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Abstract

In this thesis we study three simplified flavoured dark matter models with t-
channel mediated interactions between the dark sector and the Standard Model.
In the first model a Majorana fermionic dark matter triplet is coupled to right-
handed up-type quarks of the Standard Model, allowing this model to connect
the dark matter problem with large effects in CP violating charm decays. In
the second model the dark particles are assumed to be complex scalars which
couple to right-handed charged leptons of the Standard Model, yielding a rich
phenomenology that allows for large couplings of dark matter to leptons. Finally,
an extended version of the lepton-flavoured dark matter model with additional
couplings of the dark species to left-handed leptons is studied. The additional
coupling of the two fields that mediate the interactions of dark matter with left-
and right-handed leptons to the Higgs doublet allows this model to constitute a
joint solution for the DM problem and the muon (g − 2) anomaly.
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Levha-i Tab̂ıat

“Tezŷın ediyor cihânı kudret,
Yâ Rabb! Bu ne cilve-i meşiyyet?

Kim verdi bu revnakı bahâra,
Döndürdü yeri tecell̂ızâra.

Tevl̂ıd ediyor meş̂ıme-i hâk,
Binlerce şukûfe-i tarabnâk.

Baktıkça zemı̂n-i dil-niş̂ıne,
Benzer küre-i zümrüde yine.

Elmas-ı ferahfezâya benzer,
Her jale-i berg-i renkperver.

Yâ Rabb! Beni sâhib-i intibâh et!
Bir şâir-i âteş̂ın-nigâh et!

Ettikçe nazar şu kâinâta,
Mazhar olayım tecelliyâta!“

Erzurumlu Ömer Nasûĥı Efendi rh.
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Teşekkürât

Mübesmilen, muhamdilen ve musalvilen evvela ebeveynim Türkan ve Recep Acaroğlu’na
üzerimdeki nihayetsiz emekleri sebebiyle en samimi ve en kalb̂ı şükranlarımı arz ederim.
Hicret ve gurbet hayatı yaşamanıza rağmen biz cocuklarınıza sağladığınız imkanlar bir
yana, bizleri sevgi, muhabbet ve şefkatle yetiştirdiğiniz ve her ne olursa olsun bizlere daima
evleviyet verdiğiniz için cenâb-ı mevlâ hazretleri sizlerden razı ve memnun olsun, her ikinize
de saadet-i dareyn nasip eylesin. Abim Orkun Acaroğlu’na, bana hem okul vetiresinde
hem de üniversite hayatı itibariyle öncülük edip daima iyi bir örnek olması hasebiyle
müteşekkir olduğum gibi, kardeşim Turgut Acaroğlu’na da kücüklük yıllarımızdan bi’l-
itibar dostluğunu ve hürmetini benden esirgememesi sebebiyle minnettarım.

Üniversite hayatımın ilk safhasını oluşturan lisans ve yüksek lisans vetirelerinde beni
daima destekleyen büyüklerim, ki ezcümle Hüseyin Armutçu, Salih Armutçu, Mehmet
Arslan, Bayram Aslan, Muzaffer Beygirci, Sevban Böğürcü, Faruk Gügen, Aydemir Ka-
plangiray, Serhat Pehlivan, Ahmet Cemil Tural, Ramazan Yılmaz’a ve bilhassa Mustafa
ve Muhammed Gerçek dostlarıma, yani kısacası bütün Aachis topluluğuna da aynı şekilde
müteşekkirim. Uhrev̂ı ilimler nokta-i nazarından bana muallimlik etmiş olan Hüseyin
Armutçu, Ömer Tüzün, Kemal Acar, Burak Şahin ve elan beni okutan Şevket Açıkgöz
hocalarımla birlikte, her konuda bana örnek olmakla beraber bu yola koyulmama vesile
olan Ali Kemal Alkan hocama daĥı en kalb̂ı teşekkürlerimi arz ederim. Nezdimde ayrı
bir değere sahip olan Karlsruhe’deki talebelerimden de cenâb-ı hak hazretleri, bana karşı
gösterdikleri sadakat, hürmet ve itibarlarından nâş̂ı razı olsun. Sabilik yıllarımdan bu yana
bana tam manasıyla dostluk etmiş olan Zafer Yılmaz ve Ahmet Enes Özcan kardeşlerime
daĥı desteklerini asla esirgemedikleri için minnettarım.

Son olarak ref̂ıka-i hayatım Gülhanım Acaroğlu’na, nihayetsiz destekleri ve bilâ kayd ü
şart benim için katlandığı meşakkatler için, bu tezin içerdiği harfler adedince şükranlarımı
arz ederim. Mevlâ-yı zü’l-celâl hazretleri senden razı olsun.
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Chapter 1

Introduction

Over the last decades the observation of a whole set of phenomena that indicate the
existence of an undetected form of matter which seems to have no interactions with light
has been particularly interesting yet at the same time challenging for particle physicists
and cosmologists working at the new physics (NP) frontier. This new type of matter is
referred to as dark matter (DM) and is currently being regarded as the most convincing
hint at NP. The reason is that the Standard Model (SM) of particle physics, which without
a doubt constitutes the so far most remarkable success of quantum field theory in general,
lacks a coherent and convincing explanation for DM and thereby motivates searches for
NP beyond the SM.

While the evidence for its existence is overwhelming [1, 2], the particle physics prop-
erties of DM still remain obscure. This leaves theorists with numerous opportunities in
terms of model building and hence, mapping this vast theory space to experimental data
constitutes a major challenge. Adopting a systematic approach by examining simplified
models and categorising signals and phenomenological features of large classes of models
can thus be very beneficial in taking on this challenge. Moreover, identifying classes which
are at the same time capable of addressing other problems, puzzles or anomalies of physics
can provide further motivation for the respective models and render them particularly
appealing.

One such class of models is represented by the flavoured DM framework [3–12], which
proposes that the DM field comes in multiple generations and is often associated with an
according flavour symmetry. These models are motivated by the paradigm of a weakly-
coupled DM particle with weak-scale mass, i.e. the paradigm of a weakly interacting mas-
sive particle (WIMP), in combination with the non-observation of DM in detection and
collider experiments. The additional dark species allow for a much more dynamic thermal
production of DM in the early Universe, such that the correct DM relic density can be
obtained while at the same time satisfying stringent constraints from detection and col-
lider experiments, ultimately reconciling the absence of signal in respective experiments
with the WIMP paradigm [13]. On more general grounds, the existence of flavour consti-
tutes a central aspect of the SM and hence assuming DM to also carry flavour quantum
numbers can be regarded as an intuitive assumption. However, flavoured DM models are
subject to stringent constraints from flavour observables implying a non-generic flavour
structure of interactions between DM and the SM at the weak scale. Thus, early analyses
of these models were limited to the paradigm of minimal flavour violation (MFV) [14–19],
which assumes that the only sources of flavour violation are the SM Yukawa couplings. A
consequence of this premise is that the coupling matrix of DM to SM matter has to be
expressed in terms of the latter, which in turn yields a highly restricted flavour structure.

A more general framework for the systematic study of flavoured DM models is the
so-called dark minimal flavour violation (DMFV) framework, which was introduced in
Reference [20] and allows for a non-trivial flavour structure of the interactions between DM
and the SM by assuming them to constitute a new source of flavour violation in addition
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to the SM Yukawa couplings. In this sense the DMFV framework goes beyond the scope
of MFV and hence it generally gives rise to a very rich phenomenology which—depending
on the actual DMFV model—is potentially able to fit other anomalies as well. Still, even
within the DMFV framework our ignorance about fundamental properties of DM leaves
us with many options in terms of model building. Apart from the choice of the particle
nature of DM and its corresponding mediator particle, one is also left with a large variety
of options in terms of the SM fields that DM interacts with. Here, the DMFV framework
allows for couplings to all fermion types of the SM. The cases of DM being a Dirac fermion
coupling to the various SM quark fields have already been studied intensively [20–23], and
its coupling to the right-handed charged leptons has been investigated in Reference [24].

In this thesis we study a total of three simplified flavoured DM models. The first
two models belong to the DMFV class and consider either up-type flavoured Majorana
DM or lepton-flavoured complex scalar DM, respectively, both with purely right-handed
interactions between DM and the SM. In the former model, the Majorana nature of DM
allows this model to simultaneously address large effects in CP violating charm decays, as
measured by the LHCb collaboration [25], while DM with lepton portal interactions gen-
erally features less stringent constraints from direct detection since leading contributions
to the DM–nucleon scattering rate arise at the one-loop level. The last model does not be-
long to the DMFV class, as it constitutes an extension of the lepton-flavoured DM model,
where DM is assumed to additionally couple to left-handed leptons. However, similar to
DMFV models it assumes all new flavour-violating interactions to be related to a single
new coupling matrix. Further, in this model the fields that mediate the interactions of DM
with left- and right-handed leptons are Yukawa-coupled to the SM Higgs doublet. Hence,
this model allows for a connection of the DM problem with the (g − 2)µ anomaly [26,27],
ultimately rendering it particularly appealing.

This thesis is organised as follows: in Part I we introduce the reader to the DM problem.
We discuss evidence for its existence and provide an overview of the current experimental
status in Chapter 2. We review the WIMP paradigm and the thermal freeze-out of DM
in the early Universe. In Chapter 3 we discuss the DMFV framework and its formal
definition and further identify two scenarios for the freeze-out of flavoured DM. Part II
is dedicated to the analysis of the up-type flavoured Majorana DM model. We discuss
the model details in Chapter 4 and then continue with a phenomenological analysis in
Chapter 5. We first examine constraints from collider searches, neutral D meson mixing,
the observed DM relic density and direct detection experiments individually and then
perform a combined analysis. Further, we check if this model is capable of generating
sizeable NP contributions to the direct CP asymmetry in charm decays. We conclude
our analysis of this model in Chapter 6. The lepton-flavoured complex scalar DM model
with purely right-handed couplings to the SM is the subject of Part III. Again, we first
present the model details in Chapter 7 and study its phenomenology in Chapter 8 by
discussing constraints from collider searches, lepton flavour violating (LFV) decays, the
observed DM relic density and direct as well as indirect DM detection experiments. The
summary of our results regarding this model is given in Chapter 9. Finally, we present a
joint solution for the DM problem and the muon (g−2) anomaly in Part IV. The details of
this model are presented in Chapter 10 and we examine experimental constraints to study
its phenomenology in Chapter 11. In this case relevant limits come from collider searches,
LFV decays, precision tests of the SM, the observed DM relic density and DM detection
experiments. After analysing all constraints individually, we perform a combined analysis
and examine if this model can accommodate the experimental central value of (g − 2)µ
within its viable parameter space. We provide a summary of our findings from this part
in Chapter 12. The thesis is then concluded in Chapter 13, where we return to the global
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picture by identifying and summarising the most important results.





Part I

Overview

This part serves as an overview of the DM problem and the DMFV framework—a model
building framework we use in this analysis in order to address the former problem. We first
provide a short summary of evidence and searches for DM and then continue by discussing
the formal definition of the DMFV class of DM models. We also review the paradigm of
the thermal freeze-out of DM here with a particular emphasis on flavoured DM.





Chapter 2

The Dark Matter Problem

In this chapter we briefly introduce the DM problem by presenting important evidence
that points towards the existence of DM and by further reviewing how it is searched for
today. The reader is also introduced to the WIMP paradigm and we provide a short
discussion of the thermal freeze-out of DM.

2.1 Evidence and Searches for Dark Matter

The existence of DM is backed up by many observations [28]. Historically, the circular
velocity profile of galaxies has been particularly important and constitutes convincing
evidence that led to the discovery of the existence of DM [29]. Such a profile is also
referred to as a galaxy’s rotation curve and is based on measurements of the circular
velocities of stars and gas within the respective galaxy as a function of their distance from
its centre. Classically, i.e. according to Newtonian dynamics, this velocity depends on the
overall mass Mr enclosed within the distance r at which a star or gas rotates around the
galactic centre as well as r itself and generally reads

vc =

√
GMr

r
. (2.1)

Here, G is the gravitational constant and the enclosed mass Mr is defined as

Mr =

∫ r

0
4πr̃2ρ(r̃) dr̃ , (2.2)

where ρ(r) is the mass density profile of the galaxy. The rotation curves of several galaxies
have been measured particularly in the 1970s [30–40] and these observations have shown
that at large distances r where the galaxy dependent mass distribution of luminous matter
approaches zero, the circular velocity does not behave as vc ∝ r−1/2 but flattens out and
takes a roughly constant, non-zero value. This led to the conclusion that there needs to be
a significant amount of non-luminous and therefore dark type of matter that surrounds the
luminous components of a galaxy in order to yield the correct circular velocities at large
distances r. This surrounding dark component is referred to as a galaxy’s DM halo and
its corresponding mass density ρDM can be modelled in several ways. In Figure 2.1a, for
example, we show the rotation curve of the galaxy NGC 3198 obtained in Reference [41]
where the Navarro-Frenk-White (NFW) profile [42]

ρNFW(r) =
ρsr

3
s

r (rs + r)2
, (2.3)

was used to model the DM density together with its experimental measurement from Ref-
erence [43]. In this expression, rs and ρs are galaxy dependent characteristic parameters.
In Figure 2.1a the dashed and dot-dashed lines show the resulting velocity profile if only
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Figure 2.1 Evidence for the existence of DM. The left panel shows the rotation curve
of the galaxy NGC 3198 as measured by Reference [43] and modelled by
Reference [41]. The right panel shows a composite image of the bullet cluster
based on X-ray [44] and weak gravitational lensing [45] measurements.

luminous matter or dark matter, respectively, is considered and the solid line shows the
velocity profile if all components are taken into account. As one can see, the luminous
matter content alone, which consists of stars as well as gas and can generally be detected
using optical and radio telescopes, yields circular velocities that exhibit a qualitative and
quantitative discrepancy with respect to the experimental data. While the peak of the
circular velocity at r ≃ 8.5 kpc yields a too small value, the overall behaviour of vc at
large r also deviates significantly from data. The velocities calculated from luminous
matter decrease with increasing distances from the galactic centre while the experimental
measurement yields a roughly constant value for r ≳ 8.5 kpc. This discrepancy explicitly
demonstrates the necessity of additional mass in the galaxy and particularly in its outer
parts, in order to yield a flat rotation curve as indicated by the data. Assuming a halo of
dark, i.e. electromagnetically neutral and therefore spectroscopically non-detectable par-
ticles that surround the luminous matter of the galaxy yields a rotation curve that fits the
experimental data accurately. This is illustrated by the black solid line in Figure 2.1a.

Moving from galaxies to the largest gravitationally bound structures of the Universe, we
find that galaxy clusters provide additional evidence for the existence of DM. Historically,
the application of the virial theorem to the Coma cluster in order to determine its mass-to-
luminosity ratio [46] yielded one of the earliest hints at the existence of DM. Within this
approach, stars are estimated to only account for less then two percent of the Coma clusters
total mass, while hot intracluster gas accounts for roughly ten percent [47] hinting at the
existence of additional, non-baryonic mass within the cluster. Further evidence stems from
the X-ray spectrum of the hot intracluster gas, which consists of bremsstrahlung emitted by
accelerated charged elementary and composite particles as well as line emissions which stem
from ionised heavy elements such as iron. By fitting this spectrum through appropriate
models one can calculate a relation between the cluster’s temperature and total mass. In
case of the Coma cluster for example, the former is measured to yield a mean value of
roughly T ≈ 9 keV over the entire cluster which corresponds to a total mass compatible
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with the estimate based on the virial theorem [1, 47]. One particularly interesting and
prominent observation within the context of galaxy clusters is related to the so-called
bullet cluster, which consists of two colliding sub-clusters shown in Figure 2.1b. In this
composite image of the bullet cluster, the magenta regions indicate the distribution of
hot X-ray emitting intracluster gas based on respective measurements performed by the
Chandra observatory [44]. The blue regions indicate the distribution of both baryonic
and non-baryonic matter obtained through the weak gravitational lensing of background
galaxies [45]. Thus, the latter represents a reconstruction of the bullet cluster’s total
gravitational potential based on its total mass, while the former only shows the potential
caused by baryonic matter, as the baryon number of clusters is mainly dominated by hot
gas. In Figure 2.1b it can be seen that the two reconstruction approaches yield different
gravitational centres, which allows us to deduce that the bullet cluster contains a significant
amount of DM.

At even larger scales, the cosmic microwave background (CMB) anisotropies as well as
their angular power spectrum provide further striking evidence for the existence of non-
baryonic DM [48,49] and allow the Universe’s matter and energy density to be measured.
Currently, the most precise measurement was made by the Planck space observatory and
it found the baryon and DM densities to be [2]

Ωbh
2 = 0.0224± 0.0001 , (2.4)

ΩDMh
2 = 0.1200± 0.0010 , (2.5)

where h = 0.674 is the scaling factor for the Hubble expansion rate.
It is due to this overwhelming amount of evidence for its existence that throughout the

last decades physicists have grown a particular interest in the detection of DM. To gain
insights on its particle physics properties, this unknown type of matter that accounts for
roughly 85% of the Universe’s matter budget, has been searched for in several experiments.
Generally, these experiments can be categorised with respect to the type of signal they
aim to detect and their underlying conceptual particle physics processes are gathered in
Figure 2.2.

One such class of experiments are colliders that try to detect signals from the direct
production of DM particles through the collision of SM matter. In Figure 2.2 this process
corresponds to the case where time flows from left to right. Since DM has to be elec-
trically neutral1 and may only interact weakly with the SM, collider experiments cannot
produce a direct signal, but rather search for DM in the missing transverse energy (/ET )
spectrum. Important experiments in this category are the CDF [52, 53] and D0 [54, 55]
experiments at the Fermi National Accelerator Laboratory ’s (FNAL) Tevatron collider, the
Belle II [56] experiment of the High Energy Accelerator Research Organisation’s (KEK)
SuperKEKB collider, the ALEPH [57], DELPHI [58], L3 [59] and OPAL [60] experiments
at the European Organization for Nuclear Research’s (CERN) Large Electron Positron
Collider (LEP) as well as the ATLAS [61], CMS [62] and LHCb [63] experiments at its
Large Hadron Collider (LHC). The LHC is a proton-proton collider with a centre-of-mass
energy of

√
s = 13.6TeV that currently constitutes the largest operating particle collider

in the world and is thus particularly important within the context of DM searches.
Experiments that search for DM in signals produced by processes that correspond to the

case of the time flowing up- or downwards in the Feynman diagram of Figure 2.2 are called

1In fact, measurements of the CMB anisotropy power spectrum allow for a tiny amount of DM ac-
counting for 0.01% − 0.4% of the total DM density to be charged with an electric charge of QDM/e ≃
O(10−6 − 10−4) [50, 51]. The allowed masses for this tiny amount of so-called millicharged DM (mDM)
range from 0.1MeV to 1MeV [51].
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Figure 2.2 Conceptual Feynman diagrams for DM searches. The grey arrows indicate
the direction of the time-flow for different types of experiments. The labels
SM and DM represent baryonic and non-baryonic matter, respectively.

direct detection experiments. Here, the signal is assumed to be generated by galactic DM
particles scattering off SM matter and consists of the resulting recoil energy of the latter.
Possible scattering targets in these experiments are nuclei, bound electrons, free electrons
as well as atoms as a whole. Important direct detection experiments are the CDEX [64],
CDMSlite [65], SuperCDMS [66], COSINE-100 [67], CRESST [68], DAMA/LIBRA [69],
DAMIC [70], DAMIC-M [71], DarkSide-50 [72], DEAP-3600 [73], DARWIN [74], PI-
CASSO [75], PICO [76], EDELWEISS [77–79], LUX [80], LUX-ZEPLIN [81], NEWS-
G [82], PandaX [83], PandaX II [84], PandaX-4T [85], XENON100 [86] and XENON1T [87]
experiments.

Finally, DM is also searched for in indirect detection experiments, which generally aim
to detect a signal from the flux of SM matter produced through the annihilation of DM.
In Figure 2.2 these processes correspond to the case of a time-flow from right to left. Here,
the flux of γ-rays, neutrinos and charged leptons are particularly interesting. Indirect de-
tection searches have been or are still performed through the MAGIC [88], VERITAS [89],
HAWC [90], IceCube [91], ANTARES [92], Super-Kamiokande [93], PAMELA [94], Pierre
Auger [95], Fermi-LAT [96], H.E.S.S. [97], AMS [98] and AMS-02 [99] experiments.

2.2 Dark Matter Thermal Freeze-Out

The evidence discussed in the last section does not only hint at the existence of DM
but also provides constraints on some of its properties. Here, the observation of large-
scale structures [100, 101] demands DM to be cold, i.e. to be non-relativistic [102–104].
Further important properties are that—as already mentioned—DM needs to be electrically
neutral [105,106] but also stable at cosmological scales, which means that it needs to have
a lifetime larger than the age of the Universe [107–114]. Most importantly, DM needs to
have been produced in the early Universe through a mechanism that yields the correct
relic density as observed today.

In terms of the evolution of the Universe, the Lambda Cold Dark Matter (ΛCDM)
model is currently the most successful theory in describing cosmological phenomena at
large scales [115], while it suffers from some problems at smaller scales [116] that can
potentially be solved through DM self-interactions [117]. It is particularly successful in
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predicting cosmic abundances of light elements through the paradigm of a hot big bang
and thermal decoupling, which suggests that the same mechanism could also be applied to
DM. According to this paradigm, the production of DM as the relic of a thermal decoupling
process can be outlined as follows.

The primordial Universe is dense and hot such that its SM matter content forms a
thermal bath. If DM is assumed to interact with the SM, the process of annihilations of DM
particles into SM matter and the production of DM particles out of SM matter establishes
an equilibrium between DM and this thermal bath. Once the Universe cools down to
temperatures smaller than the DM mass, the thermal bath is no longer energetic enough
to produce DM, leading to a decreasing DM number density due to ongoing annihilations.
However, since the Universe does not only cool down but also expand, the annihilation
rate of DM decreases with time, as the dark particles become more and more dilute. Once
this rate drops below the expansion rate of the Universe, i.e. the Hubble rate H, the
dilution of DM particles is large enough to have them decouple from thermal equilibrium
such that one is left with a constant amount of cold DM [13,118]. The decoupling of DM
from thermal equilibrium is also referred to as thermal freeze-out.

The dynamics of this freeze-out procedure are governed by the Boltzmann equation

dn

dt
= −3Hn− ⟨σv⟩

(
n2 − n2eq

)
, (2.6)

where n and neq describe the DM number density and its value at thermal equilibrium,
respectively, while ⟨σv⟩ is the thermally averaged DM annihilation rate. It includes all pos-
sible annihilation channels of DM. The first term on the right hand side of Equation (2.6)
accounts for the dilution of DM due to the expansion of the Universe, while the second
and third terms describe the change in the number density due to annihilations of DM
into SM matter as well as the inverse process of SM matter producing DM. The comoving
DM relic density after the freeze-out is approximately constant and is defined as [118]

ΩDM =
mDMn0
ρc

=
mDMT

3
0

ρc

n0
T 3
0

∼ mDMT
3
0

ρc

nf
T 3
f

, (2.7)

where we have used that the DM yield Y = n/s with s ∼ T 3 being the entropy density
remains constant after freeze-out. Here, mDM is the DM mass, ρc is the critical density,
nf as well as Tf are the number density and temperature at the freeze-out and T0 is the
temperature of the Universe today. Using this expression one can calculate an estimate
for ΩDM by demanding that the annihilation rate drops below the expansion rate of the
Universe, i.e.

nf ⟨σv⟩ = H ∼
T 2
f

mP
, (2.8)

where the last similarity is an approximation that holds for the early, radiation dominated
Universe [119] and mP is the Planck mass. For the comoving DM relic density we can
then write

ΩDM ∼ mDMT
3
0

TfρcmP

1

⟨σv⟩ =
xfT

3
0

ρcmP

1

⟨σv⟩ ∼ xf
1.5× 10−28 cm3s−1

⟨σv⟩ , (2.9)

where we have used xf = mDM/Tf . Since the freeze-out of DM typically occurs at values
xf ≃ 10 − 30 [13, 118, 119], we find that the DM relic density mainly depends on the
thermally averaged annihilation rate and is inversely proportional to it. This behaviour
is illustrated in Figure 2.3, where we show the resulting comoving number density of DM
after the freeze-out for different values of xf or ⟨σv⟩, respectively.
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Figure 2.3 Illustration of the thermal freeze-out of DM. We show the resulting comoving
DM number density n̄ in dependence of the parameter x = mDM/T for three
different annihilation rates that satisfy ⟨σv⟩1 < ⟨σv⟩2 < ⟨σv⟩3. The grey area
indicates the typical region of freeze-out with xf ≃ 10− 30. The illustrated
curves have been adopted from Reference [120].

One remarkable observation about our findings in Equation (2.9) is that in order to
reproduce the observed relic density given in Equation (2.5) the DM annihilation rate
needs to be roughly2

⟨σv⟩ ≃ 10−26 cm3s−1 , (2.10)

which corresponds to the typical rate of a pair of weakly coupled particles annihilating at
the TeV scale. Here we have assumed the freeze-out to occur at xf = 20. For comparison,
the above mentioned rate of two weakly coupled particles annihilating at a NP scale of
mNP = 1TeV is given by

⟨σv⟩weak ∼ α2
W

m2
NP

≃ 10−26 cm3s−1 . (2.11)

This numerical coincidence suggests that WIMPs produced as the result of a thermal
freeze-out might constitute a possible solution to the DM problem and is thus referred to
as the WIMP miracle. The existence of WIMPs at the TeV scale is even further motivated
and generally predicted by proposed solutions to the Higgs or weak hierarchy puzzle of
the SM.

Since as pointed out above the DM density after freeze-out mainly depends on the
thermally averaged annihilation rate, we want to also comment on its definition before
concluding this section. In all generality it is given as [121]

⟨σv⟩ = fnat
8m4

DMTK
2
2 (mDM/T )

∫ ∞

4m2
DM

σ(
√
s− 4m2

DM)
√
sK1

(√
s/T

)
ds , (2.12)

where the functions Ki are modified Bessel functions of order i, σ is the Lorentz invariant
cross section for the DM annihilation process and s is the usual Mandelstam variable. The
factor fnat depends on the particle nature of DM and reads fnat = 1/2 if DM is not a

2Note the additional factor of h2 when comparing Equation (2.9) and (2.5).
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self-conjugate particle, like e.g. a Dirac fermion or a complex scalar. Otherwise it is equal
to one. Note that the integral in Equation (2.12) cannot be solved analytically. However,
since WIMPs typically freeze-out in the non-relativistic regime with v ≪ c, one can expand
the annihilation rate for small velocities to find [121,122]

⟨σv⟩ = fnat
[
a+ b ⟨v2⟩+O

(
⟨v4⟩

)]
. (2.13)

The coefficients of this low-velocity expansion can then be determined analytically without
solving any integrals at all [123,124]. It is important to note however that this expansion
breaks down if DM annihilates into a pole, i.e. if it resonantly exchanges an s-channel
mediator [125,126].





Chapter 3

Dark Minimal Flavour Violation

We use this chapter to introduce the formal definition of the DMFV framework and provide
an overview of DMFV models that have already been studied. Further, we extend our
review of the DM thermal freeze-out from Section 2.2 to the case of flavoured DM and
define two flavoured freeze-out scenarios that we will use in our phenomenological analyses.

3.1 The Dark Minimal Flavour Violation Framework

DMFV is a framework for simplified flavoured DM models with non-trivial flavour struc-
tures that was introduced in Reference [20]. In this framework, the SM is typically ex-
tended by a DM flavour triplet ϕ = (ϕ1, ϕ2, ϕ3)

T which couples to SM fermions via a
corresponding mediator particle ψ, where the lightest state of the fields ϕi is assumed to
account for the observed amount of DM in the Universe.3 Generically, this interaction is
described by the Lagrangian

LDMFV
int = λij f̄iϕjψ + h.c. , (3.1)

where λ is a complex 3 × 3 coupling matrix that parametrises the interaction strength
between dark particles and the SM. In this notation, the fermion f can be either of
the SM fields uR, dR, ℓR, QL or LL. The quantum numbers of the DM field ϕ and the
mediator field ψ depend on their particle natures as well as the choice for the fermion f .
The field extension and the interaction term in Equation (3.1) extend the approximate
flavour symmetry of the SM to

GDMFV = U(3)Q × U(3)L × U(3)u × U(3)d × U(3)ℓ × G(3)ϕ , (3.2)

where the symmetry group G(3)ϕ depends on the particle nature of the DM field ϕ. If it
is a self-conjugate particle, the symmetry that DM is associated with is an O(3)ϕ while
for non-self-conjugate particles it is a U(3)ϕ. In DMFV this extended flavour symmetry is
accompanied by the assumption that besides the SM Yukawa couplings Yu, Yd and Yℓ the
only new source of flavour-violation is constituted by the coupling matrix λ. This ansatz
is referred to as the DMFV hypothesis and carries the DMFV framework beyond the scope
of the well studied case of MFV [14–19].

DMFV models with Dirac fermionic DM coupling to right-handed down-type quarks
dR [20], right-handed up-type quarks uR [21, 23], right-handed charged leptons ℓR [24] as
well as the left-handed quark doubletsQL [22] have already been studied in earlier analyses.
In this work we consider the cases of Majorana fermionic DM coupling to right-handed
up-type quarks uR and complex scalar DM coupling to right-handed charged leptons ℓR.
We further study a model that does not belong to the DMFV class, in which complex
scalar DM couples to right- and left-handed charged leptons. Note that in the following

3The choice of the Greek letters ϕ and ψ shall neither imply that ϕ is always a scalar nor that ψ is
always a fermion here.
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we adopt a notation in which we call the heaviest dark flavour ϕ1 and the lightest dark
flavour ϕ3.

3.2 Flavoured Freeze-Out Scenarios

It is important to note that the discussion of the thermal freeze-out of DM provided in
the last section is only valid for a single DM species. Since in all the models that we study
in this work DM comes in three generations, the Boltzmann equation from Equation (2.6)
that describes the dynamics of the freeze-out needs to be adapted accordingly. In this case
the number densities ni of each DM generation ϕi receive additional contributions through
conversions of the form ϕifk → ϕjfl as well as the decays ϕi → ϕj f̄kfl, where i, j, k and l
are flavour indices. Since however, due to the latter processes the heavier states ϕ1 and ϕ2
will decay into the lightest state on scales as large as the age of the Universe4, the total
number density of the dark relic n after the freeze-out can be written as

n =
∑
i

ni , (3.3)

which evolves according to the coupled three flavour Boltzmann equation [127]

dn

dt
= −3Hn−

∑
ij

⟨σv⟩ij
(
ninj − neqi n

eq
j

)
. (3.4)

Here the annihilation rate includes all possible final states that a DM pair ϕiϕj can annihi-
late into. In the following we define two benchmark scenarios for the thermal freeze-out of
flavoured DM that we will consider in the phenomenological analysis of the three models
we study in this work.

The first is the so-called quasi-degenerate freeze-out (QDF) scenario in which we assume
the mass splittings between the different dark flavours to be negligibly small5. Hence, the
decay of the heavier states into the lightest state ϕ3 is kinematically sufficiently suppressed
such that they are stable at the time scale of the freeze-out. Moreover, since the number
density of SM particles f in the thermal bath is much higher than each ni, the conversions
between different DM generations ϕi happen at a much faster rate than DM annihilations.
This establishes a relative equilibrium between the dark flavours and the thermal bath
and hence the number densities ni satisfy [127]

ni
n

≃ ni,eq
neq

, (3.5)

where ni,eq and neq describe the number density of a single flavour i and the total number
density in equilibrium. Using this expression we can re-express Equation (3.4) and write

dn

dt
= −3Hn− ⟨σv⟩QDF

eff

(
n2 − n2eq

)
, (3.6)

where we have defined

⟨σv⟩QDF
eff =

∑
ij

⟨σv⟩ij
ni,eq
neq

nj,eq
neq

=
1

9

∑
ij

⟨σv⟩ij , (3.7)

4Following the line of argument in Appendix D of Reference [20], it can be shown that these decays
happen at a fast enough rate such that they are not subject to constraints from big bang nucleosynthesis
or energy injections into the cosmic microwave background.

5The origin of these mass splittings as well as numerical definitions of each freeze-out scenario will be
discussed and introduced for each model separately in the according sections.
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and used that ni,eq/neq ≃ 1/3. In other words, in this benchmark scenario each dark
flavour contributes equally to the freeze-out and the Boltzmann equation reduces to the
single flavour case from Equation (2.6). Hence, following the low-velocity expansion from
Equation (2.13) we can write

⟨σv⟩QDF
eff =

fnat
9

[
a+ b ⟨v2⟩+O

(
⟨v4⟩

)]
, (3.8)

where in this expression the coefficients a and b include the sum over all possible annihi-
lation channels.

The second benchmark scenario we consider is called the single flavour freeze-out (SFF)
and is defined through a significant mass splitting between the lightest state ϕ3 and the
heavier flavours. While the flavour-changing scatterings ϕifk → ϕjfl still maintain a
relative equilibrium between the different dark flavours, the number density of the heavy
states ϕ1 and ϕ2 is now suppressed by a Boltzmann factor with the respective mass splitting
as its argument. This is due to the kinematical enhancement of the decay of the heavier
flavours into the lightest state, since now the lifetime of the heavy states is small compared
to the time of the freeze-out.6 Hence, in this scenario we find

n1,2 ≪ n3 , (3.9)

and thus
n =

∑
i

ni ≃ n3 . (3.10)

This again reduces Equation (3.4) to the single flavour Boltzmann equation

dn3
dt

= −3Hn3 − ⟨σv⟩33
(
n23 − n23,eq

)
, (3.11)

where the annihilation rate includes all possible final states. In this scenario it is only the
lightest state ϕ3 that contributes to the freeze-out and hence the sum over initial state
flavours and the factor of 1/9 we had found for the QDF scenario are absent. Adopting
the low-velocity expansion from Equation (2.13) we provide the joint expression

⟨σv⟩eff = fnatfsc
[
a+ b ⟨v2⟩+O

(
⟨v4⟩

)]
, (3.12)

for both scenarios, where we have fsc = 1/9 in the QDF scenario and fsc = 1 in the SFF
scenario. Also, depending on the scenario the coefficients a and b either include a sum
over initial state flavours or do not.

6We have checked the accuracy of the SFF approximation in an ongoing analysis [128] by numerically
solving the coupled three-flavour Boltzmann equations.





Part II

Up-Type-Flavoured Majorana Dark Matter

This part is based on the publication

H. Acaroğlu and M. Blanke, Tasting flavoured Majorana dark matter,
JHEP 05 (2022) 086 [2109.10357] ,

and here we study a simplified model of Majorana fermionic up-type flavoured DM in the
DMFV framework. The SM field content is extended by a DM flavour triplet that couples
to right-handed up-type quarks through a coloured and charged scalar mediator. This
interaction is governed by a new 3× 3 coupling matrix λ, which according to the DMFV
ansatz constitutes a new source of flavour-violation. We study the phenomenology of this
model by analysing constraints from collider experiments, neutral D meson mixing, the
observed DM relic density and direct detection experiments. Throughout this analysis we
point out crucial differences between our case of Majorana fermionic DM and the version
of this model where DM is assumed to be a Dirac fermion studied in Reference [21].
To determine the viable parameter space of this model we further perform a combined
analysis of all constraints and determine which flavour for the DM particle is preferred by
experimental data. Finally, we investigate if this model is capable of generating sizeable
contributions to the direct CP asymmetry ∆Adir

CP in charm decays. We find that the viable
parameter space identified in the combined analysis allows for a significant enhancement
of ∆Adir

CP with respect to the SM estimate such that the experimental central value can be
reproduced.

https://doi.org/10.1007/JHEP05(2022)086
https://arxiv.org/abs/2109.10357




Chapter 4

Model Details

While DM remains undetected in various experiments, the absence of signal can imply
important properties of DM. One such property is its particle nature, which generally
has a severe impact on the phenomenology of DM. In this sense, Majorana fermionic DM
is particularly interesting and at the same time well-studied, as the neutralino—a DM
candidate predicted by Supersymmetry (SUSY) models [130]—is a Majorana particle. On
more general grounds, Majorana DM is capable of easing the tension between the absence
of experimental signals and the WIMP paradigm, as in this class of DM models leading
contributions to the DM–nucleon scattering cross section vanish. Moreover, the Majorana
nature of DM gives rise to Majorana specific contributions to several observables, which in
some cases tend to relax respective experimental constraints. Hence, combining Majorana
fermionic DM with the paradigm of flavoured DM constitutes an interesting benchmark
case.

This chapter covers the details of an up-type flavoured Majorana DM model that we
study throughout this part. We first present how the model is set up in the DMFV frame-
work and then continue with a discussion of the coupling matrix λ and its parametrisation.
The chapter is concluded by a review of this model’s mass spectrum and a discussion of
how DM is stabilised in it.

4.1 Field Content and Interactions

We present a DMFV model that extends the SM by the Majorana fermionic flavour triplet
χ = (χ1, χ2, χ3)

T and the complex scalar mediator field ϕ. The dark fields transform as
singlets under the SM gauge group with the representation (1,1, 0)1/2 whereas the scalar
field carries electric as well as colour charge and is thus represented by (3,1, 2/3)0. Here we
have used the shorthand notation (SU(3)C , SU(2)L, U(1)Y )spin. The DM flavour triplet
χ is coupled to the right-handed up-type quarks uR through the scalar mediator ϕ and
this interaction is governed by the new flavour-violating 3 × 3 complex coupling matrix
λ. Following the line-out that we have presented in Section 3.1, this model extends the
approximate flavour symmetry of the SM by an additional O(3)χ under which the field χ
transforms as a triplet. The Lagrangian of this simplified model reads

L =LSM +
1

2
(iχ̄/∂χ−Mχχ̄χ)− (λij ūRi χjϕ+ h.c.) + (Dµϕ)

†(Dµϕ)

−m2
ϕ ϕ

†ϕ+ λHϕ ϕ
†ϕH†H + λϕϕ

(
ϕ†ϕ

)2
, (4.1)

where χ is a four-component Majorana spinor χ = (χL, iσ2χ
∗
L)
T and χL is a two-component

Weyl spinor. The factor of 1/2 in the kinetic term of the field χ is due to its Majorana
fermionic particle nature. The latter also determines the symmetry group that the DM
flavour triplet is associated with to be an O(3)χ and not a U(3)χ, since otherwise the mass
term of χ would violate the flavour symmetry. Following the DMFV ansatz we assume
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that the coupling λ is the only new source of flavour violation aside from the SM Yukawa
couplings and that the lightest state of the fields χi accounts for the observed DM relic in
the Universe.

While the quartic coupling λϕϕ parametrising self-interactions of the scalar mediator ϕ
has no impact on our analysis and is only given for completeness here, some remarks are
in order for the Higgs portal coupling λHϕ. This coupling generates contributions to the
effective coupling of the SM Higgs to gluons and photons through loop processes, which
are suppressed by two powers of the mediator massmϕ. We will find that for the NP scales
allowed by the LHC searches we discuss in Section 5.1 these contributions are expected to
be small and can thus be neglected. More importantly, λHϕ induces a DM–Higgs coupling
at the one-loop level that in principle contributes to the annihilation of DM in the early
Universe and DM–nucleon scattering. While we will comment on the implications of these
contributions in the according sections, we want to stress here that the main goal of our
analysis is to elucidate possible structures of the flavour-violating coupling λ allowed by
current experimental data. Hence, the general approach of our analysis will be to neglect
the impact of the quartic couplings λHϕ and λϕϕ.

4.2 Parametrisation of the Dark-Matter–Quark Coupling λ

To parametrise the coupling matrix λ we follow a similar procedure as for the SM Yukawa
couplings Yu and Yd. This coupling is a complex 3 × 3 matrix and thus contains a total
of 18 degrees of freedom, consisting of nine real parameters and nine complex phases. In
analogy to the parametrisation of the SM Yukawa couplings, we want to make use of the
flavour symmetry O(3)χ and identify the physical degrees of freedom in λ. To this end we
perform a singular value decomposition and express it as

λ = UDV , (4.2)

where U and V are unitary matrices. The matrix D is diagonal and has only positive real
entries. This ansatz creates three additional redundant degrees of freedom, since unitary
matrices have a total of nine free parameters accounting to a total number of 21 parameters
for λ after the singular value decomposition. However, these redundancies can be removed
through a diagonal rephasing of Equation (4.2) according to

U ′ = U diag(eiα1 , eiα2 , eiα3) , (4.3)

V ′ = diag(e−iα1 , e−iα2 , e−iα3)V , (4.4)

which reduces the number of complex phases in λ back to nine.
One can now remove additional unphysical degrees of freedom from λ by using the

flavour symmetry the DM field χ is associated with. As already mentioned in the last
section, the Majorana mass term

Mχχ̄χ =Mχ i(χ
†
Lσ2χ

∗
L − χTLσ2χL) , (4.5)

is only invariant under orthogonal transformations, i.e. Majorana fermions can only trans-
form under real representations. Thus the DM triplet χ transforms under an O(3)χ sym-
metry that we want to use to remove three real degrees of freedom from V . Following
Reference [131] we therefore decompose V into

V = OdP , (4.6)
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where O as well as P are orthogonal matrices and d is a diagonal matrix that contains
three complex phases. One can now transform χL according to

χL → P−1χL , (4.7)

and remove the orthogonal matrix P from V . For the parametrisation of λ this yields

λ = UDOd . (4.8)

Note that this analysis already reveals a fundamental difference to the case of Dirac
fermionic DM in DMFV [20–24]. In such models DM is associated with a U(3)χ sym-
metry and thus the matrix V can be fully removed from λ. This reduces the total number
of free parameters to nine for Dirac fermionic DMFV models, while in our case of Majorana
fermionic DM we are left with a total of 15 physical degrees of freedom in λ.

For the parametrisation of the unitary matrix U we adopt the expression from Refer-
ences [21,132] and write

U = U23 U13 U12

=


1 0 0

0 cθ23 sθ23e
−iδ23

0 −sθ23eiδ23 cθ23




cθ13 0 sθ13e
−iδ13

0 1 0

−sθ13eiδ13 0 cθ13




cθ12 sθ12e
−iδ12 0

−sθ12eiδ12 cθ12 0

0 0 1

 , (4.9)

where we have introduced the shorthand notation sθij = sin θij and cθij = cos θij . In
this expression the rephasing from Equation (4.3) has already been used to remove three
complex phases from U . The matrix O can be written in terms of three orthogonal matrices
and reads

O = O23O13O12

=


1 0 0

0 cϕ23 sϕ23

0 −sϕ23 cϕ23



cϕ13 0 sϕ13

0 1 0

−sϕ13 0 cϕ13



cϕ12 sϕ12 0

−sϕ12 cϕ12 0

0 0 1

 , (4.10)

where we again use the shorthand notation cϕij = cosϕij and s
ϕ
ij = sinϕij . For the diagonal

matrices D and d we write

D = diag(D1, D2, D3) , (4.11)

d = diag(eiγ1 , eiγ2 , eiγ3) . (4.12)

In total the coupling matrix λ is then expressed in terms of the parameters

θ23, θ13, θ12, ϕ23, ϕ13, ϕ12, δ23, δ13, δ12, γ1, γ2, γ3, D1, D2, D3 . (4.13)

When scanning over these parameters in the numerical analysis of experimental con-
straints we will restrict them to the ranges

θij ∈ [0,
π

4
], ϕij ∈ [0,

π

4
], δij ∈ [0, 2π), γi ∈ [0, 2π), Di ∈ [0, 2] . (4.14)

Here, the ranges of the mixing angles θij and ϕij avoid a double counting of the parameter
space, while the couplings Di are conservatively restricted to a maximum value of Di = 2
in order to guarantee perturbativity.
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4.3 Mass Spectrum and Dark Matter Stability

While the O(3)χ symmetry ensures that the masses mχi of the different dark flavours are
equal at leading order (LO) in the coupling λ, the ultraviolet (UV) completion of the theory
can still induce non-universal mass corrections at tree-level or one-loop. Even if these are
absent, already within the simplified model there will be unavoidable contributions to
the DM mass splittings from one-loop renormalisation group (RG) running. However, as
the DMFV hypothesis ensures that λ constitutes the only new source of flavour-violation,
the mass matrix Mχ in the Lagrangian of Equation (4.1) cannot be generic. Instead, in
analogy to the usual spurion expansion of MFV [15], we expand the DM mass matrix in
powers of the flavour-violating coupling λ and write

Mχ,ij = mχ

{
1+

η

2
(λ†λ+ λTλ∗) +O(λ4)

}
ij
. (4.15)

Here we have introduced the parameter η which accounts for our ignorance about the UV
completion of the theory. Depending on the actual source of the mass corrections, this
parameter can be at most an O(1) number, as it would be the case for DMFV preserving
tree-level contributions. If on the other hand the corrections are induced through loop-
effects, η receives a loop suppression and is thus much smaller7.

Note that the expansion from Equation (4.15) includes the second term in the round
brackets since mass matrices of Majorana fermions need to be symmetric. In the case of
Dirac fermionic DM such a term is thus not present [20–22]. More importantly, we find
that inserting the parametrisation of λ derived in the last section into Equation (4.15)
yields

Mχ,ij = mχ

{
1+

η

2
(d∗OT D2O d+ dOT D2O d∗) +O(λ4)

}
ij
, (4.16)

i.e. including higher-order corrections to the mass matrix results in a non-diagonal Mχ.
This misalignment between mass and gauge eigenstates of χ constitutes another formal
difference between Majorana and Dirac fermionic DM in DMFV, since for the latter the
mass matrix Mχ remains diagonal even after applying the spurion expansion [20–22].
However, the gauge and mass eigenstates of the field χ can be related to each other
through an Autonne–Takagi factorisation [133,134] of Mχ, where we write

Mχ =W TMD
χ W . (4.17)

Since the mass matrixMχ is real, the matrixW here is orthogonal, whileMD
χ is a diagonal

matrix with positive and real entries. The mass and gauge eigenstates of χ are then related
through the transformation χL →WχL, which in turn transforms the DM–quark coupling
λ to

λ̃ = λW T . (4.18)

Following the notation that we introduced at the end of Section 3.1, we always rearrange
the rows in W and relabel the fields χi in such a way that the diagonal mass matrix
satisfies

MD
χ = diag(mχ1 ,mχ2 ,mχ3) , (4.19)

with the hierarchy mχ1 > mχ2 > mχ3 . This means that the third generation χ3 is the
lightest state, which we assume to form the DM of the Universe.

7In any case, the absolute size of the mass corrections may not grow too large in order ensure the
convergence of this expansion. Following References [20–22] we thus limit the corrections to δmχi < 0.3mχ

in the numerical analysis.
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Another important formal difference between the Majorana and the Dirac DM ansatz
in DMFV is related to the stability of DM. For quark-flavoured Dirac DM models this is
guaranteed by a residual Z3 symmetry implied by the global flavour symmetry [20–22].
In our case however, this residual symmetry is absent, since the non-trivial representation
of Majorana spinors is real. We hence impose a Z2 symmetry under which only the new
fields χi and ϕ are charged. This symmetry forbids the decay of any of the χi or ϕ into
SM fields only and thus stabilises the DM field χ3 as long as its mass is smaller than the
mediator mass. To this end, we set η < 0 such that the mass corrections for the dark
particles χi are always negative and further demand

mϕ > mχ . (4.20)

Here, mϕ and mχ are the tree-level mass parameters from Equation (4.1) and (4.15).





Chapter 5

Phenomenology

After having discussed the details of the model presented in the last chapter, we are now
ready to study its phenomenology. To this end we will first analyse the restrictions that
constraints from collider experiments, neutral D meson mixing, the observed DM relic
density and detection experiments place on its parameter space. To provide a comprehen-
sive picture of the allowed parameter space in the context of current experimental data, we
then perform a combined analysis in which we demand that all the mentioned constraints
are satisfied simultaneously. We conclude this chapter by reviewing if this model can pre-
dict sizeable contributions to the direct CP asymmetry ∆Adir

CP in charm decays within its
viable parameter space.

5.1 Collider Phenomenology

This section is dedicated to the analysis of constraints that collider searches for DM place
on the parameter space of our model. Relevant searches are conducted at the LHC and
imply particularly strong restrictions on the masses of the new particles χi and ϕ. Hence,
we discuss these restrictions in the following in order to determine the experimentally
excluded parameter space of our model.

We only focus on signatures given rise to by the pair-production of the mediator par-
ticle ϕ and its subsequent decay into quarks and missing transverse energy /ET . This is
because Reference [135] shows that for models with a coloured t-channel mediator the
most stringent limits arise for the latter signatures, which we expect to also hold true for
our model.

LHC Signatures from Mediator Pair-Production

The production of the mediator ϕ can either take place through quantum chromodynamics
(QCD) interactions or the NP interactions governed by the coupling matrix λ. In both
processes the Z2 symmetry discussed in Section 4.3 guarantees that it is produced in pairs.
All QCD production channels of the mediator pair ϕ†ϕ are proportional to the strong
coupling αs and only depend on the mediator mass mϕ in terms of the NP parameters.

The NP pair-production mode of ϕ on the other hand, is governed by λ and consists
of two incoming quarks that exchange a dark particle in the t-channel. Since the latter
are Majorana particles, this channel additionally allows for the production of the same-
sign mediator pairs ϕϕ and ϕ†ϕ†. We show all three NP pair-production modes of ϕ
in Figure 5.1. The two same-sign production channels are additionally proportional to
the DM mass parameter mχi of the dark particle χi that is exchanged in the t-channel,

since it is the Majorana mass term from Equation (4.5) that mixes the fields χL and χ†
L.

However, the production of a ϕϕ pair is enhanced by the up quark parton distribution
function (PDF) [136], since a proton contains a pair of valence up quarks.
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Figure 5.1 Feynman diagrams of the t-channel χ-exchange production modes of ϕ.

The subsequent decay of the pair of mediators then gives rise to signatures with at
least two dark particles, as the Z2 symmetry would otherwise be violated. Here, the by far
dominant decay modes are the ones where each ϕ decays into a quark and a dark particle
as shown in Figure 5.2. The pair-production of ϕ together with this decay hence gives rise
to the following parton-level processes relevant for the analysis of LHC constraints:

pp → ϕϕ† → χi χj qk q̄l ,
pp → ϕϕ → χi χj qk ql ,
pp → ϕ† ϕ† → χi χj q̄k q̄l ,

(5.1)

where i, j, k and l are flavour indices. The actual signatures that arise from these pro-
cesses depend on the flavour indices k and l of the SM fields. Note that light quarks and
antiquarks of the first and second generation lead to a jet in the final state while the dark
particles χi are indistinguishable at the LHC and only appear as missing transverse energy
/ET . Hence, both are very hard to distinguish in flavour, whereas top and antitop quarks
can be distinguished through their semileptonic decays. In total this leads to the final
state signatures tt̄+ /ET , tt+ /ET , t̄t̄+ /ET , jj + /ET as well as tj + /ET .

As far as the mixed-flavour signature tj + /ET generated by the decay of the mediator
pair into two dark particles, one top quark and one light quark is concerned, Reference [137]
has shown for the Dirac DM version of this model that it exhibits a significant discovery
potential. Such a signature can also be generated in SUSY models with flavour-violating
scalar quark (squark) couplings [138–143]. Generally, we expect the conclusions from
Reference [137] to also hold true for this model. However, since currently there exist no
dedicated searches for this signature we leave a detailed analysis for future work.

The flavour-conserving signatures tt̄ + /ET and jj + /ET
8 are also generated in SUSY

models and are the same as in searches for a pair of squarks in final states with quarks
and missing transverse energy. Since squarks have the same quantum numbers as the
mediator ϕ, the final state kinematics are the same as far as the QCD pair-production of
ϕ is concerned. The t-channel χ-exchange production channel however, could in principle
differ from the SUSY case, where either a gluino or a neutralino is exchanged in the t-
channel. The reason is that the neutralino couplings are small and the gluino mass mg̃

is experimentally constrained to mg̃ ≫ 1TeV [144, 145].9 However, we do not expect a
relevant impact on our results, as we implement the mediator pair-production explicitly
when recasting SUSY limits. Since the searches that we use only consider hadronically
decaying top and antitop quarks, the same-sign signatures tt + /ET and t̄t̄ + /ET cannot
be distinguished from tt̄ + /ET . Hence, we include them into the analysis and use the
shorthand notation tops + /ET for the sum of all three signatures with top flavour in the
final state.

8Note that this signature can in general also be generated through flavour-violating squark decays.
9Due to this constraint the gluino contribution is typically not even included in the simplified models

for which the LHC squark searches calculate limits.
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qi
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Figure 5.2 Feynman diagram of the mediator ϕ decaying into qi and χj .

The same-sign signatures tt+ /ET and t̄t̄+ /ET constitute a unique feature of this model
that has not received attention in the literature so far. Due to its PDF enhancement, the
signature tt + /ET is particularly interesting and could serve as a smoking-gun signature.
Also, the same-sign signatures can be used in order to further analyse the particle nature
of DM, as these are specific to Majorana fermionic DM. We will hence return to them at
the end of this section.

Recast of LHC Limits

For the numerical analysis of the LHC constraints we recast the limits obtained by the
CMS collaboration in Reference [146], where the full LHC run 2 dataset with an integrated
luminosity of 136 fb−1 is used. This analysis directly addresses the relevant signatures
tops + /ET and jj + /ET and provides upper limits on their cross sections in tabular form.
Since as already mentioned this analysis only considers hadronically decaying top and
antitop quarks, its results for the signature with top flavour in the final state are not
distinctive with respect to the charge of the final state particles.

To recast these limits we first implement the model into FeynRules [147] by using the
Lagrangian from Equation (4.1). With this implementation we generate a UFO file [148]
and use MadGraph 5 [149] to calculate the LO signal cross section σ×Br for the signatures
tops + /ET and jj + /ET separately. For the analysis of LHC constraints we follow Refer-
ences [20–22] and do not consider the mass splittings discussed in Section 4.3 and given in
Equation (4.15). Such small splittings10 only lead to additional soft and therefore hard to
detect decay products of the heavy flavours into lighter states. We further set the mixing
angles and phases in λ to zero, since we are primarily interested in the restrictions that the
LHC searches place on the NP massesmχ andmϕ. Allowing for flavour-violating couplings
only reduces the branching ratio of a given flavour-conserving final state in comparison
to the case of vanishing mixing angles. This in turn reduces the signal cross section of
that final state and leads to a smaller exclusion in the mass plane mϕ −mχ. Finally, we
conventionally set the couplings D1 and D2 to the same value in this section, i.e. we define
D1 = D2 = Dj . The results are gathered in Figure 5.3 and 5.4.

Figure 5.3 illustrates the restrictions that the recasted cross section limits from Ref-
erence [146] for the signature tops + /ET place on the NP masses. We show the exclusion
in the mass plane mϕ −mχ for fixed values of D3 and varying values of Dj . For overall
small couplings Di < 0.5 we find that the QCD pair-production of the mediator ϕ dom-
inates over the t-channel χ-exchange production. This can be inferred from Figure 5.3a,
since increasing values of Dj shrink the excluded area. As the coupling Dj parametrises
the coupling of the dark particles to up and charm quarks, increasing values lead to an
increased production rate of ϕ pairs through the t-channel χ-exchange production mode.

10Remember that we had limited the mass corrections to the masses mχi to δmχi < 0.3mχ in order to
ensure the convergence of the series in Equation (4.15).
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Figure 5.3 Constraints on the final state tops+ /ET obtained from Reference [146]. The
coloured areas are excluded.

However, large couplings Dj at the same time reduce the branching ratio of the relevant
final states with top flavour and therefore also reduce the signal cross section. Since the
interplay of these concurring effects still leads to a reduced exclusion in the mϕ−mχ plane
for increasing values of Dj , we deduce that the pair-production of ϕ in this region of the
parameter space mainly happens through the QCD mode.

If on the other hand the couplingsDi are large, we find that increasing values ofDj lead
to an increased exclusion in the mϕ −mχ plane. This is illustrated in Figure 5.3b and we
can infer from this behaviour that for couplings Dj > 0.5 the χ-exchange production mode
for mediator pairs is the dominant one. In this case, increasing values of Dj at the same
time increase the production of ϕ at such a rate that it overcompensates for the reduced
branching fraction of final states with top flavour and leads to a larger signal cross section
in total. This is also due to the fact that a large coupling D1 magnifies the production
rate of the same-sign final state tt+ /ET enhanced by the PDFs of two valence up quarks
in the initial state. In Figure 5.3b this enhanced production of the mentioned same-sign
signature can be seen explicitly, as the excluded region grows rapidly for non-vanishing
DM masses mχ and large values of Dj . The DM mass dependence here is due to the
Majorana nature of χ and the earlier mentioned fact that the Majorana mass term from
Equation (4.5) parametrises the mixing between particle and antiparticle necessary for the
production of same-sign signatures. We thus find that even in the strongest constrained
case of D3 = Dj = 1.5 shown in Figure 5.3b regions with a small mχ and mϕ ≳ 1000GeV
are still viable.

The results for the signature jj + /ET are shown in Figure 5.4. Here we have fixed the
coupling Dj and D3 varies. As the t-channel pair-production of ϕ mainly depends on Dj ,
increasing values of D3 only reduce the branching ratio of the mediator’s decay into up or
charm quarks. Thus, they always lead to a reduced exclusion in the mϕ −mχ plane, as
can be seen in Figure 5.4a and 5.4b. Increasing values of Dj on the other hand, lead to
significantly larger exclusions as now both the χ-exchange pair-production of ϕ as well as
the branching ratio into the relevant final states with u- and c-jets are increased. This can
be seen by comparing both panels of Figure 5.4. In Figure 5.4b we further see that just
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Figure 5.4 Constraints on the final state jj + /ET obtained from Reference [146]. The
coloured areas are excluded.

as for the signatures with top flavour, increased values of Dj together with large masses
mχ lead to a significant production of the same-sign final states. We again find that for
sufficiently large mediator masses mϕ ≳ 1500GeV small DM masses mχ are therefore not
excluded by LHC searches.

Comparing both Figure 5.3 and 5.4 we find that the restrictions placed on the param-
eter space of the model by the signature jj+ /ET are generally larger than the restrictions
from signatures with top flavour. This is mainly due to the fact that for the signature
jj + /ET the mediator pair-production and its subsequent decay into the relevant final
states are parametrised by the same coupling Dj , while for top-flavoured signatures the
latter is parametrised by D3. Hence, for the signature tops+ /ET increasing the production
rate of ϕ pairs always comes at the cost of reducing their decay rate into the relevant final
states with top flavour. Another reason why the constraints from final states with jets are
larger is the increased multiplicity of the possible parton-level final states, as the signature
jj + /ET includes both final states with up as well as charm flavour.

We conclude that for both signatures the Majorana specific same-sign final states can
lead to significant restrictions in the mϕ−mχ plane. One way to satisfy these constraints
is to choose the coupling Dj to be small while D3 can be large, since in this case the QCD
pair-production of ϕ is dominant. Demanding the couplings to fulfil

0 < D3 < 1.5 , (5.2)

0 < Dj < 0.5 , (5.3)

one can satisfy the LHC constraints with mediator masses mϕ ≳ 1000GeV and a free DM
massmχ. We will find that the constraints from flavour physics and cosmology also support
this choice for the couplings, which particularly holds true for the case of top-flavoured
DM. Note that, however, it is also possible to satisfy the LHC constraints for larger values
Dj ≳ 1.0. In this case it is necessary to restrict the NP masses to mϕ ≳ 1500GeV and
mχ ≲ 200GeV.
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Figure 5.5 Constraints on the same-sign final states based on Reference [150] (left)
and LO cross section of the process pp → ϕϕ → tt + /ET in

√
s = 14TeV

collisions for mϕ = 1200GeV and mχ = 400GeV (right). For the latter, the
DM–charm coupling is fixed to D2 = 0.

Majorana Specific LHC Signatures

As already discussed earlier, the Majorana nature of χ gives rise to the same-sign collider
signatures tt + /ET and t̄t̄ + /ET through the production of same-sign mediator pairs as
shown in Figure 5.1b and 5.1c. The process with two positively charged top quarks in the
final state is particularly interesting, since it is enhanced by two powers of the proton’s
up quark PDF. As this signature is absent in the case of Dirac fermionic DM and is
suppressed in SUSY models due to the smallness of relevant couplings, we regard the di-
top final state as a smoking-gun signature of our model and want to discuss it in more
detail here. Experimentally, this final state can be distinguished from the usual opposite-
sign final state tt̄+ /ET through semileptonic top quark decays by measuring the charge of
the lepton this decay produces.

Principally these signatures can also be used in combination with according searches
for them in order to further constrain the parameter space of our model in the same
fashion as above. Here we find that while dedicated searches for such same-sign signatures
exist [150] they generally exhibit different final state kinematics than our model. The
CMS search of Reference [150] for example, considers a SUSY model, in which a pair of
gluinos is produced that both decay into a top or antitop associated with a stop. The stop
is then assumed to decay into a light quark and a neutralino giving rise to the same-sign
signatures ttjj + /ET and t̄t̄jj + /ET . However, since this search assumes a small mass
splitting of roughly 20GeV between the stop and the neutralino, the jets in the final state
are produced very softly. As a LO estimate we hence calculate the production rates of
the two same-sign final states and compare them with the limits from Reference [150].
Further, we also present a prediction of the size of the di-top final state’s LO signal cross
section for future LHC runs with a centre-of-mass energy of

√
s = 14TeV here.

The results are shown in Figure 5.5. The exclusion in the mϕ−mχ plane coming from
searches in same-sign final states is shown in Figure 5.5a. We find that the exclusion is



Chapter 5 Phenomenology 33

maximal for vanishing DM–charm couplings D2 and large DM–up and DM–top couplings
D1 and D3. While large couplings D1 increase the production rate of the same-sign
intermediate states ϕϕ and ϕ†ϕ†, large values of D3 increase the branching ratio of the
relevant final states with two top or antitop quarks. The same finding holds true for small
DM–charm couplings, since an increasing coupling D2 reduces the relevant branching
ratios and leads to a smaller signal cross section. We further find the same DM mass
dependence as in Figure 5.3 and 5.4 here, which again is due to the Majorana mass term
that parametrises the same-sign pair-production of ϕ. However, we find the limits from
searches in same-sign final states to be less restrictive than both searches considered in
the previous section, such that they do not lead to additional exclusions in the mϕ −mχ

plane.
In Figure 5.5b we have calculated the signal cross section for varying couplings D1 and

D3 and for masses mϕ = 1200GeV and mχ = 400GeV. The DM–charm coupling is fixed
to D2 = 0 since large values only weaken the signal due to a reduced branching fraction of
the relevant final state. We further show the exclusions from the above discussed searches
in tops + /ET as well as jj + /ET in form of the light-grey and grey areas, respectively.
Since the production of same-sign mediator pairs is proportional to D1, we find that the
signal cross section grows for increasing values of D1. At the same time, growing values of
D3 increase the decay rate of the mediator pair into two top quarks, which in turn again
leads to a larger signal. As a result of the interplay of both of these effects in combination
with the exclusions from the searches in tops+ /ET and jj+ /ET we find that in the case of
close-to-equal couplings D1 ≈ D3 ≃ 1.0 the signal cross section is predicted to be of order
O(fb), which is well in reach of future LHC studies.

Before concluding this section we want to comment on another interesting feature of
the same-sign signatures related to the particle nature of quark-flavoured DM.11 These
signatures can be used in order to define an asymmetry that can potentially be measured
in order to determine if DM is a self-conjugate particle. For our case of fermionic DM,
for instance, it can be utilised to distinguish between Dirac and Majorana DM. Since for
the Dirac case the same-sign pair-production of ϕ is absent, we expect the mixed-flavour
signatures tj + /ET and t̄j + /ET to satisfy

σDirac(tj + /ET ) = σDirac(t̄j + /ET ) . (5.4)

In the Majorana case on the other hand, the same-sign intermediate states will contribute
to both mixed-flavour signatures mentioned above. However, since the pair-production
of ϕϕ with positive charge is additionally enhanced by the PDFs of the two valence up
quarks in a proton, we expect

σMajorana(tj + /ET ) > σMajorana(t̄j + /ET ) , (5.5)

for Majorana fermionic DM, provided that the DM–up couplings are not negligible. In
this case the same-sign signatures can be utilised in order to define the charge asymmetry

atj =
σ(tj + /ET )− σ(t̄j + /ET )

σ(tj + /ET ) + σ(t̄j + /ET )
, (5.6)

which yields atj = 0 for Dirac and atj > 0 for Majorana fermions. Hence, a potential
measurement of the charge asymmetry atj could shed light on the particle nature of DM

11The same-sign signatures generally do not exist for lepton-flavoured DM models, due to the lack of a
direct coupling of DM to quarks. In these models, the LHC production channel of DM consists of a Drell–
Yan process that does not allow for the production of same-sign mediator pairs due to charge conservation,
see Part III and IV.
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and is principally possible through semileptonic decays of the final state top or antitop
quark. While we leave an elaborate feasibility study for future work, we want to conclude
this section by presenting a prediction for atj based on the viable parameter space we will
find in the combined analysis of Section 5.5. The maximally feasible charge asymmetry
reads

amax
tj ≃ 0.9 , (5.7)

for both freeze-out scenarios discussed in Section 3.2 with the corresponding total signals

σQDF
tot ≃ 4 fb , (5.8)

σSFFtot ≃ 8 fb , (5.9)

defined as σtot = σ(tj + /ET ) + σ(t̄j + /ET ). As far as the SM background is concerned,
Reference [137] has shown for the Dirac fermionic version of our model that the NP signal
in the final state tj + /ET is detectable in large parts of the parameter space. We expect
these findings to also apply to our case of Majorana DM since the background is the same,
while the signal is larger compared to the Dirac case due to Majorana specific same-sign
contributions. In summary, these preliminary results motivate a dedicated study of the
same-sign signatures and the charge asymmetry atj .

5.2 Flavour Physics Phenomenology

In DMFV the non-trivial flavour structure of the coupling matrix λ can generally lead to
large effects in flavour observables. For the case of quark flavoured DM the most impor-
tant constraints arise for ∆F = 2 observables, i.e. observables related to the oscillation of
neutral mesons, which can receive large contributions from NP induced flavour changing
neutral currents (FCNC). Hence, it is important to identify flavour-safe scenarios in which
these contributions do not violate experimental limits. Since DM couples to up-type quarks
in our model, the relevant process consists of neutral D meson mixing with ∆C = 2. We
use this section in order to discuss the constraints that D0 − D̄0 mixing places on the cou-
pling matrix λ. To this end we first derive relevant expressions for the NP contributions
to D0 − D̄0 mixing using the formalism of effective Hamiltonians. Detailed introductions
to this formalism for the description of flavour-violating processes can be found in Ref-
erences [151, 152]. Using these expressions we then constrain the flavour-structure of λ
through existing experimental limits on the D0 − D̄0 mixing system.

Note that our model also generates contributions to the ∆F = 1 processes of rare D
meson and flavour-violating top quark decays. The constraints from rare D meson decays
are generally weaker than the ones from D0 − D̄0 mixing and the flavour-violating top
quark decays are only weakly constrained in general [153]. Hence, we follow Reference [21]
and do not consider possible restrictions placed on the structure of λ by these two processes
here.

Neutral D Meson Mixing

At LO the NP contributions to D0−D̄0 mixing are generated at the one-loop level through
the box diagrams shown in Figure 5.6 and are governed by the flavour-violating coupling
matrix λ, i.e. they are proportional to λ4. While the normal box diagram shown in Fig-
ure 5.6a exists for Dirac as well as Majorana fermions, the crossed diagram from Figure 5.6b
is only given rise to in the latter case. Evaluating these diagrams and using the techniques
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Figure 5.6 Feynman diagrams for the NP contributions to D0 − D̄0 mixing at LO.

provided in the References [151,152] we write for the effective Hamiltonian that describes
the NP contributions to D0 − D̄0 mixing

H∆C=2,NP
eff =

1

128π2m2
ϕ

∑
ij

λujλ
∗
ci

[
λuiλ

∗
cj · F (xi, xj)

− 2λujλ
∗
ci ·G(xi, xj)

]
×QV RRuc + h.c. (5.10)

Here we have defined
QV RRuc = (ūαγµPRcα)(ūβγ

µPRcβ) , (5.11)

for the effective four-fermion operator and imply a summation over the colour indices α
and β. The functions F and G are loop functions and read

F (xi, xj) =

(
x2i log xi

(xi − xj)(1− xi)2
+

x2j log xj

(xj − xi)(1− xj)2
+

1

(1− xi)(1− xj)

)
, (5.12)

G(xi, xj) = −
( √

xixjxi log xi

(xi − xj)(1− xi)2
+

√
xixjxj log xj

(xj − xi)(1− xj)2
+

√
xixj

(1− xi)(1− xj)

)
, (5.13)

with xi = m2
χi/m

2
ϕ. Note that both loop functions have the same sign within the in-

terval xi ∈ [0, 1] and even satisfy 2G(1, 1) = F (1, 1) for xi = xj = 1. Hence, the two
diagrams shown in Figure 5.6 can interfere destructively due to the relative sign in Equa-
tion (5.10). This effect is well known from SUSY, where the box diagram contains gluinos
and squarks [154]. It is important to note however, that in contrast to the squark–gluino
couplings, the coupling matrix λ is not flavour-universal and thus a destructive interference
can only happen if the pre-factors of the two loop functions F and G in Equation (5.10)
have the same sign. We return to this interference in our numerical analysis.

The effective Hamiltonian from Equation (5.10) can be used in order to express the
off-diagonal elements of the D0 − D̄0 mass matrix as

MD,NP
12 =

1

2mD0

⟨D̄0|H∆C=2,NP
eff |D0⟩∗

=
ηDmD0f2DB̂D
384π2m2

ϕ

∑
ij

λ∗ujλci

[
λ∗uiλcj · F (xi, xj)− 2λ∗ujλci ·G(xi, xj)

]
, (5.14)

where we have used

⟨D̄0|QV RRuc (µ) |D0⟩ = 2

3
m2
D0f

2
DB̂D , (5.15)

for the hadronic matrix element. In this expression, fD and B̂D are the decay constant
and the bag parameter, respectively, which are both calculated in lattice QCD at the
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low-energy scale µ = 3GeV [155,156]. The parameter ηD in Equation (5.14) accounts for
threshold corrections that are generated when matching the effective theory and the SM as
well as for next-to-leading order (NLO) contributions induced by the renormalisation group
running between the weak scale with µ =MW and the low-energy scale µ = 3GeV [157].
As far as the matching between the SM and our simplified DMFV model is concerned, the
mediator ϕ will contribute to the running of the strong coupling αs since it carries colour
charge. However, we expect this contribution to be small as it is suppressed by two powers
of the NP scale mϕ, for which we have found mϕ ≳ 1TeV in Section 5.1. Hence, we follow
Reference [20–22] and neglect these matching corrections. Also note that the NP scale is
far above the D0 meson scale, and thus the diagrams of Figure 5.6 cannot contribute to
the absorptive part ΓD12 of the mixing matrix, as they only generate off-shell contributions.

In the numerical analysis of the flavour constraints we again ignore the mass splittings
from Equation (4.15) between the different dark flavours χi. Inserting these corrections
into Equation (5.14) would lead to higher-order DMFV corrections of order O(λ6) which
we expect to be small. In fact, we have checked numerically that including these corrections
only leads to differences of a few percent for the loop functions F (xi, xj) and G(xi, xj).
We hence set xi = xj = x in Equation (5.14) and perform the sum to find

MD,NP
12 =

ηDmD0f2DB̂D
384π2m2

ϕ

[
ξf · f(x)− 2 ξg · g(x)

]
, (5.16)

where we have defined the factors

ξf =
∑
ij

λ∗uiλciλ
∗
ujλcj =

(
λλ†
)2
cu
, (5.17)

ξg =
∑
ij

λciλciλ
∗
ujλ

∗
uj =

(
λλT

)
cc

(
λλT

)∗
uu
, (5.18)

and the special case loop functions

f(x) = lim
y→x

F (x, y) =
1 + x

(1− x)2
+

2x

(1− x)3
log x , (5.19)

g(x) = lim
y→x

G(x, y) = − 2x

(1− x)2
− x(1 + x)

(1− x)3
log x . (5.20)

Using these expression we can now calculate the NP contributions to the neutral D meson
mixing observables xD12 and ϕD12 defined as

xD12 = 2 τD0 |MD
12| = 2 τD0 |MD,SM

12 +MD,NP
12 | , (5.21)

ϕD12 = Arg

(
MD

12

ΓD12

)
= Arg

(
MD,SM

12 +MD,NP
12

)
. (5.22)

Note that in ϕD12 we have set ΓD,NP
12 = 0 for the above explained reason and also neglected

ΓD,SM12 as it is real to an excellent approximation in the SM in the standard parametrisation
of the Cabibbo–Kobayashi–Maskawa (CKM) matrix.

Constraints from D0 − D̄0 Mixing

The numerical values of the constants in Equation (5.16) as well as the model indepen-
dent experimental limits on xD12 and ϕD12 are gathered in Table 5.1. As far as the SM

contributions to xD12 and ϕD12 are concerned, we neglect the CP-violating phase ϕD,SM12 as
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it is estimated to be of order O(10−3) [160], i.e. we assume MD,SM
12 to be real. The SM

contribution to xD12 on the other hand is dominated by non-perturbative long-distance ef-
fects and thus suffers from larger theory uncertainties. Since estimations predict values of
order O(10−2) [161], considering the large uncertainties we conservatively assume the SM
contribution to lie within the range

xD,SM12 ∈ [−3%, 3%] . (5.23)

Using these assumptions one can derive an upper limit for the real and imaginary part of
MD,NP

12 by demanding the total values of xD12 and ϕD12 to lie within their 95% C.L. given in
Table 5.1. The D0 − D̄0 mixing limits then reduce to

ReMD,NP
12 ≤ 2.91× 10−14GeV , (5.24)

ImMD,NP
12 ≤ 2.47× 10−16GeV . (5.25)

The results of the numerical analysis are gathered in Figures 5.7–5.9. The viable mixing
angles θij in dependence of the splittings ∆ij = |Di −Dj | are shown in Figure 5.7 for the
masses mϕ > mχ and mϕ = mχ

12. For both of these cases the most restrictive constraints
are placed on the mixing angle θ12, which we find to strongly depend on the splitting ∆12.
A large splitting requires a vanishing mixing angle while the latter can be chosen freely if
∆12 is small. The same qualitative behaviour also holds true for θ13 and θ23. However, for
these mixing angles we find that in spite of a lower point density, large values are allowed
even if the corresponding splitting ∆ij is not small. Vanishing splittings generally lead to
free mixing angles, since the factor ξf from Equation (5.17) approaches zero in the limit
of degenerate couplings Di as the product λλ† = UD2U † becomes diagonal. Comparing
Figure 5.7a and 5.7b shows that the case mϕ = mχ only leads to a marginally weakened
bound on the splittings ∆ij .

Since the factor ξg is proportional to the diagonal elements of λλT and its complex
conjugate, the contribution from the crossed box diagram of Figure 5.6b does not vanish
in the limit of zero mixing angles and hence puts restrictions on the absolute value of the
couplings Di. These restrictions are illustrated in Figure 5.8 where we show the viable
values in theDi−Dj plane. The most stringent constraints here are placed on the couplings
D1 and D2 and we find most viable points within the interval D1, D2 ∈ [0.0, 0.5], see

Table 5.1 Numerical values and limits used for the analysis of the D0 − D̄0 mixing
constraints [155–159]. The limits on xD12 and ϕD12 are given at 95% C.L.
and were obtained from the Heavy Flavour Averaging Group’s (HFLAV)
website [159].

B̂D 0.75± 0.02
fD 209.0± 2.4MeV
ηD 0.772
mD0 1864.83± 0.05MeV
τD0 410.1± 1.5 fs

xD12 [0.21%, 0.63%]
ϕD12 [−2.8◦, 1.7◦]

12Note that the latter case of an equal DM and mediator mass is excluded by the DM stability condition
mχ < mϕ. We nevertheless also discuss this case here in order to provide a more general discussion of the
flavour constraints and the possible interference of the two box diagrams from Figure 5.6.
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(a) mϕ = 1200GeV and mχ = 200GeV (b) mϕ = 1200GeV and mχ = 1200GeV

Figure 5.7 D0 − D̄0 mixing constraints on the mixing angles θij as a function of the
splitting ∆ij = |Di −Dj | for two choices of mϕ and mχ.

Figure 5.8a. The coupling D3 on the other hand, can be chosen freely which is illustrated
in Figure 5.8b. This is due to the fact that ξg mainly depends on the couplings D1 and D2

which parametrise the coupling of DM to up and charm quarks. In the limit of vanishing
mixing angles and phases, this factor reduces to ξg ≈ D2

1D
2
2 and hence the contributions

from the crossed box diagram can also be sufficiently suppressed to satisfy the bound if
either of the couplings D1 or D2 is small while the other one may be large. We have
checked this behaviour to also hold true in the case of other choices for the masses mχ and
mϕ.

This allows us to conclude that, barring cancellations between the two contributions
shown in Figure 5.6, the D0 − D̄0 mixing constraints demand

0 < D3 ≤ 2.0 ,

0 < D1, D2 ≤ 0.5 , (5.26)

while it allows for large mixing angles within this part of the parameter space. Comparing
this to our findings from Section 5.1, we find that both results perfectly match each other
as the LHC constraints are also satisfied within these ranges. It is however important to
note that while the majority of viable points in Figure 5.8 lie within the region identified
above, there are also some that are significantly outside of it. In these cases, the viable
parameter space is extended due to the aforementioned destructive interference between
the two box diagrams shown in Figure 5.6.

In the following we want to illustrate how this interference effect extends the viable
parameter space compared to the case of Dirac DM. To this end we show the imaginary
parts of the coupling combinations ξf and ξg defined above for two choices of mϕ and
mχ in Figure 5.9. We find that for both mass choices the allowed points scatter around
a linear function, which can be explained analytically as follows. The constraints on ϕD12
given in Table 5.1 are very stringent and roughly demand ϕD12 ≃ 0, where ϕD12 is given by

ϕD12 = arctan
ImMD,NP

12

ReMD,NP
12 +ReMD,SM

12

. (5.27)
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(a) D1 −D2 plane (b) D2 −D3 plane

Figure 5.8 Viable points in the Di −Dj plane for mϕ = 1200GeV and mχ = 200GeV
when considering the D0 − D̄0 mixing constraints.

Hence, the experimental bound on the CP-violating phase forces the imaginary part of
MD,NP

12 to be small, which for the factors ξf and ξg translates to the condition

Im ξf ≈ Im ξg
2g(x)

f(x)
. (5.28)

This can be seen explicitly in Figure 5.9a where we show the case of equal DM and mediator
masses, i.e. x = 1. In this case the loop functions satisfy 2g(1) = f(1) = 1/3 and hence
Equation (5.28) reduces to Im ξf ≈ Im ξg yielding a slope that is equal to one. As can be
seen in Figure 5.9b, for any other point in the mass plane mϕ−mχ the slope of the linear
function that the allowed points scatter around is given by the actual value of 2g(x)/f(x).
Note that we also found a number of allowed points well beyond the ranges for ξf and ξg
shown in Figure 5.9 in our scan. While maximum values as large as Im ξf,g ∼ O(1) can
be reached, the point density decreases for increasing imaginary parts of both coupling
factors.

The scattering of the points in Figure 5.9 around the linear relation from Equa-
tion (5.28) is tied to the fact that the experimental bound actually requires the CP-
violating phase to lie within the range given in Table 5.1 instead of demanding it to be
zero. Also, we here only show the imaginary parts of the factors ξf,g constrained by the
CP violation in D0 − D̄0 mixing, since the CP-conserving and therefore real amplitude
MD,SM

12 suffers from large non-perturbative uncertainties. Generally, the same interfer-

ence can also be seen for MD,SM
12 with the sole difference of a larger scattering around the

corresponding linear function for the real parts of ξf,g due to these uncertainties.
For Dirac fermionic DM the crossed box diagram from Figure 5.6b proportional to ξg is

absent, and hence the limit on ϕD12 requires Im ξf ≃ 0 in that case. We therefore conclude
that the Majorana nature of the particles χi indeed extends the viable parameter space of
our model with respect to the Dirac case and the above discussed destructive interference
particularly allows for large imaginary parts of ξf and ξg in our model. We return to the
practical implication of this finding in Section 5.6.
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(a) mϕ = 1200GeV and mχ = 1200GeV (b) mϕ = 1200GeV and mχ = 200GeV

Figure 5.9 Imaginary part of the two factors ξf and ξg in percent.

5.3 Dark Matter Relic Density

As discussed in detail in Chapter 4 our model assumes the lightest dark flavour13 to form
the observed DM of the Universe. Hence, demanding that the abundance of χ3 today
equals the measured DM relic density also places constraints on the coupling matrix λ.
We dedicate this section to the analysis of these constraints.

In terms of the production mechanism of a cold dark relic we assume a thermal freeze-
out of DM as discussed in Section 2.2 and particularly focus on the two freeze-out scenarios
defined in Section 3.2. To this end, we first define both scenarios numerically and then
discuss relevant processes for the calculation of the thermally averaged annihilation rate.
We conclude this section by analysing the allowed structure of λ within the context of the
DM relic density bound for both freeze-out scenarios.

DM Annihilations and Thermal Freeze-Out

The two freeze-out scenarios identified in Section 3.2 depend on the mass splittings

∆mi3 =
mχi

mχ3

− 1 , (5.29)

between the heavier flavours with i ∈ {1, 2} and the lightest flavour χ3. For this model we
define both scenarios numerically as follows:

� In the QDF scenario we demand that the splittings ∆mi3 are smaller than 1% and
hence set η = −0.01 in Equation (4.15). As DMFV corrections to the DM mass
matrix are at least generated at the one-loop level through RG running, smaller
absolute values for η would be implausible.

� The SFF scenario is defined through a significant splitting and hence we here demand
that ∆mi3 is larger than 10% but at the same time small enough to ensure the

13Remember that we have conventionally chosen the third generation to be the lightest of all dark
particles.
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Figure 5.10 Feynman diagrams for the annihilation of two DM particles into two SM
quarks at LO. Note that the u-channel diagram only exists for Majorana
fermions.

convergence of Equation (4.15). We thus choose η = −0.0575 for this scenario which
yields maximum splittings of ∆mmax

i3 ≃ 30% for couplings Di ∈ [0, 2].

We further assume the freeze-out to occur at Tf ≈ mχ3/20 in both scenarios.
The relevant annihilation processes for the thermal freeze-out of DM are gathered in

Figure 5.10. Note that the coannihilation process χiϕ → qjg where a ϕ is exchanged in
the t-channel also exists but suffers from a suppression by the Boltzmann factor

k = e
−
mϕ−mχ3

Tf ≃ e
−20

mϕ−mχ3
mχ3 , (5.30)

while the process ϕ†ϕ → q̄iqj is even suppressed by k2. Both of these annihilations14

are thus only relevant for very small splittings between mϕ and mχ3 . We neglect these
contributions in the following and only consider the two diagrams shown in Figure 5.10 as
we are not interested in the near-degeneracy limit mϕ ≈ mχ3 in our analysis.

Evaluating both diagrams we find

|M |2 = |Mt|2 + |Mu|2 − 2ReMtu , (5.31)

for the spin-, colour- and flavour-averaged squared amplitude |M |2. The relative sign of
the interference term Mtu between the t- and u-channel contributions in this expression
is due to the crossing of fermion lines in the diagram of Figure 5.10b. The summands in
Equation (5.31) are given as

|Mt|2 =
3

4

∑
ij

∑
kl

ctijkl
(m2

χi +m2
qk

− t)(m2
χj +m2

ql
− t)

(t−m2
ϕ)

2
, (5.32)

|Mu|2 =
3

4

∑
ij

∑
kl

cuijkl
(m2

χi +m2
ql
− u)(m2

χj +m2
qk

− u)

(u−m2
ϕ)

2
, (5.33)

Mtu =
3

4

∑
ij

∑
kl

ctuijkl
mχimχj (s−m2

qk
−m2

ql
)

(u−m2
ϕ)(t−m2

ϕ)
, (5.34)

where s, t and u are Mandelstam variables and the indices i, j, k and l are flavour indices.
The factor of 3/4 in each of these expressions is due to the colour and spin average and
the couplings cα are given as

ctijkl = |λ̃ki|2|λ̃lj |2 , (5.35)

14Note that there also exist corresponding charge conjugated diagrams for both of these processes, while
the latter case, i.e. the case of mediator pair annihilation can additionally produce same sign quarks in the
final state.
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cuijkl = |λ̃li|2|λ̃kj |2 , (5.36)

ctuijkl = λ̃∗kiλ̃lj λ̃
∗
liλ̃kj , (5.37)

where λ̃ is defined according to Equation (4.18).
For the calculation of the thermally averaged annihilation cross section we use the

low-velocity expansion discussed at the end of Section 2.2 and adopt the expression from
Equation (3.12), i.e.

⟨σv⟩eff = fsc
[
a+ b ⟨v2⟩+O

(
⟨v4⟩

)]
, (5.38)

where ⟨v2⟩ = 6Tf/mχ ≈ 0.3 and we have set fnat = 1 since DM is a Majorana fermion in
our model. As discussed in Section 3.2, the factor fsc depends on the freeze-out scenario
and is equal to one for the SFF scenario while it takes the value fsc = 1/9 for the QDF
case. The coefficients a and b corresponding to the s- and p-wave contributions to ⟨σv⟩eff
have been calculated using the techniques provided in Reference [123, 124] and can be
found in Appendix A.1. In the limit of vanishing final state masses mqk = mql = 0 and
equal initial state masses mχi = mχj = mχ they are given by

a =
3

32πm2
χ (1 + µ)2

∑
ij

∑
kl

(
ctijkl + cuijkl − 2 ctuijkl

)
, (5.39)

b =
1

128πm2
χ (1 + µ)4

∑
ij

∑
kl

(
22 ctuijkl − 7

(
ctijkl + cuijkl

)
− 18

(
ctijkl + cuijkl − 2 ctuijkl

)
µ+

(
ctijkl + cuijkl + 6 ctuijkl

)
µ2
)
, (5.40)

where we have used µ = m2
ϕ/m

2
χ. Note that using equal initial state masses in the ex-

pressions above is justified for both freeze-out scenarios. For a QDF the mass splittings
between the different dark flavours are negligibly small15, while for a SFF the masses of
the two annihilating particles are indeed equal as only χ3 contributes to the freeze-out.
For the latter freeze-out scenario mχ thus has to be replaced by mχ3 in the expressions
above. For the same reason however, the sum over initial state flavours in Equation (5.39)
and (5.40) needs to be omitted for the SFF scenario and the couplings cα reduce to

ct33kl = cu33kl = ctu33kl = ckl = |λ̃k3|2|λ̃l3|2 . (5.41)

This in turn causes the s-wave coefficient a from Equation (5.39) to vanish as we find

a = 0 , (5.42)

b =
∑
kl

ckl
1 + µ2

16πm2
χ (1 + µ)4

, (5.43)

i.e. we encounter a p-wave suppression of annihilations into massless final states for the
SFF scenario.

Further remarks are in place regarding the sum over final state flavours in the expres-
sions for the s- and p-wave coefficients of both scenarios. It is important to note that the
final state with a top–antitop pair is kinematically forbidden for masses mχ < mt, where
mt is the top quark mass. Hence, in this case only final states with a single top-flavoured
quark are allowed and the case k = l = 3 needs to be excluded from the sum. For even
smaller masses mχ < mt/2, the former final states become kinematically inaccessible as
well and the sum over final state flavours hence reduces to k, l ∈ {1, 2}.

15We have checked numerically that using different initial state masses in the QDF scenario only causes
negligible differences in ⟨σv⟩eff of order O(1%).
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Constraints from the DM Relic Density

In order to analyse the constraints that the observed relic density places on the model
parameters numerically, we use the partial wave expansion for ⟨σv⟩eff discussed above and
compare it with the annihilation rate necessary to produce the experimentally observed
amount of DM. For masses mχ3 > 10GeV the latter rate is found to be approximately
constant and reads [162,163]

⟨σv⟩expeff = 2.2× 10−26 cm3/s . (5.44)

For the calculation of ⟨σv⟩eff we include the s- and p-wave contributions in both scenarios
and use the coefficients a and b with their full final state mass dependence as given in
Appendix A.1. To derive constraints on λ and the NP masses we demand that ⟨σv⟩eff
equals the experimental value from Equation (5.44) within a 10% tolerance region. The
numerical values for the quark masses are adopted from Reference [158].

The results of the numerical analysis are gathered in Figure 5.11 and 5.12. In Fig-
ure 5.11a we show the viable values in the D1 − D2 plane for the QDF scenario. Re-
membering that the QDF mass splitting condition itself also restricts the values of these
two couplings, the overall pattern corresponds to the overlap of the areas in which both
the relic density constraint as well as the QDF mass splitting condition are satisfied. We
find that these areas exhibit a circular pattern and that smaller DM masses mχ require
larger couplings D1 and D2. Since in the QDF scenario the annihilation rate is not p-wave
suppressed, the leading term is given by the s-wave contribution from Equation (5.39). In
the limit of a negligible top quark mass mt ≪ mχ the annihilation rate reduces to

⟨σv⟩QDF
eff =

1

96π

m2
χ(

m2
χ +m2

ϕ

)2 ∑
ij

∑
kl

(
ctijkl + cuijkl − 2 ctuijkl

)
+O

(
⟨v2⟩

)
, (5.45)

and one can write for the sum over the couplings cα∑
ij

∑
kl

ctijkl =
∑
ij

∑
kl

cuijkl = Tr
[
λ̃†λ̃
]2

= Tr
[
D2
]2
, (5.46)

∑
ij

∑
kl

ctuijkl = Tr
[
λ̃T λ̃∗λ̃†λ̃

]
= Tr

[
Od2OTD2Od∗2OTD2

]
. (5.47)

While the first of these two traces can be evaluated trivially and reads

Tr
[
D2
]2

=
(
D2

1 +D2
2 +D2

3

)2
, (5.48)

the second one is more complex. It is bounded from above and its maximum value given
for vanishing mixing angles ϕij and phases γi reads

16

Tr
[
Od2OTD2Od∗2OTD2

]
≤ Tr

[
D4
]
= D4

1 +D4
2 +D4

3 . (5.49)

We hence conclude that the destructive interference between the t- and u-channel diagrams
shown in Figure 5.10 can never lead to a p-wave suppression in the QDF scenario, since
we find the s-wave contribution to the annihilation rate to be bounded from below, i.e. we
find

⟨σv⟩QDF
eff ≥ 1

24π

m2
χ(

m2
χ +m2

ϕ

)2 (D2
1D

2
2 +D2

1D
2
3 +D2

2D
2
3

)
+O

(
⟨v2⟩

)
. (5.50)
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(a) D1−D2 plane in the QDF scenario for vary-
ing mχ and mϕ = 1200GeV

(b) Viable sin θi3 and D3 in the SFF scenario
for mχ = 220GeV and mϕ = 950GeV

Figure 5.11 Restrictions that the relic density constraints place on the model parame-
ters for both freeze-out scenarios.

This short analysis explains the circular pattern in Figure 5.11a for large mχ, as the
relic density constraint in this case reduces to(

D2
1 +D2

2 +D2
3

)2 − Tr
[
Od2OTD2Od∗2OTD2

]
≈ const. , (5.51)

for a given point in the mϕ − mχ plane17. This condition corresponds to the shell of a
three-dimensional sphere which is deformed by the second trace in the equation above and
the restrictions that the QDF mass splitting condition puts on the couplings Di. The green
and orange points in Figure 5.11a further show that we encounter the same behaviour for
mχ ≈ mt and particularly for mχ < mt where the final state with a top–antitop pair
becomes inaccessible. We further find that small DM masses require large couplings due
to the analytically evident mχ dependence of ⟨σv⟩eff but also due to the reduced number
of total annihilation channels in the regimes mχ < mt and mχ < mt/2, respectively. As
we have limited the couplings to Di ∈ [0, 2] this poses a lower limit on the DM mass mχ.

Figure 5.11b shows the restrictions that the relic density constraints place on the mixing
angles θ13 and θ23 as well as the coupling D3 in the SFF scenario. We here show the case
of top-flavoured DM, i.e. the case where the lightest dark flavour couples predominantly
to the top quark. We find that small couplings D3 require the mixing angles to be small as
well. The reason is that for top-flavoured DM, large mixing angles enhance annihilations
into final states with either only one top-flavoured quark (top or antitop quark) or no
top flavour at all. As discussed above, the latter annihilation channels suffer from a p-
wave suppression due to the smallness of the up and charm quark masses. While this
is not the case for the channel with a single top-flavoured quark in the final state, these
annihilations are still suppressed by the smallness of the second final state quark’s mass.
They are thus roughly three orders of magnitude smaller than the contributions to the

16The mixing angles ϕij and the phases γi were defined in Equation (4.10) and (4.12), respectively.
17We have checked numerically that the trace in Equation (5.51) is typically much smaller than the first

summand.
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Figure 5.12 Relic density constraints on the mϕ −mχ3 plane for the SFF scenario.

s-wave coefficient a from annihilations into a top–antitop pair. We conclude that large
mixing angles only lead to suppressed additional annihilations while they at the same time
reduce the rate of the dominant annihilation channel χ3χ3 → tt̄ and therefore also reduce
the overall annihilation rate. Hence, for the smallest allowed values of D3 the mixing
angles may not grow too large, as this would lead to a too small annihilation rate or a
too large relic density, respectively. For growing values of D3 large mixing angles become
viable as the annihilation rate into a top–antitop pair is increased in this case. Once the
coupling grows as large as D3 ≳ 1.65 however, the rate χ3χ3 → tt̄ tends to be too large
and hence sizeable mixing angles are required in order to suppress the total annihilation
rate through the mechanism explained above. It is important to note that this suppression
mechanism becomes weaker for increasing values of D3. This is due to the fact that the
p-wave suppressed annihilations into light quarks as well as annihilations into final states
with a single top-flavoured particle also grow with D3. Thus, for values D3 ≳ 1.80 the
total annihilation rate cannot be suppressed sufficiently any longer through large mixing
angles, such that the resulting DM density is always too small. This only holds true as
long as annihilations into a top–antitop pair are possible: once the DM mass drops below
the top quark mass threshold, these annihilations become kinematically inaccessible. In
the limit of vanishing mixing angles ϕij and phases γi the DM mass of top-flavoured DM
is given by mχ3 ≈ mχ(1 − |η|D2

3), i.e. mχ3 decreases with increasing values of D3. We
hence find that for D3 ≳ 1.92 the annihilation channel χ3χ3 → tt̄ becomes forbidden and
the total annihilation rate is thus pushed back into the tolerance region. In this case only
very large mixing angles θi3 are excluded as they would further enhance the accessible
annihilation channels and lead to a too large annihilation rate or too small DM relic
density, respectively.

Note that in Figure 5.11b there are no differences between the two mixing angles θ13
and θ23, which is due to the fact that we do not fix the value of one angle while looking at
the other and vice versa. Also recall that we only illustrate the case of top-flavoured DM in
Figure 5.11b. Since we allow for a rearrangement of the matrixW from Equation (4.17) in
order to ensure that χ3 is always the lightest state, its mass corrections can generally also
depend on D1 or D2 which corresponds to the cases of up- and charm-flavoured DM. For
these cases the parameters shown in Figure 5.11b are basically free and the only constraint
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comes from the SFF scenario itself. Its mass splitting condition here demands the coupling
D3 to be sufficiently smaller than D1 or D2, respectively.

In Figure 5.12 we show the viable masses mϕ and mχ3 in the SFF scenario. Just as
for the QDF scenario, the upper limit on the couplings Di again translates into a lower
limit on the DM mass, since the annihilation rate is roughly proportional to the sum over
m2
χ3
D4
i . However, in this case we additionally find an upper bound on mχ3 for mediator

masses mϕ ≲ 1000GeV which can be explained as follows. For large DM masses the
couplings need to be correspondingly small in order to keep the annihilation rate within
the tolerance interval. The mass splitting condition of the SFF scenario however, always
forces one coupling Di to be significantly larger than the other two18. Hence, the relic
density constraint cannot be satisfied in the SFF scenario for arbitrarily large values of
mχ3 as long as the mediator mass is comparably small. Since the annihilation rate is
additionally suppressed by 1/m2

ϕ, we find that for values mϕ ≳ 1000GeV this suppression
compensates for the single sizeable coupling Di and values of the DM mass mχ3 up to the
equal mass threshold become viable.

5.4 Dark Matter Detection Experiments

We have seen so far that the Majorana nature of DM had important implications for the
collider, flavour and relic density constraints as it generated Majorana specific contribu-
tions in all three fields. In terms of the detection phenomenology of DM, choosing it to be
a Majorana fermion has even more profound implications and leads to severe differences
when comparing the resulting phenomenology to the Dirac case. We hence dedicate this
section to the discussion of constraints from detection experiments.

Most importantly, we expect the Majorana nature of χ to render limits from indirect
detection to be very lenient. The reason is the above mentioned p-wave suppressed an-
nihilation rate of χ3 into up or charm flavoured final states. As the DM halo velocity in
the Milky Way is approximately given by ⟨v2⟩ ≃ 10−6, these final states lead to a severely
suppressed indirect detection signal. Annihilations into top-flavoured final states can nei-
ther lead to relevant signals, since for comparably small DM masses the annihilation rate
suffers from a phase space suppression due to the large top quark mass. Since the indirect
detection constraints are additionally generally less significant for large DM masses mχ,
we expect them to not place any relevant restrictions on λ at all and hence only focus on
direct detection experiments in this section.

Relevant Processes for Direct Detection

The DM–nucleon scattering cross section generally splits up into a spin-dependent (SD)
and a spin-independent (SI) part in the non-relativistic limit. Typically, the constraints for
SI scattering are much stronger since in this case DM coherently scatters off all nucleons
in the nucleus and the signal is thus enhanced. In the case of SD scattering on the other
hand, such an enhancement is absent as it only couples to the modulus of the total spin,
while the nucleon spins cancel in pairs [6]. It is thus often an accurate approximation to
solely consider SI scatterings when analysing direct detection constraints [20–22].

For our case of Majorana DM however, the leading contributions to the SI part
of the DM–nucleon scattering cross section corresponding to scalar (χ̄χq̄q) and vector
(χ̄γµχ q̄γµq) type interactions are absent. The latter interactions are identically zero,
since for Majorana fermions bilinears which are antisymmetric under C parity vanish.

18Remember that we have chosen η < 0, i.e. the mass corrections δmχi are always negative.
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Figure 5.13 Tree-level and loop induced Feynman diagrams for DM–nucleon scattering.
Note that there exist several additional DM–gluon scattering diagrams and
one additional photon-mediated penguin diagram that we don’t show here.
All penguin diagrams can moreover be mediated by a Higgs or Z boson as
well.

The scalar interactions on the other hand vanish for Majorana DM with chiral interac-
tions, as present in our model [6,164,165]. We hence also consider SD contributions in our
analysis and additionally go beyond LO when calculating the SI contributions by including
one-loop induced scatterings between DM and gluons. The relevant diagrams are gathered
in Figure 5.13.

Note that at the one-loop level there also exists a photon-mediated penguin diagram
for SI scatterings through which DM can couple to nucleons. This interaction is shown in
Figure 5.13c and is induced by the electric and magnetic dipole, the charge-radius as well
as the anapole operators. There is no such contribution from the electric dipole operator
(χ̄iσµνγ5χFµν) in our model, as the NP interaction Lagrangian in Equation (4.1) involves
a chiral interaction and is thus not CP-violating. On the other hand, the magnetic dipole
(χ̄iσµνχFµν) as well as the charge-radius operators (χ̄γµχ∂νFµν) vanish for Majorana
fermions due to the above explained reason. Thus, the only contributions are generated
by the anapole moment [166], which however are found to be very small [167]. The resulting
scattering cross section is far beyond the sensitivity of current experiments and we hence
neglect this diagram in our analysis. The contributions from equivalent penguin diagrams
mediated by a Z boson are proportional to the external momentum [166] and are hence
negligible as well.

We further neglect similar one-loop penguin diagrams which are mediated by a Higgs
boson instead of a photon. The impact of such a contribution has already been dis-
cussed in the context of neutralino DM in the Minimal Supersymmetric Standard Model
(MSSM) [168,169]. In our model, the size of the effective DM–Higgs coupling depends on
the Yukawa coupling of the up-type quark in the loop as well as the Higgs portal coupling
λHϕ. While the process with a top quark in the loop can particularly yield a relevant
contribution to SI DM–nucleon scattering, it is always possible to suppress it by choosing
λHϕ properly. Since the latter coupling is not constrained by the rest of our analysis, we
follow the arguments provided in Section 4.1 and use this freedom to assume that the
Higgs penguin is negligible.

We are hence left with the tree-level diagram of Figure 5.13a as well as the one-
loop DM–gluon scatterings from Figure 5.13b. To calculate the resulting DM–nucleon
scattering cross section we write

σNSD =
3

16π

m2
Nm

2
χ3

(mN +mχ3)
2

 ∑
q=u,d,s

∆qNaq

2

, (5.52)
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for its SD part [164,165,170] and

σNSI =
4

π

m2
Nm

2
χ3

(mN +mχ3)
2
|fN |2 , (5.53)

for its SI part [6, 164, 165]. In these expressions aq is the Wilson coefficient of the SD
quark–nucleon interaction, ∆qN is the spin content of the nucleon N = {p, n} in terms of
the quark q and mN is the nucleon mass. The factor fN is the matrix element of the SI
quark–nucleon interaction.

As χ3 only couples to up-type quarks in our model, Equation (5.52) reduces to

σNSD =
3

16π

m2
Nm

2
χ3

(mN +mχ3)
2

(
∆uNau

)2
, (5.54)

with the corresponding Wilson coefficient

au =
|λ̃u3|2

m2
ϕ − (mχ3 +mu)2

. (5.55)

For the SI scattering cross section we follow the formalism of References [171–173] and
write

Leff
SI =

∑
q=u,d,s,c

Leff
q + Leff

g , (5.56)

for the effective interaction Lagrangian. Scatterings between DM and quarks are described
by

Leff
q = fqχ̄χO(0)

q +
g
(1)
q

mχ3

χ̄i(∂µγν + ∂νγµ)χO(2)
q,µν +

g
(2)
q

m2
χ3

χ̄(i∂µ)(i∂ν)χO(2)
q,µν , (5.57)

whereas loop-induced DM–gluon scatterings are described by

Leff
g = fGχ̄χO(0)

g +
g
(1)
G

mχ3

χ̄i(∂µγν + ∂νγµ)χO(2)
g,µν +

g
(2)
G

m2
χ3

χ̄(i∂µ)(i∂ν)χO(2)
g,µν . (5.58)

In the notation of Reference [165] the tensor operators from above are given as

O(2)
q,µν =

1

2
q̄

(
γ{µiD

ν}
− − gµν

4
i /D−

)
, (5.59)

O(2)
g,µν = −Ga,µρGa,νρ +

gµν

4

(
Gaαβ

)2
, (5.60)

and the scalar operators read

O(0)
q = mq q̄q , (5.61)

O(0)
g = GaµνG

a,µν . (5.62)

The matrix element fN of SI contributions can be written in terms of the mass fractions
fTq of light quarks in the nucleon as well as the second moments of the quark, antiquark
and gluon PDFs q(2), q̄(2) and G(2), respectively. It reads
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fN
mN

=
∑

q=u,d,s,c

fTqfq +
3

4
[q(2) + q̄(2)]

(
g(1)q + g(2)q

)
− 8π

9αs
fTGfG +

3

4
G(2)

(
g
(1)
G + g

(2)
G

)
. (5.63)

Here, the Wilson coefficients for DM–quark interactions read [165]

fq =
|λ̃q3|2mχ3

16(m2
ϕ − (mχ3 +mq)2)2

, (5.64)

g(1)q =
|λ̃q3|2mχ3

8(m2
ϕ − (mχ3 +mq)2)2

, (5.65)

g(2)q = 0 . (5.66)

It is important to note that these Wilson coefficients are suppressed by an additional power
of the NP scale mϕ when compared to the corresponding coefficient for SD scattering au
from Equation (5.55). This is due to the fact that these coefficients are only generated
through an NLO expansion of the propagator in the tree-level diagram of Figure 5.13a.

The Wilson coefficients fG, g
(1)
G and g

(2)
G of the gluonic operators O(0)

g and O(2)
g,µν can be

found in Appendix A.2.
In terms of the evolution of the Wilson coefficients for SI scattering from the NP scale

mϕ down to the scattering scale µ = 2GeV we use the results from Reference [174] and
also adopt the anomalous dimension and matching matrices given there. We further use
the RunDec package [175] for the running and decoupling of quark masses and the strong
coupling αs. The numerical values of the hadronic matrix elements as well as the input
quark masses for the RG running can be found in the appendix of Reference [165].

Constraints from Direct Detection

To study the restrictions that direct detection experiments place on our model parame-
ters, we calculate the SD and SI scattering cross sections as discussed above and com-
pare each with the respective experimental upper limit. Currently, the PICO-60 experi-
ment [176] provides the strongest constraints on SD WIMP–proton scattering for which
Equation (5.54) reads

σpSD =
3

16π

m2
pm

2
χ3

(mp +mχ3)
2
(∆upau)

2 . (5.67)

The world-leading result for SI scatterings is provided by the XENON1T experiment [177].
Averaging the SI WIMP–nucleon cross section from Equation (5.53) over all nucleons in
the nucleus we write

σSI =
4µ2

πA2
|Zfp + (A− Z)fn|2 , (5.68)

where µ = mNmχ3/(mN + mχ3) is the reduced mass of the DM–nucleon system and
A = 131 and Z = 54 are the mass and atomic numbers of Xenon. Using these expressions
we scan over the mass plane mϕ−mχ3 and determine the coupling strength for which both
cross sections saturate their respective experimental upper limit given at 90% C.L. For σSI
we additionally assume a flavour-universal DM–quark coupling, i.e. we fix all DM–quark
couplings to one value |λ̃i3|. The results are shown in Figure 5.14.

For the calculation of the SD scattering rate σpSD we have only included the dominant
tree-level contribution from Figure 5.13a and hence the PICO-60 limit solely constrains the
coupling |λ̃u3| as can be seen in Figure 5.14a. We find that in large parts of the parameter
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Figure 5.14 Direct detection limits on λ̃ from the PICO-60 and XENON1T experiments.
For the latter we have set |λ̃u3| = |λ̃c3| = |λ̃t3| ≡ |λ̃i3|. The area included
by the white dashed line and the equal mass threshold indicates in which
mass regime the constraints are relevant.

space the limits can be completely evaded. For masses mϕ ≳ 1200GeV it is always possible
to find an mχ3 for which the DM–up coupling can take its maximally19 allowed value
|λ̃u3| = 2.0 (white dashed contour) without violating the experimental bound. For even
larger values mϕ ≳ 1500GeV the limit becomes only relevant in the close-to-degeneracy
region mϕ ≈ mχ3 and for small DM masses mχ3

≲ 100GeV.
The constraints on the SI scattering rate σSI are even more lenient as can be seen in

Figure 5.14b. This was to be expected as the leading contributions to the SD scattering
cross section σpSD are generated by dimension-six operators while the leading terms for SI
scatterings arise from the dimension-seven and dimension-eight operators discussed above.
Hence, the SI scattering rate σSI suffers from a severe suppression by the NP scale mϕ.
We find that this suppression causes the SI scattering limits to be only relevant in the
close-to-degeneracy region for mass splittings between mϕ and mχ3 of at most 10%.

We conclude that the direct detection constraints are much less stringent for our model
than the previously discussed limits from collider and flavour experiments as well as the
observed DM relic density. We find that the Majorana nature of χ3 severely suppresses SI
scatterings and thus renders SD scatterings to be the dominant ones.

5.5 Combined Analysis

To provide a global picture of the viable parameter space of our model, we perform a
combined analysis in this section. To this end we demand that all the constraints discussed
in the previous sections are satisfied simultaneously. After identifying viable structures
for the coupling matrix λ̃, we conclude this section by analysing the flavour of the lightest
dark particle χ3.

19Remember that we had limited the couplings Di to Di ∈ [0, 2] for perturbativity reasons. This choice
translates into an according upper bound |λ̃ij | ≤ 2.0 on each entry of λ̃.
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(a) |λ̃t3| − |λ̃u3| plane (b) |λ̃c3| − |λ̃u3| plane

Figure 5.15 Viable couplings |λ̃i3| formχ = 350GeV and varyingmϕ within the context
of all constraints in the SFF scenario.

Combined Constraints

We show the results of the combined analysis of all constraints in Figure 5.15 and 5.16.
The LHC constraints are considered in form of the choices for the masses mϕ and mχ here.
Note that the structure of λ̃ is also restricted by the choice of the freeze-out scenario, since
the latter is defined through the mass splittings between the different dark flavours which
in turn are determined by the hierarchy of λ̃.

The results for the SFF scenario are gathered in Figure 5.15. In Figure 5.15a we show
viable points in the |λ̃t3| − |λ̃u3| plane and Figure 5.15b likewise shows the allowed values
for |λ̃c3| and |λ̃u3|. In this scenario the relic density constraint discussed in Section 5.3
reduces to the condition

|λ̃u3|2 + |λ̃c3|2 + |λ̃t3|2 ≈ const. , (5.69)

as χ3 is the only flavour that contributes to the thermal freeze-out. This explains the
outer edge of the bands that can be seen in Figure 5.15a. The lower edge of these bands
on the other hand, is caused by the D0− D̄0 mixing constraints which force either |λ̃u3| to
be small if |λ̃c3| is large or vice versa. This can be seen very well in Figure 5.15b, where
most of the allowed points are located close to the axes with |λ̃u3| ≃ 0 and |λ̃c3| ≃ 0. The
points with |λ̃u3| ≃ 0 are then scattered at the bottom in Figure 5.15a while the points
with |λ̃c3| ≃ 0 form the circular bands.

Themϕ dependence of the allowed values in the |λ̃t3|−|λ̃u3| plane shown in Figure 5.15a
is primarily due to the relic density constraint. For low mediator masses we find that
DM needs to be mainly up- or charm-flavoured, which can be seen explicitly for mϕ =
1000GeV. In this case the thermally averaged annihilation cross section is enhanced by
the smallness of the mediator mass. As annihilations into massless final states are p-wave
suppressed in the SFF scenario, DM then needs to predominantly couple to either up or
charm quarks in order to compensate for this enhancement of the annihilation rate by
the small mediator mass. Larger values for mϕ sufficiently suppress the annihilation rate,
such that top-flavoured DM becomes viable as well. If mϕ however grows too large, we
find that both up- and charm-flavoured DM are excluded and DM needs to predominantly
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(a) |λ̃t3| − |λ̃u3| plane (b) |λ̃c3| − |λ̃u3| plane

Figure 5.16 Viable couplings |λ̃i3| formχ = 350GeV and varyingmϕ within the context
of all constraints in the QDF scenario.

couple to top quarks as can be seen for mϕ = 1600GeV in Figure 5.15a. The reason is that
in this case the suppression of the annihilation rate by sizeable mediator masses together
with the above mentioned p-wave suppression of annihilations into up and charm quarks
results in a too small annihilation cross section or too large relic density, respectively.

The results for the QDF scenario are shown in Figure 5.16. Since in this case all dark
flavours contribute equally to the thermal freeze-out, the relic density condition reduces
to ∑

ij

|λ̃ij |2 ≈ const. , (5.70)

and hence the emerging patterns are much less clear than in the SFF scenario. This
spherical condition again causes an upper bound on the couplings |λ̃i3|, but in this case
the lower edge of the bands from the SFF case is absent and hence we are left with the
circular patterns that can be seen in Figure 5.16. The varying point density in Figure 5.16a
indicates that in the QDF scenario top-flavoured DM is experimentally favoured over up-
and charm-flavoured DM. From Figure 5.16b one can infer that the neutral D meson
mixing constraints exclude less parameter space in the QDF scenario, as in this case the
density of the viable points is not only high close to the axes but also on the diagonal.
The reason is that the QDF mass splitting condition implies a near degeneracy condition
on the couplings Di, which in turn suppresses NP contributions to D0 − D̄0 mixing since
λ̃ becomes close-to-diagonal for near-degenerate couplings Di.

In both scenarios we find that for Majorana DM direct detection constraints do not
place additional restrictions on the coupling matrix λ or λ̃, respectively. We hence conclude
that the allowed parameter space is mainly determined by the flavour, relic density and
LHC constraints.

Flavour Analysis

Our discussion of the combined constraints from above already contains some aspects
related to the flavour of the lightest DM particle χ3. In the following we want to provide
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a more quantitative analysis of the latter. To this end we first define the DM particle χ3

to be i-flavoured if
|λ̃i3| > |λ̃j3| , (5.71)

with i ̸= j and i, j ∈ {u, c, t}. In other words, the particle χ3 has the flavour i if it
predominantly couples to the up-type quark of flavour i. We further define the quantity

ni =
Ni

N
, (5.72)

where N corresponds to the total number of viable parameter points generated in our
randomised scan that satisfy a given constraint, and Ni is the number of this allowed
points for which χ3 has the flavour i. To provide a numerical analysis of the flavour of
χ3 we collect the different ni in the triple nconstr. = {nu, nc, nt} for each experimental
constraint separately as well as for points that satisfy all constraints at the same time.
Note that our random generation of points prior to the application of the experimental
constraints does not favour a specific flavour for χ3. The results of this analysis are shown
in Table 5.2 for mϕ = 1400GeV and several choices of mχ. In the QDF scenario the
dependence on the latter mass parameter was found to be much weaker than in the SFF
scenario and hence we restrict ourselves to just one value of mχ in this case.

As expected from our results found in Section 5.4, the constraints that direct detection
experiments place on the parameter space of our model do not have any implications for
the flavour of χ3 in neither of the freeze-out scenarios. Over large parts of the parameter
space, these constraints are too weak to constrain our model at all and hence the flavour
of χ3 quantified by ndirect is not constrained by DM–nucleon scatterings either.

For the constraints fromD0−D̄0 mixing we find much stronger implications for the DM
flavour, quantified by nmixing. Since a neutral D meson consists of up and charm quarks,
the mixing amplitude is sensitive to the coupling of the new particles χi and ϕ to the former
particles. Hence, the flavour constraints generally prefer top-flavoured DM over up and
charm flavour. This especially holds true for the SFF scenario, which demands that one
coupling Di is larger than the other two in order to generate a significant mass splitting
between χ3 and the heavier states. For up- and charm-flavoured DM one thus always
ends up with large couplings |λ̃u3| or |λ̃c3| leading to at least one sizeable contribution to
the mixing amplitude from Equation (5.14). This is why in the SFF scenario the mixing
constraints strongly disfavour up and charm flavour. The QDF scenario however, demands
the couplings Di to be only marginally split in order to generate a near-degenerate mass
spectrum for the dark flavours. Hence, in this case the overall size of all three couplings Di

Table 5.2 Numerical results of the flavour analysis formϕ = 1400GeV. The constraints
from direct detection experiments and neutral D meson mixing do not ex-
hibit a significant dependence on mχ, so that in the SFF scenario only one
numerical result is shown that applies to all four mχ values.

Scenario mχ /GeV ndirect /% nmixing /% nrelic /% ncombined /%

SFF

300

{33, 33, 34} {2, 4, 94}
{5, 4, 91} {0, 0, 100}

350 {23, 19, 58} {0, 1, 99}
400 {36, 33, 31} {1, 2, 97}
450 {39, 36, 25} {2, 3, 95}

QDF 350 {33, 33, 34} {22, 24, 54} {34, 34, 32} {23, 23, 54}



54 Part II Up-Type-Flavoured Majorana Dark Matter

can be small, which in turn also allows for up- and charm-flavoured DM while top flavour
is still preferred.

The relic abundance constraints are blind towards the flavour of the DM particle in the
QDF scenario, as the initial state flavours are summed over in Equations (5.32)–(5.34),
rendering all nine couplings |λ̃ij | relevant. This sum is omitted in the SFF scenario, since
only the lightest flavour contributes to the freeze-out, so that only the third column of λ̃
is constrained. Hence, in this scenario we encounter strong implications for the flavour
of the DM particle quantified by nrelic. One of them is the aforementioned interplay
between the p-wave suppression of the annihilation rate into final states with up- or charm-
flavour and the enhancement of the latter rate for small mediator masses. As already
discussed in the combined analysis, low mediator masses hence require the DM particle
to be up- or charm-flavoured in order to compensate for this enhancement. We find the
inverse behaviour with respect to varying DM masses, since the annihilation rate is roughly
proportional tom2

χ. Thus, in contrast to its 1/m2
ϕ dependence, growing values ofmχ do not

suppress but enhance the overall annihilation rate. Small values of mχ therefore require
top-flavoured DM since annihilations into a top–antitop pair are not p-wave suppressed.
In turn, for growing values of mχ up and charm flavour both become more viable, as the
total annihilation cross section is enhanced by the increased DM mass and even p-wave
suppressed annihilations can yield the correct total annihilation rate now.

The distribution of possible DM flavours when all constraints are satisfied at the same
time is quantified by ncombined and shown in the last column of Table 5.2. We find that
up- and charm-flavoured DM is strongly disfavoured by experimental data in the SFF
scenario. Only for large DM mass parameters mχ ≳ 350GeV a tiny part of the viable
parameter space corresponds to up- or charm-flavoured DM as the relic density constraint
relaxes for these flavours here due to the above explained reasons. In spite of having a
much weaker dependence on the DM mass, the QDF scenario shows a similar behaviour.
Here, top-flavoured DM again is favoured, however the DM particle can also have up or
charm flavour.

5.6 Direct CP Violation in Charm Decays

In Section 5.2 we had found that the additional D0 − D̄0 mixing diagram with crossed
fermion lines for our case of Majorana DM leads to less constrained CP-violating interac-
tions than in the Dirac DM case. In contrast to the latter, flavoured Majorana DM models
can hence induce potentially sizeable NP contributions to flavour- and CP-violating me-
son decays. Since the DM flavour triplet is coupled to up-type quarks in our model, the
relevant contributions here are related to decays of neutral D mesons.

In terms of the latter, the two decays D0 → K+K− and D0 → π+π− are particularly
interesting. The difference ∆Adir

CP between the direct CP asymmetries of both of these
processes has been measured by the LHCb collaboration and led to the discovery of CP
violation in charm decays [25]. This measurement however, found the difference ∆Adir

CP to
be significantly larger than its SM estimate, which potentially20 raises the need for a NP
explanation. After having identified the viable parameter space of our model in the last
section, we review in this section if it is capable of generating sizeable contributions to
∆Adir

CP.

20Note that SM calculations of ∆Adir
CP suffer from large hadronic uncertainties that can also be the cause

of the discrepancy between its theory prediction and experimental measurement. However, in our analysis
we want to shed light on possible NP explanations.
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Theoretical Approach

The LHCb collaboration measured the difference between the time-integrated direct CP
asymmetries in D0 → K+K− and D0 → π+π− decays to be [25]

∆Adir
CP,LHCb = (−0.157± 0.029)% . (5.73)

In the SM this asymmetry can be estimated parametrically and yields the naive result

∆Adir
CP,SM ∼ O((αs/π)(VubV

∗
cb)/(VusV

∗
cs)) ∼ 10−4 , (5.74)

which is an order of magnitude below the experimental value. Reference [178] presents a
more elaborate prediction based on QCD light-cone sum rules and finds

∆Adir
CP,SM = (0.02± 0.003)% , (5.75)

which in turn corresponds to a deviation of 4.7σ from the data. We interpret this discrep-
ancy between the SM predictions and the LHCb result for ∆Adir

CP as a hint at NP. Note
however, that the possibility of a significantly larger ∆Adir

CP,SM has also been argued for in
the literature [179,180].

For the calculation of the NP contributions to ∆Adir
CP in our model we follow the ap-

proach of Reference [181]. There, the relevant hadronic matrix elements for the D0 meson
decay have been calculated through a naive QCD factorisation. In this approximation,
the matrix element of the decay D0 → K+K−, for instance, reads

⟨K+K−| (ūΓ1 s)(s̄Γ2 c) |D0⟩ ≈ ⟨K+| (ūΓ1 s) |0⟩ ⟨K−| (s̄Γ2 c) |D0⟩ , (5.76)

and formally corresponds to the LO term in a heavy charm quark mass expansion. While
the matrix elements thus suffer from large 1/mc corrections, this ansatz enables the cal-
culation of the NP and SM contributions to ∆Adir

CP in an effective field theory approach.
The latter asymmetry is given by

∆Adir
CP = Adir

K+K− −Adir
π+π− , (5.77)

and we adopt the expression

Adir
f = 2 rf sin δf sinϕf , (5.78)

for the time-integrated direct CP asymmetry of the decay D0 → f with the final states
f ∈ {K+K−, π+π−} from Reference [181]. In this expression, δf and ϕf are the relative
strong and weak phases of the two interfering decays D0 → f as well as D̄0 → f and
Equation (5.78) is only valid if their relative amplitude rf is small. The contributions to
rf and ϕf can generally be expressed in terms of Wilson coefficients for the relevant set of
∆F = 1 operators through the relation [181]

rfe
iϕf ≈

(
C
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, (5.79)

where Nc = 3 is the number of colours and γf are the chirality factors of the final states
f . They are approximately given as

γK ≈ 2m2
K

mcms
, γπ ≈ 2m2

π

mc(md +mu)
. (5.80)
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Figure 5.17 Penguin diagram for NP contributions to ∆Adir
CP.

In Equation (5.79) we have dropped the Wilson coefficients of scalar operators, as they
are absent in our model and their RG running is decoupled from the ∆F = 1 operators
included above. A complete list of the relevant operators that contribute to the CP
asymmetry is given in Reference [181].

In our model, ∆Adir
CP only receives sizeable NP contributions from the gluon penguins

illustrated in Figure 5.17. Similar penguin diagrams from electroweak (EW) interactions
are suppressed by a colour factor 1/Nc as well as the smallness of the hypercharge gauge
coupling and can thus be neglected. This leaves us with the NP contributions21

C̃
(1)
6 =

αs
4π

∑
i

λ̃uiλ̃
∗
ci

1

8m2
ϕ

u(xi) ,

C̃
(1)
3 = C̃

(1)
5 = − 1

Nc
C̃

(1)
4 = − 1

Nc
C̃

(1)
6 ,

C̃
(1)
8g =

∑
i

λ̃uiλ̃
∗
ci

1

4m2
ϕ

v(xi) , (5.81)

with xi = m2
χi/m

2
ϕ. Here we have introduced the loop functions [181]

u(x) = −2− 7x+ 11x2

36(1− x)3
− x3

6(1− x)4
log x ,

v(x) =
1− 5x− 2x2

24(1− x)3
− x2

4(1− x)4
log x . (5.82)

The operator C
(1)p
1 from Equation (5.79) is generated when integrating out the W boson

at the EW scale and is given by

C
(1)p
1 = λp

GF√
2
, (5.83)

where the coupling factor λp is defined as λp = VcpV
∗
up. For decays into K mesons we

here have p = s and for the final state with f = π+π− we have p = d. Following
References [179,181,182] we assume O(1) strong phase differences.

For the numerical analysis we use LO RG running to evolve the Wilson coefficients from
the NP scale down to the meson scale µ ≈ mD0 . The anomalous dimensions are adopted
from Reference [181], and for the running of the quark masses and the strong coupling αs we
again use the RunDec package [175]. The values for the CKM matrix elements are obtained

21At LO we here only find NP contributions to the Wilson coefficients C̃
(1)
i of V + A operators, since

the DM triplet is coupled to right-handed up-type quarks in our model.
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Figure 5.18 ∆Adir
CP in dependence of mϕ in the two freeze-out scenarios. The blue

contours correspond to the ranges covered by our model, as discussed in
the text. The red, orange and yellow bands display the LHCb measurement
with its 1σ and 2σ uncertainty bands.

from the UTfit website [183]. Due to the large uncertainties stemming from the naive QCD
factorisation of the hadronic matrix elements, we follow References [179,181,182] and allow
for an enhancement factor of two for the relative amplitude rf .

Note that the LHCb collaboration recently also measured the single asymmetries ∆Adir
f

of both decays D0 → K+K− as well as D0 → π+π− and found them to have the same
sign [184]. This measurement thus amounts to a U -spin symmetry22 violation [182, 185–
187] that goes beyond the SM estimate at the 1.9σ level [188]. We stress that this anomaly
cannot be explained through the penguin diagram of Figure 5.17 that our model gives rise
to, since this diagram is U -spin preserving and does not distinguish between down or
strange quarks in the final state.

Results

To estimate the size of ∆Adir
CP in our model numerically, we calculate its value within the

viable parameter space found in the combined analysis in Section 5.5. The asymmetry is
calculated for a set of viable points that satisfy all constraints for given masses mϕ and
mχ. This determines the range of possible values for ∆Adir

CP for a tuple (mϕ,mχ) and
we additionally scan over these two masses in order to obtain a global estimate of the
CP asymmetry. When calculating ∆Adir

CP we use the QCD factorisation and effective field
theory approach discussed above and consider the two cases of no enhancement for rf as
well as the case where rf is enhanced by a factor of two.

The results for a fixed DM mass mχ = 350GeV and a varying mediator mass mϕ

are shown for both freeze-out scenarios in Figure 5.18. We here only show the case of
a varying mediator mass, since the DM mass dependence of ∆Adir

CP was found to be less
significant. For the QDF scenario shown in Figure 5.18a the 1/m2

ϕ dependence of the

22The U -spin symmetry is a SU(2) subgroup of the SM’s approximate flavour symmetry under which
the pair (d, s)T is a doublet.
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Wilson coefficients from Equation (5.81) can be seen very well, as increasing masses lead
to decreasing values of ∆Adir

CP. For the case of a non-enhanced rf we find that the 2σ
band of the LHCb measurement can only be reached for masses mϕ ≲ 1000GeV which are
excluded by LHC searches. When including a factor of two in rf however, the experimental
2σ band is reached for masses mϕ ≲ 1600GeV, while values for ∆Adir

CP large enough to be
consistent with the experimental 1σ band can be generated for mediator masses up tomϕ ≃
1400GeV. Since decreasing mediator masses enhance the relevant Wilson coefficients from
Equation (5.81), we find that for masses mϕ ≲ 1200GeV even the experimental central
value can be accommodated in the QDF scenario in the case of an enhanced amplitude
rf .

The results for the SFF scenario are shown in Figure 5.18b and we here find that the
CP asymmetry grows for increasing mediator masses up to the threshold mϕ ≃ 1300GeV,
where ∆Adir

CP starts to decrease for an increasing mϕ. Given the 1/m2
ϕ dependence of the

relevant Wilson coefficients this behaviour is quite counter-intuitive but can be explained
in the context of our findings from Section 5.5. In Figure 5.15 we had found for the SFF
scenario that for mediator masses mϕ ≲ 1400GeV DM can be up- or charm-flavoured
with close to maximum couplings |λ̃u3| or |λ̃c3|. An increasing CP asymmetry for growing
values of mϕ thus indicates that the resulting suppression of ∆Adir

CP is overcompensated
for by the increased couplings. For masses mϕ ≳ 1300GeV the couplings |λ̃u3| or |λ̃c3|
cannot grow any longer, as they are limited to |λ̃i3| ≤ 2.0. At the same time the relic
density constraint requires DM to be top-flavoured, since annihilations into up- or charm-
flavoured final states are p-wave suppressed. Hence, in this regime ∆Adir

CP receives a severe
suppression for increasing values of mϕ as can be seen in Figure 5.18b. We find that in
the SFF scenario values of ∆Adir

CP consistent with the experimental 1σ and 2σ bands can
be accommodated without an enhancement of rf within the ranges 1100GeV ≲ mϕ ≲

1350GeV and 1200GeV ≲ mϕ ≲ 1300GeV, respectively. Allowing the amplitude rf to be
enhanced by a factor of two, one can even reproduce the experimental mean value within
the range mϕ ≲ 1400GeV.

We conclude that in both freeze-out scenarios the large experimental value of ∆Adir
CP

can be reproduced in our model. The QDF scenario here requires the amplitude rf to be
enhanced by a factor of two, while in the SFF scenario values of ∆Adir

CP compatible with its
LHCb measurement at the 1σ level can also be generated without such an enhancement.



Chapter 6

Summary

In this part we have studied a DMFV model of Majorana fermionic DM χ = (χ1, χ2, χ3)
T

coupling to right-handed up-type quarks uR. The interaction between quarks and DM is
parametrised by the new coupling matrix λ and is mediated by the coloured and charged
scalar mediator ϕ. In order to identify viable structures of this coupling matrix, we have
studied constraints from LHC searches, neutral D meson mixing, the observed DM relic
density and direct detection experiments.

In Section 5.1 we have recasted limits obtained from searches for SUSY squarks in the
two final states tops + /ET and jj + /ET to our model. The Majorana nature of χ allows
for additional same-sign pair-production channels of ϕ, leading to a larger exclusion in the
mϕ −mχ plane especially for non-zero DM masses. For mediator masses mϕ ≳ 1000GeV
the constraints from LHC searches can be satisfied by either choosing 0 ≤ D3 ≤ 1.5 and
0 ≤ D1, D2 ≤ 0.5 or by allowing for larger couplings D1,2 while keeping the DM mass mχ

small. We further investigated constraints placed on the model parameters from searches
in same-sign final states and found them to be less restrictive than the searches from
above. Finally, we predicted the size of the same-sign signature tt+ /ET in collisions with√
s = 14TeV to be of order O(fb) and discussed how it can be used in order to gain

insights on the particle nature of DM.
The restrictions that neutral D meson mixing places on the coupling matrix λ have

been reviewed in Section 5.2. Again we found a Majorana specific contribution, consisting
of a one-loop diagram with crossed fermions in the loop. We found that this diagram and
the usual box diagram can interfere destructively, leading to an extension of the viable
parameter space in our model when comparing to the Dirac fermionic case. Numerically,
the D0 − D̄0 mixing constraints can be satisfied for 0 ≤ D1, D2 ≤ 0.5 and free mixing
angles θij , while the above mentioned destructive interference also allows for viable points
outside of this range.

For the analysis of the relic density constraints in Section 5.3 we used the two bench-
mark scenarios for the thermal freeze-out of DM defined in Part I. In the SFF scenario the
thermally averaged cross section for DM annihilations into massless final states is p-wave
suppressed due to an additional u-channel diagram only present for Majorana fermions. In
both scenarios the relic density constraint places a lower bound onmχ for a given mediator
mass. In the SFF scenario the interplay between the p-wave suppression of the annihilation
rate into up- and charm-flavoured final states and it’s DM mass dependence additionally
leads to an upper bound on the DM mass mχ, which is relaxed for large mediator masses
mϕ ≳ 1000GeV.

We looked into constraints from direct detection experiments in Section 5.4. Yet again,
the Majorana nature of χ turned out to have strong implications for the phenomenology,
as the dominant SI contributions to the DM–nucleon scattering cross section are absent.
This causes the direct detection constraints to be very lenient and we found that they are
dominated by the generally less sizeable SD contributions to the overall scattering cross
section.
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In Section 5.5 we then performed a combined analysis where we demanded all the
constraints mentioned above to be satisfied at the same time. For both scenarios the viable
parameter space is mainly determined by the neutral D meson mixing and relic density
constraints. In the SFF scenario the combined analysis allows for discrete bands in each
|λ̃i3| − |λ̃j3| plane, which strongly depend on the NP masses mϕ and mχ in particular.
As the freeze-out of DM depends on all couplings |λ̃ij | in the QDF scenario, the features
in the |λ̃i3| − |λ̃j3| planes are far less pronounced, while the relic density constraint still
reduces to a spherical condition. However, in this case the dependence on the DM and
mediator mass in particular is marginal.

Finally, we investigated if our model can generate sizeable contributions to CP violation
in charm decays in Section 5.6. To this end we estimated the CP asymmetry ∆Adir

CP

in D0 → K+K− as well as D0 → π+π− decays and compared it to its experimental
measurement by the LHCb collaboration. Technically, we adopted an approach where
the relevant hadronic matrix elements are calculated through a naive QCD factorisation
corresponding to the LO term of a heavy charm quark mass expansion. In both freeze-out
scenarios the value of ∆Adir

CP can be enhanced significantly. The QDF scenario requires
the relevant amplitude to be enhanced by a factor of two relative to the naive QCD
factorisation limit, in order to be consistent with the experimental measurement. In the
SFF scenario values of ∆Adir

CP large enough to be compatible with the experimental 1σ
band can also be generated without such an enhancement.

We conclude that changing the fermion nature of DM from Dirac to Majorana leads to
a severely altered phenomenology, as this gives rise to additional Majorana specific contri-
butions to relevant observables. In spite of stronger restrictions from collider searches, we
found these contributions to relax the other constraints, as they either lead to a destructive
interference in the neutral D meson mixing amplitude, a p-wave suppression of the DM
annihilation rate or a suppression of leading SI contributions to DM–nucleon scattering.
One can hence consider the case of Majorana fermionic DM to be phenomenologically
advantageous, as it leads to smaller predicted signals in various experiments and is thus
capable of reconciling the WIMP paradigm with the absence of signal in DM searches so
far. As far as the altered collider phenomenology is concerned, we have seen that the
Majorana nature of χ leads to same-sign signatures that exhibit a significant discovery
potential particularly with respect to the particle nature of DM. The fact that this model
allows for a NP explanation of the large CP violation in charm decays only further moti-
vates up-type flavoured Majorana DM and renders the model even more attractive from
a phenomenological point of view.



Part III

Lepton-Flavoured Scalar Dark Matter I

This part is based on

H. Acaroğlu, P. Agrawal and M. Blanke, Lepton-Flavoured Scalar Dark
Matter in Dark Minimal Flavour Violation, 2211.03809 .

We here study a simplified DMFV model which extends the SM by a complex scalar
DM flavour triplet and a corresponding fermionic charged mediator. The dark particles
are coupled to right-handed charged leptons of the SM through this mediator and the
interaction between DM and the SM is parametrised by a new 3 × 3 complex coupling
matrix λ. Following the DMFV ansatz, this coupling constitutes the only new source of
flavour violation while the lightest of the dark particles is assumed to account for the
observed amount of DM in the Universe. To review the phenomenology of this model we
study constraints from collider searches, lepton flavour violating decays, the observed DM
relic density and direct as well as indirect detection experiments. We further perform a
combined analysis by demanding all of these constraints to be satisfied simultaneously and
find that the strongest restrictions come from lepton flavour violating decays, the observed
DM relic density and direct detection. The interplay between the latter two constraints
moreover renders collider searches irrelevant in further restricting the parameter space of
the model while constraints from indirect detection experiments are generally weak due
to a p-wave suppression of the thermally averaged DM annihilation rate.

https://arxiv.org/abs/2211.03809




Chapter 7

Model Details

Lepton-flavoured DM corresponds to a class of DM models with specific features [190–193].
Most importantly, the absence of a direct coupling to quarks leads to a suppressed signal
in direct detection experiments, since the leading contribution to DM–nucleon scattering
arises at the one-loop level in these models. For the same reason lepton-flavoured DM
models are less constrained by LHC searches. The corresponding mediator particle of
DM can only be produced by a Drell–Yan process and hence suffers from an s-channel
suppression combined with the smallness of the electroweak coupling. As these properties
can potentially ameliorate the tension between the WIMP paradigm and the absence of a
signal in DM detection and production experiments, lepton-flavoured DM constitutes an
interesting and well-motivated class of models. However, choosing DM to interact with
leptons comes at the cost of stronger indirect detection constraints and a richer direct
detection phenomenology due to the direct coupling to electrons and positrons.

This chapter presents the details of a lepton-flavoured DM model realised in the DMFV
framework. We first discuss the general set-up, continue with a prametrisation of the
DM–lepton coupling λ and finally conclude the chapter by reviewing the model’s mass
spectrum.

7.1 Field Content and Interactions

In this DMFV model the SM is extended by the dark complex scalar field ϕ = (ϕ1, ϕ2, ϕ3)
T

associated with an approximate U(3)ϕ flavour symmetry. This flavour triplet couples to
right-handed charged leptons ℓR through the charged vector-like Dirac fermion ψ and its
lightest flavour is assumed to account for the observed amount of DM. The DM field ϕ
is a singlet under the SM gauge group and is represented by (1,1, 0)0 and the vector-like
mediator has the representation (1,1,−1)1/2 where we again use the shorthand notation
(SU(3)C , SU(2)L, U(1)Y )spin. The interaction between DM and the SM is governed by a
new 3 × 3 complex coupling matrix λ, which according to the DMFV hypothesis is the
only new source of flavour-violation. The Lagrangian of this model is given by

L =LSM + (∂µϕ)
†(∂µϕ)−M2

ϕ ϕ
†ϕ+ ψ̄(i /D −mψ)ψ − (λij ℓ̄Riψ ϕj + h.c.)

+ λHϕ ϕ
†ϕH†H + λϕϕ

(
ϕ†ϕ

)2
. (7.1)

We stress that in contrast to the model studied in Part II the DM triplet is associated
with a U(3)ϕ symmetry here, since we chose it to be a complex scalar. Further, according
to the DMFV ansatz the mass matrix Mϕ as well as the quartic couplings λϕϕ and λHϕ
cannot be generic 3 × 3 matrices, as they would each constitute new sources of flavour-
violation otherwise. We hence choose the two quartic couplings to be flavour-universal
and diagonal.23 The mass matrix Mϕ is reviewed in more detail in Section 7.2.

23These couplings could generally also be non-diagonal and flavour-violating within the DMFV frame-
work, if they are expressed in terms of the flavour-violating coupling λ similar to the usual spurion ansatz
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It is important to note that the quartic couplings λϕϕ and λHϕ represent a characteristic
feature of complex scalar DM in DMFV. The Higgs portal coupling λHϕ can generally
lead to relevant contributions to DM–nucleon scattering as well as DM annihilations. The
phenomenology of models, in which DM interacts solely through this channel with the
SM is very well studied and can for example be found in Reference [194]. While the case
of a sizeable Higgs portal and lepton portal coupling at the same time can lead to an
interesting phenomenology, we leave such an analysis for future work and here focus on
the case of negligible Higgs portal couplings λHϕ. We will however comment on possible
implications of λHϕ whenever necessary throughout our analysis. The self-coupling λϕϕ
on the other hand, can induce perturbative DM self-interactions which in turn are subject
to constraints from cosmological observations. For the parameter space that we find to be
viable, the size of these interactions is too small to have an impact on the phenomenology
and we hence also neglect this coupling.

This leaves us with the lepton portal coupling λ that we want to parametrise in the
following. We first decompose it according to a singular value decomposition and write

λ = UDV , (7.2)

where U and V are unitary matrices and D is a diagonal matrix with positive real entries
Di. In this expression one can now remove three complex phases from U by performing
the diagonal rephasing of U and V given in Equation (4.3). Using the flavour symmetry
U(3)ϕ it is then possible to entirely remove the unitary matrix V by transforming the DM
triplet according to ϕ→ V −1ϕ to find

λ = UD . (7.3)

For the matrix U we use the same parametrisation as in Equation (4.9) containing three
mixing angles θij and three complex phases δij .

The coupling matrix λ hence contains nine physical parameters

θ23, θ13, θ12, δ23, δ13, δ12, D1, D2, D3 . (7.4)

When scanning over these parameters numerically we restrict them to the ranges

θij ∈ [0,
π

4
], δij ∈ [0, 2π), Di ∈ [0, 2] , (7.5)

to guarantee perturbativity and to avoid a double-counting of the parameter space.

7.2 Mass Spectrum and Dark Matter Stability

As already mentioned above, the mass matrix Mϕ in the Lagrangian of Equation (7.1)
cannot be generic, since this would violate the DMFV hypothesis. Effects from RG run-
ning as well as the UV completion of the theory however can lead to DMFV preserving
mass corrections for the different dark flavours ϕi. Following the MFV spurion expansion
approach [15] we parametrise these corrections by expanding the mass matrixMϕ in terms
of the coupling matrix λ to find

M2
ϕ,ij = m2

ϕ

{
1+ η

(
λ†λ
)
+O

(
λ4
)}

ij
= m2

ϕ

{
1+ η D2

i +O
(
λ4
)}
δij , (7.6)

where the parameter η depends on the details of the model and its UV completion.

in MFV [15].
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We further follow the convention defined in Section 3.2 and always order and relabel
the fields ϕi in such a way that the mass matrix

M2
ϕ = diag(m2

ϕ1 ,m
2
ϕ2 ,m

2
ϕ3) , (7.7)

satisfies the hierarchy condition mϕ1 > mϕ2 > mϕ3 . In other words, the lightest state of
the flavour triplet ϕ is always ϕ3 and as we assume it to form the DM of the Universe, it
is necessary to ensure its stability. In quark-flavoured Dirac fermionic DMFV models this
stability is guaranteed by an unbroken residual Z3 symmetry implied by the global flavour
symmetry [20–22]. In our case of lepton-flavoured DM however, such a residual symmetry
is not present as all NP fields are SU(3)C singlets [24]. To ensure the stability of ϕ3 we
hence charge the NP fields under a Z2 symmetry which guarantees that they cannot decay
into SM fields only. Choosing the DM mass mϕ3 to be smaller than the mediator mass,
i.e. demanding

mϕ < mψ , (7.8)

together with negative mass corrections with η < 0 then renders ϕ3 stable.





Chapter 8

Phenomenology

In this chapter we review the phenomenology of our model by analysing constraints placed
on its parameter space. We first discuss limits from collider searches, LFV decays, the
observed DM relic density and direct as well as indirect detection experiments individually
and then conclude this chapter by performing a combined analysis.

8.1 Collider Phenomenology

We use this section to analyse the constraints that collider searches place on the parameter
space of our model and particularly on the NP mass parameters mψ and mϕ. While we
focus on LHC searches and signatures that arise from pair-production of the mediator ψ,
we also take into account constraints from LEP experiments by demanding the mediator
mass to satisfy mψ > 100GeV [195,196].

LHC Signatures from Mediator Pair-Production

The mediator ψ is pair-produced through the annihilation of a quark and antiquark from
the initial state protons into an off-shell γ or Z that in turn decays into the pair ψψ̄. This
Drell–Yan process is shown in Figure 8.1a and together with the subsequent decay of the
mediator pair from Figure 8.1b it results in the final state ℓiℓ̄jϕkϕ

†
l . Here, the indices i, j, k

and l are flavour indices and the Z2 symmetry discussed in the last section ensures that ψ
does not decay into SM particles only. Thus, we find the relevant process at the LHC to
be

pp → ψψ̄ → ℓiℓ̄jϕkϕ
†
l . (8.1)

Choosing the flavour indices of the two charged leptons to be equal in this process results
in the same-flavour signatures ℓiℓ̄i+ /ET while the case i ̸= j gives rise to the mixed-flavour
signatures ℓiℓ̄j + /ET

24.
In non-flavoured DM models (like e.g. SUSY models with neutralino DM) the latter

signatures are correlated with the strongly constrained LFV decays ℓi → ℓjγ and LHC
searches thus typically neglect them. In flavoured DM models however, mixed-flavour final
states can be produced at a sizeable rate without flavour violation as they are proportional
to the diagonal elements of the coupling matrix that parametrises interactions between
DM and the SM. Moreover, flavour violation remains undetected at the LHC for such
models, since the dark particles carry away the flavour quantum number. This is similar
to the pair-production ofW bosons in the SM subsequently decaying into a charged lepton
and a neutrino each, where the latter carries away the flavour quantum number as well.
We return to these signatures when performing the combined analysis in Section 8.5.

In this section we focus on the same-flavour final states ℓiℓ̄i+ /ET and use experimental
limits on them in order to constrain our model. The two signatures eē+ /ET and µµ̄+ /ET are

24We here ignore possible subsequent decays of the heavy dark flavours as they only yield soft and
therefore difficult to detect decay products due to the small mass splittings between different dark flavours.
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Figure 8.1 Feynman diagrams of ψ pair-production and its subsequent decay.

constrained by searches for supersymmetric scalar leptons (sleptons) of the first and second
generation while the signature τ τ̄+ /ET is constrained by searches for supersymmetric scalar
taus (staus). Note however, that the kinematics of the SUSY models the experimental
limits are obtained for could in principle be different from our case due to distinct spin-
statistics. In our model the mediator ψ is a fermion that decays into a scalar and a
fermion, while in SUSY models sleptons are scalars that decay into two fermions. Since
the cross section of scalars produced in a Drell–Yan process is smaller than for fermions we
explicitly implement the pair-production of ψ in our analysis. However, we do not expect
the efficiencies of the relevant analyses to strongly depend on the kinematics. We hence
assume that they stay the same for our case and compare our signal cross section directly
with the experimental upper limits obtained for the SUSY models. In what follows we use
the shorthand notation ℓℓ̄+ /ET for the joint signatures eē+ /ET and µµ̄+ /ET .

Recast of LHC Limits

Relevant experimental searches have been carried out for both signatures at centre-of-mass
energies of 13TeV [197–200] and 8TeV [201]. For the signature ℓℓ̄+ /ET the most stringent
limits are provided by the CMS search of Reference [197], which uses the full LHC run 2
data set corresponding to an integrated luminosity of 137 fb−1. In case of the signature
τ τ̄ + /ET the leading limits are provided by the ATLAS search of Reference [198] again
based on the full LHC run 2 data set.

In order to straightforwardly apply these limits to our model, we first implement the
Lagrangian of Equation (7.1) in FeynRules [147], generate a UFO file [148] and calculate
the LO signal cross section σ×Br for both signatures separately in MadGraph 5 [149]. We
then constrain our model by demanding that the cross section for each signature is smaller
than the respective upper limit. When implementing the model into FeynRules we follow
References [20–22] and our analysis in Section 5.1 in neglecting the mass splittings from
Equation (7.6) and assuming a diagonal coupling matrix λ, i.e. we set the mixing angles
θij and phases δij to zero. Small mass splittings only lead to soft and therefore hard
to detect decay products of the heavy dark particles, while non-zero mixing angles tend
to decrease the branching ratios of the relevant flavour-conserving final states. As this
in turn also reduces the relevant signal cross sections and as we are primarily interested
in the restrictions that the above mentioned searches place on the NP mass parameters
mψ and mϕ, we set the mixing angles and phases to zero. In this section we further
assume the couplings D1 and D2 to be degenerate, i.e. we set D1 = D2 = Dℓ in order to
straightforwardly apply the limits from the searches mentioned above.

The resulting exclusion in the mass plane mψ−mϕ is shown in Figure 8.2. For searches
in the final state ℓℓ̄+ /ET shown in Figure 8.2a we find that the excluded area shrinks for
growing values of D3. This is because increasing values of D3 reduce the branching ratio
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Figure 8.2 LHC constraints on the final states ℓℓ̄ + /ET and τ τ̄ + /ET . The coloured
areas are excluded.

of the decay ψ → ℓϕ† while they increase the rate of the decay ψ → τϕ†. This in turn
reduces the signal cross section which is why we find the largest excluded area for the
smallest value of D3. For a maximal coupling Dℓ = 2.0 to electrons as well as muons and
a small coupling D3 = 0.5 to taus (blue line) the constraints either enforce mψ ≳ 750GeV
while mϕ can be chosen freely or mψ ≳ 400GeV and mϕ ≳ 400GeV. Smaller values of D3

only marginally increase the excluded area.
For the signature τ τ̄ + /ET we find that the resulting restrictions on the masses mψ

and mϕ are much weaker. In this case the excluded area is largest if the coupling Dℓ to
electrons and muons is small compared to the coupling D3 to taus. The reason for this
behaviour again is the increased branching ratio of the final state with taus for decreasing
values of Dℓ. We further find that the relevant branching ratio drops much more quickly
and the excluded area shrinks much faster in this case for increasing values of Dℓ such that
there is close to no exclusion at all in the mψ −mϕ plane for near-degenerate couplings
Dℓ ≈ D3 (green line). This is due to the multiplicity of the final state ℓℓ̄+ /ET , as growing
values of Dℓ increase both decay rates ψ → eϕ† as well as ψ → µϕ†. For the maximally
constrained case with D3 = 2.0 and Dℓ = 0.5 we find that the limits can be satisfied by
choosing either mψ ≳ 500GeV and a free mϕ or mψ ≳ 200GeV and mϕ ≳ 200GeV. Here
again, smaller values of Dℓ only yield a marginally larger exclusion.

8.2 Flavour Physics Phenomenology

In DMFV, the unrestricted structure of the coupling λ can generally lead to large NP effects
in flavour observables. For lepton-flavoured DM the relevant processes are the LFV decays
ℓi → ℓjγ which are given rise to by FCNCs induced by the NP interaction Lagrangian
in Equation (7.1). Identifying flavour-safe scenarios thus puts stringent constraints on
the parameter space of the model which we want to discuss in this section. We begin by
providing analytic expressions for the NP contributions25 to the LFV decays and conclude

25Note that these decays are forbidden in the SM.
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φk

Figure 8.3 Feynman diagram for the LFV decay ℓi → ℓjγ. The contribution from the
photon coupling to one of the SM leptons is not shown.

the section with a numerical analysis of the constraints.

Lepton Flavour Violating Decays

The LO contribution to the LFV decays ℓi → ℓjγ consists of the one-loop diagram shown in
Figure 8.3 and is governed by the off-diagonal elements of the coupling matrix λ. Following
Reference [202] we express the amplitude of this process according to

Mℓiℓjγ =
e

2mℓi

ϵ∗αūℓj

[
iσβαq

β
(
aRℓiℓjγPL + aLℓiℓjγPR

)]
uℓi , (8.2)

where we have used σβα = i[γα, γβ]/2. In this expression ϵα is the photon polarisation
vector and PR/L = (1 ± γ5)/2 are projection operators. We adopt the convention from
References [203, 204] according to which the superscript of the coefficients aℓiℓjγ refers to
the chirality of the final state lepton. For a generic NP interaction26 of the form

Lint = cRij ℓ̄Riψϕj + cLij ℓ̄Liψϕj + h.c. , (8.3)

with corresponding mass parameters mψ and mϕi the expressions of the coefficients a
R/L
ℓiℓjγ

are given by [202,204]

aRℓiℓjγ =
mℓi

16π2

∑
k

(
mℓi

12m2
ϕk

cR∗
ik c

R
jkF (xk) +

mψ

3m2
ϕk

cL∗ik c
R
jkG(xk)

)
, (8.4)

aLℓiℓjγ =
mℓi

16π2

∑
k

(
mℓi

12m2
ϕk

cL∗ik c
L
jkF (xk) +

mψ

3m2
ϕk

cR∗
ik c

L
jkG(xk)

)
, (8.5)

with xk = m2
ψ/m

2
ϕk
. Here, ψ is a Dirac fermion with electric charge Qψ = −1, the ϕi are

scalars and the loop functions F and G are given as [202,204]

F (x) =
2

(1− x)4
[
2 + 3x− 6x2 + x3 + 6x log x

]
, (8.6)

G(x) = − 3

2(1− x)3
[
3− 4x+ x2 + 2 log x

]
. (8.7)

The branching ratios of the LFV decays are then given by

BR(ℓi → ℓjγ) =
e2

64π

mℓi

Γℓi

(
|aRℓiℓjγ |

2 + |aLℓiℓjγ |
2
)
, (8.8)

where Γℓi denotes the total decay width of the charged lepton ℓi.

26Such an interaction Lagrangian is only allowed if the fields ψ or ϕi are linear combinations of respective
gauge eigenstates with different quantum numbers. Otherwise, either of the couplings cL or cR has to be
zero in order to not violate the gauge symmetry of the SM.
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Since the DM flavour triplet ϕ only couples to right-handed charged leptons in our
model, contributions with a chirality flip in the loop as well as purely left-handed contri-
butions are absent. Hence, the expressions from above reduce to

aRℓiℓjγ =
m2
ℓi

192π2

∑
k

λ∗ikλjk
m2
ϕk

F (xk) , (8.9)

aLℓiℓjγ = 0 , (8.10)

for which the branching ratios in turn read

BR(ℓi → ℓjγ) =
e2

64π

mℓi

Γℓi
|aRℓiℓjγ |

2 . (8.11)

Constraints from LFV Decays

For the numerical analysis of the constraints from LFV decays we calculate the branching
ratios from Equation (8.11) for randomly generated points in the parameter space and
compare them with their respective upper limits. The latter are given at 90% C.L. and
read [205–207]

BR(µ→ eγ)max = 4.2× 10−13 , (8.12)

BR(τ → eγ)max = 3.3× 10−8 , (8.13)

BR(τ → µγ)max = 4.2× 10−8 . (8.14)

The values of the lepton masses mℓi and the decay widths Γℓi are obtained from Refer-
ence [158]. We neglect the mass corrections from Section 7.2 when calculating the branch-
ing ratios, since these only lead to higher-order DMFV corrections that we have checked
to be negligible here. This further simplifies Equation (8.9) and we find

aRℓiℓjγ =
m2
ℓi

192π2

(
λλ†
)
ji

m2
ϕ

F (x) . (8.15)

Using this expression one can already estimate the maximally allowed size of the off-
diagonal elements of λλ† in order to not violate the limits from above. In the limit
mψ ≫ mϕ we for instance find for the most stringently constrained decay µ→ eγ that the
coupling matrix has to satisfy √

| (λλ†)µe | ≲
mψ

15TeV
, (8.16)

in order to comply with the experimental limit. For NP scales mψ of order O(TeV) this
condition reduces to √

| (λλ†)µe | ∼ O(0.01− 0.1) . (8.17)

The results of the full analysis are illustrated in Figure 8.4 where we show the viable
mixing angles θij in dependence of the splittings ∆ij = |Di − Dj |. As expected, we find
the LFV decay limits to mainly place restrictions on the mixing angle θ12 while θ13 and
θ23 can be chosen freely even for large splittings ∆ij . We further find that small values of
∆ij generally suppress the LFV decays as all three mixing angles can be chosen freely in
the limit of vanishing splittings ∆ij . This is because the product λλ† becomes diagonal in
the degeneracy limit Di = D0, i.e.

λλ† = D2
01 . (8.18)
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Figure 8.4 Constraints from LFV decays on the mixing angles θij in dependence of the
splittings ∆ij = |Di −Dj | for mψ = 1200GeV and two choices of mϕ.

We stress that in contrast to the simple estimate from Equation (8.16) the LFV constraints
actually carry a DM mass dependence as can be seen in Figure 8.4. For a close-to-
degenerate mass spectrum with mψ ≈ mϕ we find larger viable values of ∆12 with a free
corresponding mixing angle θ12. In total we conclude that the constraints from LFV decays
can either be satisfied by choosing the couplings D1 and D2 to be close-to-degenerate or
by suppressing the mixing angle θ12 and allowing for arbitrary couplings to electrons and
muons.

Before concluding this section we want to also comment on constraints from mea-
surements of leptonic dipole moments. Generally, lepton-flavoured DM can lead to NP
contributions to the electric and magnetic dipole moments of charged leptons through the
diagrams shown in Figure 8.3 with i = j. We find contributions to the electric dipole
moment (EDM) dℓ to be absent in our case since they are only induced by CP-violating
interactions which the NP Lagrangian from Equation (7.1) does not contain due to its
chiral structure. While our model can in principle generate contributions to the magnetic
dipole moment (MDM) aℓ, sizeable effects can only be induced for mediator masses of
order O(100GeV) which are excluded by the LHC searches discussed in Section 8.1. This
again is due to the chiral interaction between DM and the SM because of which a chiral en-
hancement of aℓ is not possible in our model. Thus, it is neither capable of explaining the
long-standing tension between the theoretical prediction of the muon MDM aµ [27] and its
experimental measurement [26,208]27, nor do the MDMs [26,209,210] or EDMs [211–213]
of charged leptons place relevant constraints on its parameter space.

8.3 Dark Matter Relic Density

In this section we examine the constraints placed on the parameter space of our model
by the observed DM relic density. Again, we restrict the analysis to the two thermal

27Note that this statement also holds true for the case mψ ≈ mϕ although this regime in the NP mass
plane is not excluded by the searches from Section 8.1. In the combined analysis of Section 8.5 we will
find that the interplay between the relic density and direct detection constraints excludes small mediator
masses necessary to generate sizeable effects in aµ in general.
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freeze-out scenarios discussed in Section 3.2. We first define these scenarios numerically
and then continue with a review of relevant contributions to the thermally averaged anni-
hilation cross section. The section is concluded by a numerical analysis of the relic density
constraints.

DM Annihilations and Thermal Freeze-Out

Both benchmark scenarios that we identified in Section 3.2 for the thermal freeze-out of
DM are defined through the mass splittings between the heavier and the lightest dark
particle given as

∆mi3 =
mϕi

mϕ3

− 1 , (8.19)

with i ∈ {1, 2}. In terms of these splittings we define them as follows:

� The QDF scenario is defined through negligible mass splittings and hence we de-
mand ∆mi3 to be smaller than 1% in this case. To suppress the corrections in
Equation (7.6) we set η = −0.01. Smaller absolute values are not justified as the
mass corrections are at least generated through one-loop RG running effects.

� For the SFF scenario we require ∆mi3 to satisfy

10% < ∆mi3 < 30% , (8.20)

in order have significant splittings but at the same time guarantee that the spurion
expansion of the mass matrix M2

ϕ converges. To this end we set η = −0.075 in
Equation (7.6) which we have tested to lead to maximal splittings of ∆mi3 ≃ 30%.

We further assume the thermal freeze-out of DM to take place at mϕ3/Tf ≈ 20 in both
scenarios.

In Figure 8.5 we have gathered possible annihilation processes of the NP fields. When
calculating the thermally averaged annihilation rate we neglect coannihilations between
DM and the mediator as well as annihilations of the mediator itself, shown in Figure 8.5b
and 8.5c, respectively. Coannihilations are suppressed by the smallness of the fine structure
constant αem and additionally receive a Boltzmann suppression by the factor

k = e
−
mψ−mϕ3

Tf ≃ e
−20

mψ−mϕ3
mϕ3 , (8.21)

while the annihilation of a mediator pair is even further suppressed by k2. Hence, both
processes only lead to non-negligible contributions in the close-to-degenerate case mϕ ≈
mψ. Other possible contributions to the annihilation rate are related to the Higgs portal
coupling λHϕ. This coupling governs the annihilation of two DM particles into a pair of
Higgs bosons which is proportional to λ2Hϕ. It also parametrises DM annihilations via a
virtual Higgs boson in the s-channel which decays into SM fields. The process with a top–
antitop pair in the final state is proportional to λ2Hϕy

2
t and can thus become sizeable due

to the large top Yukawa coupling yt. However, in this analysis we are primarily interested
in the structure of the flavour-violating coupling λ and hence we do not constrain λHϕ.
We use this freedom and assume that both Higgs portal annihilation processes can always
be neglected through the appropriate choice of λHϕ.

The only remaining contribution to the thermally averaged annihilation rate then is
related to the t-channel DM annihilation process shown in Figure 8.5a. Evaluating the
diagram we find

|M |2 =
∑
ijkl

|λik|2|λjl|2
(t−m2

ψ)
2

[(
m2
ϕj

−m2
ℓl
− t
) (
t+m2

ℓk
−m2

ϕi

)
− t
(
s−m2

ℓk
−m2

ℓl

)]
, (8.22)
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Figure 8.5 Representative Feynman diagrams for annihilations of the new particles into
SM matter.

for the flavour-averaged squared amplitude |M |2. The Mandelstam variables are defined
as s = (p1 + p2)

2 and t = (p1 − p3)
2, and we sum over the flavour indices i, j, k and l.

Using this amplitude together with the techniques provided by References [121, 123]
we calculate the coefficients a and b of the low-velocity expansion from Equation (3.12)
given as

⟨σv⟩eff =
fsc
2

[
a+ b ⟨v2⟩+O

(
⟨v4⟩

)]
. (8.23)

Here we have used fnat = 1/2 since DM is a complex scalar in this model. The average
squared velocity reads ⟨v2⟩ = 6Tf/mϕ3 ≃ 0.3 and the factor fsc depends on the freeze-out
scenario. In the limit of vanishing final state masses mℓi = 0 and equal initial state masses
mϕi = mϕ the coefficients read28

a = 0 , (8.24)

b =
∑
ij

∑
kl

|λik|2|λjl|2
48πm2

ψ

µ

(1 + µ)2
, (8.25)

with µ = m2
ϕ/m

2
ψ. Therefore, we find that in the limit of negligible final state masses—

well justified by the smallness of the lepton masses—the annihilation rate suffers from a
p-wave suppression as the s-wave coefficient a vanishes. This suppression is due to the fact
that the annihilation of two scalars in the s-wave corresponds to a J = 0 state. Angular
momentum conservation implies that the final state must also have J = 0, which in turn
involves both lepton chiralities. Since the Lagrangian from Equation (7.1) involves a chiral
interaction, the s-wave annihilation vanishes in the limit mℓi = 0. Nevertheless, in the
numerical analysis we use the expressions for a and b including the full final state mass
dependence which can be found in Appendix B.1.

In Equation (8.25) the DM mass mϕ needs to be understood as mϕ3 for the SFF
scenario. Moreover, using equal initial state masses is also justified for the QDF scenario,
since the DM masses mϕi are only split by at most one percent in this case which we
have checked to be negligible. The aforementioned approximation of using zero final state
masses is also well justified since we generally consider mτ ≪ mϕ.

Constraints from the DM Relic Density

In the numerical analysis we calculate the thermally averaged annihilation rate using the
partial wave expansion from above and compare it with the value necessary to yield the
correct relic abundance. For DM masses mϕ3 > 10GeV this rate is found to be [162,163]

⟨σv⟩expeff = 2.2× 10−26 cm3 s−1 , (8.26)

28Remember that the sum over initial state flavours i and j is absent for the SFF scenario, as in this
case only ϕ3 contributes to the thermal freeze-out of DM.
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(a) Viable values of D1 and D2 with a varying
mϕ and mψ = 800GeV for τ -flavoured DM
in the QDF scenario.

(b) Viable masses mψ and mϕ3
in the SFF sce-

nario.

Figure 8.6 Constraints from the observed DM relic density on the model parameters.

and we demand the calculated annihilation rates to comply with this value within a 10%
tolerance range. For the lepton masses mℓi we use the values given in Reference [158].

The results are gathered in Figure 8.6. For the QDF scenario the p-wave coefficient b
in the limit mϕ ≫ mℓi reads

b =
1

48π

m2
ϕ

(m2
ϕ +m2

ψ)
2
(D2

1 +D2
2 +D2

3)
2 , (8.27)

where we have performed the sum over initial and final state flavours yielding∑
ij

∑
kl

|λik|2|λjl|2 = Tr
[
λ†λ
]2

= Tr
[
D2
]2
. (8.28)

Hence, the relic density limit reduces to a condition on the couplings Di which corresponds
to the shell of a three-dimensional sphere. This sphere is then further deformed by the
restrictions that the mass splitting condition of the QDF scenario places on the couplings
Di which in total results in the contours illustrated in Figure 8.6a. We further find that the
m2
ϕ dependence of b or ⟨σv⟩eff, respectively, requires larger couplings for decreasing DM

masses mϕ. Most importantly, the p-wave suppression of the annihilation rate requires
large couplings Di ≳ 1.0 for viable mediator masses mψ ≳ 800GeV in order to reproduce
the correct relic density.

With respect to the masses of the NP fields, we find that the upper limitDi ≤ 2.0 causes
a mediator mass dependent lower limit on the DM mass mϕ since the annihilation rate
depends on the sum of D4

i m
2
ϕ/m

4
ψ. This lower limit can be seen explicitly in Figure 8.6b

for the SFF scenario. In the latter scenario there also exists an upper limit on the DM
mass mϕ, since it demands one of the masses

mϕi = mϕ

√
1− |η|D2

j , (8.29)
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where the indices i and j are determined by the hierarchy mϕ1 > mϕ2 > mϕ3 , to be
significantly split from the other two. This in turn means that in the SFF scenario one
coupling Dmax = max(D1, D2, D3) is always large and needs to satisfy Dmax ≳ 1.5 in order
to generate mass splittings of at least 10%. Hence, for sufficiently small mediator masses
mψ the DM mass mϕ may not grow arbitrarily large as this would result in a too large
annihilation rate. For mediator masses mψ ≳ 800GeV however, the annihilation rate is
sufficiently suppressed by the mediator mass such that values for mϕ3 up to the equal mass
threshold mϕ3 = mψ become viable.

8.4 Dark Matter Detection Experiments

Phenomenologically, lepton-flavoured DM models are particularly interesting due to the
absence of tree-level contributions to DM–nucleon scattering. This advantage however
comes at the cost of potentially more stringent constraints from indirect detection ex-
periments, as in these models DM is directly coupled to positrons. To shed light on how
strongly the absence of signal in DM detection experiments restricts the parameter space of
our model we examine both direct as well as indirect detection constraints in this section.

Relevant Processes for Direct Detection

Despite the above mentioned one-loop suppression of leading contributions to the DM–
nucleon scattering cross section, coupling DM to leptons generally leads to a very rich
direct detection phenomenology. The reason is the direct coupling of DM to electrons,
which renders these models subject to constraints on a variety of interactions relevant for
the direct detection of DM. The latter interactions can be summarised as follows [214]:

a) DM–nucleon scattering : In this process the DM particle scatters off nuclei, which
results in nuclear recoil signals. For lepton-flavoured DM the leading contribution is
generated at the one-loop level through diagrams like the one shown in Figure 8.7a.

b) DM–electron scattering : Scatterings between DM and electrons can either take place
elastically or inelastically. In the latter case DM scatters off bound electrons in an
atom, which ionises the atom as the electron absorbs the whole recoil and is kicked
out of it. On the other hand, elastic scatterings between DM and free electrons in
the early Universe inhibit structure formation and thus suppress CMB anisotropies.
This process is shown in Figure 8.7b.

c) DM–atom scattering : In this process DM scatters off bound electrons such that the
overall recoil is absorbed by the atom the electron is bound in. This again can
take place either elastically, where the electron wave-function remains the same or
inelastically, where the scattering excites the electron to an outer shell.

Among this variety of interactions we find scatterings between DM and nuclei to be the
most relevant ones for direct detection. This is because comparisons between the event
rates of DM–nucleon scattering, inelastic DM–electron scattering and DM–atom scatter-
ing show that the former process strongly dominates over the latter two [214]. In both
processes, inelastic DM–electron scattering and DM–atom scattering, the event rate suf-
fers from a severe wave-function suppression as the electron has to carry a non-negligible
momentum pe ∼ O(MeV) in order to generate sizeable signals. Hence, these processes are
negligible compared to DM–nucleon scattering. For elastic DM–electron scattering we find
that it only puts constraints on our model for sub-MeV DM as the limits carry a strong
DM mass dependence [215].
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Figure 8.7 Representative Feynman diagrams of relevant interactions for direct detec-
tion signals. Note that for the photon penguin there is also a diagram where
the photon is emitted by the mediator ψ.

Note that aside the one-loop penguin shown in Figure 8.7a, relevant contributions to
the DM–nucleon scattering rate can also be induced by Higgs portal interactions. The
quartic coupling λHϕ gives rise to a tree-level scattering diagram in which a Higgs boson
is exchanged in the t-channel. This process is proportional to λ2Hϕy

2
N , where yN ≃ 0.3 is

the Higgs–nucleon coupling [194]29. Following our arguments from Section 7.1 and 8.3 we
neglect these contributions as we are primarily interested in the structure of the flavour-
violating coupling matrix λ. Moreover, there also exists a Z boson mediated version of
the penguin diagram in Figure 8.7a, in which DM couples to the quark vector current of
the nucleon. This process is suppressed by m2

ℓi
/m2

ψ where mℓi is the mass of the lepton in
the loop and can thus be safely neglected [193].

In summary, this leaves us with the one-loop photon penguin shown in Figure 8.7a.
This interaction is induced by the charge-radius operator

Oγ = ∂µϕ∂νϕ†Fµν , (8.30)

and in the limit of negligible lepton masses mℓi ≪ mψ its matched matrix element fγ is
given by [190]

fγ = −
∑
i

e |λi3|2
16π2m2

ψ

[
1 +

2

3
log

(
m2
ℓi

m2
ψ

)]
. (8.31)

In this expression the electron mass me needs to be replaced by the momentum transfer
|q⃗| = O(3− 10)MeV for the case i = 1, i.e. for an electron–positron pair in the loop [190].
The averaged SI DM–nucleon scattering cross section is given by

σSI =
Z2 e2 µ2

8π A2
f2γ , (8.32)

where Z and A are the atomic and mass number of the element that the nucleons constitute
and µ is the reduced mass of the DM–nucleon system defined as µ = mNmϕ3/(mN+mϕ3).

Constraints from Direct Detection

In our numerical analysis of the direct detection constraints we generate random points
in the parameter space of our model, calculate the DM–nucleon scattering cross section
through Equation (8.32) and compare it with its experimental upper limit. The latter

29Note that even without a direct coupling of the DM fields to the Higgs boson an effective coupling
is generated at the one-loop level through the same diagram as in Figure 8.7a with a Higgs boson instead
of a photon. These contributions are proportional to y2ℓiy

2
N |λi3|4, and hence they are negligible due to the

smallness of the lepton Yukawa couplings yℓi .
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(a) QDF scenario (b) SFF scenario

Figure 8.8 Direct detection bounds on the couplings D1 and D3. The mediator mass is
fixed to mψ = 1200GeV and the tree-level DM mass parameter mϕ varies.

is given at 90% C.L. and is obtained from the XENON1T experiment [177]. The values
of the lepton masses are taken from Reference [158] and we use |q⃗| = 10MeV for the
momentum transfer mentioned above. The atomic and mass numbers of Xenon read
Z = 54 and A = 131. Note that we ignore the impact of Xenon isotopes on the DM–
nucleon scattering rate here, since it was found to be small in Reference [21]. The results
are shown in Figure 8.8.

We find that in both scenarios τ -flavoured DM, i.e. points with D3 > D1,2 generally
allow for larger couplings Di than e- or µ-flavoured DM. The reason is the logarithmic mℓi

dependence of the DM–nucleon scattering cross section. As can be seen in Equation (8.31),
the amplitude fγ grows for a decreasing mass of the lepton in the loop. Since the tau mass
mτ is significantly larger than the muon mass mµ or the momentum transfer |q⃗|, we find
the largest restrictions to be placed on D1 and D2. As far as the NP masses are concerned,
we find that in both scenarios increasing DM masses mϕ3 allow for larger couplings Di.
While being suppressed by two powers of the mediator massmψ, the amplitude fγ however
does not depend on the DM mass mϕ. This parameter only appears in the reduced mass µ
for which we find µ ≈ mN since we generally consider mϕ3 ≫ mN . The above mentioned
mϕ dependence of the viable points in Figure 8.8 is hence solely due to the XENON1T
upper limit itself, which reaches its minimum for mϕ3 ≃ 30GeV and increases with a
growing DM mass.

In the QDF scenario shown in Figure 8.8a the points above the diagonal correspond to
either e- or µ-flavoured DM while the points below the diagonal represent either µ- or τ -
flavoured DM. For the latter case we find the overall viable coupling size to be the largest,
as D3 may grow as large as its maximal value D3 = 2.0 for a DM mass of mϕ = 500GeV
(green points). Viable points in the D3 − D1 plane are shown for the SFF scenario in
Figure 8.8b and here the points with a large D3 or D1 represent τ -flavoured DM or e-
flavoured DM, respectively. The points close to the origin with D1,3 ≲ 1.0 correspond
to µ-flavoured DM. Since the SFF scenario demands one coupling Di to be large, e- and
µ-flavoured DM are not viable for small DM masses. This is due to the interplay between
the above mentioned logarithmic lepton mass dependence of the DM–nucleon scattering
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Figure 8.9 Representative Feynman diagrams for relevant higher-order annihilation pro-
cesses.

rate and the DM mass dependence of the experimental upper limit. This can be seen
explicitly in Figure 8.8b as there are no viable points with e- or µ-flavoured DM for small
masses mϕ = 200GeV (blue points).

Relevant Processes for Indirect Detection

For lepton-flavoured DM the direct coupling of the DM triplet to electrons and positrons
together with the increased number of annihilation channels with a positron in the final
state can generally lead to sizeable electron-positron fluxes. Hence, depending on the model
details, they can be subject to restrictive constraints from indirect detection experiments.
However, for our case of complex scalar DM coupling to SM leptons this is not necessarily
the case. As discussed in Section 8.3, in our model the DM annihilation rate is p-wave
suppressed which translates into a severe velocity suppression of ⟨σv⟩eff since the DM halo
velocity in the Milky Way today is given by ⟨v2⟩ ≃ 10−6.

In order to lift this suppression and provide a proper analysis of the restrictions that
indirect detection experiments place on the parameter space of our model, we hence include
the higher order diagrams shown in Figure 8.9 into our calculation of the DM annihilation
rate. The process of two dark particles ϕ3 annihilating into the three-body final state ℓiℓ̄jγ

is shown in Figure 8.9a and lifts the p-wave suppression of the process ϕ3ϕ
†
3 → ℓiℓ̄j . On the

other hand, the one-loop process of two DM particles annihilating into two photons shown
in Figure 8.9b gives comparable contributions and is particularly relevant for searches in
γ-ray line spectra. Note that neither of these processes is relevant for the thermal freeze-
out of DM. Annihilations into the three-body final state are parametrically suppressed by
αem/π ≃ 10−3 while one-loop annihilations into photons are even further suppressed by
α2
em/(4π)

2 ≃ 10−7. In contrast, the p-wave suppression of tree-level DM annihilations only
translates into a much less severe velocity suppression by ⟨v2⟩ ≃ 0.3 in the early Universe.

In the limit of vanishing lepton masses mℓi → 0, the annihilation rates ⟨σv⟩ℓℓ̄γ and
⟨σv⟩γγ of both processes shown in Figure 8.9 read [216,217]

⟨σv⟩ℓℓ̄γ =
αem

32π2m2
ϕ3

∑
ij

|λi3|2|λj3|2A(µ) , (8.33)

⟨σv⟩γγ =
α2
em

64π3m2
ϕ3

(∑
i

|λi3|2
)2

|B(µ)|2 . (8.34)

The functions A and B are defined as

A(µ) = (µ+ 1)

(
π2

6
− log2

[
µ+ 1

2µ

]
− 2Li2

[
µ+ 1

2µ

])
+

4µ+ 3

µ+ 1
+

4µ2 − 3µ− 1

2µ
log

[
µ− 1

µ+ 1

]
, (8.35)
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B(µ) = 2− 2 log

[
1− 1

µ

]
− 2µ arcsin

[
1√
µ

]2
, (8.36)

where µ = m2
ψ/m

2
ϕ3

and Li2(z) is the dilogarithm. The rate ⟨σv⟩ℓℓ̄ for the tree-level
annihilation into a pair of leptons ℓ is the same as the thermal annihilation cross section
for the SFF scenario discussed in Section 8.3 without the sum over final state flavours.

Constraints from Indirect Detection

In the numerical analysis we use limits obtained by the AMS [218], Fermi–LAT [219]
and H.E.S.S. [220] experiments in order to constrain our model. Reference [221] has
calculated an upper limit ⟨σv⟩max

ē for DM annihilations into an electron–positron pair
with a branching ratio of 100% based on AMS-02 measurements of the positron flux. The
latter signal generally includes both prompt as well as secondary positrons from decays
of muons and taus. However, since the energy spectrum is shifted towards lower energies
for secondary positrons and since they additionally suffer from a smeared momentum
distribution, the signal is mainly dominated by prompt positrons. To constrain our model
we hence sum over all annihilation channels with a positron in the final state and compare
the resulting annihilation rate with the experimental upper limit. Here we also include the
radiative corrections of Figure 8.9a since we expect the shift in the DM mass dependence
for the three-body final state compared to the two-body final state for which the limits
from Reference [221] are calculated to be negligible. In summary, we demand that the
annihilation rate

⟨σv⟩ē =
∑
ℓ

(⟨σv⟩ℓē + ⟨σv⟩ℓēγ) , (8.37)

is smaller than the experimental upper limit ⟨σv⟩max
ē .

Using measurements of the γ-ray continuum spectrum measured by the Fermi–LAT
satellite, Reference [222] provides a respective upper limit ⟨σv⟩max

τ for DM annihilations
into a tau–antitau pair. Similar to the positron flux being most sensitive to prompt
positrons, this signal is mainly dominated by taus or antitaus in the final state as they
produce significantly more photons through subsequent decays than electrons and muons.
We thus calculate the total annihilation rate into final states with at least one tau or
antitau, i.e. we calculate the rate

⟨σv⟩τ = ⟨σv⟩τ τ̄ + ⟨σv⟩τ τ̄γ +
1

2

∑
ℓ=e,µ

(
⟨σv⟩ℓτ̄ + ⟨σv⟩ℓ̄τ + ⟨σv⟩ℓτ̄γ + ⟨σv⟩ℓ̄τγ

)
, (8.38)

and compare it with the upper limit ⟨σv⟩max
τ . In this expression we have included annihi-

lations into the three-body final state for the same reason as above. The factor of 1/2 for
final states with a single tau or antitau is due to the fact that the respective upper limit
was derived for a tau–antitau pair in the final state.

Finally, we also constrain our model based on searches in the γ-ray line spectrum,
since both processes of Figure 8.9 exhibit a line-like photon energy spectrum. The energy
distribution of the one-loop process induced by the box diagram of Figure 8.9b peaks at
Eγ = mϕ3 . In spite of being a three-body process, the diagram depicted in Figure 8.9a on
the other hand produces a line-like signal. The reason is that this process is dominated
by internal bremsstrahlung photons emitted from the virtual ψ which exhibit a sharply
peaked energy spectrum just below the DM mass [223]. To constrain our model we use
limits obtained by Reference [223], which based on H.E.S.S. and Fermi–LAT data has
calculated an upper limit ⟨σv⟩max

γ on the annihilation rate

⟨σv⟩γ =
∑
ℓ

⟨σv⟩ℓℓ̄γ + 2⟨σv⟩γγ . (8.39)
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(c) γ-ray line spectrum

Figure 8.10 Restrictions on the model parameters from indirect detection experiments.
The area included by the white dashed line and the equal mass diagonal
indicates in which mass regime the constraints are relevant.

We estimate the impact of the constraints on our model by determining the coupling
strength for which each of the annihilation rates ⟨σv⟩ē, ⟨σv⟩τ and ⟨σv⟩γ saturates its
respective experimental upper limit. To this end, we scan over the mass parameters mψ

and mϕ3 and take the limit of degenerate couplings |λi3| = |λℓ3| when calculating the rates
of Equations (8.37)–(8.39). The results are gathered in Figure 8.10.

In all three panels the white dashed line indicates the contour with |λi3| = 2.0. We only
expect constraints on our model in the area that is enclosed by the equal mass diagonal
and this contour, since the couplings Di are limited to Di ≤ 2.0 which translates to the
condition |λij | ≤ 2.0. We find that the constraints from measurements of the positron
flux or the γ-ray continuum spectrum only place restrictions on the model parameters for
NP scales which are already excluded by the LHC searches discussed in Section 8.1. In
Figure 8.10a we see that the limit on annihilations into a single positron constrains our
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Figure 8.11 Viable masses in both scenarios when fulfilling all constraints simultane-
ously. We further show the largest possible exclusion contours coming
from the LHC searches for same-flavour final states ℓℓ̄ + /ET with ℓ = e, µ
in both scenarios. The grey contour corresponds to the QDF scenario with
D1 = D2 = D3 = 2.0. The light-grey contour represents the largest possi-
ble exclusion in the SFF scenario with D1 = D2 = 1.5 and D3 = 2.0.

model for mediator masses mψ ≲ 250GeV, where in the range 200GeV ≲ mψ ≲ 250GeV
it is only relevant in the close-to-degenerate region mψ ≈ mϕ3 . A similar conclusion holds
true for annihilations into final states with a tau or antitau, with the sole difference that
in this case limits can be relevant up to NP scales mψ ≃ 300GeV, see Figure 8.10b.
The limits from searches in the γ-ray line spectrum are illustrated in Figure 8.10c. We
find them to be more restrictive, as they lead to relevant constraints for masses up to
mψ ≃ 1000GeV. However, these limits are again mainly relevant in the near-degeneracy
regime mψ ≈ mϕ3 . In total, we conclude that the indirect detection constraints remain
rather weak compared to limits from LHC searches, LFV decays, the observed DM relic
density or direct detection experiments.

8.5 Combined Analysis

In the combined analysis we impose all constraints simultaneously and demand that they
are fulfilled. The results are gathered in Figures 8.11–8.13.

Figure 8.11 illustrates viable points in the mψ − mϕ3 plane for both scenarios. We
additionally show the largest possible LHC exclusion for both scenarios in form of the
grey and light-grey contours. The results show that the combined analysis demands the
NP mass parameters to satisfy mψ ≳ 750GeV and mϕ3 ≳ 550GeV. This can be tracked
down to the interplay of the relic density and direct detection constraints. In Section 8.3 we
had found that the p-wave suppression of the DM annihilation rate requires large couplings
Di in order to yield the correct relic density. At the same time, the direct detection limits
discussed in Section 8.4 can only be satisfied for sufficiently large mediator massesmψ if the
couplingsDi are large. As sizeable mediator masses also suppress the DM annihilation rate,
this then needs to be compensated for by comparably large DM masses which we had found
to enhance the annihilation rate in Section 8.3. We further find that for mediator masses
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(a) |λτ3| − |λe3| plane (b) |λµ3| − |λe3| plane

Figure 8.12 Viable couplings |λi3| for mϕ = 900GeV and varying mψ based on all
constraints in the SFF scenario.

750GeV ≲ mψ ≲ 1200GeV the suppression of the DM–nucleon scattering amplitude fγ
through mψ alone is not sufficient to compensate for sizeable couplings Di. In this region
the DM mass needs to be larger than what the relic density constraint alone would require,
since increasing DM masses do not only enhance the DM annihilation rate but also loosen
the XENON1T upper limit on DM–nucleon scattering for mϕ3 ≳ 30GeV. Hence, for
increasing values of mϕ3 the direct detection constraints allow for larger couplings Di

while the relic density constraint can be satisfied with smaller couplings Di. We further
find that the LHC constraints yield the largest exclusion in the mψ −mϕ3 plane for the
QDF scenario. This is due to the sign of the parameter η from Equation (7.6) which we
have chosen to be negative. As we have additionally assumed D1 = D2 = Dℓ in order to
straightforwardly recast the LHC searches studied in Section 8.1, the couplings Di need
to satisfy D3 > D1,2 in the SFF scenario to yield the correct mass hierarchy. Hence, in
this case one is always left with a larger coupling to taus than to electrons and muons
which reduces the relevant branching ratio into final states with the latter two. This in
turn leads to a smaller signal cross section in the SFF scenario compared to the QDF
scenario, as the couplings Di are close to equal in the latter case. Moreover, we find that
the LHC constraints only exclude the parameter space which is already ruled out by the
above explained interplay between the relic density and direct detection constraints. As
far as the mixed-flavour final states ℓiℓ̄j + /ET mentioned in Section 8.1 are concerned, we
find that their signal cross section is highly suppressed and yields values of order O(ab),
since only large masses mψ and mϕ3 are viable. The SM background on the other hand, is
dominated by the production of tt̄ and WW pairs, with significantly larger cross sections
than ψψ̄ pair-production in our model: we find the background to be of order O(pb) and
thus expect the mixed-flavour final states to not exhibit a significant discovery potential.

The viable structure of the coupling matrix λ in the SFF scenario is illustrated in
Figure 8.12 and is mainly determined by the flavour, relic density and direct detection
constraints. The circular bands that can be seen in Figure 8.12a are a result of the interplay
between the flavour and relic density constraints. In the SFF scenario the coupling matrix
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(a) |λτ3| − |λe3| plane (b) |λµ3| − |λe3| plane

Figure 8.13 Viable couplings |λi3| for mϕ = 900GeV and varying mψ based on all
constraints in the QDF scenario.

λ needs to satisfy the spherical condition

|λe3|2 + |λµ3|2 + |λτ3|2 ≈ const. , (8.40)

in order to yield the correct relic density. This causes the outer edge of the bands shown
in Figure 8.12a. The inner edge, on the other hand, is due to the limits from the LFV
decay µ → eγ discussed in Section 8.2. As can be seen in Figure 8.12b, these limits
force the product of |λe3| and |λµ3| to be small, i.e. either |λe3| can be large while |λµ3| is
small or vice versa. The points with a sizeable DM–electron coupling |λe3| then cause the
circular bands while the points with sizeable couplings |λµ3| are scattered at the bottom in
Figure 8.12a. In Figure 8.12b we can also see the impact of the direct detection constraints
as the maximum of the viable values is larger for |λµ3| than for |λe3| for all choices of the
mediator massmψ. For large enough values of |λe3| the DM–nucleon scattering constraints
become dominant over the relic density constraints. This can be seen in Figure 8.12a as
the circular bands become thinner for growing values of |λe3| above this threshold. For
even larger values of |λe3| we find that the direct detection and relic density constraints
cannot be satisfied simultaneously, which strongly disfavours the case of e-flavoured DM,
i.e. |λe3| > |λµ3|, |λτ3|. As the DM–nucleon scattering rate is significantly larger for an
electron in the loop in Figure 8.7a, we find that in spite of the 1/m2

ψ suppression of fγ even
for large masses mψ ≳ 1200GeV the DM particle ϕ3 needs to be mainly µ- or τ -flavoured.

The viable structure of λ in the QDF scenario is shown in Figure 8.13. While it
generally exhibits analogous features as the SFF scenario, we find these features to be far
less pronounced due to the different dynamics of the thermal freeze-out of DM. As all dark
particles contribute to the freeze-out in this case, the relic density constraint reduces to
the condition ∑

ij

|λij |2 ≈ const. , (8.41)

i.e. it demands the couplings |λij | to form the shell of a nine-dimensional sphere. This
condition causes the outer circular edge that can be seen in both Figure 8.13a and 8.13b.
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Moreover, we find the flavour constraints to be weaker than in the SFF scenario, since in
this case the couplings Di are close-to-degenerate which translates to a close-to-diagonal
coupling matrix λ. This can be seen explicitly in Figure 8.13b where in spite of the higher
point density close to the axes points with comparable values for |λe3| and |λµ3| are also
viable. This at the same time is the reason for why there is no inner edge for the contours
in the |λτ3| − |λe3| plane in the QDF scenario as shown in Figure 8.13a. The impact of
the direct detection limits on the parameter space can again be seen in both panels of
Figure 8.13. For a mediator mass mψ = 1000GeV (blue points), for example, the coupling
of DM to tau leptons may become maximal with |λτ3| = 2.0, while the couplings to muons
and electrons are limited to |λµ3| ≃ 1.7 and |λe3| ≃ 1.2. The maximally viable values of the
latter two couplings moreover increase with a growing mediator mass, as the DM–nucleon
scattering rate is suppressed by two powers of it. In Figure 8.13a we further see that the
direct detection constraint is dominant over the relic density constraint for a larger range
of allowed values for |λe3| than in the SFF scenario. In terms of the flavour of ϕ3 we again
find that most of the viable points correspond to τ -flavoured DM while—contrary to the
SFF scenario—in this case a significant part of the viable parameter space also represents
µ- and e-flavoured DM.





Chapter 9

Summary

In this part we have studied a simplified DMFV model of lepton-flavoured DM in which
the SM is extended by the complex scalar DM flavour triplet ϕ = (ϕ1, ϕ2, ϕ3)

T and the
charged fermion ψ which couples the DM triplet to right-handed charged leptons ℓR. This
interaction is governed by a new coupling matrix λ which according to the DMFV ansatz is
assumed to constitute the only new source of flavour-violation aside from the SM Yukawa
couplings. After having discussed the details of this model in Chapter 7 we examined
constraints from collider searches, LFV decays, the observed relic density and direct as
well as indirect detection experiments in Chapter 8 in order to constrain the parameter
space of this model.

Section 8.1 was dedicated to the analysis of constraints from LHC searches and here
we have found that the largest restrictions are placed on our model by SUSY searches
for first and second generation sleptons. To study these constraints we recasted a CMS
search in the final states ℓℓ̄+ /ET and τ̄ τ + /ET based on the full run 2 LHC data set. The
constraints from searches in τ -flavoured final states are significantly less restrictive than
the limits coming from searches in ℓℓ̄+ /ET . For the latter signature, the exclusion in the
mass planemψ−mϕ is the largest for sizeable couplingsDℓ to electrons and muons together
with small couplings D3 to taus, as otherwise the branching ratio into the relevant final
states is reduced. The LHC constraints maximally exclude NP scales of mψ ≲ 750GeV.

The flavour structure of the coupling matrix λ was studied in Section 8.2 where we
discussed constraints from LFV decays. Here, the strongest restrictions are placed on the
model by the decay µ → eγ which in the limit of negligible DM masses mψ ≫ mϕ was
estimated to demand the coupling matrix λ to satisfy |

(
λλ†
)
µe

|1/2 ≲ mψ/15TeV. More
generally, the constraints from LFV decays can either be fulfilled by vanishing mixing
angles θij or by degenerate couplings Di which both render the coupling matrix λ diagonal.
We concluded this section by commenting on possible constraints from leptonic EDMs and
MDMs and found that in our model sizeable contributions to these observables can only
be generated at NP scales of O(100GeV), which are already excluded by LHC searches.

In Section 8.3 we have studied the constraints that the observed DM relic density
implies for our model. Here we have limited our analysis to the two benchmark scenarios
for the thermal freeze-out of DM introduced in Section 3.2 and found the DM annihilation
rate to be p-wave suppressed in both. This generally requires the couplings Di to be
sizeable in order to compensate for this suppression and yield the correct relic density.
Moreover, the p-wave suppression of the DM annihilation rate requires comparably large
DM masses mϕ3 ≳ 300GeV for mediator masses mψ ≳ 1000GeV in order to satisfy the
experimental limit.

The restrictions placed on the parameter space of our model by detection experiments
were examined in Section 8.4. We first discussed constraints from direct detection ex-
periments by identifying relevant interactions between DM and the SM. The dominant
interaction is induced by a one-loop photon penguin diagram contributing to SI DM–
nucleon scattering. Using XENON1T data we then constrained our model to find that the
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limits from direct detection are generally strong. Further, the DM–nucleon scattering rate
is enhanced for a small mass of the lepton in the loop and hence the strongest restrictions
are placed on the DM–electron coupling. Moving to constraints from indirect detection ex-
periments, we found that the p-wave suppression of the DM annihilation rate requires the
inclusion of higher order diagrams in order to derive meaningful constraints on our model.
To this end we included the sub-leading annihilation of DM into two photons as well as
the annihilation into the three-body final state with two charged leptons and a photon
into our calculation. Nevertheless, the indirect detection constraints are weak compared
to other constraints as only measurements of the γ-ray spectrum yield relevant limits for
mediator masses up to mψ ≃ 1000GeV in the near-degeneracy region mψ ≈ mϕ3 .

To provide a global picture we then used Section 8.5 to perform a combined analysis
of all constraints. Here, the combination of relic density and direct detection constraints
renders LHC limits irrelevant and forces the masses to roughly lie in the ranges 750GeV ≲

mψ ≲ 1550GeV and 550GeV ≲ mϕ3 < mψ. Further, the allowed values for the couplings
|λi3| are mainly determined by the interplay of relic density, flavour and direct detection
constraints in both freeze-out scenarios. Finally, we also studied which flavour of DM
is preferred by experimental data and found that while in the SFF scenario only µ- and
τ -flavoured DM are viable, the QDF scenario also allows for e-flavoured DM.

We conclude that lepton-flavoured complex scalar DM is a viable DM candidate gov-
erned by a rich phenomenology. The interplay of various experiments yields important
information on the structure of the model and with future improved sensitivities, we may
hope to discover first hints of lepton-flavoured DM in the laboratory.



Part IV

Lepton-Flavoured Scalar Dark Matter II

This part is based on

H. Acaroğlu, P. Agrawal and M. Blanke, Flavoured (g − 2)µ with Dark
Lepton Seasoning, 2212.08142 .

We here propose a simplified model of lepton-flavoured complex scalar DM as a joint
solution for the muon (g − 2) anomaly and the DM problem. This model extends the
SM by a dark triplet of complex scalars which couple to both left- and right-handed
leptons of the SM. These interactions are mediated by two fermion representations—an
SU(2)L doublet which couples the DM triplet to left-handed leptons and a singlet which
mediates right-handed interactions. Both representations are additionally coupled to the
SM Higgs doublet through a new Yukawa coupling, leading to a mass mixing between
the two charged mediators. We study the phenomenology of this model by examining
constraints from collider searches, LFV decays, precision tests of the SM, the observed DM
relic density and direct as well as indirect detection experiments. We first discuss each of
these constraints individually and then perform a combined analysis by demanding that
all constraints are satisfied simultaneously. Using the results of this combined analysis we
then check if the model is capable of generating sizeable NP contributions to the muon
anomalous magnetic moment aµ. We find that in all benchmark scenarios considered
the central value of its experimental measurement ∆aexpµ can be reproduced without the
introduction of fine-tuned lepton masses.

https://arxiv.org/abs/2212.08142




Chapter 10

Model Details

Among the large variety of different DM models those which are capable of address-
ing other problems, puzzles or anomalies of physics appear particularly appealing. Most
prominently, the discrepancy between experimental measurements [26] and state of the
art SM predictions [27]30 of the muon anomalous magnetic dipole moment aµ currently
constitutes one of the most significant hints at NP. This tension between data and theory is
referred to as the muon (g−2) anomaly and renders lepton-flavoured DM models [190–193]
particularly worth investigating, since they assume the DM field to couple to leptons and
can therefore generate potentially sizeable contributions to (g − 2)µ.

For the lepton-flavoured DM model studied in the previous part of this work however,
we had found that the absence of left-handed interactions forbids sizeable NP contributions
to aµ at viable NP scales, as enhanced diagrams with a chirality flip inside the loop are
absent. In order to address both DM and the (g−2)µ anomaly at the same time, we hence
extend the model from Part III by left-handed interactions between DM and leptons.
To this end we introduce an SU(2)L doublet containing a neutral and charged fermion
that mediates interactions between DM and neutrinos or left-handed charged leptons,
respectively. This new doublet and the new fermion already present in the purely right-
handed version of this model from the previous part are additionally coupled to the SM
Higgs doublet through a Yukawa coupling. This model does not belong to the DMFV
class, as the additional fields and interactions ultimately lead to the absence of a new
flavour symmetry the DM triplet can be associated with. Nevertheless, it represents an
interesting benchmark case of flavoured DM potentially capable of explaining both the
muon (g − 2)µ anomaly and the DM problem.

We use this chapter to introduce the model outlined above and present its details.
We first review its field content and identify the most important NP interactions. After
discussing and parametrising all NP couplings, we conclude the chapter with an analysis
of the model’s mass spectrum and a discussion of the stability of DM.

10.1 Field Content and Interactions

We present a simplified lepton-flavoured DM model in which the SM is extended by the
dark triplet ϕ = (ϕ1, ϕ2, ϕ3)

T . The fields ϕi are complex scalars represented by (1,1, 0)0
under (SU(3)c, SU(2)L, U(1)Y )spin and are coupled to left-handed as well as right-handed
leptons of the SM. These interactions are mediated by two new fermion representations—
the SU(2)L doublet Ψ = (ψ0, ψ

′
1)
T represented by (1,2,−1/2)1/2 and the singlet ψ′

2 which
transforms as (1,1,−1)1/2, respectively. The two fields Ψ and ψ′

2 are additionally coupled
to the SM Higgs doublet H through the Yukawa coupling yψ and we again assume the
lightest dark scalar to account for the observed amount of DM in the Universe. An overview
of the NP fields and their representations under the SM gauge group is given in Table 10.1.

30See References [225–244] for relevant original work.
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The Lagrangian of this model reads

L =LSM + Ψ̄(i /D −mΨ)Ψ + ψ̄′
2(i /D −mψ)ψ

′
2 + (∂µϕ)

†(∂µϕ)− ϕ†M2
ϕϕ

− (λRij ℓ̄Riψ
′
2 ϕj + λLij L̄iΨϕj + yψ Ψ̄ψ

′
2H + h.c.)

+ λHϕ ϕ
†ϕH†H + λϕϕ

(
ϕ†ϕ

)2
. (10.1)

In this expression the field Li is defined as Li = (νLi, ℓLi)
T and the two coupling matrices

λR and λL are complex 3 × 3 matrices. To keep the total number of free model parame-
ters manageable, we assume that the left-handed coupling is related to the right-handed
coupling through the relation

λL = ξ λR = ξ λ . (10.2)

This ansatz ensures that the coupling of DM to the lepton sector of the SM is parametrised
by a single new flavour-violating coupling λ. While this simplifying assumption is similar to
the DMFV hypothesis, we here stress that the model does not belong to the DMFV class,
since the ansatz from above cannot be traced back to a new flavour symmetry the DM fields
can be associated with. To overcome the ad-hoc nature of the ansatz in Equation (10.2)
and to ensure that the model’s phenomenology is captured in its entirety we assume the
scaling parameter ξ to be a complex number. In this way we ensure that effects generated
by a relative phase between λL and λR can still be present. In Section 11.2 we will
find that this scaling parameter is particularly relevant for constraints from LFV decays,
since potentially sizeable contributions from chirality-flipping diagrams can be suppressed
through it. At the same time left-handed interactions may not be suppressed too strongly,
as similar diagrams with a chirality flip inside the loop are necessary in order to generate
sizeable NP effects in the muon anomalous magnetic moment aµ. We thoroughly study this
interplay between different experimental constraints on our model and their implications
for the scaling parameter ξ in our phenomenological analysis in Chapter 11.

The mass parametersmΨ andmψ as well as the mass matrixMϕ are discussed in detail
in Section 10.2. As already stated for the version of this model with purely right-handed
interactions from Part III, the quartic couplings λHϕ and λϕϕ represent a characteristic
feature of scalar DM. For the self-coupling λϕϕ we again find that the perturbative contact
interactions this coupling can give rise to are negligible for the viable DM masses that we
find in the combined analysis of Section 11.6. We further neglect contributions generated
by the Higgs portal coupling λHϕ but comment on possible implications of it whenever
necessary. Since there is no new flavour symmetry which forces these couplings to be
diagonal or expressed in terms of λ, both could in principle be generic.

We stress that due to the absence of a new flavour symmetry all parameters of the
coupling matrix λ remain physical for this model in contrast to the DMFV models studied

Table 10.1 NP fields and their definitions as well as their representations under the
SM gauge group.

Field Definition SU(3)C SU(2)L U(1)Y Spin

ϕ (ϕ1, ϕ2, ϕ3)
T 1 1 0 0

Ψ (ψ0, ψ
′
1)
T 1 2 −1/2 1/2

ψ′
2 – 1 1 −1 1/2
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in References [20–24], in Part II and particularly in Part III. Hence, we write λ in terms
of nine real parameters and nine complex phases, i.e.

λij = |λij | ei δij . (10.3)

Together with the NP mass parameters mΨ,mψ and the three mϕi , the Yukawa coupling
yψ and the complex scaling parameter

ξ = |ξ| eiδξ , (10.4)

this yields a total number of 26 model parameters. To ensure perturbativity and avoid a
double-counting of the parameter space we restrict the coupling parameters to lie within
the ranges

|λij | ∈ [0, 2] , δij ∈ [0, 2π) , yψ ∈ [0, 2] , |ξ| ∈ (0, 1] , δξ ∈ [0, 2π) , (10.5)

for the analyses performed in Chapter 11. Note that the Yukawa coupling yψ can be taken
real and positive without loss of generality. As far as the parameter ξ is concerned, we
restrict its absolute value to be smaller than one, since we only want to minimally extend
the model that we have studied in Part III to reproduce the experimental central value of
the muon anomalous magnetic moment (g − 2)µ.

10.2 Mass Spectrum and Dark Matter Stability

In the Lagrangian of Equation (10.1) the Yukawa interaction between Ψ, ψ′
2 and the

Higgs doublet H introduces a mixing between the two charged states ψ′
1 and ψ′

2 with the
corresponding mass matrix

Mψ =

mΨ
v yψ√

2
v yψ√

2
mψ

 , (10.6)

where v = 246GeV is the vacuum expectation value (vev) of the Higgs field. We use the
ansatz (

ψ′
1

ψ′
2

)
=

(
cos θψ − sin θψ
sin θψ cos θψ

)(
ψ1

ψ2

)
, (10.7)

and diagonalise this mass matrix to find the eigenvalues

mψ1 =
1

2

(
mΨ +mψ +

√
(mΨ −mψ)2 + 2 y2ψv

2
)
, (10.8)

mψ2 =
1

2

(
mΨ +mψ −

√
(mΨ −mψ)2 + 2 y2ψv

2
)
, (10.9)

and the corresponding mixing angle

θψ =
1

2
arccos

 (mΨ −mψ)√
(mΨ −mψ)2 + 2 y2ψv

2

 . (10.10)

Using these expressions, the Lagrangian from Equation (10.1) can then be written in terms
of the mass eigenstates ψ1 and ψ2, yielding

L =LSM + ψ̄0(i /D −mψ0)ψ0 + ψ̄1(i /D −mψ1)ψ1 + ψ̄2(i /D −mψ2)ψ2 + (∂µϕ)
†(∂µϕ)

− ϕ†M2
ϕϕ+ λHϕ ϕ

†ϕH†H + λϕϕ

(
ϕ†ϕ

)2
−
{
ξλij ν̄iPRψ0ϕj + h.c.

}
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−
{
λij ℓ̄i [(cos θψPL − ξ sin θψPR)ψ2 + (sin θψPL + ξ cos θψPR)ψ1]ϕj + h.c.

}
− yψ√

2

{
sin 2θψ

[
ψ̄2ψ2 − ψ̄1ψ1

]
h+ cos 2θψ

[
ψ̄1ψ2 + ψ̄2ψ1

]
h
}
. (10.11)

In this expression we have defined mψ0 = mΨ.
For the DM mass matrix Mϕ we cannot adopt the usual spurion expansion from

MFV [15], since there is no new flavour symmetry in this model that the DM triplet
can be associated with. Hence, we choose Mϕ to be diagonal and write

M2
ϕ = diag(m2

ϕ1 ,m
2
ϕ2 ,m

2
ϕ3) , (10.12)

while again demanding the DM mass parameters to satisfy the conventional hierarchy
condition

mϕ1 > mϕ2 > mϕ3 . (10.13)

This means that in contrast to the DMFV models presented in References [20–24] as well
as the two models studied in the previous parts of this work, the masses mϕi are free
parameters here, i.e. the mass splittings between different dark flavours are not restricted.
However, to keep the results of our analysis comparable to the mentioned studies we
adopt the upper limit from DMFV models. There, the mass corrections are restricted
to a maximum of 30% in order to ensure the convergence of the spurion expansion. To
guarantee the stability of the lightest state ϕ3 we again impose a Z2 symmetry under
which only the new fields ϕi and ψα

31 are charged. This makes sure that the NP fields
do not decay into SM-only final states which in turn ensures that ϕ3 is stable as long as
it constitutes the lightest NP state. Recalling that ψ0 is neutral while ψ1 and ψ2 carry
electric charge −1, we thus always obtain the hierarchy

mψ1 ≥ mψ0 ≥ mψ2 > mϕ3 . (10.14)

Regarding neutrinos, we work in the limit of vanishing masses mνi = 0 throughout this
analysis, which holds to an excellent approximation.

31We use Greek indices when generally referring to any of the mass eigenstates ψ0, ψ1 and ψ2 throughout
this analysis. This should not be confused with the usual convention of using Greek letters as spinor or
four-vector indices.



Chapter 11

Phenomenology

In this chapter we study the phenomenology of the model presented above by examin-
ing constraints from collider searches, LFV decays, precision measurements of leptonic
dipole moments, the observed DM relic density and direct as well as indirect detection
experiments. After discussing each of these constraints independently we perform a com-
bined analysis and determine the viable parameter space of our model. Based on the
results of this analysis we then conclude this chapter by reviewing whether the model can
generate large enough NP contributions to the muon anomalous magnetic moment aµ to
accommodate the experimental central value.

11.1 Collider Phenomenology

For the analysis of constraints coming from collider experiments we use the same approach
as for the purely right-handed version of this model studied in Part III. We focus on LHC
searches in signatures that arise through the pair-production of the mediators ψα in Drell–
Yan. To also fulfil the limits from LEP searches [195,196] we demand the lightest charged
mediator ψ2 to satisfy mψ2 > 100GeV.

Relevant LHC Signatures

The mediators ψα are pair-produced through the Drell–Yan process shown in Figure 11.1,
in which the initial state particles annihilate into an off-shell boson that subsequently
decays into ψ̄αψβ with α, β ∈ {0, 1, 2}. The indices of the final state produced by this
process depend on the off-shell boson in the s-channel—pairs of one neutral and one
charged mediator can only be produced if the Drell–Yan process is mediated by a W
boson, while h or Z mediated channels can also produce final states with mixed pairs of
ψ1 and ψ2. The state with a ψ0 pair can only be produced if the initial state particles
annihilate into a Z boson while the photon-mediated process produces either ψ1 or ψ2

pairs.
Depending on the actual constellation of the intermediate state, the subsequent decay

of the mediator pairs illustrated in Figure 11.2 then gives rise to a variety of signatures.
The charged mediators ψ1,2 decay into a dark particle and a charged lepton, while the
decay products of the neutral mediator entirely remain undetected as it decays into a
dark scalar and a neutrino. Hence, pair-production of the mediators can lead to mono- or
di-lepton signatures in association with missing transverse energy. Signatures with more
particles in the final state arise from cascade decays of the heavier mediators ψα into lighter
mediators ψβ and a Higgs or electroweak gauge boson. The subsequent decay of the boson
into leptons and the lighter mediator’s decay into a lepton and a dark scalar then give rise
to signatures with three or more charged leptons and missing energy. Collecting all these
decay channels, we find the following relevant processes for LHC searches:

pp → ψ̄0ψα → ν̄iℓjϕ
†
kϕl ,
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Figure 11.1 Feynman diagrams for the production of ψ̄αψβ pairs through a Drell–Yan
process mediated by electroweak gauge bosons or by a Higgs boson pro-
duced by gluon fusion.

pp → ψ̄αψβ → ℓiℓ̄jϕ
†
kϕl ,

pp → ψ̄0ψ1 → ν̄iℓ̄jℓjℓkϕ
†
lϕm ,

pp → ψ̄0ψ2 → ℓ̄j ν̄iℓiℓkϕ
†
lϕm , (11.1)

where α, β ∈ {1, 2} and i, j, k, l and m are flavour indices. Here we have omitted charge
conjugated processes and final states with more than three leptons for brevity. In summary,
the processes described above yield the signatures ℓi + /ET , ℓiℓ̄j + /ET , ℓ̄iℓiℓj + /ET and
ℓ̄iℓjℓk + /ET .

Since existing searches for the mono-lepton signature [245,246] consider NP cases with
different kinematics, a proper recasting is necessary in order to derive meaningful con-
straints on our model’s parameter space. However, this signature suffers from a large SM
background stemming from the production of a W boson in the s-channel which subse-
quently decays into a charged lepton and a neutrino. We hence neglect mono-leptonic final
states in our analysis as we expect them to only yield subleading constraints. The two
signatures with three final state leptons, ℓ̄iℓiℓj + /ET and ℓ̄iℓjℓk + /ET only differ by final
states with an electron, a muon and a tau, i.e. by the case with i ̸= j ̸= k. The latter final
states are typically neglected in LHC searches, since they are correlated with the strongly
constrained LFV decays in many models. As far as the signature ℓ̄iℓiℓj+ /ET is concerned,
we again find that existing searches consider models with different final state kinemat-
ics [247]. Hence, a thorough recasting of the relevant searches would also be required in
this case in order to derive applicable constraints for our model. We leave this for future
work and thus focus on the signature ℓiℓ̄j + /ET in this analysis.

This signature again consists of same- and mixed-flavour final states. We neglect the
latter case with i ̸= j although in our model these final states are not correlated with LFV
decays since these signatures are proportional to the diagonal elements of the coupling
matrix λ and hence do not require flavour violation. In Part III we have found for the
version of this model with purely right-handed interactions that searches in same-flavour
final states already exclude the region of the parameter space in which the mixed-flavour
final states yield rates comparable to the SM background. We expect this to also hold
true for the model at hand. In summary, this leaves us with the same-flavour signatures
eē + /ET , µµ̄ + /ET and τ τ̄ + /ET . We further neglect searches in the latter final states
containing a pair of taus [198], since we showed in Section 8.1 that they yield significantly
weaker limits than searches in final states with light leptons. We hence only consider
limits derived for the joint signature ℓℓ̄ + /ET with ℓ = e, µ, where in the experimental
analyses µ− e universality is commonly assumed. The latter analyses consist of searches
for pair-produced sleptons of the first and second generation that subsequently decay into
a neutralino and a charged lepton.
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ℓj, νj

φi

ψα

ψβ

W,Z

ψα

Figure 11.2 Feynman diagrams for the decay of ψα into leptons and dark matter (left)
and gauge bosons and lighter mediators ψβ with mψβ < mψα (right). For
the latter we only show decays into electroweak gauge bosons and ψβ while
decays into a Higgs boson and ψβ are possible as well.

Recast of LHC Limits

As discussed in Section 8.1, the CMS search in Reference [197] based on the full run 2 data
set with an integrated luminosity of 137 fb−1 places the most stringent constraints on NP
models that produce the signature ℓℓ̄+ /ET . We have obtained the upper limits that this
search places on the signal cross section from the SModelS [248] database. To constrain
the parameter space of our model, we implement the Lagrangian from Equation (10.1)
in FeynRules [147], generate a UFO file [148] and calculate the LO signal cross section of
relevant processes in MadGraph 5 [149]. Since we have two charged mediators ψ1,2 in our
model, we calculate the signal cross sections of the two processes pp→ ψ1ψ̄1 → ℓℓ̄+ /ET and
pp → ψ2ψ̄2 → ℓℓ̄+ /ET and compare each signal with the experimental upper limits from
Reference [197] to draw exclusion contours in both the mψ1 −mϕ as well as the mψ2 −mϕ

plane32. In doing so we neglect the kinematic interplay between the two intermediate states
as well as the off-diagonal contributions from the mixed intermediate state with ψ1 and
ψ2, which we expect all to only marginally increase the exclusion in the above mentioned
NP mass planes. Note that we also neglect the impact of the potentially different final
state kinematics due to the different spin-statistics in our model relative to the SUSY case
for the reasons discussed in Section 8.1.

We further follow References [20–22] as well as our analyses from the previous two parts
of this work in ignoring the mass splittings amongst the three dark states ϕi discussed in
Section 10.2 and assuming a diagonal coupling matrix for the numerical analysis of the
LHC constraints. Small mass splittings only lead to difficult-to-detect soft decay products
of heavy flavours into lighter states, while flavour-violating effects weaken the signal of
a given same-flavour final state and thus reduce the exclusion in the mψ1,2 −mϕ planes
which we are primarily interested in. Finally, we set |λe1| = |λµ2| = |λℓℓ| in this section as
the relevant CMS analysis assumes a µ− e universality.

Note that the value of the scaling parameter ξ defined in Equation (10.2) has no impact
on the signal cross section, as the relative size of left- and right-handed couplings does not
change the hierarchy between the couplings |λii| to different lepton flavours. This in turn
means that the branching ratios of the charged mediators are independent of ξ. As far
as the mixing between the charged mediators ψ1 and ψ2 is concerned, we assume it to
be maximal with θψ = π/4 which corresponds to the case of equal gauge eigenstate mass
parameters mΨ = mψ.

The results of this recasting procedure are shown in Figure 11.3. In all four panels we
have fixed the coupling of DM to light leptons to |λℓℓ| = 2.0 while the DM–tau coupling

32Remember that for a maximum mixing angle θψ = π/4 the massesmψ1 andmψ2 are linearly connected
through mψ1 = mψ2 +

√
2yψv.
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Figure 11.3 Constraints on the final state ℓℓ̄ + /ET for several values of yψ, |λℓℓ| = 2.0
and maximum mixing with mΨ = mψ and θψ = π/4. The coloured areas
are excluded.

|λτ3| varies. We show the overlay of the exclusion in the mψ1 −mϕ and mψ2 −mϕ plane by
using the linear connection between the masses of both charged mediators. The excluded
regions in both planes shrink for growing values of |λτ3| as this increases the branching ratio
of both intermediate states ψ̄1ψ1 and ψ̄2ψ2 into a tau–antitau pair and missing energy.
This in turn decreases the decay rate into the relevant light lepton final states which
ultimately yields a smaller signal. We further find that increasing values of the Yukawa
coupling yψ have no impact on the maximum extension of the exclusion contour, which
indicates that the contributions to the signal cross section from Higgs mediated Drell–Yan
processes are negligible. However, varying Yukawa couplings yψ have a significant impact
on constraints in the soft final state region mϕ ≈ mψ2 . The exclusion in this region is due
to contributions from the heavier charged mediator ψ1, since for θψ = π/4 the masses of
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the two mediators are split according to

∆mψ = mψ1 −mψ2 =
√
2yψv . (11.2)

Hence, even if the final state leptons stemming from ψ2 are produced softly and thus evade
the constraints, leptons produced through the decay of ψ1 can still lead to exclusions in the
regionmϕ ≈ mψ2 provided ∆mψ is large enough. For this reason we find that the exclusion
in the near-degeneracy region betweenmϕ andmψ2 grows for Yukawa couplings up to yψ ≃
0.50, see Figure 11.3a and 11.3b. As can be seen in Figures 11.3b–11.3d, the restrictions
in this region reach their maximum and exclude masses up to mϕ ≈ mψ2 ≃ 400GeV
between 0.50 ≲ yψ ≲ 1.00. For even larger values of yψ the splitting ∆mψ becomes so
sizeable that for masses mϕ ≈ mψ2 ≃ 400GeV the corresponding value of mψ1 suppresses
the pair-production of ψ1 sufficiently. Hence, for increasing values yψ ≳ 1.00 the exclusion
in the near-degeneracy region shrinks. Away from the equal mass threshold, we find that
constraints from ℓℓ̄ + /ET searches reach up to mediator masses mψ2 ≃ 750GeV and DM
masses mϕ ≃ 400GeV. For even smaller DM–tau couplings |λτ3| < 0.5 not shown in
Figure 11.3 the excluded area is only increased marginally.

11.2 Flavour Physics Phenomenology

In the previous parts of this work we have found that the constraints from flavour physics
experiments can place significant restrictions on flavoured DM models. As discussed in
detail in Section 8.2, for the case of lepton-flavoured DM these constraints stem from LFV
decays and the process ℓi → ℓjγ in particular. Moreover, these constraints have proven
to be even more restrictive than limits from neutral meson mixing relevant for quark-
flavoured DM [20–24]. This statement also holds true for the model studied in Part III
of this work, in which enhanced contributions with a chirality flip inside the loop were
found to be absent. However, since the latter contributions are present in the model at
hand, the constraints are even tightened. We hence use this section to carefully analyse
the restrictions that LFV decays place on the parameter space of our model and determine
flavour-safe scenarios.

Lepton Flavour Violating Decays

In Section 8.2 we have discussed the decay rates for the LFV process shown in Figure 11.4
based on References [202,204] for the generic interaction Lagrangian from Equation (8.3).
There we have found

BR(ℓi → ℓjγ) =
e2

64π

mℓi

Γℓi

(
|aRℓiℓjγ |

2 + |aLℓiℓjγ |
2
)
, (11.3)

for the relevant branching ratios and33

aRℓiℓjγ =
mℓi

16π2

∑
k

(
mℓi

12m2
ϕk

cR∗
ik c

R
jkF (xk) +

mψ

3m2
ϕk

cL∗ik c
R
jkG(xk)

)
, (11.4)

aLℓiℓjγ =
mℓi

16π2

∑
k

(
mℓi

12m2
ϕk

cL∗ik c
L
jkF (xk) +

mψ

3m2
ϕk

cR∗
ik c

L
jkG(xk)

)
, (11.5)

with xk = m2
ψ/m

2
ϕk

for the coefficients aR/L. The loop functions F (x) and G(x) were

33Recall that we use the convention in which the superscript refers to the chirality of the final state.
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Figure 11.4 Feynman diagram for the LFV decay ℓi → ℓjγ. The index α here only
refers to the charged mediators, i.e. α ∈ {1, 2} while the indices i, j and k
are flavour indices. The contribution from the photon coupling to one of
the SM leptons is not shown.

obtained from References [202,204] and are defined in Equation (8.6) and (8.7).
Since it contains two charged mediators, we obtain the following four coefficients when

mapping the expressions from above to our model:

aR,1ℓiℓjγ
=

mℓi

16π2

∑
k

(
mℓi sin

2 θψ
12m2

ϕk

λ∗ikλjkF (xk,1) +
mψ1ξ

∗ sin 2θψ
6m2

ϕk

λ∗ikλjkG(xk,1)

)
, (11.6)

aR,2ℓiℓjγ
=

mℓi

16π2

∑
k

(
mℓi cos

2 θψ
12m2

ϕk

λ∗ikλjkF (xk,2)−
mψ2ξ

∗ sin 2θψ
6m2

ϕk

λ∗ikλjkG(xk,2)

)
, (11.7)

aL,1ℓiℓjγ
=

mℓi

16π2

∑
k

(
mℓi |ξ|2 cos2 θψ

12m2
ϕk

λ∗ikλjkF (xk,1) +
mψ1ξ sin 2θψ

6m2
ϕk

λ∗ikλjkG(xk,1)

)
, (11.8)

aL,2ℓiℓjγ
=

mℓi

16π2

∑
k

(
mℓi |ξ|2 sin2 θψ

12m2
ϕk

λ∗ikλjkF (xk,2)−
mψ2ξ sin 2θψ

6m2
ϕk

λ∗ikλjkG(xk,2)

)
. (11.9)

Here we have defined xk,α = m2
ψα
/m2

ϕk
and used sin 2θψ = 2 sin θψ cos θψ. In this notation

the relevant branching ratios are then given as

BR(ℓi → ℓjγ) =
e2

64π

mℓi

Γℓi

(
|aR,1ℓiℓjγ

+ aR,2ℓiℓjγ
|2 + |aL,1ℓiℓjγ

+ aL,2ℓiℓjγ
|2
)
. (11.10)

We use this expression to constrain the parameter space of our model in the following.

Constraints from LFV Decays

To constrain our model parameters based on LFV decays we calculate the relevant branch-
ing ratios through Equation (11.10) and compare them with the same 90% C.L. upper
limits as in Section 8.2. The latter were obtained from References [205–207] and read

BR(µ→ eγ)max = 4.2× 10−13 , (11.11)

BR(τ → eγ)max = 3.3× 10−8 , (11.12)

BR(τ → µγ)max = 4.2× 10−8 . (11.13)

For the lepton masses and decay widths we use the values given in Reference [158].
At the NP scales allowed by the LHC searches discussed in Section 11.1, the LFV rates

are generally dominated by chirality-flipping contributions. To obtain a rough estimate
of the restrictions these decays place on our model, we hence neglect chirality preserving
contributions, i.e. we set the first summand in Equations (11.6)–(11.9) to zero, and expand
Equation (11.10) for mψ1,2 ≫ mϕ. For the most stringently constrained decay µ → eγ,
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the according experimental bound is then satisfied if√
(λλ†)µe ≲

1

2200TeV

√
mψ1mψ2

yψ|ξ|
, (11.14)

where we assume maximum mixing between ψ1 and ψ2 with θψ = π/4. For a NP scale
mψ1 of order O(TeV) together with an O(1) Yukawa coupling yψ this condition reduces
to34 √

(λλ†)µe ≲ 3.7× 10−4√
|ξ|

. (11.15)

Moving away from this rough estimation, we want to examine how strongly the LFV
decays actually constrain the coupling matrix λ. To this end we draw contours in the
|ξ| − yψ plane that illustrate how large the values of the DM–lepton couplings |λℓi| may
maximally grow to saturate the respective upper limit. We further assume a maximum
mixing angle θψ = π/4 and fix the mass of the light charged mediator to mψ2 = 1300GeV.
Depending on the value of yψ this maximally yields mψ1 ≃ 2000GeV. As far as the DM
mass is concerned, we again ignore the mass splittings between different dark scalars and
fix their masses to one value mϕ = 200GeV. The resulting contours are shown for all
three LFV decays in Figure 11.5.

In Figure 11.5a we show the restrictions placed on the DM–electron couplings |λei| by
the decay µ→ eγ. Since we ultimately want to explain the (g−2)µ anomaly in this analysis,
we have fixed the DM–muon couplings to |λµi| = 1 to not suppress NP contributions to aµ.
As expected and as our rough estimate from Equation (11.15) already suggests, the upper
limit on |λei| strongly depends on |ξ| while it only mildly varies with yψ. This holds true
within the range |ξ| ∼ O(10−4−100), in which contributions with a chirality flip inside the
loop dominate. The reason for the mild dependence on yψ is connected to our choice of the
masses. Since we have fixed the light charged mediator’s mass tomψ2 = 1300GeV, growing
values of yψ only increase the mass of mψ1 . Hence, the contributions from diagrams with
ψ2 to the branching ratio of Equation (11.10) stay the same. The absolute value of the
contributions from diagrams with ψ1 in the loop on the other hand, is enhanced by the
increased value of mψ1 but at the same time suppressed by the loop function G.35 As
a result of both effects, the relevant branching ratio only marginally grows for increasing
values of yψ. For a stronger suppression of left-handed interactions with |ξ| ≲ 0.5×10−4 the
right-handed chirality-preserving contributions, i.e. the first summands of Equation (11.6)
and (11.7) become dominant, as all other contributions are sufficiently suppressed by the
small value of |ξ|. In this regime the yψ dependence is turned around and larger values of yψ
allow for larger couplings |λei|. The reason is that contrary to chirality-flipping diagrams,
the chirality-preserving contributions do not depend on the product of mψα and G but
solely depend on the loop function F . Hence, in this case increasing values of yψ lead to

a suppression of the coefficient aR,1µeγ through the loop function F . This in turn allows for
larger DM–electron couplings |λei|. In summary we conclude that depending on the choice
of yψ and |ξ| the DM–electron couplings vary between the values |λei| ∼ O

(
10−4 − 10−1

)
.

As smaller mediator masses demand even smaller values of |λei|, we restrict the range
of these couplings to |λei| ∈ [10−6, 10−1] when scanning over the parameter space of our
model in the remainder of our analysis.

The constraints that the LFV decay τ → eγ places on the coupling matrix λ are shown
in Figure 11.5b. In this case we have set the DM–electron couplings to their maximally
viable value |λei| = 0.1 in order to quantify how strongly this decay constrains the DM–tau

34Recall that for θψ = π/4 the two masses mψ1 and mψ2 are connected through mψ1 −mψ2 =
√
2yψv.

35Note that both F (xk,α) and G(xk,α) decrease for increasing values xk,α.
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Figure 11.5 Constraints from LFV decays on the coupling matrix λ. In all three panels
maximum mixing with θψ = π/4 is assumed and the DM mass is set to
mϕ = 200GeV. We further set mψ2 = 1300GeV, and the value of mψ1

varies according to the value of yψ.

couplings. We find that the dependence of the coupling |λτi| on yψ and |ξ| is qualitatively
the same as in Figure 11.5a. However, in this case the chirality-flipping contribution is
dominant for a smaller range of values of the scaling parameter |ξ| ≳ 10−3. The reason is
that the chirality-preserving contribution is proportional to the square of the mass of the
lepton that decays, see Equations (11.6)–(11.9). Since at the same time the tau mass is
roughly a factor of 17 larger than the muon mass, the threshold upon which the chirality-
preserving contribution starts to dominate is shifted towards larger values of |ξ|. The
white dashed line in Figure 11.5b indicates in which part of the |ξ| − yψ plane we expect
constraints on |λτi| from the decay τ → eγ, as we have limited the couplings to |λij | ∈ [0, 2]
in Chapter 10. We find that this LFV decay only constrains the DM–tau couplings for
values |ξ| ≳ 10−2.



Chapter 11 Phenomenology 103

Finally, we also show the restrictions placed on λ by the decay τ → µγ in Figure 11.5c.
In this case we have again set the DM–muon coupling to |λµi| = 1 to not suppress contri-
butions to (g−2)µ. Figure 11.5c hence illustrates the constraints on the DM–tau couplings
|λτi|. In terms of the dependence on yψ and |ξ| the contours exhibit the same features as
in the previous cases. We find that this decay restricts the DM–tau couplings to the range
|λτi| ∼ O(10−1 − 100).

11.3 Precision Measurements of Dipole Moments

Lepton-flavoured DM models can generally be subject to restrictive constraints from pre-
cision measurements of leptonic EDMs dℓ and MDMs aℓ. In Part III of this work we
had found that these constraints are irrelevant for the model with purely right-handed
couplings of DM to leptons. The reason was related to the lack of chirality enhanced
contributions, due to which sizeable effects in these observables can only be generated
at NP scales excluded by collider searches. For the model at hand however, we expect
more significant constraints to be placed on the coupling matrix λ since the DM triplet
is coupled to both right- as well as left-handed leptons. Hence, this model cannot only
generate potentially sizeable contributions to the muon anomalous magnetic moment aµ
but also to the MDM and EDM of other charged leptons. While we relegate the discussion
of NP effects in aµ to Section 11.7, we use this section to identify the parameter space of
our model consistent with the experimental measurement of other MDMs and EDMs.

Lepton EDM and MDM

The NP contributions to the EDM dℓi and MDM aℓi of the lepton ℓi are induced through
vertex corrections of its coupling to photons. The Feynman diagram of the corresponding
LO process is obtained when setting i = j in the diagram shown in Figure 11.4. Following
our notation from the previous section and Reference [249], its amplitude can be written
as

Mℓiℓiγ =
e

2mℓi

ϵ∗αūℓi

[
iσβαq

β
(
aRℓiℓiγPL + aLℓiℓiγPR

)]
uℓi + ϵµ∗ūℓi [σνµγ5q

νdℓi ]uℓi , (11.16)

where σβα = i[γα, γβ]/2, ϵ is the photon polarisation vector, q is the photon momentum
and PR/L = (1± γ5)/2 are projection operators. For the generic Lagrangian

Lint = cRij ℓ̄Riψϕj + cLij ℓ̄Liψϕj + h.c. , (11.17)

which we had already introduced in Equation (8.3) the NP contributions to the MDM and
the EDM36 of the lepton ℓi then read [249,252]

∆aℓi = aRℓiℓiγ + aLℓiℓiγ ,

=
mℓi

16π2

∑
k

(
mℓi

12m2
ϕk

(|cRik|2 + |cLik|2)F (xk) +
2mψ

3m2
ϕk

Re
[
cL∗ik c

R
ik

]
G(xk)

)
, (11.18)

and
dℓi = − e

16π2

∑
k

mψ

3m2
ϕk

Im
[
cRikc

L∗
ik

]
G(xk) . (11.19)

36Note that since leptonic EDMs arise at the four-loop level [250] in the SM, estimates [251] provide an
upper limit of dSMe < 10−38e cm. We hence ignore SM contributions to the lepton EDMs and denote the
NP contributions as dℓi instead of ∆dℓi .
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Here, the coefficients a
R/L
ℓiℓiγ

as well as the loop functions F and G are the same as in
the previous section and Section 8.2. We stress that an EDM dℓi is only induced if the
Lagrangian Lint from Equation (11.17) is CP-violating [253], i.e. if the couplings defined
in Equation (11.17) satisfy

Im
[
cRcL∗

]
̸= 0 . (11.20)

Since there are two charged mediators in our model, we define the two contributions

∆a1ℓi = aR,1ℓiℓiγ
+ aL,1ℓiℓiγ

, (11.21)

∆a2ℓi = aR,2ℓiℓiγ
+ aL,2ℓiℓiγ

, (11.22)

which when mapping the expressions from above to our model read

∆a1ℓi =
mℓi

16π2

∑
k

(
mℓi |λik|2
12m2

ϕk

(s2θ + |ξ|2c2θ)F (xk,1) +
mψ1s2θ |λik|2

3m2
ϕk

Re ξ G(xk,1)

)
, (11.23)

∆a2ℓi =
mℓi

16π2

∑
k

(
mℓi |λik|2
12m2

ϕk

(c2θ + |ξ|2s2θ)F (xk,2)−
mψ2s2θ |λik|2

3m2
ϕk

Re ξ G(xk,2)

)
. (11.24)

Here we have defined sθ = sin θψ, cθ = cos θψ as well as s2θ = sin 2θψ for brevity of notation
and again used xk,α = m2

ψα
/m2

ϕk
. The total NP contribution ∆aℓi to the MDM of the

lepton ℓi is then obtained by adding both contributions, i.e.

∆aℓi = ∆a1ℓi +∆a2ℓi . (11.25)

Likewise, we define the EDM dℓi of the lepton ℓi as dℓi = d1ℓi + d2ℓi yielding

dℓi = − e

16π2

∑
k

cθsθ |λik|2
3m2

ϕk

Im ξ
(
mψ2G(xk,2)−mψ1G(xk,1)

)
. (11.26)

For a non-negligible scaling parameter ξ and NP scales of O(1TeV) allowed by the LHC
constraints discussed in Section 11.1, the MDMs are dominated by contributions with a
chirality flip inside the loop in the diagram of Figure 11.4. However, these contributions
are only positive if the real part of the scaling parameter ξ is negative. At the same time
solving the (g − 2)µ anomaly requires sizeable positive NP contributions to aµ and hence
we only consider the case Re ξ < 0 in the remainder of this part.

Constraints from Dipole Moments

Regarding the experimental measurement of leptonic EDMs and MDMs the most restric-
tive constraints are related to both dipole moments of the electron. Measurements of the
electron EDM de for instance, currently yield a 90% C.L. upper limit of [211]

dmax
e = 1.1× 10−29e cm . (11.27)

In comparison, the according upper limits on the muon EDM dµ [212] and tau EDM
dτ [213] are ten orders of magnitude weaker and hence negligible. The same holds true
for the tau MDM aτ , which has not been measured precisely enough yet [158, 210, 254]
to provide meaningful constraints on NP models at all. In spite of having been measured
at a very high precision [209], the electron MDM ae on the other hand is subject to
a tension caused by disagreeing measurements of the fine-structure constant αem. This
tension ultimately yields different SM predictions aSMe for the electron MDM depending
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Figure 11.6 Constraints from the electron EDM and MDM on the DM–electron cou-
plings. In all three panels maximum mixing with θψ = π/4 is assumed. We
further set mϕ = 200GeV, mψ2 = 1300GeV and the value of mψ1 varies
according to the value of yψ. In the left panel the white dashed line shows
the contour with |λei| = 2.0.

on which value is used for αem. If the latter constant is obtained from measurements
based on 133Cs atoms [255] the difference between the SM prediction and experimental
measurement reads [256]

∆aexpe (Cs) = (−8.8± 3.6)× 10−13 , (11.28)

where ∆aexpe is generally defined as ∆aexpe = aexpe − aSMe . This corresponds to a deviation
of 2.4σ between theory and experiment. If on the other hand the value of αem is obtained
from measurements in 87Rb atoms [257], the deviation between theory and experiment
reduces to 1.6σ and reads [258]

∆aexpe (Rb) = (4.8± 3.0)× 10−13 . (11.29)

In the last section we however have fixed the scaling parameter’s sign to Re ξ < 0 in
order to obtain the correct sign for the NP corrections to the muon MDM aµ. Hence,
as a conservative approach we use the limit ∆aexpe (Rb) from Equation (11.29) in order to
further constrain our model parameters and the DM–electron couplings in particular.

In our numerical analysis of constraints from the electron EDM and MDM we follow
the same procedure as for the flavour constraints in Section 11.2. We fix all DM–electron
couplings to one universal value |λei|, demand the MDM ∆ae as well as the EDM de to
saturate their respective upper limit and draw contours in the |ξ|−yψ plane indicating the
maximally allowed values of |λei|. In terms of the NP masses we again assume maximum
mixing with θψ = π/4, set mϕ = 200GeV, mψ2 = 1300GeV and let mψ1 vary according
to the value of yψ. The results are shown in Figure 11.6.

In Figure 11.6a we show the constraints placed on the DM–electron couplings by the
electron MDM ae. Here we demand that the experimental limit is satisfied at the 2σ level,
while the white dashed line illustrates the contour with maximal couplings |λei| = 2.0. We
find that for free couplings |λei| the MDM ae can yield stringent constraints as it forces
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the DM–electron couplings to satisfy |λei| ≲ 0.60 within the range |ξ| ≳ 10−2. Combining
this result with our findings from the previous section however shows that for couplings
|λei| < 10−1 necessary to satisfy the constraints from the LFV decay µ→ eγ while allowing
for O(1) DM–muon couplings, the constraints from ae are basically rendered irrelevant.

The constraints from measurements of the electron EDM de are shown in Figure 11.6b.
In this case we show the |Im ξ| − yψ plane since the condition from Equation (11.20)
reduces to Im ξ ̸= 0 in our model. Here we find that the stringent upper limit on de
places strong restrictions on a relative phase between the left-handed and right-handed
coupling of DM to leptons. To render order O(1) DM–electron couplings together with
non-vanishing Yukawa couplings yψ viable, the scaling parameter needs to be practically
real as this demands Im ξ ≲ 10−8. If on the other hand the DM–electron couplings are
restricted to |λei| ∼ O

(
10−4 − 10−1

)
as required by the flavour constraints, we find that

the viable values for the imaginary part of the scaling parameter lie within the range
|Im ξ| ∼ O(10−4−100). We hence conclude that in combination with the flavour constraints
the EDM bound allows for an order O(1) imaginary part of ξ.

Before concluding this section we want to also comment on possible constraints on
the parameter space of our model coming from electroweak precision observables. In
general, the NP interactions of our model can induce vertex corrections to the couplings
of leptons to electroweak gauge bosons at the one-loop level. These corrections in turn
have an impact on the Fermi constant GF as well as the Z boson couplings to leptons
which potentially poses a problem for the global electroweak fit. However, we expect these
contributions to be negligible since they are suppressed by a loop factor as well as the NP
scale mNP ∼ O(TeV).

11.4 Dark Matter Relic Density

In this section we study the constraints placed on the model parameters by the observed
amount of DM in the Universe. We again consider the two benchmark scenarios for the
thermal freeze-out of DM defined in Section 3.2. After identifying and discussing relevant
annihilations during the early Universe, we conclude this section by a numerical analysis
of the relic density constraints.

DM Annihilations and Thermal Freeze-Out

A central difference between our model and DMFV models is that the mass splittings
between the different dark states ϕi are not parametrised by the coupling matrix λ in
this case due to the absence of a new flavour symmetry the NP fields can be associated
with. Hence, the parameters mϕi are basically free, which is why the definition of the two
freeze-out scenarios introduced in Section 3.2 does not depend on λ either. This means
that in our model the two freeze-out scenarios only depend on the choice of the masses
mϕi and the resulting mass splitting

∆mi3 =
mϕi

mϕ3

− 1 , (11.30)

between the lightest state ϕ3 and the heavier states with i ∈ {1, 2}. For the QDF scenario
we demand this splitting to satisfy ∆mi3 < 1%, while the SFF scenario is defined by
significant splittings 10% < ∆mi3 < 30%. Here, the upper limit is only applied in order
to keep our results comparable to our findings from the previous parts as well as studies
in the DMFV framework in general, see Section 10.2. In both scenarios we again assume
the thermal freeze-out to take place at Tf ≈ mϕ3/20.
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Figure 11.7 Representative Feynman diagrams for annihilations of the new particles
into SM matter. Here, V represents any of the SM gauge bosons γ,W,Z
but also h and we have only chosen the letter V and a curly line as most
of them are vector bosons.

The rich NP field content of this model gives rise to a variety of tree-level annihilations
of the new particles into SM matter during the early Universe, see Figure 11.7. The process
shown in Figure 11.7a only produces a pair of neutrinos ν̄kνl if the particle in the t-channel
is the neutral mediator ψ0. In Figure 11.7b we show coannihilations between dark particles
and the mediators, which only yield a neutrino and a W boson in the final state for β = 0
and α ∈ {1, 2}, while the process with α = β = 0 produces a neutrino and a Z boson.
The off-diagonal contributions with α = 1, β = 2 and vice versa produce either of the final
states ℓjZ or ℓjh, while the diagonal case α = β ∈ {1, 2} can additionally produce the
final state ℓjγ. Annihilations between the mediators ψα and ψβ are shown in Figure 11.7c
and produce final states with either two charged leptons, two neutrinos or one neutrino
and one charged lepton.

We stress that all coannihilations gathered in 11.7b are suppressed by the Boltzmann
factor

kα = e
−
mψα

−mϕ3
Tf ≃ e

−20
mψα

−mϕ3
mϕ3 , (11.31)

while the ones shown in 11.7c receive an even stronger suppression by kαkβ. We hence
neglect these contributions, since we do not consider near-degenerate scenarios between
the massesmψ2 andmϕ3 in this analysis. Following the arguments provided in the previous
part and in Chapter 10, we further neglect annihilations into a pair of Higgs bosons as well
as annihilations into a pair of top quarks mediated by an off-shell Higgs in the s-channel.
Both processes are induced by the Higgs portal coupling and are proportional to λ2Hϕ or

λ2Hϕy
2
t , respectively.

The only process that we consider when calculating the DM annihilation rate is thus
the t-channel mediator exchange shown in Figure 11.7a. Its total flavour-averaged squared
amplitude reads

|M |2 = |M0|2 + |M1|2 + |M2|2 + 2ReM12 , (11.32)

where the index represents the index of the mediator ψα exchanged in the t-channel. For
the expressions of the individual contributions Mα and the interference term M12 we find

|M0|2 =
∑
ij

∑
kl

|λik|2|λjl|2
(t−m2

ψ0
)2
f0ij , (11.33)

|M1|2 =
∑
ij

∑
kl

|λik|2|λjl|2
(t−m2

ψ1
)2
f1ijkl , (11.34)

|M2|2 =
∑
ij

∑
kl

|λik|2|λjl|2
(t−m2

ψ2
)2
f2ijkl , (11.35)
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M12 =
∑
ij

∑
kl

|λik|2|λjl|2
(t−m2

ψ1
)(t−m2

ψ2
)
f12ijkl , (11.36)

with the functions fα defined as

f0ij = |ξ|4
((
m2
ϕj

− t
) (
t−m2

ϕi

)
− ts

)
, (11.37)

f1ijkl = Aijkl (s
4
θ + |ξ|4c4θ) + c2θs

2
θ (2|ξ|2Ckl +m2

ψ1
Dkl)

+ 2cθsθmψ1 ReBijkl (s
2
θ + |ξ|2c2θ) , (11.38)

f2ijkl = Aijkl (c
4
θ + |ξ|4s4θ) + c2θs

2
θ (2|ξ|2Ckl +m2

ψ2
Dkl)

− 2cθsθmψ2 ReBijkl (c
2
θ + |ξ|2s2θ) , (11.39)

f12ijkl = s2θc
2
θ

(
Aijkl(1 + |ξ|4)−mψ1mψ2Dkl

)
+ Ckl|ξ|2 (c4θ + s4θ)

+ cθsθ
(
Bijklc

2
θ

(
mψ1 − |ξ|2mψ2

)
−B∗

ijkls
2
θ

(
mψ2 − |ξ|2mψ1

))
. (11.40)

The indices i, j, k and l are flavour indices here and we have again used the short hand
notation sθ = sin θψ and cθ = cos θψ. The expressions of the functions Aijkl, Bijkl, Ckl and
Dkl can be found in Appendix C.1 and depend on the masses mϕi ,mϕj ,mℓk and mℓl as
well as the Mandelstam variables s = (p1 + p2)

2 and t = (p1 − p3)
2.

For the calculation of the thermally averaged annihilation cross section we use the
low-velocity expansion from Equation (3.12), which in this case again reduces to

⟨σv⟩eff =
fsc
2

[
a+ b ⟨v2⟩+O

(
⟨v4⟩

)]
, (11.41)

as we have fnat = 1/2 for complex scalar DM. Also recall that the factor fsc is equal to
one in the SFF scenario while we have fsc = 1/9 for the QDF scenario. The mean velocity
square is given by ⟨v2⟩ = 6Tf/mϕ3 ≃ 0.3. Following the previous parts, we use equal
initial state state masses for the calculation of the expansion coefficients a and b in both
freeze-out scenarios. The splittings ∆mij are negligible in the QDF scenario while the
only particle that contributes to the freeze-out in the SFF scenario is ϕ3. Hence, in the
latter case the masses mϕi and mϕj in the functions Aijkl and Bijkl need to be replaced by
mϕ3 and the sum over initial state flavours needs to be omitted. In the remainder of this
section we hence use mϕ3 whenever we refer to the DM mass in both freeze-out scenarios.

In Section 8.3 we had found for the version of this model with purely right-handed
interactions between DM and leptons that the DM annihilation rate is p-wave suppressed
for zero final state masses. In this case however, DM can also annihilate in the s-wave
as it couples to both right- as well as left-handed leptons. The reason is that the p-
wave suppression of the annihilation rate in Section 8.3 ultimately represents a chirality
suppression which is trivially lifted in this model due to the additional coupling of DM to
left-handed leptons [216]. Hence, the s-wave coefficient a does not vanish and reads

a =
∑
ij

∑
kl

|λik|2|λjl|2
16πm2

ϕ3

(µ2 − µ1)
2 (µ1µ2 − 1)2 |ξ|2 sin2 2θψ(
1 + µ21

)2 (
1 + µ22

)2 , (11.42)

where we have used µα = mψα/mϕ3 . The dependence of this coefficient on the scaling
parameter ξ is due to our ansatz from Equation (10.2). In the case of non-suppressed
left-handed interactions the annihilation rate is thus dominated by this contribution. The
respective p-wave contribution for this case can be found in Appendix C.1. If in contrast
left-handed interactions are suppressed, i.e. if ξ approaches zero, we re-encounter the
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aforementioned p-wave suppression of the annihilation rate. Then, the coefficients of the
low-velocity expansion read

a = 0 , (11.43)

b =
∑
ij

∑
kl

|λik|2|λjl|2
32πm2

ϕ3

(
2 + µ21 + µ22 +

(
µ21 − µ22

)
cos 2θψ

)2(
1 + µ21

)2 (
1 + µ22

)2 . (11.44)

Note that in the limit of equal charged mediator masses mψ1 = mψ2 , i.e. for yψ = 0 the
p-wave coefficient b reduces to the expression which we had found for the model studied in
Part III, see Equation (8.25)37. Also note that while all the coefficients above are given for
vanishing lepton masses, we use the expressions with the full final state mass dependence
in our numerical analysis.

Constraints from the DM Relic Density

In order to study the relic density constraints numerically we calculate the thermally
averaged annihilation rate ⟨σv⟩eff from Equation (11.41) for randomly generated points
of our parameter space and compare it with the value necessary to obtain the correct
abundance of DM. The latter rate is approximately constant for DM massesmϕ3 > 10GeV
and reads [162,163]

⟨σv⟩expeff = 2.2× 10−26 cm3 s−1 . (11.45)

We consider points that yield rates which equal this value within a 10% tolerance range as
viable. For the calculation of ⟨σv⟩eff we always include both the s- and p-wave contribution
containing the full final state mass dependence. The lepton masses are adopted from Ref-
erence [158]. Due to our findings from Section 11.2 we restrict the DM–electron couplings
to |λei| ∈ [10−6, 10−1] when generating random points in the parameter space of our model
and the value of yψ is randomly generated within the range yψ ∈ [0, 2]. Regarding the
scaling parameter ξ we restrict the analysis to the two cases |ξ| = 0.01 and |ξ| = 1.00,
i.e. we consider the two limiting cases of a significant suppression and no suppression of
left-handed interactions between DM and leptons. The results are gathered in Figure 11.8
and 11.9.

In Figure 11.8 we show the restrictions that the relic density constraints place on the
coupling matrix λ in the SFF scenario. Here we have assumed maximum mixing, i.e. we
have set mΨ = mψ which yields θψ = π/4. The DM mass is fixed to mϕ3 = 600GeV while
the gauge eigenstate mass parameters mΨ = mψ vary. Since we generally consider DM
masses that satisfy mϕ3 ≫ mℓi in our analysis, the relic density constraint reduces to the
spherical condition

|λe3|2 + |λµ3|2 + |λτ3|2 ≈ const. , (11.46)

for the SFF scenario. At the same time we satisfy the flavour constraints by restricting
the DM–electron couplings to be suppressed, which further reduces this condition to

|λµ3|2 + |λτ3|2 ≈ const. (11.47)

This explains the discrete circular bands in the in the |λµ3|−|λτ3| plane in Figure 11.8. The
width of these bands corresponds to the 10% tolerance region that we allow for when com-
paring our annihilation rate with ⟨σv⟩expeff . Regarding the choice for the scaling parameter
ξ we find that suppressed left-handed interactions with |ξ| = 0.01 require larger couplings

37Note the different definitions of the mass ratio µ, which in Equation (8.25) is defined as the inverse
squared of the definition we use here.
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(a) |ξ| = 1.00 (b) |ξ| = 0.01

Figure 11.8 Constraints on |λµ3| and |λτ3| from the observed DM relic density in the
SFF scenario for maximum mixing with θψ = π/4. The DM mass is set to
mϕ3 = 600GeV and the mass parameters mΨ = mψ vary.

to satisfy the constraint since in this case the annihilation rate is p-wave suppressed. This
can be seen in Figure 11.8b. If in contrast left-handed interactions may be sizeable, the
p-wave suppression is lifted and the correct annihilation rate can also be obtained with
comparably smaller couplings, see Figure 11.8a. We stress that DM annihilations into a
pair of neutrinos through the t-channel exchange of the neutral mediator ψ0 only lead to
sub-dominant contributions for both choices of |ξ|. As this annihilation channel is purely
governed by left-handed interactions, it is chirality-suppressed for any choice of ξ and only
contributes to the p-wave. For the case of non-suppressed left-handed interactions with
|ξ| = 1.00 these annihilations are thus sub-leading to the contribution from annihilations
into a pair of leptons in the s-wave given in Equation (11.42). In the case of suppressed
left-handed couplings with |ξ| = 0.01, the additional annihilation channel into a pair of
neutrinos does not yield relevant contributions at all, since it is proportional to |ξ|4. In
Figure 11.8 we further see that for both choices for the scaling parameter ξ growing masses
mψ = mΨ require larger couplings. This is due to the 1/m2

ψα
suppression of the s-wave

coefficient a and the 1/m4
ψα

suppression of the p-wave coefficient b, respectively. We also
note that moving away from the case of maximum mixing between ψ1 and ψ2, i.e. con-
sidering cases with mψ ̸= mΨ has no qualitative impact on our findings. This behaviour
is trivial for suppressed left-handed interactions with |ξ| = 0.01, since in this case the re-
strictions on λ solely depend on mψ, which is the mass parameter of the gauge eigenstate
ψ′
2 that couples the dark scalars to right-handed leptons. For the case of non-suppressed

left-handed interactions we find that the case mψ ̸= mΨ increases the mass splitting

∆mψ = mψ1 −mψ2 =
√
(mΨ −mψ)2 + 2y2ψv

2 , (11.48)

which the s-wave coefficient a is proportional to, while it at the same time increases the
1/m2

ψα
suppression of a. Ultimately, this increased suppression dominates over the growth

in ∆mψ when choosing mΨ ̸= mψ, such that the interplay of both effects only leads to a
small shift of the contours from Figure 11.8a to larger couplings in this case.
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(a) QDF scenario (b) SFF scenario

Figure 11.9 Viable masses mψ2 and mϕ3 for both freeze-out scenarios. The red points
correspond to the case of a significant suppression of left-handed interac-
tions and the blue points correspond to the case of no suppression.

In the QDF scenario the relic density constraints restrict all entries of the coupling
matrix λ as they demand it to satisfy∑

ij

|λij |2 ≈ const. , (11.49)

in the case of negligible lepton masses. As this condition yields much less apparent con-
straints, we waive showing them here but instead comment on the most important features
of the parameter space that we find to be viable. The condition from above demands the
couplings |λij | to form the shell of a nine-dimensional sphere, which is why the outer edge
of the contours from Figure 11.8a is also present in the QDF case. However, the QDF
freeze-out leads to smaller DM annihilation rates in general, which is due to the flavour-
averaging factor fsc = 1/9.38 Hence, in this scenario the outer edge is shifted towards larger
couplings. Due to the higher dimensionality of the relevant parameter space, we further
find that in spite of suppressed DM–electron couplings the contours in the |λµ3| − |λτ3|
plane do not exhibit an inner edge in this freeze-out scenario, i.e. both |λµ3| and |λτ3| may
become arbitrarily small at the same time.

Figure 11.9 illustrates the restrictions that the relic density constraints place on the
NP masses. We here only show the mψ2 −mϕ3 plane as the largest contributions to the
annihilation rate come from processes where the light charged mediator ψ2 is exchanged
in the t-channel. Diagrams with a ψ1-exchange suffer from an additional suppression by
a larger NP scale since we conventionally chose mψ1 > mψ2 . We find that for the case of
suppressed left-handed interactions (red points) a lower limit arises for the value of the DM
mass mϕ3 in both scenarios. This is due to the p-wave suppression of the DM annihilation
rate for |ξ| = 0.01. For negligible lepton masses, i.e. in the case mℓ ≪ mϕ3 ≪ mψ2 the

38The origin of this flavour-averaging factor was explained in Section 3.2.
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p-wave coefficient b behaves like39

b =
∑
ij

∑
kl

|λik|2|λjl|2
16π

m2
ϕ3

m2
ψ1
m2
ψ2

, (11.50)

and hence the DM mass mϕ3 may not be arbitrarily small in order to compensate for the
velocity suppression of the annihilation rate. As can be seen in Figure 11.9 and inferred
from the expression above, this lower limit on mϕ3 increases with growing mediator masses
mψ1,2 since the annihilation rate is suppressed by the latter. Comparing Figure 11.9a
and 11.9b we find that in the QDF scenario the lower limit on mϕ3 is more stringent,
due to the generally smaller annihilation rate in this freeze-out case. If on the other hand
left-handed interactions are not suppressed (blue points), DM can also annihilate in the
s-wave which is why the above discussed lower limit on mϕ3 is absent in this case. Here
we find that even very large values for mψ2 allow for any DM mass mϕ3 < mψ2 .

11.5 Dark Matter Detection Experiments

Our previous analyses in this work as well as earlier studies in the DMFV framework [20–
24] have shown that flavoured DM models can be subject to restrictive constraints from
direct detection experiments. Even for the case of lepton-flavoured DM, where the leading
contributions to DM–nucleon scattering arise at the one-loop level, we found this statement
to hold true in Part III of this work. As far as constraints from indirect detection are con-
cerned, we there found for the version of this model with purely right-handed interactions
that the p-wave suppression of the DM annihilation rate renders them irrelevant for large
parts of the parameter space. However, since in this model DM is additionally coupled
to left-handed leptons, we expect constraints from both direct as well as indirect detec-
tion experiments to be more restrictive, since the new left-handed interactions between
DM and leptons do not only lead to additional contributions to DM–nucleon scatterings
but most importantly also lift the p-wave suppression of the DM annihilation rate. We
hence use this section and examine constraints coming from direct and indirect detection
experiments.

Relevant Processes for Direct Detection

In Section 8.4 we have discussed in detail that in spite of generally exhibiting a rich
direct detection phenomenology, the most stringent constraints for lepton-flavoured DM
are related to DM–nucleon scattering. Constraints from other processes such as DM–
atom or DM–electron scattering can be safely neglected, as these either suffer from a
severe wave-function suppression [214] or as they are only relevant for sub-MeV DM [215].

Following these findings we thus focus on DM–nucleon scattering here. Relevant contri-
butions to this process are generated through the one-loop penguins shown in Figure 11.10.
The penguin diagram shown in Figure 11.10a is only mediated by a photon γ if the medi-
ators in the loop are charged and carry the same index α = β ∈ {1, 2}. All other diagrams
included in this figure are mediated by a Z boson and we also note that only if the indices
satisfy α = β = 0 the lepton in the loop is a neutrino νi. Most importantly, all Z pen-
guin contributions are proportional to the external momentum and can hence be safely
neglected. The Higgs mediated penguin diagram shown in Figure 11.10b only exist for the

39Recall that the sum over initial state flavours is absent for the SFF case and the initial state flavour
indices satisfy i = j = 3.
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φ3

φ3 N

N

ℓi, νi

ψβ

ψα

γ, Z

(a) one-loop DM–nucleon scattering me-
diated by γ or Z

φ3

φ3 N

N

ℓi

ψβ

ψα

h

(b) one-loop DM–nucleon scattering me-
diated by h

Figure 11.10 Representative Feynman diagrams of relevant interactions for direct de-
tection signals. Note that for both penguins there is also a diagram with
two leptons and one mediator in the loop where the bosons are emitted
from the two leptons.

cases α, β ∈ {1, 2}. Diagrams in which the Higgs boson is emitted from two charged lep-
tons in the loop are negligible, since these processes are proportional to yℓiyN |λi3|2, where
yN ≃ 0.3 is the Higgs-nucleon coupling [194]. On the other hand, the case where the
Higgs boson is emitted from two charged mediators is proportional to yψyN |λi3|2 and can
thus become potentially sizeable. However, we find that the amplitude of this diagram is
divergent and contributes to the renormalisation of the Higgs portal coupling λHϕ, which
induces tree-level scatterings between DM and nucleons where a Higgs boson is exchanged
in the t-channel.40 In line with the arguments provided in Chapter 10, we use our freedom
towards the quartic coupling λHϕ and always choose it in such a way that the tree-level
and one-loop contributions cancel.

Thus, the only relevant contribution that we consider for the calculation of the DM–
nucleon scattering rate is the one-loop photon penguin diagram shown in Figure 11.10a.
This process is induced by the charge-radius operator given in Equation (8.30). In the
limit of negligible lepton masses mℓ ≪ mϕ3 the matched Wilson coefficients fγ,1 and fγ,2
of the contributions with the charged mediators ψ1 and ψ2 in the loop read [190]

fγ,1 = −
∑
i

e |λi3|2
(
s2θ + |ξ|2c2θ

)
16π2m2

ψ1

[
1 +

2

3
log

(
m2
ℓi

m2
ψ1

)]
, (11.51)

fγ,2 = −
∑
i

e |λi3|2
(
c2θ + |ξ|2s2θ

)
16π2m2

ψ2

[
1 +

2

3
log

(
m2
ℓi

m2
ψ2

)]
. (11.52)

The expressions above do not include contributions with a chirality flip inside the loop,
since for closed loops these are proportional to the mass of the lepton in the loop and are
therefore negligible. Also note that the mass mℓi needs to be replaced by the momentum
transfer |q⃗| = O(3− 10)MeV for first generation leptons in the loop, i.e. in the case i = 1,
since the momentum transfer |q⃗| is much larger than the electron mass me [190]. The
averaged SI DM–nucleon scattering cross section is given in terms of these two coefficients
and reads

σSI =
Z2 e2 µ2

8π A2
|fγ,1 + fγ,2|2 , (11.53)

where Z and A are the atomic and mass numbers of the nucleon while µ is the reduced
mass of the DM–nucleon system defined as µ = mNmϕ3/(mN +mϕ3).

40For large parts of the parameter space this contribution is comparable to the photon penguin for
λHϕ ∼ O(1) couplings, see Appendix C.2 for details.
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(a) |ξ| = 1.00 (b) |ξ| = 0.01

Figure 11.11 Direct detection constraints on |λµ3| and |λτ3| for both choices of |ξ|
and various values for mΨ = mψ, while assuming maximum mixing with
θψ = π/4. The DM mass is fixed to mϕ3 = 200GeV.

Constraints from Direct Detection

To determine the parameter space of our model that is consistent with constraints from
direct detection experiments we calculate the DM–nucleon scattering rate through Equa-
tion (11.53) for randomly generated points and compare it with the experimental upper
limit on WIMP–nucleon scattering. The most stringent limits for the latter interactions
are set by the XENON1T experiment [177] and are given at 90% C.L. We again neglect
the impact of Xenon isotopes here, since Reference [21] found it to be small. For the lepton
masses we use the values adopted from Reference [158] and we further set the momen-
tum transfer mentioned above to |q⃗| = 10MeV. When generating random points in the
parameter space of our model, we follow our findings from Section 11.2 and restrict the
DM–electron couplings to |λei| ∈ [10−6, 10−1]. Note that due to the absence of a flavour
symmetry in this model, the mass hierarchy between the different dark scalars is not driven
by the coupling matrix λ. Hence, in contrast to the models studied in the previous parts of
this work the direct detection constraints carry no dependence on the freeze-out scenario
in this case.

In Figure 11.11 we show the restrictions that the direct detection constraints place
on the model parameters. We again consider the case of maximum mixing between the
charged mediators ψ1 and ψ2 and let the mass parameters mψ = mΨ vary while the
DM mass is fixed to mϕ3 = 200GeV. We do not show varying DM masses here, since
the DM–nucleon scattering rate from Equation (11.53) does not depend on the DM mass
mϕ3 . The reason is that for mϕ3 ≫ mN the reduced mass of the DM–nucleon system
is approximately µ ≈ mN . However, for mϕ3 > 30GeV growing DM masses yield a less
stringent experimental upper limit and hence increasing DM masses trivially allow for
larger couplings. In Figure 11.11 we observe the same behaviour for increasing mediator
masses mψ = mΨ or mψα , respectively

41, which is due to the 1/m2
ψα

suppression of the

41Recall that the masses mψ1 and mψ2 denote the mass parameters of the mass eigenstates ψ1 and ψ2

while mψ and mΨ are respective mass parameters of the gauge eigenstates ψ′
1 and ψ′

2.
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(a) t-channel annihilation to ℓℓ̄γ
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Figure 11.12 Representative Feynman diagrams for relevant higher-order annihilation
processes. The index only refers to charged mediators, i.e. α ∈ {1, 2}.

Wilson coefficients fγ,α. Hence, for both choices of the scaling parameter ξ the distribution
of viable points in the |λµ3|−|λτ3| plane in Figure 11.11 is shifted towards larger values for
increasing masses mΨ = mψ. Regarding the dependence on the scaling parameter ξ, the
case of suppressed left-handed interactions shown in Figure 11.11b trivially allows for larger
couplings than the case of non-suppressed left-handed couplings shown in Figure 11.11a.
With respect to the overall size of the couplings we find that due to the logarithmic
dependence of the coefficients fγ,α on the lepton mass mℓi the DM–tau coupling |λτ3| may
grow larger than the DM–muon coupling |λµ3|, since the muon mass is much smaller than
the tau mass. We do not show the DM–electron coupling here as we assumed it to be
small in order to satisfy the stringent flavour constraints discussed in Section 11.2.

Relevant Processes for Indirect Detection

For the discussion of constraints from indirect DM detection experiments we follow our
analysis from Section 8.4 and include the higher order diagrams shown in Figure 11.12
to the calculation of the DM annihilation rate. These diagrams may become particularly
relevant for the case |ξ| = 0.01, i.e. the case with suppressed left-handed interactions, since
for this choice the DM annihilation rate is p-wave suppressed. As the DM halo velocity
in the Milky Way today reads ⟨v2⟩ ≃ 10−6, the p-wave contribution is severely velocity
suppressed which renders the inclusion of the diagrams shown in Figure 11.12 necessary
in order to provide a thorough analysis of the indirect detection phenomenology.

The annihilation of two dark scalars into two leptons and a photon is shown in Fig-
ure 11.12a and lifts the p-wave suppression of according tree-level annihilations without
a photon in the final state [259]. This process is proportional to αem/π ∼ 10−3 while
the box diagram of Figure 11.12b is even further suppressed by α2

em/(4π)
2 ∼ 10−7, but

gives comparable contributions to the overall annihilation rate in parts of the parameter
space. Both processes are not relevant for the thermal freeze-out of DM, since the veloc-
ity suppression during the early Universe is significantly less severe than today and reads
⟨v2⟩ ≃ 0.3.

Since there are two charged mediators in our model, we write

⟨σv⟩γγ = ⟨σv⟩1γγ + ⟨σv⟩2γγ + 2⟨σv⟩12γγ , (11.54)

for the total rate of the 2 → 2 process shown in Figure 11.12b. Here the superscript denotes
the contributions from diagrams with either ψ1 or ψ2 in the loop and the interference term
between both diagrams. Just as for the penguin diagram from Figure 11.10a, contributions
from processes with a chirality flip inside the loop again vanish since we consider the
chiral limit mℓ → 0 [217]. In this limit, the expressions of the single contributions from
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Equation (11.54) read [217]

⟨σv⟩1γγ =
α2
em

(
s2θ + |ξ|2c2θ

)2
64π3m2

ϕ3

(∑
i

|λi3|2
)2

|B(µ1)|2 , (11.55)

⟨σv⟩2γγ =
α2
em

(
c2θ + |ξ|2s2θ

)2
64π3m2

ϕ3

(∑
i

|λi3|2
)2

|B(µ2)|2 , (11.56)

⟨σv⟩12γγ =
α2
em

(
c2θ + |ξ|2s2θ

) (
s2θ + |ξ|2c2θ

)
64π3m2

ϕ3

(∑
i

|λi3|2
)2

|B(√µ1µ2)|2 , (11.57)

where the loop function B is defined as

B(µα) = 2− 2 log

[
1− 1

µα

]
− 2µα arcsin

[
1√
µα

]2
, (11.58)

with µα = ψ2
α/m

2
ϕ3
. We also decompose the total annihilation rate of the 2 → 3 process

shown in Figure 11.12a by writing

⟨σv⟩ℓℓ̄γ = ⟨σv⟩1ℓℓ̄γ + ⟨σv⟩2ℓℓ̄γ + 2⟨σv⟩12ℓℓ̄γ . (11.59)

Similar to the penguin and box diagrams from Figure 11.10a and 11.12b, respectively,
contributions with a chirality flip on either of the final state leptons vanish for this process
in the chiral limit. While not vanishing identically, the process with a chirality flip on
the virtual mediator in the t-channel however only yields p-wave suppressed contributions
and can thus be safely neglected. This p-wave suppression is due to the conservation of
the total angular momentum, since the annihilation of two scalars in the s-wave implies
J = 0 while the photon only has two polarisations with Jz ∈ {−1, 1}.42 On the other
hand, the calculation of the interference term between the contributions from ψ1 and ψ2

is much less trivial than for the box diagram of Figure 11.12b due to the three-body
phase space. Following the techniques provided by References [262,263] we have obtained
an expression for ⟨σv⟩12

ℓℓ̄γ
that can be found in Appendix C.3 and was tested to yield

the correct total annihilation rate ⟨σv⟩ℓℓ̄γ in the limit |ξ| = yψ = 0. The other two
contributions in Equation (11.59) are given by [259,264]

⟨σv⟩1ℓℓ̄γ =
αem

(
s2θ + |ξ|2c2θ

)2
32π2m2

ϕ3

∑
ij

|λi3|2|λj3|2A(µ1) , (11.60)

⟨σv⟩2ℓℓ̄γ =
αem

(
c2θ + |ξ|2s2θ

)2
32π2m2

ϕ3

∑
ij

|λi3|2|λj3|2A(µ2) , (11.61)

where the phase space function A(µα) is defined as

A(µα) = (µα + 1)

(
π2

6
− log2

[
µα + 1

2µα

]
− 2Li2

[
µα + 1

2µα

])
+

4µα + 3

µα + 1
+

4µ2α − 3µα − 1

2µα
log

[
µα − 1

µα + 1

]
. (11.62)

In this expression Li2(z) is the dilogarithm and we have again used µα = ψ2
α/m

2
ϕ3
. The

annihilation rate for the tree-level process ϕ3ϕ
†
3 → ℓ̄iℓj is the same as the one that we

obtained for the thermal annihilation rate in the SFF scenario in Section 11.4.
42Note that this finding holds true for any 2 → 3 annihilation process with a massless vector boson in

the final state, where the according 2 → 2 process without the vector boson is p-wave suppressed. A well
known example with different spin statistics are according annihilations of neutralino DM in SUSY, see
References [260,261].
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Constraints from Indirect Detection

For the numerical analysis of the indirect detection limits we follow the same approach
as in Section 8.4 and consider constraints derived from the positron flux and the γ-ray
continuum as well as line spectrum. The constraints for the positron flux are based on
AMS-02 measurements and given in form of an upper limit ⟨σv⟩max

ē on the annihilation
rate into final states with positrons [221]. Based on Fermi-LAT measurements of the
γ-ray continuum spectrum, Reference [222] provides an equivalent upper limit ⟨σv⟩max

τ

for annihilations into final states with tau flavour. Lastly, Reference [223] has calculated
an upper limit ⟨σv⟩max

γ for annihilations into photons with a line-like energy spectrum
based on Fermi-LAT and H.E.S.S. measurements of the γ-ray line spectrum. Note that
the limit on the positron flux signal is mainly dominated by prompt positrons, while the
limit on continuum γ-rays mainly constrains the production of taus and antitaus, since
they produce significantly more photons than muons and electrons. Thus, to provide
constraints on our model parameters we define the three annihilation rates

⟨σv⟩ē =
∑
ℓ

(⟨σv⟩ℓē + ⟨σv⟩ℓēγ) , (11.63)

⟨σv⟩τ = ⟨σv⟩τ τ̄ + ⟨σv⟩τ τ̄γ +
1

2

∑
ℓ=e,µ

(
⟨σv⟩ℓτ̄ + ⟨σv⟩ℓ̄τ + ⟨σv⟩ℓτ̄γ + ⟨σv⟩ℓ̄τγ

)
, (11.64)

⟨σv⟩γ =
∑
ℓ

⟨σv⟩ℓℓ̄γ + 2⟨σv⟩γγ , (11.65)

and compare them with the respective limits. Here we have included the radiative correc-
tions shown in Figure 11.12a in the rates ⟨σv⟩ē and ⟨σv⟩τ , since we expect the shift in the
mϕ3 dependence of the three-body final state in comparison with the two-body final state
to be negligible. The factor of 1/2 for final states with a single tau or antitau in ⟨σv⟩τ is
due to the fact that ⟨σv⟩max

τ was derived for annihilations into a tau–antitau pair.
In order to illustrate the indirect detection constraints in dependence of the NP masses

mϕ3 and mψ2 we set the DM–lepton couplings to a universal value |λi3| = |λℓ3|, calculate
all three rates from above and compare them with the respective experimental upper limit.
We then draw contours in the mψ2 −mϕ3 plane which correspond to the maximum allowed
value of |λℓ3| for which the respective experimental limit is saturated. With respect to the
mass spectrum we assume the mixing between ψ1 and ψ2 to be maximal corresponding to
θψ = π/4, which fixes the mass of the heavy charged mediator to mψ1 = mψ2 +

√
2yψv for

given values of mψ2 . The results of this procedure are gathered in Figure 11.13, where we
show the case of non-suppressed left-handed interactions with |ξ| = 1.00. Both annihilation
rates ⟨σv⟩ē and ⟨σv⟩τ are dominated by the s-wave contribution from Equation (11.42),
which is proportional to the mass difference ∆mψ = mψ1 − mψ2 =

√
2yψv. Hence, in

Figure 11.13a and 11.13b we have set the mediator–Higgs Yukawa coupling to its maximum
value yψ = 2.0 in order to determine the largest possible constraints. In Figure 11.13c
we have set yψ = 0, since ⟨σv⟩γ does not depend on ∆mψ and hence increasing values of
yψ only lead to a larger mass mψ1 for fixed values of mψ2 . This in turn suppresses the
contributions of relevant diagrams with ψ1 in the t-channel or loop, respectively, which
ultimately yields less stringent constraints. The white dashed line indicates the region,
where we expect the indirect detection constraints to become relevant, as the DM–lepton
couplings are required to be smaller than the maximally allowed value |λℓ3| = 2.0 within
the area enclosed by this line and the equal mass threshold.

We find that constraints based on measurements of the γ-ray continuum spectrum
shown in Figure 11.13b are the most stringent ones. They yield restrictions on |λℓ3|
for DM masses mϕ3 ≲ 600GeV over the complete range of mediator masses mψ2 . In
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(c) constraints from the γ line spectrum

Figure 11.13 Restrictions on the model parameters from indirect detection experiments
for non-suppressed left-handed interactions. In all three panels we assume
maximum mixing with θψ = π/4. The area included by the white dashed
line and the equal mass diagonal indicates in which mass regime the con-
straints are relevant.

comparison, we find the constraints on the positron flux shown in Figure 11.13a to be
only relevant for DM masses mϕ3 ≲ 450GeV. On the other hand, we see in Figure 11.13c
that searches in the γ-ray line spectrum are relevant close to the equal mass threshold,
where for mψ2

≲ 1200GeV these limits can also become relevant for larger mass splittings
between mψ2 and mϕ3 in parts of the mψ2 −mϕ3 plane.

We do not show the case of suppressed left-handed couplings with |ξ| = 0.01 here
but relegate it to Appendix C.3, since in this case the resulting exclusion contours are
exactly the same as the ones we obtained for the purely right-handed version of this model
in Section 8.4. There we had found that the indirect detection constraints are generally
weak due to the p-wave suppression of tree-level annihilations ϕ3ϕ

†
3 → ℓ̄iℓj . In summary we

conclude that in spite of yielding much more stringent restrictions on the model parameters
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(a) |ξ| = 1.00 (b) |ξ| = 0.01

Figure 11.14 Viable massesmψ2 andmϕ3 while satisfying all constraints simultaneously.
We show both freeze-out scenarios and both cases of |ξ|. The grey area
shows the largest possible exclusion from LHC searches for same-flavour
final states ℓℓ̄+ /ET with ℓ = e, µ discussed in Section 11.1 and corresponds
to the case |λℓ3| = 2.0, |λτ3| = 0.0 and yψ = 0.25.

for non-suppressed left-handed interactions with |ξ| = 1.00, the indirect detection limits
are still rather mild in comparison to the constraints from LFV decays, the DM relic
density or direct DM detection experiments.

11.6 Combined Analysis

We use this section to perform a combined analysis of all experimental constraints discussed
above in order to identify the viable parameter space of our model. We generate random
points and demand that all relevant limits are satisfied simultaneously. The results of this
combined numerical analysis are shown in Figures 11.14–11.16.

In Figure 11.14 we show viable points in the mψ2 − mϕ3 plane for both freeze-out
scenarios and both cases of |ξ|. The constraints that LHC searches place on these two
masses are shown in form of the grey exclusion contour.43 Regarding the latter, we find
that only for the QDF scenario (red points) LHC searches exclude additional parameter
space for both choices of the scaling parameter ξ.

For the SFF scenario (blue points) we find that the viable masses in Figure 11.14 are
roughly the same for both suppressed as well as non-suppressed left-handed interactions.
The distribution of the viable points in this case is mainly determined by the interplay of
direct detection and relic density constraints. In both cases, |ξ| = 1.00 and |ξ| = 0.01 we
find a lower bound on the DM mass mϕ3 for a given value of mψ2 . For suppressed left-
handed interactions this lower bound was already present in Figure 11.9 where we have
solely considered the relic density constraints. In Figure 11.14, we find that this lower

43Strictly speaking these limits do not straightforwardly apply here, since they assume e−µ universality
while we have limited the DM–electron couplings to |λei| ∈ [10−6, 10−1] and allow for abitraty DM–muon
couplings in the combined analysis. We hence expect the actual exclusion from LHC searches to be smaller
than the area shown in Figure 11.14 and only include it here for illustration purposes.
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(a) |ξ| = 1.00 (b) |ξ| = 0.01

Figure 11.15 Viable couplings |λτ3| and |λµ3| while satisfying all constraints simulta-
neously in the SFF scenario for both cases of |ξ|. We assume maximum
mixing with θψ = π/4. The DM mass is fixed to mϕ3 = 700GeV and the
mass parameters mΨ = mψ vary.

bound on mϕ3 is strengthened since the DM–lepton couplings are additionally restricted
by the direct detection bound here and may not grow arbitrarily large. Due to the same
reason we encounter a lower limit on mϕ3 for non-suppressed left handed couplings with
|ξ| = 1.00—for the maximum coupling strengths allowed by the direct detection constraints
the DM mass needs to be accordingly large in order to enhance the DM annihilation rate
sufficiently and satisfy the relic density limit. For both choices of the scaling parameter
ξ we find that this interplay requires mψ2

≳ 800GeV and mϕ3 ≳ 600GeV in order to
satisfy both the direct detection and relic density constraints at the same time. Smaller
mediator masses mψ2

≲ 800GeV are excluded for both choices of |ξ|, since in this region
the direct detection constraints force the DM–lepton couplings |λℓ3| to be so small that
even for maximum DM masses mϕ3 ≈ mψ2

44 the resulting DM annihilation rate is too
small to satisfy the relic density bound.

In the QDF scenario (red points) the distribution of the viable masses in Figure 11.14
follows a similar pattern as for the SFF scenario. While the overall picture is again
determined by the direct detection and relic density constraints, we find that in this case
the region of viable mediator masses is extended to include the range 400GeV ≲ mψ2

≲

800GeV. The reason is that in this freeze-out scenario the relic density constraint can
in principle also be satisfied through annihilations of the heavier dark states ϕ1 and ϕ2
alone. As the direct detection bound solely constrains the couplings of ϕ3, the correct
DM annihilation rate can also be obtained for comparably small mediator masses mψ2

≲

800GeV since the couplings of ϕ1 and ϕ2 may still be sizeable. Regardless of the choice
of |ξ|, the lower limit on the DM mass mϕ3 is also present in this freeze-out scenario for
the same reasons as for the SFF scenario discussed above.

In Figure 11.15 we show the viable values for |λτ3| and |λµ3| in the SFF scenario for both
cases of |ξ| and for maximum mixing between ψ1 and ψ2. In both cases the distribution

44Note that scenarios with such small mass splittings between mϕ3 and mψ2 are not properly treated
in our analysis, since we have neglected coannihilations in Section 11.4.
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(a) |ξ| = 1.00 (b) |ξ| = 0.01

Figure 11.16 Viable couplings |λτ3| and |λµ3| while satisfying all constraints simulta-
neously in the QDF scenario for both cases of |ξ|. We assume maximum
mixing with θψ = π/4. The DM mass is fixed to mϕ3 = 700GeV and the
mass parameters mΨ = mψ vary.

of viable points is mainly determined by the flavour, relic density and direct detection
constraints. Since we have limited the DM–electron couplings to |λei| ∈ [10−6, 10−1], the
relic density constraint approximately requires the DM–muon and DM–tau couplings to
satisfy the circular condition

|λµ3|2 + |λτ3|2 ≈ const. , (11.66)

which causes the discrete bands that can be observed in Figure 11.15. The inner edge of
these bands is due to negligible DM–electron couplings, while the outer edge is due to the
relic density bound over large parts of the parameter space. If however the DM–muon
coupling |λµ3| exceeds an mψ-dependent threshold, the direct detection constraints start
to dominate over the relic density limit, giving rise to the spikes at the upper end of
the bands. The limits from direct detection only dominate for large enough DM–muon
couplings |λµ3|, since due to the logarithm of the mass mℓi in Equation (11.51) and (11.52)
they are generally more stringent for light leptons in the loop. Regarding the choice of the
scaling parameter ξ, we find that the case of suppressed left-handed interactions shown
in Figure 11.15b requires larger couplings |λµ3| and |λτ3|. This is mainly due to the
p-wave suppression of the DM annihilation rate but also due to suppressed left-handed
contributions to the DM–nucleon scattering cross section. The choice of |ξ| has thus
important implications for the flavour of DM. While the case of e-flavoured DM is generally
excluded due to the severe restrictions from LFV decays on the DM–electron couplings45

for both choices of |ξ|, we find that the case |ξ| = 1.00 mainly requires τ -flavoured DM
while for |ξ| = 0.01 a significant part of the viable parameter space also corresponds to µ-
flavoured DM. The latter finding especially holds true for mediator masses mψ ≳ 1400GeV

45Remember that in the most general case the flavour constraints could also be satisfied by accordingly
restricted DM–muon couplings. However, in this analysis we disregard such scenarios since we ultimately
want to solve the (g − 2)µ anomaly.
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for which µ- and τ -flavoured DM are equally favoured. For the case of non-suppressed left-
handed interactions we find that only a tiny part of the viable parameter space represents
µ-flavoured DM for masses mψ ≳ 1300GeV.

The viable points in the |λτ3| − |λµ3| plane are shown for the QDF scenario in Fig-
ure 11.16. In this case we find their distribution to be much less pronounced, since the
relic density constraints restrict each entry of the coupling matrix λ. As all dark species
contribute to the thermal freeze-out of DM, the correct DM annihilation rate can in this
scenario also be obtained through annihilations of the heavier states ϕ1 and ϕ2 alone,
which is why the dominant constraints on the DM–lepton couplings |λµ3| and |λτ3| stem
from direct detection. For non-suppressed left-handed couplings with |ξ| = 1.00 shown in
Figure 11.16a this holds true for each choice of mΨ = mψ. In the case |ξ| = 0.01 shown in
Figure 11.16b the relic density constraints yield a lower limit on the couplings |λτ3| and
|λµ3| for sizeable mediator masses mψ ≳ 1600GeV. This is due to the p-wave suppression
of the DM annihilation rate in this case, which together with such large mediator masses
requires sizeable couplings in order to yield the correct DM relic density. Regarding the
flavour of ϕ3 we find that in the QDF scenario both µ- as well as τ -flavoured DM is viable.
Here, the latter case is slightly favoured over the former, due to stronger direct detection
constraints for DM coupling predominantly to muons.

11.7 Muon Anomalous Magnetic Moment

As already mentioned in Chapter 10 we propose this model as a joint solution for the DM
problem and the long-standing muon (g − 2) anomaly. After having identified its viable
parameter space in the last section, we are now prepared to examine if NP contributions
to aµ sizeable enough to solve the latter anomaly can be generated within our model.

Theoretical Approach

Precision measurements of the muon anomalous magnetic moment [26, 208] yield a world
average of

aexpµ = (116592061± 41)× 10−11 , (11.67)

while state-of-the-art SM calculations [225–244] predict the value [27]

aSMµ = (116591810± 43)× 10−11 . (11.68)

Comparing both of these values accounts to a difference of

∆aexpµ = aexpµ − aSMµ = (2.51± 0.59)× 10−9 , (11.69)

which corresponds to a 4.2σ deviation46 between the theory prediction and experimental
measurement. We interpret this tension as a hint at NP and propose that the missing
contributions ∆aexpµ originate from our model.

In the latter, the NP contributions ∆aµ are generated through the diagram shown in
Figure 11.4 with ℓi = ℓj = µ and read

∆aµ = ∆a1µ +∆a2µ . (11.70)

46Using recent lattice determinations of the hadronic vacuum polarisation significantly softens the
tension between data and the SM [265–268]. However, in that case, a tension emerges in low-energy
σ(e+e− → hadrons) data [269–271] that requires further investigation. We hence disregard the lattice
results and consider the discrepancy as given in Equation (11.69) in this analysis.
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Figure 11.17 Representative Feynman diagrams for NP contributions ∆mµ to the muon
mass.

Here, a single summand ∆aαµ denotes the contribution coming from the charged mediator
ψα and the respective expression of each contribution is obtained by setting i = 2 in
Equation (11.23) and (11.24). Since the operator that induces the magnetic moment of
the muon given in Equation (11.16) involves both chiralities, contributions to ∆aµ with
a chirality flip inside the loop receive a strong enhancement. In our model, the source
of these chirality-flipping contributions is the parameter yψ, which couples the fields Ψ
and ψ′

2 to the SM Higgs doublet and thereby induces a mixing between the two charged
mediators. In contrast to contributions with a chirality flip on an external muon line,
these diagrams are hence not proportional to the muon mass mµ but to the mass splitting
∆mψ = mψ1 −mψ2 . For approximately equal gauge eigenstate mass parameters mΨ ≈ mψ

this difference is given by
∆mψ ≈

√
2yψv , (11.71)

yielding ∆mψ ≫ mµ for the scale of the relevant NP that invoke the chirality flip, provided
the mediator–Higgs Yukawa coupling satisfies yψ ≳ 10−3.

As the latter condition holds true over large parts of the parameter space, neglecting
the first term in Equation (11.23) and (11.24) gives a very good approximation of ∆aµ
and reads

∆aµ =
mµ

16π2

∑
k

sin 2θψ |λµk|2
3m2

ϕk

Re ξ
(
mψ1G(xk,1)−mψ2G(xk,2)

)
. (11.72)

Given that the mixing angle θψ as defined in Equation (10.10) lies within the range

0 ≤ θψ ≤ π/4 , (11.73)

such that sin 2θψ > 0 and that the loop function G defined in Equation (8.7) satisfies

mψ2G(xk,2) > mψ1G(xk,1) , (11.74)

positive NP contributions ∆aµ require the scaling parameter’s real part to be negative,
i.e. Re ξ < 0.

Since the Yukawa coupling yψ also gives rise to the self-energy diagrams of Figure 11.17,
NP contributions to the muon anomalous magnetic moment aµ are typically accompanied
by according and potentially sizeable contributions to the muon mass mµ. In our model,
the total muon mass is hence given by the relation

mµ =
yµv√
2
+ ∆mµ , (11.75)

which induces a potential fine-tuning problem. The NP contributions to both aµ and mµ

can be estimated parametrically which yields [272,273]

∆aµ = CNP

m2
µ

m2
NP

, (11.76)
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∆mµ = O (CNP)mµ , (11.77)

where the factor CNP depends on the details of the model. Using these expressions one can
derive an approximate upper bound on the NP scale mNP up to which the experimental
value ∆aexpµ can be reproduced without introducing a fine-tuned muon massmµ. Following
the convention from Reference [272] we consider scenarios in which the NP corrections ∆mµ

to the muon mass are larger than the physical muon mass as fine-tuned. Combined with
the parametric estimates from above, this yields an upper limit on the NP scale of [272]

mNP ≲ 2100GeV . (11.78)

In addition to this general estimate, we also check explicitly in our numerical analysis which
regions of the viable parameter space of our model correspond to fine-tuned scenarios by
calculating ∆mµ through [273]

∆mµ = −sin 2θψRe ξ

16π2

∑
k

|λµk|2
(
mψ1B0(0,mψ1 ,mϕk)−mψ2B0(0,mψ2 ,mϕk)

)
, (11.79)

where the function B0(p
2,m1,m2) is a standard Passarino–Veltman two-point function

renormalised according to the MS scheme. Here we only consider contributions to ∆mµ

with an internal chirality flip shown in Figure 11.17b. The process with a chirality flip on
an external muon line shown in Figure 11.17a is proportional to mµ and is hence negligible
compared to the contribution from Equation (11.79).

Results

In order to examine whether our model is capable of solving the (g − 2)µ anomaly, we
calculate the NP contributions ∆aµ to the muon anomalous magnetic moment within the
regions of the parameter space that were found to be viable in the combined analysis
of Section 11.6. In the numerical analysis we use the full expression for ∆aµ given in
Equation (11.70), which includes diagrams with a chirality flip on any of the external
muon lines as well. For the calculation of the NP contributions ∆mµ to the muon mass
we use the expression from Equation (11.79). Following the previous sections, we only
consider the case of maximum mixing between ψ1 and ψ2 corresponding to θψ = π/4 here.
The results are gathered in Figures 11.18–11.20.

In Figure 11.18 we show for which values of |ξ| and yψ the value of ∆aexpµ can be re-
produced within the experimental 2σ band while satisfying all constraints discussed in the
previous sections. The results are shown for both freeze-out scenarios. For non-suppressed
left-handed interactions with |ξ| = 1.00 we find that the mediator-Higgs Yukawa coupling
needs to satisfy yψ ≲ 10−1 in order to stay consistent with the 2σ band of the experimental
measurement in both freeze-out scenarios. For suppressed left-handed interactions with
|ξ| = 0.01 we in contrast find that the 2σ band can be reached for values 0.3 ≲ yψ < 2.0.
Further, the overall dependence on the freeze-out scenario is found to be small, as in the
QDF scenario shown in Figure 11.18b the viable points are slightly shifted towards smaller
values of |ξ|. This is due to the fact that the latter scenario allows for larger couplings
than the SFF scenario, see Section 11.6. We also find the distribution of viable points to
only very leniently depend on the mediator mass. As can be seen in both Figure 11.18a
and 11.18b, increasing the mass parameter mΨ = mψ only slightly shrinks the viable area
in the |ξ|−yψ plane. The reason is that larger masses mΨ = mψ allow for larger couplings
|λµi| while they at the same time suppress the value of ∆aµ. An increased maximum
value of the couplings |λµi| reduces both the maximally viable value of yψ as well as |ξ| in
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(a) SFF scenario (b) QDF scenario

Figure 11.18 Viable points in the |ξ| − yψ plane while demanding that ∆aµ lies within
the 2σ band of ∆aexpµ .

order to not yield a too large ∆aµ. Hence, in this case the upper edge of the distribution
of viable points is shifted towards smaller values of |ξ| and yψ. On the other hand, the
suppression of ∆aµ through large mediator masses raises the minimally required value of
yψ and |ξ| in order to not yield too small NP contributions to aµ. This in turn causes the
lower edge of the viable areas in Figure 11.18 to be shifted towards larger values of yψ and
|ξ|.

The dependence of ∆aµ on the Yukawa coupling yψ is shown for the SFF scenario in
Figure 11.19a and 11.19b. For both choices of the scaling parameter ξ we find that the
experimental central value of ∆aexpµ can be reproduced. In the case of non-suppressed
left-handed interactions shown in Figure 11.19a this requires Yukawa couplings of at least
yψ ≃ 0.006 for masses mψ = 1100GeV, while larger values yψ ≃ 0.008 are required
for mψ = 1700GeV. If left-handed interactions are suppressed, i.e. for the case |ξ| = 0.01
shown in Figure 11.19b we find that the experimental central value is obtained for couplings
yψ ≃ 0.6 and mψ = 1100GeV or yψ ≃ 0.8 and mψ = 1700GeV, respectively. We further
find that sizeable values of mΨ = mψ shrink the area of the viable values ∆aµ for a
given coupling yψ. In the case of suppressed left-handed interactions they even cause a
lower limit on the viable values of ∆aµ, as can be seen in Figure 11.19b. This lower limit
is due to the relic density constraint, which for suppressed left-handed interactions and
masses mψ ≳ 1500GeV requires the DM–muon coupling to satisfy |λµ3| ≳ 1.0 in order to
compensate for the p-wave suppression of the DM annihilation rate, see Figure 11.15b. For
non-suppressed left-handed interactions DM can also annihilate in the s-wave and hence
the lower bound is absent in this case, since the DM–muon coupling may become arbitrarily
small, see Figure 11.15a. Since growing mediator masses at the same time suppress ∆aµ,
the upper edge of accessible values shrinks for both cases of |ξ| for increasing mediator
masses.

Qualitatively we find this behaviour to also hold true for the QDF scenario shown in
Figure 11.19c and 11.19d. In this case however, the area of viable values ∆aµ for a given
Yukawa coupling yψ shrinks more rapidly with increasing masses mΨ = mψ as the lower
limit is strengthened. This can be seen particularly well for the case of suppressed left-
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(a) SFF scenario with |ξ| = 1.00 (b) SFF scenario with |ξ| = 0.01

(c) QDF scenario with |ξ| = 1.00 (d) QDF scenario with |ξ| = 0.01

Figure 11.19 Dependence of the NP contributions ∆aµ on the Yukawa coupling yψ for
both freeze-out scenarios and both choices of |ξ|. The red dashed line
shows the mean value of ∆aexpµ and the orange and yellow areas show the
1σ and 2σ bands, respectively.

handed interactions shown in Figure 11.19d. The reason are again the constraints from
the DM relic density—in the QDF scenario all couplings |λµi| need to be accordingly large
in order to compensate for the small DM–electron couplings for sizeable mass parameters
mΨ = mψ. Hence, the lower limit on the minimally viable value of ∆aµ is increased
with respect to the SFF case, see Figure 11.19b and 11.19d. The more rapidly reduced
upper limit on ∆aµ on the other hand, is due to the fact that even for comparably small
masses mψ = 1100GeV the QDF scenario already allows for close-to-maximal couplings
|λµ3| ≃ 1.7, see Figure 11.16b. Hence, the increased suppression of ∆aµ for increased values
of mΨ = mψ can be less compensated for by growing couplings |λµ3| as they are limited
to |λµ3| ≤ 2.0. For the QDF scenario we find that for |ξ| = 1.00 the experimental central
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(a) SFF scenario with |ξ| = 1.00 (b) SFF scenario with |ξ| = 0.01

(c) QDF scenario with |ξ| = 1.00 (d) QDF scenario with |ξ| = 0.01

Figure 11.20 Correlation between ∆aµ and |∆mµ| in both freeze-out scenarios and
for both choices of |ξ|. The greyed-out area indicates the region with
|∆mµ|/mµ > 1 which we consider fine-tuned. The red dashed line shows
the mean value of ∆aexpµ and the orange and yellow areas show the 1σ
and 2σ bands, respectively.

value of ∆aexpµ can be reproduced for yψ ≃ 0.008 and masses mψ = 1100GeV, while we
find yψ ≃ 0.01 for mψ = 1700GeV. If in contrast left-handed interactions are suppressed
we find that yψ ≃ 0.5 is required for masses mψ = 1100GeV while for mψ = 1700GeV the
Yukawa coupling needs to satisfy yψ ≃ 0.8.

The correlation between NP contributions to aµ and mµ is illustrated in Figure 11.20
for both freeze-out scenarios and both choices of |ξ|. Here we show how large the cor-
rections ∆aµ are for a given value of |∆mµ| normalised to the physical muon mass mµ.
In Figure 11.20a and 11.20b we find that in the SFF scenario the central value of ∆aµ
can be reproduced without exceeding the threshold |∆mµ|/mµ = 1, i.e. without intro-
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ducing a fine-tuned muon mass for both choices of the scaling parameter ξ and masses
mΨ = mψ. Increasing mediator masses lead to smaller values of ∆aµ for a given value of
∆mµ, indicating that NP contributions to aµ receive a stronger suppression from growing
masses mΨ = mψ than according corrections to mµ. Likewise, non-suppressed left-handed
interactions require larger accompanying corrections ∆mµ for sizeable NP effects in aµ.
For |ξ| = 1.00 the combined analysis generally requires yψ ∼ O(10−4 − 10−1) for which
the mass of the lightest charged mediator mψ2

47 is larger than in the case of suppressed
left-handed couplings which allow for Yukawa couplings yψ ∼ O(1). While this suppresses
both ∆aµ as well as ∆mµ, we find that the function

mψ1

m2
ϕk

G(xk,1)−
mψ2

m2
ϕk

G(xk,2) , (11.80)

responsible for the suppression of ∆aµ is steeper than

mψ2B0(0,mψ2 ,mϕk)−mψ1B0(0,mψ1 ,mϕk) , (11.81)

which causes the suppression of |∆mµ|. Hence, the slope of the distribution of viable
points is steeper in Figure 11.20b than in Figure 11.20a.

The results for the QDF scenario are shown in Figure 11.20c and 11.20d. Again,
for both choices of |ξ| the central value of ∆aexpµ can be accommodated for corrections
|∆mµ| < mµ. With respect to the correlation between ∆aµ and ∆mµ we find that just as
for the SFF scenario larger mediator masses yield larger accompanying corrections ∆mµ for
sizeable NP effects in aµ. We observe the same behaviour when comparing the two cases for
|ξ| with each other, as for suppressed left-handed interactions the slope of the distribution
of viable points again is stepper than for |ξ| = 1.00. However, in this freeze-out scenario
the viable points lie on a thin band for the latter case shown in Figure 11.20c. This is due
to the very small range of yψ values that allow for sizeable NP contributions ∆aµ in this
case, as can be seen in Figure 11.19c. In that range the ratio ∆aµ/|∆mµ| is approximately
constant in this freeze-out scenario, leading to the thin strips of Figure 11.20c.

Note that we have also checked if equivalent contributions to the electron or tau mass
are generated and found those effects to be negligibly small. Hence, we conclude that in
both scenarios and for both cases of |ξ| our model is capable of accommodating ∆aexpµ

without introducing fine-tuned lepton masses and a fine-tuned muon mass in particular.
Further, we stress that similar diagrams as the ones shown in Figure 11.17 induce

one-loop contributions to the lepton Yukawa couplings. However, the leading contribution
does not modify the Higgs decay rates to leptons as it equally affects the lepton mass and
the respective Yukawa coupling. The leading processes that have an effect on the relevant
decay rates suffer from an additional v2/m2

ψα
suppression factor and are hence smaller

than the LHC sensitivity.

47Recall that for maximum mixing with mΨ = mψ this mass is given by mψ2 = mψ − yψv/
√
2.
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Summary

In this part we have studied a simplified model of lepton-flavoured complex scalar DM
coupling to both left- as well as right-handed leptons. The right-handed interactions
between DM and leptons are mediated by a new charged Dirac fermion, while left-handed
interactions are mediated by an SU(2)L doublet containing one charged and one neutral
Dirac fermion. The coupling strength of both of these interactions is parametrised by
a new flavour-violating 3 × 3 complex matrix λ, while we allow the strength of the left-
handed interactions to be scaled by a complex parameter ξ. Further, the two mediator
fields interact with the SM Higgs doublet through the Yukawa coupling yψ. We have
studied this model’s phenomenology by examining constraints from collider searches, LFV
decays, precision tests of the SM, the DM relic density and direct as well indirect detection
experiments. After performing a combined analysis of all constraints, we concluded the
phenomenological analysis by studying if sizeable effects in the muon anomalous magnetic
moment aµ can be generated.

Section 11.1 was dedicated to the analysis of constraints from LHC searches for sleptons
in the same-flavour final state ℓℓ̄ + /ET with ℓ = e, µ. Here we found that the largest
exclusion in the mψ2−mϕ3 plane is obtained for maximal couplings |λℓ3| = 2.0 to electrons
and muons and a vanishing DM–tau coupling |λτ3|. The search we investigated excludes
mediator masses up to mψ2 ≃ 750GeV and DM masses up to mϕ3 ≃ 400GeV. Further,
the existence of two charged mediators in this model leads to significant exclusions in the
near-degeneracy region mϕ3 ≈ mψ2 for values 0.25 ≲ yψ ≲ 1.00. For larger values of yψ
these exclusions shrink with increasing couplings yψ.

To determine the flavour structure of λ we then studied limits from LFV decays in
Section 11.2. Since in this model the mediator-Higgs Yukawa coupling yψ invokes en-
hanced contributions with an internal chirality flip, the bound on the LFV decay µ→ eγ
yields very stringent constraints. Only if the DM–electron couplings are suppressed to
lie within the range |λei| ∼ O(10−6 − 10−1), this limit allows for DM–muon couplings
|λµi| ∼ O(1), necessary to generate sizeable NP effects in aµ. Other LFV decays place less
severe restrictions on the coupling matrix λ due to weaker experimental limits.

We then turned to the analysis of the constraints that precision tests of the SM place
on the parameter space of our model in Section 11.3. While we found that the EDM de and
MDM ae of the electron generally place constraints on the DM–electron couplings |λei|,
the resulting restrictions are very lenient if the latter couplings are already suppressed
according to the limits from LFV decays. In this case the restrictions stemming from the
MDM ae are automatically satisfied, while the bound coming from the EDM de allows for
O(1) imaginary parts of the scaling parameter ξ.

In Section 11.4 we examined which part of the parameter space reproduces the correct
DM relic density. For both freeze-out scenarios, we here studied the two cases of suppressed
and non-suppressed left-handed interactions between DM and the SM with |ξ| = 0.01 and
|ξ| = 1.00, respectively. In all cases the relic density constraint allows for large couplings
|λij | ∼ O(1) while the case |ξ| = 0.01 requires larger couplings in general since it yields a



130 Part IV Lepton-Flavoured Scalar Dark Matter II

p-wave suppressed DM annihilation rate.
The phenomenology of DM detection experiments was studied in Section 11.5. Regard-

ing the direct detection constraints we found that the leading contribution to DM–nucleon
scattering constrained by XENON1T data consists of a one-loop photon penguin diagram,
proportional to the logarithm of the mass of the lepton in the loop. Hence, the largest con-
straints are placed on the DM–muon coupling, since the DM–electron coupling is already
suppressed due to the flavour constraints. With respect to limits from indirect detection
we found that in the case of non-suppressed left-handed interactions the constraints from
measurements of the positron flux and the γ-ray continuum spectrum yield restrictions on
λ for DM masses mϕ3 ≲ 450GeV and mϕ3 ≲ 600GeV, respectively. The γ-ray line spec-
trum only places constraints on λ in the near-degeneracy region mϕ3 ≈ mψ2 . In summary,
the indirect detection constraints are lenient in comparison to other limits.

To obtain a global picture of this model’s viable parameter space we then performed a
combined analysis in Section 11.6. Here we found that the distribution of viable points is
mainly determined by flavour, relic density and direct detection constraints. In both freeze-
out scenarios the case of non-suppressed left-handed interactions with |ξ| = 1.00 allows
for smaller couplings |λτ3| and |λµ3| than the case with |ξ| = 0.01. In the SFF scenario
the interplay between the flavour and relic density constraints requires the viable points
to lie in a circular band in the |λτ3|− |λµ3| plane. For small enough DM–tau couplings the
direct detection constraints become dominant and yield a more stringent upper limit on
|λµ3| than the relic density limits. For the QDF scenario the direct detection constraints
are dominant. In this case simultaneously small values of |λτ3| and |λµ3| are also viable,
if the mediator mass is sufficiently small and satisfies mψ2

≲ 1500GeV such that the relic
density constraint can also be satisfied through annihilations of the heavier states ϕ1 and
ϕ2 alone.

Finally, we used our results from Section 11.6 to examine if our model is able to account
for the discrepancy between the SM and experiment in the muon anomalous magnetic
moment aµ in Section 11.7. To this end we calculated ∆aµ in the regions identified as
viable in the combined analysis and compared it with the experimental value. We further
calculated accompanying corrections ∆mµ to the muon mass and checked if sizeable effects
in aµ introduce a fine-tuned muon mass. We found that in both freeze-out scenarios the
central value of ∆aexpµ can be reached within the region of parameter space that we regard
as non-fine-tuned for both cases of ξ, requiring different values for the mediator-Higgs
coupling yψ. Noteworthy, for non-suppressed left-handed interactions larger corrections to
the muon mass are generated for a given value of ∆aµ than for |ξ| = 0.01.

We conclude that lepton-flavoured DM with couplings to both left- and right-handed
leptons accompanied by Higgs portal interactions of the corresponding mediators elegantly
connects the current most convincing hints at NP: the DM problem and the muon (g− 2)
anomaly. In spite of exhibiting a very rich phenomenology spanning over several branches
of particle physics and thus being subject to many constraints, this model still allows for
a joint explanation of both. Hence, it qualifies as an attractive DM candidate waiting to
be further probed with increased sensitivity by future experiments.



Part V

Conclusion and Appendices





Chapter 13

Conclusion

In this thesis we have studied three simplified models of flavoured DM that all exhibit
a rich phenomenology capable of ameliorating the tension between the WIMP paradigm
and the absence of signal in various DM searches. This finding alone already constitutes
an important global result, since it emphasises the main phenomenological advantage
of flavoured DM models: the existence of multiple DM generations with couplings to
the SM softens the restrictions placed on the model parameters by the observed DM
relic density as well as direct detection experiments and hereby eases the pressure put
on the WIMP paradigm. The mechanism that gives rise to this effect is the increased
number of annihilation channels of DM that allows for a much more dynamic freeze-out
phenomenology than the non-flavoured case, ultimately allowing to obtain the correct DM
relic density while at the same time satisfying the strong constraints coming from direct
detection experiments. While we have found this behaviour to hold true for all three models
analysed in this thesis, each model also exhibited additional specific phenomenological
advantages determined by the choice of the particle nature of DM and the SM fields it
couples to.

In Part II of this work we studied a Majorana fermionic up-type flavoured DM model
set-up in the DMFV framework. In this model DM is assumed to couple to the right-
handed up-type quarks of the SM and we found the Majorana nature of DM to have
a severe impact on this model’s phenomenology. Aside from constraints from collider
searches, this impact relaxes the restrictions placed on the model parameters by several
experiments. In terms of the flavour constraints we here found that the Majorana nature
gives rise to an additional box diagram for neutral D meson mixing with crossed fermion
lines that destructively interferes with the usual box contribution. For the thermal freeze-
out of DM the Majorana nature also proved to make a crucial difference, as Majorana
specific u-channel annihilations lead to a p-wave suppression of the annihilation rate of a
single dark flavour into massless final states ultimately rendering constraints from indirect
detection irrelevant. Aside of its direct coupling to up quarks in this model, constraints
from direct detection experiments are lenient in this case since leading contributions to
DM–nucleon scattering vanish for Majorana DM with chiral interactions. In spite of
strengthened constraints from LHC searches due to additional same-sign signatures, we
worked out that the latter are worth investigating as they can be utilised in order to gain
insights on the particle nature of quark-flavoured DM. The Majorana nature of DM in
this model did not only render it a viable DM candidate with a rich phenomenology but
also allowed it to reproduce large effects in CP violating charm decays as measured by the
LHCb collaboration.

A simplified model of lepton-flavoured complex scalar DM was the subject of Part III.
This model again belongs to the DMFV class and here we found the main phenomenological
advantage to be connected to the choice of the SM fields that DM couples to—since DM
interacts with the SM through the lepton portal in this model, constraints from collider
searches and direct detection are weaker than in the quark-flavoured case. Regarding
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LHC searches we found that for lepton-flavoured DM in general, the respective mediator
is pair-produced in Drell–Yan, which ultimately yields a smaller signal cross section due
to an s-channel suppression of the production rate. For DM–nucleon scattering we on
the other hand found that leading contributions arise at the one-loop level and hence
suffer from a loop suppression. At the same time the direct coupling of DM to leptons
gives rise to stringent constraints from LFV decays and potentially strong restrictions
from indirect detection experiments. Regarding the latter, the choice for the particle
nature of DM turned out to be advantageous: the annihilation rate of complex scalar DM
into massless fermions is p-wave suppressed which implies a severe velocity suppression
of relevant annihilations for indirect detection experiments. Regarding precision tests
of the SM, we found that due to purely right-handed interactions of DM with leptons,
relevant restrictions only arise at NP scales already excluded by LHC searches due to the
absence of chirality-flipping contributions. The interplay of these features in total proved
this model to constitute a viable DM candidate with a rich phenomenology allowing for
sizeable couplings of DM to leptons.

To profit from this phenomenological freedom and connect the DM problem with the
(g−2)µ anomaly, we then studied an extended version of the model from above in Part IV.
Here we included an additional fermion representation, which is an SU(2)L doublet and
mediates interactions between left-handed leptons and DM. Additionally, we Yukawa-
coupled this new field as well as the fermion that mediates interactions between right-
handed leptons and DM to the Higgs doublet to allow for chirality-flipping contributions
to the anomalous magnetic moment of the muon and address the (g−2)µ anomaly. To keep
the number of parameters manageable we expressed the couplings of DM to both left- and
right-handed leptons in terms of a single flavour-violating coupling matrix while allowing
for a complex scaling of the coupling strength of left-handed interactions. Phenomenologi-
cally, the additional source for chirality-flipping contributions renders constraints from the
LFV decay µ → eγ much more restrictive and requires strongly suppressed DM–electron
couplings when allowing for sizeable DM–muon couplings necessary to not preclude a solu-
tion to the (g−2)µ anomaly. At the same time these contributions give rise to restrictions
from precision measurements of dipole moments of the electron, which however are auto-
matically satisfied once the DM–electron coupling is suppressed according to the flavour
constraints. Since the additional coupling to left-handed leptons also lifts the p-wave sup-
pression of the DM annihilation rate, constraints from indirect detection gain importance
in this model, while they are still sub-leading to the bounds from LFV decays, direct
detection and the DM relic density. In summary, we found that this model is capable of
accommodating the experimental central value of (g− 2)µ without introducing fine-tuned
lepton masses in a large part of the viable parameter space, ultimately rendering it a
particularly attractive solution to the DM problem.

In conclusion, flavoured DM models provide an elegant connection of the DM problem
to an aspect of the SM, which in spite of being very well described is least understood on
a fundamental level: flavour. Introducing DM as a flavour triplet turns out to yield many
phenomenological advantages, which depending on its particle nature and the choice of
the SM fields that DM interacts with allows for a connection of the DM problem with
other problems, anomalies or puzzles of particle physics. Future improved experimental
sensitivities will hence hopefully be able to shed light on the properties of DM and let us
taste its flavour.
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Up-Type Flavoured Majorana Dark Matter

A.1 Dark Matter Relic Density

For the partial wave expansion of Equation (5.38) we find with mqk = mk and mql = ml
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A.2 Direct Detection

The Wilson coefficents fG, g
(1)
G and g
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G from Equation (5.63) read [165]
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Lepton-Flavoured Scalar Dark Matter I

B.1 Dark Matter Relic Density

The coefficients from the partial wave expansion of the thermal averaged annihilation cross
section from Equation (8.23) with the full final state mass dependence read
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Lepton-Flavoured Scalar Dark Matter II

C.1 Dark Matter Relic Density

The functions Aijkl, Bijkl, Ckl and Dkl from Equations (11.37)–(11.40) read
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The p-wave contribution to the thermally averaged annihilation cross section from Equa-
tion (11.41) for ξ ̸= 0 is given by
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in the limit of equal initial state masses and vanishing final state masses. Here we have
used µα = mψα/mϕ3 .

C.2 Direct Detection

The averaged DM–nucleon cross section for t-channel scatterings through the Higgs portal
reads [194]
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where mN is the nucleon mass and µ = mϕ3mN/(mϕ3 +mN ) is the reduced mass of the
DM–nucleon system. In order to estimate in which parts of the parameter space these
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Figure C.1 Maximum allowed values of λHϕ in order to give at most equal contributions
to the DM–nucleon scattering cross section as the photon penguin diagram.

contributions grow larger than the photon one-loop penguin from Figure 11.10a, we fix
the couplings to |λi3| = 2 and |ξ| = 1 as well as yψ = 0 in Equation (11.53) and assume
maximum mixing with θψ = π/4. Comparing the scattering rate from Equation (11.53)
with the one in Equation (C.6) then gives the maximum allowed value of the Higgs portal
coupling λHϕ for at most equal scattering cross sections. This illustrated by the contours
shown in Figure C.1.

C.3 Indirect Detection

The expression for the interference term of ψ1 and ψ2 for the internal bremsstrahlung
process of Figure 11.12a is given by
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− p6(µ2 + µ1)(2 + µ2(2 + µ2) + µ1(2 + µ1))

+ p7(µ2 + µ1)(2 + µ2(2 + µ2) + µ1(2 + µ1))

− p8(µ2 + µ1)(2 + µ2(2 + µ2) + µ1(2 + µ1)) + µ32(4l
2
1 − l2l3 + l3l4 − 3l5 − l3l5

+ l4l5 + 4l5l6 + l1(3 + l2 + l3 − 2l4 − 4l5 − 4l6 − l8) + l5l8) + µ22(8l
2
1

− 2l2(1 + l3) + 2l4(1 + l3 + l5)− 2l5(l3 − 4l6) + 2l1(l2 + l3 − 2(l4 + 2(l5 + l6)))

− l1l9 + l5l9

+ (−l2(−2 + l3) + l1(−1 + l2 + l3 − 2l4) + (−2 + l3)l4 + (1− l3 + l4)l5)µ1)

+ µ2(4l
2
1 − l2(3 + 2l3) + 2l3l4 − 2l3l5 + 2l4l5 + 3(l4 + l5) + 4l5l6

+ l1(−3 + 2l2 + 2l3 − 4l4 − 4l5 − 4l6 − l8) + l5l8 + µ1(2(l2 − 2l2l3

+ l1(−1 + 2l2 + 2l3 − 4l4)− l4 + 2l3l4 + l5 − 2l3l5 + 2l4l5)

+ (l2 − l2l3 + l1(−2 + l2 + l3 − 2l4) + (−1 + l3)l4 + (2− l3 + l4)l5)µ1))
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+ µ1(l1(3 + 2l2 + 2l3 − 4l4) + 2l3l4 + 4l24 − 2l3l5 + 2l4l5 − 3(l4 + l5)

− 4l4l7 − l4l8 + l2(3− 2l3 − 4l4 + 4l7 + l8) + µ1(2l1(1 + l2 + l3 − 2l4)

− 2(l5 + l3(−l4 + l5) + l2(l3 + 4l4 − 4l7)− l4(4l4 + l5 − 4l7)) + (l2 − l4)l9

+ (l1(l3 − 2l4) + 3l4 + l3l4 + 4l24 − l3l5 + l4l5 − 4l4l7 − l4l8+

l2(−3 + l1 − l3 − 4l4 + 4l7 + l8))µ1))

}
, (C.7)

with the logarithms li and polylogarithms pi defined as

l1 = log(1 + µ2) , l2 = log(µ1 − 1) , l3 = log(µ2 + µ1) ,

l4 = log(1 + µ1) , l5 = log(µ2 − 1) , l6 = log(µ2) ,

l7 = log(µ1) , l8 = log(16) , l9 = log(256) , (C.8)

and

p1 = Li2

(
µ2 − 1

2µ2

)
, p2 = Li2

(
1 + µ2
2µ2

)
, p3 = Li2

(
µ1 − 1

2µ1

)
,

p4 = Li2

(
1 + µ1
2µ1

)
, p5 = Li2

(
µ2 − 1

µ2 + µ1

)
, p6 = Li2

(
1 + µ2
µ2 + µ1

)
,

p7 = Li2

(
µ1 − 1

µ2 + µ1

)
, p8 = Li2

(
1 + µ1
µ2 + µ1

)
. (C.9)

The constraint coming from indirect detection experiments for the case of suppressed
left-handed interactions is shown in Figure C.2.
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Figure C.2 Restrictions on the model parameters from indirect detection experiments
for suppressed left-handed interactions. In all three panels we have assumed
maximum mixing with θψ = π/4. The area included by the white dashed
line and the equal mass diagonal indicates in which mass regime the con-
straints are relevant.
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