
Received: 23 June 2022 Revised: 9 September 2022 Accepted: 24 October 2022

DOI: 10.1002/cpe.7509

R E S E A R C H A R T I C L E

Implicit propagation of directly addressed grids in lattice
Boltzmann methods

Adrian Kummerländer1,2,3 Márcio Dorn4 Martin Frank1,5 Mathias J. Krause1,2,3

1Institute of Applied and Numerical

Mathematics, Karlsruhe Institute of

Technology, Karlsruhe, Germany

2Institute for Mechanical Process Engineering

and Mechanics, Karlsruhe Institute of

Technology, Karlsruhe, Germany

3Lattice Boltzmann Research Group, Karlsruhe

Institute of Technology, Karlsruhe, Germany

4Instituto de Informática, Universidade Federal

do Rio Grande do Sul, Porto Alegre, Brazil

5Steinbuch Center for Computing, Karlsruhe

Institute of Technology,

Eggenstein-Leopoldshafen, Germany

Correspondence

Adrian Kummerländer, Institute for Applied

and Numerical Mathematics, Karlsruhe

Institute of Technology, Englerstr. 2, 76131

Karlsruhe, Germany.

Email: adrian.kummerlaender@kit.edu

Funding information

Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior, Grant/Award Number:

88881.198766/2018-01; Alexander von

Humboldt-Stiftung (AvH), Grant/Award

Number: BRA 1190826 HFST CAPES-P

Summary

Lattice Boltzmann methods (LBM) are well suited to highly parallel computational

fluid dynamics simulations due to their separability into a perfectly parallel collision

step and a propagation step that only communicates within a local neighborhood. The

implementation of the propagation step provides constraints for the maximum possi-

ble bandwidth-limited performance, memory layout and usage of vector instructions.

This article revisits and extends the work on implicit propagation on directly addressed

grids started by A-A and its shift-swap-streaming (SSS) formulation by reconsidering

them as transformations of the underlying space filling curve. In this work, a new peri-

odic shift (PS) pattern is proposed that imposes minimal restrictions on the implemen-

tation of collision operators and utilizes virtual memory mapping to provide consistent

performance across a range of targets. Various implementation approaches as well as

time dependency and performance anisotropy are discussed. Benchmark results for

SSS and PS on SIMD CPUs including Intel Xeon Phi as well as Nvidia GPUs are pro-

vided. Finally, the application of PS as the propagation pattern of the open source LBM

framework OpenLB is summarized.

K E Y W O R D S

GPU, HPC, lattice Boltzmann methods, OpenMP, SIMD

1 INTRODUCTION

Current high performance computation (HPC) setups combine different levels of parallelization and acceleration capabilities into one heteroge-

neous system. Simulations of transport phenomena using lattice Boltzmann methods (LBM) are a major application for HPC in for example, process

engineering.1,2 The lattice Boltzmann (LB) algorithm is commonly separated into a local and thus perfectly parallel collision step and a non-local

streaming step, both of which are applied to cells on a regular lattice. These properties render LBM into a simulation method especially suited to

extensively parallel execution. The close dependency between data layout, propagation pattern and resulting time to solution resp. performance

of LBM-based simulation codes is well established in literature.3-9 On a per-computation-node basis, the realization of non-local streaming is an

essential aspect of implementations of the LB algorithm.3 Thus approaches to realizing this part of the algorithm are of particular interest.

While the SWAP pattern10 yields good performance on CPUs, its inherent sequentiality and non-optimal bandwidth demands render it unsuited

for perfectly parallel streaming on for example, GPUs as well as vectorization on CPUs. One of the main benefits of the shift-swap-streaming (SSS)

pattern11 is its amenability to automatic vectorization while being perfectly parallel and convenient to implement compared to its A-A formulation.12

However, utilizing this in the LBM framework OpenLB13 is impeded by constraints w.r.t. implicitly reverting population locations during write-back.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2023 The Authors. Concurrency and Computation: Practice and Experience published by John Wiley & Sons Ltd.

Concurrency Computat Pract Exper. 2023;e7509. wileyonlinelibrary.com/journal/cpe 1 of 25
https://doi.org/10.1002/cpe.7509

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4392-0045
https://orcid.org/0000-0001-8534-3480
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/CPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.7509&domain=pdf&date_stamp=2023-02-06

2 of 25 KUMMERLÄNDER ET AL.

This led to a reconsideration of approaches to implementing the LBM streaming step with minimal demands on the collision implementation, yielding

the results documented by the present work.

We aim to provide a consistent framework for formalizing implicit propagation patterns on directly addressed grids, encompassing both existing

patterns and leading to a new Periodic Shift pattern. This framework is introduced in Section 3, following an overview of general LBM performance

considerations and established propagation patterns in Section 2. The new pattern is documented by Section 4, including the discussion of imple-

mentation approaches in Section 4.1 and performance characteristics compared to SSS in Section 4.2. Detailed bandwidth-related performance

benchmarks for both SSS and periodic shift (PS) using the established lid driven cavity case on CPU and GPU targets are provided in Section 5. An

application of virtual memory PS for vectorizing the collision loop, speeding up single-core execution by a factor of up to 3.93, as well as the pattern

choice in OpenLB is discussed in Section 5.1.1.

2 LATTICE BOLTZMANN METHODS

Following the separation into local and non-local steps, the streaming step propagates information largely independent of the modeled physics while

the specific transport phenomena is captured by the choice of collision operator and equilibrium distribution.

Definition 1 (Collision step). The relaxation of population values fi toward a local equilibrium distribution feq
i

according to a collision operatorΩ

fpost
i

(x, t) = Ω
(

fi(x, t), feq
i
(x, t)

)
,

is referred to as the collision step. This computation maps pre- to post-collision populations fpost
i

.

A common choice forΩ is the BGK operator14 with single relaxation time 𝜏 > 0.5

Ω = fi(x, t) − 1
𝜏

(fi(x, t) − feq
i
(x, t)),

that in combination with a formulation of the Maxwell–Boltzmann equilibrium feq
i

can be shown to converge to solutions of the Navier-Stokes

equations.15 The relaxation time 𝜏 is directly related to the modeled viscosity by 𝜈 = c2
s (𝜏 −

Δt
2
). Other choices for collision operators and equilib-

rium distributions are possible, providing models for a wide range of transport phenomena.15 In any case, the discretization of the collision operator

depends on the choice of of discrete velocities. A common set for three-dimensional Navier Stokes as a target equation is D3Q19.

Definition 2 (D3Q19 velocity set).

{𝜉i}18
i=0 =

{
𝜉 ∈ {−1,0,1}3|||∃j ∈ {0,1,2} ∶ 𝜉j = 0

}
.

Definition 3 (Streaming step). Communication of post-collision populations to the neighboring cells corresponding to a discrete velocity set

fi(x + 𝜉i, t + Δt) = fpost
i

(x, t),

is called the streaming or propagation step. Algorithms for implementing this non-local operation are referred to as propagation patterns.

All patterns that are discussed in this work apply equally to the streaming of post-collision populations resulting of any collision operator based

on discrete velocity stencils. Efficient LB implementations commonly employ fused collide and stream loops that to some degree recombine both

steps again. This naturally leads to the notion of implicit propagation taking place while colliding.16

2.1 Performance considerations

Matching the LB algorithm’s separation, the resulting throughput of cells delivered by a specific implementation of the algorithm is dependent on

the realization of both the collision and the streaming steps. For the purposes of this work we consider the collision as the abstract computation

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 3 of 25

transforming a set of pre-collision population values into a set of post-collision populations. The propagation step determines the surrounding

framework of where these populations are stored in memory, how they are accessed by the collision step and in which way they are propagated to

neighboring cells.

While this places most performance considerations on the propagation step, the realization of the collision step into actual arithmetic instruc-

tions is also of importance. Specifically, the number of arithmetic instructions resulting from writing out the same abstract collision step into

actual executable code may vary greatly between implementations. While the theoretical floating point performance of modern hardware typi-

cally exceeds the number of datums that can be delivered to the arithmetic units, there are obviously still upper limits for the computations per

time span and additional implementation constraints that make it desirable to minimize the number of floating point operations as far as pos-

sible. One approach to this is to utilize common subexpression elimination (CSE) at some stage of compilation. This can be a manual step13 but

lends itself very well to automatic generation from symbolic expressions in a computer algebra system (CAS) as is commonly applied in litera-

ture.17-19 We follow the automatic approach for the benchmark codes used for this work. Specifically, SymPy20 is used to generate C++ templates

against a generic cell concept than can be instantiated both for GPU kernel functions and using lightweight wrappers around SIMD intrinsics

on CPUs.

2.2 Propagation patterns

Propagation patterns may be coarsely grouped into directly or indirectly addressed single- or dual-grid approaches using either a pulling or pushing

scheme w.r.t the collision step. Directly addressed patterns utilize a bijection between spatial and in-memory lattice coordinates. Contrasting this

with indirectly addressed patterns, direct addressing allocates memory for all cells in the simulation domain and enables direct access to any cell

while indirect addressing maintains a sparse list of cells and their neighborhood relations. In this context, enabling direct access means that access

to any cell given its spatially embedded location is possible without querying such intermediary data structures. This property is dropped by indi-

rect addressing in exchange for potentially significantly reduced memory usage in sparse simulation domains. An overview of existing patterns in

provided in Table 1.

Dual grid approaches maintain two instances of the simulation lattice in memory which enables a set of straightforward A-B propagation pat-

terns.3,12 Such a pattern alternates between two lattices for every timestep, reading the populations from grid A and writing the post-collision values

to grid B. Pulling or pushing refers to whether the propagation is performed by pulling the values from the neighbor cells during collision or by pushing

the new post-collision values to them.4 Notably the collide-and-stream step of an A-B pattern is trivially perfectly parallel without any write con-

flicts and requiring only 2Q memory accesses per cell. However its cache utilization is not ideal as the write and read populations take up separate

cache entries.

Propagation is more involved when only a single grid is to be used. Correspondingly, most relevant publications10-12,16,21 are con-

cerning such single-grid patterns. One of the earliest examples for a fused single grid propagation pattern is Lagrangian shift.16 There,

what is referred to as implicit propagation in the present work, was introduced on a different level by considering the populations in

the frame of reference where the represented particles are at rest. Specifically, the streaming step is realized by applying a transfor-

mation on the spatial cell map on top of the standard representation of multi-dimensional arrays. This contrasts with the present work,

where we operate on a lower level by considering transformations of the map between spatial locations and one-dimensional memory

locations.

TA B L E 1 Overview of existing propagation patterns.

Grid Addressing

Name One Two Direct Indirect Parallel SIMDa Access

Unfused ✓ ✓ ✓ ✓ ✓ ✓ 4Q

A-B3,12 × ✓ ✓ ✓ ✓ ✓ 2Q

Lagrangian shift16 ✓ × ✓ × ✓ × 2Q

SWAP10 ✓ × ✓ ✓ × × 3Q − 1

A-A12 ✓ × ✓ ✓ ✓ ✓ 2Q

Esoteric twist21 ✓ × ✓ ✓ ✓ ✓ 2Q

SSS11 ✓ × ✓ × ✓ ✓ 2Q

aSIMD friendly as in possibility of straightforward SIMD on consecutive data.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 25 KUMMERLÄNDER ET AL.

2.2.1 Data layout

An important consideration that underlies all propagation patterns is which concrete data structure they operate on and more specifically which

layout said data structure follows.3,8 In the common case, the discrete spatial location of each cell is mapped to one-dimensional memory as a plain

multidimensional array. However, as each cell consists of Q individual population values this traditionally gives rise to the Array of Structures (AoS)

and Structure of Arrays (SoA) layouts. The former stores stores all Q populations belonging to a single cell location in contiguous structures placed

inside of a single array whereas the latter stores the ith populations of all cell locations in a contiguous array, forming a structure of Q arrays. While

the locality of per-cell populations in a AoS layout has advantages for unvectorized collision steps,3,8 vectorization is straightforward for the SoA

layout at the cost of unaligned accesses during propagation.

More complex versions of these basic layouts were previously discussed in literature3,8,22 in order to improve data locality and access alignment

on certain platforms. The general approach is to divide a SoA layout into cache-fitting and access-aligned blocks that are then processed individually

and referred to as for example, a Array of Structure of Arrays (AoSoA) or Clustered Array of Structure of Arrays (CAoSoA).8

2.2.2 SWAP pattern

The SWAP pattern10 achieves in-place streaming by introducing sequential ordering of the collision steps in combination with eponymous swapping

of the previously processed neighborhood subset. Its memory access pattern is cache-friendly and the number of memory accesses per cell at 3Q − 1

is lower than a unfused algorithm’s 4Q operations in exchange for giving up the parallel nature of the LBM algorithm. This renders the SWAP pattern

fundamentally unsuited to both the utilization of vector instructions on CPUs and GPU execution in general.

Figure 1 showcases the reliance of the SWAP pattern on sequential processing of cells in the fused collide-and-stream loop.

2.2.3 A-A pattern

The shortcomings of the SWAP pattern w.r.t. memory bandwidth and more importantly parallelizability are addressed by the A-A pattern.12 Instead

of requiring a sequential ordering of collision operations, the accessed memory locations are alternated between odd and even timesteps by using

two separate versions of each collision kernel. This way both collision and streaming steps are perfectly parallel which is essential when targeting

GPUs. The concept of pulling or pushing doesn’t apply to A-A as populations are read from and written back to the same set of memory locations

in both kernels. As is illustrated by Figure 2 the even timestep can be considered to only perform an in-place collision step while the odd timestep

performs a stream-collide-stream cycle.

While A-A can in principle be used on both indirectly and directly addressed grids it is more suited to the latter due to the need for access-

ing all neighboring nodes during every second timestep. This issue is addressed by Esoteric Twist21 which uses a non-isotropic population access

(A) (B) (C)

F I G U R E 1 Stages of the SWAP propagation pattern. (A) During the pre-propagation stage all solid bold populations in the current (center)
cell are already the correct pre-collision values as they were propagated by the preceding cells’ collide-and-stream step. (B) The post-propagation
stage is reached by swapping the remaining unpropagated populations (bold dotted) with the corresponding neighboring populations that are yet
to be propagated to the current cell as pre-collision values. (C) The post-collision stage is reached by colliding the pre-collision values in place.
After this the current cell has completed its stream-and-collide cycle and processing moves on to next cell’s pre-propagation stage.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 5 of 25

(A) (B) (C) (D)

F I G U R E 2 Stages of the A-A propagation pattern. (A) The even timestep reads pre-collision populations from their canonical locations. (B)

Post-collision populations are written back to their canonical locations in reverted order for the even timestep. (C) The odd timestep pulls
pre-collision populations from neighboring cells, implicitly performing propagation for the previous timestep. (D) Post-collision populations are
pushed to the neighboring cells in reverted order, implicitly performing propagation for the following timestep.

pattern that distinguishes between pushing and pulling depending on the streaming direction. While not requiring it21 also introduces the usage of

a pointer-based control structure to replace the separate collision operators required by A-A. This approach is employed by the SSS11 (SSS) pattern

which reformulates A-A as a both auto-vectorization-friendly and perfectly parallel pattern for directly addressed grids.

3 IMPLICIT PROPAGATION

The use of regular grids to discretize the simulation domain is a central aspect of LBM performance. In addition to collision operators being uniform

for all cells, both local propagation and communication between distributed domains is straightforward. Minimization of the surface between indi-

vidual subdomains in a packing problem and implementation convenience suggest the use of cuboids as the basic geometry of LBM lattices. In this

context a cuboid denotes the finite subset

C ∶= ×d
i=1{0, … , ci − 1} ⊂ Z

d
≥0,

of the positive orthant of d-dimensional Euclidean space. The vector c ∈ Z
d
≥0

describes the extent that is, the number of cells along each dimension

for cuboid C. Note that this describes the lattice used for non-dimensionalized simulations with Δx = 1. Storing distinct values for each x ∈ C in

memory requires a bijection with the set

M ∶= {0, … , |C| − 1} ⊂ Z,

of one-dimensional locations. Bijections mc ∶ C → M are referred to as a discrete space filling curves (SFC).

Definition 4 (Location invariance of neighborhood distances). Let x, y ∈ C be a pair of locations in cuboid C. The one-dimensional distance w.r.t.

SFC mc is given by

𝛿 ∶ C × C → Z, (x, y) → mc(x) −mc(y).

This distance is called location invariant iff

∀𝜉 ∈ Z
d ∀x, y ∈ {x ∈ C|x + 𝜉 ∈ C} ∶ 𝛿(x, x + 𝜉) = 𝛿(y, y + 𝜉).

This invariance of the in-memory distance between all well-defined spatial neighbor locations is the essential property that can be employed for

implicit propagation on directly addressed grids. Any curves that satisfy this property enable streaming of populations along their discrete velocity

directions by translation of the starting point.

Definition 5 (Implicit propagation). Let C be a cuboid with memory bijection mc fulfilling Definition 4, 𝜉 ∈ Z
d a discrete velocity and t the current

time. The memory access function

pt ∶ Z → R,

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 25 KUMMERLÄNDER ET AL.

TA B L E 2 Overview of considered implicit propagation patterns.

Approach SFC

A-B Read from grid A using pt+1, write to grid B using pt Any

A-A Alternate operators using either pt or pt+1, writes performed in opposite directions Any

SSS Shift in control structure of standard arrays, writes performed in opposite directions Sweep

PS Rotate cyclic arrays Sweep

returns the current population values for all x ∈ mc(C) at time t and dummy values for x ∈ Z ⧵mc(C). Propagation from x ∈ C at time t to x + 𝜉 ∈ C

at time t + 1 is equivalent to

pt+1(mc(x + 𝜉)) = pt(mc(x)).

Due to invariance of the neighborhood distance the memory access function pt+1 can be defined as

pt+1 ∶ x → pt(m̃c(x)) where m̃c ∶ x → mc(x) + 𝛿(x, x + 𝜉),

while being equivalent to propagation along 𝜉 for all x ∈ {x ∈ C|x + 𝜉 ∈ C}. Note that pt+1 is simply a shifted view of the original memory function pt .

The propagation is thus performed implicitly.

As each of the lattice’s q populations is identified by a distinct discrete velocity 𝜉i ∈ Z
d, implicit propagation can only be performed if the

population data is stored in separate memory arrays. This is commonly referred to as a Structure of Arrays (SoA) memory layout.

The essential difference between propagation patterns that are expressible in terms of this framework, is the specific way by which the indexing

shift is performed. An overview of the established A-B and A-A patterns as well as SSS and the novel PS pattern is provided in Table 2.

Using Definition 4 a discrete space filling curve mc for arbitrary cuboids C can be constructed. Starting with d = 1 the definition of the distance

function 𝛿 can be transformed into a definition of m(i) for arbitrary i ∈ Z≥0.

𝛿(i,0) = m(i) −m(0)

= m(i) −m(i − 1) + m(i − 1) − m(0)

= 𝛿(i, i − 1) + 𝛿(i − 1,0)

= · · · =
i∑

j=1

𝛿(j, j − 1)

⇔ m(i) =
i∑

j=1

𝛿(j, j − 1) +m(0)

⇒ m(i) = i𝛿 + m(0) 𝛿 ≡ 𝛿(j, j − 1).

Repeating this construction in the d-dimensional case for each component of x ∈ C ⊂ Z
d
≥0

yields a family of valid SFC

𝛿(x,0) = mc,𝛿(x) −mc,𝛿(0) =
d∑

i=1

xi𝛿i

⇔ mc,𝛿(x) =
d∑

i=1

xi𝛿i + mc,𝛿(0).

Choosing mc,𝛿(0) = 0 and using the ordering

x ≥ y ⇔ 𝛿(x, y) ≥ 0

x ≤ y ⇔ 𝛿(x, y) ≤ 0,

which yields

∀ i ∃! j ∶ 𝛿(i, j) = 𝛿,

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 7 of 25

values for 𝛿i can be fixed to select a 𝛿-minimal function mc from family mc,𝛿 :

𝛿i = 1 ∧ 𝛿i−1 = ci𝛿i.

Larger values for 𝛿i are possible and enable interleaving of several separate cuboid embeddings in memory when starting with 𝛿d = m > 1. This may

provide locality benefits for the coupling of multiple independent lattices. Using i = d to close the recursion without loss of generality this produces

𝛿i ∶=
d∏

j=i+1

cj.

The bijection resulting from these constants is the Sweep SFC23 which is widely used to represent d-dimensional arrays is memory.

Definition 6 (Sweep space filling curve). Let C be a cuboid of |C| =
∏d

i=1ci cells. The Sweep space filling curve

mc ∶ C → M, x →
d∑

i=1

xi

d∏

j=i+1

cj,

provides a bijection between d-dimensional cuboid C and 1-dimensional memory indices M. Note that the mapping between spatial dimensions and

components xi may be permuted without loss of generality.

This discrete SFC provides the foundation for implicit propagation on any directly addressed grids. While SSS and PS explicitly depend on Sweep,

the connection is more subtle for the two-grid A-B and one-grid A-A patterns. Both of these can in theory use other SFCs that don’t fulfill Definition 4

for their memory bijection such as for example, a Hilbert curve. However the non-trivial and location-dependent neighborhood distances in such a

curve would increase the cost of propagation and render them closer to indirectly addressed patterns.

The A-B pattern can be formulated in terms of implicit propagation by using the Sweep SFC for both grids s.t. the memory bijection pt+1 is used

for reads and pt is used for writes. This is equivalent to a pull-style A-B pattern. Correspondingly, the A-A pattern can be formulated by using either pt

or pt+1 for the alternating operators performing reverted writes. If a control-structure is used to encode p, we get the SSS pattern in Listing 1. In this

case, as m̃c(C) ⊈ mc(C) for 𝜉 ≠ 0 one has to ensure that the underlying memory buffer is valid for indices outside of mc(C). Some values for locations

not in C◦ will thus be located in a so called padding area. It can be observed that this padding area grows with every time step. SSS addresses this by

writing the post-collision values in reversed order. This way the direction of the shift reverses every timestep and the padding area is bounded.

Lis�ng 1: Formula�on of A-A with control structure resp. SSS

4 PERIODIC SHIFT PATTERN

The reversed post-collision storage approach taken by SSS is one possibility for bounding the indexing shift. Another option is to wrap the memory

bijection mc so that m̃c(C) = mc(C) (cf. Definition 5). This is realized by implementing theqpopulation buffers as cyclic or rotatable arrays with shiftable

start positions. Differently from Lagrangian shift,16 we apply this transformation on the level of the one-dimensional memory bijection instead of on

the level of spatial cell locations, leading to a fully distinct propagation pattern with respect to implementation, memory access, and performance

characteristics.

The PS propagation pattern resulting of this approach places minimal demands on the implementation of collision operations. Post-collision

populations are written back to their original locations without reverting and the population buffers do not need to take into account any padding

areas given suitable cyclic array realizations. Note that due to this usage of in-place collision the concept of pulling versus pushing does not apply

to PS. While dropping the reverted stores required by SSS can be an advantage when adapting an existing LBM code, this approach also results in a

different memory access pattern that in turn leads to different performance characteristics when compared to SSS.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 25 KUMMERLÄNDER ET AL.

Propagation by shifting the starting point of cyclic arrays is fully transparent and defuses the collide-and-stream algorithm into its canonical

local collide and non-local stream step while preserving the bandwidth advantage. These features are traded for by the comparably larger difficulty

of implementing high-performance cyclic arrays as will be expanded on in Section 4.1.

Figure 3 illustrates how propagation is performed using only rotation of cyclic arrays. Outgoing populations take on the locations of undefined

incoming populations after propagation. The lattice populations are well-defined as a whole only after collision and prior to streaming. Only the inte-

rior is well-defined after streaming. This is not a problem as these values need to be reconstructed by boundary conditions anyway independently

of the specific pattern. It should be noted that the incoming populations at the outer boundary are not equivalent to a periodic boundary condition

for the underlying sweep space filling curve.

4.1 Implementation

In order to realize PS as an implicit propagation step, the Rotate function in Listing 2 must be expressed as some kind of pointer transformation.

Explicit propagation would result of actually rotating the population arrays but this would defeat the goal of providing zero memory transfer cost

streaming. This section explores various approaches to Rotate, an overview is provided in Table 3.

(A) (B)

(C) (D)

F I G U R E 3 Propagation without data transfer by population array rotation in PS. (A) Pre-propagation spatial locations of population values.
Bold populations are to be streamed into the center cell. (B) Pre-propagation SoA memory locations of population values. Bold rectangle encloses

current center cell populations. (C) Post-propagation spatial locations of population values. Dotted populations represent values that were
rotated over array boundaries. (D) Post-propagation SoA memory locations of population values. Bold populations were moved into the center
rectangle by array rotation.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 9 of 25

TA B L E 3 Overview of approaches to implementing PS.

Cyclic array Padding-less grids SIMDa

Modulo Any ×

Branching Any ×

Base-2 bit modulo ∃x ∈ N ∶ volume = 2x ×

Virtual address volume ⋅ sizeof(FPT) mod pagesize = 0 ✓

aw.r.t. straightforward SIMD on consecutive data. More complex approaches (e.g., using gather intrinsics) are possible in all cases.

Lis�ng 2: Formula�on of PS in terms of a Rotate func�on

Reflecting the implicit nature, Rotate is provided as a function GetPopulation ∶ SHIFT × {0, … , volume − 1}→ {0, … , volume − 1} that maps

a given shift and fixed cell index set to physical memory indices. The essential implementation question is how to do this as efficiently as possible.

4.1.1 Rotation via explicit index computation

The simplest way of implementing an implicit rotation is to use the shifted cell index modulo the number of cells to compute the memory location

GetPopulation(shift, i) ∶= (i + shift) mod ncells.

Note that the behavior of the modulo operator for negative dividends differs between languages. For example, in C/C++ the remainder has to be

increased by ncells for i + shift < 0 to get the correctly rotated memory location. A downside of this approach is that consecutive cell indices do not

map to consecutive memory locations in the general case. This prevents the application of most SIMD instructions and forces implementers to either

invest more effort than would be necessary in for example, the SSS pattern or to refrain from vectorizing the collision step altogether.

In the same vein, modulo operations can be replaced by branching between two start pointers depending on whether the requested cell index

crosses the rotation fold. This branch-based approach in Listing 3 tends to slightly reduce the access overhead on CPUs compared to the direct usage

of modulo instructions. Other variants of this branch-based approach might also be of interest depending on the target platform. These include

for example, replacing the branch by comparison-indexed accesses or maintaining just one start pointer per array and applying the offset using a

remainder-dependent mask.

Lis�ng 3: GetPopula�on implemented using branching

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 25 KUMMERLÄNDER ET AL.

For completeness, another way of reducing the cost of the modulo operation is to restrict the supported lattice volumes to powers of two. In

this case modulo can be replaced by a cheap bit level AND

base2(x mod y) ≡ base2(x) AND base2(y − 1) for y = 2z
.

The obvious downside is that only a very small subset of padding-less cuboid sizes is supported.

4.1.2 Rotation via virtual memory address translation

An efficient way of implementing cyclic arrays is by modifying the page table to translate two adjacent virtual address buffers to a sin-

gle shared physical address buffer. This offers an approach to direct applicability of all SIMD instructions and eliminating the access

complexity inherent in explicit index computations. Rotation wrapping is resolved in hardware at address translation time without any

additional runtime cost as these translations must be performed in any case. However, memory management at this level is highly

OS specific.

The in-memory size of cyclic arrays implemented in this fashion needs to be a multiple of the system-specific page size. Note that the set of

valid grid dimensions is a reasonably dense subset of all possible grid dimensions. Adapting existing block decomposition schemes to fit cuboids to

the closest valid extend is straightforward. Alternatively the size of the population arrays may also be simply padded to the next multiple of the page

size to transparently handle any lattice sizes.

Using the virtual memory approach, propagation is handled only by the memory setup and population pointer shift in Listing 4. All collision

operators and boundary conditions are provided a contiguous view of the population arrays.

Lis�ng 4: Setup and access of virtual memory PS

When implementing this virtual memory mapping in Unix environments it is important to use shared memory objects allocated via shm_open

as the physical buffer instead of temporary files—the latter can seem workable but leads to unwanted disk flushing. Directly accessing these shared

areas for inter-process propagation on shared memory systems may provide an additional possibility for optimization compared to serialization

into MPI messages.

Nvidia GPUs offer low-level access to virtual memory starting CUDA 10.2.24,25 Thus all described approaches to implementing the PS pattern

can also be applied there. It should be noted that the GPU page size is commonly larger than on CPUs which further reduces the set of padding-less

lattice dimensions. GPU LBM codes commonly spawning one thread per cell17,18 in combination with bandwidth-limited collision leads to the

expectation that branching approaches can also be implemented efficiently.

4.2 Performance characteristics

The specific implementation of the memory bijection underlying implicit propagation as well as the SFC are an essential determinant of the perfor-

mance characteristics. In this context isotropy describes the relationship between performance and spatial dimension ratio while time dependency

considers performance differences between time steps.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 11 of 25

4.2.1 Time dependency

By principle, the memory access functions between two consecutive LB algorithm steps can not be the same when an implicit pattern is used for

streaming on a single grid. This means that the performance of implicit propagation patterns is necessarily dependent on the specific time step as

different access functions lead to different memory access patterns (e.g., different alignment) that influence the data access speed.

Such a dependency was previously observed for an indirectly addressed A-A pattern22(fig. 7–8) where each even step achieves up to twice the

performance of the odd step. As the memory access pattern is the same between A-A and SSS, this is also expected for the latter.

In order to confirm this alternating time dependency for SSS and to inspect the per-step performance distribution for the PS pattern, the mean

per-step performance is aggregated over 10,000 timesteps of a equilateral cuboid simulation with BGK collision in the interior and bounce back

boundary conditions on the frontier. Figures 4 and 5 summarize the per-step performance relative to the mean alongside the per-step root mean

square error (RMSE) over the respective periods. The alternating pattern characteristic of A-A is reproduced for SSS in Figure 4 but due to direct

addressing it is much less pronounced at approximately 0.985 and 1.015 of the mean performance.

More complex per-step performance characteristics are observed for the PS pattern. Compared to the alternating states in SSS, the PS results

follow a varied distribution with outliers down to only 75% of the mean performance. Consistently repeating 512 step periods can be observed

independently of the cuboid size on any double-precision lattice. The distinct performance regressions visible in the histogram are localized every

F I G U R E 4 Per-step performance for a 1283 lattice using SSS. Consistently alternating±1.5% deviation from mean performance is observed

on the ZEN CPU (see Table 4).

(A) (B)

F I G U R E 5 Per-step performance for a 1283 lattice using PS. Varied per-step performance fluctuations consistently repeating over a 512
timestep period are observed on the ZEN CPU (see Table 4). (A) Without any pre-shift. Distinctively repeating regressions down to∼75% of the
mean performance are observed every 512 timesteps. (B) Using L1-aware pre-shift. Fluctuations are restricted to between 97% and 102.5% of the
mean performance by pre-shifting array to reduce L1 cache conflicts.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 of 25 KUMMERLÄNDER ET AL.

512 steps exactly. Not by coincidence 512 × sizeof(double) = 4096 is the page size of the CPU used for these measurements. Due to this, all shifts

in double-precision arrays starting at page-aligned addresses will again be aligned every 512 steps irrespectively of the individual shift distances

per step. Aligned accesses lead to increased frequency of conflict misses in the cache hierarchy which explains the observed recurring performance

degradation.

Most current CPUs utilize a hierarchy of set-associative caches26 storing entries in lines of some fixed size. Alignment of multiple accesses

to the page boundary reduces the number of cache sets available to satisfy these accesses. This in turn increases the number of cache lines that

are prematurely evicted, increasing the number of cache misses which decreases performance. Conflict misses may also occur in the translation

lookaside buffer (TLB) that is used to cache the results of virtual memory address translation.

While the performance regression caused by such conflict misses does not necessarily impact the observed mean performance, a straightfor-

ward workaround is to pre-shift the starting positions of all population arrays by some suitable distance. Choosing such a distance depends on

knowledge of the specific cache setup used by the targeted processor.

On all tested CPUs, pre-shifting the population arrays by one cache line each eliminated the performance minima. This way bits

6 to 12 of the start addresses are different between each individual population array causing them to hit different sets of the L1

cache. The resulting pattern on ZEN is visualized in Figure 5B. In order to investigate potential issues with TLB conflicts, an older

Intel Haswell CPU providing only 4-way TLB associativity was also tested. There, smaller periodic regressions are still observable

for L1-only pre-shifting. Applying additional TLB pre-shifting in address bits 12 to 18 removes these artifacts. In comparison no sig-

nificant differences between pre-shifting only L1 or both L1 and TLB are observed for ZEN. This matches the full associativity of

ZEN’s TLB setup.

4.2.2 Isotropy

In order to investigate the isotropy of implicit propagation patterns, additional properties of the chosen space filling curve mc need to be introduced.

Definition 7 (Preferred dimension). Dimension i is called the preferred dimension of a given SFC mc if any well-defined spatial neighbors along xi

are also neighbors with respect to the memory index. That is,

∀x ∈ C◦ ∀y ∈ {x|xi ± 1} ∶ |𝛿(x, y)| = 1 ⇔ i is preferred.

Definition 8 (Invariant dimension). Dimension i s.t. mc ≡ mc̃ for any c̃ ∈ Z
d
≥0

with ci ≠ c̃i and cj = c̃j for j ≠ i is called an invariant dimension of the

SFC mc. For the Sweep SFCs that are considered there is exactly one such dimension.

The preferred dimension of the Sweep SFC as given in Definition 6 is xd while the invariant dimension is x1. Ignoring interleaved

parameterization there are six different versions of the Sweep SFC usable on a directly addressed 3D lattice. In the general case any spa-

tial neighbors along a non-preferred dimension are not neighbors in memory. This lack in isotropy can impact performance in two ways:

by changing the locality properties that are important for non-contiguous access patterns and by modifying access alignment per propaga-

tion step. This closely relates to the time dependency analysis in the previous section. By definition the extent 𝛿(x, y) of all individual array

shifts is determined by mc. Specifically, the shifts are a function of cuboid size components ci along all dimensions i that mc is not invari-

ant in. The preferred non-invariant dimension was found to determine the overall anisotropic shape of the relative performance for both

SSS and PS.

This can be seen clearly in Figure 6 which plots the performance of various configurations of 1283 cells for the SSS and PS pattern relative to the

performance for the equilateral reference C = ×3
i=1
{0, … ,127}. The measurements were obtained over 100 non-parallelized steps on a minimal

simulation domain using a single mask to select a BGK collision step in the interior and bounce back at the frontier. While the equilateral reference

results in approximately equal performance (see Section 5.1), the specific anisotropy varies along patterns and preferred dimensions by ±15%.

Notably, SSS trends to mostly regressed performance while PS provides both negative and positive peaks at larger extents along the preferred

dimension. This suggests that pre-shifting could also be applied to tune SSS performance. For PS, the SFC choice should ideally be modified for

non-equilateral lattices w.r.t. the ratio of extents and pattern to obtain optimal performance.

From a cache utilization perspective, the ideal case is for accesses to happen in sweeps over all cells following their in-memory sequence. How-

ever, using this approach for changes to small lattice subsets would constitute a large overhead of unnecessary cache loads. In this case one could

use a ordered list of the specific cell indices to be modified. In this case, the problem with anisotropic SFCs becomes apparent, for example, when

processing the boundary conditions for a lid driven cavity or more generally when copying overlap populations to communication buffers. In this

case the preferred dimension controls what fraction of accesses is contiguous and which are isolated. Correspondingly, we observed the usage of

multiple masks in a single sweep of the entire lattice to be more efficient than list-based approaches.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 13 of 25

F I G U R E 6 Configurations of 1283 cells for different SFCs. Relative performance on lattices of extent c = (c1, c2,1283∕(c1c2)) for SSS and
(pre-shifted) PS on ZEN. For non-equilateral cuboids the performance varies by±15% relative to the equilateral reference depending on the
specific underlying SFC. For SSS, non-equilateral cuboids mostly yield lower performance while for PS performance can be improved significantly
by the correct choice of SFC. For example, for preshifted PS the c= (512,32,128) case can be flipped from∼85% of the reference performance to

∼110% by changing the SFC’s preferred dimension. Qualitatively similar results were also observed for other cell counts.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 of 25 KUMMERLÄNDER ET AL.

5 BENCHMARK RESULTS

We compare PS to both SSS11 and SWAP.10 As the actual memory access pattern of SSS is equivalent to A-A, this pattern is implicitly included in the

evaluation. All benchmarks were performed using the established lid driven cavity (LDC).27,28 This is used frequently as a performance benchmark

and validation case.13,29,30 It is also specifically suited to comparisons of propagation patterns due to the minimal usage of boundary conditions. All

tests were performed on a D3Q19 lattice using either single or double precision floating point values.

The bulk fluid is simulated using a plain BGK collision while the walls are modeled using the fullway bounce-back boundary condition with

post-collision values

fpost
𝜉

∶= fpre
−𝜉 .

The tangentially moving lid is also modeled using fullway bounce-back extended by a moving wall correction31

fpost
i

∶= fpre
j
− 2𝜌0wj

𝜉j ⋅ vw

c2
s

where 𝜉j = −𝜉i,

for given wall velocity vw ∈ R
3 and 𝜌0 = 1. The individual cells of a given simulation cuboid C are assigned these collision steps as

Cbulk ∶ = ×2
i=0 {1, … , ci − 2}

Clid ∶ =
{

x ∈ C|||x2 = c2 − 1
}

Cwall ∶ = C ⧵ (Cbulk ∪ Clid) .

We primarily focused on comparing PS and SSS for equilateral lid driven cavities w.r.t. to their bandwidth saturation using custom benchmark

codes SweepLB32 for CPU and LiterateLB33 for GPU benchmarks. Further tests were performed comparing the performance of PS, SWAP and

explicitly reverted SSS in the context of OpenLB.13

CPU reference memory bandwidth was measured with likwid-bench34 which offers a large set of specialized microbenchmarks.

Conversions between the number of millions of lattice updates per second (MLUPs) and memory bandwidth values were confirmed by

likwid-perfctr.

In addition a update_19microbenchmark following35 was used to determine performance limits with respect to the LBM specific access pat-

tern. This benchmark uses the same SoA layout of a D3Q19 lattice as is used for the simulations but doesn’t perform any streaming and only performs

a in-place triad-like computation for each cell.

5.1 CPU performance

While CPU-based LBM performance is commonly not competitive compared even to desktop-grade GPUs, they are still a central component of any

HPC system and an important execution target of many LBM codes.13,36,37

Table 4 provides an overview of the different CPUs that were used for the benchmarks. In order to cover a representative selection of hard-

ware setups, each CPU targets a different use case: the ZEN system belongs to the class of higher-end desktop CPUs, SKL is a member of Intel’s

widespread HPC processor series and KNL is a non-conventional bandwidth-focused CPU. Notably both Intel CPUs support SIMD-widths up to

512 bits while ZEN is limited to 256 bit vectors.

Highlighting the level 3 cache sizes as one important difference between the test systems, Table 5 summarizes both the total and

bandwidth-related performance for LDC sizes between 323 and the maximum tested cache-fitting value. Interestingly, SKL yields the best total

mean performance while having both the lowest number of cores and the smallest cache size. While this must be qualified by the correspondingly

smaller selection of samples, SKL also saturates the cache bandwidth better than ZEN and provides significantly higher worst-case results than KNL.

While ZEN provides good bandwidth saturation for larger problems, the comparably low value thereof restricts its competitiveness to smaller

problems. This should not be taken as a general issue but rather as an common downside of desktop-grade CPUs. ZEN’s total performance on

cache-fitting problems is close to both other test CPUs and performance on the server-grade AMD EPYC version of ZEN can be expected to be

significantly better.

The cache bandwidth utilization of only∼0.12 on ZEN is mitigated to some degree by its large L3 cache of 64 MiB leading it to provide the best

cell throughput for problem sizes in the vicinity of the performance intersection of SKL and KNL. The likely explanation for the comparably lower

utilization is the more developed SIMD support on Intel.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 15 of 25

TA B L E 4 Specifications of the CPUs used for the pattern benchmarks.

Name ZEN SKL KNL

Manufacturer AMD Intel Intel

Processor Threadripper 2990WX Xeon Platinum 8151a Xeon Phi 7250

Architecture ZEN+ Skylake SP Knights landing

Cores 32 12 68

SIMD ISA AVX2 AVX2, AVX-512 AVX2, AVX-512

L1 (KiB) 32 × 96 12 × 64 68 × 64

L2 (MiB) 32 × 0.5 12 × 1 34 × 1

L3 (MiB) 8 × 8 24.75 16 GiBb

Compiler GCC 10.2c GCC 9.3.0c ICC 19.1.0.166d

Accessed via Local workstation Amazon EC2 DUG McCloud

Memory bandwidth

updatee (GB/s) 60.2 101.4 365.1

update_19 (GB/s) 58.1 99.7 316.9

LBM bandwidthf

update (MLUPs) 198 334 1201

update_19 (MLUPs) 191 328 1042

aCustom Xeon Skylake SP of an Amazon EC2 z1d.metal instance.
bXeon Phi offers 16 GiB of high-bandwidth on-die memory usable in a L3-like fashion.
cUsing flags “-O3 -march=native -mtune=native -mavx2 -mavx512f -mavx512dq”.
dUsing flags “-O3 -w -ipo -axMIC-AVX512, CORE-AVX2”.
eAVX2/AVX-512 vector update microbenchmark provided by likwid_bench.
fNumber of MLUPs when using double precision FPT that is, bandwidth∕(2 ∗ 19 ∗ 8 ∗ 1e6).

TA B L E 5 Double-precision CPU results for cache-fitting problems.

ZEN SKL KNL

Description SSS PS SSS PS SSS PS

Min (MLUPs) 512 534 655 757 130 140

Max (MLUPs) 832 831 912 945 971 1017

Avg (MLUPs) 720 720 813 871 798 852

Bandwidth saturation w.r.t. update_avx(512)

Min 0.09 0.09 0.13 0.15 0.04 0.04

Max 0.24 0.22 0.55 0.58 0.82 0.87

Avg 0.12 0.12 0.30 0.32 0.65 0.70

Bandwidth saturation w.r.t. update_19

Min 0.32 0.33 0.35 0.38 0.66 0.73

Max 0.50 0.51 0.61 0.64 1.00 1.00

Avg 0.37 0.37 0.44 0.48 0.88 0.94

Note: w.r.t. lattice sizes between 323 and #bytes(L3)∕(19 ∗ 8). On KNL up to the maximum sampled size of 2643 due to using HBM in transparent cache

mode.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

16 of 25 KUMMERLÄNDER ET AL.

(A) (B)

F I G U R E 7 Performance for SSS and PS on KNL using 136 threads. (A) Performance is compared for choices of precision and SIMD width for
the 2563-resolved cavity case. Both the switch from double to single and from 256 to 512 bit vectors lead to two-fold performance improvements.

PS performs better than SSS by between 5% and 12%. (B) Overview of pattern specific total and bandwidth-relative performance using AVX-512
for a range of double-precision cavity resolutions. The PS advantage observed in (A) extends to all resolutions and shows comparably reduced
fluctuations between similar resolutions.

F I G U R E 8 Comparison of AVX2 and AVX-512 using PS on SKL. Comparison of total performance for double-precision cavities on SKL using
all 12 threads via OpenMP. AVX-512 yields a large speedup of around∼40% for cache-fitting problems (cache size in number of cells marked by

vertical dashed line). The advantage compared to AVX2 continuously reduces to∼5% for larger problems due to memory bandwidth saturation.

The choice between AVX2 and AVX-512 improves the performance for small cache-fitting lattice sizes on SKL by a factor of ∼1.5 as depicted

for PS in Figure 8. However no two fold speedup as can be achieved on KNL in Figure 7 is observed there and the effect diminishes for larger lattice

sizes. This is only to some degree observed on KNL due to its 16 GiB of on-die high-bandwidth memory acting as a L3 analogue. This suggests

that AVX-512 provides primarily a computational and not a memory access advantage. Furthermore, the benchmarked LB implementation is only

bandwidth-bound for problem sizes beyond the cache capacity.

While providing the best mean cache saturation w.r.t. both reference measurements, KNL underperforms for sizes fitting in the L3 cache on SKL

and ZEN. For these sizes, KNL yields the lowest measured total cell throughput and bandwidth utilization relative to update_avx512. This rela-

tionship inverts for the saturation relative toupdate_19 suggesting that independent of the propagation pattern the data layout and parallelization

scheme is not an ideal fit to KNL and needs to be adapted to fully utilize the hardware. This is supported by the observation that different from

ZEN and SKL, reference bandwidths obtained using the ISA-specific update_avxmicrobenchmarks on KNL are significantly higher than the ones

obtained using the lattice-like access pattern in update_19. The small per-core problem size due to the high number of threads is also a possible

factor for KNL’s underperformance alongside the generally lower peak bandwidth.

Focusing now on a wider spectrum of problem sizes, Table 6(a) and (b) provide an overview of the results for the subset of sample sizes larger

than 1283 resp. all samples. There, benefits of KNL’s high bandwidth are observable and result in the highest measured number of MLUPs and a

threefold improvement of the mean performance for problems beyond cache effects on SKL and ZEN.

Despite the different memory access space covered by both tested patterns, the achieved total mean performance is approximately the same

on both ZEN and SKL and reasonably close on KNL. The average performance for cache-fitting problems on SKL in Figure 9A is larger for PS by

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 17 of 25

TA B L E 6 Overview of double-precision CPU results.

ZEN SKL KNL

Description SSS PS SSS PS SSS PS

(a) Overview for problems larger than 1283

Min (MLUPs) 164 166 307 308 864 963

Max (MLUPs) 168 169 329 327 971 1017

Avg (MLUPs) 166 167 314 314 940 997

Bandwidth saturation w.r.t. update_avx(512)

Min 0.89 0.90 0.97 0.97 0.74 0.80

Max 0.91 0.93 0.99 0.99 0.82 0.87

Avg 0.90 0.91 0.98 0.98 0.80 0.85

(b) Overview of all CPU results

Min (MLUPs) 164 166 307 302 130 140

Max (MLUPs) 833 831 912 956 971 1017

Avg (MLUPs) 258 259 394 398 798 852

Bandwidth saturation w.r.t. update_avx(512)

Min 0.09 0.09 0.13 0.15 0.04 0.04

Max 0.91 0.93 0.99 0.99 0.82 0.87

Avg 0.77 0.77 0.90 0.90 0.65 0.70

(A) (B)

F I G U R E 9 Double-precision performance for SSS and PS on SKL and ZEN. (A) SKL with 12 threads and AVX-512; (B) ZEN with 32 threads
and AVX2.

around 7% (58 MLUPs) but this does not extend to larger problems and even inverts slightly, yielding nearly equal mean values when considering all

tested problem sizes.

On ZEN, the SSS pattern can be observed to provide better performance at the cache-size boundary in Figure 9B preceded by approximately

equal results and followed by a slight but consistently reproduced advantage of∼1% (2 MLUPs) for PS. It should be repeated at this point that access

alignment was observed to be an important factor on ZEN as an initial version of the benchmark code produced only half the performance when not

explicitly aligning the SSS population buffer. This is implicitly guaranteed for PS when using the virtual memory approach.

Different from SKL and ZEN results, a consistent 50 MLUPs advantage for PS across most sample sizes was observed on KNL. This translates

into a∼8% increase of the mean bandwidth saturation and the only observed CPU result exceeding 1000 MLUPs.

Concluding this section, our performance evaluation shows good, mostly bandwidth-limited performance for both SSS and PS across all test

CPUs. Further discussion of the pattern choice will be provided in Section 5.1.1. The similar results despite different access patterns can be argued

as support for the concept of utilizing implicit propagation based on the SFC neighborhood characteristics. On all tested CPUs the virtual mem-

ory system is performance transparent to the degree that wrapping accesses into a cyclic array in PS provides performance parity to the reverted

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

18 of 25 KUMMERLÄNDER ET AL.

F I G U R E 10 CPU performance using PS for ZEN, SKL, and KNL. All values using virtual memory PS in the vectorized double-precision cavity
case parallelized via OpenMP. Specifically ZEN: AVX2 @ 32 threads, SKL: AVX-512 @ 12 threads and KNL: AVX-512 @ 136 threads.
Bandwidth-relative performance w.r.t. Likwid update_avx(512) reference measurements.

stores in SSS. As the per-collision view of the lattice w.r.t. to SIMD instructions is identical between both patterns, arguments for considering SSS as

auto-vectorization friendly11 apply equally to PS. Finally, an overview of total bandwidth-related PS performance on all tested CPUs is provided in

Figure 10.

5.1.1 Application to OpenLB

The open source LBM framework OpenLB13 used the SWAP pattern10 up until version 1.3r1.38 Starting with version 1.439 it relies on PS with a

branching control structure. This section documents this important step in OpenLB’s development and explores an approach to enabling vectoriza-

tion of the collision loop. This is in turn led to significantly improved CPU-based performance in addition to providing groundwork for supporting

GPU targets in OpenLB’s parallelization concept.

As the branching PS pattern in OpenLB 1.4 is based on a comprehensive revamp of the framework’s core data structures, it is straightforward

to modify this latest release to use an adapted SSS pattern with explicit revert. Implementing the canonical version11—where the revert is per-

formed implicitly while committing the post-collision values—poses a challenge due to how collisions are modeled in OpenLB. Specifically there is no

straightforward way of distinguishing between cell writes and reads which prevents the implicit revert during write back. This obstacle motivated

the initial exploration of an alternative that is formalized as the PS pattern by the present work.

Figure 11A plots the single thread speedup of non-SIMD branching PS and explicit SSS in OpenLB 1.439 relative to the SWAP pattern in OpenLB

1.3.38 As cell accesses in both versions are performed via an interface class the difference in performance w.r.t. the previous release is given largely

due to the change in data structure from AoS to SoA and the newly optimal per-cell bandwidth of 2Q instead of 3Q − 1.

(A) (B)

F I G U R E 11 Comparison of OpenLB versions on SKL. (A) Single-threaded double-precision performance on SKL for SSS (OpenLB 1.4, no
SIMD) and PS (OpenLB 1.4, no SIMD) relative to SWAP (OpenLB 1.3). (B) Parallel double-precision performance on SKL for OpenLB 1.3 (SWAP),

1.4 (branching PS), 1.5/dev (PS, vmem, AVX-512) and the PS reference code (vmem, AVX-512). Vectorized virtual memory PS in OpenLB 1.5 yields
up to three-fold improvements compared to branching PS in 1.4 for cache-fitting problems. Peaks at 90% bandwidth saturation compared to full
saturation for the reference implementation.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 19 of 25

TA B L E 7 Comparison of OpenLB performance aspects on SKL.

Description 1.4 Dev PS ref

Single-core speedup w.r.t. 1.3 (SWAP)

Min 1.20 3.11 -

Max 1.46 3.98 -

Avg 1.36 3.58 -

Single-core speedup float/double

Min 0.87 1.36 1.76

Max 1.04 1.92 2.34

Avg 0.99 1.71 2.06

Single-core speedup AVX-512/AVX2

Min - 1.11 1.26

Max - 1.39 1.62

Avg - 1.24 1.40

Speedup float/double (OpenMP)

Min 0.86 0.97 1.34

Max 1.10 2.30 3.73

Avg 0.99 1.84 2.35

Double-precision performance (OpenMP)

Min [MLUPs] 185 302 327

Max [MLUPs] 254 517 956

Avg [MLUPs] 232 384 566

1283 [MLUPs] 250 302 327

Despite each cell’s populations being explicitly reverted immediately after applying the collision step—at a time where the data is likely to reside

in the cache—the memory operations produced by calling Cell::revert reduce the mean speedup from PS’s 36% to 20% for explicit SSS.

In order to utilize vectorization, the virtual memory approach to PS was implemented. Existing CSE-optimized operators were adapted to accept

a generic cell concept and instantiated with intrinsic wrappers. Finally, the collision loop was turned into a masked sweep similar to for example,

Walberla.36

Table 7 provides an overview of the speedups obtained for the choices of floating point precision and SIMD ISA as well as compared to OpenLB

1.3, that is, the last version prior to starting the optimization efforts. One particular aspect worth highlighting here is that as a side effect of vector-

ization the switch from double to single precision values yields a speedup of∼1.71 whereas no previous release was able to obtain a advantage from

this significant reduction of bandwidth requirements. However the unclear underlying issue is not resolved completely as is evident in the OpenMP

results where the minimum observed speedup due to choosing single precision in the prototype is below 1 and the mean speedup still falls below the

reference’s mean speedup of 2.35. The multi-threaded performance evolution between OpenLB 1.3 and 1.5 (dev) is further summarized in Figure 11.

5.2 GPU performance

Table 8 summarizes the basic characteristics for the three target GPUs. As floating point performance on GPUs has historically been optimized for

single-precision values and bandwidth-saturating double-precision capabilities are still mostly restricted to HPC-focused GPGPUs, all benchmarks

are performed for both precisions.

CUDA24 was chosen as the environment instead of a portable option such as OpenCL for its single source approach and broad C++ support

enabling direct sharing of most templatized LB specifics with existing CPU codes.

Table 9 provides an overview of obtained performance metrics using both single and double precision values. All three tested patterns pro-

duce good mean bandwidth saturations around 0.9 when using single-precision and peaking at full saturation for some samples. As no satisfactory

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

20 of 25 KUMMERLÄNDER ET AL.

TA B L E 8 Specifications of the GPUs used for the pattern benchmarks.

Name RTX V100 A100

GPU GeForce RTX 2070 Tesla V100 A100

Architecture Turing Volta Ampere

Cores 2304 5120 6912

Memory (GiB) 8 16 40

CUDA 11.2 11.2 11.2

Accessed via Local Workstation OVHcloud HoreKa

Memory bandwidth (max. for problem sizes between 1283 and 3203)

triada (GB/s) 400.3 826.8 1332.6

update_19 (GB/s) 386.2 799.2 1292.2

LBM bandwidthb

triad (MLUPs) 2634 5439 8767

update_19 (MLUPs) 2541 5258 8501

aUsing the CUDA triad implementation provided by BabelStream.40

bNumber of MLUPs when using single precision FPT that is, bandwidth∕(2 ∗ 19 ∗ 4 ∗ 1e6).

TA B L E 9 Overview of GPU performance results.

RTX V100 A100

PS PS PS

Description SSS Branch vmem SSS Branch vmem SSS Branch vmem

Single-precision performance

Min (MLUPs) 1877 2021 2066 3043 2788 2594 3443 3016 2824

Max (MLUPs) 3356 3518 2881 4987 5108 5081 11,749 11,519 9926

Avg (MLUPs) 2453 2466 2450 4726 4703 4691 7812 7786 7574

Single-precision bandwidth saturation w.r.t. update_19

Min 0.56 0.59 0.52 0.62 0.55 0.53 0.58 0.51 0.48

Max 0.99 1.00 1.00 0.97 0.98 0.98 0.95 0.99 0.96

Avg 0.97 0.97 0.97 0.93 0.92 0.92 0.91 0.91 0.88

Double-precision performance

Min (MLUPs) 545 550 537 1862 1783 1737 2900 2667 2530

Max (MLUPs) 641 643 642 2587 2612 2618 6638 6175 5493

Avg (MLUPs) 631 632 631 2492 2493 2482 4258 4179 4152

Double-precision bandwidth saturation w.r.t. update_19

Min 0.44 0.44 0.43 0.52 0.50 0.49 0.59 0.54 0.52

Max 0.56 0.56 0.55 1.00 1.00 1.00 0.99 0.97 0.98

Avg 0.51 0.51 0.51 0.94 0.94 0.94 0.94 0.93 0.93

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 21 of 25

equivalent to Likwid34 for detailed reference bandwidth measurements could be found for GPU targets, per-size bandwidths were only measured

using the same update_19 case also used for CPU benchmarks (again similar to the approach in Reference 35).

As expected, double-precision benchmarks only yielded satisfactory bandwidth-relative performance on V100 and A100 whereas only a mean

utilization of 0.51 was obtained on RTX. Notably, the throughput for small single-precision problems on RTX and A100 exceeded the results achieved

by larger problem sizes due to cache effects. While a comparable peak for small problems was also observed on V100 it did not exceed the other

results there.

Surveying all GPU results in Figure 12, no single pattern was observed to provide a consistent advantage over all samples when consider-

ing the approximately equal mean bandwidth utilizations and very similar total mean performance of SSS and the two PS variants. As a special

case when considering only small cache-sensitive problem sizes on V100, SSS consistently provided the best performance by a margin up to 600

MLUPs. A similar difference was observed on A100 but not on RTX. SSS was observed to produce a larger spread of results for larger sample sizes

with some significant lower outliers on RTX and V100, likely caused by alignment problems that are masked by the larger access pattern space

of PS.

(A) (D)

(B)

(C) (F)

(E)

F I G U R E 12 Performance survey of SSS and PS on different GPUs. (A) Single-precision on RTX; (B) single-precision on V100; (C)

single-precision on A100; (D) double-precision on RTX; (E) double-precision on V100; (F) double-precision on A100. Total performance of the
cavity case depending on propagation pattern and precision over all tested GPUs using the LiterateLB33 benchmark code. Ignoring the subpar
double-precision capabilities of the consumer RTX GPU in (D), all bandwidth-relative results settle between 0.9 and full saturation for larger
problems. SSS tends to yield better performance for smaller problems while virtual memory PS has the highest consistency between resolutions.
Results are also summarized in Table 9 and were incorporated into OpenLB 1.5.41

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

22 of 25 KUMMERLÄNDER ET AL.

TA B L E 10 GPU results for problems larger than 1283 on A100.

A100

PS

Description SSS Branch vmem

Single-precision performance

Min (MLUPs) 7589 7698 7536

Max (MLUPs) 7982 8332 8143

Avg (MLUPs) 7873 7959 7768

Single-precision bandwidth saturation

Min 0.91 0.92 0.90

Max 0.95 0.99 0.96

Avg 0.94 0.95 0.92

Double-precision performance

Min (MLUPs) 4156 4123 4131

Max (MLUPs) 4270 4276 4282

Avg (MLUPs) 4238 4199 4205

Double-precision bandwidth saturation

Min 0.95 0.95 0.95

Max 0.97 0.97 0.98

Avg 0.97 0.96 0.96

Masking the SSS advantage for smaller lattice sizes by considering only larger non-cache impacted problems on A100 in Table 10, we observe

very similar performance across all patterns and samples—exceeding 0.9 saturation and peaking at 0.99 for branching PS. Qualitatively similar

characteristics are also observed for RTX and V100.

Summarizing all GPU benchmarks, the best results are provided by SSS resp. branching PS for both floating point precisions. A clear SSS advan-

tage for small problem sizes can be observed. Virtual memory PS is only competitive for larger problems but provides a lower predisposition to

size-dependent fluctuations. Such fluctuations where performance changes significantly between adjacent resolution samples are most frequent

on SSS.

As low-level access to virtual memory on GPUs is a comparably new feature and the set of mapping functions is not yet on par

with the functionality on CPUs (e.g., a separate physical buffer needs to be allocated for each population array instead of using off-

set mapping into a single shared buffer as on CPUs), improvements of virtual memory PS performance can be expected for the future.

Furthermore, as the subpar results for small problem sizes are of limited relevance for practical applications, virtual memory PS’s mini-

mal demands on collision implementation as well as consistent performance between problem sizes render it into a viable pattern choice

on GPUs.

Finally—similarly to CPUs—the pattern choice for practically relevant problem sizes depends primarily on the specific implementa-

tion context rather than performance considerations. All considered patterns were found to yield satisfactory bandwidth-relative perfor-

mance close to and exceeding 0.9. GPU-specific fine tuning of for example, block sizes and pre-shifting can be expected to enable further

improvements.

6 CONCLUSION

Implicit propagation of directly addressed grids in LBM was considered in terms of SFC transformations utilizing the spatial invariance of neigh-

borhood distances. Detailed descriptions of SSS and PS within this framework were formulated. A range of approaches to the efficient cyclic array

rotations in PS were explored. Cyclic buffers relying on in-hardware virtual address translation were identified as a promising foundation for

implementing PS on both SIMD CPUs and GPUs.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

KUMMERLÄNDER ET AL. 23 of 25

The performance of both patterns was evaluated w.r.t. to spatial isotropy and per-step time dependency. Relative performance anisotropy was

found to be less pronounced for PS. A relationship between cuboid extent ratio, preferred dimension of the SFC and resulting performance was

established. Per-step evaluation reproduced the expected alternating pattern for SSS due to it sharing the memory access pattern of A-A on directly

addressed grids. A more complex pattern of time dependent performance was observed for PS and tied to the specific cache architecture of the

targeted CPU. Cache aware pre-shifting was successfully explored as a possible mitigation.

Both patterns were implemented in lid driven cavity benchmark cases—utilizing adapted versions of existing SIMD CPU and CUDA GPU

codes—for evaluation on a range of CPU and GPU targets. Both the total and bandwidth-related performance on Intel and AMD CPUs as well as

different Nvidia GPUs was measured for a wide range of cavity sizes. Bandwidth-related results between 0.8 and full saturation were observed and

the advantage of higher cache bandwidths was utilized.

While underperforming for small problems that benefit from cache-effects on ZEN and SKL, KNL’s high bandwidth memory was translated into

mean and maximum cell throughput values of 852 resp. 1017 MLUPs for PS utilizing AVX-512.

Both patterns consistently delivered mean bandwidth saturations exceeding 0.9 when using single precision on RTX, V100 and A100. For

double-precision this was only realized on V100 and A100 due to computation constraints.

While SSS produced significantly better performance for small problem sizes on V100/A100 and a consistent performance advantage for PS

was observed on Xeon Phi, no single pattern was identified as superior in the general case. Both patterns were found to be bandwidth bound in most

cases.

6.1 Application to OpenLB

The branching version of the PS pattern that is used by OpenLB 1.439 was documented. The choice between SSS and PS in the specific implementa-

tion context of OpenLB was discussed and evaluated w.r.t. the previously utilized SWAP pattern.

Single core speedups up to 3.93 with a mean of 3.58 compared to SWAP in OpenLB 1.338 were obtained by adding vectorized PS to OpenLB

1.4.39 Previously unavailable performance potential due to the larger cell throughput ceiling w.r.t. single-precision populations was utilized, yield-

ing average single core speedups of 1.71. The same applied to cache-fitting problem sizes, yielding two-fold improvements compared to the main

memory limited performance.

Performance for OpenMP-based parallel simulation of problems beyond the scope of cache effects was found to approach saturation at 0.9 of

Likwid reference measurements, approaching the throughput of the optimized reference implementation.

All discussed improvements w.r.t. vectorized collision steps on CPUs and virtual memory PS on GPUs have since been integrated into the latest

release OpenLB 1.5.41

ACKNOWLEDGMENTS

This work was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES PROBRAL (88881.198766/2018-01),

Finance Code 001—Brazil, and was financed in part by Alexander von Humboldt-Stiftung (AvH) (BRA 1190826 HFST CAPES-P)—

Germany.

A100 benchmark simulations were performed on the HoreKa supercomputer funded by the Ministry of Science, Research and the Arts

Baden-Württemberg and by the Federal Ministry of Education and Research.

We thank Curtin University and DUG for supporting this work by providing access to an Intel Xeon Phi system. Open Access funding enabled

and organized by Projekt DEAL.

CONFLICT OF INTEREST STATEMENT

All authors declare that they have no conflicts of interest with respect to the present publication.

DATA AVAILABILITY STATEMENT

All codes used to obtain the results presented in this publication are available as open source. This specifically refers to reference benchmark codes

LiterateLB33 and SweepLB32 as well as OpenLB releases 1.3,38 1.4,39 and 1.5.41

ORCID

Adrian Kummerländer https://orcid.org/0000-0003-4392-0045

Márcio Dorn https://orcid.org/0000-0001-8534-3480

REFERENCES

1. Haussmann M, Ries F, Jeppener-Haltenhoff JB, et al. Evaluation of a near-wall-modeled large eddy lattice Boltzmann method for the analysis of complex

flows relevant to IC engines. Computation. 2020;8(2):43. doi:10.3390/computation8020043

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4392-0045
https://orcid.org/0000-0003-4392-0045
https://orcid.org/0000-0001-8534-3480
https://orcid.org/0000-0001-8534-3480
info:doi/10.3390/computation8020043

24 of 25 KUMMERLÄNDER ET AL.

2. Trunk R, Bretl C, Thäter G, Nirschl H, Dorn M, Krause MJ. A study on shape-dependent settling of single particles with equal volume using surface resolved

simulations. Computation. 2021;9(4):40. doi:10.3390/computation9040040

3. Wellein G, Zeiser T, Hager G, Donath S. On the single processor performance of simple lattice Boltzmann Kernels. Comput Fluids. 2006;35(8-9):910-919.

doi:10.1016/j.compfluid.2005.02.008

4. Wittmann M, Zeiser T, Hager G, Wellein G. Comparison of different propagation steps for lattice Boltzmann methods. Comput Math Appl.
2013;65(6):924-935. doi:10.1016/j.camwa.2012.05.002

5. Mawson M, Revell A. Memory transfer optimization for a lattice Boltzmann solver on Kepler architecture nVidia GPUs. Comput Phys Commun.

2014;185(10):2566-2574. doi:10.1016/j.cpc.2014.06.003

6. Tran NP, Lee M, Hong S. Performance optimization of 3D lattice Boltzmann flow solver on a GPU. Sci Program. 2017;2017:1205892. doi:10.1155/2017/

1205892

7. Herschlag G, Lee S, Vetter JS, Randles A. GPU data access on complex geometries for D3Q19 lattice Boltzmann method. Proceedings of the 2018 IEEE

International Parallel and Distributed Processing Symposium (IPDPS); 2018. doi: 10.1109/IPDPS.2018.00092

8. Calore E, Gabbana A, Schifano S, Tripiccione R. Optimization of lattice Boltzmann Simulations on heterogeneous computers. Int J High Perform Comput
Appl. 2019;33(1):124-139. doi:10.1177/1094342017703771

9. Herschlag G, Lee S, Vetter JS, Randles A. Analysis of GPU data access patterns on complex geometries for the D3Q19 lattice Boltzmann algorithm. IEEE
Trans Parallel Distrib Syst. 2021;32(10):2400-2414. doi:10.1109/TPDS.2021.3061895

10. Mattila K, Hyväluoma J, Rossi T, Aspnäs M, Westerholm J. An efficient swap algorithm for the lattice Boltzmann method. Comput Phys Commun.

2007;176(3):200-210. doi:10.1016/j.cpc.2006.09.005

11. Mohrhard M, Thäter G, Bludau J, Horvat B, Krause MJ. Auto-vectorization friendly parallel lattice Boltzmann streaming scheme for direct addressing.

Comput Fluids. 2019;181:1-7. doi:10.1016/j.compfluid.2019.01.001

12. Bailey P, Myre J, Walsh S, Lilja D, Saar M. Accelerating lattice Boltzmann fluid flow simulations using graphics processors. Proceedings of the 2009

International Conference on Parallel Processing; 2009:550–557. doi: 10.1109/ICPP.2009.38

13. Krause MJ, Kummerländer A, Avis SJ, et al. OpenLB–open source lattice Boltzmann code. Comput Math Appl. 2021;81:258-288. doi:10.1016/j.camwa.

2020.04.033

14. Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems.

Phys Rev E. 1954;94(3):511. doi:10.1103/PhysRev.94.511

15. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM. The Lattice Boltzmann Method: Principles and Practice. Springer; 2017. doi:10.1007/

978-3-319-44649-3

16. Massaioli F, Amati G. Achieving high performance in a LBM code using OpenMP. Proceedings of the Fourth European Workshop on OpenMP, Rome, Italy;

2002.

17. Januszewski M, Kostur M. Sailfish: a flexible multi-GPU implementation of the lattice Boltzmann method. Comput Phys Commun.

2014;185(9):2350-2368. doi:10.1016/j.cpc.2014.04.018

18. Łaniewski-Wołłk Ł, Rokicki J. Adjoint lattice Boltzmann for topology optimization on multi-GPU architecture. Comput Math Appl. 2016;71(3):833-848.

doi:10.1016/j.camwa.2015.12.043

19. Bauer M, Köstler H, Rüde U. lbmpy: automatic code generation for efficient parallel lattice Boltzmann methods. J Comput Sci. 2021;49:101269. doi:10.

1016/j.jocs.2020.101269

20. Meurer A, Smith CP, Paprocki M, et al. SymPy: symbolic computing in Python. PeerJ Comput Sci. 2017;3:e103. doi:10.7717/peerj-cs.103

21. Geier M, Schönherr M. Esoteric twist: an efficient in-place streaming algorithmus for the lattice Boltzmann method on massively parallel hardware.

Computation. 2017;5(4):19. doi:10.3390/computation5020019

22. Robertsén F, Mattila K, Westerholm J. High-performance SIMD implementation of the lattice-Boltzmann method on the Xeon Phi processor. Concurr
Comput Pract Exp. 2019;31(13):e5072. doi:10.1002/cpe.5072

23. Mokbel MF, Aref WG, Kamel I. Analysis of multi-dimensional space-filling curves. GeoInformatica. 2003;7(3):179-209. doi:10.1023/A:1025196714293

24. Nickolls J, Buck I, Garland M, Skadron K. Scalable parallel programming with CUDA. Queue. 2008;6(2):40-53. doi:10.1145/1365490.1365500

25. NVIDIA. CUDA Release 10.2; 2020. https://developer.nvidia.com/cuda-toolkit

26. Hennessy JL, Patterson DA, Arpaci-Dusseau AC. Computer Architecture: A Quantitative Approach. Morgan Kaufmann; 2017.

27. Hou S, Zou Q, Chen S, Doolen GD, Cogley AC. Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys. 1995;118(2):329-347. doi:10.

1006/jcph.1995.1103

28. Luo LS, Liao W, Chen X, Peng Y, Zhang W. Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations.

Phys Rev E. 2011;83(5):056710. doi:10.1103/PhysRevE.83.056710

29. Kuznik F, Obrecht C, Rusaouen G, Roux JJ. LBM based flow simulation using GPU computing processor. Comput Math Appl. 2010;59(7):2380-2392.

doi:10.1016/j.camwa.2009.08.052

30. Obrecht C, Kuznik F, Tourancheau B, Roux JJ. A new approach to the lattice Boltzmann method for graphics processing units. Comput Math Appl.
2011;61(12):3628-3638. doi:10.1016/j.camwa.2010.01.054

31. Nguyen NQ, Ladd AJC. Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E. 2002;66(4):046708. doi:10.1103/

PhysRevE.66.046708

32. Kummerländer A. SweepLB—vectorized benchmark code for SSS and PS patterns; 2021. https://code.kummerlaender.eu/SweepLB/

33. Kummerländer A. LiterateLB—a literate lattice Boltzmann code; 2021. https://literatelb.org/

34. Treibig J, Hager G, Wellein G. LIKWID: a lightweight performance-oriented tool suite for x86 multicore environments. Proceedings of the First

International Workshop on Parallel Software Tools and Tool Infrastructures (PSTI2010); 2010. doi: 10.1109/ICPPW.2010.38

35. Wittmann M, Haag V, Zeiser T, Köstler H, Wellein G. Lattice Boltzmann benchmark Kernels as a testbed for performance analysis. Comput Fluids.

2018;172:582-592. doi:10.1016/j.compfluid.2018.03.030

36. Bauer M, Eibl S, Godenschwager C, et al. waLBerla: a block-structured high-performance framework for multiphysics simulations. Comput Math Appl.
2021;81:478-501. doi:10.1016/j.camwa.2020.01.007

37. Latt J, Malaspinas O, Kontaxakis D, et al. Palabos: parallel lattice Boltzmann solver. Comput Math Appl. 2021;81:334-350. doi:10.1016/j.camwa.2020.03.

022

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.3390/computation9040040
info:doi/10.1016/j.compfluid.2005.02.008
info:doi/10.1016/j.camwa.2012.05.002
info:doi/10.1016/j.cpc.2014.06.003
info:doi/10.1155/2017/1205892
info:doi/10.1155/2017/1205892
info:doi/10.1109/IPDPS.2018.00092
info:doi/10.1177/1094342017703771
info:doi/10.1109/TPDS.2021.3061895
info:doi/10.1016/j.cpc.2006.09.005
info:doi/10.1016/j.compfluid.2019.01.001
info:doi/10.1109/ICPP.2009.38
info:doi/10.1016/j.camwa.2020.04.033
info:doi/10.1016/j.camwa.2020.04.033
info:doi/10.1103/PhysRev.94.511
info:doi/10.1007/978-3-319-44649-3
info:doi/10.1007/978-3-319-44649-3
info:doi/10.1016/j.cpc.2014.04.018
info:doi/10.1016/j.camwa.2015.12.043
info:doi/10.1016/j.jocs.2020.101269
info:doi/10.1016/j.jocs.2020.101269
info:doi/10.7717/peerj-cs.103
info:doi/10.3390/computation5020019
info:doi/10.1002/cpe.5072
info:doi/10.1023/A:1025196714293
info:doi/10.1145/1365490.1365500
https://developer.nvidia.com/cuda-toolkit
info:doi/10.1006/jcph.1995.1103
info:doi/10.1006/jcph.1995.1103
info:doi/10.1103/PhysRevE.83.056710
info:doi/10.1016/j.camwa.2009.08.052
info:doi/10.1016/j.camwa.2010.01.054
info:doi/10.1103/PhysRevE.66.046708
info:doi/10.1103/PhysRevE.66.046708
https://code.kummerlaender.eu/SweepLB/
https://literatelb.org/
info:doi/10.1109/ICPPW.2010.38
info:doi/10.1016/j.compfluid.2018.03.030
info:doi/10.1016/j.camwa.2020.01.007
info:doi/10.1016/j.camwa.2020.03.022
info:doi/10.1016/j.camwa.2020.03.022

KUMMERLÄNDER ET AL. 25 of 25

38. Krause M, Avis S, Dapelo D, et al. OpenLB Release 1.3: open source lattice Boltzmann code; 2019. doi: 10.5281/zenodo.3625967

39. Krause M, Avis S, Kusumaatmaja H, et al. OpenLB Release 1.4: open source lattice Boltzmann code; 2020. doi: 10.5281/zenodo.4279263

40. Deakin T, Price J, Martineau M, McIntosh-Smith S. GPU-STREAM v2.0: benchmarking the achievable memory bandwidth of many-core processors across

diverse parallel programming models. In: Taufer M, Mohr B, Kunkel J, eds. High Performance Computing. Vol 9945. Springer; 2016:489-507. doi:10.1007/

978-3-319-46079-6_34

41. Kummerländer A, Avis S, Kusumaatmaja H, et al. OpenLB Release 1.5: open source lattice Boltzmann code; 2022. doi: 10.5281/zenodo.6469606

How to cite this article: Kummerländer A, Dorn M, Frank M, Krause MJ. Implicit propagation of directly addressed grids in lattice

Boltzmann methods. Concurrency Computat Pract Exper. 2023;e7509. doi: 10.1002/cpe.7509

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7509 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.5281/zenodo.3625967
info:doi/10.5281/zenodo.4279263
info:doi/10.1007/978-3-319-46079-6&uscore;34
info:doi/10.1007/978-3-319-46079-6&uscore;34
info:doi/10.5281/zenodo.6469606

	Implicit propagation of directly addressed grids in lattice Boltzmann methods
	1 INTRODUCTION
	2 LATTICE BOLTZMANN METHODS
	2.1 Performance considerations
	2.2 Propagation patterns
	2.2.1 Data layout
	2.2.2 SWAP pattern
	2.2.3 A-A pattern

	3 IMPLICIT PROPAGATION
	4 PERIODIC SHIFT PATTERN
	4.1 Implementation
	4.1.1 Rotation via explicit index computation
	4.1.2 Rotation via virtual memory address translation

	4.2 Performance characteristics
	4.2.1 Time dependency
	4.2.2 Isotropy

	5 BENCHMARK RESULTS
	5.1 CPU performance
	5.1.1 Application to OpenLB

	5.2 GPU performance

	6 CONCLUSION
	6.1 Application to OpenLB

	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

