
Three-dimensional magnetohydrodynamic

phenomena in circular pipe flow

Zur Erlangung des akademischen Grades eines
DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

von der KIT-Faktultät für Maschinenbau des
Karlsruher Instituts für Technologie (KIT)

angenommene

DISSERTATION

von

M. Sc. Viktor Klüber

Tag der mündlichen Prüfung 06.02.2023

Hauptreferent apl. Prof. Dr.-Ing. Leo Bühler

Korreferent Prof. Dr.-Ing. Robert Stieglitz





Three-dimensional magnetohydrodynamic phenomena in
circular pipe flow

Abstract

A numerical code for the simulation of liquid metal magnetohydrodynamic (MHD) flow
in breeding blankets of future fusion reactors has been extended to address complex
MHD phenomena in geometries with curved walls such as circular pipes. In these
MHD flows, induced electric currents interact with the magnetic field that confines
the fusion plasma leading to strong Lorentz forces, substantial fluid redistribution, and
high-pressure losses. Applying either a skew-corrected Green-Gauss or Least-Squares
formulation to compute the electric potential gradients shows that the higher accuracy
of these discretization schemes is mandatory for the solution of the poorly conditioned
equations when solving the Poisson equation for the electric potential and when determining
electric current density. The detailed verification of different discretization schemes
carried out on structured and unstructured computational grids demonstrates the
challenge to adequately resolve non-rectilinear geometries, where a major issue is the
fine resolution of extremely thin and curved MHD boundary layers without excessively
increasing the number of grid points in the fluid core. The new robust schemes lead
to a significant improvement in accuracy of results and code performance and allow
for the first time the usage of unstructured grids, even when the magnetic field is very strong.

The improved code is applied to three-dimensional simulations of liquid metal pipe flow
in a nonuniform magnetic field and for MHD flows entering or leaving insulating flow
channel inserts that are foreseen in applications as means of pressure drop reduction. These
examples have been selected since experimental results for pressure and surface electric
potential are both available for validation. The simulations provide detailed insight into
physical phenomena and expose pressure loads on flow channel inserts, which are difficult
to gain from experimental techniques. In both investigated cases, axial potential gradients
drive additional large-scale 3D current loops with consequences on pressure distribution and
flow patterns. A comparison of experimental and numerical surface data proves very good
agreement. Simulations show that the major balance of forces occurs between Lorentz force
and pressure force, and only a small residual fraction, introduced as magnetodynamic force,
is available for acceleration and deceleration of the fluid to balance inertia and viscous effects.
The simulations reveal further that regions of significant deformation in velocity profiles, as
well as regions of highest braking Lorentz force, may occur at different axial positions so
that the entire problem can be solved only using a reliable 3D numerical predictive tool
on well-resolved computational grids. Achieved findings of the present work contribute to
foreseeable demands of fusion engineering and research and thus will extend the code’s field
of application to more complex geometries and entire blanket modules.





Dreidimensionale magnetohydrodynamische Phänomene in
Kreisrohrströmungen

Kurzfassung

Ein numerischer Rechencode für die Simulation magnetohydrodynamischer (MHD)
Flüssigmetallströmungen in Blankets zukünftiger Fusionsreaktoren wurde erweitert, um
komplexe MHD-Phänomene in Geometrien mit gekrümmten Wänden wie z.B. kreisförmigen
Rohren zu untersuchen. In diesen MHD-Strömungen wechselwirken induzierte elektrische
Ströme mit dem Magnetfeld, welches das Fusionsplasma einschließt, was letztendlich
zu starken Lorentz-Kräften, erheblicher Fluidumverteilung und hohen Druckverlusten
in der Flüssigmetallströmung führt. Die Anwendung eines schiefheitskorrigierten
Green-Gauss- oder eines Least-Squares-Verfahrens zur Berechnung des elektrischen
Potentialgradienten zeigt, dass die höhere Genauigkeit dieser Diskretisierungsmethoden
für die Lösung der schlecht konditionierten Gleichungen für das elektrische Potential und
die elektrische Stromdichte zwingend erforderlich ist. Die detaillierten Untersuchungen
auf strukturierten und unstrukturierten Rechengittern spiegeln die große Herausforderung
wider, nicht-geradlinige Geometrien adäquat aufzulösen, wobei ein Hauptproblem die
Diskretisierung extrem dünner und gekrümmter MHD-Grenzschichten darstellt, ohne
dabei die Anzahl der Gitterpunkte im Strömungskern übermäßig zu erhöhen. Die neuen
robusteren Methoden führen so zu einer erheblichen Verbesserung der Genauigkeit der
Ergebnisse und damit der Leistungsfähigkeit des Codes. Sie ermöglichen zum ersten
Mal die Verwendung unstrukturierter Rechengitter, selbst wenn das Magnetfeld sehr stark ist.

Der weiterentwickelte Code wird für dreidimensionale Simulationen von Flüssigmetall-
rohrströmungen in einem inhomogenen Magnetfeld sowie von ein- und austretenden MHD-
Strömungen in Strömungskanaleinsätze, die der Druckverlustreduzierung dienen, angewandt.
Diese Beispiele wurden ausgewählt, da experimentelle Ergebnisse sowohl für den Druck
als auch für das elektrische Oberflächenpotential als Validierungsdaten zur Verfügung
stehen. Die Simulationen bieten detailreiche Einblicke in physikalische Phänomene und
zeigen Druckbelastungen in Strömungskanaleinsätzen, die mit experimentellen Methoden
schwer zugänglich sind. In beiden untersuchten Fällen führen axiale Potentialgradienten zu
großräumigen dreidimensionalen Rezirkulationsschleifen elektrischer Ströme, die sich auf
Druckverteilung und Geschwindigkeitsprofil auswirken. Ein Vergleich von experimentellen
und numerischen Ergebnissen entlang der Rohroberfläche zeigt eine gute Übereinstimmung.
Die Simulationen offenbaren zudem, dass ein Kräfteausgleich hauptsächlich zwischen der
Lorentzkraft und der Druckkraft besteht. Nur ein kleiner Restanteil der elektromagnetischen
Kraft, der als magnetodynamische Kraft eingeführt wird, gleicht sich über Trägheits- und
Reibungskräfte aus. Die in der vorliegenden Arbeit gewonnenen Erkenntnisse tragen zur
Verbesserung des verwendeten numerischen Codes bei und erweitern seine Anwendbarkeit für
zukünftige Anforderungen der Blanketentwicklung und Fusionsforschung. Dies betrifft ins-
besondere Anwendungen des Codes für komplexere Geometrien und ganze Blanket-Module.
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1 Introduction

Magnetohydrodynamics (MHD) describes the motion of electrically conductive fluids
in magnetic fields, combining fluid mechanics and electrodynamics to predict their mutual
interaction. On the one hand, a magnetic field induces electric fields and currents inside a
moving conductor, which exerts a Lorentz force on the object. On the other hand, electric
currents generate or modify magnetic fields. Such mutual interaction leads to complex
coupling phenomena that are difficult to understand at first sight and therefore require
elaborate investigative tools, as demonstrated throughout this work.

MHD is used in natural science to describe cosmic phenomena in astrophysics, such as
the emergence of plasma eruptions in the Sun’s chromosphere or the geodynamo effect,
which explains the relation of the Earth’s moving liquid iron core and its self-induced
magnetic field. Moreover, MHD gives rise to research in engineering science resulting in
applications for technical devices or industrial fabrication processes. For example, the latter
corresponds to controlling liquid metal motion in the casting industry, where the proper
knowledge about MHD phenomena enables the design of induction furnaces using transient
magnetic fields that stir and heat the melt simultaneously. Knowing the interaction between
moving electrically conducting liquids and imposed magnetic fields is furthermore exploited
in energy conversion processes either in form of pumps or generators. An imposed voltage
and magnetic field on a liquid metal duct may drive the fluid. If, instead, motion is imposed
on liquid metal under a magnetic field, a voltage can be tapped from electrodes on the
channel walls.

This work investigates liquid metal MHD phenomena occurring in a fusion reactor, such
as shown by the sketch in figure 1.1. A complex arrangement of magnet coils, highlighted
blue, confines a hot plasma in the toroidal plasma chamber using strong magnetic fields.
The plasma is composed of the hydrogen isotopes deuterium and tritium, and it releases
energy due to nuclear reactions while forming helium and fast neutrons. The promising idea
of this concept is to extract the heat generated in the fusion plasma and provide continuous
electricity. Therefore, so-called breeding blankets highlighted red cover the chamber’s inner
surface. As they directly face the fusion plasma, their major tasks are to

• breed the rare hydrogen isotope tritium required as fuel for the fusion reaction,

• shield the reactor environment from the strong neutron irradiation, and

• remove heat from the reactor’s first wall and from the blanket volume to generate
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electricity.

Attractive concepts to meet those requirements are liquid metal blankets, in which eutectic
lead-lithium flows through a network of channels behind the plasma-facing wall. Due to its
lithium content, this alloy serves as liquid breeder material from which, by nuclear reaction
with neutrons emitted by the fusion plasma, the fuel component tritium is generated.
Moreover, the breeder material constitutes an effective heat carrier and neutron multiplier.
However, its high electric conductivity leads to dominant MHD phenomena upon moving
under the reactor’s strong magnetic plasma confinement. Induced currents inside the breeder
interact with the magnetic field and generate Lorentz forces opposing the liquid metal flow
and thus produce high MHD pressure drops.

poloidal

toroidal
radial

magnetic coils

blanket

plasma

Figure 1.1: Sectional view of the ITER fusion reactor including toroidal coordinate directions
in green. Blue highlighted elements generate magnetic fields to initiate, shape,
confine, and control the fusion plasma. Fusion blankets, shown red, cover the
inner wall of the toroidal plasma chamber and thus directly face the hot fusion
plasma. (source: adopted from https://www.iter.org)

In order to assess the impact of MHD effects on flows of breeder material, fusion
engineering depends on profound knowledge and capable predictive tools. However, the
application of analytical solutions is restricted only to a number of basic geometrical
problems under ideal conditions, such as so-called 2D MHD phenomena, where the flow is
fully developed in straight channels and electric currents close in cross-sectional planes. Yet
imposed variations by the fusion reactor environment in the form of nonuniform magnetic
fields, changing wall thickness, dimensions, orientation, or electrical conductivity of pipes
lead to additional axial current flow that may propagate over large distances through fluid
and solid domains. Axial currents generate transversal Lorentz forces that highly disturb
the flow of the liquid breeder at large scales, resulting in strong three-dimensional (3D)
MHD phenomena. On the other hand, employing experimental investigations to study

https://www.iter.org/mach
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more realistic problems of developing blanket flow quickly becomes expensive, which limits
practical methods for investigations to specific problems. Moreover, since liquid metals are
opaque and highly reactive in most cases, fluid-internal properties are difficult to explore.
For that reason, experimental data often refers only to the outer surface of investigated
test sections.

Along with the advancement of numerical methods and high-performance computers (HPC),
numerical codes have entered and nowadays dominate the field of fusion MHD research
(Smolentsev, 2021, pp. 28-30). Computational MHD codes, like the one used in the present
work (Mistrangelo & Bühler, 2011), discretize, linearize, and numerically solve the governing
equations on computational grids that decompose the flow geometry of the problems under
investigation by means of finite volumes. In this manner, numerical approaches provide
valuable, theoretical insights into elaborate problems of fusion-relevant MHD phenomena
at affordable costs. Hence, where experiments become too expensive or lack insight, and
analytical methods fail due to the problem’s complexity, computational MHD codes constitute
a promising tool of investigation. However, while complex rectilinear flow geometries are
already well replicated by numerical approaches, basic curved geometries, such as flow in
circular pipes, still pose major difficulties to the numerical procedure (Vantieghem, 2011,
pp.89-96) (Mistrangelo & Bühler, 2011). The reason for such insufficiency, on the one hand,
is the great challenge of spatially resolving relevant details of the varying electric current
flow within extremely thin and curved boundary layers. On the other hand, associated
discontinuities in the computational mesh structure lead to initially minor numerical errors
that are magnified up to a significant extent by discretizing and solving the MHD equation
for strong magnetic fields. Therefore, applying the code to circular pipe flow requires a
more robust numerical approach in the form of a consistent discretization scheme involving
a well-suited computational grid.

Early works considered complex 3D developing flows in breeding blanket geometries, where
conditions vary in the axial direction along circular pipes, e.g., in Picologlou et al. (1986)
and Barleon et al. (1989). In order to serve as an extension to those prior works and to
complement the validation base for numerical approaches, a broad experimental campaign
had been conducted at the MEKKA laboratory (Magnetohydrodynamic Experiments in
NaK Karlsruhe) at KIT. In those experiments, liquid metal enters the magnetic field of the
laboratory magnet (Bühler et al., 2020b) or traverses sections that involve wall discontinuities
occurring in the vicinity of so-called flow channel inserts (FCI), which are devices designed
for MHD pressure drop reduction in liquid metal blankets (Bühler et al., 2019, 2020a).
Experimental measurements of electric potential and pressure from the outer wall surface
of the test sections suggest the occurrence of strong, fluid-internal 3D MHD phenomena
that lead to additional pressure drops.

Since the MEKKA experimental campaign has been conducted in circular pipes, the obtained
results constitute an outstanding benchmark opportunity that addresses the needs of fusion
MHD research in two major challenging fields. Those are the improvement of powerful and
reliable MHD codes towards fusion realistic applications and a deep numerical analysis of
complex 3D MHD phenomena occurring in the liquid breeder. The underlying ideas of the
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work at hand are

• extend the applicability of the computational code used at KIT for MHD flows in
circular geometries and very strong magnetic fields

• verify the robustness of the numerical approach by means of known analytical solu-
tions and validate results for more complex 3D MHD phenomena with the MEKKA
experimental data

• analyze liquid metal flow in blanket subsystems such as nonuniform magnetic fields
and in FCIs to predict and optimize the performance of flows of breeder material at
reactor relevant conditions

• reveal fluid-internal details of 3D MHD phenomena occurring in the breeder material,
which are experimentally inaccessible

The motivation is to conduct a deep analysis of numerical results to be obtained in order to
verify introduced discretization schemes, supplement experimental findings, gain knowledge
about relevant 3D MHD phenomena, support blanket development, expose critical loads,
and validate the computational approach with experimental measurements.

To reach those goals, chapter 2 first introduces governing equations, knowledge from
literature about fully developed MHD pipe flow and corresponding asymptotic models,
developing MHD flow, as well as the implementation of MHD equations into the used
computational code. The first part of this work then investigates in chapter 3 the code’s
capability to consider fully developed MHD pipe flow, where, for the first time, the
code’s convergence and robustness are examined on unstructured computational meshes.
Knowledge about the code’s ability to address curved geometries on unstructured grids
is furthermore crucial to foreseeable demands in fusion engineering as blanket geometries
become increasingly complex and may therefore not necessarily be discretized by rectilinear
structured grids. The chapter ends by providing recommendations for the choice of spatial
discretization and numerical schemes to appropriately resolve MHD flow in circular pipes.
Based on those findings, the MEKKA experiments are replicated by detailed numerical
simulations, as presented and discussed in terms of MHD flow in a nonuniform magnetic
field and in close vicinity to flow channel inserts (FCI) in chapters 4 and 5, respectively.
Chapter 6 concludes with a summary and presents major findings of this work as well as
possible outlooks.
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2 Fundamentals of
magnetohydrodynamic pipe flow

First investigations on liquid metal flow in magnetic fields date back to Julius Hartmann,
who studied the behavior of mercury flow in rectangular and circular pipes (Hartmann,
1937). His analytical approach describes a one-dimensional, fully developed flow between
two infinite plates, where pressure losses become larger with increasing transverse magnetic
field strength. He further observed that the core velocity flattens along magnetic field
lines, and viscous effects are confined to very thin boundary layers. The analytical work of
Shercliff (1953) demonstrates the great benefit of treating the core flow as inviscid and
separate from the viscous boundary domain, resulting in an asymptotic approach that is
valid for strong magnetic fields. This yields a simple solution for circular pipes, in the case
of dominant magnetic field strengths for electrically insulating pipe walls (Shercliff, 1956).
The work of Chang & Lundgren (1961) extends this approach to thin walls of arbitrary
conductivity, providing a more general formulation, which shows that pressure losses strongly
depend on wall conductance in addition. When walls are better conducting than the viscous
layers, Miyazaki et al. (1983) introduce a convenient solution that is valid for arbitrary wall
thicknesses. Where the evaluation of exact solutions, as, e.g., introduced by Uflyand (1961),
becomes difficult for strong fusion-relevant magnetic fields, asymptotic approaches, like
Chang and Lundgren’s, serve today as effective evaluation tools for fully developed flow in
straight pipes. However, their applicability remains limited to rather specific problems, such
as MHD pipe flow or flow in rectangular ducts.

With the advancement of computational devices, numerical approaches have been
introduced to solve MHD problems (Kit et al., 1970). While those methods initially
referred to fully developed stationary flows in simple geometries and weak magnetic fields,
computational codes have become more efficient and robust along with the progress of
high-performance computers and numerical methods. Meanwhile, numerical approaches
constitute the major tool of investigation in fusion MHD research as they are capable of
addressing most complex problems of fusion-relevant MHD phenomena (Smolentsev et al.,
2015). As demonstrated within the present work, the application of a numerical approach
significantly extends the investigative possibilities for complex MHD problems and thus
essentially contributes to ongoing fusion MHD research.
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2.1 Magnetohydrodynamic equations

An electrically conducting liquid moves through a strong externally applied magnetic
field. The velocity vector field v (x, t) = (vx, vy, vz) describes the movement of fluid
elements in spatial coordinates x = (x, y, z) and time t, while the magnetic field B (x)
is assumed stationary. Moving under a magnetic field, the liquid conductor experiences a
flow-induced electric field v × B, orthogonal on both vectors, velocity v and magnetic field
B. This drives electric currents inside the conducting liquid and imposes an electrostatic
field in the form of the electric potential gradient ∇φ (x, t).

The relation of electric current density j (x, t), electric potential gradient, and induced
electric field satisfy, in dimensionless formulation, Ohm’s law (Müller & Bühler, 2001,
equation 2.26)

j = −∇φ + v × B , (2.1)

and charge conservation (Müller & Bühler, 2001, equation 2.13)

∇ · j = 0 . (2.2)

Throughout this work, variables B, v, j, and φ are scaled by characteristic values for the
magnetic field strength B0, velocity v0, j0 = σ v0 B0, and φ0 = v0 B0 L, respectively. Here
L stands for a typical length scale in the problem, v0 is the average velocity in a cross
section, and σ denotes the specific electric conductivity of the fluid. Equations 2.2 and 2.1
combined result in the Poisson equation for the electric potential

∆φ = ∇ · (v × B) . (2.3)

Equation 2.3 ensures charge conservation when currents are determined from Ohm’s law.

The induced electric current interacts with the externally applied magnetic field, which
generates a Lorentz force density in the fluid flow orthogonal on j and B (Müller & Bühler,
2001, p. 14), according to

fL = j × B . (2.4)

The electromagnetic force contributes to the momentum equation, which includes further
relevant terms of fluid dynamics (Müller & Bühler, 2001, equation 6.1), according to

N−1
(

∂v
∂t

+ (v · ∇) v
)

︸ ︷︷ ︸
intertia force

= − ∇p︸ ︷︷ ︸
pressure

force

+ Ha−2∇2v︸ ︷︷ ︸
viscous force

+ j × B︸ ︷︷ ︸
Lorentz

force

. (2.5)

Equation 2.5 describes a balance of inertia force, pressure force, viscous force and electro-
magnetic Lorentz force. Since the fluid is assumed incompressible, it therefore satisfies mass
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conservation (Müller & Bühler, 2001, equation 2.50), according to

∇ · v = 0 . (2.6)

The pressure p (x, t) is scaled by p0 = σ v0 B2
0 L and fluid properties such as the electric

conductivity σ, density ρ and kinematic viscosity ν are assumed constant.

Two dimensionless groups in the momentum equation characterize such magnetohydrody-
namic flow (Müller & Bühler, 2001, p. 23). On the one hand, there is the Stuart number,
also known as the interaction parameter

N = σLB2
0

ρv0
∼=

electromagnetic forces
inertia forces , (2.7)

describing the ratio of electromagnetic to inertia forces. The squared Hartmann number,
on the other hand, indicates the ratio of electromagnetic to viscous forces

Ha = B0L

√
σ

ρν
∼=
√

electromagnetic forces
viscous forces . (2.8)

The Hartmann number constitutes an indicator for MHD channel flow, since it may be
interpreted as a nondimensional parameter that quantifies the intensity of the applied
magnetic field. Both dimensionless groups define the Reynolds number according to
Re = Ha2/N . Their position in the momentum equation (equation 2.5) shows that with
an increasing magnetic field B0, the balance between electromagnetic force and pressure
force dominates over viscous and inertia forces.

Equations 2.1, 2.3, 2.5, and 2.6 describe MHD flow in stationary applied strong magnetic
fields, provided investigated length scales are sufficiently large and electromagnetic processes
slow enough so that quantum mechanical effects and displacement currents are negligible.
The fluid is seen as a continuum of uniformly distributed mass and charge density, whose
state is described by laws of classical electromagnetism and fluid dynamics. Furthermore,
investigated lengths and velocities are assumed sufficiently small on laboratory or engineering
scales, which allows neglecting flow-induced magnetic fields in comparison to the externally
applied one. The latter simplification applies for flows at small magnetic Reynolds numbers
Rm = µ σ L v0, where µ denotes the magnetic permeability.

Figure 2.1 illustrates general spatial relations of vectors in the MHD equations,
presented above. In the sketch on the left, velocity and magnetic field produce the induced
electric field v × B. This drives electric charge represented by electric current density j and
generates the electric potential gradient ∇φ. The three vectors v × B, ∇φ, and j form a
closed triangle according to Ohm’s law in equation 2.1. The sketch on the right shows how
Lorentz forces establish orthogonally to electric current density j and magnetic field B.

Figure 2.1 provides a general impression of how the orientation of the imposed magnetic
field affects MHD phenomena. In contrast to hydrodynamic flow, the direction between
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B

vv × B

∇φ
j

ϕ·
·

B

fL = j × B

j

·
·

Figure 2.1: Vector representations illustrating magnetohydrodynamic relations for Ohm’s
law (left) and the Lorentz force (right). The symbol · in the angle bend marks
perpendicular orientations of vectors.

the magnetic field and velocity imposes a preferential orientation leading to anisotropy of
electrodynamics and fluid mechanics. This anisotropic behavior determined by the magnetic
field orientation is one fundamental characteristic of MHD flow, which becomes apparent
throughout the present work.

Concerning fusion applications, values of governing parameters in the momentum
equation become very large, such as N ∼ O (105) and Ha ∼ O (104) (Smolentsev, 2021,
table 1). Under such extreme conditions, inertia and viscous forces in equation 2.5 may be
neglected, which is known as the magnetostatic approach. It was introduced originally by
Kulikovskii (1968), and it nowadays serves as a useful approximation of MHD flow in some
applications, see, e.g., (Bühler, 1995). The present work, on the other hand, considers
the full set of equations 2.1, 2.3, 2.5, and 2.6 presented above and thus it is capable
of describing also viscous and inertia effects. This is of particular importance when the
transition of turbulent hydrodynamic flow towards a fully established MHD pipe flow is
considered in chapter 4 or when jet-like flow patterns in MHD flows may become unstable
(Arlt, 2018).

2.2 Stationary MHD flow

The movement of a conductive fluid inside a solid structure under a transverse
magnetic field furthermore depends on the geometry and electric property of its containment.
Simple cases of pressure-driven flow show that those parameters affect MHD phenomena
significantly.
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Fully developed flow between parallel plates

Hartmann (1937) investigated the flow between two plates under a transverse magnetic
field, as shown in figure 2.2 where the plates have the nondimensional distance 2. Throughout
the present work, the mean fluid velocity and magnetic field are generally oriented along x
and y, respectively. The movement of conductive material in the magnetic field induces
orthogonally directed electric currents perpendicular to both v0ex and B, which in turn
evoke axial Lorentz forces j×B. They brake the core flow and drive the fluid in the boundary
layers, as shown by red arrows. The fluid sticks to the wall, where the velocity becomes zero.
With increasing magnetic field strength, i.e., growing Ha, the velocity profile transforms
from the well-known hydrodynamic case of Poiseuille flow into a magnetohydrodynamicly
dominated flow, often referred to as Hartmann-Poiseuille flow, shown by the blue dashed
and solid line, respectively. Hartmann (1937) provides an exact solution for the underlying
case of one-dimensional flow, where the axial velocity satisfies

vx (y) ∼ 1 − cosh (Ha y)
cosh (Ha) . (2.9)

The flow separates into a core domain, where the velocity becomes uniform along magnetic
field lines and thin viscous boundary layers, where the velocity sharply drops to zero. The
latter are known as Hartmann layers, and their dimensionless thickness scales according
to

δHa = 1
Ha

, (2.10)

i.e., they become thinner with increasing magnetic field strength. Moreover, Hartmann
layers provide a closure path for electric currents to guarantee charge conservation, as shown
by green vector representations.

z

y

x
v

vx (y)
BfLj

δHa

Hartmann layer

core flow

tw

wall

1

Figure 2.2: Sketch of Hartmann-Poiseuille flow. Velocity profiles vx between two plates at
Ha = 0 and Ha = 9, shown by the blue dashed and solid line, respectively.
Orientation of electric currents and Lorentz force are depicted by green and red
vector representations.

If the wall is electrically conducting, a fraction of electric current short-circuits over
the solid domain as an additional closure path, depending on the wall’s electric conductivity.
Such relation of current flow through those regions is well illustrated by means of an



10 2 Fundamentals of magnetohydrodynamic pipe flow

analogous electric circuit as shown in figure 2.3, describing the relation of current flow
between the core, Hartmann layer, and wall domain.

The induced electric field inside the fluid poses an ideal voltage source with the dimensionless
value |v × B| = 1, where the fluid itself constitutes the internal resistance with the
dimensionless value Ri = 1. In the case of an electrically insulating wall, the induced
current in the core ic may only return over the Hartmann layer, in order to guarantee charge
conservation. Since Hartmann layers become thinner with increasing Ha (see equation
2.10), the layer becomes the bottleneck limiting the total current flow. Kirchhoff’s circuit
laws then yield

ic = iHa = δHa

1 + δHa

.

With increasing Hartmann number, the problem is dominated by the electric resistance of
the Hartmann layer, which increases proportionally to Ha.

|v × B|

Ri

ic

δ−1
Ha

iHa

c−1

iw

core flow Hartmann layer wall

Figure 2.3: Analogous electric circuit of MHD flows describing the relation of electric
currents trough the core flow domain, Hartmann layer, and wall.

In the case of electrically conducting walls, currents flow over the solid domain in addition,
which increases the core currents according to

ic = iHa + iw = δHa + c

δHa + c + 1 .

In this context, the wall conductance parameter

c = tw
σw

σ
(2.11)

describes the electric conductance of the wall compared to the electric conductance of the
fluid region, where σw is the wall’s specific electric conductivity and tw its dimensionless
thickness. For c = 0, the wall is a perfect insulator. The core flow becomes independent of
Ha, when the wall is better conducting than the boundary layer, i.e., for c � δHa. The
highest core currents are reached when walls are perfectly conducting, i.e., c → ∞. Finally,
it should be mentioned that a certain pressure gradient is required to balance the Lorentz
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force, i.e., ∂xp = jc × B. Therefore, the conductivities of walls and boundary layers, which
determine core currents jc, have an important influence on pressure drop, and the smallest
values of the pressure gradient exhibit insulating walls.

Relations outlined above are fundamental characteristics of MHD channel flow, and they
apply in an analogous way to flows with different types of cross-section such as circular
pipes, as the following section reflects.

Fully developed circular pipe flow

Considering fully developed MHD flows in circular pipes, as shown in figure 2.4, leads
to a more complex scenario. The blue highlighted flow domain may be split into different
subdomains. The fluid sticks to the wall, where the velocity becomes zero. Hartmann
layers evolve along top and bottom boundaries, where the magnetic field has a significant
component normal to the wall. The varying thickness of viscous boundary layers along α is
determined by the wall-normal component of B and evaluates according to (Shercliff, 1962)
as

δHa = 1
cos (α) Ha

, (2.12)

where, throughout this work, all length scales refer to the inner pipe radius, i.e., R = L = 1.
At the side locations α → ±π/2, where the wall-normal magnetic field components are
small, and δHa exhibits a singularity, so-called Roberts layers arise. Those boundary layers
have been thoroughly investigated by Roberts (1967), who finds their geometric dimension
scaling according to Ha− 1

3 × Ha− 2
3 in y and z-direction, respectively.

x

y

z

δH
a

n
α

tw

R2Y
(z

)

Roberts layer

core flow

Hartmann layer

pipe wall

v

B

Figure 2.4: Geometric dimensions and flow regions of stationary fully developed MHD flow
in a circular pipe at large Ha.

Figure 2.5 presents electric potential distributions, current streamlines, and velocity profiles
for insulating, c = 0, and well-conducting pipe walls, c = 1. In both cases, the fluid-
internal electric potential grows continuously along z according to the induced electric
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field v × B, and it remains constant along magnetic field lines in y-direction. The color
scale is normalized by the maximum magnitude at both sides φ2D = |φ (y = 0, z = ±1)|.
Green lines represent current streamlines flowing in the core along the induced electric
field in z-direction. In the case of insulating walls, currents can only close over the thin
Hartmann layers, which therefore become the bottleneck of electric current flow. In terms
of conducting walls c > 0, currents may short-circuit over the solid domain in addition,
where they evoke a distribution of wall potential.

Velocity profiles displayed in the bottom row of figure 2.5 show for both cases of wall
conductance parameter c a uniform core velocity vc along magnetic field lines inside the
core domain, which then sharply drops to zero in the form of thin viscous Hartmann layers.
Along z, the core velocity shows an ellipsoidal profile for insulating and a uniform profile
for well-conducting walls. The latter case shows the formation of small side jets, whose
emergence has been investigated by Vantieghem et al. (2009).

c = 0

j j

c = 1

0

1
vx

−1

0

1

φ
φ2Dx

y

z

vx

By

z

electric
potential

velocity

B

B

Figure 2.5: Stationary fully developed MHD flow at Ha = 1000 in a circular pipe. Illustra-
tions show electric potential and velocity distributions in the case of an insulating
(left, c = 0) and a well conducting (right, c = 1) pipe wall. Green streamlines
indicate electric current flow.

Asymptotic theory provides a convenient solution to the core velocity as introduced
by Chang & Lundgren (1961)

vc (z) ∼ (1 + c) Y

1 + c Ha Y
, (2.13)

where Y refers to the channel height in the magnetic field direction Y (z) =
√

1 − z2,
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which is shown in figure 2.4. The solution applies for strong magnetic fields Ha � 1, and
it depends on the product c Ha - the parameter that indicates where electric currents are
more likely to close. The impact of this relation, which quantifies whether walls are better
conducting than Hartmann layers, is shown in figure 2.6. Assuming perfectly insulating
walls c = 0 yields an ellipsoidal profile, whereas vc becomes uniform with an increasing value
of c Ha. Blue and red lines refer to the cases for c = 0 and c = 1 in figure 2.5, respectively.
Since the asymptotic solution in equation 2.13 constitutes an approximation of MHD flow,
which neglects viscous effects in Roberts layers, it therefore misses the emergence of small
jets in the case of c Ha � 1, which are exemplarily shown for c = 1 in figure 2.5 on the
right.

−1 0 10

1

1.2

z

vc

c Ha = 0
c Ha = 0.1
c Ha = 1
c Ha = 10
c Ha = 100
c Ha = 1000

Figure 2.6: Velocity profiles in the plane y = 0 according to the asymptotic solution by
Chang & Lundgren (1961) for Ha � 1. The core velocity becomes uniform when
the wall is better conducting than the Hartmann layer, i.e., when c Ha � 1.

By means of the asymptotic solution, Chang & Lundgren (1961) determine the mass flow
rate and the associated pressure gradient for different wall conductance parameters c as a
function of the Hartmann number Ha. The obtained dimensionless gradient K (c, Ha) is
related to the dimensional one marked with ∗ via the viscous pressure scaling ρ ν v0/L2 as

K = L2

ρνv0

∂p∗

∂x∗ . (2.14)

The plots of the dimensionless pressure gradient K in figure 2.7 show that the MHD pressure
gradient strongly depends on the wall conductance. While MHD pressure losses rise linearly
to Ha for insulating walls according to the blue line, they start to rise quadratically as
soon as walls become better conducting than the viscous layers, when c Ha � 1. The gray
shaded area indicates that under fusion-relevant conditions, pressure losses due to MHD
phenomena are in general enormous compared to hydrodynamic pipe flow when Ha = 0.
However, they can be significantly reduced by lowering the wall conductance. This motivates
the application of so-called insulating flow channel inserts (FCI), which interrupt the current



14 2 Fundamentals of magnetohydrodynamic pipe flow

path and thus electrically decouple the fluid from the wall. Their impact on MHD flow is
broadly discussed in chapter 5.

101 102 103 104 105

102

104

106

108

1010
fusion-relevant

condition

∼ Ha

∼ Ha2

Ha

K

c = 0
c = 0.0001
c = 0.001
c = 0.01
c = 0.1
c = 1

Figure 2.7: Dimensionless pressure gradient K in circular pipes as a function of the Hartmann
number Ha for different wall conductance parameters c (Chang & Lundgren,
1961).

For the specific case c Ha � 1 the core velocity becomes uniform, and the approach by
Miyazaki et al. (1983) provides a simplified solution of the underlying problem. The latter
reference uses a more general definition of the wall conductance parameter for a circular
pipe, which applies to walls of arbitrary thickness

c = σw

σ

R2
o − R2

R2
o + R2 , (2.15)

where the outer wall radius satisfies Ro = R + tw. The asymptotic solution of electric
potential along both the inner and outer surface of the wall then becomes

φ2D (α) = 1
1 + c

sin (α) , (2.16)

φw,2D (α) = 2 R Ro

R2 + R2
o

1
1 + c

sin (α) . (2.17)

These equations provide approximate values of the electric potential distribution along inner
and outer wall surface as shown, e.g., in figure 2.5. This approach furthermore enables
the determination of electric current density and axial pressure gradient, which for the
underlying scaling become

j2D = fL,2D = −∂xp2D = c

1 + c
. (2.18)

The listed solutions of fully developed MHD flow in well-conducting pipes provide a valuable
validation tool for numerical methods and they are used as a reference throughout this
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work.

As such asymptotic considerations show, enormous MHD pressure loss is one of the main
concerns about employing liquid metal flow in fusion reactor devices. In this context,
Smolentsev (2021) provides comprehensive considerations and presents further ongoing
research.

2.3 Developing MHD flow

In contrast to hydrodynamic flow, MHD flow under a strong magnetic field exhibits a
predominant orientation of flow phenomena. As shown in figure 2.8 on the left, the direction
of magnetic field and fluid flow defines electric current, Lorentz force, and the associated
pressure drop. Pipe geometry, magnetic field strength, and electrical wall conductivity
furthermore affect MHD phenomena via channel height Y (z), Hartmann number Ha, and
wall conductance parameter c. If those parameters do not change along the flow direction,
stationary 2D MHD flow develops where electric potential differences and current flow occur
exclusively within the pipe’s cross-section. However, variations of one or multiple of those
parameters in streamwise direction locally disturb the sensitive equilibrium, resulting in axial
gradients of the electric potential ∂xφ. As shown in figure 2.8 (right), both induced electric
field v × B and streamwise potential differences elongate current loops in axial direction
according to Ohm’s law in equation 2.1. Electric current flow and magnetic field then form
transversal components of Lorentz forces that redistribute the fluid. This leads to so-called
3D MHD phenomena, which occur at large scales due to 3D current flow, and they may
propagate over long distances through fluid and solid domains.

Early considerations on developing MHD phenomena focus on flows around obstacles,
introduced by Ludford (1960). He describes internal shear layers, which detach from
locations where magnetic field lines are tangent to the immersed body. Perturbations
then propagate along magnetic field lines perpendicular to the flow direction. Those layers,
referred to as Ludford layers, are governed depending on the relation of Hartmann and Stuart
number by either a viscous-inertial, viscous-electromagnetic, or inertial-electromagnetic
balance (Müller & Bühler, 2001, pp. 85-87). Hunt & Leibovich (1967) show that internal
shear layers in duct flow generally originate from corners in the geometry or within rapidly
varying cross-sections. Internal layers provide closure for extra current and therefore increase
the total pressure drop. With growing magnetic field strength, Ludford layers become
thinner, and their contribution to pressure drop reduces.

3D MHD phenomena in fusion blankets may furthermore arise close to bends and turns
where the fluid is redirected. If the flow turns in the plane of the magnetic field, as in
the case of a so-called backward elbow formed by rectangular ducts, Moon et al. (1991)
describe the emergence of Ludford layers from sharp corners that traverse the fluid flow
along the magnetic field lines. In the case when a rectangular bend turns the flow from a
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Figure 2.8: Principle sketch of MHD phenomena in fully developed 2D and developing
3D flow within the pipe symmetry plane y = 0. Green symbols indicate the
transversal and axial difference of electric potential. Lorentz forces, shown
blue, arise perpendicular to currents and magnetic field direction according to
fL = j × B.

perpendicular towards a tangential orientation with respect to magnetic field lines, boundary
layers carry an essential fraction of flow rate, while the core flow mainly redistributes the fluid
between boundary layers (Molokov & Bühler, 1994). Stieglitz et al. (1996) experimentally
demonstrate the existence of Ludford layers, which detach from corners of the geometry and
propagate along magnetic field lines. They furthermore derive a correlation for the associated
pressure losses, demonstrating the electromagnetic-inertial and electromagnetic-viscous
impact of Ludford layers on the pressure drop. Theoretical and experimental investigations
show that redirecting the flow to magnetic field direction leads to more pronounced 3D
phenomena and significantly complicates the problem of liquid breeder flow (Stieglitz &
Molokov, 1997). Hence, various recent blanket design concepts try to avoid turning the flow
in a direction parallel to the magnetic field. Instead, bends or U-turns may be oriented in
planes perpendicular to magnetic field lines in order to minimize strong 3D MHD effects.

Varying the channel height Y in streamwise direction, as investigated by Hunt & Leibovich
(1967), changes the mean velocity and thus the induced electric field v × B along fluid
flow. The resulting streamwise potential difference drives axially elongated current loops,
which are responsible for extra 3D pressure losses ∆p3D compared to fully developed flow
(Mistrangelo, 2006, p. 51). Those effects have been observed in manifold devices, which
in fusion blankets distribute the liquid metal to individual breeding units (Mistrangelo &
Bühler, 2014).

Similar effects under fusion-relevant conditions arise when the magnetic field or wall
conductance varies along the streamwise direction. The former case may be found at
locations where the liquid breeder enters the plasma-confining magnetic field. Such a
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problem has been addressed experimentally (Picologlou & Reed, 1989) and numerically
(Kit et al., 1970). The latter case refers to a stream entering an insulating flow channel
insert (FCI), a device developed for MHD pressure drop reduction in fusion applications, see,
e.g., (Malang, 1987; Barleon et al., 1989; Koehly & Bühler, 2017). Both cases introduce
streamwise potential differences driving current loops through the breeder material over large
axial distances. They further interact with the magnetic field, evoking transversal Lorentz
forces that manipulate the flow and produce additional 3D MHD pressure losses. To gain
further insight into such complex problems, an extended experimental campaign conducted
at KIT investigated developing MHD flow in a nonuniform magnetic field (Bühler et al.,
2020b) as well as close to FCIs, at discontinuities of wall conductance (Bühler et al., 2019,
2020a). Obtained measurements of pressure and electric potential from the experiments
indicate the occurrence of strong 3D MHD phenomena within the developing flow region.

The study at hand presents numerical simulations of 3D MHD phenomena in nonuni-
form magnetic fields and at discontinuities of wall conductance, as observed in the experi-
mental campaign at KIT and likewise expected in fusion applications. While experiments
detected 3D MHD phenomena from potential and pressure measurements on the outer
wall of the test sections, the present computational results enable deep and comprehensive
insights. An analysis of additional pressure losses and mechanical stress helps to assess the
impact of 3D MHD phenomena on liquid breeder flow in fusion reactor devices. Moreover,
the high spatial resolution of numerical results enables detailed evaluations of local mo-
mentum balances, such as inertia, pressure, viscous, and Lorentz forces. The complexity of
3D MHD flow investigated within the present work poses high demands on the numerical
approach. Only powerful computational codes may satisfy the requirements imposed by the
governing MHD equations for such complex geometries.

2.4 Numerical methodology

While analytical approaches are limited to basic MHD problems, e.g., fully developed
straight pipe flow, numerical methods, on the other hand, are potentially capable of solving
the full set of partial differential equations describing the coupling phenomena of fluid
mechanics and electrodynamics in arbitrary complex geometries and for strong magnetic
fields. First attempts having been introduced by (Kit et al., 1970) apply a numerical
approach to calculate 2D liquid metal flow under a weak nonuniform magnetic field and thus
demonstrate the applicability of numerical methods to complex MHD problems. Sterl (1990)
extends the considerations and performs 3D numerical simulations for nonuniform magnetic
fields up to moderate Hartmann numbers. If the magnetic field is particularly strong,
magnetostatic theory permits to neglect inertia and viscous forces from the momentum
equation resulting in fL = ∇p according to Kulikovskii (1968). For this specific case,
Bühler (1995) derives a highly efficient numerical code, which works for arbitrary but high
Hartmann numbers. Unfortunately, the latter approach applies only to flows in single ducts
with thin walls, exposed to a transverse magnetic field. Flows in more complex geometries
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and time-dependent flows, where inertia forces may become important, cannot be studied
using this asymptotic technique.

For predictions of inertial MHD flows in very complex and electrically coupled geometries the
finite volume method is the numerical technique preferred by various authors (Morley et al.,
2008a; Smolentsev et al., 2020) as well as in the present work. For applications at fusion-
relevant high Hartmann numbers, it turns out that a current-conservative formulation is
required in order to keep numerical errors at an acceptable level, especially when unstructured
grids are employed (Ni et al., 2007).

In the following, basic ideas of finite volume techniques and in particular details about
the current-conservative formulation of governing equations used in the present work are
outlined.

Finite volume method (FVM)

The idea behind a numerical approach is to linearize and to approximate a transport
problem described by partial differential equations, e.g., for a physical quantity ϕ by a system
of linear algebraic equations A [ϕ] = b (Moukalled et al., 2016, equation 4.2). This system
can be solved numerically by direct or iterative computational tools for the solution of linear
algebraic problems. The composition of the coefficient matrix A, discretized values of the
physical quantity [ϕ], and column vector b depend on the discretization procedures applied
on both physical domain and physical phenomena (Moukalled et al., 2016, chapter 4).
Among numerical approaches, the finite volume method (FVM) has evolved as a preferential
approach in computational fluid dynamics due to its conservative nature. It considers the
physical domain as being composed of a large number of small but finite volume elements.
The partial differential equations governing the problem are satisfied integrally for each
finite control volume by applying the divergence theorem and ensuring a balance of fluxes
across the surface elements. This leads in general to a conservative formulation of the
problem, but the accuracy depends on how the fluxes at surface positions are interpolated
from data stored in the cell centers.

Figure 2.9 exemplarily shows a control volume as a single cell of such a computational grid
in form of a two-dimensional illustration.

A typical transport problem for a variable ϕ is described for instance by (Moukalled et al.,
2016, equation 5.1)

∂ (ρϕ)
∂t︸ ︷︷ ︸

transient
term

+ ∇ · (ρvϕ)︸ ︷︷ ︸
convective

term

= ∇ · (Γϕ∇ϕ)︸ ︷︷ ︸
diffusion

term

+ Qϕ︸︷︷︸
source
term

, (2.19)

where Γϕ is a diffusion coefficient. The MHD equations may be expressed accordingly by
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Figure 2.9: Topology of a computational cell and its direct neighbors in the grid. Symbols
C,f , F indicate cell, face, and neighbor centroid and S = nf S is the face
normal vector.

such generic expressions. Integrating this equation for a control volume results in terms of
the depicted cell C in the following relation∫

VC

∂ (ρϕ)
∂t

dV +
∫

VC

∇ · (ρvϕ) dV =
∫

VC

∇ · (Γϕ∇ϕ) dV +
∫

VC

QϕdV . (2.20)

Equation 2.20 satisfies equation 2.19 in an average sense for each considered finite control
volume VC . If the grid resolution is sufficiently high, variations of ϕ with respect to transient
and source term are considered sufficiently uniform over a single cell (Moukalled et al.,
2016, p. 108, p. 117), so that they can be taken out of the integral. Convective and
diffusion terms, on the other hand, are treated by the divergence theorem, reducing the
spatial derivative by one order transforming them into a flux equilibrium with adjacent cells
across each corresponding cell surface

∂ (ρϕ)
∂t

VC +
∮

∂VC

(ρvϕ) dS =
∮

∂VC

(Γϕ∇ϕ) dS + Qϕ
CVC . (2.21)

The resulting equation describes the balance between internal transient change, convective
and diffusive fluxes over the entire cell boundary ∂VC , where S is the face area vector, and
Qϕ

C represents internal sources. Replacing fluxes by their average values across individual
faces approximates the fluxes at the face centroids f , where Sf holds the face area. This
leads to the definition of a semi-discretized equation according to Moukalled et al. (2016,
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pp. 104-108)

∂ (ρϕ)
∂t

VC +
nf (C)∑

f

(ρvϕ)f · Sf =
nf (C)∑

f

(Γϕ∇ϕ)f · Sf + Qϕ
CVC . (2.22)

While cell centroids hold all variables in a collocated arrangement, the coupling conditions
to neighboring cells are defined on face centroids. Neighboring cell values are therefore
required to interpolate the fluxes of ϕ to the face. However, as exemplarily shown by the
connection vector rCF1 between C and its neighbor cell F1, skew or non-orthogonal faces
may complicate the interpolation to the cell face. Therefore, the computational grid must
provide a certain structure and regularity with only small variations of adjacent cells, such
that values at the face centroid may be well interpolated. The further discretization and
evaluation procedure of equation 2.22 to generate a linear system of equations requires a
specific treatment of each term and has to be adjusted to the underlying transport problem
with great care. There exist multiple discretization and correction procedures in order to
reduce numerical errors to a minimum, as presented, e.g., in Moukalled et al. (2016, chapter
8-14).

Computational MHD code

The applied computational procedure, summarized as a flow chart in figure 2.10,
iteratively solves the momentum equation and the Poisson equation for the electric potential
at the next time step t+∆t, as originally implemented by Mistrangelo & Bühler (2011). The
continuity and momentum equation simultaneously depend on both velocity v and pressure
p. They are treated according to the PISO algorithm (Pressure-Implicit with Splitting of
Operators), proposed by Issa (1986). This segregated procedure splits into a predictor and
corrector step, which first solves the momentum equation without the pressure, so the
divergence of the estimated velocity differs from zero. The next step of the PISO loop
determines the pressure based on the predicted velocity and imposes mass conservation,
which in turn results in solving a Poisson equation for the pressure. This yields both the
adapted pressure and divergence-free velocity. The iterative process is repeated until either
a residual condition or a maximum number of iterations are met. A detailed description of
the PISO algorithm and its application can be found in literature, e.g., in Moukalled et al.
(2016, section 15.7.3), Ferziger & Peric (2002, section 7.3.4), or Holzmann (2017, chapter
11).

Particular emphasis is required for the solution of the Poisson equation for the electric
potential. The difficulty lies in solving the electric potential equation in a manner that
guarantees charge conservation since even small numerical errors may be amplified during
the iteration process for strong magnetic field strengths. Ni et al. (2007) propose a current
density conservative scheme, which applies for strong magnetic fields. This so-called Ni-
algorithm has been implemented in various MHD codes, and it is also used in the present
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Figure 2.10: Summarizing flow chart of the computational approach.

work.

With the help of the divergence theorem, the Poisson equation for the electric potential
may be written in a semi-discretized form on the face centroids f as

nf (C)∑
f

(
∂φ

∂n

)
f

Sf =
nf (C)∑

f

(v × B)f · nfSf , (2.23)

where nf and Sf are the normal and face area vector of the respective cell surface f , and ∂
∂n

is the face-normal gradient. As proposed by Mistrangelo & Bühler (2011), the applied code
uses a non-orthogonal correction scheme accounting for tilted faces during interpolation of
the face-normal potential gradient at the cell surface. Further evaluation of Ohm’s law on
the face centroid using the electric potential gradient and induced electric field normal to
the face results in the face-normal current density

(jn)f = −
(

∂φC

∂n

)
f

+ (v × B)f · nf . (2.24)
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Ni et al. (2007) stress that the discretization schemes of ∂φ
∂n

for the solution of equation
2.23 and the evaluation of equation 2.24 must be identical for a conservative current
reconstruction on the cell center C. The latter reference further proposes to use the surface
integral

jC = 1
VC

∑
f

(jn)f rCfSf (2.25)

for the evaluation of the electric current density at the cell centroid. The Lorentz force at
the cell center then becomes

(fL)C = jC × BC . (2.26)

With the evaluation of the Lorentz force at the cell center, the computational loop reiterates
by initiating the next time step and updating (fL)C in the momentum equation. The loop
proceeds until a converged state is achieved.

The applied computational code (Mistrangelo & Bühler, 2011) is implemented using
the open-source software OpenFOAM (OpenFOAM-Foundation, 2021). The included library
provides a comprehensive supply of FVM tools and functions required for general CFD
(computational fluid dynamics) applications involving pre- and post-processing. Its Open
source policy enables direct insight to the lowest level of the software architecture, which
allows straightforward implementation of numerical operations and algorithms as well as
arbitrary manipulation of customized approaches.

Furthermore, OpenFOAM is capable of executing large-scale problems on high-performance
computing (HPC) devices. This approach decomposes massive computational grids into a
specific number of subdomains that are processed in parallel on multiple processor cores,
leading to a significant computational speed up (Keough, 2014). Computations performed
for the present work have been conducted for grids with up to 2 · 107 cells using about 300
processor cores on different HPC clusters1,2.

The computational code had been carefully validated and furthermore demonstrated
its capability on a variety of problems in fusion research. To mention only a few particular
applications, such as

• development of the code and validation up to Ha = 104

(Mistrangelo & Bühler, 2011)

• magneto-convective flow in an entire breeder unit
(Mistrangelo & Bühler, 2013)

• 3D MHD effects at discontinuous insulations
(Mistrangelo & Bühler, 2015)

1I acknowledge the CINECA award under the ISCRA initiative, for the availability of high-performance
computing resources and support.

2This work was performed on the supercomputer ForHLR funded by the Ministry of Science, Research
and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research.
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• MHD coupled flow in manifold geometries
(Bühler & Mistrangelo, 2016)

• stability analysis of transient Hunt-flow
(Arlt & Bühler, 2019)

Moreover, the validity of the code has been demonstrated in a code-to-code comparison
as part of an international benchmark activity (Smolentsev et al., 2020). Although those
achievements confirm the applicability of the developed computational code to various MHD
problems, conducted studies have been mainly restricted to rectilinear geometries so far.

There still exist significant difficulties in the application of MHD codes, even for
fundamental problems which may pose critical challenges (Smolentsev et al., 2015). For
instance, the computation of MHD flows in curved geometries, such as, e.g., circular
pipe flow, may induce large numerical errors under strong magnetic fields as observed
by Vantieghem (2011, pp. 89-96) or Mistrangelo & Bühler (2011). This constitutes a
major issue that must be faced before MHD codes are applied to more complex realistic
geometries in fusion blanket engineering. The study at hand therefore first addresses the
code’s robustness in chapter 3 by means of numerical simulations for circular pipe flow
under fusion-relevant strong magnetic fields and provides recommendations for discretizing
curved geometries. Subsequently, chapters 4 and 5 address 3D MHD problems in circular
pipes for which experimental data is available (Bühler et al., 2019, 2020b,a).
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3 Discretization schemes for MHD
flows in circular pipes

For strong magnetic fields, i.e., for Ha � 1 and N � 1, MHD flows in ducts and
pipes exhibit a nearly inertialess and inviscid core region that occupies almost the entire
cross-section of the channels. The core velocity is constant along magnetic field lines, but
it may vary in the transverse direction depending on duct geometry and wall conductivity.
Viscous effects are confined to very thin boundary layers or internal layers, where velocity
gradients are highest, and currents are large. Phenomena that vary on widely different
length scales pose the highest demands on the involved discretization procedures. Moreover,
the curved periphery of a circular pipe implicates a permanent reorientation of electric
boundary currents, which significantly complicates achieving a consistent discretization in
comparison to rectilinear geometries.

This chapter compares the results of MHD simulations of fully developed circular pipe
flow in strong magnetic fields obtained by using different mesh topologies and discretization
schemes. Especially for pipes with poor wall conductivity, perturbations caused by discretiza-
tion errors may reach such magnitudes that the numerical solutions become useless. It
will be shown that defects in the results have their origin in the discretization schemes of
the electric potential equation. Therefore, the impact of more appropriate formulations of
the potential gradient and the spatial resolution on numerical convergence and robustness
are discussed, by verifying their performance with approximate analytical solutions and
highly resolved numerical results. Eventually, those higher discretization schemes lead to
substantial improvements concerning the capabilities of the code for applications with curved
and complex geometries using for the first time unstructured grids.

3.1 Spatial Discretization

The topology of the computational mesh significantly determines numerical conver-
gence and the quality of the results. In general, orthogonal non-skew cells constitute grids on
which numerical simulations run with high efficiency. Structured, rectilinear grids typically
consist of hexahedral elements and involve a systematic regularity across the entire domain,
which benefits numerical stability and consistency.
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A block-structured grid configuration, as shown in figure 3.1 on the left, is designed
to resolve MHD flows in square ducts under a strong magnetic field. The underlying cell
arrangement consists of separate blocks as indicated by red dashed lines and labeled by
roman numerals. Each block contains grading, which is local grid refinement, along selected
spatial orientations. Those attributes enable arbitrary densification or expansion of grid
cells towards the rectilinear periphery in order to resolve the extremely thin MHD boundary
layers, which require particularly high resolution in wall-normal direction. A block-structured
grid thus enables the optimization of the mesh by relocating computational cells from the
core to the boundaries, which generally reduces the number of cells and the associated
computational effort. Moreover, the underlying orthogonal orientation of cell faces is
beneficial for numerical consistency as it reflects the inherently mutually orthogonal nature
of MHD phenomena between velocity, currents, and magnetic field lines. A block-structured
grid is therefore well suited for simulation of MHD flow in rectilinear geometries for large
Hartmann numbers (Mistrangelo & Bühler, 2011).

square duct circular pipe

critical
point
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grid
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Figure 3.1: Block-structured discretization applied to rectangular (left) and circular (right)
geometries. Red dashed lines separate block regions, labeled by roman numerals.

In the case of a circular pipe shown on the right, block-structured discretization leads to
the O-grid type that is often used for resolving hydrodynamic flow problems. It consists of
a center square block of uniform, structured topology. Four surrounding blocks adapt to
the curved pipe periphery and provide adequate grading in wall-normal direction to resolve
boundary layers. The corners of the inner block form critical points in the mesh structure,
where block boundaries merge, as shown by red dashed lines, leading to so-called grid
irregularities. Those are discontinuities in the mesh structure, which may inject zero-order
errors during the discretization procedure that cannot be removed entirely by higher spatial
resolutions (Moukalled et al., 2016, pp. 124-126).

While a structured grid is well suited to resolve the thin boundary layers with hexahedral
prism layers, the core region may alternatively be resolved by other more general grid config-
urations. Such unstructured meshes will become mandatory for fusion MHD codes as future
applications must address increasingly complex geometries, which may not be resolvable
by structured grids. Knowledge about the algorithm’s compatibility with unstructured and
non-hexahedral-based grid types is therefore crucial to future fusion MHD research. Hence,
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this chapter addresses the performance of discretization schemes on different grid types.

Core grid

In order to assess the impact of grid configuration on the computational outcome, the
boundary layer has been resolved by a fine grid along the periphery with grading towards
the wall, while different types of grids for the core region are investigated, as shown in the
left column in figure 3.2. Simulations are conducted at a moderate magnetic field strength
Ha = 1000. The core grid radius measures Rcore = 0.82. Each mesh type is extruded
by three layers in streamwise direction and 50 layers in radial direction involving a strong
grading to resolve boundary layers. Applied boundary conditions are listed in table 3.1.

inlet outlet wall interface
φ cyclic cyclic ∂nφ = 0
p cyclic cyclic ∂np = 0
v cyclic cyclic v = 0

Table 3.1: Boundary conditions for simulations of fully developed MHD flows in pipes with
electrically insulating walls.

Inlet and outlet are assumed as periodic for simulations of fully developed flow in long
straight pipes. The electric potential gradient is zero along the wall interface, which prevents
current leakage in order to model a perfectly insulating wall c = 0. The fluid sticks to the
wall where velocity becomes zero v = 0. Furthermore, an additional source term in the
momentum equation adjusts the streamwise pressure gradient to satisfy Re = 1000.

Considering the block-structured O-grid configuration (BLOCK), singularities manifest in
the form of high peaks in the numerical solution of the velocity distribution, as shown
in the first row of figure 3.2. The result demonstrates the fatal impact of critical points
and associated irregularities in the grid topology on the computational outcome. At a
sufficient distance from critical points, the velocity vx appears smooth. However, strong
singularities emerge from locations of grid discontinuities, and perturbations propagate along
magnetic field lines and block boundaries. The plot of velocity along the diagonal direction
d, indicated by the red sample line, demonstrates this behavior by crossing two critical
points. The black dashed line represents the asymptotic solution for the core velocity vc by
Chang & Lundgren (1961), extended by the viscous boundary layer correction proposed by
Shercliff (1962)

vx = vc (z)
(
1 − e− cos(α)Ha n

)
, (3.1)

where α refers to the angular cylinder coordinate according to figure 2.4 and n to the
distance from the wall. Vertical dashed lines indicate where core and boundary grids
merge. The structured grid used in the boundary layer appears well suited for the numerical
simulations. Independent of the type of core grid, the velocity distribution in the boundary
layer is smooth and consistent with the theoretical prediction.
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Figure 3.2: Qualitative relations between core grid structure and quality of numerical solu-
tions for velocity. (left): topology of core grid, the boundary grid is not displayed;
(middle): numerical solution for axial velocity; (right): velocity plot comparing
numerical values of vx (red solid line) to the asymptotic solution in equation
3.1 (black dashed line) along the diagonal direction d exemplarily shown as red
sample line for the BLOCK core mesh. Vertical dashed lines indicate where the
core grid merges with the graded grid in the boundary layer. Pipe flow with
c = 0 and Ha = 1000.
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The automatic mesh generation tool Snappy-Hex-Mesh (SHM), which is integrated into
the OpenFOAM environment, crafts the SHM core grid as presented in the second row
of figure 3.2. This approach crops the mesh out from a structured equally-spaced block
and inserts unstructured elements to merge with the boundary layer grid. As a result, the
grid mainly exhibits a uniform core structure, which benefits the computations. The results
show a comparatively good agreement of vx with the asymptotic solution. In contrast
to the BLOCK configuration, the boundary and core grid of SHM form a sharp interface
with a layer of highly unstructured elements, mainly triangular cells. However, these grid
discontinuities generate only minor numerical errors in the form of a small circular silhouette
on the velocity profile. Those perturbations further propagate along magnetic field lines
and lead to slight wave-like ripple contours in the core along z.

The CFD software STAR-CCM+ has been applied to generate two fully unstructured core
grids labeled POLY and TRI according to their basic element type, which is polygonal and
triangular, respectively. In both cases, impacts of unstructured grids on simulations of MHD
flow manifest in moderate ripples across the entire core.

In order to demonstrate how grid type and resolution affect the convergence of the
solution, this study considers varying cross-section cell numbers Nc. In figure 3.3, the results
are compared to simulations using an optimized mesh and discretization methods according
to later findings in this chapter including a highly resolved cross-section at (Nc)qe = 136048.
Referring the obtained numerical results to such a quasi-exact solution, as labeled by the
subscript qe, allows to evaluate the numerical consistency of the computational approach in
order to verify the underlying spatial resolution and numerical discretization schemes.

The top graph in figure 3.3 presents the difference between computed and quasi-exact
reference velocity, i.e., vx and (vx)qe, being averaged across the pipe cross-sectional area
A∅

(∆v) = 1
A∅

∫
A∅

∣∣∣vx − (vx)qe

∣∣∣ dA . (3.2)

This value indicates the mean error in comparison to the quasi-exact solution projected
on the whole domain and thus provides a statement about the overall deviation. In this
context, TRI and BLOCK type grids show poor performance as their mean error is hardly
affected by grid refinement. While (∆v) for the TRI type seems not to converge at all with
an increasing number of grid cells, it slowly starts descending for the BLOCK type only for
higher resolutions Nc > 104. SHM and POLY grids, on the other hand, show a monotonous
decline of the mean error along Nc.

The middle plot presents the maximum error of velocity deviations in the core flow domain,
including the transition from core to boundary grid

(∆vcore)max = max
∣∣∣vx − (vx)qe

∣∣∣ . (3.3)

This value indicates the highest occurring local deviation in the core region and thus enables
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Figure 3.3: Error plots for circular MHD pipe flow showing convergence depending on
grid-type and cross-section cell number. In the bottom plot showing pressure
gradients, the horizontal gray line indicates the quasi-exact computed solution
∂xpqe and black dashed lines represent asymptotic solutions. Pipe flow with
c = 0 and Ha = 1000.

the assessment of the most pronounced perturbations. As expected from figure 3.2, critical
points of BLOCK type grids involve by far the highest errors of up to (∆vcore)max ≈ 0.6,
shown by the red line in the center plot of figure 3.3. Furthermore, average and maximum
errors of the BLOCK type, presented red, show a correlating pattern where the former
remains constant and descends for Nc > 104 while the latter rises and then remains constant
for Nc > 104. This indicates that the velocity perturbations at the critical points approach
the highest values when the flow region is well resolved. From there on highest perturbation
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magnitudes remain constant (no convergence), while the average error starts to decrease.
This furthermore demonstrates the impact near critical points inducing zero-order errors,
which become independent from mesh refinement, as stated by Moukalled et al. (2016, pp.
124-126). The maximum error of unstructured grid types, POLY and TRI, are moderate
and refer to the constant core ripple shown in figure 3.2. The SHM grid provides the
lowest perturbations, which originate from the unstructured transitions between the core
and boundary grid.

The bottom plot shows that the calculated streamwise pressure gradients ∂xp agree well
with the quasi-exact reference ∂xpqe, with deviations below 5‰, except for the TRI grid
type where differences are slightly higher. The asymptotic solutions, shown by the horizontal
dashed lines, suggest that pressure gradient deviations occur within an acceptable range
already at moderate grid size. While the more general approach by Chang & Lundgren
(1961) considers only the core flow, the asymptotic solution by Roberts (1967), in addition,
accounts for Hartmann and Roberts layers and thus agrees much better with the quasi-exact
numerical solution, shown as a horizontal gray line. Since both asymptotic references are
not exact solutions, some deviation towards ∂xpqe is expected.

Boundary grid

When the wall conductance is low, the majority of electric current closes over the thin
Hartmann layer. Therefore, a proper resolution of the viscous layers is essential for good
results since current paths along the boundary layers influence core solutions and affect the
total pressure drop. A principle sketch of a boundary layer grid along a curved periphery
is shown in figure 3.4. For curved boundaries, the layer thickness δHa depends on the
wall-normal strength of the magnetic field, and it reduces to a minimum at locations where
the wall-normal vector and magnetic field align. This position on the periphery is labeled
as Hartmann point and shown as a red dot in the figure. Here the boundary layer poses a
bottleneck for the closure path of the electric current, and prism layers of the boundary
grid, shaded in light blue, must accurately resolve such domains.

The sketch demonstrates the general insufficiency of any polyhedral cell-type to accurately
resolve curved boundaries. Flat cell faces approximate the circular pipe as a polygon leaving
empty spaces that are not captured by the spatial resolution, shown as white areas between
flow domain periphery and computational mesh. Moreover, the representation of wall
contour is not smooth and exhibits a large number of corners. The permanent reorientation
of boundary currents and the inability of rectilinear prism layers to resolve curved boundaries,
therefore, requires a particularly high resolution in both radial and tangential direction.
Otherwise, empty spaces between prism layers and flow domain periphery might significantly
impede the current reconstruction. In addition, each corner that is created between adjacent
boundary faces constitutes a discontinuity in the curved pipe geometry, to which MHD
flows are particularly sensitive, as shown and discussed in an upcoming chapter for annular
cross-sections in figure 5.19. Those geometric discontinuities in the computational boundary
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Figure 3.4: Sketch of boundary grid resolving Hartmann layers along a curved wall. Aspect
ratios are greatly downplayed for clarity. The red dot marks the Hartmann point,
where the magnetic field and wall-normal vector align and where the Hartmann
layer forms a bottleneck for electric current flow (green lines).

mesh can be the origin for perturbations that spread across the entire duct along magnetic
field lines in the form of internal shear layers. A larger number of cells along the pipe
circumference generally leads to a better alignment of boundary faces with the curved pipe
periphery and helps to minimize these disturbances. In this context, the blue line in figure
3.4 illustrates the tangent line at the Hartmann boundary layer (dashed line), where the
boundary layer becomes thinnest. Its intersection with the wall thus sets a critical restriction
to the computational mesh. The tangent line ends at the periphery and has the length

εHa = 2
√

1 − (1 − δHa)2 . (3.4)

For strong magnetic fields, i.e. small Hartmann layer thickness δHa � 1, the length of the
Hartmann layer tangent line scales according to

εHa ∼
√

δHa , (3.5)

and boundary cells should be shorter than epsilon for a good peripheral resolution. This
means that for curved boundaries, Hartmann layers require both radial and tangential
refinement according to length scales of Ha−1 and Ha−1/2, respectively. Provided that
boundary grid points are uniformly distributed in the circumferential direction, assuming
at least two boundary grid points per tangent length εHa seems to be a reasonable first
guess for a good mesh design. This assumption leads to a total number of circumferential
boundary grid points

N◦ ≥ 2 2 π

εHa

(3.6)

that are necessary to sufficiently resolve the flow domain periphery.

The proposed tangential resolution of equation 3.6 required for curved boundaries,
however, leads to a expensive computational refinement of the core grid when grid lines
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have to be matched between the boundary and the core. An alternative approach, therefore,
involves a local refinement, which inserts smaller cells close to boundaries in order to
resolve the circumferential boundary grid in the tangential and radial direction, and which
simultaneously maintains a comparatively coarser cost-effective core grid. Such SHM grid
type, as shown by figure C.1 in the appendix, is capable of meeting those requirements
at affordable costs. This approach maintains a coarse core grid while it splits the cells in
direct boundary vicinity and thus enables a computationally efficient tangential and radial
refinement.

Simulations of the core grid study shown in figure 3.3 have been repeated with such
an enhanced refinement applied to the SHM grid type, which involves higher resolutions
towards the boundary. However, for the investigated parameter of c = 0 and Ha = 1000,
an outward-directed grading shows no relevant improvement. The reason is that this
approach injects further grid irregularities in the form of sharp mesh transitions, to which
the considered case of insulating pipe walls c = 0 is highly sensitive.

In summary, there exist strong dependencies of numerical errors on the type of grid,
which in some cases even increase with the number of cells. Since a higher spatial resolution
alone does not always lead to better results, more robust discretization schemes are required
to improve the quality of simulations, especially for strong magnetic fields. In the upcoming
section 3.2, it is shown that the quality of results depends essentially on the discretization
scheme for the electric potential gradient, and a proper choice of scheme can lead to
significant improvements.

3.2 Discretization schemes for the electric potential
gradient

The determination of electric current density and electric potential gradient is particu-
larly sensitive to grid topology when the wall conductance c is low. For this case, Vantieghem
(2011, p. 54) denotes the calculation of electric current density as a poorly conditioned
arithmetic operation since Ohm’s law in equation 2.1 determines a comparatively low j as
a difference between equally large terms in the form of the induced electric field v × B
and electric potential gradient ∇φ. Continuity of currents is determined through a flux
balance on the cell surfaces as implemented by equation 2.23. Mesh shortcomings like
face skewness may therefore induce numerical errors that are magnified by the gradient
discretization of the electric potential ∇φ and thus transfer on the current density, Lorentz
force, and eventually the momentum. This section presents two numerical schemes, which
reduce the impact of mesh skewness on the gradient discretization of the electric potential.
It is further shown how improved schemes may affect convergence.
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Skew-corrected Green-Gauss gradient

The original MHD code determines the electric potential gradient by means of the
Green-Gauss method combined with linear interpolation. If spatial discretization is high
enough, gradients can be assumed uniform across each cell. Following the Green-Gauss
method, the gradient at the cell center C then becomes (Moukalled et al., 2016, equation
8.75)

∇φC = 1
VC

nb(C)∑
f

φfSf . (3.7)

The gradient evaluation corresponds to a summation of electric potential flux across all
cell surfaces nb (C) divided by the cell volume VC . Figure 3.5 illustrates the gradient
determination following Green-Gauss for a cell C and its direct face neighbor F adjacent to
a critical point of the BLOCK-mesh type. This operation requires the evaluation of electric
potential at the face centroid φf . The code’s original approach applies a linear interpolation
according to

φf ′ = gCφC + (1 − gC) φF (3.8)

where the weight factor measures

gC = Sf · rfF

Sf · rCf + Sf · rfF

(3.9)

with Sf as the respective face area Vector. In the case of orthogonal structured grids,
the intersection f ′ and face centroid f coincide. Unstructured grids or grid irregularities,
on the other hand, generally exhibit a deviation rf ′f of face centroids towards the linear
connection of adjacent cells rCF , shown as a dashed line. This deviation is particularly
high at critical points of the BLOCK mesh but also concerns unstructured cells of SHM as
well as POLY and TRI grids, in general. Hence, the computation of the electric potential
gradient leads to numerical errors, which, according to Vantieghem (2011), get amplified
due to the ill-conditioned nature of Ohm’s law in equation 2.1.

In the case of high face skewness, Ni et al. (2007) recommend an adaption of the
face interpolation by rf ′f . Since this vector is orthogonal to the face area vector Sf , it can
be determined according to

rf ′f = rCf − Sf · rCf

Sf · rCF

rCF . (3.10)

This enables the adaption of interpolated face potential by means of an explicit correction
scheme (Moukalled et al., 2016, equation 9.8)

φf = φf ′ + (∇φ)f ′ · rf ′f︸ ︷︷ ︸
correction

. (3.11)

Such correction requires the interpolation of the gradient from the cell centroid (∇φ)C to
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Figure 3.5: Grid topology between cell C and its direct face neighbor F at a critical point
of the BLOCK mesh. The high face skewness leads to strong deviation between
face intersection f ′ and face centroid f as represented by the skew-correction
vector rf ′f .

the intersection (∇φ)f ′ . Since the determination of both values depends on each other,
this procedure is done iteratively by repeatedly adapting them in a loop. Moukalled et al.
(2016, pp. 277-280) provide a detailed description of the implementation of face-skewness
correction.

The grid study has been repeated with the presented skew-correction scheme exclusively
applied to the electric potential gradient. Figure 3.6 shows the outcome where colored
dashed lines indicate results from the original uncorrected approach from figure 3.3, and
solid lines refer to the skew-corrected gradient scheme.

Skew-correction has a generally positive effect across all considered grid types and cell
numbers, so it provides an overall improvement. In particular for larger grids Nc > 104, solid
lines of the mean errors move closer together so that deviations towards the quasi-exact
solution become increasingly independent from the grid type and ultimately depend only on
the number of cells. This demonstrates that the originally observed perturbations are well
treated by the underlying skew-correction scheme.

Skew-correction has an exceptionally high impact on the BLOCK grid type. As shown by
red lines for the mean and maximum error of velocity, deviations decrease by around one
order of magnitude. Maximum errors decrease to an acceptable range, and mean errors are
lowest among the considered grid types. Since SHM is comparatively well structured and
cells mostly align with the orientation of the magnetic field and current flow, it appears
least affected by skew-correction. Only at the transition between core and boundary grid,
where SHM grids contain skewed cells, the correction scheme leads to a minor reduction of
numerical errors. Considering the mean error for POLY and TRI grid types, shown blue and
orange, convergence rate differs significantly for small grid sizes Nc < 104. In contrast to
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Figure 3.6: Error convergence for the skew-corrected Green-Gauss gradient scheme GGcorr

(solid lines) depending on the grid type and cross-section cell number Nc.
Colored dashed lines show the original uncorrected approach GGuncorr from
figure 3.3. In the bottom plot, showing the pressure gradient, the horizontal
gray line indicates the quasi-exact computed solution and black dashed lines
represent asymptotic solutions. Pipe flow with c = 0 and Ha = 1000.

the triangular grid type, polygonal cells offer more faces for correction, which leads to a
higher convergence.

Although the pressure gradient is already well replicated by an uncorrected scheme, skew-
correction further improves the outcome for all schemes but in particular for the TRI grid
type. The comparatively poor convergence above Nc > 104 is due to the boundary resolution
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layer in the tangential direction and associated relations discussed above in figure 3.4.

It has been noted that for higher numbers of grid cells Nc > 104, where the mean error and
pressure gradient deviations increasingly become independent from the mesh topology, the
investigated meshes also start to meet the proposed criteria of a sufficiently resolved pipe
circumference according to equation 3.6. This convergent behavior would correspond to
the assumption that MHD flow at a low wall conductance highly depends on the accurate
replication of boundary currents. However, to which fraction the reconstruction of currents
in either boundary layer or core domain affects the overall numerical accuracy is out of the
scope of this grid study, but this should certainly be addressed in continuing works.

In summary, results demonstrate that for insulating walls, the determination of electric
potential gradient by means of Green-Gauss considerably depends on the mesh topology and
is highly vulnerable to grid irregularities (Moukalled et al., 2016, pp. 124-126). Applying
the correction of face-skewness to the electric potential gradient results in a significant
improvement where deviations occur within an acceptable tolerance. While the face-skewness
correction for the determination of the potential gradient in the cell center (∇φ)C is based
on geometric arguments, it is possible to obtain also a good approximation in terms of a
statistical approach. This is outlined in the next sub-section.

Least-Squares gradient

The Green-Gauss gradient presented above depends on mesh topology, i.e., face
skewness has a great impact and must be corrected. The Least-Squares gradient, on the
other hand, avoids this dependence by exclusively considering the spatial arrangement of
adjacent cell centers, resulting in a statistical minimization problem.

Between cell C and all direct face neighbors Fk, where k ∈ nb (C), the electric potential
gradient (∇φ)C at each cell center should satisfy (Moukalled et al., 2016, equation 9.22)

φFk
= φC + (∇φ)C · rCFk

. (3.12)

However, there generally exist more face neighbors k ∈ nb (C) and thus more than three
conditions have to be satisfied for the determination of three unknown components of
the electric potential gradient (∇φ)C = (∂xφ, ∂yφ, ∂zφ)C , which prevents finding an exact
solution. A Least-Squares approach using equation 3.12 then yields the optimization problem
(Moukalled et al., 2016, equation 9.23)

GC =
nb(C)∑

k

(
wk (φFk

− (φC + ∇φC · rCFk
))2
)

, (3.13)
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where wk indicates an additional weighting factor

wk = 1
|rCFk

|
. (3.14)

The coefficients wk account for highly stretched cells, like those in thin boundary layers,
involving extreme aspect ratios. The three components of the potential gradient vector
in the cell center C are determined such that the mean squared deviation GC with all
neighbors is minimized (Moukalled et al., 2016, equation 9.25). This requires

∂GC

∂ (∂xφ) = ∂GC

∂ (∂yφ) = ∂GC

∂ (∂zφ) = 0 . (3.15)

Moukalled et al. (2016, pp. 285-288) furthermore provide a detailed description on solving
the resulting linear system.

In contrast to the original Green-Gauss (GG) gradient scheme, the Least-Squares (LS)
approach exclusively depends on geometric relations between adjacent cell centers inde-
pendent of the arrangement of faces and face centroids. Syrakos et al. (2017) compare
both schemes for hydrodynamic applications and find that LS outperforms GG on highly
distorted grids where in special cases GG even may exhibit zero-order errors. The present
study further compares the impact of both schemes on the electric potential gradient of
MHD circular pipe flow involving different grid types.

The presented data in figure 3.7 shows results of the grid convergence study when
the electric potential gradient is evaluated with the LS scheme. Dashed lines refer to the
former skew-corrected Green-Gauss approach from figure 3.6, while solid lines correspond
to the Least-Squares scheme.

Concerning the mean error (∆v), the Least-Squares scheme provides almost no further
improvement towards GGcorr on POLY and SHM grid types, shown blue and green. Still, it
shows minor improvements for TRI and BLOCK grids, which generally involve higher face
skewness. Similar to the skew-corrected Green-Gauss gradient, simulations with high cell
numbers, i.e., Nc > 104, converge independently from the grid type. This suggests that
LS likewise resolves convergence differences of grid element types and, therefore the results
only depend on the spatial resolution.

Maximum errors of Least-Squares gradient computations seem to have little impact on POLY,
SHM and TRI grid types. For the BLOCK type grid on the other hand, a significant reduction
of the maximum error is observed compared to the former applied skew-corrected Green-
Gauss gradient scheme. With Least-Squares approximated potential gradients, simulations
on a BLOCK type mesh exhibit best results. This promotes the BLOCK grid type from
initially the worst choice of grid configuration to one of the best if combined with the
Least-Squares scheme for the electric potential gradient.

Considering the pressure gradient, impacts of LS are vanishingly small in comparison to the
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Figure 3.7: Error convergence for the Least Square gradient scheme LS (solid lines) de-
pending on the grid type and cross-section cell number. Dashed lines refer
to the skew-corrected Green-Gauss gradient scheme from figure 3.6. In the
bottom plot, showing the pressure gradient, the horizontal gray line indicates
the quasi-exact computed solution and black dashed lines represent asymptotic
solutions. Pipe flow with c = 0 and Ha = 1000.

corrected Green-Gauss scheme since the latter one already provides very good results.

In order to illustrate the impact of the investigated gradient schemes for the electric
potential on velocity profiles, figure 3.8 presents plots of axial velocity along the diagonal d,
depending on the applied discretization schemes and grid type at specific cell numbers Nc.
Vertical dashed lines indicate the border between core and boundary grid, and the black
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dashed plot refers to the asymptotic solution according to equation 3.1.
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Figure 3.8: Diagonal plot of axial velocity vx depending on grid structure and discretization
of the electric potential gradient. Vertical dashed lines indicate where boundary
and core grid merge. The black dashed curve shows the asymptotic solution
according to equation 3.1. Pipe flow with c = 0 and Ha = 1000.

Considering the BLOCK grid type, strong perturbations occurring at critical points can
effectively be removed by applying either a skew-correction or Least-Squares scheme, as
presented in blue and green, respectively. While the former shows a remainder in the form of
minor non-physical peaks, the latter entirely eradicates perturbations of mesh irregularities
at critical positions.

The SHM grid type already shows the best convergence behavior for the originally uncorrected
gradient scheme GGuncorr since the core grid is for the most part well aligned with the
orientation of magnetic field lines and current flow. Hence, only minor errors occur at the
transition between core and boundary grid. Those errors are reduced to a minimum by using
the skew-corrected Green-Gauss or Least-Squares gradient schemes, leading to reasonable
results.

Both fully unstructured grid types, POLY and TRI, show a strong and persistent ripple
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for the originally employed uncorrected Green-Gauss gradient scheme. Either a corrected
Green-Gauss or a Least-Squares gradient scheme may significantly reduce such errors and
lead to a comparatively smooth profile that agrees well with asymptotic theory.

In summary, treating mesh-skewness for the discretization of the electric potential
gradient becomes indispensable for simulations of MHD flows in curved geometries, especially
when unstructured or discontinuous computational grids are used. For low wall conductance,
the evaluation of electric current may significantly amplify mesh-induced errors, which might
become fatal to the computational outcome. The present study finds that applying either a
corrected Green-Gauss or a Least-Squares scheme in order to determine the electric potential
gradient minimizes skewness-related perturbations so that errors eventually decrease with an
increasing number of computational cells for all types of meshes investigated in the present
work. Results obtained so far address MHD flows in electrically insulating pipes. The next
sections will extend the investigations to applications with conducting walls.

3.3 Perfectly conducting wall

The former section demonstrated the high vulnerability of the MHD code to mesh
skewness in the case of an insulating pipe wall with associated low current density in the
core. Electrically conducting walls, on the other hand, increase current flow and thus
likewise reduce the strong imbalance in order of magnitudes between current density, electric
potential gradient and induced electric field in Ohm’s law. The highest differences compared
to previous results are expected when walls are perfectly conducting, as investigated in the
following.

If walls are perfectly conducting, potential gradients vanish along the wall, and the potential
becomes uniform, i.e., φ = 0 at the fluid-wall interface.

The grid study is repeated for the case of a perfectly conducting wall considering both a Least-
Squares and an uncorrected Green-Gauss gradient scheme for the electric potential. Results
are compared with an quasi-exact solution involving a highly resolved computational grid.
Figure 3.9 presents the outcome where solid lines represent the application of Least-Squares
and dashed lines the uncorrected Green-Gauss scheme.

For perfectly conducting walls, the associated higher current flow in the fluid leads to
significantly less amplification of numerical errors since the current and induced electric field
in Ohm’s law have the same order of magnitude, and therefore they are better balanced.
Imposed by the perfectly conducting condition of the wall, the potential gradient becomes
vanishingly small. Since the influence of potential gradient remains marginal, it is already
approximated good enough by the originally applied uncorrected Green-Gauss gradient
scheme for all considered grid configurations.
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Figure 3.9: Error convergence for the Least-Square gradient scheme LS (solid lines) de-
pending on the grid type and cell layer number. Dashed lines refer to the
uncorrected Green-Gauss gradient scheme GGuncorr. Pipe flow with c → ∞
and Ha = 1000.

The improvement by using advanced gradient schemes such as Least-Squares LS does
not lead to significantly better results. However, it is surprising that BLOCK and TRI
grid types generally stand out against SHM and POLY configurations by showing lower
deviations to the quasi-exact solution, already for a smaller number of cells. The maximum
error (∆vcore)max, on the other hand, behaves similarly for different grid types and gradient
schemes. Minor deviations of the uncorrected scheme for the BLOCK grid type, shown
as red dashed line, suggest the emergence of small peaks from critical locations, which
however appear in an acceptable range, i.e., (∆vcore)max < 10−3 for Nc > 104. Deviations
of the pressure gradient, which are not shown here, are negligibly small and correspond to
OpenFOAM’s precision of output decimals already at a moderate numbers of cells.

3.4 Finite wall conductance

So far, the conducted investigations addressed either fully insulating or perfectly
conducting walls. In fusion-relevant problems, where walls have a finite thickness and
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electric conductivity, wall currents must be taken into account as well. This requires solving
the Poisson equation for the electric potential across fluid and solid domains, which both are
resolved by the computational grid. Coupling between fluid and wall is achieved by assuming
continuity of wall-normal current density and continuity of electric potential (no contact
resistance). The outer surface of the wall is insulating, i.e., ∂nφw = 0. From a numerical
point of view, the problem is analogous to the one of conjugate heat transfer, which is
described by Magnusson (2010). A joint matrix for the solution of potential equations in
the fluid and in the wall with implicit coupling conditions is formulated, and equations are
solved collectively according to the approach by Jareteg (2013). The complete configuration
of boundary conditions is listed in table 3.2.

inlet outlet fluid-wall interface outer wall surface
φ cyclic cyclic φ = φw, jn = jn,w ∂nφw = 0
p cyclic cyclic ∂np = 0
v cyclic cyclic |v| = 0

Table 3.2: Boundary conditions for simulation of fully developed MHD flows in pipes with
finite electrically conducting walls.

In order to demonstrate the code’s capability to predict MHD flows for fusion-relevant
conditions, particularly high values of Hartmann numbers are chosen according to table
3.3. Furthermore, a low wall conductance c is set in a manner so that c Ha = 10 involving
a non-dimensional wall thickness of tw = 0.1. This poses an additional challenge to the
numerical approach since current flow closing over wall and Hartmann layers have similar
orders of magnitude, and therefore both must be computed accurately. The strong magnetic
fields and associated thin Hartmann layers require a highly refined boundary grid in radial
and tangential direction, which is best met by an SHM based grid, as shown by figure
C.1 in the appendix. The underlying grid for curved geometries might magnify numerical
errors upon computation of the electric potential gradients. Hence, the Least-Squares
scheme is applied as proposed above to suppress the amplification of numerical errors
during the solution of the potential equation on unstructured grids. Moreover, an additional
skew-correction is applied to interpolation schemes. The requirement of a high tangential
boundary resolution results in a rather large number of cells as indicated by the number of
cross-sectional grid points Nc. For fully developed flow, the grid is extruded by three layers
of cells in the axial direction with imposed cyclic conditions (see in table 3.2). This results
in a high computational effort where the largest number of cells requires 192 processor cores
and an operating time of several days for the computations to fully converge.

According to table 3.3, the calculated pressure gradient ∂xp is compared to the asymptotic
solution ∂xp2D by Chang & Lundgren (1961). Since the asymptotic model is not exact, it
neglects viscous boundary layers and applies only to thin walls. A deviation of about 5% in
each case seems plausible.

As demonstrated for Ha = 5000 by the top plot in figure 3.10, the velocity remains
constant along y. Still, vx shows a significant curvature orthogonal to magnetic field lines
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Ha c Nc
∂xp

∂xp2D

5000 2 · 10−3 441 196 0.96
10000 1 · 10−3 569 436 0.95
50000 2 · 10−4 1 193 196 0.96

Table 3.3: Case specifications for high Hartmann numbers where c Ha = 10. Nc refers
to the cell number within one cross-sectional layer. The pressure gradient is
compared to the asymptotic solution ∂xp2D according to Chang & Lundgren
(1961).

along the z-axis, captured by red and blue sample lines. This indicates an essential impact
of boundary layer currents due to the relatively low wall conductance c Ha = 10.
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Figure 3.10: Velocity profiles (top) and electric potential distribution (bottom) at specific
pipe axes according to the sketch. Vertical dashed lines indicate the fluid-wall
interface. Ha = 5000, c Ha = 10.

The bottom plot shows the electric potential distribution along the same sample lines, as
illustrated by color. The electric potential difference is highest between the sides of the pipe
across the horizontal line, shown in blue. It is lower for the pipe’s diagonal and eventually
becomes zero across its vertical line, shown red and green, respectively. Moreover, the wall
potential φ (r > 1) approximately persists in the radial direction across the solid domain
since the wall is relatively thin. Currents induced in the core close their paths either over
the Hartmann layer or the solid domain driven by the varying wall potential. Due to the
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imposed condition c = 10 δHa, current densities in the boundary layer and wall are both
important.

Figure 3.11 presents values of computed axial velocity over the wall distance n at
different angles α. The logarithmic scaling of the abscissa enables a closer examination
of the extremely thin boundary layers, where the velocity rises from zero at the fluid-wall
interface n = 0 to approach the core velocity vc.
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Figure 3.11: Values of axial velocity vx as a function of wall distance n displayed in logarith-
mic scale and for specific angular cylinder coordinates α. Black dashed lines
indicate the asymptotic solutions by Chang & Lundgren (1961) extended by the
viscous boundary layer correction of equation 3.1 by Shercliff (1962). Vertical
colored lines show the theoretical Hartmann layer thickness δHa = Ha−1. Pipe
flow with c Ha = 10.

As introduced with formula 2.12 the thickness of the Hartmann layer scales according to
δHa ∼ 1/ (Ha cos α) and the velocity in the viscous shear layer is well described by Shercliff
(1962) in equation 3.1.The layer becomes thinner with increasing Ha, shown by color.
The thickness of the Hartmann layer increases with increasing α as δHa ∼ 1/ (Ha cos α),
presented in figure 3.11. Vertical dashed lines indicate the Hartmann layer thickness at
α = 0, where the viscous boundary layer thickness reaches a minimum. For the case of
Ha = 50000 and an assumed pipe radius of 5 cm the associated Hartmann layer thickness
(red dashed line) at vertical positions α = 0 corresponds to a value smaller than one micron.
The graph thus reflects the great challenge of calculating MHD flows at large Ha, where
multiple grid points are required to resolve variations of velocity and currents across the
extremely thin shear layer, while variations inside the core flow domain occur at much
larger length scales. Roberts layers, as shown by square symbols for α = 90◦, are thicker
than Hartmann layers, and scale along n with δRo ∼ Ha−2/3 (Roberts, 1967). Outside
the boundary layers, vx rapidly approaches the core velocity vc (z), shown above in figure
3.10.
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Black dashed lines represent the solutions of axial velocity according to the asymptotic theory
by Chang & Lundgren (1961) in combination with the viscous boundary layer correction
proposed by Shercliff (1962). They perfectly agree with numerical results across both
Hartmann layer and core region, as shown by circle and cross symbols. Unfortunately,
theoretical values of velocities in Roberts’ layers for α = 90◦ are not available for validation
in a simple form comparable with equation 3.1.

In summary, computations demonstrate that the applied discretization schemes lead
to an outstanding agreement with asymptotic theory in the core as well as across boundary
layers. Under extraordinarily challenging high magnetic field strengths and a demandingly
low wall conductance, the numerical approach demonstrates a robust outcome for MHD
flow in circular pipes.

3.5 Divergence-based Lorentz force discretization

The code proposed in Mistrangelo & Bühler (2011) reconstructs the Lorentz force
on the cell center in form of a conservative interpolation, as shown in equations 2.25 and
2.26. For possible further improvement, Ni et al. (2007) introduce a reconstruction method
based on a divergence formulation of the Lorentz force

j × B = −∇ · (j (B × r)) + ∇ · (jB) × r . (3.16)

Both terms on the right-hand side (RHS) are preceded by the divergence operator. During
the FVM discretization procedure, they are transformed into a flux balance at the cell
surfaces according to the divergence theorem (Ni et al., 2007, equation 35)

(j × B)C = − 1
VC

∑
f

(jn)f (Bf × rf ) Sf − rC × 1
VC

∑
f

(jn)f BfSf . (3.17)

The discretized expression requires the face-normal component of current density evaluated
at the cell surface centroid (jn)f . This avoids the explicit reconstruction of current density
at the cell center in equation 2.25 for the evaluation of the Lorentz force and could improve
numerical consistency.

Equation 3.17 has been implemented in the computational MHD code. Throughout this
entire work, however, no significant impact has been noted between the new divergence-
based formulation of the Lorentz force and the originally implemented conservative current
interpolation scheme according to equations 2.25 and 2.26.

The conclusion can be drawn that under the investigated cases, major errors arise from
the discretization of the electric potential gradient upon solving the Poisson equation and
reconstructing the face normal current density in equations 2.23 and 2.24, respectively.
Numerical errors caused by skew cell faces upon the discretization of the electric potential
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gradient are therefore identified as the primary source of possible shortcomings in comparison
to the ones caused by the interpolation of electric current density.

3.6 Conclusions and recommendations

Comparing numerical results with either asymptotic or quasi-exact numerical solutions
enables the verification of different mesh topologies and gradient discretization schemes.
According to the obtained results, following measures apply to the discretization of more
arbitrary geometries.

Arbitrary geometries are best resolved by grid configurations, which fundamentally reflect the
essence of MHD flow, namely that quantities such as magnetic field, velocity, and current
density often have mutually orthogonal orientation. The SHM approach, which results in a
cross-sectional grid, as shown in figure C.1 in the appendix, proves to be well suited for
simulations of MHD flow in strong magnetic fields. Its uniformly distributed hexahedral
cells within the center domain are capable of resolving the core flow by aligning them with
the orientation of MHD phenomena, i.e., the imposed magnetic field, electric currents, and
mean velocity. Simulations tolerate much higher axial length scales of computational cells
than in transverse direction, which enables high cell aspect ratios in comparison to grids
designed for hydrodynamic computations.

MHD boundary layers are best resolved by prism layers. Considering strong magnetic fields,
i.e., Ha > 1000, an additional high tangential refinement of curved boundary layers becomes
indispensable in order to resolve the current density that may vary along Hartmann layers.
A local tangential and radial refinement is particularly crucial where magnetic field lines
and wall normal vector align, and the Hartmann layer is thinnest. Typical signs of poorly
resolved MHD boundary layers at curved geometries are artificial shear layers that detach
from virtual corners at the wall and propagate along magnetic field lines or the formation of
high axial velocity jets inside the boundary layers.

For numerical prediction of fully developed MHD flow in pipes with low wall conductance,
the type of grid used in simulations as well as the discretization scheme for electric potential
gradient have a significant impact on convergence and quality of the numerical results. The
reason is that the current density in the core jc is limited by the conductivity of the wall and
viscous layers, i.e., jc ∼ (c + δHa). Since the (small) core currents result from a balance of
two order-one quantities, namely the electric potential gradient and the induced electric field,
it is important that both latter quantities are determined with high precision because even
small numerical errors in these quantities become relevant when compared to the magnitude
of current density. Relative errors in jc are therefore larger by a factor of (c + δHa)−1

compared with relative errors for the potential and induced electric field. For c � 1 and
δHa � 1, an amplification of these errors in iterative loops may yield non-physical results or
divergence of the numerical procedure. Hence, if walls are poorly conducting, computation
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of the electric potential gradient requires appropriate and highly accurate schemes, such as
Least-Squares or skew-corrected Green-Gauss. Under those adaptations, unstructured grids
lead to reasonable results for strong magnetic fields. In this context, Oxtoby et al. (2019)
propose an adapted gradient scheme that determines cell-face values based on a truncated
Taylor series yielding favorable results on perpetuated grids, which might be relevant to
future works.

In summary, this chapter presents essential aspects of the discretization procedure
for simulations of fully developed MHD flow in circular pipes. The investigated schemes
demonstrate their capability at arbitrary wall conductance and fusion-relevant magnetic
fields. As a result, the numerical approach is verified and thus regarded as capable to
address 3D effects in developing MHD flows. As presented in the following two chapters,
the Green-Gauss approach is selected to yield gradients, and interpolation schemes are
skew-corrected on a generally refined SHM grid type according to figure C.1 in the appendix,
if not stated otherwise.
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4 MHD flows in a nonuniform
magnetic field

The numerical code described above has been applied to simulate 3D MHD flows
entering a strong magnetic field. Liquid metal flow under a streamwise varying magnetic field
poses a fundamental problem in fusion engineering and magnetohydrodynamics. Depending
on the location in the fusion reactor environment, the liquid breeder may encounter spatially
varying fields foreseen for the magnetic plasma confinement, which cause complex 3D
MHD phenomena. In contrast to two-dimensional fully developed flow, streamwise electric
currents arise, leading to spanwise directed Lorentz forces and additional pressure drops.
First studies to cover such MHD flow in nonuniform magnetic fields refer to a numerical
analysis by Kit et al. (1970), and an experimental series run at the ALEX facility at Argonne
National Laboratory by Picologlou et al. (1986). The latter addresses a straight pipe flow
entering or leaving a strong magnetic field. Findings based on the experimental data guide
numerical approaches as in Hua & Walker (1989) or Reed et al. (1987) and promote further
works such as Barleon et al. (1991) or turbulence damping in nonuniform magnetic fields
according to Albets-Chico et al. (2013) or Mao et al. (2019). Eventually, results of the ALEX
experiments have been proposed as relevant benchmark data to validate computational
MHD codes for fusion applications, as summarized by Smolentsev et al. (2015). In this
context, Gajbhiye et al. (2018) point out that validation requires additional data, including
a more detailed description of the nonuniform magnetic field.

Motivated by Gajbhiye et al. (2018), and furthermore to supplement validation data,
Bühler et al. (2020b) present experimental results obtained using the MEKKA facility at
KIT. In the latter reference, the liquid metal flow enters the strong magnetic field of the
laboratory magnet, as shown schematically in figure 4.1.

One experimental configuration in the magnet involves a fusion-relevant magnetic field
strength at Ha = 2000 and comparatively high velocity with Re = 20000, i.e., the incoming
flow from outside the magnet, where B = 0, is turbulent. The wall is relatively thick,
tw = Ro −R = 0.177 with a wall conductance parameter c = 0.0718. Geometric parameters
Ro and R = 1 are dimensionless.

The flow inside the magnet becomes laminar and is well described by the asymptotic theory
presented in Miyazaki et al. (1983). Within the nonuniform region, measurements of
pressure and electric wall potential indicate impacts of strong 3D MHD phenomena, which
are the subject of the numerical analysis presented in the following subsections. The present
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Figure 4.1: Geometry and coordinates of the MEKKA experiment. The incoming stream
transforms from turbulent hydrodynamic to laminar MHD flow while entering
the strong transverse magnetic field, as indicated by the blue arrow shapes.

numerical study, on the one hand, complements by complete 3D data in the fluid region
the experimental observations, where pressure and potential have been obtained only on
the external surface of the pipe. On the other hand, available experimental results can
be compared to numerical simulations and serve as a validation database for the applied
numerical code.

4.1 Consistent distribution of the magnetic field

While for the numerical simulations, the distribution of the magnetic field must be
known at any point in the flow domain, measurements of B are available only along the
pipe axis and along a second line that is shifted out of the symmetry plane by a distance
ys. As figure 4.1 illustrates, the magnetic field traversing the test section is basically a
two-dimensional vector field described by

B (x, y) = (Bx (x, y) , By (x, y) , 0) , (4.1)

being constant along z, involving By as the major component, and Bz = 0. In order to
implement an accurate magnetic field representation into the numerical model, one requires
an analytical description, which satisfies the properties of a conservative field. For this
purpose, the conditions for a solenoidal and irrotational vector field

∇ · B = 0 , (4.2)
∇ × B = 0 , (4.3)

enable a spatially consistent reconstruction of the magnetic field by means of a one-
dimensional analytical formulation of By (x, 0) on the centerline. In other words, the
underlying approach consistently reconstructs the magnetic field from a single functional
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fit By,f (x, 0) of its measured major component along the magnet’s centerline, see, e.g.,
Albets-Chico et al. (2011).

The black cross symbols in figure 4.2 indicate measurements (subscript m) of By

along the magnet’s centerline, where the coordinate x = 0 refers to the position where the
magnetic field reaches half of its maximum value, By = 0.5. As an outstanding specialty
of the MEKKA magnet and in contrast to other experiments, e.g., the well-known ALEX
experiment (Picologlou et al., 1986), a large section between x1 and x2 shows linear growth
of the magnetic field. This is why a pure tanh-based fit, shown by the orange dashed line,
yields only a poor approximation of magnetic field in MEKKA experiments, although such a
type of fit was good enough to describe the field in the ALEX experiment (Albets-Chico
et al., 2011). A better approximation is achieved by the piecewise-defined fitting function
(subscript f) in equation 4.4, which defines the flux density on three sections along the
central axis

By,f (x) =


b1 (tanh (a1 (x − x1)) + 1) if x < x1

mx + 0.5 if x1 ≤ x ≤ x2

(1 − b2) tanh (a2 (x − x2)) + b2 if x > x2

. (4.4)

The coefficients ai, bi for i ∈ {1, 2}, and m define growth, function values at xi, and slope
of the linear section, respectively. The coefficients ai, bi, m as well as positions xi are
determined from a Least-Squares fitting with the experimental data under the constraints
that axial derivatives of By,f are continuous up to the second order. The latter point is
important for a consistent reconstruction of the field. As demonstrated by the blue curve in
figure 4.2, the fit results in excellent agreement with the measured field By,m. Values of
parameters ai, bi, xi, and m are shown in table C.1 in the appendix.

Equations 4.5 and 4.6 then reconstruct the magnetic field B in the entire computational
domain by means of the fit from the magnet’s centerline By,f

Bx (x, y) = ∂By,f

∂x
y (4.5)

By (x, y) = By,f − ∂2By,f

∂x2
y2

2 . (4.6)

Equations 4.5 and 4.6 are the first three terms in an infinitely long Taylor series that would
satisfy the conditions of equations 4.2 and 4.3 exactly. According to Albets-Chico et al.
(2011), truncating derivatives higher than the second order from the series is sufficient for
an adequately consistent reconstruction, where higher orders would result only in marginal
improvement. From ∂xBy,f , portrayed red in figure 4.2, and equation 4.5, we conclude that
the axial component of the magnetic flux density Bx exists in the range of −5 < x < 5, it
is constant for x1 < x < x2, and it is proportional to the distance y from the centerline.
According to equation 4.6, the major component By, however, is supposed to remain
constant along y within the region of linear growth, where ∂2

xBy,f = 0. In order to verify the
magnetic field reconstruction in the next paragraph, results are compared with measurements
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Figure 4.2: Piecewise fitting function By,f (blue) at the pipe’s centerline compared to
the measured major magnetic field component By,m (symbols), where x1 and
x2 limit the section of linear variation. The functional fit’s derivatives are
continuous up to their second order. The pure tanh based fit yields only a poor
approximation. Adopted from Klüber et al. (2020b).

along a line at the distance ys = 1.255 from the pipe axis.

Data in figure 4.3 confirms the agreement between the analytical representation and
measurement of both magnetic field components Bx and By at the constant distance
ys = 1.255 from the centerline.
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Figure 4.3: Comparison of measured (cross symbols) and reconstructed (solid lines) magnetic
field components at the vertical distance ys = 1.255.

As equations 4.5 and 4.6 suggest, and measurements confirm, Bx appears proportional to
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the gradient of By,f , whereas By results from the superposition of By,f with its second order
derivative. Variations of By along y occur only where By (x, 0) along the axis has sufficient
curvature. The analytical representation of By (x, ys) agrees well with measured data. A
comparison of calculated and measured axial field component Bx (x, ys) is also good, but
measured values are systematically slightly higher, which has its origin in a non-perfect
alignment of the sensor used in the experiment (for perfect alignment of the sensor, Bx

would vanish in the uniform magnetic field).

It can be concluded that the consistent analytical representation of the magnetic field
agrees well with measured data. The obtained expressions have been therefore implemented
in the computational model for 3D simulations of MHD pipe flow entering the MEKKA
magnet.

4.2 Pipe geometry and boundary conditions

The magnetic field profile in figure 4.2 shows that it evolves approximately within
−5 < x < 5. In order to avoid any interference between the entrance and exit conditions
and 3D MHD phenomena, the computational domain extends along the axial range within
−15 < x < 15. Due to the relatively thick pipe walls tw = 0.177, the thin-wall approximation
as a model to emulate electric fluid-wall interaction, as, e.g., applied in Albets-Chico et al.
(2013), is rather inappropriate. Instead, the computational mesh used in the present
simulations includes the wall geometry as well. In this manner, the MHD solver directly
determines the electric wall currents via the solution of the potential equation in both fluid
and wall domain. In summary, table 4.1 contains the essential mesh parameters.

cell number prism layers
fluid 4.6 · 106 streamwise 175
solid 1.9 · 106 boundary grid 30
total 6.5 · 106 wall 20

Table 4.1: Mesh details of the pipe model.

The cross-sectional grid resolution is of SHM type, as shown in figure C.1 in the appendix,
which extrudes in the form of prism layers downstream as well as into the wall domain.
Higher resolutions are used streamwise within the region of interest −5 < x < 5 and
towards the fluid-wall interface, where at least four grid-points resolve the extremely thin
Hartmann layer. Since the physical conditions of incoming hydrodynamic turbulence and
fully developed MHD flow at the exit differ fundamentally, the implementation of streamwise
periodic conditions is unfeasible. Instead, boundary conditions are defined as summarized in
table 4.2.

The electric potential φ constitutes the only variable to be calculated within both the liquid
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inlet outlet fluid-wall int. outer wall surface
φ ∂nφ = 0 ∂nφ = 0 φ = φw, jn = jn,w ∂nφ = 0
p ∂np = 0 p = 0 ∂np = 0 -
v turbulent ∂nv = 0 v = 0 -

Table 4.2: Boundary conditions of the pipe model.

and solid domain. Details about the coupling between fluid and wall have been described
above in section 3.4. Along the remaining boundaries, including the outer wall surface, the
electric potential gradient is zero, which means current may not escape across the outer
pipe surface.

The fluid velocity at the wall satisfies the no-slip condition, and the reference pressure
of the fully developed flow at the exit is set to zero. Ferziger & Peric (2002, sections
7.6 and 8.10.5) remark that the problem of pressure-velocity coupling imposes further
numerical restriction on the remaining boundaries. Accordingly, if velocity is prescribed
along boundaries, the numerically imposed pressure gradient must be zero ∂np = 0 (inlet
and fluid-wall interface). On the other hand, if the pressure gradient differs from zero,
values for velocity cannot be prescribed. Similar thoughts on this exclusively numerically
imposed restriction on boundary conditions can be found in Mück (1998, section 3.3).

The determination of the turbulent hydrodynamic entrance flow and its integration into the
inlet boundary is more complex, so it is described separately in the next section.

4.3 Turbulent entrance flow

Although it is known that turbulence is rapidly damped in strong magnetic fields
when Re/Ha < 250 or entirely suppressed for Re/Ha < 140 (Albets-Chico et al., 2013;
Mao et al., 2019), an appropriate simulation of the present flow at Re = 20000 requires an
adequate description of hydrodynamic turbulence before the fluid enters the magnetic field.
While some references suggest internal back mapping for implicitly generating turbulent
entrance conditions (see, e.g., Mao et al. (2019)), the present work applies a segregated
procedure. Prior to the simulations of flow entering a magnetic field, hydrodynamic
simulations are performed on a sufficiently long (8 R) section of the pipe to which cyclic
conditions in axial direction are applied.

The approach described in Komen et al. (2014) is strictly followed to conduct a
quasi-direct numerical simulation (DNS). Further computational details are listed in table
C.2 in the appendix. The resulting turbulent velocity field at the pipe’s middle cross-
sectional plane is then stored at selected discrete time steps. This sequence of velocity
data is then transferred for MHD simulations to the pipe inlet. The special inlet condition
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timeVaryingMappedFixedValue, provided by the OpenFOAM library, enables transient smooth
interpolation of the stored data.

Due to the finite resolution of the computational mesh, a quasi-DNS considers only a
specific range of the turbulence spectrum, as, e.g., outlined in Tennekes & Lumley (1972,
pp. 262-267). This restriction may significantly impair the quality of results. It is, therefore,
common practice to assess such impact by comparison of numerical velocity data with
the well-understood law of the wall, which describes wall-bounded shear flow (Tennekes &
Lumley, 1972, pp. 156-160). A dimensionless representation, marked by the superscript +,
enables the definition of the streamwise velocity u+ depending exclusively on the wall-normal
coordinate y+. Accordingly, the dimensioned quantities (denoted by ∗) of time-averaged
streamwise velocity ū∗ and wall distance y∗

w define

u+ = 1
uτ

· ū∗ (4.7)

y+ = uτ

ν
· y∗

w , (4.8)

where the shear velocity

uτ =
√

τw

ρ
=
√√√√ν

(
∂ū∗

∂y∗
w

)
y∗

w=0
, (4.9)

is determined through the wall shear stress τw. Eventually, the law of the wall then describes
the near-wall velocity, which depends exclusively on the wall coordinate (Spurk & Aksel,
1989, pp. 235-237)

u+
(
y+
)

=

y+ if y+ < 5
2.5 ln (y+) + 5 if y+ > 30

. (4.10)

The description addresses two specific sublayers, represented by the black curves in figure
4.4. Close to the wall, for y+ < 5 a thin viscous sublayer exists, where the velocity rises as
the wall coordinate u+ = y+. A buffer layer smoothly matches the viscous sublayer with
the inertial layer, where for y+ > 30, the velocity profile exhibits a characteristic logarithmic
growth.

Time-averaged results for velocity distribution as a function of the wall distance are
displayed in a dimensionless form in figure 4.4. A study involving a highly refined core
grid with a total number of 6 · 106 cells (red line) shows quite good agreement between
numerical simulations and the law of the wall in both the viscous and the inertial sub-layer.
This demonstrates that the code is capable of predicting turbulent pipe flow accurately.
Results shown in blue are obtained using a grid that also has a good resolution along and
normal to the wall but a coarser SHM grid in the fluid core. This grid has been designed to
resolve the thin Hartmann and Roberts layers in MHD simulations while the core, where the
MHD flow is smooth, is represented by larger cells in order to keep the total amount of grid
points for developing MHD flow at a reasonable number. Simulations using the coarser grid
are still able to capture general features of turbulent flow, although some deviations from
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Figure 4.4: Comparison of computed boundary velocity profiles with the law of the wall.
Results shown in red and blue are obtained by a highly resolved simulation
with 6 · 106 cells and one with a relatively coarse grid with 1 · 106 in the core,
respectively.

the logarithmic velocity profile occur in the inertial layer. Since detailed studies of turbulent
flows are out of the scope of the present work, the coarser core grid seems good enough to
be used for generating hydrodynamic turbulent entrance conditions for subsequent MHD
simulations, where turbulence is going to be rapidly suppressed when the flow enters the
magnetic field.

4.4 3D MHD phenomena in a nonuniform magnetic
field

This section presents the results of numerical simulations for MHD pipe flow in
nonuniform magnetic fields. Observed complex physical phenomena are analyzed and
discussed. As outlined above, the magnetic field transverse to the pipe varies along the
axis with a relatively long section of almost linear growth. Here the induced electric field
leads to a constant streamwise electric potential gradient, additional axial currents, and
transverse electromagnetic forces. The closure of these 3D current loops in the region where
the magnetic field approaches its final high value affects velocity and pressure distributions
via the Lorentz force. While for strong magnetic fields, pressure and Lorentz forces form a
dominant balance, their difference eventually accelerates or brakes the flow in regions of
strong 3D effects. As an indicator for the strength of the magnetohydrodynamic momentum
transfer, the so-called magnetodynamic force is introduced. The latter constitutes a useful
quantity for the explanation of major observations, and it could be deployed for future
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investigations of more general 3D MHD applications.

Velocity

In order to give a first impression about flow entering a strong magnetic field, figure
4.5 illustrates distributions of velocity and electric current streamlines. The profile at
x = −12 demonstrates that for zero magnetic field strength, the incoming velocity varies
randomly within the cross-section exhibiting hydrodynamic turbulent behavior.

x1 = −1.9
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y
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z

v

B
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x = −12; By = 0

x = −1.5; By = 0.3
x = 12; By = 1

Figure 4.5: Visualization of instantaneous velocity and currents upon entering the magnetic
field. Currents fully circulating within the fluid and currents partly closing over
the wall domain are shown in red and green, respectively. Transverse black
straight lines outline the region of linear magnetic field growth between x1 and
x2. Velocity distribution adopted from Klüber et al. (2020b).

At an early stage of the magnetic field development close to x1, turbulence vanishes rapidly,
and the core velocity becomes uniform along magnetic field lines and drops to zero in thin
viscous boundary layers along the fluid-wall interface. The fluid rapidly evades to the sides
resulting in a concave or M-shaped velocity profile as exemplarily shown for x = −1.5. At
this position, turbulence is already strongly damped, but some weak residual turbulence
can still be observed. This behavior is characteristic for 3D MHD phenomena known from
observations of MHD flow under discontinuous wall conductance or in expansions, e.g., in
chapter 5 or Müller & Bühler (2001, pp. 93-96). Along the evolving magnetic field x > x1,
this behavior slowly fades, and core velocity converges towards 2D developed flow in the
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form of a uniform profile involving small overspeeds at the sides.

Green streamlines indicate electric currents partly closing over the wall domain. Far
downstream currents close exclusively within the pipe’s cross-section, as expected for fully
developed 2D MHD flow. In the upstream direction, however, increasingly 3D current flow
occurs involving axial components. Concerning x < x1, red streamlines furthermore show
currents that exclusively close inside the fluid in the form of horizontal recirculation loops.
Those are a consequence of the developing magnetic field and associated axial differences
of the electric potential.

Electric potential and currents

Figure 4.6 presents the electric potential distribution across fluid and wall domain in
the lower half of the pipe according to the color scale. Close to the inlet, both magnetic
field and electric potential are zero. With the downstream developing magnetic field, an
internal potential gradient arises induced by fluid motion according to v × B, which orients
along z and reaches the highest magnitudes at the side positions z = ±1. When entering
the region of the uniform magnetic field for x > 5, the electric potential converges towards
the theoretical maximum for laminar MHD pipe flow in a constant uniform magnetic field
(Miyazaki et al., 1983)

φ2D = 1
1 + c

= 0.93 . (4.11)
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φ

Figure 4.6: Electric potential distribution in the lower half of the pipe - electric current
streamlines (blue and red arrow-headed lines) in the upper half. Straight green
lines indicate sample paths referring to results displayed in figure 4.7. Black
lines at x1 and x2 enclose the section of linear magnetic field growth.

Within the nonuniform magnetic field region, the downstream growing transversal po-
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tential gradient ∂zφ automatically entails an additional axial component ∂xφ 6= 0. The
superimposition of both is the cause of 3D MHD phenomena. This becomes particularly
evident in regards of the local electric current streamlines, shown in the upper half of the
pipe. Downstream within the fully developed region, electric currents exclusively circulate
spanwise. They flow across the fluid domain from one pipe side to the other and then close
over the well-conducting wall domain showing the behavior of fully developed MHD flow
as predicted by Miyazaki et al. (1983). Across the nonuniform region, however, the axial
potential gradient increasingly stretches those currents upstream towards the inlet, where
φ = 0. This occurs up to the point close to x1, where not all electric currents close over the
well-conducting wall. Instead, currents form internal concentric swirls, highlighted by red
streamlines and known from literature in Müller & Bühler (2001, pp. 93-94) and Moreau
(1990, pp. 158-160). Moreover, the electric potential appears comparatively constant across
the wall, which suggests a negligible voltage drop across the solid region due to the high
wall conductance.

The green lines in figure 4.6 within the plane y = 0 indicate sample paths, which
correspond to plots in figure 4.7 showing axial and transversal potential distributions. In
the graph on the left, side potentials develop proportionally to the magnetic field profile
with opposite signs, evoking spanwise and streamwise potential gradients. This implies
multi-directional current flow as long the magnetic field varies. The potentials along the
sides converge towards the theoretical value φ2D as soon as the magnetic field becomes
uniform. The graph on the right shows the transversal potential distribution along z. It
rises linearly when the flow is fully developed for x > 5, as represented by the solid red
line but otherwise exhibits a slight curvature with comparatively higher side layer gradients.
This suggests higher axial velocity close to the sides that induce locally stronger electric
fields v × B. In the wall for |z| > 1, currents flow preferentially in the tangential direction
so that the potential difference across the wall remains small.

Furthermore, figure 4.6 suggests that the electric potential in y-direction remains constant,
which would exclude vertical current flow. In fact, this property only applies to fully
developed MHD flow in y-symmetric cross-sections under a uniform magnetic field (Müller
& Bühler, 2001, p. 70), which in the underlying case merely corresponds to x > 5. Within
the nonuniform field region, however, electric currents may vary along y as well. This results
from the fact that a balance of currents in planes perpendicular to field lines results in
field-tangential components when the magnetic field is nonuniform (Müller & Bühler, 2001,
pp. 68-69). In addition, other effects like the curvature of magnetic field lines and residual
turbulence further affect the orientation of current flow within the nonuniform region. As
a consequence for the nonuniform field region, we may identify components of potential
gradients in every direction, leading to complex three-dimensional electric current paths.

In order to assess the relation between electric potential profile and electric currents,
figure 4.8 shows by color representative current densities component-wise along the axial
direction at the pipe center as well as close to the Hartmann layer (x, 0.8, 0) and close to
the Roberts layer (x, 0, −0.8), as indicated by respective line-styles. Results are normalized



60 4 MHD flows in a nonuniform magnetic field

−5 x1 0 x2 5 10
−φ2D

−0.5

0

0.5

φ2D

x

By(x, 0, 0)
φ (x, 0, 0)
φ (x, 0, 1)
φ (x, 0, −1)

−1 0 1
z

x = 6
x = 4
x = 2
x = 0
x = −2
x = −4
x = −6

y

z

B

Figure 4.7: Electric potential φ in axial and transversal direction along the green sample
lines in figure 4.6. Colored vertical lines in the left graph indicate respective
projections from plots on the left. Axial distribution of electric potential adopted
from Klüber et al. (2020b).

by the theoretical current density for fully developed MHD flow (Miyazaki et al., 1983)

j2D = c

1 + c
= 0.067 . (4.12)

The most noticeable feature within the nonuniform magnetic field region −5 < x < 5 is
the broad rise and fall of the axial current density along the sides, indicated by the red
dash-dotted line. Within the section of linear magnetic field growth x1 < x < x2, it forms a
plateau of the highest current densities. All transversal components jz, on the other hand,
grow monotonously with the linearly increasing magnetic field and the associated z-directed
magnetic induction v × B, as all blue colored lines indicate. This behavior agrees with the
electric potential distribution in figure 4.7, where potential gradients in x- and z-direction
occur highest along the sides and decrease towards the core. As anticipated from theory
for the fully developed region x > 5, all blue colored lines show the convergence of jz

towards a uniform current distribution at j2D. The reason for the one percent deviation to
the asymptotic solution is that its underlying asymptotic theory neglects electric currents
inside viscous boundary layers, which, however, the numerical solution takes into account.
While within the section of linear magnetic field growth z-directed currents become larger
towards the sides, this condition switches for x > x2 showing a local maximum at z = 0
before converging to fully developed conditions. Such peak is not a consequence of a higher
induction, but it results from strong axial currents in the nonuniform magnetic field section,
which close in the last development stage by crossing the channel. In terms of the early
development stage of the magnetic field x < x1, the transversal currents jz in the pipe
center and top become zero before they start rising, as marked by the orange circle. This
location corresponds to the center of the concentric internal current loops at xc ≈ −2.7,
where the transversal potential gradient fully balances the induced electric field, and current
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density vanishes according to ∂zφ = vxBy. Upstream from this position x < xc, current
flow is governed by the electric potential gradient and downstream, i.e., for x > xc by the
induced electric field.

In contrast to x and z components of current density, vertical electric currents jy, presented
as green lines, are vanishingly small between −5 < x < x1 and practically zero elsewhere,
which indicates a negligible vertical current flow. Moreover, since "current components
j⊥ perpendicular to the field do not vary along magnetic field lines" (Müller & Bühler,
2001, p. 68), jz does not change along field lines. The slight difference of jz along
y therefore results from the fact that magnetic field lines are curved in the nonuniform
region x1 < x < x2. When the magnetic field becomes uniform, values become uniform
in y-direction. Accordingly, MHD effects become mostly independent from y and we may
restrict the further description of the problem to the symmetry plane y = 0.
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Figure 4.8: Current components scaled by j2D and sampled in axial direction at the center
as well as close to the top and side. The orange circle indicates the center of
horizontal circulation loops.

Numerical results within the side regions of linear magnetic field growth show for x1 < x < x2
a constant axial potential gradient and a high axial current density, while jx (x, 0, 0) vanishes
on the axis of the pipe due to symmetry. Those axially elongated current loops extend far
beyond x2. There, they lead to a maximum of transversal current density jz by crossing
the channel from one side to the other. The following section presents the impact of this
current profile on the Lorentz force. Furthermore, the introduction of an auxiliary quantity,
called the magnetodynamic force, effectively reveals the impact of 3D current loops on the
inertial momentum balance.

Contour plots in figure 4.9 illustrate, from top to the bottom, electric current, Lorentz
force, and velocity within the plane y = 0. Colorbars show the normalized magnitude, and
illustrated arrow representations indicate orientation and relative intensity. As the yellow
arrowed path in the upper contour plot highlights, the axial potential gradient leads between
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x1 and x2 to the highest axial current densities along the sides (see also figure 4.8). Due
to the special linear character of the imposed magnetic field, jx along the sides remains
comparatively constant along x. In the last development stage of magnetic field growth
x2 < x < 5, transversal electric currents cross the core region at high intensity to close
current loops. In the case of rectangular channels, current loops may reach up to ten
characteristic axial length units as outlined by Moreau (1990, p. 158), which has been
observed in the underlying case as well.

Another striking characteristic of electric current distribution in the range of linear
magnetic field growth is the persistent curvature of current streamlines, portrayed as solid
green lines in figure 4.9. Up- and downstream, they transform rapidly into either internal
swirls or fully developed spanwise loops, respectively. Current streamlines presented in
Albets-Chico et al. (2013, figure 15) or Mao et al. (2019, figure 7) vaguely indicate that the
current lines vary permanently downstream under purely tanh-based magnetic field growth.
Accordingly, a single side layer peak arises in the latter references instead of the constant
plateau observed in the present case.

Magnetodynamic force

The Lorentz force j × B presented in figure 4.9 has been scaled by the maximum
value expected for fully established flow according to the asymptotic analysis by Miyazaki
et al. (1983)

fL,2D = j2D = c

1 + c
= 0.067 . (4.13)

The profile of the Lorentz force magnitude in figure 4.9 shows similar characteristics as
the current density multiplied with the local magnetic field strength |B|. This results in
V-shaped force contours within the region of linear magnetic field growth, where Lorentz
forces point inward.

According to its definition in equation 2.4 the Lorentz force acts perpendicular to j and B.
Hence, within the section of linear magnetic field growth, the greatest Lorentz forces arise
along the sides, pointing in an oblique manner upstream into the channel core. Considering
such force distribution, it seems rather unexpected that the velocity profile, presented in the
bottom contour plot, exhibits a low-velocity zone around x1 at the channel center, where
electromagnetic flow resistance is comparatively low. However, one explanation might be
the aforementioned fluid internal current loops that cause an inward-directed Lorentz force
along their circumference - first accelerating, then braking the fluid. Consequently, a local
high-pressure region p+ arises in the core, as indicated by the orange ellipse. This occurs
in the early development stage, where the induced electric field is still weak and electric
currents mostly close along fluid-internal current loops. The flow, therefore, avoids the
central high-pressure core region by evading to the sides and leaving a low-speed core region,
while high-velocity jets arise along the sides.
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Figure 4.9: Magnitudes of electric current, Lorentz force, and velocity shown as contour plots
at y = 0. Arrows show intensity and direction of the vector fields. Concerning
the current density, green streamlines portray electric current pathways and
yellow arrows have been added to indicate the 3D current loop. The orange
ellipse visualizes the formation of a fluid-internal current loop resulting in a local
high pressure region p+ in the core. Contours of Lorentz force adopted from
Klüber et al. (2020b).

In terms of higher magnetic fields where induction governs the current flow when
x > xc, the Lorentz force profile and velocity distribution seem to disagree in general. This
becomes particularly evident within the section of linear magnetic field growth. Along
the sides, the strongest braking Lorentz forces develop, but also high-velocity side jets
occur. The core flow region represents equally contradicting behavior by exhibiting a low
velocity, although the braking Lorentz force is comparatively weak. The reason is a strongly
disproportionate momentum balance inside the fluid (Albets-Chico et al., 2013). Due to the
well-conducting wall and strong magnetic field, the balance between pressure gradient and
Lorentz forces becomes overwhelming. In contrast, velocity-related contributions, such as
inertia and viscous forces, remain comparatively weak. Since such a predominant fraction
of the Lorentz force exclusively balances the pressure gradient independent from velocity,
we further refer to it as magnetostatic force (subscript ms)

fms = ∇p . (4.14)

Exclusively a small remainder of fL balances inertia and viscous forces, which therefore is
denoted in the following as magnetodynamic force (subscript md). Accordingly the Lorentz
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force may be split in two contribution fms and fmd

fL = fms + fmd . (4.15)

Magnetostatic theory, originally introduced by Kulikovskii (1968), neglects the second term,
which reduces the momentum balance to equation 4.14. The present numerical approach,
however, considers the full set of terms in the momentum equation. This allows determining
the remaining magnetodynamic force, which balances inertia and viscous forces according
to

fmd = fL − ∇p = N−1 (∂tv + v · ∇v) − Ha−2∇2v . (4.16)

Equation 4.16, therefore, constitutes a reasonable indicator to visualize magnetodynamic
interaction and explain the relation between velocity and complex 3D MHD phenomena.

The plots in figure 4.10 present contours of the magnetodynamic force and velocity.
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Figure 4.10: Contour plot showing the correlation of magnetodynamic force and velocity.
Both plots contain fmd as vector representations, in addition.

Both graphs include fmd as a vector field, showing orientation and relative magnitude. In
the first development stage of the magnetic field x < x1, fmd opposes the core flow, where
internal current loops circulate and form a local high-pressure region. In addition, the
highest force peaks accelerate the fluid along the sides, forming side jets. This constitutes
the cause for an M-shape velocity profile, which typically occurs in the presence of strong
3D MHD effects.
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The magnetodynamic behavior instantly reverses near x = x1, where fmd further on
accelerates the core and brakes the side layers. Additionally, close to x1, inward-directed
components appear, which expand the side jet’s width in the z-direction. This effect reverses
gradually within the region of linear magnetic field growth, pushing the high-velocity stream
against the sides, making it thinner again. For x1 < x < 0 a moderate fmd regime in the
core accelerates, while side layer regimes oppose the fluid flow. This effect slowly fades
up to the position x2, where another small acceleration regime in the center leads further
downstream to a small overspeed region in the core. When the magnetic field becomes
uniform for x > 5, a fully developed MHD flow adjusts. Hence, the magnetodynamic
force becomes zero in the entire core region and exclusively exists further on in the viscous
boundary layer.

In summary, the magnetodynamic force and the velocity distribution draw a coherent
picture that is capable of explaining their dynamic relations. It is remarkable that the
highest magnetodynamic forces occur within the early development stage close to x1, where
B is rather weak and the highest difference of center and side current densities appear, as
previously shown in figure 4.9. Those magnetodynamic peaks, however, correspond only to
about 10% of fully developed flow fL,2D, which confirms that the overwhelming part of the
total Lorentz force fL is in general magnetostatic and thus mainly balances the pressure
force. This leads to the conclusion that the introduced magnetodynamic force is capable of
revealing the impact of 3D MHD phenomena on velocity.

Figure 4.11 visualizes how the axial velocity component vx varies along the centerline
(x, 0, 0) and close to the sides (x, 0, 0.95).
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Figure 4.11: Velocity component vx along the center and near the sides. Adopted from
Klüber et al. (2020b).

The incoming turbulent flow has a bigger dispersion rate close to the sides, but its side
velocity is in average lower than in the center. Turbulence vanishes rapidly when the
magnetic field rises noticeably between −4.5 < x < −3.8, where local ratios of Reynolds
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to Hartmann number drop below Re
Ha

≈ 250, as discussed in Albets-Chico et al. (2013).
As the magnetic field rises, the emerging magnetodynamic force blocks the center. The
center velocity drops to a local minimum while side jets lead to a high velocity peak closely
behind x1, where fmd mainly orients transversally according to figure 4.10. One may identify
further impacts of moderate magnetodynamic force regimes at x = 0, where the center
and side jet velocity exhibits kinks and bends, caused by forces accelerating the fluid in
the center and braking it at the sides. When approaching the region of uniform magnetic
field, core and side layer velocities level off with a small overshoot section of the center
velocity between x2 < x < 5, evoked by a moderate fmd in the center. Downstream, the
core velocity approaches uniformity of fully developed MHD flow, while the Roberts layers
establish small overspeeds in accordance with Vantieghem et al. (2009).

In summary, the magnetodynamic force reveals the coupling phenomena between
Lorentz force and velocity. This becomes particularly helpful when the magnetostatic
momentum balance is overwhelming and thus dominates over inertia and viscous forces, i.e.,
for large Hartmann numbers and interaction parameters and for well conducting walls. In
addition, contours of the magnetodynamic force could be employed to identify other dynamic
effects effects, such as 3D MHD instabilities or internal shear layers. Those phenomena
may occur at locations of discontinuous wall conductance, and are investigated by means of
fmd in chapter 5. The next section further presents the magnetostatic behavior under 3D
MHD phenomena.

Pressure distribution

Figure 4.5 illustrates distributions of velocity, electric current streamlines, and pressure
isosurfaces as a rendered view. As discussed above, the major force balance of fluid flow
remains magnetostatic, where a large fraction of the Lorentz force balances the pressure
force.

The figure presents the isobars, illustrated as gray contour surfaces, where some are presented
cropped open to provide better insight. In a uniform magnetic field, they appear as cross-
sectional planes and align perfectly with green portrayed electric current streamlines that
close over the well-conducting pipe wall. As long the magnetic field is strong enough, this
behavior also persists in the nonuniform region for x > x1, where similar to electric current
lines pressure isobars show V-shaped contours. In regions of smaller magnetic induction
x < x1, pressure contours arrange in the form of long bent tubes following the curved
magnetic field lines and blocking the fluid in the center. It still appears as if currents,
shown in red, flow tangentially to isobars, but since the magnetic field is weaker here, the
alignment declines.

It is worth mentioning that structures of pressure, electric current loops, and the low-
velocity region are non-concentric to each other. In this context, related works investigating
pure tanh-based magnetic field distributions find the highest velocity deformations at x = 0,
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Figure 4.12: Visualization of velocity, currents, and pressure. Gray surfaces portray isobars,
which are cropped open to reveal the central local maximum. Currents fully
circulating in the fluid and currents partly closing over the wall domain are
shown as red and green, respectively. Black straight lines indicate the cross-
sections x1 and x2 (compare with figure 4.5).

where By = 0.5 and refer therefore to the magnetic field inflection point as the position for
strongest 3D effects (Albets-Chico et al., 2013) or (Picologlou et al., 1986). Results at hand,
however, indicate that fluid-internal current loops play a decisive role for the formation of a
core velocity minimum. The smallest core velocities occur at an earlier development stage
of the magnetic field where current loops close upstream in the fluid. Here, the electric
potential gradient outweighs the induced electric field leading to a fluid-internal current
reversal in the form of an internal loop and thus evokes the strongest flow opposing Lorentz
forces. While strong currents, magnetostatic force contours, and pressure isosurfaces align
well by forming V-shaped structures, characteristics of velocity clearly deviate from those
attributes, which in literature is denoted as velocity decoupling Albets-Chico et al. (2013).
However, the agreement of the center high-pressure tube and low velocity region show that
when currents are comparatively weak, magnetodynamic force, pressure, and velocity may
correlate very well.

Considering the pressure gradient provides further insights into developing 3D MHD
effects. Axial pressure gradients in figure 4.13 illustrate their downstream distribution at
different positions in the cross-section according to the color. Results are scaled with the
obtained numerical result far downstream x � 1 where for a uniform magnetic field ∂xp
likewise becomes uniform within the whole cross-section,

∂xp2D = ∂xp (x � 1) = −0.067 . (4.17)

The quantity ∂xp2D deviates from the asymptotic solution (Miyazaki et al., 1983) by 2%,
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as shown by the horizontal black dashed line in the figure. In general, pressure gradients
in regions corresponding to zero magnetic field strength, i.e., x < −5, are negligibly small
compared to the flow in the magnetic field. The side pressure gradient, portrayed red, falls
monotonously along the region of the developing magnetic field and eventually converges as
soon as the magnetic field becomes uniform. However, streamwise pressure gradients from
both top and center positions, shown blue and green, collectively exhibit a slight positive
peak upon passing the center high-pressure zone between −5 < x < x1 and then descend
along the section of linear magnetic field growth x1 < x < x2. Since "pressure does not vary
along magnetic field lines" (Müller & Bühler, 2001, p. 68), small deviations between blue
and green lines within the nonuniform magnetic field region reflect the curvature of field
lines. The linear section of the magnetic field elongates axial current loops far downstream,
as indicated in figure 4.9, where they eventually cross the pipe in the last development stage
when B becomes large and uniform. There they lead to a strong recovery of streamwise
pressure gradient at the center and top positions before the axial pressure gradient becomes
uniform within the whole cross-section.
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Figure 4.13: Axial pressure gradients along the center, top, and side. Results are scaled by
the theoretical value of asymptotic pipe flow ∂xp2D. The orange line presents
the local 3D pressure gradient ∂xp3D due to 3D current flow. The horizontal
black dashed line indicates the deviation towards the asymptotic solution
according to Miyazaki et al. (1983). Pressure gradients adopted from Klüber
et al. (2020b).

In order to quantify 3D effects on pressure drop, the underlying approach estimates
the difference between the numerically obtained pressure gradient of the 3D flow on the axis
∂xp (x, 0, 0) and that of assumed locally fully established flow ∂xpfd (x) as a reference. Since
in the present scaling, pressure gradients scale proportionally to B2, the reference becomes
∂xpfd (x) = ∂xp2D · B2 (x), which uses the numerically obtained solution representing the
pressure gradient in fully developed pipe flow in a uniform magnetic field (Pulugundla et al.,
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2015). The local fraction of pressure gradient caused by 3D effects then is

∂xp3D = ∂xp (x, 0, 0) − ∂xpfd (x) . (4.18)

The orange line in figure 4.13 presents the local 3D pressure gradient ∂xp3D, which initially
yields a positive balance between center pressure gradient and the one of assumed locally
established flow along most of the range of nonuniform B. This demonstrates the impact of
axial potential gradient and associated current loops on magnetostatic momentum balance,
where some fraction of circulating 3D current contributes to a reduction of the transverse
currents, which in turn reduces the pressure drop in comparison to assumed fully developed
conditions. Only in the last development stage of the magnetic field for x > x2, ∂xp3D

exhibits a strongly pronounced negative peak before the magnetic field becomes uniform
and the local 3D pressure gradient converges towards zero. Here, axially elongated current
loops cross the channel in the same direction as currents in fully established flow, which
leads to an increased pressure gradient and a negative balance of ∂xp3D.

The integration of the local 3D pressure gradient ∂xp3D along the whole domain yields the
additional pressure drop caused by the 3D effects in a spatially varying magnetic field

∆p3D =
+∞∫

−∞

∂xp3Ddx = −0.0322 . (4.19)

When ∆p3D is compared with the magnitude of pressure gradient of the fully established
flow in the uniform magnetic field for x � 1, one can identify

l3D = ∆p3D

∂xp2D

= 0.48 (4.20)

as the length along which a fully established MHD flow would have to pass in order to
create a comparable pressure drop. This means that the occurring additional 3D MHD
losses are equivalent to an MHD pressure drop of fully developed flow over approximately
half of a characteristic length unit. This is a relatively small value and should be acceptable
in engineering applications.

4.5 Comparison with the MEKKA experiment

The numerical results presented in the preceding sections explain 3D MHD phenomena
in nonuniform magnetic fields. In the present section, this knowledge is further used to
support the interpretation of measurements performed in the MEKKA laboratory (Bühler
et al., 2020b). Due to geometric constraints, it was not possible to perfectly align the pipe
axis with the horizontal symmetry plane of the magnet. Since magnetic field lines in the
nonuniform region are curved, the vertical displacement of the pipe axis by yd = 0.326
disturbs the symmetry of the problem, which could have an impact on the outcome.
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Numerical results presented below have been obtained by taking the pipe axis at the same
y-position as in the experiment. However results suggest that the influence of non-symmetry
on the results is negligible from an engineering point of view.

Pressure gradients

Ideally, one would like to compare numerical results for the pressure field, as show in
figure 4.13, with experimental observation. Such direct comparison, however, is not possible
since available experimental data for pressure gradient involves measurements of pressure
differences between pressure taps that are axially spaced by a finite distance dp = 1.029, as
shown in figure 4.14a. Experimental results presented in the following show approximations
for the axial pressure gradient in terms of pressure differences between taps located in two
cross-sections, axially spaced by a finite distance dp. Measurements have been performed
at the surface of the Hartmann wall and presented as δxpHa (x) = (pHa − p0) /dp, and the
quantity δxps (x) = (ps − p0) /dp describes transverse differences (Bühler et al., 2020b).
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Figure 4.14: Pressure taps in the MEKKA experiment.(a) Axial and transverse positions of

pressure taps, (b) local currents and magnetic field resulting in Lorentz forces
inside a pressure tap.

Another experimental drawback is the fact that the pressure-sensing lines are connected to
the outer surface of the pipe at a distance tw from the fluid-wall interface (figure 4.14b).
Currents closing their paths along the wall penetrate the stagnant fluid in the tap and
perturb the pressure reading po detected on the outer surface via related Lorentz forces.
This problem has been identified by Hua et al. (1988) and by Stieglitz (1994, p. 40),
where corrections for comparison with measurements at sidewalls of rectangular ducts
have been proposed. In the present case that involves curved magnetic field lines having
axial B-components, such corrections should be considered for all pressure taps. One may
estimate the difference between the pressure po recorded at the outer surface and the one
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at the fluid-wall interface pi from wall currents jw as

po − pi = ∆np = n · (jw × B) tw , (4.21)

assuming that tangential currents and components of B do not vary along the thickness of
the wall. Since all quantities in equation 4.21 are known from the numerical simulations, it
is possible to determine the pressure at the outer surface po = pi + ∆np and compare those
results with experimental observations.

The experimental data of δxpHa shown in figure 4.15 confirms results for ∂xp (x, 1, 0)
displayed above in figure 4.13. However, due to the finite length dp over which pressure
gradients are measured, the results in figure 4.15 appear a bit flattened compared to
the latter ones. Nevertheless, one may compare experimental values shown as symbols
with numerical data that has been derived in the same way as the experiments have been
performed, i.e., using a finite dp and estimation of pressure data on the outer surface via
equation 4.21. Both numerical and experimental results then show quite good agreement
across the entire computational domain, as confirmed by the high values of the concordance
correlation coefficient CCC (see appendix B). A similar agreement can be seen for numerical
and experimental data of δxps.
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Figure 4.15: Comparison of δxpHa and δxps measured at the outer surface (symbols) with
numerical predictions (solid lines). Within the section of the nonuniform
magnetic field, Lorentz forces in pressure taps cause the difference between
results on the outer surface (subscript o) and those calculated at the fluid-wall
interface (subscript i). Correlation values between experimental measurements
(symbols) and computational results (solid lines) are CCC = 0.9992 for δxps

and CCC = 0.9936 for δxpHa (see appendix B).

While the experiment reveals data only on the external surface, the numerical results give
further insight since flow properties in the pipe are known from the simulations. Results of
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δxp at the fluid-wall interface are displayed in addition in 4.15. They show a similar trend
as those on the surface, but they deviate from the latter ones by a small amount that is
caused by electric currents crossing the pressure taps in the region where the magnetic
field is nonuniform. Although differences between δxp on the outer surface and δxp at the
fluid-wall interface remain small, one can observe that they play a role at the sides along
the entire length where the magnetic field is nonuniform as expected by Hua et al. (1988)
and Stieglitz (1994, p. 40). The present results, moreover, suggest that the largest ∆np
occur at the Hartmann wall where in the past, those effects have not been considered. They
reach their maximum when the magnetic field and currents become large, i.e., just before B
approaches its highest values. When the magnetic field becomes uniform, ∆np disappears
so that finally pi = po.

Electric potential

The electric potential is an essential flow quantity that can be measured on the
surface of the pipe with relatively simple techniques and high accuracy. For that reason, it
is best suited for comparison with results from numerical simulations. In the experimental
campaign, the electric potential has been recorded on the external surface of the pipe in a
large number of cross sections. The experimental data has been published, e.g., in Bühler
et al. (2020b), and made available for reproduction in figure 4.16 and for comparison with
present numerical results. While numerical results in figure 4.7 have been shown in (x, y, z)
coordinates, the experimental data has been collected at equidistant circumferential points
and results are therefore presented in figure 4.16 in cylindrical (x, r = Ro, α) coordinates
along the outer wall surface at radius Ro.

In a uniform magnetic field, the potentials on the inner and outer surface of the pipe are
known to follow harmonic functions φ = φ2D sin (α) and φw,2D sin (α), with amplitudes

φ2D = 1
1 + c

and φw,2D = 2RoR

R2
o + R2 φ2D , (4.22)

respectively (Miyazaki et al., 1983). For the present geometry φ = φ2D and φ = φw,2D

differ only by about 1%. The behavior for fully developed flow is perfectly confirmed by the
experimental and numerical data of wall potential for x = 13 with theoretical predictions of
equation 4.22. Moreover, the agreement between computations and experimental results
agree is excellent according to the values of the concordance correlation coefficients presented
in appendix B. In regions where the magnetic field varies along x, the magnitude of potential
shows a similar growth as the magnetic field (compare values for α = ±π/2 in figure 4.16
left) while the pure sinusoidal variation with α is lost (figure 4.16 right, e.g., at x = −1.7).
From the comparison of simulations and experiments, it can be concluded that the numerical
code is well suited for reliable predictions of electric potential on the surface of the duct.
Since the latter one is an image of flow properties inside the fluid, one can expect that
those values are accurately calculated as well.
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Velocity

In a recent publication based on the same experimental potential data, an attempt is
made to conclude from measured surface potential about internal flow properties such as
velocity (Bühler et al., 2021). This is possible only under certain assumptions. Now, the
present numerical simulations confirm the latter approach and quantify for the first time
the uncertainty in those results.

According to Ohms law 2.1, velocity, currents, magnetic field and potential are related as

vx = 1
By

(
∂φ

∂z

)
︸ ︷︷ ︸

(1)

+ 1
By

jz︸ ︷︷ ︸
(2)

+ Bx

By

vy︸ ︷︷ ︸
(3)

. (4.23)

Here, the axial component of velocity vx is determined primarily by the transverse component
of potential gradient (term (1) on RHS), while contributions from current density (term
(2)) and from the axial component of the magnetic field (term (3)) are small in most
applications. For that reason, and due to the fact that jz and vy are not accessible in
experiments, the terms (2) and (3) have been neglected for evaluation of experimental data,
as, e.g., by Reed et al. (1987) or Bühler et al. (2021).

In the following, results for axial velocity obtained from numerical simulations are
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compared with term (1) of equation 4.23 B−1
y ∂zφ that has been used in various publications

as an approximation to measure velocity. Figure 4.17 compares both quantities for two
selected cross-sections, one at x = 13 (left) where the magnetic field is uniform and one at
x = −1.7, in a region where the magnetic field varies along the axis (right).
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Figure 4.17: Numerically obtained transverse profiles of axial velocity in the region of uniform
(left) and nonuniform (right) magnetic field. The velocity profiles are well
approximated by transverse potential gradients as B−1

y ∂zφ. A comparison of
B−1

y ∂zφ (r = 1) with experimental data available at the fluid-wall interface
(Bühler et al., 2021), in form of the green line, shows good agreement.

In the uniform field, the velocity vx (x = 13, y = 0, z) in the entire core along the blue line
in the sketch is constant, with slightly higher values only in narrow layers near the sides.
The quantity B−1

y ∂zφ (x = 13, y = 0, z) at identical locations exhibits a similar distribution
so that it reasonably approximates the velocity. Both profiles differ by a small amount that
is due to currents B−1jz, where the transversal currents are known from simulations or from
theory, jz = c/ (1 + c) (Miyazaki et al., 1983). The numerical simulations further confirm
that the transversal potential gradient along the inner wall circumference at r = 1 portrayed
red in the sketch leads practically to the same result as that in the horizontal symmetry
plane y = 0. This justifies previous publications in which potential gradients on the walls
have been interpreted as velocity signals by assuming that potential and velocity are uniform
along magnetic field lines. A comparison with experimental data portrayed green confirms
the transversal potential gradient at the wall, as predicted by the present simulations. Here
it should be mentioned that the experimental data for potential at the fluid-wall interface
has been obtained as a projection from measurements on the outer surface of the pipe by
solving a Laplace equation for the wall (Bühler et al., 2021).

Figure 4.17 on the right presents for x = −1.7 a comparison of same flow quantities but in the
nonuniform magnetic field. The black line reveals that the velocity vx (x = −1.7, y = 0, z)
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now shows strong deformations with reduced values in the center and increased velocity near
the sides. These phenomena are well approximated by the transversal potential gradient
as B−1

y ∂zφ (x = −1.7, y = 0, z), where the difference between this quantity and velocity is
again of the order of B−1jz. If an approximation for velocity derived from the transversal
potential gradient at the wall is calculated as shown by the red line, one can observe
apparent differences from results at y = 0, portrayed by the blue line. Values in the center
close to z = 0 are a bit higher, and the curvature of the profile is slightly reduced. This
results from the fact that the potential is no longer constant along the y-coordinate. This
has two reasons, namely the curvature of field lines that are not perfectly aligned with y
and the possibility that φ may vary along field lines in regions where the magnetic field
is nonuniform and where a transversal pressure gradient is present (Kulikovskii, 1968).
Therefore, potential gradients and velocity profiles consequently are not strictly uniform
along the y-coordinate. A comparison of B−1

y ∂zφ (x = −1.7, r = 1, z) obtained at the wall
by numerical simulations (red line) and experiments (green line) shows quite good agreement
in figure 4.17, confirming the accuracy of both the numerical simulations and the applied
measuring technique. Since the potential varies marginally across Hartmann layers (Moreau,
1990, p. 129), this quantity may be considered as a reasonable approximation for the core
velocity at the edge of the viscous layer.

4.6 Summary

The present numerical study on MHD pipe flow extends the findings of experiments
performed in the MEKKA facility addressing 3D phenomena in a nonuniform magnetic field
with a particularly long section of linear increase. The implementation of the numerical
model accounts for a consistent reconstruction of the magnetic field from measurements
and simulations of turbulent inlet conditions. Results are summarized in figure 4.18, which
illustrates the main phenomena. The upper diagram shows the distribution of the imposed
nonuniform magnetic field along the pipe axis. The lower plot sketches the pipe at y = 0,
highlighting the associated phenomena of physical quantities such as electric potential,
currents, and velocity in green, red, and blue, respectively.

When the fluid moves into the magnetic field, growing transversal potential differences
are induced as the magnetic field increases. Those are weak within the early development
stage x < x1, but they evoke large-scale current loops closing far upstream in the fluid.
Lorentz forces created by these currents are directed towards z = 0, creating a local pressure
maximum. The high-pressure region blocks the core and forces the fluid to the sides, leading
to a reduced core velocity near z = 0 and high-velocity jets near the sides right behind
x1. Along the section of linear magnetic field growth, currents close their paths along the
wall while current streamlines in the fluid are stretched in the downstream direction. This
leads to an effective current path along axial, transverse (for x > x2), and then again
axial direction, as indicated by the red dashed arrows. At the position where the additional
transverse currents cross the core, the highest currents and braking Lorentz forces create the
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steepest axial pressure gradient for x > x2. Further downstream, the MHD flow becomes
rapidly fully developed when B approaches a uniform condition.

The numerical solution of the problem provides deeper insight into the physical
phenomena. While it can be confirmed that an overwhelming part of the Lorentz force
opposes the pressure force in a sort of magnetostatic balance, the remaining residual fraction
of the electromagnetic force has been identified as the one that balances inertia and viscous
forces. The latter part of the force is therefore called the magnetodynamic force, and it
poses a viable investigative tool for the analysis of complex 3D flows studied in chapter 5.

The Numerical models for entry flow and nonuniform magnetic field have been
validated by the law of the wall and measured data, respectively. Simulation results have
been further validated by comparison with experimental data for pressure and potential
measured on the surface of the pipe. Moreover, the simulations support previous assumptions
that transverse potential gradients may serve as suitable approximations for velocity even if
they were recorded at the wall. It has been further shown that in a nonuniform magnetic
field, electric potential and velocity are not necessarily constant along y. Such numerical
investigations become indispensable for the evaluation of flow quantities that are not directly
accessible by experimental techniques. As a result, the confident conclusion can be drawn
that the applied code is qualified for numerical investigations of 3D MHD phenomena in
fusion applications. This crucial statement on the solver’s validity enables detailed numerical
analyses of MHD flows in pipes with flow channel inserts that are devices designed for MHD
pressure drop reduction in fusion blankets, as presented in the next chapter.
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5 MHD flows in flow channel inserts
(FCI)

The resistance to high pressures of breeding blankets requires thick structural walls,
leading to a high electric wall conductance. As a consequence, those well conducting walls
provide shortcuts over the solid domain, which in turn increases fluid-internal currents,
Lorentz forces, and pressure drop. In order to mitigate such electromagnetic flow resistance
occurring in fusion blankets, an early patent by Malang (1987) proposes electrically insulating
flow channel inserts (FCI). They loosely fit inside the channels of blankets and manifolds,
where they cover the walls and electrically decouple the fluid region from the well conducting
structural material and thus reduce electric currents and associated MHD pressure drop.

Magnetohydrodynamic pressure drop reduction by means of insulating flow channel inserts
constitutes a subject of ongoing research in fusion engineering, addressing this topic
theoretically and experimentally, e.g., in Malang et al. (2011), Kim (2014), Norajitra et al.
(2015), Rapisarda et al. (2017), Bühler et al. (2020a). One approach is to fabricate the FCI
entirely from a ceramic material such as silicon carbide (Smolentsev et al., 2006). However,
by testing a first prototype in liquid metal flow (Courtessole et al., 2016), Gonzalez et al.
(2016) show that the highly conductive fluid may penetrate into the porous structure of
the FCI and deteriorate its insulating property. This is why another FCI concept foresees
thin steel sheets in the form of a sandwich-like structure that encloses and thus protects
the ceramic insulator from fluid infiltration (Malang et al., 1988). However, enclosing the
insulator with conductive material, in turn, enables electric currents to find shortcuts over
those layers. If, therefore, the outer protective FCI layers are sufficiently thin in comparison
to the bare pipe walls, this may both prevent fluid infiltration and enable an adequate MHD
pressure drop reduction due to their high electrical resistivity. The present chapter presents
investigations of MHD phenomena occurring in such sandwich-type FCIs and discusses the
suitability of these devices for fusion applications.

5.1 Sandwich-type FCI in the MEKKA experiment

In the frame of the ongoing EUROfusion conceptual design phase for liquid metal
blankets, a sandwich-type FCI for circular pipes has been developed and fabricated at KIT
(Koehly & Bühler, 2017). Experiments at the MEKKA laboratory have been conducted,
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where the FCI loosely fits into a thick-walled pipe, as shown in figure 5.1. Under fusion-
relevant magnetic fields, measurements of pressure and electric potential detect the existence
of strong 3D MHD phenomena occurring close to the FCI entry or across the conjunction
between two consecutive FCIs, as presented in Bühler et al. (2019) and Bühler et al. (2020a).
Complex 3D currents j3D arise at such locations where the thin insulation layer, indicated
by the orange lines, ends. The high thickness of the bare pipe wall tw = Ro − Ri offers a
considerably higher conductance to electric currents than the extremely thin inner FCI layer
with tF CI = Rins − RF CI . The sudden jump of wall conductance leads to axial potential
gradients within the transitional flow domain. Hence, electric currents align axially in order
to bypass the insulation through the conductive ledge, where FCI protection layers are
sealed, to eventually close over the well-conducting pipe wall. They evoke an additional
MHD pressure drop and a complex flow manipulation at FCI entries or conjunctions at two
consecutive FCIs, thus reducing the FCI’s efficiency.
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Figure 5.1: Sketch of the flow channel insert (FCI) tested for circular pipe flow in the
MEKKA laboratory.

While the MEKKA experiments are constraint to measurements from the outer pipe surface,
the computational analysis reveals the internal distribution of complex 3D MHD phenomena
and associated pressure losses occurring close to conjunctions between FCIs and near entry
regions. This makes numerical analyses mandatory in order to investigate relevant quantities,
which experimental methods and analytical theory cannot provide. Hence, computationally
obtained results help to assess 3D MHD phenomena occurring in FCIs and support the
blanket design process.

The computational study at hand reveals the complex coupling phenomena of 3D MHD
quantities and their impact on pressure losses occurring at FCI conjunctions and entries.
Segregating magnetostatic and magnetodynamic momentum balances creates a direct link
between the Lorentz force profile, streamline patterns, and the formation of internal shear
layers. Moreover, the comparison of different FCI model approximations with increasing
geometric complexity shows that already simple approaches robustly reflect the occurrence of
3D MHD phenomena and thus reduce computational effort. The most accurate FCI model is
capable of resolving the flow in the thin gap between FCI and wall, as shown in the enlarged
sub-view of figure 5.1. Contrary to original concerns that pressure differences between bulk
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and gap flow might become critical (Malang, 1987), computations for a fusion-relevant
parameter range show that the underlying FCI design withstands electromagnetic pressure
imbalances without any countermeasures. However, a highly nonuniform flow distribution in
the gap region seems important, for instance, concerning corrosion or tritium transport.

5.2 Implementation of FCI models

With increasing geometric details of a numerical model, expenses for development and
simulation grow significantly. To keep costs reasonable and simultaneously gain physically
consistent results, one major objective of this study is to reveal the impact of geometric model
resolution on the numerical outcome. This work, therefore, approaches the implementation
of FCI models by simplifying their geometries employing three different approximation levels,
shown in figure 5.2.
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Figure 5.2: Cross-sectional view showing approximation levels of the FCI entry model. The
orange line indicates the FCI’s insulation layer.

The gray shaded areas, representing steel, are electrically conducting. Therefore compu-
tations generally take into account the propagation of the electric currents and potential
in these areas, namely the thick pipe wall as well as in the thin FCI layers, by solving the
Laplace equation ∆φ = 0 for the entire solid domain. The insulation layer of the investigated
FCI measures in thickness only a few microns but constitutes a perfect insulator (Koehly
& Bühler, 2017). Neglecting the thickness of the insulation, all numerical models assume
the presence of an internal non-conducting layer, illustrated as an orange line. Along this
cylindrical surface at radius Rins for x > 0, all FCI models assume internal homogeneous
Neumann conditions for the electric potential ∂nφ = 0. This prevents current flux from
crossing the insulation layer and confines the flow-induced electric field to the fluid domain
r < RF CI and thin inner conductive FCI layer RF CI < r < Rins. In this manner, the FCI
models may be adjusted to the conductance of the FCI used in the MEKKA experiments, for
which, according to Miyazaki et al. (1983), a wall conductance parameter may be defined
for x > 0 as

cF CI = σw

σ

R2
ins − R2

F CI

R2
ins + R2

F CI

= 0.00457 . (5.1)
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The implementation of the FCI in the global geometry has been accomplished via three
levels of increasing complexity, as shown in figure 5.2. In approximation level 1, the fluid-wall
and fluid-FCI interface have the same dimension RF CI , assuming that small geometric
effects on MHD phenomena are negligible in comparison to the impact of the FCI’s electric
insulation. The approach, therefore, fully merges pipe wall and FCI to a coherent solid
domain involving a smooth fluid-wall interface. In this way, the model accounts for the
FCI’s insulation and conductance of the inner protection layer, which still allows for 3D
leakage currents to close their paths along the thick conductive outer region. This keeps
the inner radius constant at RF CI and the wall conductance of the bare pipe upstream of
the FCI, i.e., x < 0, becomes

c1 = σw

σ

R2
o − R2

F CI

R2
o + R2

F CI

= 0.08616 . (5.2)

The levels 2 and 3, on the other hand, consider in addition geometric constraints in the form
of a sudden diameter contraction from radius Ri to RF CI in front of the FCI at x < −lins,
with lins representing the conductive ledge in figure 5.1, where the protective layers are
welded together (Koehly & Bühler, 2017). This results in a slightly lower upstream wall
conductance in comparison to c1,

c2,3 = σw

σ

R2
o − R2

i

R2
o + R2

i

= 0.07178 . (5.3)

While level 2 only models the sudden contraction at x = −lins, the most accurate level
3 also considers the fluid in the gap and the conductance of the outer sheet of the FCI.
The geometry of level 3 is the most realistic model where the FCI concentrically "floats"
inside the pipe fully enclosed by fluid. In this way, the most detailed level 3 also accounts
for MHD phenomena occurring inside the annular gap between the wall and FCI.

Concerning the parameter range of investigated cases shown in table 5.1, the con-
ductance of viscous Hartmann layers is δHa = Ha−1 = 5 · 10−4 and δHa = 2 · 10−4 for
Ha = 2000 and Ha = 5000, respectively. The FCI conductance cF CI is an order of
magnitude larger than the conductance of the Hartmann layer and an order of magnitude
smaller than the wall conductance of bare pipe flow δHa � cF CI � c1,2,3. This means that
the FCI poses a substantial electric shortcut in comparison to the Hartmann layers. On
the other hand, the large drop of wall conductance from the bare channel wall to the FCI
reduces electric current flow significantly and this, independent from considered case or
approximation level, leads to a large reduction of the pressure gradient.

Ha Re N
case 1 2000 20000 200
case 2 5000 5000 5000
case 3 5000 10000 2500

Table 5.1: Three simulated cases of the parameter range of experiments conducted in
MEKKA (Bühler et al., 2019, 2020a).
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The length scales of pipe geometry and of MHD phenomena differ over several orders of
magnitudes, and therefore their discretization requires a large number of grid points. An
SHM grid type serves as base mesh in the cross-sectional plane from where the mesh is
extruded in the streamwise direction by means of prism layers. Table 5.2 shows exemplarily
for the level 3 approximation the number of applied cells and prism layers. Streamwise
extruded prism layers concentrate towards x = 0, where the strongest 3D MHD phenomena
are expected. Besides the large number of prism layers in boundaries and the FCI/wall
gap, a particular fine grading is applied towards all fluid-solid interfaces. At least four grid
points resolve the extremely thin Hartmann layers, which scale with δHa ∼ Ha−1 at vertical
positions, where the magnetic field is orthogonal on fluid-solid interfaces.

numbers of cells prism layers
fluid 10.7·106 streamwise 270 FCI/wall gap 35
solid 4.9·106 boundary layers (pipe) 42 boundary layers (FCI) 30
total 15.6·106 wall (solid) 40 FCI layer (solid) 5

Table 5.2: Mesh details exemplarily shown for the level 3 FCI approximation model.

As presented above, approximation levels 2 and 3 exhibit a sudden diameter contraction
at the FCI’s ledge position x = −lins, as shown in figure 5.2. This complicates the local grid
structure since resolving the boundaries at different diameters on a continuous streamwise
grid increases the cell number and, thus, the computational effort considerably. For resolving
this issue, OpenFOAM provides a general-grid-interface (GGI) that allows joining two
computational grids with different spatial discretization. As indicated by the red dashed
line shown in figure 5.2, this establishes a junction between grids of bare channel and FCI,
where the interface of both domains may have a different cell structure. Further imposed
conditions along boundaries and interfaces are listed in table 5.3.

inlet outlet fluid-solid int. insulation wall surface GGI
φ ∂nφ = 0 ∂nφ = 0 φ = φw, jn = jn,w ∂nφ = 0 ∂nφ = 0 cyclic
p ∂np = 0 p = 0 ∂np = 0 - - cyclic
v v=vx,fdex ∂nv = 0 |v| = 0 - - cyclic

Table 5.3: Boundary conditions of the numerical model.

The electric potential and currents are coupled along fluid-wall as well as fluid-FCI interfaces
and determined collectively for all domains by a block-coupled matrix solver (Jareteg, 2013).
Electric potential and wall-normal currents are continuous at the interface between the
fluid and solid structures indicated by the subscript w, such as walls or FCIs. Pressure and
velocity, on the other hand, exclusively exist within the fluid domain where at the outlet,
the flow is assumed fully developed with a constant pressure reference p = 0. A separate
simulation determines a fully developed velocity profile vx,fd of entering flow, which is
then applied as a fixed inlet velocity. This allows limiting the flow domain upstream and
downstream to ten times the radius of the FCI −10 < x < 10, whereby the FCI radius
RF CI serves as characteristic length throughout this entire study, i.e., the non-dimensional
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FCI radius becomes
RF CI = 1 . (5.4)

Further relevant geometric dimensions are listed in table C.3 in the appendix. Moreover,
the implementation of the FCI model at conjunctions involving a short gap in the insulation
are presented in appendix A.

5.3 3D MHD phenomena at FCI entries

This section introduces 3D MHD phenomena occurring at FCI inlets, obtained by
means of numerical simulations based on the approximation level 1 with plain inner pipe
walls for Re = 20000 and Ha = 2000. The sharp drop of wall conductance upon FCI entry
leads to axial potential gradients and current flow. This evokes strong 3D effects in close FCI
entry vicinity, which redistribute the fluid flow and produce high-velocity jets near the sides.
They may trigger localized instabilities in the Roberts regions right downstream behind the
FCI entry. Eventually, by identifying additional 3D MHD pressure losses, computational
results confirm the general applicability of the underlying FCI design.

Electric potential and currents

Figure 5.3 shows the electric potential distribution and current pathways occurring in
the vicinity of an FCI entry. Sufficiently far upstream, the incoming flow is fully developed.
There, the electric potential exclusively varies along z, reaching its maximal magnitude φ2D

near the sides in accordance with asymptotic theory (Miyazaki et al., 1983)

φ2D = ± 1
1 + c1

and φ2D,F CI = ± 1
1 + cF CI

. (5.5)

Electric currents circulate in cross-sectional planes, which is typical for fully developed flow.
Blue lines show electric pathways that close over the well-conducting pipe wall. Downstream
inside the FCI, red lines indicate induced currents that exclusively close over the inner
conductive sheet of the FCI since the insulation prevents the penetration of current flux. In
this way, the cylindrical insulator confines those currents, permitting induced electric fields
only inside the FCI so that far downstream, the wall potential becomes zero.

The decay of wall potential downstream x > 0 leads to axial wall potential gradients. Wall
currents, therefore, have x-directed components, and they preferably close over the low-
potential domain in the form of large recirculation loops by wrapping around the insulation.
This is shown by strongly bent blue lines near x = 0. Fluid currents, on the other hand,
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Figure 5.3: Electric potential distribution shown in the lower half and current paths in the
upper half of the pipe. The insulation starts at x = 0, shown by the orange
surface. Blue streamlines represent currents that close in the wall domain
while red streamlines portray currents closing inside the inner conducting FCI
sheet. The color scale is limited by ±φ2D according to Miyazaki et al. (1983)
in equation 5.5. Green straight lines indicate sample paths referring to the plots
in figure 5.4.

experience an increase of transverse potential difference upon FCI entry as the resistance of
the surrounding conducting solid material increases. The resulting axial potential gradient
causes fluid currents to bend in the axial direction. In contrast to bare channel flow for
x < 0, where 3D effects occur only in the immediate vicinity of the entrance (blue lines),
red lines show that 3D effects extend far downstream into the FCI over several characteristic
lengths before a pure spanwise current profile of fully developed FCI flow evolves.

Figure 5.4 shows axial and transversal potential distributions in the horizontal symmetry
plane y = 0. In the left plot, red and blue curves refer to outer wall potential and potential
at the fluid-solid interface, respectively. The potential values have been taken along the
green sample lines indicated in figure 5.3. The vertical lines in the left plot are projections
representing the transversal potential distributions that are displayed in the graph on the
right.

In the upstream region x < 0, fluid and wall potential differ slightly, in accordance with
predictions by Miyazaki et al. (1983), by a marginal wall voltage, and both remain almost
constant along x, shown by red and blue lines, respectively. Before entering the FCI,
magnitudes of inner and outer wall potential decrease slightly until x = 0, where the
insulation starts. For x > 0, radial current flow into the outer wall is interrupted. The outer
wall potentials (red lines) monotonically decay to zero, while the potentials at the fluid-wall
interface (blue lines) converge towards a higher magnitude. According to Ni et al. (2011),
downstream development lengths of 3D Phenomena at FCI entries in rectangular ducts
require up to approximately five characteristic lengths. The present simulations addressing
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Figure 5.4: Axial (left) potential distribution sampled along the green lines in figure 5.3 for
y = 0, and transversal (right) potential distributions for different axial positions.

a circular geometry find a similar trend. The associated gain of inner FCI potential may be
explained by Ohm’s law

jz = −∂zφ + vx . (5.6)

While the magnitude of the induced electric field, here represented in non-dimensional form
by vx, remains approximately the same along x, currents are reduced in the FCI due to the
low conductance of the inner sheet. Smaller currents are compensated by higher potential
gradients −∂zφ, and when integrated along the transverse direction they result in a slightly
higher transversal potential difference, as shown by blue lines upon FCI entry.

When approaching fully established conditions both upstream and downstream, the mag-
nitudes of potential reach values as predicted for pipe flow by Miyazaki et al. (1983). A
comparison of results with values obtained by the simple formulas 5.5 shows already a
quite good agreement. However, their derivation (Miyazaki et al., 1983) neglects the
electric conductance of the thin Hartmann layers compared to the conductance of the walls.
Therefore, formulas 5.5 apply better for x < 0 where δHa � c1.

Figure 5.4 (right) shows transversal potential profiles at several downstream positions.
The electric field induced by the fluid motion becomes visible as a spanwise potential
gradient with φ (z = 0) = 0 due to symmetry. While in the upstream region x < 0, the
flow-induced potential spreads continuously across the thick conducting wall, we observe
downstream for x > 0 at z = ±Rins a sudden jump since currents are interrupted at the
insulation. With increasing distance from the entrance of the FCI, the potential of the
outer wall decreases monotonically. In contrast, the potential of the inner conducting sheet
slightly increases to meet values predicted by equation 5.5. A closer look to the potential
distributions for x ≥ 0 in the core region reveals some deviations from a linear behavior,
which indicates that velocity profiles may exhibit transverse variations as well according to



5.3 3D MHD phenomena at FCI entries 85

equation 5.6.

Currents, Lorentz force, and velocity

For strong magnetic fields Ha � 1, values of flow properties such as pressure,
potential, or core velocity remain constant along magnetic field lines. Therefore, contour
plots in the plane y = 0, as shown in figure 5.5, provide already comprehensive insight in
3D MHD phenomena. Magnitudes of currents and Lorentz force density are normalized
by the maximum values from the asymptotic solution of fully developed bare channel flow
(Miyazaki et al., 1983) indicated by the subscript 2D.
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Figure 5.5: Contour plots presenting magnitudes of current density, Lorentz force and
velocity at y = 0 combined with respective vector representations. Green
streamlines mark electric current paths. The vertical black dashed line indicates
the FCI entry x = 0.

The upper contour plot presents the magnitude of electric current density j. As imposed by
design, the electric conductance of the thin inner FCI layer for x > 0 is comparatively small
in contrast to the thick wall of the pipe for x < 0, which significantly reduces the current
density in the FCI. Current streamlines portrayed as green lines form long downstream
directed recirculation loops upon FCI entry. Those axial distortions of currents in FCIs
confirm the significant impact of 3D effects on the development length in pipes with low wall
conductance, whereas the current distribution in bare channel flow is marginally affected.
Behind the FCI entry x > 0, the yellow highlighted streamline exhibits swirls of electric
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current flow in a small region close to the side. At the FCI entrance x = 0, electric currents
bundle as they flow around the insulation in order to close over the well-conducting pipe
wall, leading to high peaks of electric current density near the sides. While not visible in
the figure with the used color scale, side regions evolve up to 20 times the current density
as in fully developed bare pipe flow.

The Lorentz force density fL = j × B, shown in the middle contour plot of figure 5.5,
directly depends on the electric current density. Since the magnetic field B = ey is uniform,
profiles of magnitudes of Lorentz force and electric current density coincide, and fL stands
orthogonal on j and ey, thus opposing the core flow in large parts of the fluid volume.
The FCI reduces the electric current density and thus Lorentz forces significantly. At the
FCI entry, strong transversal Lorentz force components occur, directed into the channel
core region. Under particularly strong magnetic fields, a major momentum balance occurs
between Lorentz force and pressure gradient, while velocity-related momentum, i.e., inertia
and viscous forces, play a minor role. As shown in the bottom contour plot, this seems
to decouple the velocity distribution from the Lorentz force where no apparent correlation
exists between them.

Contours of velocity exhibit a uniform distribution in the bare channel upon approaching
the FCI. In the vicinity of the inlet, the fluid evades to the side forming a concave velocity
profile with high side jets and a low velocity in the center, as shown for x = 0. This effect
reverses drastically downstream after the FCI entry x > 0, where the profile involves a
center peak and low side velocity. As observed for electric potential and currents and in
agreement with previous works (Mistrangelo & Bühler, 2015), the low wall conductance
of the FCI results in a larger flow development length and less stable flow conditions in
addition. Zones of locally reversed flow occur along the sides close to the FCI entry, where
electric current exhibits a small swirl (yellow streamline). Observations show that for the
underlying parameter range of Ha = 2000 and Re = 20000, side layers directly behind the
FCI entry exhibit a small region of reversed flow with time-dependent perturbations.

Figure 5.6 illustrates the 3D developing MHD flow by presenting 3D profiles of vx as
well as the cross-sectional magnitude at characteristic axial positions.

The incoming pipe flow is fully developed and exhibits uniform velocity. 3D profiles displayed
in figure 5.6 show characteristic stages of developing FCI flow. In general, core velocity
remains constant along magnetic field lines and decays towards the fluid-wall boundary in
the form of extremely thin viscous layers. Upon FCI entry at x = 0, fluid first moves to the
sides, forming a concave curvature. This characteristic, however, instantly inverts shortly
after by turning into a convex profile that involves a high center peak, as represented for the
position x = 1. The high electric resistance of the inner FCI layer strongly restricts currents
and Lorentz forces within the FCI, which results in a considerably longer development length.
Accordingly, the profile flattens over several characteristic lengths, as shown, for example,
at the position x = 4, until it establishes a profile of fully developed FCI flow.

Plots in figure 5.7 help to directly compare the stages of evolving FCI entry flow by
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Figure 5.6: Profiles of axial velocity at x = 0, 1, 4 and colored contours on the plane y = 0
showing the distribution upon FCI entry. Local flow instabilities are marked as
gray isosurfaces of turbulent kinetic energy 0.5v′2 = (v − v̄)2. They occur due
to high velocity gradients in the side for 0 < x < 1.

overlaying axial velocity profiles at y = 0 for several axial positions. For all profiles, one can
observe thin viscous layers in close proximity to the sides at z = ±1. Starting in front of
the FCI, the core velocity profile evolves from uniform (at x = −1) to a concave curvature
at the FCI inlet x = 0 and then rapidly transforms downstream to a highly bent convex
curvature. As mentioned above, the high resistance of the inner FCI sheet is the reason
for the large downstream development length, respectively shown at positions x = 1, 4,
and 10. In contrast to the high conductance ratio between wall and Hartmann layer of
bare channel flow c1 Ha ≈ 170, the ratio inside the FCI is rather low cF CI Ha ≈ 9. As a
consequence, the fully developed velocity profile in the FCI, illustrated in red for x = 10, is
not completely uniform but in perfect agreement with the asymptotic solution proposed by
Chang & Lundgren (1961), as shown by the black dashed line.

The rapid flow transition from a concave to convex profile curvature occurring on a rather
short distance between 0 < x < 1, shown exemplarily in light-blue and green, involves steep
velocity gradients downstream directly behind the FCI inlet near the sides. In combination
with the low FCI wall conductance and associated drop of Lorentz forces, this destabilizes
the flow in the sides. Transient perturbations arise, which are localized to a comparatively
small domain, shown in figure 5.6 as gray isosurfaces illustrating velocity perturbations
|v′| = |v − v̄|, i.e., deviations from time-averaged values v̄. Impacts propagate further
downstream, e.g, in the form of kinks in the velocity profile at x = 1, represented green in
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Figure 5.7: Velocity profiles in the symmetry plane y = 0 along z at specific streamwise
locations. The black dashed line shows the asymptotic solution by Chang &
Lundgren (1961) for fully developed pipe flow with FCI conductance.

figure 5.7. The following section presents the essence of those 3D MHD-induced instabilities
in more detail.

Local flow instabilities

It is well known that MHD flows in electrically conducting rectangular ducts tend
to become unstable. This occurs preferentially in so-called side layers along walls that
are parallel to the magnetic field, where the fully developed regime involves jets with high
velocities (Picologlou & Reed, 1989; Ting et al., 1991). In general, flows in circular pipes do
not show increased velocities near the sides, and therefore such flows stay laminar up to high
Reynolds numbers. While in rectangular ducts, 2D or quasi 2D (Q2D) turbulent patterns
with low magnetic damping are possible (Sommeria & Moreau, 1982), such structures are
excluded in pipes due to curvature of the wall. However, a few exceptions exist where also
flows in circular pipes may develop some time-dependent structures. One example has been
shown by Albets-Chico et al. (2013) for 3D pipe flow in a fringing magnetic field where
localized jets near the sides may become unstable, and perturbations evolve through strong
detaching Lorentz forces and locally reversed flow. Similar phenomena can be observed in
the present model simulations when MHD pipe flow enters an FCI. Jets occur close to the
sides with strong gradients for velocity and Lorentz force. As a result, the flow in a small
vicinity near the sides becomes unstable directly behind the FCI entry x = 0. In contrast
to hydrodynamic turbulence, the arising transient perturbations are highly correlated and
aligned with the magnetic field.

In the present study, local instabilities exclusively appear with respect to the case 1 scenario
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at the lowest investigated interaction parameter N = 200. Other cases such as N = 2500
and N = 5000 remain entirely stable due to stronger magnetic damping.

Figure 5.8 presents at one side of the FCI entry contours of the electric potential
fluctuations φ′ = φ − φ̄, i.e., deviations from time-averaged values φ̄.
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Figure 5.8: Contours and isosurfaces of φ′ reveal alternating eddy structures. Intersections
of fluid and wall domain as well as insulation are outlined by thin lines. Black
lines indicate the cross-sectional plane y = 0.

Arising patterns show quasi-two-dimensional (Q2D) properties, where time-dependent
structures are anisotropic and elongated along magnetic field lines up to pipe dimension
(Smolentsev, 2021, pp. 14-16). In general, transient perturbations remain constant along
magnetic field lines, thus connecting the top and bottom boundary layers in the form of
elongated spinning columns, referred to as cigars (Mück et al., 2000) or barrels (Pothérat
et al., 2000). In the present problem, patterns stretch along field lines, with growing distance
from the sides due to the curvature of the pipe. Hence, perturbations dissolve rapidly due to
ohmic and viscous losses, which preferentially occur where eddies merge with the Hartmann
layers (Smolentsev, 2021, pp. 14-16).

Two probes at (0.3, 0, ±0.9) monitor the time-dependent phenomena at opposite
sides. Figure 5.9 presents the recorded transient fluctuation of the velocity component v′

z

versus time and frequency for opposite side locations, which are separated from each other
by the laminar core flow. The upper diagram shows a time history over three dimensionless
time units.

The presented data samples of opposite probe locations, shown in figure 5.9 (upper diagram),
are periodic for various time windows between T = 3 and T = 120. This consistent behavior
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Figure 5.9: Simulated fluctuations of transversal velocity component v′
z at opposing sides

(0.3, 0, ±0.9) versus time and frequency. While both signals are phase shifted,
their amplitudes are identical, as represented for both probes by the black line in
the bottom graph. Time is scaled corresponding to its characteristic dimensional
quantity L/u0.

suggests that the unstable simulations are performed long enough to develop converged
statistics. Accordingly, the Q2D columns show periodic velocity fluctuations. Observing
amplitudes across frequency in the lower diagram reveals that those transverse fluctuations
involve mainly one specific harmonic at a comparatively high amplitude of around 20
% compared to mean velocity as well as a few higher harmonics. Hence, the observed
perturbations detach from the sides at a regular rate and migrate into the core flow on their
downstream path. Moreover, unstable regimes at opposite sides seem to interact as their
fluctuations exhibit similar inward and outward fluctuations at almost the same time. Thus,
Q2D structures at opposing transverse positions have a different sense of rotation. Kinet
(2009, pp. 123ff.) and Arlt (2018, pp. 76ff.) report similar behavior in their studies on
unstable side layers in rectangular duct flows. They observe periodicity among detaching side
layer instabilities and identify characteristic interaction modes between turbulent regimes of
opposing side layers, separated by the laminar core. While time-dependent perturbations in
rectangular channels persist or even grow downstream, the unstable patterns in the present
problem exist only in a very narrow vicinity at the sides of the FCI entrance.

Figure 5.10 presents fluctuations of electric potential φ′ and pressure p′ within the
symmetry plane y = 0. Unstable Q2D vortex structures detach shortly after the FCI
entry. They grow in size for x > 0 and migrate towards the center before they dissolve.
Perturbations of electric potential and pressure behave in a similar way. Moreover, fluctuating
currents j′, portrayed by black limiting streamlines in the symmetry plane y = 0, connect
different vertical structures and show critical points such as sources and sinks.
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Figure 5.10: Distribution of fluctuating parts of electric potential φ′ and pressure p′ on the
horizontal symmetry plane y = 0 and current j′ shown as black streamlines.
The orange straight lines mark the insulation layer. Variables are scaled with
respective asymptotic solutions for developed FCI flow Miyazaki et al. (1983),
indicated by the subscript 2D, FCI.

In order to evaluate the significance of perturbations, their magnitude is compared with
data from comparable fully developed flow according to the asymptotic solution by Miyazaki
et al. (1983), indicated by the subscript 2D, FCI. Hence, amplitudes of electric potential
variations are three orders of magnitude smaller than the induced potential of fully developed
flow. Pressure variations, on the other hand, account approximately for 20 % of the
streamwise pressure drop of fully developed FCI flow along one characteristic unit length
∂xp2D,F CI · 1. The pressure scale enables the estimation of local gradients. Local variations
with magnitudes of approximately ∆pQ2D ≈ 0.4 act on length scales of about lQ2D ≈ 0.1.
The estimated local pressure gradient occurring between Q2D structures then becomes

∆pQ2D

∆lQ2D

= 4 . (5.7)

This means that local pressure gradients of Q2D regimes might reach up to four times
the streamwise gradient of fully developed FCI flow and thus are significant. This simple
estimation, however, accounts only within a close vicinity of the instability. Interesting,
but out of scope of the present work, could be further analyses determining the turbulent
Reynolds stresses or the determination of wall shear stress in order to assess in more detail
turbulence production and vortex damping.
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Pressure drop

For a large interaction parameter and Hartmann number N, Ha � 1, electric current
density and pressure are linked via the leading order terms in the momentum equation
∇p ≈ j × ey. Under this assumption of a magnetostatic balance, transversal and axial
currents determine the axial and transversal components of the pressure gradient

jz = −∂xp , (5.8)
jx = ∂zp . (5.9)

As a result, the pressure becomes an approximate stream function for current density,
i.e., currents flow preferentially on lines or surfaces of constant pressure. Figure 5.11
demonstrates this link between electric current streamlines and isosurfaces of pressure.
Across the entire fluid domain, current paths stay on isosurfaces of the pressure. After
leaving the fluid domain, currents either close inside the wall or the inner FCI layer, as
marked by blue and red streamlines, respectively. The pressure is constant along magnetic
field lines and varies only in xz-planes.
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Figure 5.11: Isosurfaces of pressure (gray surfaces) and electric current streamlines. Blue
lines close inside the pipe wall, and red lines over the inner FCI layer. The
orange cylindrical surface represents the FCI’s insulation.

In up- and downstream fully established flow, the pressure is constant in planes of cross-
sections, and currents in the fluid have a pure transversal orientation. Close to the FCI
entrance x = 0, however, currents start bending due to the axial potential gradient. The
isosurfaces of pressure that coincide with current lines reflect this effect as they stretch
far downstream. This indicates particularly high transversal pressure differences, which
contribute to the strong fluid redistribution accompanied by the aforementioned rapid
change of velocity profiles.

The green highlighted streamline represents an exceptional behavior of current flow as it
connects both unstable domains, enters the inner FCI wall, flows around the insulation,
and eventually closes over the upper and lower wall region. In this manner, the electric
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current interacts with the unstable regimes as it first curls horizontally and then orients in
the vertical direction in order to close over the solid domain. This behavior reaffirms the
aforementioned magnetohydrodynamic coupling between left and right transient regimes
across the laminar core flow.

The distribution of pressure and its gradients is shown in figure 5.12 on the left
and right sub-plot, respectively. Since the absolute value of pressure is irrelevant for the
physical behavior, the figure shows pressure differences with respect to a reference value
in the center of the pipe at x = 0. This normalization has been chosen to simplify the
comparison with experimental data of Bühler et al. (2020a) in section 5.6 where the same
definition of a reference pressure is applied. In the FCI entry vicinity, center and side pressure
differ, indicating a strong transversal pressure difference, as shown by blue and red lines,
respectively. This behavior is expected from the curved and highly elongated isosurfaces of
pressure at this location, as observed in figure 5.11. While the axial transition of the core
pressure at z = 0, blue line, appears relatively smooth, the side pressure at z = 1, red line,
experiences a rapid drop in front of the FCI entry. This effect becomes particularly evident
by observing the pressure gradients in figure 5.12 (right). High current densities, preferably
closing over the well-conducting wall in front of the FCI, result in large-scale current loops,
leading along the side regions to high axial and transversal pressure gradient peaks, shown
red. Of particular interest is the axial component of the pressure gradient along the side
wall, since for hydrodynamic flow a change of sign of pressure gradient typically indicates a
stagnation point (or separation line) and onset of flow separation. For further discussion on
MHD flow separation see section 5.4.
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Figure 5.12: Axial distribution of pressure (left) and its gradients (right) along center and
side wall. Thin black lines indicate asymptotic solutions of both bare pipe and
FCI flow.

A closer look at axial pressure gradients in figure 5.12 (right) reveals localized spatial
oscillations in the displayed results right behind x = 0 near the side. These oscillations have
been discussed above with figure 5.10. They grow in size when moving with the flow before
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they dissipate further downstream. The pressure distribution in the center remains laminar
and stationary (blue line).

The distribution of pressure is shown on the left sub-plot along the center (blue) and along
the side (red) . It can be observed that far upstream and downstream, the numerical
simulations coincide with the theoretical predictions for fully developed flow in the pipe and
in the FCI

−∂xp2D = c1

1 + c1
, (5.10)

−∂xp2D,F CI = cF CI

1 + cF CI

, (5.11)

as indicated by straight black lines. From the figure and from equations 5.10 and 5.11 one
can see and quantify the benefit of FCIs by comparing both values

∂xp2D,F CI

∂xp2D

= 1
16 (5.12)

As a result, the fully developed pressure gradient in the FCI is by a so-called pressure drop
reduction factor of 16 times smaller than it would be in the pipe without the FCI. However,
3D MHD phenomena occurring at the entrance and exit cause an additional pressure drop
∆p3D, which can be determined by extrapolating the fully developed solutions towards
x = 0. This results in

∆p3D = 0.07 . (5.13)

Although such additional losses seem rather low in comparison to bare MHD channel flow,
one must keep in mind that ∆p3D corresponds to a pressure drop in an FCI over more than
14 characteristic lengths

l3D = ∆p3D

∂xp2D,F CI

= 14 . (5.14)

In other words, an efficient design of the FCI should consider lengths much longer than l3D

in order to overcome its entrance-induced losses. Similar observations apply to FCI exits
and conjunctions between FCIs. The latter is investigated in more detail in appendix A.

5.4 Magnetodynamic phenomena

Under 3D MHD developing flow, Lorentz force and velocity behave apparently de-
coupled from each other with respect to their dynamic relations, as shown throughout
this study. Peaks in velocity occur at the sides although flow opposing Lorentz forces
are highest and, likewise, low-velocity regions appear in the center where braking Lorentz
forces are weakest. The reason is an overwhelming magnetostatic momentum balance
between pressure gradient and Lorentz force. This leaves only a reduced momentum balance
between inertia and viscous forces as well as a residual magnetodynamic force. The latter
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becomes relevant in 3D MHD developing regions, where it redistributes the fluid flow.
Accordingly, the magnetodynamic force introduced in equation 4.16 serves as an appropriate
indicator to reveal the impacts of 3D MHD effects on the velocity distribution. Moreover, a
deeper analysis of the magnetodynamic momentum profile reveals a good correlation with
characteristic aspects of velocity in 3D MHD developing regions, such as local extrema and
internal shear layers. Results shown within this section refer to an FCI approximation of
level 1 at Ha = 2000 and Re = 20000.

Redistribution of the flow

Figure 5.13 presents contour plots of magnetodynamic force fmd and velocity for FCI
entry flow, including fmd also as vector representation.
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Figure 5.13: Contours of magnetodynamic force (top) and velocity (bottom) concerning
FCI entry flow at Ha = 2000 and Re = 20000. fmd is scaled by the Lorentz
force fL,2D for fully developed pipe flow. While the color scale for fmd/fL,2D is
limited to 0.1 for better visibility of structures in the core, highest magnitudes
in vary narrrow regions may reach values up to 4. Orange solid lines and green
dashed lines indicate so-called separation lines (Tobak & Peake, 1982), which
enclose characteristic zones of fmd.

Relevant magnitudes of fmd merely occur in regions of 3D MHD flow redistribution. While
it remains across almost the entire domain below 10% of the Lorentz force fL,2D of fully
developed pipe flow, across narrow, unstable side domains near the FCI entry it exceeds
the displayed colorbar limit up to 4 times of fL,2D. Especially close to the FCI entry
x = 0, the orientation of the magnetodynamic force varies considerably, as shown by vector
representations.
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Orange lines in figure 5.13 (top) show so-called separation lines (Tobak & Peake, 1982) of
the vector field fmd. They subdivide the magnetodynamic force distribution into eight cells
(four for z ≶ 0, respectively), where each contains a rotational center of fmd. Adjacent
cells exhibit an opposite sense of rotation. The vertices of those cells show nine locations,
where lines of forces separate and fmd becomes undetermined. Those are critical points of
the magnetodynamic force distribution in the symmetry plane y = 0, labeled O±. More
precisely, they are saddle points involving either axially converging and transversally diverging
behavior or vice versa. The former, marked by superscript +, indicate axially converging
acceleration force and therefore coincide with local velocity maxima, as shown by the velocity
contour plot in figure 5.13 (bottom). The flow is first accelerated to the highest speed at
O+ and retarded beyond that point. The other critical points, marked by the superscript
−, indicate axially diverging fluid acceleration and therefore reflect local velocity minima.
Upstream located velocity extrema for x < 0 of bare pipe flow are comparatively small and
are therefore not visible in the plot by the discrete velocity contour lines.

Far away from the FCI entry, fmd is negligibly small. The developing FCI flow in the
downstream direction x > 1 indicates that the evolving velocity distribution has not yet
reached fully developed conditions within the axial region displayed in the figure. This
agrees with former observations of development lengths in the FCI that extend over several
characteristic lengths.

Internal shear layers

It is well known that for applications with very strong magnetic fields, internal layers
may spread along magnetic field lines across the entire fluid domain. These layers typically
emerge from singularities in wall properties such as sharp corners (Hunt & Leibovich, 1967),
sudden change of wall conductance (Kolesnikov & Tsinober, 1972), or when the flow passes
around obstacles (Ludford, 1960). The abrupt change in wall conductance when pipe flow
enters an FCI constitutes such a case in which a so-called Ludford layer forms transverse to
the main flow direction across the FCI entrance cross-section. The thickness of internal
Ludford layers typically scales as

δL ∼ Ha− 1
2 or δL ∼ N− 1

3 (5.15)

in the electromagnetic-viscous or electromagnetic-inertial regime, i.e., when N � Ha3/2

or N � Ha3/2, respectively. For the parameters used in the present study, Ha = 2000,
Re = 20000, the latter definition applies.

Figure 5.14 shows contours of the transversal velocity component vz for FCI entry flow.

Results are shown within a horizontal plane at y = 0 (top) and a vertical plane z = −0.5
(bottom), as indicated by the purple dashed lines in the sketch and plots. As highlighted
by color for negative (blue) and positive (red) directed transverse flow, these regions
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Figure 5.14: Contours and vector representations of the transverse velocity component vz

for FCI entry flow at Ha = 2000 and Re = 20000, displayed on the horizontal
symmetry plane y = 0 (top) and on a vertical plane z = −0.5 (bottom) as
shown by purple dashed lines. Orange dashed lines mark a Ludford layer of
thickness δL. Green dashed lines illustrate the separation lines of fmd.

fundamentally comply with the characteristic cells defined by the separation lines of fmd,
shown as green dashed lines. While far upstream and downstream, the transverse flow
gradually evolves over relatively long distances, the figure reveals rapid changes within
a narrow region near x = 0, indicating the presence of a transverse Ludford layer. For
comparison, a layer of thickness δL = N−1/3 has been added to the figure shown by dashed
orange lines. The latter quantity should be considered only as an order of magnitude
estimate, and a comparison with present simulations shows that the real layer is a bit thicker.
This observation is supported by analytical solutions for other types of Ludford layers where
the transition across the layers may even take 4-5 times the value of δL (Hunt & Leibovich,
1967, figure 3).

The distribution of vz in a plane z = −0.5 is shown in figure 5.14 (bottom). It can be seen
that the velocity field is highly correlated along magnetic field lines, which is expected for a
major balance between pressure force and Lorentz force. The curvature in the streamwise
direction of some isolines shows deviations from the pure Q2D behavior, which are caused
preferentially by inertia contributions near the FCI entrance. Similar deformations of banana-
type patterns have been observed in unstable side layers of rectangular duct flow (Mück
et al., 2000), and their origin is related to residual weak inertia effects (Pothérat et al.,
2000). The fact that curvatures of isolines vanish with increasing interaction parameter,
i.e., by increasing the Hartmann number for example to Ha = 5000 while keeping Re fixed
(not shown here), is a clear indication that inertia effects become negligible for stronger
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magnetic fields.

Further details on magnetodynamic phenomena at FCI conjuncations can be found in section
appendix A.

Throughout this work, the magnetodynamic force has proven to be a reasonable
indicator for the coupling between electromagnetic momentum and velocity. In particular,
for 3D MHD flows, results show that critical points of fmd coincide with local velocity
extrema, and separation lines of fmd and velocity almost coincide. This might be useful for
future analyses of MHD flows in more complex blanket geometries.

5.5 Advanced FCI models

So far, results for FCI flow have been discussed exclusively assuming the level 1
approximation model with a constant inner radius. The present section shows results
from the higher approximation levels 2 and 3 that consider geometric details of the FCI
as introduced in figure 5.2 and discusses their impact on magnetohydrodynamic effects
occurring at FCI entries. Level 3 is closest to the application and considers a fluid gap
between pipe wall and FCI, which enables an elaborate analysis of flow in the gap and
quantification of mechanical loads on the FCI.

Impact of FCI model approximations

In order to show the impact of FCI approximation levels on the MHD flow, figure 5.15
presents the axial velocity and pressure distributions along the duct center of FCI entry flow
in the upper and lower plot, respectively, for the three approximation levels. Computations
for all three levels show qualitatively comparable velocity vx along the pipe axis with only
slight differences inside the FCI x > 0. Strong 3D MHD effects first brake and then for
x > 0 accelerate the core flow, followed by a slow convergence to the final fully developed
state over several characteristic lengths. The data reflects the formerly observed rapid
change in velocity profiles.

Concerning developed FCI flow far downstream x � 0, the level 1 model exhibits an increase
of center velocity by 3%. This is due to the low FCI wall conductance, which increases the
impact of boundary layer currents and results in a slight convex curvature of the velocity
profile inside the FCI, as exemplarily shown for positions x = 4 and x = 10 in figures 5.6
and 5.7. For approximation level 2, the bare pipe has a larger inlet radius Ri. The latter is
sharply reduced to the FCI radius RF CI at x = −0.1, which affects the fluid flow in the
form of a sudden contraction. As imposed by mass conservation, the mean FCI velocity
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Figure 5.15: Nondimensional axial velocity and pressure for FCI entry flow at Ha = 2000
and Re = 20000, for different approximation levels. The pressure reference is
set such that p(x = 0) = 0.

therefore rises according to the channel cross-section ratio

R2
i

R2
F CI

= 1.07 , (5.16)

which explains the 7% higher velocity of fully developed FCI flow compared with results
from simplest level 1. The model of approximation level 3, in addition, considers the gap
flow between FCI and duct wall. This enables a marginal portion of the fluid to bypass the
FCI through the wall/FCI gap, which slightly reduces the mean velocity inside the FCI in
comparison with level 2 by approximately

δvgap ≈ 1% . (5.17)

The pressure distribution appears rather unaffected by FCI approximation levels, as shown
in the bottom plot, where the value of pressure reference has been chosen as p(x = 0) = 0.
The pressure gradients inside the FCI for x > 0 show a good agreement for all considered
approximation levels. Upstream, on the other hand, the thicker pipe wall of the level 1
poses a higher wall conductance, which leads to stronger currents and therefore to higher
MHD pressure drops in agreement with asymptotic theory (Miyazaki et al., 1983).

Table 5.4 presents the 3D MHD pressure drop obtained by different FCI approximation
levels for several simulated cases. Values of ∆p3D apparently increase with decreasing
N , which suggests a slight impact of inertia on 3D MHD pressure loss. Since both N
and Ha are large, inertia and viscous effects are of minor importance because the physics
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is governed by a balance between pressure and electromagnetic forces so that ∆p3D is
practically independent of N and Ha. In general, it would be possible to distinguish the
viscous and inertial contribution of ∆p3D, as, e.g., described by Stieglitz et al. (1996) for the
case of right-angle bends. However, it is out of the scope of the present work to determine
these tiny fractions for the considered applications.

FCI inlet FCI conjunction
N Ha level 1 level 2 level 3 level 1 level 2

case 1 200 2000 0.0694 0.0742 0.0728 0.167 0.166
case 2 5000 5000 0.0676 0.0722 0.0694
case 3 2500 5000 0.0682 0.0723 0.0698

Table 5.4: 3D MHD pressure drop ∆p3D for Ha and N , as obtained by different approxi-
mation levels for flows entering an FCI and at the conjunction between two FCIs
(see appendix A).

The most accurate model, level 3, foresees fluid flow and electric currents in the gap between
FCI and pipe wall. Hence, only the level 3 model is capable of taking into account such
effects, where complex 3D currents recover a part of the 3D MHD pressure drop by closing
over the FCI/wall gap. However, it turns out that differences of ∆p3D among approximation
models are fairly small, and thus the simplest level 1 approach is already able to determine
pressure drop with sufficient accuracy. The model used in level 2 does not lead to a better
description compared with level 1.

In summary, all approximation levels describe the overall flow and 3D MHD pressure
drop with sufficient accuracy. Moreover, the geometric contraction considered by higher-
order models has little impact on the formation of internal shear layers and spanwise velocity
components. From an engineering point of view, it is therefore justified to omit the flow in
the FCI/wall gap as well as the small pipe contraction upon FCI entry while focusing on
MHD effects in the core flow in full blanket simulations as, e.g., in Klüber et al. (2019).
On the other hand, when the interaction between the fluid in boundary layers, FCI, and
wall domain, is of interest, significant localized discrepancies may arise depending on the
FCI approximation level.

For different approximation levels, figure 5.16 presents the axial velocity component vx

within the plane y = 0 close to the side region near the FCI entry. Towards the core z < 0.8,
all levels exhibit the same typical 3D MHD behavior, as shown by color distributions and
black velocity streamlines. As described above, for all approximation levels, the velocity
transforms from a uniform profile to a concave and then convex curvature involving a side
maximum velocity close to x = 0 with a subsequent low-speed zone. However, the impact
of the approximation level becomes apparent in direct boundary vicinity, where vx varies
most strongly among approximation levels. In this context, levels 1 and 2 differ marginally,
as the latter shows slightly stronger side jets near x = −0.1 due to the fluid displacement at
the sudden diameter contraction. Apart from that, both solutions show reversed boundary
flow, highlighted in pink, upon FCI entry. Unstable Q2D patterns detach from the sides,
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move towards the core, and disappear. In fact, the level 2 approximation, involving the
sudden diameter contraction, provides no relevant impact on both core and boundary flow,
in general, compared to results from level 1. This favors a more cost-effective level 1 model
in place of a more elaborate level 2 approximation. The level 3 approach, on the other
hand, exhibits neither transient effects nor backflow inside the FCI. Instead, a reversed flow
in the gap between the pipe wall and FCI emerges from downstream (close to x = 1.5).
This reversed flow leaves the gap in a jet-like manner and forms with the incoming flow a
thin and stationary recirculation loop in front of the FCI. Inside the FCI, this jet orients
downstream parallel to the wall, penetrates the low-velocity zone, and forms there a thin
internal layer of high velocity.
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Figure 5.16: MHD flow near the entrance of an FCI for Ha = 2000 and N = 200.
Distribution of axial velocity component vx at y = 0 show the interaction
between boundary fluid, FCI and pipe wall depending on the FCI approximation
level. Pink illustrated areas highlight zones of reversed flow and light-gray ones
the solid domain. The orange straight line indicates the insulation layer.

The fundamentally different boundary interaction of the level 3 model represents an ex-
ceptional case. First, the level 3 model shows no sign of transient behavior. The gap
flow between FCI and the well-conducting pipe wall involves a jet of fluid upstream that
prevents the core flow from detaching at the step in front of the FCI. Instead, the reversed
flow emerging from the gap is redirected in front of the FCI entry region, which results
in a stationary U-turn. Moreover, associated inertia pushes the redirected stream slightly
towards the pipe center. Both other approximation levels show, in contrast, significantly
higher near-wall velocity gradients, which promote instabilities when they detach from the
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wall. The higher wall distance of the side jet in the level 3 approach, however, prevents such
destabilizing boundary interaction. Instead of dissipating kinetic energy in side layer instabil-
ities or dispersing into the core flow, the jet forms a high-velocity stream oriented parallel
along the inner side of the FCI, reaching far downstream where it gradually dissipates.

Although the FCI approximation level has no essential impact on the overall flow,
quite interesting phenomena may arise near boundaries that are revealed exclusively by
simulations with the most detailed model in level 3. The correct description of flow in the
gap between FCI and wall is required, such as gradients and distribution of velocity, for the
prediction of transport of tritium or corrosion products and has to be known when designing
FCIs. Further details of gap flow are discussed in the next section.

Annular flow in the FCI/wall gap

In order to visualize the redistribution of boundary fluid within the FCI entry region,
velocity streamlines in figure 5.17 illustrate pathways of near-wall fluid elements. Depending
on the initial location in the boundary layer, three different types of streamlines unfold as
highlighted by color. The problem is symmetric in y and z, and it is therefore exemplarily
shown for a quarter of the geometry, for y, z > 0. Fluid paths starting close to the side
as those marked blue entangle in the static recirculation loop upon FCI entry and enter
the FCI directly. Streamlines highlighted in green first enter the gap between FCI and pipe
wall. Here, 3D electric current loops wrap around the FCI, as shown in figure 5.3, and
Lorentz forces push the gap fluid towards the sides. Hence, the pressure in the side gap
region rises to a value at which it deflects the fluid backward as a bundled stream. This
stream then exits the gap and forms a stationary recirculation loop in the form of a U-turn
before entering the FCI. Inside the FCI, green and blue streamlines come close to each
other and constitute a downstream jet of high intensity (see also figure 5.16). Only a small
fraction of incoming boundary flow, represented by red streamlines, enters the gap and
passes downstream along the gap domain. The amount of gap flow that originates from
top and bottom positions in the pipe eventually distributes around the insert to approach
fully developed conditions far downstream. To the author’s knowledge, the only existing
reference describing similar behavior concerns a case involving rectangular duct flow, shown
by Morley et al. (2008b, figure 4), but the underlying physics remains so far unaddressed.

As portrayed by streamline patterns, the flow separates between the green and red stream-
lines within the FCI/wall gap region. In this context, the study of characteristic velocity
contours helps to gather further knowledge about flow topological features (Perry & Chong,
1987). Since the gap is extremely thin, radial velocity components vr may be neglected.
Consequently, the gap flow becomes two-dimensional involving velocity components only in
the axial vx and circumferential vα direction. The purple line indicates the characteristic
contour where the axial velocity component vanishes, vx = 0. This line encloses the region
of backflow. The most downstream position of reversed flow forms a saddle point close
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Figure 5.17: Redistribution of boundary fluid upon FCI entry depending on its initial upstream
location as shown by different colors. Blue and green streamlines enter the FCI,
while red ones pass through the annular gap. The purple line represents the
contour vx = 0, which encloses the region of back flow. Black circumferential
lines at x = −0.2,0,1.5 mark axial locations for which velocity profiles are shown
in figure 5.18. The transparent orange cylinder indicates the FCI insulation.
Ha = 2000 and N = 200.

to x = 1.5 marked as O into which fluid converges from the line separating green and red
streamlines. From the same point, fluid diverges upstream and downstream in the horizontal
plane y = 0.

In order to illustrate the stages of evolving flow in the gap, figure 5.18 presents
corresponding axial velocity profiles at several axial positions. The velocity profile of flow
entering the FCI at x = −0.2 exhibits four positive jets, two at each side. They are
separated from each other by the reverse stream exiting the gap, which forms the stationary
U-turn. The inner FCI jets contain fluid from the upstream boundary, as portrayed by blue
and green streamlines in figure 5.17. Further downstream, where the insulation starts at
x = 0, the velocity in the gap is almost uniform and positive in regions where currents close,
see figure 5.3, and thus evoke downstream directed Lorentz forces. Side gap regions, on the
other hand, show an enormous reversed flow, which is present within the zone marked by the
purple line in figure 5.17. The strong backward jet consists of the fluid collected from the
green streamlines up to the downstream position of the saddle point close to x = 1.5. The
remaining downstream motion originates from red streamlines and forms a quite uniform
profile at a very low velocity near x & 1.5. From there on, it takes a considerable distance
for the gap flow to approach fully established conditions since the fluid redistributes slowly in
the circumferential direction. The profile at position x = 8 demonstrates the fully developed
gap flow, where major motion occurs in the form of high-velocity jets at the sides while the
other fluid in the gap is almost stagnant.
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Figure 5.18: Development stages of velocity profiles in front of the FCI at x = −0.2 and
in the annular gap at specific downstream locations x = 0, 1.5, 8, marked by
black circles in figure 5.17. According to the color scale, dark blue or red marks
velocities below 0 or above 1, respectively. Ha = 2000 and N = 200.

In order to explain the unusual velocity profiles observed in figure 5.18 for fully
developed gap flow, it is useful to recall a simple asymptotic description of such flow
in insulating channels of arbitrary geometry (Chang & Lundgren, 1961). Under these
conditions, the core velocity is proportional to the local duct height measured in magnetic
field direction

uc ∼ Y . (5.18)

Similar behavior where the core velocity correlates with the duct shape becomes observable
for more general cases as well, so that equation 5.18 may serve as a qualitative predictive
tool for velocity profiles in general, (see, e.g., (Klüber et al., 2020a)). Figure 5.19 shows the
definition of channel height in magnetic field direction 5.19a and its transversal distribution
5.19b for an annulus of gap thickness tg. Channel height Y and consequently core velocity
uc are low starting from z = 0. They rise monotonically towards the sides. A discontinuity
occurs at z = ±zd, where the channel height instantly doubles. It is close to this transverse
position, where the highest velocities are observed in a tangent layer before dropping to
zero near the sides. While the outlined explanation has been derived for insulating walls
(Chang & Lundgren, 1961), similar phenomena can also be observed for channels with
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electrically conducting walls. Thus simple geometric arguments support the explanation
for the existence of observed side jets. An analytical and numerical analysis by Kumamaru
(1984) confirms the existence of strongly pronounced velocity peaks in annular channel
geometries.
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(a) Definition of channel height Y and
wall discontinuities at z = ±zd.

−zd 0 zd
0
tg

z

Y

(b) Distribution of channel height Y over z.
Figure 5.19: Qualitative description of channel height Y measured along B. Concerning

fully developed annular gap flow, the gap velocity directly correlates with Y .

The present work shows that while the annular gap makes up 2.5 % of the total
cross-section, it carries only 1 % of the flow rate. Moreover, as shown in figure 5.18,
practically all gap flow is carried by thin jets along the sides, whereas the fluid in the major
part of the gap is nearly stagnant. Regions with strongly reduced flow in fusion blankets
bare the risk of undesired tritium accumulation when an efficient convective transport is
not guaranteed or missing (see e.g. analysis in Candido et al. (2021)).

Moreover, numerical results within the developing region close to the FCI entry exhibit
considerable velocity peaks of the reversed gap flow. In fact, their maximum at Re = 5000
and Ha = 5000 corresponds to around 13 times the mean pipe flow velocity. High
liquid metal velocities at high temperature provoke corrosion issues as outlined by Konys
et al. (2011). The latter authors find velocity-dependent corrosion rates of up to 150
µm/year for the blanket structural material at breeder temperatures of 550 ◦C and at a
mean velocity of 5 cm/s, which pose a realistic temperature and flow rate occurring in
breeding blankets (Smolentsev, 2021, table 1). For an FCI entry flow scenario with only
0.5 mm thick FCI protection layers, the side velocity peaks at FCI entries seem to be
corrosion-relevant to blanket-realistic scenarios. Moreover, adding MHD phenomena to
the corrosion problem, Bucenieks et al. (2006) find a "considerable intensification" of the
corrosion process, including wavelike ridges at the contact surfaces. As a consequence,
present results with strong and highly nonuniform flows at FCI entries seem important for
fusion applications. In particular, the long-term integrity of the thin protecting sheets of
the FCI at the entry should be investigated in future works by analyses coupled with mass
transfer.
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Besides the thermal and corrosive loads mentioned above, the FCI must also withstand
mechanical stress. The following section addresses such loads evoked by pressure differences
and FCI-internal Lorentz forces.

Pressure equalization and mechanical FCI stress

One major mechanical load on the FCI arises from the difference between the inner
bulk pressure pi and the outer gap pressure po, as shown in figure 5.20. The original FCI
patent by Malang (1987) regards this load as potentially critical. According to Malang, such
pressure imbalance could over-stress the rigid structure of the ceramic insulator. Hence,
that design foresees openings in the FCI as a countermeasure connecting bulk and gap flow
to guarantee pressure equalization between those domains. Studies of developed FCI flow
for ceramic FCIs with finite conductivity, however, reveal that such pressure equalization
openings are ineffective independent of their orientation or dimension (Sutevski et al., 2014).
In contrast to the original design, the FCI considered in the present study perfectly decouples
the bulk and gap domain. This allows the evaluation of mechanical loads in the absence
of pressure equalization measures for both developing and fully developed FCI flow, whose
impacts on FCI pressure imbalance can be quite different according to Smolentsev et al.
(2006) and Ni et al. (2011).
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Figure 5.20: Sketch of an FCI segment illustrating surrounding pressures pi,o and FCI internal
Lorentz forces fLn. Inner FCI currents are marked red and internal Lorentz
forces green. The orange line represents the FCI internal insulation layer.

The difference between gap and bulk pressure along the FCI shells defines the inward directed
mechanical force per surface element of the FCI

∆pF CI = po − pi . (5.19)

Figure 5.21 presents ∆pF CI for FCI entry flow along the upper cylindrical shell of the FCI
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Figure 5.21: Pressure load ∆pF CI on the FCI for Ha = 2000 and N = 200. Values are
normalized by the axial pressure gradient of fully developed FCI flow over one
characteristic length ∂xp2D,F CI · 1.

without any pressure equalization measures. Results are normalized with internal pressure
drop over one characteristic length as defined by equation 5.11. The developing region where
the pressure load ∆pF CI (x, α) depends on x and α extends approximately to 5 ∼ 7 radii
from the FCI inlet. Further downstream, bulk and gap flow are fully developed, involving
constant and uniform axial pressure gradients in both domains. Consequently, the load
becomes uniform along α, and it decreases linearly along x, i.e., ∆pF CI ∼ −x, as shown
downstream by the constant distance between contour lines. At FCI inlet and outlet, gap
and bulk pressure equalize so ∆pF CI = 0.

Around the whole FCI shell, the value range of ∆pF CI remains positive. This indicates that
the pressure difference exclusively compresses the FCI, which poses the risk of buckling.
The highest compression appears at the sides in the vicinity of x = 2, where the gap flow
separates, and the internal side fluid exhibits a low-velocity zone. Those peaks correspond
to approximately 27 times the FCI pressure drop along one unit length. This means the
thin FCI shell encounters up to 27 times the load of the internal x-directed bulk stream
over one characteristic length. A comparison of dimensional values provides further insights.
Table 5.5 lists dimensional and normalized maximum pressure loads for three investigated
cases.

Re Ha max ∆pF CI

∂xp2D,F CI ·1 max ∆p∗
F CI [bar] vj,max

case 1 20000 2000 27 0.031 5.6
case 2 5000 5000 15 0.027 12.7
case 3 10000 5000 16 0.056 10.7

Table 5.5: Normalized and dimensional maximum FCI loads ∆pF CI and jet nondimensional
velocities vj,max for three simulated cases.

Distributions of ∆pF CI for cases 2 and 3 are qualitatively similar to case 1 presented in
figure 5.21, but they differ in magnitude according to values in table 5.4. The maximum



108 5 MHD flows in flow channel inserts (FCI)

mechanical pressure difference observed for case 3 close to x = 2 refers to a load of 0.056
bar. Values of cases 2 and 3 reflect the relation that ∆p∗

F CI is almost proportional to u0B
2
0

as suggested by the scaling, whereas for case 1, the load appears around 1.79 times higher
than expected. In this context, it is interesting to note that the maximum jet velocity vj,max

of reversed gap flow strongly differs from those cases. Magnitudes around 12 are found
for cases 2 and 3 at Ha = 5000, while jet velocity for Ha = 2000 reaches only half of
this value. The small number of only three simulated cases does not allow drawing definite
conclusions about the origin of the observed effects, in particular the unexpected magnitude
of normalized pressure load and jet velocity. However, since the interaction parameter for
case 1 is 12.5 times smaller than for case 3 and 25 times smaller than for case 2, the major
difference seems to be inertia effects related to the jets in the gap.

According to personal communications with the authors Koehly & Bühler (2017), who
proposed the present type of FCI for circular pipes, a critical inward-directed load to the
FCI would be in the order of one bar. This means that, in any case, those pressure loads do
not pose a serious risk to the FCI’s structural integrity. Consequently, under the considered
parameters shown in table 5.5, the present FCI design does not need pressure equalization
measures.

Besides outer mechanical loads, electric currents inside the protective FCI layers evoke
internal Lorentz forces, according to figure 5.20. Those currents, portrayed red, interact
with the magnetic field. This leads to Lorentz forces inside the FCI sheets, whose radially
directed component

fLn = r
|r|

· (j × B) (5.20)

might deform the FCI in the radial direction. Since Lorentz forces act orthogonally to the
magnetic field direction according to equation 5.20, only axial currents jx may lead to
Lorentz forces with radial components when B = ey. Since the conductive FCI sheets are
extremely thin, radial FCI current flow is negligible, and jx remains constant along r. The
cumulative radial load ς due to internal currents across either inner or outer FCI layer then
becomes

ςi,o =
∫

tF CI

fLn (x, RF i,o, α) dn = fLn (x, RF i,o, α) tF CI , (5.21)

where RF i,o is the mean inner and outer FCI radius according to figure 5.20. As equation
5.20 suggests, radial components of electromagnetic forces become zero at the top and
bottom of the pipe. Moreover, since the axially directed currents jx exclusively occur in the
developing flow, ς is restricted close to the FCI inlet or outlet region. Figure 5.22 confirms
this behavior in both FCI sheets, presenting ςi,o as contours in the upper and lower plots,
respectively.

As the color scale of ςi,o reveals, stresses in the inner FCI sheet generally point inward
(negative ς), and loads in the outer layer are directed outwards (positive ς). In this way,
they exert internal forces in the FCI that tend to split it at the insulation layer. This effect
is strongest at x = 0, where currents bundle and flow around the insulation in order to
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Figure 5.22: Electromagnetic loads in the FCI ςi,o of the inner (top) and outer (bottom)
FCI layer including the conductive FCI ledge for −lins < x < 0. Values are
normalized by the axial pressure gradient of fully developed FCI flow over one
characteristic length ∂xp2D,F CI · 1. Ha = 2000 and N = 200.

close over the well-conducting wall. Those forces quickly fade upstream for −0.1 < x < 0,
where inner and outer FCI sheets are electrically connected in the form of the welded ledge,
as well as downstream after one characteristic length. In addition, the inner sheet shows
around x = 1 moderate side load regions due to increased axial current flow jx.

The value range indicates that electromagnetic loads are 2-3 orders of magnitude smaller
than pressure loads displayed in figure 5.21. Hence, neither internal Lorentz forces nor
pressure loads compromise the FCI’s structural integrity under the investigated parameter
range.

In summary, the comparison of higher-order approximation models demonstrates that
already the level 1 approach robustly represents relevant MHD effects and thus is sufficient
for the investigation of fusion applications from an engineering point of view. Geometric
model improvements based on level 2 with increased computational difficulty, on the other
hand, do not noteworthy change results since the small diameter contraction has little
impact. However, taking into account the thin gap flow between the pipe wall and FCI
in the form of the level 3 model provides an entirely different boundary interaction in the
developing region with an impact on 3D MHD phenomena. Significant redistribution of
fluid occurs within the developing gap region, accompanied by high reverse jets and highly
nonuniform velocity profiles. Those might considerably affect tritium transport as well
as heat transfer in breeding blankets and should therefore be investigated in more detail.
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Impacts of Ha and N on 3D MHD pressure losses appear negligibly small, which supports
the assumption that the developing flow is almost inviscid and inertialess. Some residual
impact of inertia on pressure loads and velocity peaks may persist for the reversed jet flow
in the gap, at least for the lowest interaction parameter considered in the present study.
Finally, computations show that the FCI can withstand electromagnetic and pressure loads
under the investigated parameter spectrum without any countermeasures such as pressure
equalization holes or slots.

5.6 Comparison with experiments

An FCI as the one described above has been manufactured at KIT (Koehly &
Bühler, 2017) and installed in a thick-walled pipe in the liquid metal loop of the MEKKA
facility. Conducted experiments consider FCI entry flow (Bühler et al., 2020a) and flow
at conjunctions between two consecutive FCIs (Bühler et al., 2019). Experimental results
are available for internal bulk pressure as well as for electric potential along the outer
pipe surface. This section compares experimental data with numerical simulations. The
good agreement thus confirms the observations of strong 3D phenomena as well as the
applicability of underlying numerical methods presented and discussed above.

Bulk pressure

The experiments provide results of pressure measurements po that have been taken at
a number of pressure taps along the outer surface of the test section. One such pressure tap
is exemplarily sketched in figure 5.23. In order to detect the pressure pi of the FCI-internal
bulk flow, congruent holes are foreseen through the FCI and wall. Since the pressure is
constant along magnetic field lines for Ha >> 1, bulk and tap pressure coincide along y

pi = po . (5.22)

The orientation of pressure taps aligned with the uniform magnetic field requires no further
correction by consideration of wall currents since Lorentz forces in the taps have an exclusively
orthogonal orientation to B, as mentioned by Stieglitz (1994, p. 40), and therefore they do
not affect pressure readings. The bores across the FCIs locally disrupt the insulation layer,
which, in general, could lead to local leakage currents. However, since pressure taps and
bores are located at the pipe’s symmetry plane at z = 0, where φ = 0, leakage currents
from the bulk into the gap and well-conducting pipe wall are minimized.

Figure 5.24 presents the axial pressure distributions of FCI entry flow obtained using
the level 3 FCI approximation model. Results highlight the fact that for x > 0, the pressure
in the gap is nonuniform around the periphery and very different from the one on the pipe
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Figure 5.23: Sketch showing orientation of pressure taps and bores in the FCIs for measure-
ment of bulk pressure pi in the experiment. Orange lines indicate the internal
FCI insulation layer. Those bores and insulation openings do not exist in the
computational model.

axis. It has to be mentioned that the numerical model misses the pressure equalization holes
and thus fully decouples the bulk from the gap flow. The solid red line shows computational
results of side pressure distribution in the upstream pipe and downstream inside the gap.
In the developing region, the side pressure sharply recovers and drives the reversed flow
in a region that extends up to the critical point near x = 1.5. For x > 1.5, the side jets
invert and begin to evolve downstream. A smaller but still significant pressure recovery
is observed along the top (or bottom) position with a maximum value close to x = 3, as
shown by the solid green line. The latter is caused by downstream oriented Lorentz forces
in the gap, which locally increase the pressure. The gap flow becomes fully developed
around x = 5, where the red and green lines converge and start to descend linearly. This
fully developed axial pressure gradient in the gap depends on the FCI length, which in the
simulation ends around x = 10, where the imposed boundary condition equalizes bulk and
gap pressure. This is a shortcoming of the present simulation, and one might argue that
further improvement of the model could be achieved by simulations of longer FCIs and
taking into account either modified exit conditions or by simulations of the full length of
the FCI as in the experiment. However, it is expected that 3D phenomena of interest in
the present work near x = 0 are not very sensitive to the total length of the computational
domain and the length of the FCI. Moreover, the condition of equal pressure in the gap
and bulk flow and the vanishing axial derivatives of other variables at x = 10 represents
a symmetry condition for MHD flow in an FCI that has a total length of 20. The latter
dimension is close to the FCI used in the experiment.

The pressure distribution along the axis is shown as a blue line. In the bare pipe, a
strong pressure drop is present, while in the FCI, the pressure gradient is strongly reduced.
Numerical simulations are compared with experimental data (blue symbols), which show
in agreement with numerical simulations the same strong pressure gradient reduction of
bulk flow upon FCI entry for x > 0. The good agreement with high correlation values (see
appendix B) confirms both the accuracy of present numerical simulations and the assumption
of the applied measuring procedure in the experiment, i.e., that the local disruption of
insulation by pressure holes in the FCI at vertical position minimizes current leakage and
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that the pressure is constant along magnetic field lines. In fact, values perfectly correspond
to computations of an ideal FCI involving fully enclosed protective and insulation layers.
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Figure 5.24: Local pressure variation for FCI inlet flow obtained with the level 3 approxima-
tion model (solid lines) and compared with experimental data (symbols) for
Ha = 2000 and Re = 20000. Green dashed lines qualitatively indicate local
pressure equalizing through vertical FCI holes according to figure 5.23. The
correlation between experimental measurements and computations results in
CCC = 0.9857 for p (x, 0, 0) (see appendix B).

Green dashed lines qualitatively sketch the possible impact of FCI holes on gap pressure
if the FCI included equalization holes for bulk pressure measurement, as shown in figure
5.23. They illustrate how vertical equalization holes could affect the gap pressure in order
to balance differences between the bulk and gap domain. As found by Ni et al. (2011),
such balancing occurs only in the direct vicinity of pressure taps and affects rather the
pressure in the gap than the one inside the bulk of the FCI. Accordingly, the gap pressure
at a sufficient distance from the holes would remain unaffected, as predicted by the present
numerical simulations. For this reason, pressure holes at top or bottom positions in FCIs are
suitable means for experimental determination of FCI bulk pressure. As countermeasures to
achieve pressure equalization in the whole FCI-wall gap, they are rather ineffective.

Regarding future works, improved models could consider the full FCI length and include 3D
MHD phenomena related to the FCI outlet as well, in order to address more realistic gap
flow. In the context of gap pressure, this would result in developing regions at both ends,
which are connected by a uniform pressure gradient along the developed gap flow.

Electric potential on the wall

The experiments performed in the MEKKA facility (Bühler et al., 2019, 2020a) provide
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in addition electric potential data on the outer surface of the pipe along both sides at
probe locations shown in the sketch of figure 5.25. Data plots compare computations and
experimental measurements in terms of the spanwise potential difference

∆φ = φ2 − φ1 (5.23)

for FCI inlet flow at Ha = 2000 and Re = 20000. Far upstream, before entering the
FCI, the MHD flow in the bare pipe is fully developed, and ∆φ remains constant in axial
direction. The transversal potential difference of bare pipe flow (x < 0) is in very good
agreement with the outer wall potential according to the asymptotic solution by Miyazaki
et al. (1983)

φ2D,w = 2RoRi

R2
o + R2

i

1
1 + c

= 0.92 , (5.24)

shown as a horizontal black dashed line. Approaching the FCI entry at x = 0, ∆φ starts
decaying monotonously. Downstream for x > 0, the gap and pipe wall domain are shielded
from the flow-induced electric field v × B of the bulk flow since currents cannot cross the
insulation. Consequently, the potential difference ∆φ on the wall approaches 0 within about
five characteristic lengths.
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Figure 5.25: Transverse potential difference ∆φ for FCI inlet flow at Ha = 2000 and Re =
20000. Comparison of experimental results (symbols) and computations (solid
lines). The correlation between experimental measurements and computational
result of level 3 model yield a correlation coefficient CCC = 0.9985 (see
appendix B).

Computations and experiments reflect in good agreement the downstream decay of the
spanwise potential difference. Deviations between the levels 2 and 3 are rather small. On
the one hand, this proves the high applicability of coarser FCI approximation models. On
the other hand, slight differences demonstrate the impact of the gap stream, which only
level 3 takes into account. This means that jets in side-gap regions become measurable in
the form of very small residual potential differences ∆φ on the outer pipe surface. These
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potential differences do not asymptote to zero downstream as suggested by level 2 results,
but they approach a small constant value as predicted by the level 3 model. Side gap jets
are negative for x < 1.5 and positive for x > 1.5, also shown in section 5.5. According to
Ohm’s law ∂zφ ≈ vx, negative axial velocity weakens and positive axial velocity strengthens
the induced electric field in the transverse z-direction. The upstream jet present in level 3
decreases and the downstream jet increases the electric potential on the outer pipe surface
compared to level 2. Hence, when the gap flow fully develops for x > 5 and high side
jets arise, the solid blue line establishes a constant wall potential difference, while level 2
indicates zero potential difference. Experimental potential data is available only up to x = 5,
where data points show the tendency of forming a small but finite constant downstream
potential difference in very good agreement with simulation data of the level 3 model.

Further validation work on 3D MHD phenomena at FCI conjunctions involving experimental
measurements are located in appendix A. In total, computational results agree well with
experimental measurements from the pipe’s surface. This confirms a sufficient quality of
both generated models and the numerical approach in order to analyze complex 3D MHD
phenomena occurring at FCI entries and at conjunctions.

5.7 Summary

Studies have been performed, addressing 3D MHD phenomena at inlets and between
conjunctions of sandwich-type FCIs. The abrupt jump of wall conductance upon entering
or exiting the FCI evokes axial potential gradients that drive 3D currents. Those currents
preferably short-circuit over the well-conducting wall, leading in the developing region to
strong transverse Lorentz forces that redistribute fluid flow and which may in some cases
locally destabilize side regions. Such local instabilities, however, have no noticeable impact
on the total pressure drop. The study confirms a high efficiency of pressure drop reduction
by the investigated FCIs, provided they are long enough to compensate for additional 3D
losses at the entrance and exit.

Analyzing the magnetodynamic force for the considered cases of FCI flow reveals the
electromagnetic impact on inertial and viscous effects. Critical points of fmd coincide with
local velocity extrema, and separation lines of fmd align with internal shear layers. The
magnetodynamic force, therefore, constitutes an appropriate analytical tool to investigate
complex 3D MHD phenomena in fusion-relevant geometries.

Different levels of geometric simplifications have been investigated in order to assess
their physical consistency. Core flow phenomena agree well among all investigated FCI
approximation models, which capture relevant properties such as pressure drop and flow
distribution. The boundary interaction, on the other hand, differs largely when including
the gap flow into the FCI model. The thin gap domain exhibits a highly nonuniform velocity
distribution involving enormous side jets as well as a large portion of stagnant gap fluid.
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According to literature, those strong variations of velocity might seem important in regard of
heat and tritium transport and corrosion, in particular of the extremely thin FCI protection
layers. Moreover, including the gap region in the numerical model enables subsequent
mechanical stress analysis, taking into account pressure loads and FCI-internal Lorentz
forces. In this context, results indicate no serious risk to the FCI’s structural integrity under
the investigated parametric range when no pressure equalization measures are foreseen.

Throughout this study, numerical results perfectly agree with the asymptotic theory, where
the flow is fully developed. Moreover, computations reproduce experimental measurements
of pressure and electric potential from the pipe surface in regions of strong 3D MHD
phenomena. On the one hand, this confirms the assumptions of experimental measurement
techniques, where bores in the FCI at vertical positions enable local pressure equalization
with the bulk flow and simultaneously minimize current leakage to the well-conducting
pipe wall. On the other hand, experimental observations from the pipe surface reflect
numerical analysis that, moreover, enables a direct observation and investigation based on
fluid-internal data. Where analytical solutions and experimental techniques become too
expensive or, in some cases, impossible, the application of computational MHD codes still
enables extensive analysis of the most complex MHD phenomena. Therefore, numerical
approaches are crucial to fusion engineering and research.
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6 Final remarks

6.1 Summary

The present work addresses code development, verification, validation and application
for complex three-dimensional liquid metal flow in strong magnetic fields and circular pipes.
The obtained knowledge supports ongoing research on liquid metal MHD and, in particular,
the conceptual design phase of breeding blankets in fusion engineering. Significant progress
is made by extending the capability of the MHD code used at KIT. This has been achieved in
the present work by a current density conservative formulation and by introducing advanced
discretization schemes for electric potential gradients, which yield robust convergence and
accurate results on unstructured grids. The latter point is important for the future usage
of the code for the prediction of MHD flows in complex thermally and electrically coupled
geometries of liquid metal blankets, where structured grids are difficult to implement.

In the first part, numerical spatial discretization schemes are thoroughly verified
against analytical and numerical solutions for fully developed pipe flow. These tests involve
the convergence of results with increasing grid refinement for various types of grids for
insulating and electrically conducting walls. It is shown that the upgraded code is now,
for the first time, capable of simulating MHD flows using unstructured grids even for very
strong magnetic fields.

The second part of this work analyzes more complex 3D MHD phenomena in straight,
circular pipes under a nonuniform magnetic field, motivated by recent experimental work
performed in the MEKKA laboratory, where a liquid metal flow enters a magnet (Bühler
et al., 2020b). The incoming hydrodynamic flow is turbulent and adequately resolved in
space and time. The time-averaged entrance profile of velocity is validated by comparison
with predictions by the well-known logarithmic law of the wall. The reconstruction of the
multi-component nonuniform magnetic field is confirmed by comparison with measurements
inside and outside the magnets center plane. Computational results for 3D MHD flows are
validated by comparison with approximate solutions and experimental data for pressure,
electric potential, and velocity derived from electric potential probes (Bühler et al., 2021).
The presented validation work shows quite good agreement with the reference data and
qualifies the code for applications with 3D MHD flows in more complex geometries.

In a third part, 3D MHD flows are investigated in the vicinity of pressure drop reducing



118 6 Final remarks

flow channel inserts (FCIs) to complement the experimental results obtained in the MEKKA
laboratory (Bühler et al., 2019, 2020a). Three simplifying computational models of the
FCI have been successfully implemented with an increasing degree of geometrical detail
and their results have been validated with approximate solutions and experimental data.
Numerical methods reveal internal MHD phenomena, which otherwise remained hidden
from experimental measuring techniques.

The investigated MHD flows mostly maintain a magnetostatic equilibrium, i.e., the
Lorentz force essentially balances the pressure force. The applied numerical approach
allows computing the residual fraction of the Lorentz force, which effectively accelerates
and brakes the fluid. This fraction of force is therefore introduced in the present work as
magnetodynamic force and it serves as analytical tool to reveal relations between velocity
and complex 3D MHD phenomena. The magnetodynamic force has been proven beneficial
for revealing the electromagnetic impact on shear layers, flow structures, and relevant inertia
effects of 3D MHD developing flow. Characteristic contours of the magnetodynamic force
coincide with internal shear layers and critical points of this residual force field are found at
positions of local velocity extrema.

6.2 Conclusions

The conducted grid studies support development and application of computational
MHD codes by assessing different numerical and spatial discretization schemes for fusion
relevant conditions. Depending on the wall conductance parameter c and Hartmann number
Ha, the following guidelines have been identified for adequate discretization of MHD flows
in circular pipes:

• If the wall is better conducting than the Hartmann layer, i.e., c � Ha−1, electric
currents mainly short-circuit over the solid domain. Hence, fluid currents are com-
paratively large so that all terms in Ohm’s law are of the same order of magnitude.
The computation of the electric potential gradient is straightforward and requires no
further correction or higher-order schemes.

• If, on the other hand, the conductance of the wall becomes smaller than the con-
ductance of the thin boundary layers, i.e. c � Ha−1, the overall current density is
low compared with potential gradients and flow-induced electric field. The numerical
approach then requires a robust gradient discretization such as the skew-corrected
Green-Gauss or Least-Squares scheme to compute the electric potential gradient with
sufficient accuracy.

• In the case of particularly strong magnetic fields Ha � 1 and curved walls, Hartmann
layers become difficult to be resolved by hexahedral prism layers because their thick-
ness changes along the periphery. Boundary layers along curved geometries require
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adequate grid resolution in both wall-normal and circumferential direction, where the
corresponding lengths scales δHa ∼ Ha−1 and εHa ∼ Ha−1/2 should be resolved by
multiple cells in each direction.

• For strong magnetic fields Ha � 1, the SHM grid configuration with split boundary
cells, shown in figure C.1 in the appendix, combined with the skew-corrected Green-
Gauss gradient scheme for the electric potential suffice to adequately discretize fusion
relevant MHD phenomena.

Results obtained in the present work indicate that under such arrangements, the computa-
tional code is capable of addressing MHD flows at fusion-relevant parameters with low wall
conductance, very strong magnetic fields up to Ha = 50000, and more realistic blanket
geometries including curved boundaries.

Numerical analyses of MHD flows occurring in blanket subsystems with nonuniform
magnetic fields and near entrance or exits of FCIs have confirmed the applicability of the
improved code for predictions of complex fusion relevant 3D MHD phenomena. Moreover,
results provide valuable insights for fundamental MHD research as well as for blanket
development to which following major conclusions apply:

• Present numerical results confirm assumptions, typically used for interpretations of
experimental data (Bühler et al., 2021), that the electric potential on the wall surface
may be used for approximating the fluid-internal core velocity in regions of uniform
and nonuniform magnetic fields.

• The obtained 3D MHD pressure drop ∆p3D in a nonuniform magnetic field is negligible
while its development length may reach 10 characteristic length units.

• 3D MHD flows at entries or conjunctions of FCIs yield additional pressure drop ∆p3D

that equals 14 and 34 times the pressure drop along one characteristic length of fully
developed FCI flow, respectively and thus they are significant. An efficient FCI design
must therefore account for the 3D MHD drop at entries and exits.

• Comparisons between different numerical FCI models show that the most basic one,
which neglects any geometrical details and which is the least resource consuming,
adequately describes relevant 3D MHD phenomena occurring in the core flow. These
are axial current flow, strong variations of core velocity, fluid redistribution, and the
3D MHD pressure drop.

• When an annular liquid metal filled gap is present between the pipe wall and FCI, as
studied for the most detailed approximation level, 3D currents leaking into the gap
evoke high reverse flows up to 13 times the mean velocity at the FCI entry. Only
a tiny fraction of 1% of liquid metal passes through the gap between wall and FCI.
When fully developed, this gap fluid forms concentrated streamwise jets near the gap
sides while the remaining gap fluid is practically stagnant. Details of the strongly
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varying gap flow occuring between the wall and FCI are important for corrosion, heat
transfer, and tritium transport (Konys et al., 2011; Bucenieks et al., 2006; Candido
et al., 2021).

• With known solutions for the flow in the gap and in the bulk of the FCI, it is possible to
determine the mechanical loads on the FCI caused by a pressure difference between the
inner and outer FCI surface. Computational results show that for the considered FCI
design this difference is smaller than 0.056 bar and does not endanger the mechanical
integrity of the FCI. Countermeasures against critical loads in the form of pressure
equalization holes or slits are therefore not required.

Throughout this work, validation activities of fully developed flows, on the one hand,
demonstrate the proximity of computational results with asymptotic solutions with deviations
of 1 % - 5 %. On the other hand, simulations of complex 3D MHD phenomena agree
with experimental measurements at excellent correlation values with an average coefficient
CCC = 0.9956 (see appendix B). Such good agreement between analytical solutions,
computations, and experiments achieved throughout this work leads to the conclusion that
the created computational models and numerical methods are sufficiently accurate to predict
the physical nature of the investigated problems in complex geometries. This is a strong
statement for the robustness and applicability of the developed methods and derived results
for future applications in fusion research, engineering and design.

6.3 Significance for fusion blanket engineering and
future works

The extended and validated code enables for the first time the application of un-
structured grids for simulations of 3D MHD flows in strong fusion relevant magnetic fields
and for complex blanket geometries. The presented improvements on the computational
MHD code at hand have recently contributed to successful applications in a number of
blanket studies. The code has revealed flows of breeder material in entire DCLL blanket
columns (Klüber et al., 2019; Mistrangelo et al., 2020) and supported experimental studies
of magneto convective flow around two differentially heated cylinders (Mistrangelo et al.,
2022a). As a consequence of the work at hand, numerical investigations of 3D MHD
phenomena occurring in stepwise bent circular pipes of the ITER test blanket have become
feasible (Bühler et al., 2022). First computations of an entire test blanket module (TBM)
have been presented in Mistrangelo et al. (2022b) and further calculations with stronger
magnetic fields have been announced to be compared with experimental results (Koehly &
Bühler, 2022).

Unstructured grids are crucial for the automatic generation of computational grids for large
and complex blanket geometries. However, state of the art meshing tools typically are
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optimized for purely hydrodynamic simulations so that magnetohydrodynamic requirements
on the computational grid, such as extremely thin MHD boundary layers along curved
walls, must be reworked manually. Future considerations should therefore focus on the
specialization of meshing tools to adequately account for MHD-related phenomena that
conventional hydrodynamic meshing tools may not provide. Moreover, such investigations
should be done in the foresight of developing an adaptive meshing tool, which automatically
adjusts the mesh according to local MHD phenomena during simulations. Since recent
MHD research considers increasingly complex blanket geometries and flow phenomena,
automatic and adaptive systems similar to the approach by Zhang & Ni (2014), would cut
down the high efforts on preprocessing and speed up computations so they could reduce
costs substantially.

Further code extensions may address the impact of MHD effects on mass and heat transfer
in order to assess general source terms, convection and diffusion in a blanket realistic
environment. This would enable to evaluate the impact of MHD phenomena on corrosion
of blanket structural material, heat removal from bulk fluid and blanket walls, and tritium
inventory as well as permeation losses.

Since the improved and validated code at hand has demonstrated its capability to
robustly predict 3D MHD phenomena in blanket subsystem, the next step is expected to
advance its applications to higher levels of physical coupling and geometric complexity.
As a consequence, the code at hand will set further milestones for the development and
application of computational MHD analysis in fusion research, engineering and design.
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A MHD phenomena at FCI
conjunctions

Implementation of the FCI model

Besides MHD flow entering an FCI introduced in chapter 5, the study addresses,
in addition, the phenomena occurring at conjunctions between two consecutive FCIs, as
investigated experimentally in the MEKKA facility (Bühler et al., 2019). Level 1 and 2
representations have been implemented according to figure A.1.

x

0−xi xi

lgap

−xn xn

x

0

ln

level 1 level 2

Figure A.1: Approximation models at axial gaps between two consecutive FCIs. Radii
variations are identical to the case of FCI entry flow introduced in figure 5.2

As described above, level 1 represents the FCI by considering the impact of interrupted
electric insulation while keeping the fluid-solid interface straight. The axial gap in the
insulation used in the experiments at the conjunction of two FCIs is comparatively small

lgap = 0.426 . (A.1)

The geometric approximation level 2 additionally takes into account the notch, which is
present due to different radii of bare pipe and FCI. Its length is ln = 0.213.
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3D MHD phenomena at FCI conjunctions

Gaps in the insulation layer occur at FCI conjunctions due to limitations by fabrication,
implementation, or maintenance requirements for complex blanket geometries. As a
consequence, currents may leak locally to the wall domain and increase overall pressure
losses. This section addresses such 3D MHD phenomena occurring at conjunctions between
consecutive FCIs in a straight pipe at Ha = 2000 and Re = 20000 by applying a level 1
model (see figure 5.2).

Figure A.2 displays the experimented case where two consecutive FCIs exhibit a small
axial gap of dimensionless length lgap = 0.426, centered at x = 0. The orange cylindrical
surfaces represent the two internal insulators. The disruption of the insulation allows
currents to leak to the outer well-conducting pipe wall and short-circuit in the form of large
recirculation loops. The displayed electric current streamlines appear symmetric with respect
to the center of the insulation gap at x = 0. This suggests similar magnetohydrodynamic
behavior occurring in both upstream and downstream directions. In fact, the essence
observed for 3D MHD effects at FCI entries remains valid for the flow leaving the insulated
part of the FCI or for flow between non-insulated conjunctions of FCIs.

y
x

z

v

B
x = 0

insulation

insulation gap

wall

−φ2D 0 φ2D

φ

Figure A.2: MHD flow at a conjunction of FCIs for Ha = 2000 and Re = 20000. Electric
potential distribution and current paths displayed in the lower and in the upper
half of the pipe, respectively. Red current streamlines close along the inner
FCI layer, while blue lines leak through the gap and close outside in the well
conducting wall domain. The black straight line at x = 0 marks the gap center.

Far away from the gap in the upstream and downstream direction, electric current flow
exclusively occurs within channel cross-sections, which suggests fully developed MHD flow.
Hence, electric currents cross the fluid domain in horizontal paths and then close over the
inner conducting FCI layer, as marked by red streamlines. The insulation layer interrupts
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currents and shields the outer wall from the inner induced electric field.

The conductance within the bare gap region is one order of magnitude higher than inside
the FCI (see equations 5.1 and 5.2). Thus, the pipe wall near the gap provides a preferable
short-circuit for induced electric currents. Therefore, currents increasingly stretch in the
axial direction by approaching the gap. In close gap vicinity, they leak, as marked by blue
streamlines, and close in large recirculation loops in the outer well-conducting wall domain,
where they produce a local distribution of wall potential that is visible on the outer surface
of the pipe. This deflection of currents occurs similarly to the case of FCI entry flow shown
in figure 5.4, where wall short-circuiting currents close by wrapping around the insulation.

Figure A.3 shows magnitudes of electric currents, Lorentz force, and velocity scaled by
values for fully developed flow (Miyazaki et al., 1983). Green lines represent electric current
paths. Vertical black dashed lines indicate the center and width of the insulation gap.

As shown in the upper plot, electric currents bundle within the gap region, which leads
to locally higher current densities. The highest peaks occur within the side regions in
the FCI gap where current flow focuses and leaks into the well-conducting wall domain.
Upstream and downstream current densities within the FCI domain are comparatively small
as imposed by the FCI design. By approaching the gap, the current density rises near the
sides where currents bundle increasingly due to the axially stretched profiles. Concerning
the flow re-entering the second FCI downstream of x > xi, yellow highlighted lines pass
through regions of locally unstable flow and exhibit swirls producing an aisle of lower current
density, as marked by straight red lines. Current streamlines of the flow leaving the first
FCI, on the other hand, stream smoothly into the FCI gap.

The middle contour plot presents the magnitudes of Lorentz force scaled by the asymptotic
solution showing an identical profile as for the electric current density because the magnetic
field is uniform and orthogonal to fluid currents fL = j × B in the considered symmetry
plane y = 0. Hence, fL opposes the flow across the whole domain. Due to the increased
current flow in the region of bare pipe flow −xi < x < xi, Lorentz forces here are larger, and
they may exceed values of fully developed flow by more than a factor of 3. By approaching
the gap from an up- or downstream position, correspondingly strong outward and inward-
directed components of fL appear in addition to the main axial component. They point
outwards when the fluid leaves the first FCI, while the flow entering the subsequent FCI
experiences detaching inward-directed Lorentz forces.

The up- and downstream FCI velocity distribution appears somehow symmetrical to the
gap center x = 0. Center velocity peaks occur close to the FCI inlet/outlet and are
slightly displaced in the flow direction. 3D MHD effects develop gradually over multiple
characteristic lengths both in up- and downstream directions. However, when reaching
the gap, the velocity profile switches rapidly from convex to concave shape, i.e., from a
velocity profile with a center maximum to a profile with a maximum at the sides. Such
concave velocity profile persists across the whole gap width before it re-assumes rapidly
again a convex curvature. This rapid shift leads to particularly high-velocity gradients in the
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Figure A.3: MHD flow at the conjunction of FCIs for Ha = 2000 and Re = 20000. Contour
plots of current density, Lorentz force and velocity at y = 0. Arrows show
direction and magnitude; green lines represent current paths; vertical dashed
lines indicate gap center and width (i.e. ±xi); staright red lines indicate the
paths along which transient fluctuations are traveling and reverse flow occurs.

side regions. In this context, reverse flow and associated instabilities exclusively occur at
re-entering flow. Detaching Lorentz forces seem to have the essential destabilizing impact,
which is why only side layers of the flow entering the FCI become unstable, similar to
observations in strong nonuniform fields by Albets-Chico et al. (2013).

Figure A.4 shows the axial pressure distribution along both the pipe axis and side,
represented by the blue and red lines, respectively. Up- and downstream gradients agree
well with the asymptotic solution ∂xp2D,F CI of developed FCI flow according to equation
5.11, portrayed as straight black lines. Center and side pressures show evolving separation
upon approaching the gap, indicating strong transversal pressure differences, which are
highest at FCI-gap transition. Across the gap, the center pressure forms a rather smooth
change with the largest gradient at x = 0. The pressure along the side, on the other hand,
remains longer close to 2D conditions before it exhibits a significant sharp drop along the
gap. The origin for such strongly differing gradients between the center and side pressure
lies in the orientation of the current profile, presented in the upper contour plot in figure
A.3. Near x = 0, increased currents orient in the axial direction, which gradually increases
the pressure gradient on the axis. Across the gap region, however, electric currents bundle
before they enter the wall domain. This, in turn, results in strong flow-opposing Lorentz
forces and associated high-pressure gradients across the entire gap region, but in particular
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along the sides.
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Figure A.4: MHD flow at the gap between two FCIs for Ha = 2000 and Re = 20000.
Pressure distribution at the FCI gap along the pipe axis and along the side.
Extrapolation of the fully developed solutions (black straight lines) towards
x = 0 defines the additional pressure drop ∆p3D. Minor pressure fluctuations
at the side near the FCI entry indicate the presence of weak flow instability.

Extrapolating the up- and downstream gradients to the gap center x = 0, as shown by the
solid black lines, reveals a significant additional pressure drop ∆p3D = 0.17 compared to
the flow in a non-interrupted FCI. It refers to a pressure drop of fully developed FCI flow
over the length

l3D = ∆p3D

∂p2D,F CI

= 34 . (A.2)

This means that FCIs in fusion applications should be much longer than l3D for gap-induced
additional losses to be smaller than losses of the fully developed flow. Considering the case
of blankets in fusion reactors, however, shows that typical flow paths are much smaller.
Therefore, additional 3D MHD effects at gaps constitute a significant fraction of pressure
losses and should be investigated at a broader level with respect to, e.g., varying gap lengths
or overlapping FCIs (Bühler, 1993) to support future FCI-blanket design concepts.

It is not surprising that the non-insulated part of the pipe creates a larger pressure drop
than the FCI since here currents are higher. However, it may be interesting to infer how
much of this extra pressure drop has its origin in complex 3D current paths and which
contribution is attributed to non-insulated pipe flow. The latter part can be estimated as

∆p2Dgap = ∂xp2D lgap = 0.0338 (A.3)

assuming hypothetically a fully established pipe flow. A comparison with the value of
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∆p3D = 0.17 shows for the present geometry that 80% of the pressure drop at the gap
results from 3D circulating current contributions and from the fact that the wall conductance
near the gap is virtually increased since currents find additional shortcuts by wrapping
around the insulation layer and closing along the pipe wall outside of the insulation, shown
blue in figure A.2. The pressure contributions discussed in this paragraph are indicated in
figure A.4.

Figure A.4 further shows that the center pressure is smaller than the pressure at the side
for x < 0, while for x > 0, this trend is reversed as indicated by p− and p+ in the figure.
Regardless of such inverted transversal pressure difference, both upstream and downstream
flow show a maximum velocity in the center and reduced velocity near the sides, as displayed
in figure A.3. Moreover, velocity jets at the sides appear across the gap region, where the
highest flow opposing Lorentz forces are present. From this point of view, velocity appears
decoupled from dominant momentum balances, i.e., pressure gradient and Lorentz force
density. This is discussed in more detail in the next section.

Magnetodynamic phenomena at FCI conjunctions

Similar to the case of FCI entry flow in chapter 5, observations apply to the case of
MHD flow at conjunctions between two FCIs including an insulation gap, shown in figure
A.5.

Along the pipe axis, the magnetodynamic force first accelerates the fluid to a maximum
velocity at the first O+ saddle point in the force field. Then the flow is retarded rapidly to a
velocity minimum at the saddle point O− close to x = 0 before it is accelerated once again
to a downstream maximum at the next O+ saddle point. Since upstream and downstream
regions are insulated by FCIs, the development lengths are relatively large in both sections
despite the fact that the critical points are close to x = 0. The non-symmetry in velocity
and force fields results from the non-linearity of inertia terms in the momentum equation.
Near the sides, the situation is reversed. When approaching the gap, the fluid is gradually
slowed down to the position where the force field has the first critical point O−. Afterward,
the velocity rockets up over a very short distance to the highest values at O+ near x = 0,
before strong flow-opposing forces rapidly bring the fluid back to another minimum velocity
at the downstream critical point O− from where it recovers gradually to fully established
conditions.

The strong decelerating forces near the sides eventually result in downstream flow separation
and locally confined time-dependent unstable patterns. In contrast, the accelerated flow at
upstream sides remains attached and stable.

Similar to the case of FCI entry flow in chapter 5, there exists correspondence between
magnetodynamic force and transverse velocity for the case of MHD flow between two FCIs
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Figure A.5: Contours of magnetodynamic force (top) and velocity (bottom) for MHD flow
in the vicinity of a gap between two FCIs at Ha = 2000 and Re = 20000. fmd
is scaled by the Lorentz force for fully developed pipe flow fL,2D. While the
color bar for fmd/fL,2D is limited to 0.3 for better visibility, highest values in
very narrow regions exceed the color scale up to 4. Orange solid lines and green
dashed lines indicate so-called separation lines (Tobak & Peake, 1982), which
enclose characteristic zones of fmd.

that are separated by the short non-insulated gap, as shown in figure A.6.

It can be seen that regions of positive and negative transverse velocity coincide with the
characteristic regions that are bounded by the separation lines of the magnetodynamic force
field. The flow patterns are again highly correlated along magnetic field lines, and deviations
from Q2D behavior appear exclusively in regions of strong inertia or magnetodynamic
force.

Analogous to FCI entry flow, the investigated MHD phenomena at FCI conjunctions with an
axial gap exhibits three transversal separations lines, shown by green dashed lines. Moreover,
the center transversal separation line appears slightly curved and does not originate from
axial transition points x = ±xi where the insulation ends. This leads to the conclusion that
for the investigated gap width of lgap = 0.426, 3D MHD flow regimes for FCI exiting and
entering scenarios overlap and may not be fully distinguished from each other.
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Figure A.6: Contours and vector representations of transverse velocity component vz for
MHD flow in the vicinity of a gap between a conjunction of two FCIs at
Ha = 2000 and Re = 20000. Results are displayed on the horizontal symmetry
plan y = 0 (top) and on a vertical plane z = −0.5 (bottom) as shown by purple
dashed lines. Green dashed lines illustrate the separation lines of fmd.

Comparision with experiments

Experimental results are available for MHD flow through two consecutive FCIs that are
separated by a a gap. Figure A.7 presents the bulk pressure distribution along the axis and
near the sides upstream and downstream of the non-insulated section. The central pressure
variation portrayed as blue data sets shows a large drop along the short non-insulated part
of bare pipe compared with the moderate gradients inside the FCIs, up- and downstream.
Upon approaching the FCI conjunction, axial potential gradients increase the current density
locally and stretch current streamlines. Pressure gradients near the sides, portrayed red,
therefore become smaller as the Lorentz forces orient spanwise and thus do not effectively
contribute to MHD pressure drop at the sides. This behavior changes instantly when the
insulation becomes disrupted, so bulk currents are no longer confined and may short-circuit
over the well-conducting wall domain. Transverse currents consequently bundle along the
sides, which leads to large flow-opposing Lorentz forces and a large side pressure gradient
in the non-insulated section.

A comparison of measured data and numerical simulations confirms the potential for
pressure drop reduction by the FCIs since pressure gradients upstream and downstream of
the conjunction agree reasonable at high correlation coefficients CCC (see section B in the
appendix). However, the additional 3D pressure drop at the junction appears a bit smaller
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Figure A.7: Pressure variation for MHD flow at a conjunction between two FCIs for
Ha = 2000 and Re = 20000. Comparison of experimental measurements
(symbols) with numerical simulations based on level 2 approximation model
(solid lines). Experimental data obtained through private communication with
the first author of Bühler et al. (2019) as complementary data to the latter
publication. Correlation between experimental measurements and computational
result CCC = 0.9888 for p (x, 0, 0) (see section B in the appendix).

in the experiment compared with the simulation results. A definite reason for the observed
deviations cannot be given here since, on the one hand, the measuring uncertainties are
unavailable and, on the other hand, numerical models with a higher degree of geometrical
detail could also have some influence on results. Future works could, therefore, also consider
the impact of equalization measures on the flow in the annular gap that has been disregarded
in the present model and focus on a more detailed description of local effects near pressure
taps and holes in the FCIs, from which perturbations may originate and propagate along
magnetic field lines (e.g., observed for elongated pressure equalization slots (Smolentsev
et al., 2006)).

Figure A.8 shows the wall potential distributions for the flow at the conjunction between
two consecutive FCIs involving a small non-insulated distance.

Solid lines show computational results based on the level 2 model and symbols experimental
measurements. The plot on the left presents the side wall potential difference ∆φ (x).
Along the short insulator disruption, marked by black dashed vertical lines, currents induced
in the bulk flow inside the FCI leak to the outer well-conducting wall and create there the
observed distribution of wall potential. The non-insulated length is too short for the wall
potential to reach values of fully developed pipe flow 2φ2D,w. The wall potential difference
∆φ decays up- and downstream, where the FCI perfectly shields the outer domain. Similar
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Figure A.8: Potential distribution for MHD flow near the non-insulated conjunction of two
consecutive FCIs at Ha = 2000 and Re = 20000. Comparison of experimental
results (symbols) and computations based on level 2 (solid lines). Results are
shown as transversal potential difference ∆φ (left) and circumferential profiles
of wall potential φ (x, α) (right). Experimental data obtained through private
communication with the first author of Bühler et al. (2019) as complementary
data to the latter publication. Correlation between experimental measurements
and computational results CCC = 0.9987 for ∆φ and mean correlation CCC =
0.9987 for observation pairs at different axial positions φ (x) (see section B in
the appendix).

to the case of FCI inlet flow, the experimental measurements likewise indicate a small
but finite constant wall potential at a far distance from the conjunction. The underlying
computational model, on the other hand, does not consider annular gap flow, and thus
numerical results converge to zero.

Colored vertical dashed lines in figure A.8 (left) refer to the selected axial locations of
circumferential measurements along the outer pipe surface, for which results are shown
in the plot on the right. The sketch illustrates the location of electrodes along the wall
circumference in the experiment. Results show a sinusoidal-like distribution along α and
an x-dependent amplitude. This confirms the existence of both axial and circumferential
components of potential gradients, causing current loops that close beyond the non-insulated
fraction in the pipe wall. This behavior has been illustrated in figure A.2.
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B Agreement between simulations and
experiments

In order to quantify the deviation of experimental measurements with numerical results,
the work at hand employs Lin’s concordance correlation coefficient (CCC) (Lin, 1989).
This quantity incorporates in addition to a general statement about agreement between
a measured quantity (experiment) and a reference value (simulation) further valuable
indicators such as trueness and precision as it also identifies scale drift and shift between
observation pairs.

Based on remarks in Lin (1989), a series of measured values Xk and their corresponding
numerical results Yk lead to a list of observation pairs (Xk, Yk), with the respective means µY

and µX as well as standard deviations σY and σX . The concordance correlation coefficient
as a measure of accuracy is then defined as

CCC = ρ

 2
(µY −µX)2

σXσY
+ σY

σX
+ σX

σY

 , (B.1)

where
ρ = cov (Xk, Yk)

σXσY

(B.2)

constitutes the ratio of covariance cov and combined standard deviation of experimental
measurement and computational result. The precision term ρ, known as Pearson correlation
coefficient, varies within the range [−1, 1] where higher values constitute a higher precision.
In other words, a higher ρ indicates that the values of observation pairs change more
consistently, i.e., higher/lower measured values increasingly entail higher/lower computed
values.

While ρ assesses the precision of agreement, it fails to capture properties of trueness as
measure of closeness between observation pairs (Menditto et al., 2007). These may be
local shifts in the form of constant deviations, e.g., offset between observation pairs, or
scale shifts that vary based on the value of observation pairs. They are incorporated by the
second parenthesized expression in equation B.1,

χa = 2
ν2 + ω + 1

ω

, (B.3)
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that constitutes a measure of trueness where

ω = σY

σX

, (B.4)

ν = µY − µX√
σXσY

. (B.5)

The quantity ω measures scale shift as factor on how much the agreement depends on the
value, while the location shift ν indicates the offset of how much the data deviates. χa may
vary within the range of [0, 1] and higher values of χa indicate higher trueness between
observation pairs. As a result, the concordance correlation coefficient describes accuracy of
the agreement as a product of precision ρ and trueness χa

CCC = ρ χa , (B.6)

where the former factor describes random deviations and the latter factor systematic
deviations. The CCC value may vary within

−1 ≤ − |ρ| ≤ CCC ≤ |ρ| ≤ 1 , (B.7)

based on precision and trueness indicating higher accuracy for higher values of CCC. In
order to interpret the CCC value, Lin et al. (2005) proposes the guideline listed in table
B.1 that is adopted for the observations at hand.

CCC evaluation level
> 0.99 almost perfect
(0.95, 0.99] substantial
[0.90, 0.95] moderate
< 0.9 poor

Table B.1: Evaluation scale of the concordance correlation coefficient CCC according to
Lin et al. (2005).

Observation pairs are constructed from each validation case in this work. This is done
by interpolating numerical data to discrete sample locations of experimental data, since
the former exists at significantly higher spatial resolutions. The concordance correlation
coefficient CCC is then determined according to equation B.1. Table B.2 lists in addition
to the achieved CCC values the corresponding precision ρ and trueness χa as well as local
shift ν and scale shift ω.

Almost every validation case listed in table B.2 performs according to the assessment scale
in table B.1 at "almost perfect" CCC level, while rating the three cases 5, 10, and 12
"substantial". On the one hand, number 5 compares φ (x = −4.2) at comparatively low
values of the electric potential, whereas higher considered values of related cases between
number 3 and 9 show higher CCCs. This is confirmed by the fact that the scale shift
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No. Figure Observation pairs Precision Trueness
(Xk, Yk) CCC ρ χa ν ω

Nonuniform magnetic field
1. 4.15 δxps 0.9992 0.9994 0.9999 0.0144 1.0076
2. δxpHa 0.9936 0.9985 0.9951 −0.0717 1.0706
3.

4.16

φ
(
α = π

2

)
0.9966 0.9997 0.9968 −0.0654 0.9555

4. φ
(
α = −π

2

)
0.9988 0.9998 0.9990 −0.0423 1.0137

5. φ (x = −4.2) 0.9759 0.9991 0.9767 −0.0639 0.8119
6. φ (x = −1.7) 0.9989 0.9999 0.9990 −0.0340 1.0300
7. φ (x = 0.69) 0.9992 0.9999 0.9993 −0.0285 1.0245
8. φ (x = 3.6) 0.9996 0.9999 0.9997 −0.0247 0.9971
9. φ (x = 13) 0.9993 0.9999 0.9994 −0.0312 0.9853

FCI entry (level 3 model type)
10. 5.24 p (x, 0, 0) 0.9857 0.9964 0.9893 −0.0200 0.8643
11. 5.25 ∆φ (x) 0.9985 0.9994 0.9991 −0.0428 0.9949
FCI conjunction (level 2 model type)
12. A.7 p (x, 0, 0) 0.9888 0.9954 0.9934 −0.0177 0.8923
13.

A.8

∆φ (x) 0.9987 0.9999 0.9988 −0.0176 0.9551
14. φ (x = 0.062) 0.9984 0.9995 0.9989 −0.0426 1.0181
15. φ (x = −0.247) 0.9982 0.9998 0.9984 −0.0515 0.9772
16. φ (x = 0.988) 0.9996 0.9996 1.0000 −0.0078 0.9961

Table B.2: Concordance correlation coefficients CCC for observation pairs (Xk, Yk) compar-
ing experimental measurements with computed results of 3D MHD phenomena.
Further measures are listed indicating precision ρ, trueness χa, local shift ν, and
scale shift ω. The presenting figures are referenced.

factor ω of number 5 significantly deviates from 1, indicating a limitation of measuring
techniques at low values of the electric potential. Case numbers 10 and 12, on the other
hand, have been conducted with a low number of observation pairs, which may deteriorate
the computation of CCC. Moreover, cases representing pressure measurements show a
lower precision ρ, in general, as reflected by case number 1 and 2. This noticeable impact
of measured quantity on the correlation values of either pressure or electric potential pairs
suggests that such lower CCC values are subject to measurement techniques rather than a
deficiency of the computational approach to replicate the experiment.
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According to the evaluation scale in table B.1, the high correlation values between experiment
and simulation indicate that the achieved computational results are sufficiently accurate to
represent the experimental measurements of the investigated problems and vice versa. As a
result, the overall agreement between simulations and experiments is rated as excellent.
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C Supplement data
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Figure C.1: Preferred SHM (snappy-hex-mesh) grid type employed throughout this work to
resolve MHD flow in a circular pipe. The core resolution is coarse and uniform
while the boundary grid is significantly refined in both radial and tangential
direction in order to account for curved Hartmann layers.

a1 = 0.488 b1 = 0.257 x1 = −1.938 m = 0.125
a2 = 0.72 b2 = 0.826 x2 = 2.599

Table C.1: Fitting results of nonuniform magnetic field profile in terms of equation 4.4.
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Komen et al. (2014) present study
Reτ 180 395 998 1078
Time step (FTT) - - 0.002 0.002
Number of cells 2.9 mil. 16.3 mil. 1 mil. 6 mil.
Domain (z, r) 6.4, 1 6.4, 1 7.7, 1 7.7, 1
Domain (z+, r+) 1152, 180 2528, 790 7682, 995 8333, 1080
Number of prism layers 55 26 30 30
Prism layer thickness (Wall units) 63 41 67 74
PISO corrections 4 4 2 2
Neglected time (FTT) 10 10 10 10
Averaging time (FTT) 80 80 62 104

Table C.2: Essential computational details of the quasi-DNS. Values and nomenclature
partly refer to table 2 in Komen et al. (2014) and FTT ∼= Flow Through Time.

RF CI = 1 Ri = 1.033 lins = 0.106
Rins = 1.0106 Ro = 1.216 tF CI = 0.01

Table C.3: FCI dimensions used in simulations according to figure 5.1.
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Nomenclature

Acronyms
Term Description

GG Green-Gauss

LS Least-Squares

ALEX Argonne Liquid Metal Experiment

BLOCK block grid type

CFD computational fluid dynamics

DNS direct numerical simulation

FCI flow channel insert

FVM finite volume method

HPC high-performance computing

ITER International Thermonuclear Experimental Reactor

ITES Institute for Thermal Energy Technology and Safety

KIT Karlsruhe Institute of Technology

LHS left-hand side

MEKKA Magnetohydrodynamic Experiments in NaK Karlsruhe

MHD magnetohydrodynamics

PISO pressure-implicit with splitting of operators

POLY polygonal grid type

RHS right-hand side

SHM snappy-hex-mesh grid type

TRI triangular grid type
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Dimensionless groups
Symbol Description Definition

δHa Hartmann layer thickness 1
Ha

εHa Hartmann layer tangent
length

2
√

1 − (1 − δHa)2

c wall conductance parameter
(circular pipe)

σw

σ

R2
o − R2

R2
o + R2

c wall conductance parameter
(thin wall)

tw
σw

σ

Ha Hartmann number B0 L

√
σ

ρ ν

N Stuart number B2
0Lσ

ρv0
= Ha2

Re

Rm magnetic Reynolds number µ σ v0 L

Re Reynolds number v0L

ν

Mesh parameter
Symbol Description

nf face normal unit vector

rCF face neighbor vector

S face area vector

C cell centroid

F cell centroid of face neighbor

f face centroid

Nc cross-section cell number

Nondimensional physical quantities
Symbol Description Scale

B magnetic flux density B0

fmd magnetodynamic force σ v0 B2
0
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fms magnetostatic force σ v0 B2
0

fL Lorentz force σ v0 B2
0

j electric current density j0 = σ v0 B0

v velocity v0

x = (x, y, z) coordinate vector L

φ electric potential φ0 = v0 B0 L

A∅ pipe cross-sectional area L2

n wall-normal distance L

p pressure p0 = σ v0 B2
0 L

R radius L

t time L v−1
0

tw wall thickness L

Y half channel height along B L

Dimensional parameters
Symbol Description Dimensions Units

µ magnetic permeability LMT-2I-2 V s A−1 m−1

ν kinematic viscosity L2T-1 m2 s−1

ρ mass density ML-3 kg m−3

σ specific electric conductivity M-1L-3T3I2 S m−1

B0 characteristic magnetic flux
density

MI-1T-2 T

L characteristic length L m

v0 characteristic velocity LT-1 m s−1
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1. Numerical simulations of 3D magnetohydrodynamic flows in dual-coolant lead lithium
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2. Numerical investigation of liquid metal flow in square channels under inclined magnetic
fields for fusion relevant parameters (Klüber et al., 2020a)
conceptualization, methodology, validation, formal analysis, investigation, data cura-
tion, writing, review & editing, visualization.

3. Numerical simulation of 3D Magnetohydrodynamic liquid metal flow in a spatially
varying solenoidal magnetic field (Klüber et al., 2020b)
conceptualization, methodology, validation, formal analysis, investigation, data cura-
tion, writing, review & editing, visualization.
Results of this publication contribute to chapter 4 of the present manuscript.

4. Three-dimensional magneto convective flows in geometries relevant for DCLL blankets
(Mistrangelo et al., 2020)
numerical methodology, model design, computations.

5. MHD flow in liquid metal blankets: major design issues, MHD guidelines and numerical
analysis (Mistrangelo et al., 2021)
conceptualization, methodology, analysis, data curation, visualization for sections 3.2
and partly 4.1.1.

6. Magnetohydrodynamic flow in stepwise bent circular pipes (Bühler et al., 2022)
conceptualization, methodology, data curation, visualization.

7. Towards the simulation of MHD flow in an entire WCLL blanket mock-up (Mistrangelo
et al., 2022b)
conceptualization, methodology, data curation, visualization.
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