being. 
In principle, this data can be generated in response to cus-
tomer orders. However, the creation of BOMs and routings 

Fig. 1  Overall approach with modules
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would then fall within the order lead time. Alternatively, 
the LLCS can be created before the introduction of the 
configurable product by having experts create BOMs and 
routings for systematically selected variants in advance, 
from which the LLCS can be derived as a whole, as shown 
in Fig. 1 (module 1). The data created in this way is trans-
ferred to a data pool. Based on this data pool, the super 
BOMs (module 2) and super routings (module 3) as well 
as the dependencies (module 4) can now be determined by 
means of data analysis. This process takes place iteratively 
in an interaction between a computer program and one or 
more experts. Individual variants are repeatedly selected, 
the associated BOMs and routings are fed into the data 
pool, and the LLCS is generated. Thus, the LLCS can 
already be used during its generation to suggest BOMs and 
routings for selected variants and thus support the experts. 
Since there is still knowledge that is explicitly known to 
the experts, it is also possible, although not necessary, to 
enrich the data pool with manually entered dependencies, 
which are also taken into account during the creation of 
the LLCS. By replacing the manual creation of the LLCS 
with the input of BOMs and routings, errors when entering 
rules and structures into the LLCS can be avoided. Never-
theless, errors can occur during the creation of variant-
specific BOMs and routings. These errors shall be found 
by validating the data i.e. the variant-specific BOMs and 
routings (module 5). Since dependencies can be entered in 
addition to data, errors can occur in the resulting LLCS. 
These can be found on the one hand by verifying the model 
according to the state of the art and on the other hand by 
validating the model using anomaly detection (module 6). 
In the following sections, we will use the following nota-
tion. xi denotes the value of characteristics i of the product. 
ycj denotes the presence of component cj from the super 
BOM in the variant-specific BOM. yok denotes the pres-
ence of operation ok from the super routing in the variant-
specific routing. Dependencies may then be written as 
B o o l e a n  e x p r e s s i o n s  s u c h  a s 
(x

1
= 1) ∨

((

x
3
< 4

)

∧ (x
4
= 3)

)

→ yc1 meaning that if char-
acteristic 1 is chosen to be equal 1, characteristic 3 is 

chosen to be lower than 4 and characteristic 4 is chosen to 
be 3, component 1 is part of the variant-specific BOM.

3.1  Systematic selection of variants 
for the generation of the LLCS (module 1)

Each selected variant is accompanied by an effort for the 
expert team for creating or checking the associated bill of 
materials and the associated routings. Therefore, the num-
ber of necessary variants for achieving a sufficiently precise 
LLCS should be kept as low as possible. For the creation 
of the LLCS, the BOMs and routings take the function of 
labels in supervised learning. Thus, the task of Module 1 can 
be generalized to the request of using as few labels as pos-
sible for the creation of a machine learning model with high 
prediction quality. Thus, active learning strategies can be 
used to systematically select those variants that promise the 
highest possible information gain. Those variants can then 
be handed over to the expert team for creating the variant 
specific BOM and routings. There are several active learning 
strategies in the literature, but not all of them are suitable for 
the present case (see Table 2).

The LLCS is an inference model based on Boolean 
expressions. Therefore, it can only predict if e.g., a certain 
item is part of the BOM or not but is not able to give prob-
abilities for predictions. Thus, strategies based on uncer-
tainty sampling that require information on probabilities 
for different predictions are excluded. Likewise, strategies 
based on variance reduction and expected error reduction, 
which require analytical optimization procedures and thus 
analytical models, are excluded because an LLCS is not an 
analytical model. All other methods are applicable. Den-
sity weighted strategies can be used when constraints are 
present in the HLCS and thus an inhomogeneous distribu-
tion of variants exists over the space spanned by the product 
characteristics. Otherwise, the space is homogeneous and 
the density is the same everywhere. As an example dem-
onstration of the approach, a configuration of pumps from 
the company Liquiflo is used here and in the following, as 
in the work of Kashkoush and ElMaraghy [50]. For these 
pumps, the customer can choose between type 620 ( x

1
= 0 ) 

Table 2  Methods of active learning and their applicability for selecting variants for generating LLCS (Settles 2009; Wu et al. 2019)

Active learning method Query the sample… Applicability

Uncertainty sampling … for which the model has the highest uncertainty Not applicable
Query-by-committee … for which two or more separately trained models disagree the most Applicable
Expected model change … which leads to the biggest expected change in the model Applicable
Variance reduction/Expected error 

reduction
… which is expected to lead to highest variance or expected error reduction of the 

model
Not applicable

Density weighted … from the region with the highest density Applicable
Greedy sampling … furthest away from all previously queried samples Applicable
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and 621 ( x
1
= 1 ), between a single seal ( x

2
= 0 ), a double 

seal ( x
2
= 1 ), a packing seal ( x

2
= 2 ) and a sealless mag-

netic coupling ( x
2
= 3 ). Other features include the presence 

of a replacement cartridge ( x
3
 ), base plate mounting ( x

4
 ), 

S-adapter ( x
5
 ), power frame ( x

6
 ) and accessories & spare 

parts ( x
7
 ). Full details can be found on the manufacturer's 

website (http:// www. liqui flo. com/ v2/ centro/ centry/ index. 
html) and in the work of Kashkoush and ElMaraghy [50]. 
From the HLCS 

(

x
1
= 1

)

∧
((

x
2
= 1

)

∨
(

x
2
= 2

))

↔ False 
is required i.e. type 621 cannot be combined with a dou-
ble seal or a packing seal. If, for example, 4 variants are 
selected according to the greedy sampling, starting with 
type 621 single seal, the data pool contains the variants 
( x

1
= 1 , x

2
= 0 , …), ( x

1
= 0 , x

2
= 1 , …), ( x

1
= 0 , x

2
= 2 , 

…), ( x
1
= 1 , x

2
= 3,…), hereafter referred to as (1,0), (0,1) 

etc. according to the values of their first two characteristics, 
with the associated BOMs and routings.

3.2  Learning of super BOMs (module 2)

When learning super BOMs, the aim is to create a super BOM 
that contains every variant-specific BOM available in the data 
pool as one specification. In addition, the variables are to be 
defined by whose assignment a variant-specific BOM can be 
created from the super BOM. The method presented in the 
following is intended to eliminate the deficits for the crea-
tion of super BOMs described in the state of the art. Figure 2 
shows the BOMs of the example case. Figure 3 illustrates the 
procedure by means of the variant-specific BOMs (0, 1) and 
(0, 2) as introduced in chapter 3.1. The steps described in the 
following are shown as horizontal arrows in the figure.

Fig. 2  Variant-specific bills of materials and resulting super bill of materials for the demonstration use case

http://www.liquiflo.com/v2/centro/centry/index.html
http://www.liquiflo.com/v2/centro/centry/index.html
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1. Transforming bills of materials into single-level bills of 
materials I.e., separate consideration of the assemblies 
of the BOMs. E.g. the BOM of variant (0, 1) is separated 
into its assemblies and subassemblies S01, SHS01 etc. 
as shown in Fig. 3.

2. Compare and unify assemblies pairwise if the per-
centage of identical subcomponents is ≥ ϵ. Here, ϵ is 
a machine learning hyperparameter that can be tuned 
with appropriate methods such as tree-structured parzen 
estimator [51]. As objective value the similarity of the 
resulting super BOM to the individual variant-specific 
BOMs as described by Kashkoush and ElMaraghy 
[21] can be used. If the subcomponents themselves are 
assemblies, they are identical only if they in turn contain 
the same subcomponents. In the present case � = 0.5 
is chosen for demonstration. This means that for vari-
ants (0, 1) and (0, 2), the sealing housing subassemblies 
(SHS01 and SHS02) are combined.

3. Repeat step 2 until there are no more changes After the 
sealing housing subassembly has been combined, the 
sealing assembly of variants (0,1) and (0,2) contain the 
identical sealing housing subassembly and thus 50% 
identical sub components, which means that the two 
sealing assemblies (S01 and S02) can be combined. 
Afterward there are no further combinations possible 
because all similarities are lower than 0.5. E.g., the simi-
larity of S01/02 and SHS01/02 is 0.33.

4. Combine all assemblies on product level In the example, 
V01 and V02 are combined.

After the super BOM has been created, variables ycj are 
introduced that can be used to derive variant-specific BOMs 
from the super BOM. As can be seen, the variant-specific 
BOMs resulting from the super BOM can differ not only in the 
elements they contain, but also in their structure, e.g., the 
O-ring can appear as a sub-component of sealing or of mech. 
seal, depending on the variant. Therefore, identical compo-
nents at different positions must be coded with different vari-
ables ycj . Assigning values to all ycj thus results in a complete 
variant-specific BOM.

3.3  Learning super routings (module 3)

When learning super routings, the aim is to create a super 
routing that contains every variant-specific routing in the data 
pool as one specification. In addition, the variables by whose 
assignment a variant-specific routing can be created from the 
super routing must be defined. In current ERP systems, super 
routings are represented as a sequence of operations. For the 
final assembly of the pump described above, this would result 
in the super routing shown in Fig. 4. For the purpose of dem-
onstration, we assume that there are alternative sequences for 
the operation Mount Outer Magnet, depending on the variant. 
Such structural alternatives are represented in current ERP 
systems by alternative operations. I.e., the structure results 
from the elements at the same time. For instance if a certain 
variant requires the operations Assemble Housing, Mounting 

Fig. 3  Procedure for generating super BOMs

Fig. 4  Representation of super routings in state of the art ERP systems
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Outer Magnet (1) and Mount Impeller Subassembly this also 
determines that they have to be executed in this order. This rep-
resentation has the disadvantage that explicit knowledge about 
the existence of elements cannot be entered without entering 
knowledge about the structure, which may not be explicitly 
available. For instance if it is explicitly known that Mounting 
Outer Magnet is required for a certain variant this cannot be 
represented as a rule if it is not clear as well if the operation 
has to be executed at position 1 or 2. Furthermore, this repre-
sentation has the disadvantage that in case of faulty systems 
the execution of both alternative operations is not generally 
excluded. For the presented approach, therefore, two alterna-
tive forms of representation (A and B, respectively) are pre-
sented, as shown in Fig. 5. Representation form A in YAWL 
representation has variables yok , which indicate the contained 
elements and variables ysl , which indicate the structure inde-
pendently and thus solves the two problems mentioned above. 
For example there could be a rule in the LLCS that determines 
that ys1 is equal to 1 for a certain variant which would lead to 
the sequence represented by the lower path. Representation 
form B in precedence graph representation specifies prec-
edence relationships between operations that exist or do not 
exist depending on the variant, which is encoded by variables 
ysl . I.e., elements and structure are also specified independently 
here. For instance if ys2 is equal to 1 for a certain variant, there 
is a precedence relationship between the operations Mount 
Sealing and Mount Outer Magnet for this variant meaning that 
the operation Mount Outer Magnet may not be started before 
the operation Mount Sealing is finished. In addition to alter-
native structures resulting from differences between variants, 
there are also alternative structures in the disposition for indi-
vidual variants themselves. All alternatives that are not violat-
ing the precedence relationship can be chosen depending on 

the current situation in production. In other words, disposition 
alternatives can be represented directly by representation form 
B. On the other hand, representation form B, in contrast to A, 
does not fundamentally exclude contradictory variant-specific 
routings. Therefore, depending on the case, one or the other is 
to be preferred. To learn super routings of representation form 
A, process mining approaches can be used. The commonly 
used alpha algorithm [52] is not applicable, since it may gener-
ate cyclic graphs, which cannot be automatically evaluated in 
an LLCS. In contrast, heuristic mining approaches are suitable, 
which use metaheuristics to vary the process model to find 
a model that has the best possible fit to the input paths. For 
learning super routings of representation form B, the method 
of Klindworth et al. [37] can be used, which, starting from a 
maximum constrained precedence graph, drops precedence 
relations one by one while reading in sequences of operations 
until finally only the necessary ones remain. The calculation 
of all yok and ysl results in complete, variant-specific routings 
in each case. Routings for assemblies can go beyond join-
ing operations and may contain operations such as cleaning, 
adjustment and inspection. These operations depend on the 
configuration of the variant, but not necessarily on its bill of 
materials. Finally, it should be noted that super routings can 
exist not only for the final product, but also for each assembly 
of the super BOM, if there are variant-specific differences for 
this as well.

3.4  Learning of dependencies (module 4)

After the super BOM and the super routing for the selected 
variants are known from modules 2 and 3, the dependen-
cies of the target variables ycj , yok and ysl on the product 
characteristics xi are to be established in module 4 using 

Fig. 5  Representation forms for super routings. Representation form A is shown in YAWL representation and B as precedence graph
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machine learning. Since the data is in the form of BOMs and 
routings, it must first be converted into a tabular form suit-
able for machine learning. Since all product characteristics 
xi are defined by the HLCS and all target variables ycj , yok 
and ysl are known from modules 2 and 3, a table can be cre-
ated using the product characteristics as feature columns and 
the target variables as target columns. Non-binary product 
features must be transformed into a binary representation by 
one-hot coding. Table 3 shows an extract of the transformed 
data for the example case. For instance row 1 represents the 
variant for which product characteristic 1 is chosen to be 0 
(type 620), product characteristic 2 is chosen to be 1 (double 
seal) etc. The variant specific BOM was defined to contain 
component c

1
 (Housing), component c

2
 (Sealing 1) etc. The 

routing was defined to contain operation o
1
 (Assemble Hous-

ing) etc. and was defined to follow the sequence ys1 = 0 (the 
upper path of representation form A in Fig. 5).

Classification methods from the field of machine learn-
ing can be used to create the dependencies by using existing 
BOMs and routings as well as BOMs and routings created by 
experts within the overall procedure (see Fig. 1) for training 
after they have been converted into a table representation as 
described above. However, in order to allow users to manu-
ally edit the LLCS as is common today, only methods that 
generate a model from Boolean expressions or models that 
can be transformed into such expressions can be used. This 
excludes non-interpretable models such as Deep Neural Net-
works. Table 4 provides an overview of the methods under 
consideration. In order to take into account rules explicitly 
entered by users, these must be incorporated into the model. 
For Quine-McCluskey classification [53], this is possible 
by including the rules as minterms within the method. In 
Associative Classification, the rules can be added to the 

learned model and the resulting model simplified using the 
Quine-McCluskey method. For decision trees, conversion 
to Boolean expressions is done first, followed by addition 
of rules, and finally simplification of the model. The greedy 
Quine-McCluskey classification introduced by Safaei and 
Beigy [53] is an adaption of the Quine-McCluskey clas-
sification which does not search the whole solution space 
in order to improve processing speed. It can therefore be 
assumed that the quality of its results is at most as good 
as that of the Quine-McCluskey classification. However, it 
can be shown that it nevertheless achieves better results for 
binary classification problems than a Decision Tree Clas-
sification. In this we see circumstantial evidence that a 
Quine-McCluskey classification achieves superior results, 
which is why we use it here and in the following. However, 
the approach described here is not limited to the use of this 
method. If we apply the Quine-McCluskey classification 
to the example case, we obtain the expression ¬x

1
→ yc20 

for yc20 , for example. Using the two previously unselected 
variants as test data results in an accuracy of 100% for this 
expression, i.e., this relationship is valid on all test data. 
Across all target variables, however, the accuracy is only 
76.3%. This rather low value is due to the fact that in this 
case only few training data are available, since all but 4 data 
points do not contain any additional information. Therefore, 
a review for general cases will take place in chapter.

When applying the method, any number of data points i.e. 
variants with related BOM and routings can be generated in 
practice via module 1. The choice of the number of gener-
ated data points leads to a tradeoff between the prediction 
quality of the model and the effort of label generation. The 
prediction quality of the model can only be evaluated on the 
data for which labels are available. It follows that part of the 

Table 3  Tabular representation 
of BOMs and routings for the 
example case

Row x1 x2 = 0 x2 = 1 x2 = 2 x2 = 3 x3 … x7 yc1 yc2 … yc33 yo1 … yo4 ys1

1 0 0 1 0 0 0 … 0 1 1 … 0 1 … 1 0
2 0 0 1 0 0 0 … 1 1 1 … 0 1 … 1 0
… … … … … … … … … … … … … … … … …

Table 4  Possible methods of supervised learning for creating dependencies

Supervised learning method Short explanation Applicability

Associative classification [54] Considers how often certain items (here from x and 
y) occur together and how specific this correlation 
is

Applicable. Generates Boolean expressions

Quine-McCluskey classification [53] Learns the simplest Boolean expression that explains 
the known labels

Applicable. Generates Boolean expressions

Greedy Quine-McCluskey classification [53] Same approach as above but heuristic and therefore 
faster

Applicable. Generates Boolean expressions

Decision tree classification Learns a decision tree that explains the known labels Applicable. Decision trees can be con-
verted to Boolean expressions
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labeled data must not be used for training, but must remain 
available for testing. Which data is used for training and 
which for testing has an influence on the result. Therefore, 
cross-validation is used. When a certain prediction quality 
is reached in the cross validation, the iterative procedure 
terminates. Optimal prediction quality can be determined as 
optimization of the total costs resulting from label creation 
and errors.

3.5  Checking the input data (module 5)

The input data for the creation of the LLCS results from the 
input of BOMs and routings by experts. Errors can occur 
in the process, which is why the data is to be checked for 
anomaly using unsupervised learning. To do this, the data 
from Table 3 must first be suitably transformed. Anomalies 
can be detected by two different views on the data.

1. Relate values of product characteristics and target vari-
ables. Example for an anomaly: only for one variant a 
certain characteristic value does not occur together with 
a certain value of a target variable e.g., a certain com-
ponent is always used if the customer selects a certain 
characteristic value except for one case.

2. Relate the values of different target variables. Exam-
ple for an anomaly: only for one variant certain target 
variables take the same value e.g., certain operations are 
never performed in the same routing except for one case.

In the first case, a method of Muller and Markert [55] 
can be used. Step by step, all variants are considered that 
have been classified into a certain class with respect to a 
certain target variable. These variants are now clustered and 
checked for outliers, i.e., variants that are unusual for the 
selected class. E.g., in case of Liquiflo pumps all variants for 
which yc6 is equal to 1 (i.e., the space plate is contained in 
the BOM) have product characteristic 1 chosen to be 0 (i.e., 
type is 620). By clustering all variants for which yc6 is equal 
to 1 a variant with product characteristic chosen as 1 (i.e., 
type 621) would be recognized as an anomaly. There may be 

a technical reason for such an anomaly or it may be the result 
of a mistake. In the second case, the values of the target vari-
ables themselves are considered as data points and are also 
checked for anomalies by clustering, i.e. for cases in which 
the target variables have unusual combinations of values. For 
instance components c

17
 (gasket) and c

18
 (containment can) 

always go along with each other. If there would be a BOM 
that would include c

17
 but not c

18
 this would be seen as an 

anomaly which can be detected by clustering as described 
above. Found anomalies are reported to the user and require 
a manual check.

3.6  Checking the LLCS (module 6)

The LLCS is learned from data on the one hand and is based 
on rules entered by experts on the other. Errors can occur 
when rules are entered, which is why the LLCS itself also 
needs to be checked. Since the LLCS corresponds to a model 
of Boolean expressions, the methods for verification known 
from the state of the art can be applied to it. In addition, 
the model can be validated by checking for anomalies using 
unsupervised learning. For this purpose, the Boolean expres-
sions of the model are first transformed into two tables. 
Table 6 shows the literals on which the minterms occurring 
in the LLCS depend. Next, Table 5 shows the minterms on 
which the target variables occurring in the LLCS depend. 
For demonstration purposes, an error was introduced into 
the system learned in module 4, representing an incorrect 
manual user input, the expression x

1
∧ x

4
→ yc1 . This expres-

sion consists of only one minterm which has never occurred 
before and is therefore added as last row of Table 6. This row 
shows a 1 in column x

1
 and a 1 in column x

4
 because this 

minterm depends on x
1
 and x

4
 . Furthermore, the minterm is 

added as a new column to Table 5 which shows a 1 for yc1 
because yc1 depends on this minterm. When clustering the 
entries of the two tables we see an anomaly in Table 5, as it 
results in the only entry out of 38 that depends on the x

1
∧ x

4
 

minterm. All other minterms have influence on several tar-
get variables. In general, both datasets can be analyzed for 

Table 5  Relevant minterms per 
target variable

x1 ¬x1 (x2 = 0) (x2 = 1) (x2 = 2) (x2 = 3) ¬(x2 = 3) x1 ∧  x4

yc1 0 0 0 0 0 0 0 1
yc2 0 1 0 0 0 0 0 0
yc3 … … … … … … … …
yc4 0 0 0 0 0 0 0 0
yc5 0 0 0 0 0 1 0 0
yc6 0 1 0 0 0 0 0 0
yc7 0 0 0 0 0 0 0 0
… … … … … … … … …
yc38 0 0 0 0 0 1 0 0
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anomalies using unsupervised learning. Thus, also more 
complex anomalies can be detected.

4  Assessment of the required effort 
for applying the approach to general use 
cases

By applying the developed approach to the case of Liquiflo 
pumps as a proof of concept, it is shown that the method is 
feasible. Whether the application of the approach is eco-
nomical, however, depends on the number of variant-spe-
cific bills of materials and routings that are proposed by 
the program and have to be corrected by the user. There-
fore we provide an approach to approximate this number. 
Companies may use this information together with company 
specific information such as how much time was required 
in the past to create an LLCS and how long does it take 
to correct variant specific BOMs and routings to determine 
how beneficial the presented approach is for them. This 
may be different from company to company depending on 
how difficult it is to transfer their experts’ knowledge into 
models and how many variant specific BOMs and routings 
are already available. Since the presented approach can be 
combined with the classical approach of entering rules into 
the LLCS companies may also decide to use it in addition 
to their classical approach to support the transfer of expert 
knowledge in certain areas were this is expected to provide 
the most benefit. How many variant-specific BOMs and 
routings are required depends on the prediction quality of 
the dependencies created on the basis of module 4 in rela-
tion to the amount of available data. If it is assumed that 
the real dependencies are completely random, they cannot 
be predicted. This is equivalent to predicting labels formed 
solely by noise. In practice, however, the dependencies are 
not random, but reflect technical relationships; in particular, 
it cannot be assumed that certain target variables depend on 
all characteristics of the product. Therefore, in the following 
it shall be assumed that each target variable depends on a 
maximum of k product characteristics (for the case of Liq-
uiflo pumps, k is equal to 2). Besides that the dependencies 
were created randomly by assigning the target values 0 and 
1 to truth tables for each target variable in an equally distrib-
uted manner, taking into account the above assumption, and 
creating the real dependencies from them using the Quine-
McCluskey method. Scenarios with different numbers n of 
binary product characteristics were investigated. For each 
scenario 10 different dependencies were considered. For 
each dependency 10 different random sequences of regarded 
variants were considered. The complete random and there-
fore unsystematic sequence of regarded variants represents a 
worst case of sampling. The Quine-McCluskey classification 
presented above was used for classification. The amount of Ta
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randomly selected variants was increased stepwise until a 
threefold cross-validation resulted in an accuracy of 100% 
with at least 20 variants considered. Then the actual accu-
racy of the found model was evaluated on all remaining test 
data. Figure 6 gives an overview of the required data. The 
sequence of the chosen variants as well as the randomly 
created dependencies had an effect on the amount of data 
required: the coefficients of variation were 15.63 and 13.55% 
respectively. Table 7 gives an overview of the achieved 
actual accuracies. It can be seen that the effort required for 
the application of the method grows approximately linearly. 
Linear extrapolation for e.g., k = 3  (R2 = 0.964) would result 
in 339 variant-specific BOMs and related routings required 
on average for n = 70 which corresponds to about  1021 pos-
sible variants.

5  Summary, discussion and outlook

The presented approach enables the creation and valida-
tion of LLCS for product and process configuration. It is 
possible to consider different forms of knowledge in an 
integrated way, which are not yet considered holistically 
by approaches from the literature. By using interpretable 
LLCS, it remains possible to incorporate expert knowledge 
available in the form of rules into the LLCS, as is com-
mon practice today. In addition, the approach offers the 

possibility to use existing BOMs and routings for the crea-
tion of the LLCS by including them in the data pool, which 
is not possible with any state of the art approach. Lastly, 
knowledge that is difficult to transfer or is implicit can be 
taken into account by incorporating it into the creation of 
BOMs and routings by experts, which in turn serve as the 
basis for the creation of the LLCS. Thus, the research gap 
defined above regarding the creation of LLCS could be 
closed. With regard to the checking of LLCS, a distinc-
tion must be made between verification and validation. 
As shown, there are already approaches in the state of the 
art for the verification of configuration systems. The pre-
sented approach extends the state of the art when validat-
ing LLCS by using machine learning to detect anomalies 
in the defined rules. Furthermore, it could be shown how 
anomalies in the entered variant-specific BOMs and rout-
ings can also be identified by means of machine learning. 
Taken together, the above defined research gap concerning 
the validation of LLCS could be closed. By addressing the 
research gaps mentioned above, this paper contributes to 
the state of the art regarding the creation and validation 
of configuration systems. By applying the approach to a 
demonstration case as a proof of concept it could be shown 
that the approach is feasible. The reduction of the effort 
for the creation of the LLCS is partly compensated by the 
effort for the creation of variant-specific BOMs and rout-
ings. However, initial investigations show that this effort 
grows only linearly with the number of product features 
and thus seems justifiable even for large configuration sys-
tems. An economic comparison must be made on a case-
by-case basis and depends, among other things, on how 
much effort is required to create variant-specific BOMs 
and routings and how much data is already available in the 
company. Since the input of explicit rules is still possible 
with this approach, it can be combined with approaches for 
the manual creation of the LLCS that are common today. 
Future research is needed to systematically compare the 
performance of the different methods of active learning for 
module 1. This is especially promising since the sequence 
of the chosen variants seems to have a significant effect 
on the required amount of data as shown in chapter 4. The 
different forms of representation described in chapter 3.3 
may have an effect on the performance of the LLCS since 
they result in different target variables to be predicted by 
module 4.This needs to be systematically evaluated as 
well. Lastly, as explained above, there is a slight indica-
tion that the greedy Quine-McCluskey algorithm is well 
suited for solving this problem. However, it still needs to 
be thoroughly compared to other methods for the regarded 
case. Those further evaluations would be a good basis for 
selecting combinations of active learning techniques, rep-
resentation types and machine learning techniques for the 
presented approach in practice.

Fig. 6  Required data to learn a LLCS with n variables and k relevant 
variables per target

Table 7  Actual accuracy 
depending on n and k

k

2 (%) 3 (%) 4 (%)

n 5 100.0 97.9 75.0
6 99.3 97.2 98.2
7 100.0 98.9 97.7
8 99.7 98.6 98.0
9 99.7 98.0 97.9
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