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Abstract

The theoretical investigation of charge and energy transfer phenomena requires the

use of computationally demanding multi-scale simulations, which combine a quantum

and a classical description. This work aims at the integration of data-driven machine

learning techniques into the work�ow of such simulations to accelerate the simulations

by substituting the costly quantum-chemical part.

It is shown that simple and compact kernel ridge regression models are able to drive

non-adiabatic molecular dynamics simulations by predicting the elements of the trans-

fer Hamiltonian. Reference data from a semiempirical method was closely reproduced.

However, these models did not lead to an acceleration and training set sizes were highly

limited, which may prohibit the training of more complex and larger molecules.

In contrast, neural network models provide a signi�cant boost in e�ciency compared to

a semiempirical reference and an even larger speedup for higher levels of theory, while

at the same time setting no limit to training set size. Additionally, they allow for the

simultaneous prediction of transfer Hamiltonian elements and their derivatives, which is

necessary for explicit treatment of the relaxation process and correct re-scaling of atomic

momenta with non-adiabatic coupling vectors.

Further, the methodology was extended to exciton transfer. The in�uence of short range

e�ects via supermolecular couplings was investigated and a diabatization scheme for more

accurate and reliable computations was implemented. The application of neural networks

to exciton transfer in anthracene could reproduce experimental di�usion constants and

showed highly localized transfer.

Finally, the developments of this thesis were combined and culminated in the application

of exciton transfer simulations in the light-harvesting complex II (LH2) from purple

bacteria. This biological complex contains chromophores, which are arranged in two rings

(B800, B850). To date, only one study was able to perform a single simulation of 300 fs

length. This was due to the tremendous computational cost of such simulations, which

are lifted by the developed data-driven approach shown in this work. The transfer in

both rings was simulated for 10 ps in 1000 trajectories each, with a feasible amount of

resources. Excitons in the B800 ring were highly localized and transferred in discreet hops,

while the B850 chromophores induced coherent transport and a spread of the exciton

on multiple molecules. Estimated exciton di�usion constants for both rings appeared

much higher compared to those of organic semiconducting materials. Now, large scale

simulations, aiming at a comprehensive picture of the complete light-harvesting process

in photosynthetic organisms from absorption to charge separation, are in reach.
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Zusammenfassung

Die theoretische Untersuchung von Ladungs- und Energietransferphänomenen erfordert

rechenintensive Multi-Skalen-Simulationen, die eine quantenmechanische und eine klassi-

sche Beschreibung kombinieren. Diese Arbeit strebt eine Integration von datengesteuerten

Methoden des maschinellen Lernens in den work�ow solcher Simulationen an. Indem der

kostspielige quantenchemische Teil ersetzt wird, können diese beschleunigt werden.

Es wird gezeigt, dass einfache und kompakte Kernel-Regressionsmodelle in der Lage sind,

nicht-adiabatische Molekulardynamiksimulationen durch die Vorhersage der Elemente

des Transfer-Hamiltonian voranzutreiben. Referenzdaten einer semiempirischen Methode

wurden genau reproduziert. Diese Modelle führen jedoch nicht zu einer Beschleunigung

und die Menge der Trainingsdaten ist deutlich eingeschränkt. Dies könnte das Training

komplexerer und größerer Moleküle erschweren.

Im Gegensatz dazu bieten neuronale Netze eine erhebliche E�zienzsteigerung im Vergleich

zu einer semiempirischen Referenzmethode und eine noch größere Beschleunigung für

genauere quantenmechanische Methoden. Gleichzeitig besteht keine Begrenzung für die

Größe der Trainingsdatenmenge. Außerdem ermöglichen die Modelle die gleichzeitige

Vorhersage von Transfer-Hamiltonianelementen und deren Ableitungen, was für die expli-

zite Behandlung des Relaxationsprozesses und die korrekte Neuskalierung der atomaren

Impulse mit nicht-adiabatischen Kopplungsvektoren notwendig ist.

Darüber hinaus wurde die Methodik auf den Exzitonentransfer ausgeweitet. Der Ein�uss

von Kurzstreckene�ekten in supermolekularen Kopplungen wurde untersucht und ein

Diabatisierungsschema für genauere und zuverlässigere Berechnungen wurde implemen-

tiert. Die Anwendung von neuronalen Netzen auf den Exzitonentransfer in Anthracen

konnte die experimentell ermittelten Di�usionskonstanten reproduzieren und zeigte einen

stark lokalisierten Transfer.

Schließlich wurden die Entwicklungen dieser Arbeit kombiniert und resultierten in der

Anwendung von Exzitonentransfer-Simulationen auf den Lichtsammelkomplex II (LH2)

von Purpurbakterien. Dieser biologische Komplex enthält Chromophore, die in zwei Rin-

gen angeordnet sind (B800, B850). Bisher war es nur in einer Studie möglich, eine einzige

Simulation von 300 fs Länge durchzuführen. Dies ist auf die enormen Rechenkosten solcher

Simulationen zurückzuführen, die durch den in dieser Arbeit entwickelten datengesteuer-

ten Ansatz verringert werden. Der Transfer in beiden Ringen wurde für 10 ps in jeweils

1000 Trajektorien simuliert, was mit einem vertretbaren Aufwand an Ressourcen reali-

sierbar war. Die Exzitonen im B800-Ring waren stark lokalisiert und wurden in diskreten

Sprüngen übertragen, während die B850-Chromophore einen kohärenten Transport und
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Zusammenfassung

eine Delokalisierung des Exzitons über mehrere Moleküle ermöglichen. Die abgeschätzten

Di�usionskonstanten für den Transfer in beiden Ringen waren deutlich größer als die von

organischen Halbleitermaterialien. Jetzt werden groß angelegte Simulationen mit dem

Ziel möglich, den gesamten Lichtsammelprozess in photosynthetisch aktiven Organismen

von der Absorption bis zur Ladungstrennung aufzuklären.
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1. Introduction

Theoretical chemistry, computational chemistry and molecular modeling are related and

overlapping subdomains in the overarching �eld of chemistry. They are not clearly

delineated from each other and have in common that they deal with the development,

improvement and application of theories and models for the description of chemical

structures and their properties. These techniques may serve as a lens to gain insights into

chemical and physical phenomena, that may not be easily accessible or accessible at all

through experiments. In this way, computational chemistry can aid in the comprehension

and interpretation of chemical processes.
1

Additionally, it may serve as a predictive tool

to replace or shorten experimental e�orts, e.g. by high-throughput screening of chemical

structures with regard to speci�c properties on the quest for novel or optimized chemical

compounds.
2,3

The importance and usability of computational methods in chemistry has emerged and

increased with the computing power and a�ordability of modern hardware, e.g. central

processing units (CPUs), graphics processing units (GPUs) and the use of specialized high-

performance computing (HPC) clusters. This was accompanied by progress in software

development, for instance implementations of new and more accurate computational

methods.
1

In practice, calculations and simulations of chemical systems are limited by their com-

putational cost. There is an interplay between accuracy and reachable time and length

scales on one hand and a�ordability of calculations on the other hand. The more precise

the method, the greater the computational demands. Molecular mechanics (MM) methods

are able to describe huge chemical systems with thousands of atoms on long time scales

e�ciently. Even bigger system sizes and time scales can be reached with coarse-grained

models, although information on the atomic scale is lost. However, classical physics may

not be su�ciently accurate to describe the relevant phenomena or to precisely predict

physical observables of the system. Additionally, these methods are not able to capture

processes such as chemical reactions or the interaction of matter and light, which limits

their applicability.
4

Contrastingly, these phenomena can be captured by quantum mechanical (QM) methods,

which are more exact. Semi-empirical QM methods solve the Schrödinger equation, but

introduce approximations and empirically derived parameters. They can treat a few

hundreds of atoms on short time scales. Ab initio methods calculate molecular systems

from �rst principles, meaning the only input are physical constants and the coordinates of

the system. Computational cost grows with the accuracy of the level of theory.
1
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1. Introduction

Some chemical or physical phenomena involve di�erent time and length scales, which

need to be bridged in order to be accurately described. Charge (CT)
5

and exciton transfer

(ET)
6

processes, as investigated in this work, require such multi-scale approaches. For

this purpose, the system is divided into an active region of interest, where e.g. QM

methods are employed and the transfer takes place, while the remainder is treated with

a cheaper MM method. As in similar hybrid QM/MM approaches, the simulation is

limited by the demanding QM calculations. The e�ciency can be improved by introducing

approximations and by employing semi-empirical QM methods. Still, the system sizes and

simulation lengths are restricted.

Data-driven approaches, more speci�cally machine learning (ML) methods, can make

use of the fact that the quantum chemical calculations are highly repetitive, i.e. the

conformations sampled during such simulations are very similar. This motivates the

substitution of the costly QM methods by more e�cient ML models. By training an ML

model on a small but representative data set, for which the relevant electronic parameters

have been calculated beforehand, the computationally simpler ML model could then be

used to drive the transfer simulations.
7,8

This thesis aims at an integration of machine learning techniques into the multi-scale

work�ow of charge and exciton transfer simulations. Charge transfer in simple organic

semiconductors (OSCs) has been studied with non-adiabatic molecular dynamics (NAMD)

simulations
9–12

and serves as a test case for the application of ML models in this work.

The ML/MM approach is examined for its accuracy and the desired increase in e�ciency.

Furthermore, the same methodology is extended to exciton transfer simulations, whose

computational cost is several orders of magnitude higher compared to charge transfer

simulations. To this end, organic semiconductors again function as proof of principle

examples. Finally, with the tested methodology at hand, exciton transfer in biological

light-harvesting complexes becomes feasible. It was not possible to investigate the latter

systems in detail with the methods available so far.

The outline of this thesis is as follows: At �rst, the theories and methods, that are relevant

for this work are introduced. Among them are MM and QM methods for the calculation

of energies and forces of molecular structures (chapter 2), as well as molecular dynamics

(MD) methods for the simulation of ensemble and time dependent properties (chapter 3).

This also includes the simulation approach for charge and exciton transfer. Additionally,

ML models for the acceleration of MD simulations are introduced (chapter 4).

Chapter 5 covers the application of kernel ridge regression (KRR) models for charge and ex-

citon transfer simulations in anthracene (Figure 1.1a), a well studied organic semiconductor.

The elements of the transfer Hamiltonian are learned and used to drive the transfer. The

observed restrictions when employing KRR models and their overcoming are addressed in

chapter 6 for charge transfer. Here, neural network (NN) models are employed to learn

transfer Hamiltonian elements and diagonal derivatives for anthracene and pentacene

(Figure 1.1b).

The following chapters extend the integration of ML models into simulations of exciton

transfer. Firstly, in chapter 7, the calculation of supermolecular excitonic couplings is

4
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addressed and a more advanced scheme is implemented. Secondly, anthracene and diin-

denoperylene (Figure 1.1c) are candidates, on which NN driven exciton transfer simulations

are examined. Moreover, the learning is extended to o�-diagonal derivatives (chapter 8) of

the transfer Hamiltonian. Eventually, the e�ciency improvements are utilized in chapter 9

to perform exciton transfer simulations in the biological light-harvesting complex II (LH2),

a huge molecular system containing several bacteriochlorophyll a (BChl a) molecules

(Figure 1.1d).

Finally, the most important results and �ndings as well as open questions are summarized

in chapter 10. This last chapter closes with an outlook on future work.

(a) Anthracene (b) Pentacene

(c) Diindenoperylene

(d) Bacteriochlorophyll a

Figure 1.1.:Molecules investigated in this work.
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2. Calculation of Energies

This chapter introduces the various methods to describe the state of a molecule and to

calculate the corresponding energy, forces and other properties of a particular molecular

con�guration. These methods are based on either classical or quantum mechanics. Because

of di�erences in their nature, accuracy and computational cost, they are suited for di�erent

applications.

2.1. Molecular Mechanics

Molecular mechanics (MM) makes use of classical physics to model molecular systems.

The smallest unit or particle to comprise such a molecular system in this approach is an

atom. Within MM, the potential energy, which is related to the interactions between these

particles, is given by an analytic function of atom coordinates, called the force �eld (FF).

In the following, the all-atom force �eld is illustrated, as used in this work. There are

also other types of force �elds for applications to larger molecular complexes, e.g. the

united-atom or coarse-grained approach, which merge hydrogen atoms to their heavy

atomic partners or even combine several heavy atoms into one particle.
1,13

2.1.1. All-Atom Force Fields

In an all-atom force �eld, a molecular structure is represented by a “ball and spring”

model. Atoms are considered to be points having a de�ned position, mass and charge.

Electrons are not taken into account as individual particles, but rather are merged into

their respective nuclei. Bonds between atoms are modeled as springs with Hooke’s law,

assigned a length and a sti�ness. Analyzing molecular structures of di�erent kinds reveals

the composition of structurally similar atoms and bonds (functional groups). For example

all C–H single bonds have a similar length and a similar bond oscillation frequency, even

in very di�erent molecules. This leads to the principle of a force �eld parametrization and

the introduction of atom types, depending on the respective element types and bonding

partners.

The force �eld itself describes the potential energy of all atoms in the form of a sum

over all atomic interactions (e.g. as in Equation 2.1). The interactions can be divided into

bonding and non-bonding terms, the former being represented by bond stretching, angle

torsion and dihedral torsion, the latter by electrostatic and van-der-Waals interactions.

9



2. Calculation of Energies

Bond stretching and angle torsion are both modeled with a harmonic potential, while for

the dihedral torsion a sum of periodic potentials (e.g. cosines) is needed. The electrostatic

interaction (Coulomb potential) is a inverse �rst-power potential. The van-der-Waals

interaction consists of two contributions, the (short-ranged) Pauli-repulsion, which is due

to the Pauli exclusion principle, and the attractive (long-ranged) London-dispersion, caused

by interactions of induced and instantaneous dipoles. It is modeled with the Lennard-Jones

(12-6) potential.

VMM

tot
= Vbond +Vangle +Vdihedral︸                        ︷︷                        ︸

bonding

+VCoulomb +VLennard-Jones︸                        ︷︷                        ︸
non-bonding

=
1

2

∑
i

kbi
(
ri − r

0

i

)
2

+
1

2

∑
j

kaj

(
θj − θ

0

j

)
2

+
1

2

∑
k

∑
l

V (l)
k

(
1 + cos

[
nϑk − ϑ

(0)n
k

] )
+

∑
m

∑
n>m

(
1

4πϵ0

qmqn
rmn

+ 4ϵmn

[(
σmn

rmn

)
12

−

(
σmn

rmn

)
6

])
(2.1)

The parameters required within a force �eld are the force-constants (k) and equilibrium

distances/angles (r 0, θ 0, ϑ 0
) for the di�erent bonding potentials, as well as atomic partial

charges (q), depth (ϵ) and distance (σ ), where the Lennard-Jones potential is zero. These

parameters are empirically derived, e.g., from experiments (spectroscopy, calorimetry) or

ab initio calculations. The atomic partial charges are tailor-made for speci�c molecules or

classes of molecules e.g. DNA, proteins, lipids or small organic molecules, which limits

their transferability to other classes of molecules. The functional form of the potentials

and the parameters can di�er between force �elds.

The non-bonded interactions lead to the N 2
-scaling of the computational cost with the

number of atoms, which can be optimized further. This allows for simulation of huge

molecular systems with up to millions of atoms and/or on long time scales of up to

milliseconds. But the method also comes with limitations. The parameters are derived

for a speci�c electronic state and drastic changes can not be represented within a single

parametrization of a force �eld. Additionally, due to the harmonic potential used to

describe the chemical bonds, the quantum nature inherent to electrons is neglected. As a

consequence, formation and breakage of bonds, interactions with light or other phenomena,

that involve the change of electronic states, cannot be simulated.
1,13
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2.2. Quantum Chemistry

2.2. Quantum Chemistry

The discovery of the wave-particle duality and the quantization of energy led to the

development of a new theory for the description of matter: quantum mechanics (QM).

The fundamental aspects of this theory as well as the methods relevant for this work are

introduced in this chapter.

2.2.1. Foundations of Electronic Structure Theory

Quantum mechanics as a theory cannot be derived rigorously as it comes with a few

postulates: The state of a quantum system or particle is described by the wave function,

which does not have a physical meaning. Nevertheless, the square of the wave function

has a physical meaning, which is the probability of �nding the system in a given state.

Any physical observable can be obtained by applying the corresponding operator to the

wave function. The behavior of such a system in space and time is described by the

time-dependent Schrödinger equation

Ĥ
���Ψ(®r , ®R, t)〉 = i~ ∂

∂t

���Ψ(®r , ®R, t)〉 , (2.2)

with the Hamiltonian operator Ĥ , the wave function for electrons and nuclei Ψ, with their

positions ®r and ®R. i is the imaginary unit and ~ the reduced Planck’s constant. If the

potential energy and thus the Hamiltonian of the system is not explicitly time-dependent,

the wave function can be separated into parts depending on space or time variables only.

The result of this separation is the time independent or stationary Schrödinger equation

(Equation 2.3), and the wave function takes the form of a standing wave for a stationary

state.

Ĥ
���ψ (®r , ®R)〉 = E

���ψ (®r , ®R)〉 (2.3)

This equation is an eigenvalue problem with the eigenvalues being the energies of the

system (Ei ) and the eigenvectors or eigenstates being the corresponding wave functions

(ψi(®r , ®R)). If the Hamiltonian is known, solving the Schrödinger equation yields these

energies and states. The only interaction relevant at the atomic or molecular level is the

electromagnetic interaction between nuclei-nuclei, electron-electron and electron-nuclei,

which can be described by the Coulomb potential. The Hamiltonian operator for a molecule

(in atomic units) reads

Ĥ = −
1

2

∑
i

∆i −
1

2

∑
k

1

Mk
∆k −

∑
i

∑
k

Zk

rik
+

∑
k<l

ZkZl

rkl
+

∑
i<j

1

rij
, (2.4)

with the nuclear mass (M) and charge (Z ), the distance between two particles i and j (rij),
the Laplace operator (∆) and indices i , j for electrons and k , l for nuclei, respectively. The

11



2. Calculation of Energies

Hamiltonian consists of terms for the kinetic energy of electrons and nuclei as well as

the potential energy of interactions between electrons-nuclei, nuclei-nuclei and electrons-

electrons.

Assuming that the nuclei are in�nitely heavier than the electrons, the motion of the latter

is much faster compared to the former. In fact, the mass di�erence is high enough to

expect an instantaneous adjustment of the electronic positions to the nuclear geometry.

This is known as the Born-Oppenheimer approximation
14

, which leads to a separation of

nuclear and electronic wave functions and allows for the electronic Schrödinger equation

(Equation 2.5) to be solved for a given set of stationary nuclei. Then, the electronic wave

function only depends on the electronic coordinates.

Ĥe |φ(®r )〉 = Ee |φ(®r )〉 (2.5)

By solving this equation for a large set of nuclear arrangements, the electronic energy

forms a hypersurface as a function of the nuclear coordinates, which is called potential

energy surface (PES). As a consequence of the Born-Oppenheimer approximation, the

kinetic energy of the nuclei can be neglected, while the nuclei-nuclei repulsion becomes

a constant term. The Hamiltonian operator for the electronic structure of a molecule

(Equation 2.6) can be simpli�ed.

Ĥe = T̂e + V̂en + V̂ee (2.6)

There are a lot of di�erent electronic structure methods, which try to solve the electronic

Schrödinger equation (Equation 2.5). A basic principle that can be found in most methods

is the variational principle (Equation 2.7). It states that an arbitrarily chosen trial wave

function always leads to a higher (or equal) energy than that of the ground state. The wave

function of the actual ground state (φ0(®r )) is the one associated with the lowest possible

energy of the system (E0). Hence, a trial wave function can be used as a starting point,

which is subsequently improved through variation. Improvement in this case means, that

the new wave function leads to a lower energy.

〈
φtrial(®r )

�� Ĥe

��φtrial(®r )
〉
= Etrial ≥ E0 =

〈
φ0(®r )

�� Ĥe

��φ0(®r )〉 (2.7)

The construction of a trial wave function is usually done via the linear combination of

atomic orbitals (LCAO) approach (Equation 2.8). The wave function is constructed in the

shape of a Slater determinant, which contains one-electron functions, so called molecular

orbitals (MO) Ψ.

Φi =
∑
i

ci χi (2.8)

The latter are formed as linear combinations (superposition) of atomic orbitals (AO) χ ,

which are called a basis set. Solving the Schrödinger equation now becomes equivalent

12



2.2. Quantum Chemistry

to minimizing the energy of the trial wave function constructed from MOs by varying

the AO-coe�cients.
1,13

The electronic structure methods used in this work are described

throughout the next chapters.

2.2.2. Density Functional Theory

In contrast to wave function based methods such as Hartree-Fock (HF) or Coupled Cluster

(CC), Density Functional Theory (DFT) is based on the electron density (Equation 2.9) for

the description of the electronic structure of a molecular system. The electron density is

a probability density, stating the probability of �nding an electron in a volume element.

The dimensionality is reduced from 4N spatial and spin variables for the wave function to

only 4 variables for the density. N refers to the number of electrons.

ρ(®r ) = |Φ(®r )|2 (2.9)

Using the electron density as a possible representation of the system is intuitive because

of its properties. Integrating the electron density yields the number of electrons in the

system. The position of the nuclei can be identi�ed by the cusps in the electron density.

Their height contains information about the corresponding nuclear charge.

E = E [ρ (®r )] and Etrial [ρtrial (®r )] ≥ E0 [ρ0 (®r )] (2.10)

Hohenberg and Kohn
15

provided proof for this in two theorems (Equation 2.10). The �rst

demonstrates, that the energy of the ground state can be formulated as a functional of

the electron density, while the second is similar to the variational principle, associating

the ground state density with the lowest possible energy. The total energy in terms of

functionals of the density consists of the kinetic energy of the electrons, as well as the

interaction energies of electrons-nuclei and electrons-electrons.

E [ρ] = Te [ρ] +Ven [ρ] +Vee [ρ] (2.11)

The last term can be split into the classical electrostatic Coulomb repulsion (J [ρ]) and

the remainder of non-classical origin, the correction for self-interaction, exchange and

correlation. Kohn and Sham
16

achieved a major breakthrough in the practical use of

DFT by o�ering a way to e�ectively calculate the contribution of the kinetic energy.

They considered a �ctitious reference system of non-interacting electrons in an e�ective

potential (Ve�) similar to HF, for which the kinetic energy (Tref [ρ]) could be computed

easily by reintroducing orbitals. The e�ective potential is set in a way that the density of

the reference system is equal to that of the real interacting system

ρ = ρref =
∑
i

|ϕi |
2 . (2.12)

13



2. Calculation of Energies

The (orthonormal) orbitals can be calculated within the variational principle using the

Kohn-Sham equations (Equation 2.13). This has to be performed in an iterative process

until self-convergence, because the external potential already depends on the density and

thus on the orbitals. (
−
1

2

∆ +Ve�

)
ϕi = ϵiϕi (2.13)

The solution by Kohn and Sham describes the main part of the kinetic energy, which only

misses a small contribution. The stated terms of classical origin and the main part of the

kinetic energy can be formulated exactly, while all unknown contributions (correction

for self-interaction and kinetic energy, exchange and correlation) are combined into the

exchange-correlation functional (Exc [ρ]).

E [ρ] = Tref [ρ] + J [ρ] +Ven [ρ] + Exc [ρ] (2.14)

If the correct exchange-correlation functional was known, the exact ground state energy

of a molecular system could be calculated. However, the explicit form of this functional is

not known, so that approximations must be introduced for this otherwise exact theory.

The crucial task in the development and advancement of DFT is to �nd better forms for the

exchange-correlation functional, which can include empirically derived parameters.
1,13,17

Simple formulations of functionals make use of the local density (LDA) or generalized

gradient (GGA) approximation. The former is based on the uniform electron gas and

the energy is assumed to only depend on the local value of the electron density. GGA

class functionals additionally include the dependence of the energy on the gradient of

the density at every point. Today, hybrid functionals are popular, as they have proven

to be a versatile method for calculating many properties and often have a good balance

between accuracy and e�ciency. They contain a fraction of exact Hartree-Fock (HF)

exchange in the exchange part of the functional.
13

Finally, long-range corrected (LC) or

range-separated functionals have been developed. Here, exact exchange is added with a

distance dependence and some severe problems in DFT are improved.
18

2.2.3. Density Functional Tight Binding

Density functional tight binding (DFTB) is a semi-empirical QM method based on DFT.

The term tight-binding comes from models of solid-state physics, where core electrons

are assumed to be tightly bound to the atomic nucleus. Hence, they do not a�ect the

electronic structure of their surroundings much and only valence electrons are treated

explicitly. Additionally, a minimal basis for the valence electrons in an LCAO approach

(Equation 2.15) is introduced.

|Ψi〉 =
∑
µ

cµi
��ϕµ〉 (2.15)

14



2.2. Quantum Chemistry

The atomic orbitals (ϕ) are obtained from single atom DFT calculations, which employ an

additional harmonic potential for a con�ned basis. The total energy in DFTB is determined

from a Taylor expansion of the total DFT energy (Equation 2.14) in terms of neutral atomic

reference densities (ρ0) and their �uctuation (δρ) as a representation for the true density

minimizing the energy (Equation 2.16).
19

EDFTB
[
ρ0 + δρ

]
= E1 + E0 + E2 + E3 + · · ·

E1 =
∑
i

ni

〈
Ψi

����−∆
2

+Vne +

∫
ρ0′

|r − r ′|
dr ′ +VXC

[
ρ0

] ����Ψi〉
E0 = −

1

2

∬
ρ0ρ0′

|r − r ′|
drdr ′ −

∫
VXC

[
ρ0

]
ρ0dr + EXC

[
ρ0

]
+ Enn

E2 =
1

2

∬ (
1

|r − r ′|
+
δ 2EXC[ρ]

δρδρ′

����
ρ0,ρ0 ′

)
δρδρ′drdr ′

E3 =
1

6

∭
δ 3EXC[ρ]

δρδρ′δρ′′

����
ρ0,ρ0 ′,ρ0 ′′

δρδρ′δρ′′drdr ′dr ′′

(2.16)

Depending on the truncation of this Taylor series, a hierarchy of DFTB can be derived:

First order DFTB (DFTB1)
20,21

, second order self-consistent charge DFTB (SCC-DFTB2 or

just DFTB2)
22

and third order DFTB (DFTB3)
23

. The energy of DFTB1 (zeroth and �rst

order term) is further approximated as

EDFTB1 = E1 + E0 =
∑
i

niϵi +
1

2

∑
ab

V
rep

ab
. (2.17)

The �rst term is often denoted the electronic energy. The eigenvalues (with occupa-

tion numbers n) are calculated in a non-self-consistent way from Kohn-Sham equations

(Equation 2.18). ∑
ν

cνi
(
H 0

µν − ϵiSµν
)
= 0 (2.18)

For the Hamiltonian and overlap matrices (Equation 2.19) only two-center integrals are

evaluated, the elements of both matrices are computed once and then tabulated. There-

fore, no integrals have to be evaluated during runtime, signi�cantly speeding up DFTB

calculations. DFTB is up to three orders of magnitude faster than conventional DFT.

H 0

µν =
〈
ϕµ

��H 0

��ϕν 〉 Sµν =
〈
ϕµ

��ϕν 〉 (2.19)

All other terms (third line in Equation 2.16) are merged into a repulsive energy term

(E0 = Erep), which is approximated as a sum of atomic pair potentials on atoms a and b
and is obtained by �tting e.g. to reference DFT calculations.

24
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2. Calculation of Energies

For molecular systems where charge transfer between atoms plays a role, e.g. heteroatomic

molecules with signi�cant di�erence in electronegativity, higher order terms must be

included. The second order contribution is contained in DFTB2 as

EDFTB2 = EDFTB1 +
1

2

∑
ab

∆qa∆qbγab , (2.20)

incorporating charge �uctuations on atoms (Equation 2.21).

∆qa = qa − q
0

a (2.21)

The additional term essentially is a Coulomb interaction between atomic partial charges

(∆qa) at long distances and electron-electron interaction within one atom at short distances.

The gross charges qa are obtained via Mulliken population analysis from the MO coe�-

cients and the charge of the core q0a is subtracted. The MO coe�cients are obtained from

the Hamiltonian, which already involves the partial charges. Therefore, a self-consistent

charge formalism must be introduced.
22

The performance of DFTB can be further improved

by adding even higher order terms.

Standard DFTB is parameterized with a GGA functional. Thus, DFTB inherits some of the

problems associated with GGA DFT, e.g. the self-interaction error, which severely a�ects

the quality of several calculated properties. In Hartree-Fock, however, the interaction of an

electron with itself does not occur. Therefore, long-range corrected functionals have been

developed for DFT to reduce this error and have been adopted into the DFTB formalism.

The electron-electron interaction is split into two parts, a short- and a long-range part

(Equation 2.22).

1

r12
=

1 − erf (ωr12)

r12
+

erf (ωr12)

r12
(2.22)

The empirical range separation parameter ω has to be optimized through �tting to data

from experiments or higher level of theory. It de�nes the splitting between the short- and

long-range parts. The long-range part approaches exact HF exchange at long distances,

while a pure density functional is employed at short distances. The correlation contribution

is still evaluated by means of a GGA functional.

EXC = EGGA

C
+ Eω,LDA

X
+ Eω,HF

X
(2.23)

The use of LC functionals leads to the correct −1

r asymptotic behavior of the Kohn-Sham

potential.
25,26

For the calculation of excited states and their properties, the time-dependent linear response

extension to DFTB (TD-DFTB) has to be used. This approach does not calculate the excited

state directly, but rather properties of this state are obtained as a linear response. The

16



2.3. Hybrid Approaches

linear response in this case is the interaction with electromagnetic waves, mediating the

transition from the ground state to an excited state. It can be seen as a small perturbation

of the electronic structure.

Therefore, a TD-DFTB calculation is carried out on top of a DFTB ground state calculation.

In a �rst step, the single particle energies and orbitals of the ground state are calculated.

Afterwards, the pseudo-eigenvalue problem of the Casida equation (Equation 2.24)
27

is

solved.

(
A B
B A

) (
®X
®Y

)
= Ω

(
−1 0

0 1

) (
®X
®Y

)
(2.24)

Ω denotes the excitation energies, while A and B are matrices, whose elements are calcu-

lated from the energy di�erences of the Kohn-Sham orbitals and the linear response in

terms of Coulomb and exchange-correlation contributions.
28,29

2.3. Hybrid Approaches

The potential energy of a molecular system can be used to calculate forces on the nuclei,

which are necessary to perform molecular dynamics simulations. Di�erent methods, e.g.

molecular mechanics force �elds or one of the various quantum-chemical methods, may

be employed to derive the potential energy. MM approaches are e�cient, but less accurate

and quantum e�ects, e.g. bond forming and breaking or transitions between electronic

states, are not treated. Thus, large molecular systems can be simulated on long time scales,

but no chemical reactions and interactions with electromagnetic waves can be described.

In contrast, QM methods are able to simulate quantum e�ects. However, they come with

high computational cost, which prohibits large system sizes and time scales. One way

to overcome this is the application of hybrid QM/MM approaches, which combine both

methods. The system is divided into di�erent regions, where the energies and forces

on nuclei are obtained by di�erent methods. Usually, only a small region with a few

nuclei is of primary interest and must be treated quantum-mechanically, while the entire

environment is su�ciently treated by a force �eld.

Etot = EQM + EMM + EQM/MM (2.25)

To account for the coupling between QM and MM regions (Equation 2.25), di�erent

embedding schemes have been developed. The easiest form in terms of computational e�ort

is mechanical embedding, where the QM and MM densities are completely independent

from each other. The interaction between them is treated purely by a non-bonding force

�eld term (Equation 2.26), similar to the electrostatic and Van-der-Waals interaction in

Equation 2.1. The partial charges of nuclei (i) in the QM region come directly from the QM

calculation and are updated in every step. Meanwhile, the force �eld charges for atoms

(m) in the MM region are kept �xed.
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2. Calculation of Energies

EQM/MM =

NQM∑
i

NMM∑
m

(
qiqj

rim
+ 4ϵim

((
σim
rim

)
12

−

(
σim
rim

)
6

))
(2.26)

This scheme completely neglects polarization of both regions. The electronic embedding

scheme includes the polarization of the electronic structure of the QM region, which

is caused by the MM region. Therefore, an additional term in the QM Hamiltonian is

introduced (Equation 2.27), while the interaction of nuclei in the QM and MM region is

kept within the QM/MM term.

H ′
QM/MM

= HQM/MM −

nQM∑
j

NMM∑
m

(
qm
rjm

)
(2.27)

In polarized embedding schemes, the mutual polarization of both regions is included via

a polarizable force �eld. Therefore, both the QM and MM calculations have an iterative

nature, which highly increases the computational cost.

Beside the mentioned QM/MM approaches, hybrid QM/QM approaches are also possible

for small systems. Moreover, the system can be partitioned into more than two regions,

e.g. QM1/QM2/MM, employing di�erent levels of theory.
13

An implementation of this is

the ONIOM (Our own n-layered Integrated molecular Orbital and Molecular mechanics)

method.
30
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3. Molecular Dynamics

The previous chapter introduced theories and methods for the description of molecular

con�gurations in terms of classical and quantum mechanics. Energies and forces from

these methods can be used to evolve a molecular system in time, going beyond the picture

of static molecules. This allows the dynamics of the system to be studied, which often

goes hand in hand with its function. In addition, time-dependent and thermodynamic

properties can be calculated.

3.1. Adiabatic Molecular Dynamics Simulations

In the standard case of molecular dynamics (MD) simulations, the Born-Oppenheimer

approximation as mentioned in the previous chapter is considered valid. This approxima-

tion usually works well for heavy and slowly moving particles like atomic nuclei, whose

movement can be decoupled from the movement of the electrons. Thus, the nuclei evolve

on a single PES, which is associated with a single electronic state (an adiabatic state),

usually the ground state. In standard MD simulations, the system is propagated classically,

i.e. Newtons second law (Equation 3.1) is used as the equation of motion.

®Fi =mi ®ai =mi
d2®ri
dt2

(3.1)

The force can be calculated as the negative gradient of the energy, which can be obtained

e.g. from force �elds or electronic structure calculations.
13

®Fi = −∇V = −
∂V (®r1, · · · ®rn)

∂®ri
(3.2)

3.1.1. Integration

Solving the resulting di�erential equation, which contains derivatives of the nuclear

coordinates with respect to time and space, reveals the time-dependent motion of the

system. Unfortunately, only one- or two-body systems can be solved analytically, while

many-body systems require a numerical solution. There are algorithms serving this

purpose, e.g. the Verlet algorithm. It is based on a Taylor expansion of the nuclear

coordinates as a function of time, which is truncated after the second order. In the

19



3. Molecular Dynamics

derivation, one step is performed in positive time (t +∆t ) and one in negative time (t −∆t ).
Adding up both equations eliminates the �rst derivative of the coordinates with respect

to time (velocity) and by rearrangements an equation is obtained, which can be used to

propagate the system (Equation 3.3).

®r (t + ∆t) = ®r (t) + ®v (t)∆t +
1

2

®a (t) (∆t)2

®r (t − ∆t) = ®r (t) − ®v (t)∆t +
1

2

®a (t) (∆t)2

®r (t + ∆t) = 2®r (t) + ®a (t) (∆t)2 − ®r (t − ∆t)

(3.3)

New nuclear positions at t +∆t can be obtained from the current positions (t ), the positions

from the last step (t − ∆t ) and the current acceleration, which can be calculated from the

force.

The movement of the system is completely deterministic. This means with given coordi-

nates and velocities at t = 0 the positions and velocities at all future time points can be

obtained. However, the number of integration steps of the equation of motion and thus the

time scales, which can be reached within an MD simulation, are limited. This is due to the

�nite valued time step. The numerical integration of the equation of motion introduces an

error, which depends on the length of ∆t . The size of the error increases with the length

of the time step. On the other hand, the computational e�ort of a simulation depends

on the number of time steps to be calculated. Therefore, a trade-o� between accuracy

and computational cost must be made. Usually, simulations are stable, if the time step

is chosen one order of magnitude smaller compared to the period of the fastest motion.

Without special treatment the fastest motions in an atomic system are vibrations of bonds

containing hydrogen, with a period on a time scale of 10 fs. Thus, the time step is normally

set to 1 fs.
13

3.1.2. Thermodynamic Ensembles

The concept of classical molecular dynamics simulation, carried out with energies and

forces either from classical or quantum mechanics, is based on a microscopic theory. The

system is assigned a microstate, which is de�ned by the coordinates (®r ) and velocities (®v)

or momenta (®p) of every particle of the system. The dynamic behavior of the system is

obtained by solving the equation of motion, resulting in a sequence of microstates along

time (®r (t), ®p(t)). This is called a trajectory and it can be understood as a curve in the

6N -dimensional phase space, which is the set of all possible microstates.

By contrast, a macrostate is de�ned by thermodynamic properties, such as the number

of particles, volume, temperature and pressure. Statistical thermodynamics provides a

link between the microscopic and macroscopic description. The partition function, which

contains information about all microstates, allows the calculation of all thermodynamic
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3.2. Non-Adiabatic Molecular Dynamics Simulations

properties of a microscopic system. However, it cannot be derived analytically for a huge

molecular system.

Instead, MD simulations can be employed to sample a representative part of the phase

space, which is called an ensemble. For an ergodic system, this sampled time average

equals the ensemble average, meaning that every point in phase space can be reached

from any starting point within in�nite time (Equation 3.4). Finally, this averaging enables

thermodynamic properties to be obtained from simulations.

〈X 〉 = lim

τ→∞

1

τ

∫ τ

0

X (t) dt = lim

M→∞

1

M

M∑
i=1

Xi
(
®r , ®p

)
(3.4)

This is of importance, because most experimental measurements are carried out on a

macroscopic sample. It contains a number of particles of the size of Avogadro’s number

and the measurement itself takes a �nite amount of time. Therefore, properties are

measured as averages over an ensemble of particles and averages over time.

Furthermore, experiments take place at de�ned thermodynamic properties such as temper-

ature and pressure. Controlling these parameters is a key task in order to create comparable

conditions to an experiment. This can be accomplished by means of special algorithms,

e.g. so called thermostats and barostats, which emulate the coupling of the system to

external heat or pressure baths. This allows sampling in an ensemble of choice with certain

thermodynamic properties held constant, e.g. the number of particle N , the energy E,

the temperature T , volume V , or the pressure P . The corresponding ensembles are the

micro-canonical ensemble (NVE) in an isolated system, the canonical ensemble (NVT) or

the isothermal-isobaric ensemble (NPT) in a closed system.
13

3.2. Non-Adiabatic Molecular Dynamics Simulations

In adiabatic MD simulations, the heavy and slowly moving nuclei can be propagated

classically. However, light and fast moving particles such as electrons, which show both

particle and wave characteristics, must be propagated quantum mechanically.
13

The Born-

Oppenheimer approximation uncouples nuclear and electronic motions and thus allows the

classical propagation of nuclei on a single PES of one electronic state. This approximation

breaks down for processes such as charge transfer, exciton transfer or photochemical reac-

tions, which involve transitions between di�erent electronic states. At (avoided) crossings,

the PES from di�erent electronic states come close and couple, which renders a separation

of nuclear and electronic motion impossible. Transitions between these adiabatic states

become possible. To describe the non-adiabatic phenomena in non-adiabatic molecular

dynamics (NAMD) simulations, a quantum mechanical treatment of the dynamics of the

system becomes necessary.
31
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3.2.1. The Semi-Classical Approach

Since a full quantum mechanical treatment of a molecular system with more than just a few

degrees of freedom is not feasible, some simpli�cations have to be introduced in order to

simulate larger systems. One category of methods, called mixed quantum-classical models,

uses a semi-classical approach to describe non-adiabatic processes. The electronic degrees

of freedom are treated quantum mechanically and are propagated according to the time-

dependent Schrödinger equation (TDSE). All nuclear degrees of freedom are computed

classically and their movement follows Newton’s equation of motion. Additionally, the

quantum propagation may be restricted to a subset of the system, which is called the QM

region, similar to classical QM/MM MD simulations. But this QM region, other than in

conventional QM/MM MD, only contains the electronic degrees of freedom, while no

electronic degrees of freedom are calculated for the remainder of the system.
31

Since QM

calculations involve much larger computational cost compared to force �elds, they set the

time limiting step in NAMD simulations.

Therefore, a subsystem-based approach can be applied to fragment the QM region into

smaller parts. Organic semiconductors, the DNA base pairs or chromophores in biological

complexes usually exhibit weak non-covalent intermolecular interactions. Thus, the

electronic structure of two molecules in proximity can be assumed to be essentially

identical to that of the isolated molecules. This allows for a conceptually simple coarse

graining. The system can be divided into so called fragments or sites, which can be

whole molecules or molecular parts and which are treated independently. Thus, the QM

calculations are restricted to a reasonable size and they can be easily parallelized. With

this fragmentation, a coarse-grained transfer Hamiltonian (Equation 3.5) for the electronic

degrees of freedom can be de�ned, consisting of (on-)site energies (diagonal elements) for

every fragment and pairwise couplings (o�-diagonal elements) between them.

Htransfer =


ϵ1 V12 · · · V1N
V21 ϵ2 · · · V2N
...

...
. . .

VN 1 VN 2 ϵN


(3.5)

The representation in this fragmented and localized basis is called diabatic. Diagonalizing

the diabatic Hamiltonian matrix yields the potentially delocalized adiabatic states.
32

3.2.2. Integration

The equations of motion for electronic and nuclear degrees of freedom in NAMD sim-

ulations are coupled and any propagator algorithm used has to be able to describe this

coupling. The most prominent propagators are the mean-�eld Ehrenfest method
33

and

variants of trajectory surface hopping (SH)
34,35

. In the Ehrenfest method, the nuclei are

propagated on an e�ective PES, which is obtained as the average of all adiabatic states
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3.2. Non-Adiabatic Molecular Dynamics Simulations

weighted by their respective occupation. In surface hopping on the contrary, the trajectory

evolves on a single adiabatic PES, but the current adiabatic state is allowed to change.

This work mainly uses the fewest-switches surface hopping (FSSH) method in the adiabatic

representation. This means, the wave function is expressed as a linear combination of

adiabatic states (Equation 3.6).

Ψ =
∑
i

Cad

i |ψi〉 (3.6)

The occupation of a state is given as the square of the corresponding coe�cient (|Ci |
2

).

The probability for a transition from adiabatic statem to n is obtained as

PFSSH (m → n) = max

0, 2
Û®R ®dmnRe

(
Cad∗
n Cad

m

)��Cad

m

��2 ∆t
 , (3.7)

with the non-adiabatic coupling vector (NACV) d and the adiabatic expansion coe�cients

C (Re denotes the real part of a complex number). A uniform random number (ζ ) is

generated according to which a hop takes place or is rejected (Equation 3.8).

n−1∑
i

PFSSH (m → i) < ζ ≤
n∑
i

PFSSH (m → i) (3.8)

The equation of motion for the electronic degrees of freedom is the TDSE, into which

Equation 3.6 is inserted.

ÛCm = C
ad

m H ad

m −
∑
n

Cad

n
Û®R ®dmn (3.9)

This equation is used to update the occupation of the fragments by transformation back to

the diabatic basis.
31,36

When a transfer happens, a formerly unoccupied molecule will relax to a new equilibrium

structure, which in turn leads to a decrease in its site energy. This response of a molecule

to a change in its occupation can be taken into account by explicit relaxation (ER), where

the QM forces weighted by the occupation drive the nuclear relaxation. The total energy of

the system is a sum of energies of the MM environment, the QM region and an interaction

term. The forces are obtained in a diabatic basis as

®Fk =mk
Ü®Rk = −

∂E0
MM

∂ ®Rk
−

∑
i

∑
j

a∗i aj
∂Hij

∂ ®Rk︸                 ︷︷                 ︸
®FQM

−
∂EQM/MM

∂ ®Rk
, (3.10)
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with the nuclear coordinates R of atoms k . i denotes the fragments of the QM region.

The quantum forces can be expanded in terms of the derivatives of (diabatic) transfer

Hamiltonian elements weighted by the diabatic coe�cients a. Another strategy is to

approximate the quantum forces with a ∆-SCF approach by calculating the di�erences of

forces/gradients of the occupied (e.g. charged or excited) and unoccupied (e.g. neutral or

ground) states Equation 3.11.

®F∆-SCF =
∂

∂Rk
Eoccupied −

∂

∂Rk
Eunoccupied

(3.11)

Alternatively, this feedback from electronic to nuclear degrees of freedom can be modeled

via a phenomenological equation (Equation 3.12), where the site energy is reduced accord-

ing to the occupation of a fragment by an empirically determined (internal) reorganization

energy (λ), which is called implicit relaxation (IR).
37

H ′ii = H 0

ii − |aii |
2λ (3.12)

When a transfer or hop takes place, the involved states do not necessarily have the same

energy. To ensure the conservation of total energy for each trajectory, the nuclear momenta

must be adjusted when a hop occurs. This is usually achieved by re-scaling the nuclear

momenta along the direction of the non-adiabatic coupling vector (NACV) to compensate

for the change in energy.
38

®p′ = ®p + α ®dad

mn (3.13)

Herem,n are are the involved adiabatic states and d is the NACV. The NACV can be related

to the diabatic gradients as

®dad

mn =

[
U † ∇H 0

ij U
]
mn

H ad

n − H
ad

m

, (3.14)

with the diabatic to adiabatic transformation matrix U . If the adjustment of momenta

is not su�cient to compensate the change in energy (an energy-forbidden or frustrated

hop), the trajectory continues in the original electronic state j, and the momenta along

the NACV are reversed. Alternatively, this momenta re-scaling scheme can be replaced

by re-scaling the hopping probability with a Boltzmann factor and leaving the velocities

unchanged.
39

P ′mn = дBC Pmn with дBC =

{
exp

(
−
H ad

n −H
ad

m
kB T

)
H ad

n > H ad

m (upwards hop)

1 H ad

n ≤ H ad

m (downwards hop)

(3.15)
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This so-called Boltzmann-corrected FSSH (BC-FSSH) method has the advantage that

the computationally demanding NACVs need not to be evaluated, which is much more

e�cient.

3.2.3. Charge Transfer

Charge transfer can occur in two di�erent scenarios, either the transfer of a negative

excess charge in a system with an additional electron compared to the neutral state, or the

transfer of a positive hole in an electron de�cient system (Figure 3.1). In both cases, only

one electron is transferred.

Figure 3.1.: Top: Transfer of a positive hole. Bottom: Transfer of a negative excess electron.

Since low-energy charge transfer typically occurs in a narrow energy window around the

Fermi level, it is su�cient to consider only frontier orbitals on the fragments. Therefore,

the size of the QM region can be reduced further by restricting it to a set of such frontier

orbitals, e.g. the highest occupied molecular orbitals (HOMO) for hole transfer.
10

The hole

wave function is then expressed as a linear combination of orthogonal molecular orbitals

(|φm〉) localized on fragment molecules A (Equation 3.16).

|Ψ〉 =
∑
A

∑
m∈A

am |φm〉 (3.16)

This is called the fragment molecular orbital approach (FMO)
32,40

. The elements of the

corresponding coarse grained Hamiltonian (Equation 3.5) are then calculated as orbital

energies (site energies) and Hamiltonian elements between di�erent orbitals (couplings)

in neutral fragments (Equation 3.17).

Hmn = 〈φm |H [ρ0] | φn〉 (3.17)
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3.2.4. Exciton Transfer

The transfer of excitation energy can be described in terms of excitons, quasi-particles

that can be understood as a bound excited electron and hole pair. In a simpli�ed scheme

an electron is promoted to an energetically higher orbital (e.g. the lowest unoccupied

molecular orbital - LUMO) through interaction with light of suitable energy (Figure 3.2).

The former occupied but now empty orbital (e.g. the highest occupied molecular orbital

- HOMO) is called a hole. Excitons are classi�ed according to the localization of the

excited electron and hole: They can be localized on one fragment (Frenkel exciton), on two

neighboring fragments (charge transfer exciton) or on distant fragments (Wannier-Mott

exciton).
41

Frenkel excitons are of interest in this work.

Figure 3.2.: Formation of an exciton by light absorption of fragment A, followed by Förster or Dexter transfer

to a neighboring fragment B. Modi�ed from [41]

The exciton and its energy can be transferred from one fragment to another via either

of two possible mechanisms as depicted in Figure 3.2. In Förster transfer, the excited

fragment is deexcited, while the neighboring fragment is excited. Both fragments interact

through a long-range interaction. The same �nal state can be reached via the Dexter

mechanism, where two electrons are exchanged between the involved fragments. This

requires a su�cient overlap between the wave functions on the two fragments. For the

transfer of Frenkel excitons, the Frenkel Hamiltonian (Equation 3.18)
42,43

can be used as a

coarse-grained model of the electronic structure (Equation 3.5).
41

HFrenkel =

N∑
i

ϵi |i〉 〈i | +
N∑
i,j

Vij |i〉 〈j | (3.18)

The �rst term in Equation 3.18 or the diagonal elements in Equation 3.5 are the site

energies of individual fragments, into which the system is divided. They describe local

excitations of sites, which can be obtained as excitation energies by any quantum-chemistry

method that gives access to excited states, e.g. TD-DFT or TD-DFTB. Excitations of the
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3.2. Non-Adiabatic Molecular Dynamics Simulations

whole system are then described as linear combinations of single molecular excitons.

The interactions between sites are the second term in Equation 3.18 or the o�-diagonal

elements of Equation 3.5.
41,44

The coupling can be split into a short-range and a long-range contribution. The former

contains interactions like overlap, exchange, and charge-transfer excitations. Thus, it

depends on the spatial overlap of the wave functions of sites, which decreases rapidly

(exponentially) with increasing distance between the sites. For fragments at longer dis-

tances, on the other hand, only the long-range interaction is usually considered, which

only decays slowly with the distance. It can be described as a Coulomb interaction between

transition densities (Equation 3.20).
45

The transition density has no classical analog like a

charge density and is computed by integrating the product of ground and excited state

wave functions over all spin and all but one spatial coordinate.
46

ρ(®r ) =

∫
ds

∫
d®r2, · · · , d®rNϕд(®r1, · · · , ®rN )ϕ

∗
e (®r1, · · · , ®rN ) (3.19)

V Coul

ij =
1

4πϵ0ϵe

∫ ∫ ρ
eд
i (®ri) ρ

eд
j

(
®rj
)��®ri − ®rj �� d®rid®rj (3.20)

This can be understood as an interaction between charge distributions, which can be

approximated in their representation by applying approaches from electrostatics. The

most simple approach is called the point-dipole approximation (PDA) and only considers

the �rst-order term of the multipole expansion of each transition density, the transition

dipole. This approximation is only valid for large inter-site distances compared to the size

of the sites themselves, yet it does not provide accurate results even for long distances.

A more �ne-grained representation of transition densities can be achieved by placing a

number of transition charges (monopoles) on the sites. In the transition charges from

electrostatic potentials (TrEsp) method
47

, one transition charge is placed on every atom.

These charges are then varied to �t the electrostatic potential of the reference transition

density as closely as possible and provide signi�cantly improved couplings compared to

the PDA approximation. The transition density cube (TDC)
48

approach uses a grid in

Cartesian coordinates to place the transition charges. This makes it a direct numerical

integration of Equation 3.20, but it requires a large number of charges to be placed on

a �ne grid making it extremely demanding in terms of computational cost. The TrEsp

and TDC methods are usually not applied to compute excitonic couplings on the �y, e.g.

during molecular dynamics simulations, due to their computational demands. Instead, the

respective transition charges are calculated once before the simulation and then kept �xed,

which signi�cantly decreases computation time during the simulation.
45

When using TD-DFTB based methods, atomic transition charges can be obtained by a

Mulliken population analysis. Due to the e�ciency of the method, these charges can be

computed on the �y. The coupling between transitions from ground state (0) to states a and

b on fragments i and j can be calculated as Coulomb interaction (ζ ) of atomic transition

charges (Q)
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V Coul

ij =
∑
X∈i

∑
Y∈j

Q0a
X ζXYQ

0b
Y , (3.21)

where X , Y are atoms of the respective fragments.
11,49

The Coulomb interaction in the

DFTB formalism is de�ned as

ζXY =

∫ ∫
ΦX (r )ΦY (r

′)

|®r − ®r ′|
d®rd®r ′ with ΦX (®r ) =

1

NX

∑
µ∈X

|µ(®r )|2 . (3.22)

µ(r ) are the basis functions on atom X and NX is the total number of basis functions.
26

The total coupling with short and long range contributions can be obtained via super-

molecular calculations, which include the whole dimer for which the coupling should

be evaluated. Considering this coupled dimer, the two lowest adiabatic states {ΨA
1
,ΨA

2
}

with energies {EA
1
, EA

2
} are linear combinations of the two interacting diabatic states

{ΨD
1
,ΨD

2
} of the monomers with energies {ED

1
, ED

2
}. The adiabatic states can be obtained

by diagonalization of the diabatic Hamiltonian.
41

HD =

[
ED
1

V12
V12 ED

2

]
→ HA =

[
EA
1

0

0 EA
2

]
(3.23)

To calculate the supermolecular coupling, the opposite must be achieved: The adiabatic

Hamiltonian matrix, which can be obtained from a dimer calculation, must be transformed

back to the diabatic Hamiltonian matrix. A simple way to achieve this is by analytical diago-

nalization. For a dimer, the matrix diagonalization can be performed analytically. From the

energetic gap of the adiabatic (dimer) and diabatic (monomers) states the supermolecular

coupling can be computed as

V12 =
1

2

√(
∆EA

12

)
2

−
(
∆ED

12

)
2

. (3.24)

Besides this analytical diagonalization method, there are more advanced approaches

for the calculation of supermolecular couplings, e.g. approaches utilizing an algebraic

diabatisation procedure based on molecular properties.
50

Here the diabatic and adiabatic

Hamilton matrices are connected through an orthogonal transformation

HD = CHACT , (3.25)

where C is the orthogonal transformation matrix and CT
is its transpose. To obtain the

transformation matrix, the diabatization scheme makes use of a representation of the

involved states in terms of a molecular property. The relation between diabatic (pD) and

adiabatic states (pA) then reads
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pD = pACT . (3.26)

Regarding the molecular property, the target diabatic states should be as close as possible

to a set of well de�ned reference states pD,ref
. In other words, the applied transformation

to pA needs to result in a pD that minimizes the distance to pD,ref
:

CT = arg minR

����pAR − pD,ref

���� . (3.27)

Here | | · | | is the Frobenius norm, the square root of the sum of all squared matrix elements.

Equation 3.27 is a matrix approximation problem in linear algebra that is termed orthogonal

Procrustes problem
51,52

. The solution to this is given by

CT = UVT , (3.28)

with the unitary matrices U and VT
, which can be determined by a singular value decom-

position:

M =
(
pA

)T
pD,ref = UΣVT

(3.29)

The scheme described so far is based on a two-state approximation. In principle, this

approach can be applied to any number of states involving the two fragments of the dimer.

These can be multiple Frenkel states on single fragments, which are close in energy
53

.

Indeed the diabatization is not limited to locally excited (LE) Frenkel states, but can also

be adopted to states of a di�erent character, e.g. charge transfer (CT) excitations.
54

The molecular properties proposed by the authors
50,54

and used in this work are atomic tran-

sition charges (ATQ) and transition dipole moments (TDP). For ATQ,pA is calculated on the

dimer and corresponds to a matrix with one column of ATQ {qA
1
,qA

2
,qA

3
· · ·qAn } for every ex-

cited state of interest. Likewise, pD,ref
is derived depending on the character of the diabatic

excited states. For locally excited states, the ATQ for the lowest excited states of interest

on each individual monomer are calculated, while the ATQs on the remaining monomer

are set to zero: {qD,ref

1
,qD,ref

2
, · · ·qD,ref

n/2
, 0, 0, · · · 0} and {0, 0, · · · 0,qD,ref

n/2+1
,qD,ref

n/2+2
, · · ·qD,ref

n , }.

The calculations for TDP are performed similarly, with pA and pD,ref
being matrices made

of the Cartesian elements of the corresponding TDP for each considered state.

3.2.5. Calculation of Observables

A measure for the distance of a propagated (pseudo-) particle from its initial position is the

mean-square displacement (MSD). It describes the spatial deviation of an entity compared

to a reference position (e.g. the starting position) along time. For an ensemble average of

Ntraj independent trajectories the MSD can be computed as
55
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MSD(t) =
1

Ntraj

Ntraj∑
l

∑
A

(
®xA(t)

(l) − ®xA(0)
(l)

)
2

P (l)(t)A , (3.30)

where ®xA(t)
(l)

and P (l)A (t) are the center of mass of fragment A and the corresponding

(diabatic) population along trajectory l , respectively. ®xA(0)
(l)

is the center of mass at t = 0.

The MSD can be used to calculate the di�usion coe�cient D55
as

D =
1

2n
lim

t→∞

dMSD(t)

dt
, (3.31)

where n is the dimensionality (e.g. n = 1 for a one-dimensional chain). The derivative of

the MSD with respect to time is usually estimated as the slope of the linear part when

plotting the MSD versus the simulation time. Finally for charges (electrons or holes) the

mobility µ can be obtained with the Einstein-Smoluchowski equation
56

.

µ =
eD

kBT
(3.32)

e is the elementary charge, kB is the Boltzmann constant and T denotes the temperature.

The inverse participation ratio (IPR) is an estimate for the delocalization of a particle in

terms of a dimensionless number (of molecules), over which the particle is delocalized. It

is calculated as

IPR =

Ntraj∑
l

1∑
k

���U (l)jk ���4 . (3.33)
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The previous two chapters introduced physics based theories and methods for the de-

scription of molecular structure and properties. Contrastingly, machine learning (ML)

techniques o�er a variety of non-physical but instead data-driven or statistical methods,

which can be applied to problems in chemistry and physics for the very same purpose.

4.1. Foundations of Machine Learning

Any ML
57–60

model can be understood as a complex function, which maps some input

variables (xi ), often called features, to some output variables (yi ), regularly referred to as

labels or targets (Equation 4.1). This mapping is done by implicitly extracting patterns from

sets of given reference data. Di�erent learning techniques such as supervised, unsupervised

or reinforcement learning can be distinguished. Using a data set consisting of pairs of

features and associated labels refers to supervised learning. The target in supervised

learning may consist of a continuous or discrete quantity, which should be predicted

either quantitatively or qualitatively (categorized). These two cases refer to the two main

classes of problems, which can be addressed with supervised machine learning, regression

and classi�cation. In this work only supervised ML approaches were employed to tackle

regression problems and will be discuss in the following.

Model: xi → yi (4.1)

To generate such a ML model, the parameters of the underlying function or model must be

adjusted in a way that the reference labels are best reproduced when given the correspond-

ing features as inputs. Therefore, the deviation between predicted and true labels must be

estimated. This can be measured with a cost or loss function, e.g. the mean squared error

between prediction and reference. Minimizing the loss or cost function for a data set can

be understood as training the model.

Beside the parameters necessary to calculate the targets, a model can have several other

internal parameters, which for example de�ne the architecture of the model. These so

called hyperparameters may have a huge impact on the quality of the model, which is

why they have to be optimized. Hyperparameter optimization is not performed while

training a speci�c model. Instead, multiple di�erent models are trained on the same data

(training set) with varying hyperparameters, chosen a priori (cf. Figure 4.1). Afterwards,

their performance is evaluated on additional and unseen data, the validation set, to select
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Figure 4.1.: Illustration of data sets in machine learning and their particular purpose in training, validation

and evaluation. Modi�ed from [61]

the model with optimal hyperparameters. This can be achieved with a simple but often

costly grid-search or more specialized techniques to reduce computational costs.

A common issue that can appear in model training is over�tting. Here, the model is

�tted very closely to the training data, including statistical noise. This can be re�ected

in the performance on di�erent data sets: performance on the training set will be much

better compared to the validation set. If beside the measurement of the loss or another

suitable metric on the training set the very same metric is measured on the validation set

during training, the training process can be stopped as soon as the two metrics deviate

more than a chosen threshold (early stopping). This is often used in iterative training

processes as they occur e.g. for neural networks. Another technique to prevent over�tting

is regularization
62

, which sets a preference for having simple models. For example, among

all trained models, the one with the fewest variations or the smoothest one may be chosen.

L1 regularization applies a penalty to the cost function, that should drive the model towards

smaller weights:

C = C0 +
λ

N

∑
w

|w | . (4.2)

Here λ is the regularization strength and N is the number of data points.

The opposite to over�tting is under�tting, which can occur when there is insu�cient

training data, the hyperparameters are not well optimized, the relationship between

features and labels is not valid or cannot be represented within the chosen model type.

Finally after training and validation, the model must be tested on a third held-out data set

to judge the predictive performance (cf. Figure 4.1). In this context, various metrics can be
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calculated. One frequently used metric to assess the quality of a trained and optimized

model is the coe�cient of determination (or R2
-score, Equation 4.3).

R2 = 1 −

N∑
i

(
yref

i − y
pred

i

)
2

N∑
i

(
yref

i − y
ref

)
2

(4.3)

It describes the error of a trained model relative to a �ctitious model, that would only ever

predict the mean value of the data set. An R2
-score of 1, which is the highest possible

value, describes a perfectly �tted model. A value of 0 means the model is as good as if

it would only ever predict the mean value, while values below zero (there is no lower

boundary) indicate worse models. Additionally, some common error metrics such as the

mean absolute error (MAE, Equation 4.4), the mean relative error (MRE, Equation 4.5) and

the maximum error (maxE) can be computed.

MAE =
1

N

N∑
i

���yref

i − y
pred

i

��� (4.4)

The MAE represents the distance of every reference label from the �tted function. Some-

times normalizing this metric is reasonable, because relative errors between models with

di�erent absolute values for their labels can be compared better. However, this is not

always possible, as some distributions of labels have a mean near zero. Single bad predic-

tions, so called outliers, cannot be captured with these metrics. Instead, maximum errors or

scatter-plots, which are two-dimensional histograms of predicted versus reference labels,

are better suited to detect outliers.

MRE =
1

N

N∑
i

���yref

i − y
pred

i

���
yref

(4.5)

In chemistry and physics structure-property relationships are usually the subject of in-

vestigation. In order to suitably encode the information of a molecular structure and to

make it machine readable, it is converted into a so called descriptor or representation.

This representation should capture the physics of the underlying theory and at best be

unique and obey certain invariances, such as permutational, translational and rotational

invariance
63,64

. Shifting a molecule along or rotating it around an axis does not change the

molecule’s properties, thus the relationships between input and output should not change.

Therefore, the descriptor should stay the same, which is not the case when using 3D

Cartesian coordinates. Instead, these coordinates can be transformed to simple descriptors

such as the inverse distance matrix
61

(Equation 4.6), where the diagonal does not contain

any information, but the o�-diagonal elements are the inverse distance between all atoms

of the system.
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Xij =
1

rij
(4.6)

To encode more of the underlying physics, e.g. the types and arrangement of nuclei, the

Coulomb matrix (CM)
65

can be utilized (Equation 4.7). The diagonal elements represent a

polynomial �t of atomic energies to nuclear charges, while the o�-diagonal elements are

similar to the inverse distance matrix. They are based on the Coulomb interaction between

the nuclei. Both representations scale with N 2
or rather

N (N−1)
2

, if only the upper/lower

triangle of the symmetric matrix is used.

Xij =

{
0.5Z 2.4

i , if i = j
ZiZ j
ri j

, if i , j
(4.7)

More advanced descriptors are e.g. the symmetry functions developed by Behler et al.
66

or FCHL
67

. They also include information about the atomic environment, however, are

much more costly to calculate compared to the inverse distance or Coulomb matrix. In the

following, the two ML methods used in this work are introduced.

4.2. Kernel Ridge Regression

Kernel Ridge Regression (KRR) is a popular ML method, which employs the kernel trick.

This allows for linear regression in a non-linear problem by implicitly transforming the

features from the lower dimensional feature space into the higher dimensional kernel

space, where the relationship between features and labels becomes linear. Here their

relationship can be �tted with a linear function, which is much easier than with a non-

linear function. Afterwards, the transformation is performed back to the original feature

space. The advantage is, that the transformation into kernel space and thus the mapping

in this space is not performed explicitly, but rather only implicitly by means of kernel

functions. These non-linear functions measure the similarity of two data points (or rather

of their representation) in kernel space. In essence, a kernel function is placed on every

point in the training set to encode the information for the similarity of data points. A label

can then be calculated as a sum of kernel functions, weighted by coe�cients (wm), which

have to be trained:

ypred =

Ntrain∑
m

k (X ,Xm)wm . (4.8)

X is the representation of a query datum, that is to be predicted, and Xm are the rep-

resentations of all training data points. Often the Gaussian (Equation 4.9) or Laplace

(Equation 4.10) kernel (k) is used.
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k (X ,X ′) = exp

(
−
||X −X ′| |2

2

2σ 2

)
(4.9)

k (X ,X ′) = exp

(
−
||X −X ′| |

1

2σ 2

)
(4.10)

σ denotes the kernel width and is a hyperparameter to the model. It is related to the

distance between training data points in kernel space. For the training the coe�cients can

be obtained in a closed form solution as

w = (K − λI )−1ytrain , (4.11)

with the kernel matrix K , all coe�cients w and the training labels ytrain
. Training is

directly combined with regularization, to avoid over�tting. The regularization strength λ
also improves the invertability of the kernel matrix.

The only hyperparamters of a KRR model are the kernel width σ , the regularization

strength λ and the kernel type, which makes KRR models easy to train compared to most

other ML methods (e.g. neural networks). However, the disadvantage is that for every

prediction the kernel between the query datum and all training data points has to be

evaluated (Equation 4.8). This results in a dependency of the prediction time on the size of

the training set. Thus, KRR is a method that works well with small data sets.
61,68

4.3. Neural Networks

Neural networks (NN) are inspired by the design of the human brain for processing infor-

mation. The smallest unit of a neural network is a neuron. For a set of inputs (xi ) a neuron

holds the value (y) of the sum of linear functions of these inputs with some associated

weights (wi ), which was passed though an activation function f (Equation 4.12).

y = f

(∑
i

wixi + bi

)
(4.12)

Multiple neurons are arranged in layers, which form the actual network (see Figure 4.2).

The �rst layer (input layer) consists of a number of neurons, which receive as inputs the

values of the representation. Every neuron in one of the following layers receives the

outputs of the neurons from the previous layer as its inputs. The �nal layer combines the

results into one or multiple outputs of the network. All layers after the input layer are

called hidden layers, while the very last layer is called the output layer. Not all neurons

are necessarily connected to all layers in the former and next layer, which would be called

a fully connected network.
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yli = f

(
bli +

Nl−1∑
j

wl−1
ij yl−1j

)
(4.13)

The output of a neuron i in layer l is calculated as the linear combination of outputs

from neurons j in the previous layer (l − 1), of which there are Nl−1, passed through the

activation function (Equation 4.13). A bias (bi ) can be used in every linear combination

to achieve higher �exibility via shifting of the values of this speci�c contribution. The

activation function usually is a nonlinear function, which makes it possible to �t and

describe highly complex nonlinear behavior within a neural network. Commonly used

examples are the hyperbolic tangent, the sigmoid function or modi�cations of the recti�ed

linear unit (ReLU), e.g. the leaky softplus function (Equation 4.14).

leaky-softplus(ν ) = (1 − α) log (exp (ν ) + 1) + αν (4.14)

Figure 4.2.: Example architecture of a fully connected neural network: neurons (circles) arranged in layers.

Modi�ed from [62].

The weights (and biases) are the adjustable parameters of the model, which are randomly

initialized and subjected to training. As described previously, the cost function is computed

and needs to be minimized. This is realized using the backpropagation algorithm, which

consists of the following steps. In a forward propagation step, the features of training

data are fed to and processed by the model to generate a predicted label. Next, the cost is

evaluated. This is followed by the actual backpropagation, which refers to the iterative

calculation of the derivatives of the cost with respect to the weights and biases, starting
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from the output layer. This is accomplished by applying the chain rule from the last to the

�rst layer of the network. Afterwards, all parameters, which are subject to optimization, are

updated e.g. according to the gradient descent method. These steps are applied recursively

to train a NN model. An important (hyper-) parameter controlling the learning process is

the learning rate. It can be adapted during model training and controls the step size that is

taken towards the minimum of the cost function.
61,62,69

Neural networks are highly �exible tools, which can �t extremely complex relationships

of features and labels. This comes with the disadvantage of a huge number of hyper-

parameters, which makes such models prone to over�tting and the overall training and

hyperparameter optimization potentially di�cult and sophisticated. Despite these draw-

backs, machine learning methods and neural networks in particular are highly promising

for carrying out expensive multi-scale simulations that require quantum mechanical

treatment at least partly and would not be easily possible without them.
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5. Charge and Exciton Transfer
Simulations in Organic Semiconductors
driven by Machine Learned
Hamiltonians

Reprinted in parts with permission from
Mila Krämer, Philipp M. Dohmen, Weiwei Xie, Daniel Holub, Anders S.

Christensen and Marcus Elstner:
Charge and Exciton Transfer Simulations Using Machine-Learned

Hamiltonians
J. Chem. Theory Comput. 2020, 16, 7, 4061–4070.
Copyright 2020 American Chemical Society.

https://pubs.acs.org/articlesonrequest/AOR-HKDUFZM82SDYQDGRSSI7

Author Contributions:
The results presented in this chapter were generated in collaboration. Training data for

the machine learned models was generated by Dr. Daniel Wehl (charge transfer) and me

(exciton transfer). Training and evaluation of all models was done by Dr. Mila Krämer. All

transfer simulations for charges and excitons were performed and analyzed by myself.

5.1. Introduction

Molecular organic semiconductors (OSCs) have become ubiquitous components of elec-

tronic devices, in the forms of organic light emitting diodes (LEDs) in modern display

technologies
70–72

, organic �eld e�ect transistors
73–75

, or organic photovoltaic devices
76–78

.

Compared to the silicon-based technologies for LEDs, transistors, or photovoltaic devices,

OSCs are inexpensive and easier to manufacture and process
79

. With the near-limitless

variety of organic compounds, searching for novel candidates with speci�c properties or

optimizing known materials is a costly process. Here, theoretical approaches using simu-

lation techniques can supplement or shorten experimental studies by e�ciently screening

large portions of chemical space for compounds with promising properties before commit-

ting to synthesizing them. This requires fast and robust methods for simulating charge

and exciton transfer in large molecular systems which can reproduce experimentally

observable quantities such as charge carrier mobilities or exciton di�usion lengths.
5
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5. Charge and Exciton Transfer Simulations driven by Machine Learned Hamiltonians

Simple models used to describe the transfer of charges assume either a band-like or

hopping-like regime. In the band model, the charge is strongly delocalized as the couplings

between the charge carriers are large and the reorganization energy is small. The band

theory holds for inorganic semiconductors, however, fails to reproduce e.g the charge

mobility for OSCs. In contrast, hopping-like transfer occurs when the reorganization

energy is large and the coupling is small, creating an activation barrier which is only

overcome via thermal �uctuations. This results in a strong localization of the carrier on

single molecules, and transfer occurs in discrete hops. The hopping model is widely used

to compute the charge mobility for disordered organic systems. In organic molecular

crystals, however, neither of these approximations hold.
5

Novel approaches
9–12

to go beyond the limits of model theories use the direct simulation of

charge or exciton transfer employing non-adiabatic molecular dynamics (NAMD) methods.

These methods allow the explicit propagation of the electronic degrees of freedom and

therefore do not depend on any prior assumptions on the underlying transfer mechanism.

The coupled electron-nuclear motion is described with the time-dependent Schrödinger

equation (TDSE) using a simpli�ed electronic structure, while the nuclei are treated classi-

cally. The electronic structure is reduced to three parameters: site energies, reorganization

energies, and coupling energies. While these values are not too costly to calculate on an ab
initio or semiempirical level of theory for individual structures, extensive sampling along

a molecular dynamics (MD) trajectory is necessary to obtain macroscopically observable

materials properties. As the sampling process repeatedly passes through similar pairwise

molecular conformations, the question naturally arises whether a machine learning (ML)

model could substitute the repetitive calculations using a costly quantum mechanical

(QM) method. An ML model trained on a limited set of quantum chemical data obtained

before a simulation could then take over for the non-adiabatic molecular dynamics, greatly

speeding up the prediction of materials properties in multi-scale work�ows.

The application of machine learning methods to charge and exciton transfer properties

has been investigated recently. Lederer et al.
80

used a kernel ridge regression model paired

with a geometric representation to predict charge transfer couplings in pentacene crystals.

As Musil et al.
81

showed, charge transfer couplings in both pentacene and azapentacene

can be predicted using Gaussian process regression models with a simpli�ed SOAP-Kernel

to within a few meV with only a few thousand high-quality training examples. In another

work, Caylak et al.
82

presented a neural network model, which is able to predict hole

mobilities and charge transfer couplings for an amorphous aluminum complex. For

excitonic properties, Häse et al.
83

used a modi�ed Coulomb matrix combined with a neural

network to predict excitation energies of bacteriochlorophyll in the Fenna-Matthews-Olson

complex and study the exciton dynamics. There has been extensive work on ML-driven

excited-state molecular dynamics [84–87] for small organic molecules. Finally, Wang

et al.
88

systematically investigated the e�ects of representation and target value on model

training and prediction performance. Most published models require large amounts of

ab initio-level training data or extensive hyperparameter optimization, which can be

prohibitive if a model is to be trained anew for every speci�c application. Also, it is

unclear how the raw accuracy of the ML model a�ects a system’s observable properties,
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e.g. charge transfer mobilities and exciton di�usion constants, as this can only be examined

by performing explicit simulations.

In this work, the semiempirical DFTB method
20–22,25,28,29,89

as a fast and accurate method

for training data generation was used. This method has previously been shown to per-

form very well for the calculation of couplings
90,91

in conjunction with an empirically

determined scaling factor. Kernel ridge regression (KRR) models were trained on this

data and their accuracy was evaluated not just on static reference data points but also in

explicit NAMD simulations of charge and exciton transfer. By keeping the model and the

training procedure as simple as possible, a generic procedure that is easy to integrate into

multi-scale work�ows was obtained.

5.2. Computational Details

5.2.1. Generation of Training Data

Based on the reported crystal structure
92

, an anthracene crystal was constructed containing

10 × 40 × 5 molecules along the a-, b-, and c-crystal axes, respectively. Force �eld parame-

ters were obtained from the general AMBER force �eld (GAFF)
93,94

and atomic charges

were generated by the restrained electrostatic potential (RESP) �tting procedure
95,96

cal-

culated at the HF/6-31G*
97,98

level of theory using Gaussian 09
99

. For system setup and

classical MD simulations, the GROMACS 5.0.4 package
100,101

was used. After an initial energy

minimization, the temperature was equilibrated for 1 ns at 300 K using the Nose-Hoover

thermostat
102

. A productive simulation of 10 ns was performed with a time step of 2 fs to

sample structures, which were saved every 1000th step.

A subset of 75 anthracene molecules (5 × 5 × 3) was used to generate the training data

in three di�erent data sets: the �rst data set (full) contained couplings between all

possible anthracene pairs. The other data sets contained reduced data, including only

couplings of molecule pairs within center of mass (COM) distance cuto�s of 0.75 (short)

and 1.25 nm (long), respectively. These cuto�s were chosen to include speci�c neighbors

of any individual fragment in the crystal. The �rst neighbors along the a- and b-crystal

axes lied within the short cuto�, while the long cuto� also included the �rst neighbors

along the c-axis as well as the second neighbors in the b-direction.

For training, the geometries and reference Hamiltonians of these data sets were used.

The charge transfer Hamiltonians were calculated with the non-self-consistent variant

of DFTB
20,21

as discussed in reference [10], considering only the HOMO (hole trans-

fer). A scaling factor of 1.54 was used for electronic couplings to reach the accuracy of

second-order coupled cluster (CC2) calculations.
90

For exciton transfer, excited states were

computed using time-dependent long-range corrected density functional tight binding

(TD-LC-DFTB2)
22,25,28,29

as implemented in DFTB+89
. The lowest excitation of individual

molecules was considered and couplings between these Frenkel states were calculated as
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Coulomb couplings (Equation 3.21) with transition charges calculated for every individual

structure.

5.2.2. Training and Evaluation of Machine Learned Models

Training and evaluation of all ML models was performed by Dr. Mila Krämer.

Separate models were used for the prediction of site energies and couplings, as their

respective absolute values lie orders of magnitude apart and the dimensionality of the

representation is di�erent. For site energies only the coordinates of one individual molecule

have to be considered, while the coupling is an intermolecular property and thus the

coordinates of a molecular pair have to be taken into account. For the prediction of

couplings, models used the absolute value as the target. The sign of the coupling is a

consequence of the usually arbitrary signs of the wave function on the individual fragments.

For simulation of transfer along a one-dimensional chain of molecules, taking the absolute

value of the coupling is su�cient
103

.

Models were trained for each of the coupling data sets short, long, and full and for site

energies, along a learning curve (100, 1000, 5000, 10 000, and 25 000 training examples).

The unsorted Coulomb matrix representation was used as implemented in the QML

package
104

.

Detailed information and all results can be found in reference [105].

5.2.3. Simulations of Charge and Exciton Transfer

A second anthracene crystal was constructed containing 40 × 30 × 14 molecules along

the crystal axes in the same manner as described above for training data generation. For

this system, simulations of charge and exciton transfer using both DFTB and the trained

ML models were performed. One dimensional lines along the a- and b-directions of 36

and 28 fragments in the middle of the crystal were chosen as a QM zone. No simulations

were performed along the c-direction, as coupling and thus transfer in this direction is

very small. Furthermore, the crystallographic c-direction and the experimental c-direction

di�er by about 35°, making direct comparison di�cult.
106

Structures in equidistant time

intervals were chosen as starting structures for subsequent simulations of charge and

exciton transfer.

The mean-�eld Ehrenfest
33,107

(MFE) and Boltzmann-corrected fewest switches surface

hopping (BC-FSSH)
35

methods were employed for non-adiabatic molecular dynamics

simulations. The scheme of implicit relaxation (IR) was employed in both methods. As a

systematic comparison of the performance of these propagation methods is beyond the

scope of this work, the interested reader is referred to reference [108].

The hole/exciton wave function was initially localized on the �rst molecule, Ψ(0) = Ψ1(0).

Time steps of 1 fswere used for the MFE simulations and 0.1 fs for the BC-FSSH simulations.
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The TDSE was integrated numerically with the fourth-order Runge-Kutta algorithm with

an integration time step of 0.01 fs. To calculate averages of the observables, swarms

of 100 (MFE) and 500 (BC-FSSH) trajectories were propagated, simulated for 1 and 5 ps,

respectively. The KRR, MFE, and BC-FSSH methods as well as DFTB were implemented in

a local version of GROMACS 4.6
109

.

The reorganization energy used for charge transfer was calculated with DFTB as 0.084 eV10
.

The corresponding value for exciton transfer was computed with TD-LC-DFTB2 as 0.563 eV,

which is in good agreement with reported CC2 calculations.
110

. Charge transfer mobilities

and exciton di�usion constants were obtained from the mean-square displacement (MSD)

as described in subsection 3.2.5.

5.3. Results and Discussion

In the propagation simulations, only the models trained on the short data set were used,

as the code for propagation only evaluates the couplings to the nearest neighbors along

the chain. For the sake of brevity, only results for models trained on 100, 1000, and 25 000

examples of the short data set are presented.

5.3.1. Time Evolution of Couplings

To evaluate the performance of models for the prediction of charge and exciton transfer

couplings more closely to actual transfer simulations, a time-series can be investigated.

Therefore, predicted coupling values were compared with reference couplings along a

trajectory of temporally sequential pair geometries. One single pair of �rst neighbors in a-

and b-direction was arbitrarily chosen from the crystal for propagation. Coupling values

were calculated along a 0.6 ps trajectory with a time step of 1 fs, as shown in Figure 5.1.

Predictions of all models appeared smooth and continuous, without jumps. However, some

noise in the predictions was visible, although there were no strong outliers compared to the

DFTB reference. Evidently, the models trained on the short data set started learning the

couplings along the a-axis properly only at a training set size of 1000. The predictions for

the b-direction were slightly better at lower training set sizes compared to the a-direction

for both charge and exciton transfer. However, the model trained on 1000 examples already

showed a close agreement with the reference for both crystal directions, indicating that it

could be su�ciently accurate for use in propagation simulations.

5.3.2. Machine Learned Driven Simulations

In the following, the presented ML models were applied to perform non-adiabatic molecular

dynamics simulations of hole and exciton transfer along the a- and b-crystallographic axes
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Figure 5.1.: Time evolution of the hole and excitonic couplings between a pair of �rst neighbors in a- and

b-directions. The DFTB reference is shown in black; colored lines show predictions of models trained on the

short data set with training set sizes of 100 (blue), 1000 (orange) and 25 000 (green).

of anthracene. All propagation simulations used models trained on the short data set, as

only nearest-neighbor couplings were calculated.

Charge Transfer

Simulations of hole transfer, where the Hamiltonian was calculated by ML models trained

on 100, 1000, and 25 000 examples, were compared to simulations using the corresponding

DFTB reference. The averaged time-dependent MSD when employing the MFE as well

as the BC-FSSH method is shown in Figure 5.2a and Figure 5.2b, with the corresponding

mobilities given in Table 5.1. Results for all training set sizes can be found in the appendix

(Appendix A).

Using the MFE method for the a-direction, the smallest model with only 100 training

examples showed an overestimation of the MSD and hole mobility by a factor of two

compared to the DFTB reference. This was not unexpected, as the model only learned the

average coupling in this direction (Figure 5.1). The model with 1000 training examples

came within 0.12 cm2
V
−1

s
−1

(8.5 %) of the DFTB value and within 0.39 cm2
V
−1

s
−1

(34 %)

of the experiment. Further increase of the training set size showed only slight improve-

ment, indicating that small errors for individual couplings only have a low impact on the

mobilities obtained from simulations. In contrast to the a-direction, the b-direction seemed

to be easier to learn, as all models performed well compared to both DFTB and the experi-

ment. The medium sized model deviated by 0.36 cm2
V
−1

s
−1

(11 %) and 0.79 cm2
V
−1

s
−1

(27 %) from the reference method and the experiment, respectively.

46



5.3. Results and Discussion

(a) (b)

Figure 5.2.: Time evolution of the averaged MSD in a- and b-direction using the MFE (a) and BC-FSSH (b)

methods for hole propagation with DFTB and ML models with various training-sizes.

For simulations using the BC-FSSH method, the performance of the machine learned

models compared to DFTB was similar to the MFE simulations. For the a-direction, at

least 1000 training examples were required, while 100 data points were su�cient for

the b-direction to reproduce DFTB results. Again, the medium model with only 1000

training examples already returned quite robust and reasonable results. The obtained hole

mobilities came within 0.27 cm2
V
−1

s
−1

(3.4 %) and 2.24 cm2
V
−1

s
−1

(17 %) of the DFTB

reference for the two crystallographic directions, respectively. In contrast, the absolute hole

mobilities obtained from all BC-FSSH simulations di�ered strongly from the experimental

values, even when DFTB was used to calculate the Hamiltonian. Hole mobilities were

overestimated by a factor of 4 to 8.

Exp.
106

DFTB ML-100 ML-1000 ML-25000

MFE

a 1.14 1.41 3.20 1.53 1.58
b 2.93 3.36 3.67 3.72 3.22

BC-FSSH

a 1.14 8.00 10.05 7.73 8.14
b 2.93 13.32 14.30 11.08 11.02

Table 5.1.:Hole mobility in cm
2
V
−1

s
−1

as calculated from the averaged MSD in a- and b-direction using the

MFE and BC-FSSH methods for hole propagation with DFTB and ML models with various training-sizes.

As shown in a recent study
36

, an FSSH scheme can predict mobilities close to the ex-

perimental value if properly corrected, e.g. using non-adiabatic coupling vectors. The

overestimation of mobilities observed here is rooted in two approximations that have to

be applied to accommodate the machine learning model. First, in the BC-FSSH method,

the velocities are not adjusted according to the non-adiabatic coupling vectors, as these

are not obtained from the machine learning method. Instead, the hopping probabilities

are re-scaled with a Boltzmann factor. This leads to an overestimation of hole mobilities
36

.

Therefore, machine learning of non-adiabatic coupling vectors is a natural next step beyond

the scope of the present work.
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Second, the relaxation of the fragments in response to the charge was taken into account

only implicitly (IR scheme). Relaxation describes the geometric response of a fragment to a

change in its charge occupation. To reproduce this behavior explicitly, the machine learned

models would need to explicitly learn the QM forces necessary to drive this phenomenon.

The forces can be calculated e.g. as derivatives of the transfer Hamiltonian elements with

respect to atomic coordinates. Explicit relaxation is currently impossible with the machine

learning model as used here, since it would requires the additional prediction of these

quantum forces.

To examine whether explicit relaxation alone could be su�cient for an accurate description,

additional simulations with DFTB were performed using a di�erent relaxation scheme

including QM forces for the relaxation of every fragment. These forces were calculated as

the derivatives of site energies and couplings with respect to atomic coordinates. Employ-

ing the explicit relaxation scheme decreased the MSD and slowed down the corresponding

mobilities to 1.83 and 4.03 cm2
V
−1

s
−1

for the a- and b-directions, respectively. These val-

ues are in much better agreement with the experiment, indicating that implicit relaxation

accounts for the bulk of the error.

Exciton Transfer

In analogy to the application of machine learned models to charge transfer, their behavior

in exciton transfer simulations along the a- and b-directions in the anthracene crystal

was investigated. The ratio of average coupling and reorganization energy in the exciton

transfer case is 10 times lower than that for charge transfer. This indicates that the exciton

di�usion is in the hopping regime. The MFE method was not used in these simulations, as it

is known to delocalize the wave function too quickly and thus cannot describe the expected

hopping-like behavior.
11

As the program for explicit propagation of exciton transfer using

TD-LC-DFTB2 is still under development, the di�usion constants calculated using the

ML models were compared with those obtained by kinetic Monte Carlo simulations to

solve the master equation (ME) within Marcus theory
111,112

. The time average over 5000

structures of one pair along each axis was used to obtain the average Coulomb couplings

for the Marcus rate formula. The di�usion constants obtained from this reference and the

ML models are shown in Table 5.2. The averaged time-dependent MSD for the propagation

using one selected ML model can be found in the appendix (Figure A.3).

ME ML-1000 (BC-FSSH)

a 7.4 × 10−9 2.8 × 10−7

b 4.2 × 10−8 1.9 × 10−6

Table 5.2.:Di�usion constants in m
2
s
−1

as calculated from the averaged MSD in a- and b-direction using

the ME and BC-FSSH with an ML model for Coulomb couplings with di�erent methods for propagation.

The BC-FSSH method again showed signi�cant overestimation of the di�usion constants,

here by a factor of 40 compared to ME results. While it is currently not possible to directly

simulate exciton transfer using TD-LC-DFTB2 to analyze the same comparisons as for
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charge transfer, it stands to reason that the implicit relaxation scheme and lack of non-

adiabatic coupling vectors are the causes of the overestimation here as well. Therefore,

machine learning models for non-adiabatic coupling vectors and quantum forces are highly

desirable.

5.3.3. Timings

The primary motivation for the application of machine learned models in non-adiabatic

molecular dynamics simulations of charge and exciton transfer is the replacement of ex-

pensive quantum mechanical methods with such models in order to increase the e�ciency

of these simulations. Therefore, durations were measured for the calculation of transfer

Hamiltonian elements.

Calculation of the charge transfer Hamiltonian using the DFTB reference method took

on average 0.57ms per anthracene pair on one core of an Intel Xeon CPU E5-2630 v4

@ 2.20 GHz processor, while the calculation of the exciton transfer Hamiltonian required

55ms per pair on the same processor. The timings for the di�erent ML models varied

strongly with the number of training examples, as the kernel calculation is the rate limiting

step. For site energies, a model trained on 1000 examples was always used, while the

number of training examples for the coupling model was varied.

As shown in Table 5.3, only machine learned models trained on 1000 or fewer exam-

ples could outperform DFTB for charge transfer couplings. This is a consequence of

the simplicity of DFTB and the coarse-grained formalism. The costly calculations are

done individually for the fragments, and assembling the Hamiltonian is an almost trivial

operation once the fragment calculations are done. In contrast, the KRR model needs to

calculate the comparatively costly kernel with every training representation. However,

the more the individual fragments grow in the number of atoms, the more the models’ N 2

scaling resulting from the Coulomb matrix will win out compared to that of DFTB (N 3
).

This improved scaling will make simulations of systems with large fragments (such as

rubrene or phthalocyanine) feasible. Additionally, the DFTB calculations necessary for

exciton transfer are far more costly than those for charge transfer, so the machine learned

model for anthracene is at least one order of magnitude faster even with a huge training

set size.

ML DFTB

ntrain CT ET

100 3.1 × 10−4 s
5.7 × 10−4 s 5.5 × 10−2 s1000 3.8 × 10−4 s

25000 3.1 × 10−3 s

Table 5.3.:Comparison of timings (in seconds) for the calculation of couplings per pair.

The presented models can also provide signi�cant gain in e�ciency for simulations using

the kinetic Monte Carlo model for hopping-like transfer. These simulations require an
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e�cient sampling of the average couplings in a system to calculate accurate transfer rates.

This is straightforward for ordered structures such as crystalline anthracene. Here, the

average couplings for only one fragment pair along each crystal axis must be computed

from a su�cient amount of sampled structures (usually hundreds or thousands). In more

disordered materials, every pair of fragments must be sampled in this way, leading to

a combinatorial explosion of computational e�ort. In this type of simulation, using a

machine learned model instead of QM methods for the calculation of the couplings thus

results in a substantial decrease in computational cost.

5.4. Conclusion and Outlook

In this chapter, it was shown that it is possible to create compact and simple machine

learning models that can drive charge and exciton transfer simulations. Even with a

rudimentary representation and a low amount of training data, these models performed

well enough to reproduce hole mobilities within 8.5 % of the DFTB reference and within

30 % of the experimental values in anthracene. This accuracy comes at a computational

cost several orders of magnitude lower than ab initio methods. While the model was only

a little faster than the semiempirical DFTB method in simulations of charge transfer in

anthracene, it outperformed DFTB signi�cantly for exciton transfer. With increasing size of

the fragments, the improved scaling of the ML model will only increase this margin. While

the simple Ehrenfest propagation scheme works well for materials with low reorganization

energy
36

, it tends to fail in other cases, resulting in fast arti�cial delocalization of the

charge or exciton. As shown above, more sophisticated propagation methods require the

calculation of additional properties such as non-adiabatic coupling vectors and molecular

relaxation e�ects to give reliable estimates of mobilities or di�usion constants. Training

machine learned models to also predict these properties is an essential step towards reliable

and fast computational models.

For an application to biological systems like light-harvesting complexes
113

, the in�uence

of an electrostatic environment on electronic structure properties is essential. To this

end, the representation can be modi�ed and additional interaction terms such as those in

reference [83] can be added.

While it is usually desirable to construct ML models that generalize across chemical space,

this requires a large investment in training data and higher computational cost for more

sophisticated representations. The use of a fast but accurate semiempirical model as a

reference and the low requirements on training data enable the quick and easy training

of an ML model for every speci�c system. For these models, specialization is a quality,

and generalization can be limited to the conformational space of one speci�c system. This

training step could be included in the setup of a multi-scale simulation approach, where

the machine learning models trained using structures obtained during equilibration can

then directly be used for propagation of charges or excitons.
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Author Contributions:
The results presented in this chapter were generated in collaboration. Training data for

the machine learned models was generated by me, except for the FMO-DFTB1 data for

anthracene, which was done by Dr. Weiwei Xie. Training and evaluation of all models for

the prediction of gradients was done by Dr. Mila Krämer, while the other models were

trained and evaluated by myself. I also performed and analyzed all time-series, transfer

simulations and timings.

6.1. Introduction

Molecular organic semiconductors (OSCs) are of prime interest for a variety of di�erent

applications
70–78

. With the near-limitless variety of organic compounds, searching for

novel candidates with speci�c properties or optimizing known materials is a costly process.

Here, theoretical approaches using simulation techniques can supplement or shorten ex-

perimental studies by e�ciently screening large portions of chemical space for compounds

with promising properties before committing to synthesizing them. This requires fast

and robust methods for simulating charge transfer in large molecular systems, which can

reproduce experimentally observable quantities such as charge carrier mobilities. This can

be done with non-adiabatic molecular dynamics (NAMD) methods by explicitly taking

into account the electronic degrees of freedom by solving the time-dependent Schrödinger

equation (TDSE)
9–12

. To mitigate the computational cost inherent in a quantum-chemical

51



6. Charge Transfer Simulations driven by Machine Learned Hamiltonians and Diagonal Forces

description of large systems along extensive molecular dynamics (MD) trajectories, the

nuclei are treated classically and the electronic structure of the individual molecules is

simpli�ed.

Using a conceptual coarse-graining of the transfer process, the electronic structure of the

entire system can be compacted to two key parameters: the energies of frontier orbitals

on each molecule (site energies) and the pairwise coupling terms which describe their

interaction. Upon getting charged, a formerly uncharged molecule will relax to a new

equilibrium structure, which in turn leads to a decrease in its site energy. This response

of a molecule to a change in its charge occupation can be taken into account by explicit

relaxation (ER), where the forces in the charged state weighted by the charge occupation

drive the nuclear relaxation. Alternatively, this feedback from electronic to nuclear degrees

of freedom can be modeled via a phenomenological equation, where the site energy is

reduced according to the charge occupation of a molecule by an empirically determined

reorganization energy, which is called implicit relaxation (IR)
114

.

However, the cost of the ab initio or semi-empirical models used to describe the electronic

structure can be prohibitively large, when the system size and trajectory lengths needed

to accurately obtain observables are large. Data-driven approaches, more speci�cally

machine learning (ML) methods, can make use of the fact that the quantum-chemical

calculations are highly repetitive, i.e. the conformations sampled during such simulations

are very similar. By training the ML model on a small but representative data set for

which the relevant electronic parameters have been calculated using a quantum chemistry

method, the computationally simpler ML method could then be used to drive the transfer

simulations. Several works have previously investigated the applicability of ML models

to charge and exciton transfer properties: Both kernel ridge regression (KRR)
80,88,105

and

neural network (NN) models
81,82

have been used for predicting charge transfer couplings

in organic and metal-organic systems. For excitonic properties, neural networks have been

used to predict excitation energies in biological systems
83

, and there has been extensive

work on ML-driven excited-state molecular dynamics
84–87

for small organic molecules.

In the previous chapter, kernel ridge regression (KRR) models were employed for the

prediction of site energies and couplings in anthracene for both charge and exciton

transfer applications. By using the fast and accurate density functional tight binding

(DFTB) method
20–22,28,29,89,115

to generate reference data cheaply and automating model

training, a scheme was created which was easily applicable to new systems without

requiring individual models to generalize across chemical space. These models were

then applied in charge propagation simulations for anthracene, comparing the resulting

observables with DFTB reference values and experimental data. The models were able to

reproduce hole mobilities close to the reference and experimental values when using the

mean-�eld Ehrenfest (MFE) propagator together with the implicit relaxation (IR) scheme

with a �xed reorganization energy. When using the Boltzmann-corrected fewest-switches

surface hopping (BC-FSSH) method for propagation, the ML method was close to the

appropriate DFTB reference, while both were far o� from the values obtained if molecular

relaxation was explicitly (ER) taken into account. This is due to three reasons. Firstly, the

employed scheme of implicit relaxation used the adiabatic surface occupation to weight
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the reorganization energy. A recent study [114] showed, that using the diabatic wave

function occupation of the charge instead leads to good agreement compared to explicit

relaxation. Secondly, the reorganization energy was obtained from DFTB, which is known

to underestimate this value
114

. Lastly, the Boltzmann-correction is an approximation that

is known to cause overestimation of charge mobilities compared to the correct re-scaling

of atomic momenta in the direction of the non-adiabatic coupling vectors (NACV)
36

.

While the scheme of implicit relaxation yields good results for some materials, it is still

an approximation. This may only have limited applicability, e.g. in systems where the

assumption, that the molecules relax instantly, does not hold. Therefore, obtaining QM

forces, which are required for explicit molecular relaxation, from a ML model is an obvious

next step. These forces can be considered as a correction to the neutral state forces provided

by the force �eld (FF) driving the nuclear dynamics in the simulation and can be obtained

as derivatives of the Hamiltonian used for propagation with respect to the atomic positions.

Unfortunately, obtaining a prediction of a property and its derivatives with respect to the

inputs from a KRR model is problematic. E�orts to extend the KRR formalism
116

to this

end were unsuitable for the application due to the high computational cost they incur.

Furthermore, replacing DFTB with KRR models to drive simulations of charge transfer did

not decrease the computational demands of such simulations
105

.

Therefore, in this chapter neural network based models are presented, which are able

to predict not just site energies and couplings but also the gradients of the site energy

necessary for explicit relaxation. Neural networks come with the advantage that the

computational cost for a prediction does not depend on the training set size, but only

on the architecture of the network. Furthermore, there are e�cient built-in routines

for the calculation of derivatives of such models, e.g. when using TensorFlow117
. The

application was restricted to simulations of charge transfer and the models were trained

on DFTB-quality data for anthracene and pentacene. Additionally, the investigations

were extended to gradients from higher-level methods such as long-range corrected self-

consistent DFTB and density functional theory (DFT). By using the obtained models

in propagation simulations, their performance in reproducing hole mobilities in these

materials in terms of both quality and computational cost is evaluated.

6.2. Computational Details

6.2.1. Generation of Training Data

It is crucial that gradient predictions are reliable across the entirety of the potential energy

surface (PES) accessible throughout the simulation. To explore and train on a broader

variety of structures geometries were sampled at a higher temperature (500 K) than the

one used in the NAMD simulations for obtaining mobilities (300 K). In NAMD simulations

using the IR scheme, only the PES of neutral molecules is explored. Contrastingly, when

employing the ER approach, the PES of both neutral and charged molecules will be reached.

Thus the training data set for site energy models applied in the IR scheme was constructed
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from only neutral structures, while the analogue models for the ER scheme received

sampled geometries along both the PES of the neutral and charged system in a 50:50 ratio.

The models for couplings can be employed in both IR and ER type simulations, which

is why only one model for anthracene and one for pentacene was trained on structures

sampled from the neutral and charged state.

The procedure for generating training data was identical for both the anthracene and

pentacene systems. For each system, a crystal based on experimental structures of the

supercell was created. The anthracene crystal
92

contained 8 × 8 × 5 molecules along the

crystal axes (a, b and c), respectively. In pentacene, the size of the crystal
118

was 8 × 16 × 5

molecules. Force �eld parameters for each system were derived from the general AMBER

force �eld (GAFF)
93,94

. Atomic charges were generated from the restrained electrostatic

potential (RESP) �tting procedure
95,96

, calculated at HF/6-31G*
97,98

level of theory using

Gaussian 09
99

.

After an initial energy minimization the system was equilibrated for 1 ns with a time step

of 2 fs using the Nose-Hoover thermostat
102

at 500 K in the NVT ensemble. Subsequently,

a productive classical MD simulation was run at the same temperature for 1 ns with a

time step of 1 fs, in which neutral structures were saved every 1 ps. For the sampling of

charged structures multiple separate NAMD simulations were performed with the same

MD settings, where the charge was constrained to one molecule. All classical and non-

adiabatic MD simulations were performed with the GROMACS 4.6 software package
100,101

.

Eventually, single molecule structures and pair structures sampled in the neutral and

charged states were randomly selected from a 5 × 5 × 3 molecular cube in the center of

the crystal for subsequent calculations of site energies, their derivatives and couplings.

The HOMO was chosen as the frontier orbital for hole transport in the studied systems.

Site energies and electronic couplings were calculated using the FMO approach with

non-self-consistent DFTB
20,21

, often referred to as DFTB1. For the derivatives of the site

energies, di�erent data sets were constructed corresponding to the two approaches to

obtain the gradients and the applied QM methods. FMO-gradients (see Equation 3.10) were

computed with DFTB1 in the FMO approach, while ∆-gradients (see Equation 3.11) were

obtained with self-consistent-charge DFTB2
22

with a long-range corrected functional
25

(LC-DFTB2) and the DFT functionals B3LYP
119

and ωB97X
120

. LC-DFTB2 calculations

were carried out with the dftb+89,115
program (version 19.1). LC-DFTB2 was used for

this data set, as the long-range corrected functional can correct the underestimation of

the reorganization energies observed when using the GGA derived non-self-consistent

DFTB1
114

. The same holds for the ωB97X DFT-functional. DFT calculations employed

the def2-TZVP basis set
121

together with the def2/J auxiliary basis
122

as implemented in

orca123,124
(version 5.0.1). It has to be noted, that all data sets for site energies include the

same site energies from FMO-DFTB1 and only di�er in the derivatives.
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6.2.2. Training and Evaluation of Machine Learned Models

The neural network architecture previously presented by Li et al.
84

was adapted for

this work, as it has been constructed in order to predict energies and gradients/forces

for electronic states of small organic molecules. Either only energies (site energies or

couplings) were learned, or site energies were trained together with their respective

gradients in a single network. In contrast to the work
105

presented in the previous chapter

chapter 5, the NN models were trained on the signed couplings and not on the absolute

values. This is necessary to achieve a di�erentiable function in case of crossing zero. The

models used the spatial coordinates of the atoms in the system as inputs, from which

inverse interatomic distances between atoms were calculated as a translationally and

rotationally invariant representation. Di�erent models were trained for the prediction of

site energies and couplings, as the dimensionality of the input was di�erent: in models

predicting the site energies (and their derivatives), all intramolecular interatomic distances

were included in the representation, while for the coupling models only the intermolecular

block of the matrix of inverse distances was used. This has been shown to be superior

for the prediction of coupling elements
88

and to reduce the computational cost of each

prediction. Initial experiments con�rmed that the reduced representation gives lower

errors at all training set sizes.

The trainable part of the network was a multi-layer dense feed-forward NN using the

leaky softplus activation function (Equation 4.14)
125

with a slope of α = 0.03. Models were

trained using the pyNNsMD package
84

and Tensorflow 2.3
117

with the Keras API
126

. Weights

were optimized using the Adam optimizer
127

and mean-squared-error loss. All models

received training and validation data in a 9:1 ratio, and the loss on the validation set was

monitored every epoch, so training could be stopped when it did not improve for more

than 100 epochs (early stopping). Feature calculation and scaling were both implemented

as layers of the neural network, reducing implementation overhead when using the models

for prediction. While training models for only energies (site energies or couplings) was

straightforward, during training of models for site energy and their gradients the loss

was calculated on both the network’s energy prediction and the gradients with respect to

input coordinates. The relative weights α and β of these two parts of the loss function

were considered as hyperparameters of the models Equation 6.1).

loss = αMSE

[
Eref, Epred

]
+ βMSE

[
(∇E)ref , (∇E)pred

]
(6.1)

The Hyperband algorithm was used as an e�cient and automatable way to �nd working

combinations of hyperparameters
128

. Objective for this optimization was the R2
score on

the validation set in case of only training energies. For models trained in both energies

and gradients, the objective was set to be a combination of validation R2
scores for both

properties:

R2

merged
=

2 − exp
[
1 − R2

E

]
− exp

[
1 − R2

∇E

]
2

. (6.2)
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This should ensure, that models trained energies and gradients equally well. However, the

quality of the resulting models was only weakly dependent on the chosen hyperparameters,

indicating that a thorough hyperparameter search is unnecessary and can be omitted when

applying the method to new systems. All models were obtained using a training set size

of 30 000 structures, with 3333 additional structures used for validation and the optimal

hyperparameter con�gurations. More details on the network con�guration, training and

hyperparameter search can be found in the appendix (section B).

6.2.3. Charge Transfer Simulations

Separate crystals were generated for the transfer simulations containing 40 × 30 × 14

(36) molecules for anthracene in a-direction, 20 × 40 × 5 (36) molecules for anthracene in

b-direction and 42 × 84 × 3 (73) molecules for pentacene in T1-direction (i.e. the diagonal

direction in the ab-plane). One-dimensional lines of molecules were chosen along the

respective directions in the middle of each crystal for the QM region, with the number of

fragments speci�ed in brackets above. After equilibration at 300 K, structures in equidistant

time intervals of 10 ps were chosen as starting structures for subsequent simulations of

charge transfer. The hole wave function was initially localized on the �rst molecule. A

time step of 0.1 fs was used for the propagation of nuclei and the TDSE was integrated

numerically with the fourth-order Runge-Kutta algorithm with an integration time step of

0.01 fs. The FSSH method with Boltzmann-correction (BC-FSSH) was used for the NAMD

simulations for hole transport in anthracene and pentacene, either with the IR or ER scheme

for relaxation. In the IR scheme, reorganization energies of 84meV
10

and 37meV
114

were

used for anthracene and pentacene, respectively, which have been calculated with DFTB1.

Averages of observables were calculated on 1000 trajectories, which were simulated for

1 ps each, while the �rst 350 fs were regarded as initial equilibration of the charge. All

charge transfer simulations were performed within a local version of GROMACS 4.6 where

DFTB, NN as well as the BC-FSSH methods were implemented.

6.3. Results and Discussion

6.3.1. Implicit Relaxation

As a �rst step neural network models were trained, evaluated and applied in NAMD

simulations employing the implicit relaxation scheme. This means only the transfer

Hamiltonian elements (site energies and couplings) were predicted by these models.

6.3.1.1. Model Training and Evaluation

After training the models as described in subsection 6.2.2, their predictions on 10 000

held-out test data from their respective reference data set were evaluated. All trained
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models converged well within thousand epochs, with prediction errors shrinking as

training set sizes increased. Overall, the hyperparameters included in the search had only

a negligible in�uence on the quality of models obtained compared to the statistical noise

from the initialization of the weights. While it is possible that speci�c hyperparameter

con�gurations might also reduce the number of epochs needed until convergence, the

added computational cost of the hyperparameter search far exceeds these gains. Therefore,

it can be concluded that for this application a full hyperparameter search can be omitted.

The full results of the hyperparameter search can be found in the appendix section B.

ANT PEN

site energy coupling site energy coupling

MAE 2.652 1.772 2.802 5.520
max. err. 18.207 48.349 27.014 68.075

R2
0.998 0.955 0.993 0.958

Table 6.1.:Quality metrics for models predicting Hamiltonian elements for anthracene and pentacene: mean

absolute error (MAE), maximum error and coe�cient of determination (R2
). All metrics except R2

-scores in

meV.

Here, the evaluation results for the models, which were used in the propagation simulations

with the IR scheme (subsubsection 6.3.1.3), are summarized. Corresponding quality metrics

for models trained on the data obtained from FMO-DFTB1 are given in Table 6.1. Site

energies for both anthracene and pentacene were learned accurately with models giving

low mean absolute and maximum errors compared to the mean of the reference value,

which is in the order of several eV. This was also re�ected in the high R2
-scores (above

0.99) and the absence of outliers, as shown in the two-dimensional histograms in Figure 6.1

and Figure 6.2.

In contrast, the couplings were learned less well, with mean absolute errors of similar

magnitude and even higher maximum errors compared to site energies, although the

reference values are several orders of magnitude lower. The couplings along the di�erent

crystal directions in pentacene are quite dissimilar, leading to the bimodal distribution

seen in the left of Figure 6.2 and a more di�cult learning target for the ML model. As

the mean magnitude of couplings in the pentacene data set is 28meV compared to 8meV

in anthracene, the MAE of the coupling predictions in pentacene is greater. Still both

coupling models showed R2
-scores higher than 0.95 and all investigated metrics were

similar to the KRR models reported previously
105

, which indicates that these models should

be good enough for use in propagation simulations.

6.3.1.2.Time Evolution of Couplings

To investigate the quality of the coupling models closer to transfer simulation, the evolution

of couplings along simulation time was computed. Therefore, reference coupling values

from FMO-DFTB1 were calculated along 1 ps NAMD trajectories of arbitrary �rst neighbor
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Figure 6.1.: Two-dimensional histograms of model predictions vs. FMO-DFTB1 targets for 10 000 structures

in anthracene. Bright colors indicate high data density, unoccupied areas shown in white.

Figure 6.2.: Two-dimensional histograms of model predictions vs. FMO-DFTB1 targets for 10 000 structures

in pentacene. Bright colors indicate high data density, unoccupied areas shown in white.

pairs of the investigate crystals and compared with predicted values of coupling models.

The time-series of couplings are shown in Figure 6.3.

(a) (b) (c)

Figure 6.3.: Time evolution of hole transfer couplings between a pair of �rst neighbor anthracene molecules

in a- (a) and b-direction (b) as well as an analogue pair of pentacene molecules in T1-direction (c). Couplings

were calculated with FMO-DFTB1 and NN models.
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Predicted coupling values were smooth and continuous along the simulation time with-

out showing jumps and outliers. Compared to FMO-DFTB1 the predicted couplings for

anthracene in b-direction were in close agreement along the whole trajectory. For an-

thracene in a-direction as well as pentacene in T1-direction the models captured the

general trend of the reference coupling but failed to reproduce the �uctuations on short

time scales. Whether the accuracy of the models is su�cient must therefore be investigated

by application in charge transfer simulations.

6.3.1.3.Comparison of Obtained Observables

In the following, the trained neural network models were applied to perform NAMD

simulations of hole transfer along linear chains of anthracene molecules in a- and b-

direction as well as pentacene molecules in T1-direction. The elements of the transfer

Hamiltonian were predicted by the models or calculated by the FMO-DFTB1 method

as a reference. All simulations employed the implicit relaxation scheme with di�erent

values of reorganization energies obtained from various methods (c.f. Table B.3). All

simulations were analyzed in terms of accuracy in reproducing hole mobilities compared to

the reference method and experimentally determined values as well as inverse participation

ratios (IPR) compared to the reference method. The latter is a quantity that expresses

the degree of delocalization over a number of molecules. Calculated observables are

displayed in Table 6.2, the corresponding plots of MSD vs time can be found in the

appendix (section B).

H λ
ANT-a ANT-b PEN-T1

µ IPR µ IPR µ IPR

DFTB

DFTB1

2.4 2.0 6.6 2.5 11.6 4.0
NN 1.5 2.1 5.8 2.3 12.3 4.7

DFTB

LC-DFTB2

1.1 1.7 2.8 1.9 9.7 3.5
NN 0.8 1.7 2.3 1.8 7.3 4.0

DFTB

B3LYP

0.9 1.7 2.8 1.9 6.6 3.4
NN 0.5 1.7 2.0 1.7 7.9 3.9

DFTB

ωB97XD

0.4 1.3 0.5 1.3 2.7 2.6
NN 0.2 1.3 0.3 1.2 3.7 2.9

Experiment 1.1106
- - 2.9106

- - 10.5129
- -

Table 6.2.:Hole mobilities (in cm
2
V
−1

s
−1

) and inverse participation ratios (IPR) for the investigated systems

as obtained from simulations, where the transfer Hamiltonian (H ) was obtained from the DFTB reference or

NN models. In all simulations the BC-FSSH method with the IR scheme was employed. Di�erent values for

the reorganization energy λ were used.

The estimated mobilities from DFTB and NN driven simulations were in good agreement

and were of similar quality compared to previously reported KRR models
105

. For both

anthracene directions, the NN models constantly underestimated the mobilities by a small
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factor, whereas NN driven simulations for pentacene employing the DFTB1 and B3LYP

reorganization energies were slightly overestimated. The same picture was observed

for the IPR values. Results from DFTB and NN models were in close agreement, while

deviations appear larger for pentacene.

Both the reference and the ML mobilities were too large compared to experimentally

determined hole mobilities when utilizing the DFTB1 reorganization energies. This is due

to the strong underestimation of reorganization energies of OSCs by DFTB
114

, leading

to an overestimation of hole mobilities. A previous study
114

showed that the BC-FSSH

mobility tends to be lower, when the reorganization energy as an input for the IR scheme

gets higher, which is the case when turning to higher level of theory. Thus, results from

simulations with LC-DFTB2 and B3LYP reorganization energies were close to experimental

values, while the high reorganization energy from ωB97XD led to an underestimation of

the mobility.

6.3.1.4.Comparison of Computational Cost

A primary motivation for the use of neural network models or machine learned models in

general in non-adiabatic simulations of charge transfer is the replacement of computation-

ally demanding QM methods to gain signi�cant speedup. Here, the performance of the

models was assessed in respect to simulation time. To compare timings with the di�erent

methods and models, 100 trajectories were run with only two molecules for 1000 steps

of NAMD simulation with the exact same settings compared to the previous calculations

to obtain observables. The timings were estimated as averages of time spent on single

calculations of site energies and for couplings and are shown in Table 6.3. All computations

were performed on single CPU cores of Intel Xeon Silver 4214 @ 2.2GHz processors.

Table 6.3.: Comparison of timings (in ms) for the calculation of Hamiltonian elements (site energies and

couplings) in anthracene and pentacene with DFTB and NN models.

site energy coupling

FMO-DFTB1 NN FMO-DFTB1 NN

ANT 3.2 0.2 1.7 0.1
PEN 10.0 0.2 3.8 0.2

The computational cost for site energies of anthracene molecules was reduced by one

order of magnitude when turning from DFTB to neural network models. For pentacene the

models outperformed DFTB by one to two orders of magnitude, which shows the favorable

N 2
scaling with the system size of the NN models compared to the N 3

scaling of DFTB (N
being the number of atoms). Furthermore, the computational e�orts for couplings were

reduced by one order of magnitude for both anthracene and pentacene. This performance

of neural network models is a clear advantage over KRR models, which were used in the

previous chapter, and which could not speed up charge transfer simulations.
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6.3.2. Explicit Relaxation

As a second step, additional neural network models were trained, evaluated and applied,

which were able to predict the derivatives of site energies in addition to site energies

within the same model. From these derivatives the forces necessary for explicit relaxation

in NAMD simulations can be obtained. For couplings, the same models as in the IR based

simulations were used.

6.3.2.1.Model Training and Evaluation

After training the models as described, they were evaluated in the same way on 10 000

held-out test data from their respective reference data set. These models also converged

well within 1000 epochs with decreasing errors. The hyperparameter search had a minor

in�uence on model quality. Full results of the hyperparameter search can be found in

the appendix (Table B.2). Table 6.4 gives a few crucial metrics for models trained on the

anthracene data obtained from DFTB methods. The corresponding metrics for models

trained on DFT data are displayed in Table 6.5.

FMO-DFTB1 ∆-LC-DFTB2

site energy gradient site energy gradient

MAE 2.554 10.581 9.467 41.130
max err 18.207 257.772 50.091 533.835

R2
0.998 0.998 0.975 0.986

Table 6.4.:Quality metrics for models predicting site energies and their derivatives for anthracene, trained

on di�erent DFTB data: mean absolute error (MAE), maximum error and coe�cient of determination (R2
).

All metrics except R2
-scores in meV (meVÅ

−1
).

∆-B3LYP ∆-ωB97X

site energy gradient site energy gradient

MAE 6.009 27.239 17.637 67.067
max err 40.308 308.923 87.480 5945.549

R2
0.990 0.993 0.914 0.971

Table 6.5.:Quality metrics for models predicting site energies and their derivatives for anthracene, trained

on DFT data: mean absolute error (MAE), maximum error and coe�cient of determination (R2
). All metrics

except R2
-scores in meV (meVÅ

−1
).

Most models gave excellent predictions with few outliers, as can be seen in Figure 6.4 and

Figure 6.5. The only exception was the model trained on ∆-ωB97X data, where learning

was slightly poorer and a few outliers can be seen. For the FMO-DFTB1 site energies and

their gradients, the model reached a MAE of 2.55meV for the energies and 10.58meVÅ
−1

for the gradients, with R2
scores above 0.99 for both. This is comparable to the equivalent
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model without gradients in the previous section. The model trained on the ∆-LC-DFTB2

data gave slightly worse results, and did not perform equally well for both energies and

gradients in contrast to the model for the FMO-DFTB1 data. This may be due to the

construction of the LC-DFTB2 data set, where LC-DFTB2 is only used to calculate the

gradients, and these are learned in conjunction with the FMO-DFTB1 site energies. The

same holds for the models trained on DFT data. While the ∆-B3LYP model turned out

excellent, the ∆-ωB97X model showed larger errors on site energies and gradients. Still

the R2
scores for the latter model were above 0.91.

Figure 6.4.: Two-dimensional histograms of model predictions vs. DFTB targets for 10 000 structures in

anthracene. Bright colors indicate high data density, unoccupied areas shown in white.

The errors for site energies and couplings were comparable to those obtained for similar

training set sizes in the previously presented work (chapter 5)
105

, indicating that the models

should be su�ciently accurate to give good mobilities in simulations. The e�ects of the

error on the forces cannot be easily quanti�ed, but the maximum prediction errors can be

an indication whether the predicted forces could impede the stability of the simulation.

The maximum prediction errors for both the FMO-DFTB1 (0.26 eVÅ
−1

) and ∆-LC-DFTB2

gradients (0.53 eVÅ
−1

) as well as the ∆-B3LYP model (0.31 eVÅ
−1

) were well below the

forces needed to break covalent bonds (≈1 eVÅ
−1

to 2 eVÅ
−1130

). For the ∆-ωB97X model,

there were only few outliers exceeding these values. Overall, these large errors were only

seen for a few individual outliers, as e.g. less than one percent of gradient predictions
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Figure 6.5.: Two-dimensional histograms of model predictions vs. DFT targets for 10 000 structures in

anthracene. Bright colors indicate high data density, unoccupied areas shown in white.

showed errors above 40meVÅ
−1

(FMO-DFTB1) or 160meVÅ
−1

(∆-LC-DFTB2). The met-

rics indicate that the gradient predictions should be su�ciently reliable for performing

molecular dynamics simulations.

In pentacene, the results were quite similar. They are summarized in Table 6.6 and

visualized in Figure 6.6. DFT data for pentacene were not computed due to their demands

on resources. The prediction errors for site energies and their gradients in the pentacene

system were slightly worse than for the anthracene models. Maximum prediction errors for

the gradients were slightly lower than in anthracene and the error distribution remained

narrow.

6.3.2.2.Time Evolution of Site Energies

To get a clearer estimate of the quality of the models for gradient prediction, time-series

of site energies for single charged molecules of anthracene and pentacene were calculated.

Trajectories of 1 ps were run, propagated with forces from the force-�eld and additional

QM forces from FMO-DFTB1 or neural networks, which were trained on data from the

same method. All simulations started from the same initial geometry. Unfortunately, this

comparison was not possible for the rest of the models, because their reference methods
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FMO-DFTB1 ∆-LC-DFTB2

site energy gradient site energy gradient

MAE 3.434 17.086 5.549 41.003
max err 22.456 239.181 31.647 414.127

R2
0.990 0.988 0.974 0.959

Table 6.6.:Quality metrics for models predicting site energies and their derivatives for pentacene, trained

on di�erent DFTB data: mean absolute error (MAE), maximum error and coe�cient of determination (R2
).

All metrics except R2
-scores in meV (meVÅ

−1
).

Figure 6.6.: Two-dimensional histograms of model predictions vs. DFTB targets for 10 000 structures in

pentacene. Bright colors indicate high data density, unoccupied areas shown in white.

are not implemented for a use in NAMD simulations and would moreover be too time

consuming. For a clearer view the site energy of the molecules are shown along a period

of 500 fs only (from 250 to 750 fs of simulation time) in Figure 6.7.

The predicted site energies were in close agreement with those from the reference method

at the beginning of the trajectories. After 300 fs slight deviations occurred, which increased

in intensity over time. For anthracene the deviations stayed small, but became more

pronounced along the trajectory for pentacene. This indicates a form of potential error

accumulation for the latter molecule, but the error did not signi�cantly increase until the
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(a) (b)

Figure 6.7.: Time evolution of site energies for a single charged molecule of anthracene (a) and pentacene

(b). Site energies and corresponding forces were obtained from FMO-DFTB1 or a NN model.

end of the trajectory. The site energy is a property, that is very sensitive for changes in the

geometry, and thus is a good measure for the quality of the applied forces. Deviations of site

energies were small, although they were a�ected by error contributions (i) directly from

the prediction of the site energy as well as (ii) indirectly from changes of the geometry due

to the predicted forces. Thus, the time-series indicated that the model for the prediction of

FMO-DFTB1 site energies and gradients should be su�ciently accurate for use in charge

transfer simulations.

6.3.2.3.Comparison of Obtained Observables

In order to perform stable NAMD simulations, where the nuclear dynamics are partly

driven by machine learned models, it turned out to be necessary to sample geometries for

training data on the PES of both neutral and charged molecules. First tests with models

trained on geometries in the neutral state only led to unstable and crashing simulations.

Adding geometries that were sampled in the charged state gave robust models and stable

simulations, so that no exceptionally bad predictions occurred in the more than 100 million

simulation time steps performed in this work. As the QM forces are approximately one

order of magnitude smaller than the forces from the MM force �eld, the margin of error

that the ML models can produce before simulation stability is impacted is quite large and

no further e�orts (e.g. active learning) were necessary in this study.

The NAMD simulations presented here were driven by models, which were trained on the

same site energies but di�erent gradients for relaxation, calculated either with FMO-DFTB1,

∆-LC-DFTB2, ∆-B3LYP or ∆-ωB97X. Additionally, FMO-DFTB1 driven simulations were

performed as the reference method, using FMO-gradients for the relaxation. The calculated

hole mobilities and IPR values for all investigated systems are displayed in Table 6.7, the

corresponding plots of MSD vs time can be found in the appendix (Figure B.4).
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H Force

ANT-a ANT-b PEN-T1

µ IPR µ IPR µ IPR

DFTB

FMO-DFTB1

3.2 2.0 8.4 2.4 11.6 4.0
NN 2.9 2.1 8.7 2.3 14.6 4.8

NN LC-DFTB2 2.7 1.9 8.1 2.1 14.2 4.5

NN ∆-B3LYP 2.5 2.0 8.1 2.2 - -

NN ∆-ωB97X 1.9 1.7 5.8 1.8 - -

Experiment 1.1106
- 2.9106

- 10.5129
-

Table 6.7.:Hole mobilities (in cm
2
V
−1

s
−1

) and inverse participation ratios (IPR) for the investigated systems

as obtained from simulations with the DFTB reference or various NN models. In all simulations the BC-FSSH

method with the ER relaxation scheme was employed.

Comparing mobilities from NN-driven simulations with those from DFTB reference simula-

tions (both using FMO forces), a good agreement for anthracene was found with deviations

of 9 % and 4 % for a- and b-direction, respectively. The results for pentacene di�ered more,

showing an overestimation of the mobility by roughly 26 % by the NN driven simulations.

The exact same trend was observed for IPR values, where NN-driven simulations agree

closely with the reference for anthracene but are overestimated for pentacene. The lower

agreement with the DFTB reference for pentacene in contrast to anthracene was expected

to be caused by the less accurate prediction of site energy gradients.

Again, both the DFTB reference and the ML values were too large compared to experimen-

tally determined hole mobilities. This is expected due to the employment of forces, which

lead to a low reorganization energy, similar to the previously discussed IR simulations.

Therefore, it would be expect that the NAMD simulations driven by NN models trained on

LC-DFTB2 or DFT gradients, would yield lower mobilities in better agreement with the

experiments, just as observed when using higher reorganization energies from the same

methods in the IR scheme (subsubsection 6.3.1.3). In fact, the expected trend of decreasing

mobilities was observable, although the e�ect turned out to be smaller in magnitude

compared to results utilizing the IR scheme.

For anthracene the simulations using ∆-LC-DFTB2 and ∆-B3LYP gradients only showed a

slight decrease of the hole mobility, similarly to pentacene using ∆-LC-DFTB2. Results with

∆-ωB97X gradients for anthracene were improved, but the mobility was still overestimated

by a factor of approximately 2 compared to the experiment. Moreover, all mobilities

obtained by simulations within the ER scheme were smaller compared to their analog

simulations within the IR scheme, also for FMO-DFTB1. In contrast, the delocalization in

terms of IPR values were very similar for IR and ER simulations.

To investigate these �ndings, e�ective reorganization energies of anthracene were com-

pared to “real” reorganization energies. An e�ective reorganization energy (λe�) can be

estimated from the di�erence in site energies for a charged and uncharged molecule. The

geometries for these two molecules can be generated in NAMD simulations in QM/MM
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or ML/MM MD fashion, from pure QM MD simulations or from single QM optimized

structures. Various combinations of structures from di�erent approaches and di�erent

methods for the estimation of λe� are visualized in Figure 6.8 together with the actual

reorganization energies (λ). All values are listed in the appendix (Table B.3).

Figure 6.8.:Reorganization energies (λ) and e�ective reorganization energies (λe�) for anthracene. The latter

were obtained with DFTB1 for structures from di�erent approaches, which are given in brackets. For the

orange curve, λe� was calculated with the same QM method, that was used to generate the structures.

The e�ective reorganization energies obtained from NN driven NAMD simulations (yellow

curve) were signi�cantly lower compared to the actual reorganization energies (black

curve). The only exception was DFTB1, where both values agreed well with each other

and with the DFTB1 NAMD reference (blue point).

To check, weather this result was rooted in the structures, e�ective reorganization energies

were computed for structures from DFTB1 and LC-DFTB2 QM MD simulations, without

involving the force �eld. The resulting values (red curve) were only slightly higher

compared to those from NAMD simulations. Therefore, the structures do not seem to be

the reason for the discrepancy. The corresponding DFT QM MD simulations were started,

but are still running.

Until this point, all e�ective reorganization energies were obtained with DFTB1. Con-

trastingly, when the other QM methods were utilized to compute the site energy gap

(orange curve), the e�ective reorganization energies were in good agreement with the

actual λ values. To prove the opposite, DFTB1 was used to calculate the e�ective λ values

on the optimized geometries (brown curve). Here, the values decreased signi�cantly and

were similar to their e�ective counterparts from NN driven NAMD simulations. This

strongly indicates, that it is not su�cient to use only forces from more accurate methods.
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In addition, it is necessary to calculate the site energies with the same method to reproduce

the full e�ect of the QM reorganization.

The exceptional behavior of DFTB1, where all values match, is due to the formalism of

the method. DFTB1 determines the energy as a sum of orbital energies and an additional

repulsive energy term (Equation 2.17). The repulsive term depends only on the geometry

and thus is the same for a neutral and charged molecule with the same structure. Hence, this

term is canceled out and the reorganization energy is equal to the e�ective reorganization

energy. This is not the case for all other QM methods.

6.3.2.4.Comparison of Computational Cost

Timings for simulations employing the ER scheme are shown in Table 6.8 and were

generated in the same way as for simulations employing the IR scheme (shown in section

6.3). For the computation of gradients in the ∆-approach timings were averaged on the

training-data calculations.

Table 6.8.:Comparison of timings (in ms) for the calculation of site energies plus gradients in anthracene

and pentacene with DFTB, DFT and NN models.

FMO-DFTB1 ∆-LC-DFTB2 ∆-B3LYP ∆-ωB97X NN

ANT 3.2 7.9 × 102 2.1 × 106 3.7 × 106 4.7 × 10−1

PEN 1.0 × 101 2.8 × 103 - - - - 8.6 × 10−1

Timings for FMO-DFTB1 in the IR and ER scheme (without and with gradients) for both

anthracene and pentacene were approximately the same. This shows that the time for

the computation of FMO-DFTB1 gradients is negligible compared to the calculation of

site energies, while this is not the case for NN models. Here, the prediction time for site

energies and gradients (ER) was higher compared to the prediction of only site energies

(IR). Still the computational cost for site energies and their gradients in the FMO scheme

was reduced by about one order of magnitude when turning from DFTB to NN models.

For the much more costly gradients calculated with LC-DFTB2, the respective neural

network models outperformed DFTB by three orders of magnitude. Again, the favorable

scaling with the system size becomes apparent when comparing timings for anthracene

and pentacene. Switching to even more costly DFT gradients, the speedup for the NN

models is about seven orders of magnitude for anthracene.

6.4. Conclusion and Outlook

In this chapter, non-adiabatic molecular dynamics simulations driven by neural network

based Hamiltonian elements and diagonal gradients for hole transport in OSCs were

68



6.4. Conclusion and Outlook

performed. In contrast to the KRR models
105

used in the previous chapter, the NN models

allow for the learning of gradients and Hamiltonian elements simultaneously. Sampling

both the neutral and charged state of the molecules was necessary to obtain models for

stable simulations, which were partly driven by NN forces (explicit relaxation).

Hole mobilities and inverse participation ratios from the DFTB reference were reproduced

with NN models in BC-FSSH simulations utilizing precalculated reorganization energies

for implicit relaxation in anthracene and pentacene. Good agreement was also achieved in

simulations, where the relaxation was accounted for explicitly by applying FMO-DFTB1

forces. However, the NAMD simulations driven by NN models trained on ∆-LC-DFTB2

gradients for anthracene and pentacene, as well as ∆-B3LYP gradients for anthracene, gave

only a slight decrease of the mobilities. While the use of a ∆-ωB97X model for anthracene

signi�cantly reduced the mobility, mobilities from ER simulations were generally higher

compared to IR simulations.

The estimated e�ective reorganization energies from NAMD simulations explained this

�nding, being lower compared to actual reorganization energies from LC-DFTB2, B3LYP

and ωB97XD,. This issue could possibly be solved by employing the same method that was

used to calculate the gradients for the computation of site energies as well. So far, it cannot

be excluded that the error caused by the neural networks also contributes to this issue.

However, switching to a consistent use of the same methods for the computation of site

energies and gradients could further improve model predictions, as the gradients would

then be the actual derivatives of the site energies. This is subject to ongoing work.

Moreover, employing the Boltzmann-correction is known to lead to an overestimation

of the mobility
36

. Therefore, a next step will be to extend the approach to derivatives

of couplings, which can be used to compute non-adiabatic coupling vectors. The com-

putational cost of NN models was about one order of magnitude lower than for DFTB,

two orders of magnitude lower than for LC-DFTB2 and seven orders of magnitude lower

compared to DFT. These low computational demands allow the use of NN-driven NAMD

simulations for charge transport in large-scale OSCs, such as charge transport in 2D

crystals. Such data-driven approaches could also allow the simulation of exciton transfer

in molecular materials, which can be described in a very similar way, but is signi�cantly

more challenging in terms of computational e�orts.
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7. Calculation of Supermolecular
Excitonic Couplings

Reprinted in parts with permission from
Nils Schieschke, Beatrix M. Bold, Philipp M. Dohmen, Daniel Wehl, Marvin

Ho�mann, Andreas Dreuw, Marcus Elstner and Sebastian Höfener:
Geometry Dependence of Excitonic Couplings and the Consequences for

Con�guration-Space Sampling
J. Comput. Chem. 2021, 42, 20, 1402–1418.

7.1. Introduction

Excitonic coupling plays a key role for the understanding of excitonic energy transport,

e.g. in organic photovoltaics
131,132

. However, the calculation of realistic systems is often

beyond the applicability range of accurate wave function methods, so that lower scaling

semi-empirical methods have to be used to model exciton transfer. The semi-empirical

long-range corrected density functional tight binding method with the time-dependent

linear response extension (TD-LC-DFTB2) has been benchmarked in comparison to more

accurate methods such as coupled cluster singles and doubles (CC2) for the distance

and angle dependence of supermolecular excitonic couplings. The test set consisted of

dimers of selected organic molecules (acenes, guanine, purine and nitrogen-substituted

naphthalenes). It was discovered, that TD-LC-DFTB2 yields accurate excitation energies,

which are in agreement with the CC2 reference. However, for supermolecular couplings

from an analytical diagonalization the standard con�ned parametrization of DFTB led to

an underestimation of couplings compared to CC2.
133

Therefore, a new parameter set was generated, which was based on the set used in

Reference [29]. In the DFTB method, the atomic orbitals are calculated from atomic Kohn-

Sham equations. Because free atomic orbitals are too di�use, an additional harmonic

potential is introduced, which con�nes the atomic orbitals. So called con�nement radii

for the wave function and the atomic density are usually set to reproduce atomization

energies, geometries and vibrational frequencies. This leads to a very compact basis,

resulting in accurate excitation energies and Coulomb couplings. Excitonic couplings in a

supermolecular approach, however, require a more di�use basis, as they largely depend on

the exchange and overlap of separated fragments. The con�nement radii of carbon were

subject to the optimization. Di�erent combinations of increased radii have been tested for
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the calculation of couplings on a face-to-face anthracene dimer in comparison to CC2. A

new parameter set was chosen leading to improved results.
133

However, this benchmark used optimized face to face or tilted molecular homo-dimers

at short distances. Because the two monomers comprising the dimer had the exact same

structure, the excitation energies were degenerate, i.e.

(
∆ED

12

)
2

= 0 (c.f. Equation 3.24).

Thus, the coupling was estimated as half the energy di�erence of the dimer states that

were coupled. The underlying condition for this to be valid is that the two monomers have

identical geometries and a separation over large distances yields degenerate energies for

the coupling states.
133

These static model systems do not necessarily represent structures

of real crystals. Therefore, in the following the in�uence of geometric �uctuations on

supermolecular excitonic couplings of anthracene were investigated in comparison to

Coulomb couplings. Additionally, occurring issues regarding the supermolecular approach

were resolved by implementing a new diabatization method.

7.2. Computational Details

Sampled structures were taken from a simulation, which was performed for training data

generation in chapter 5
105

. One anthracene pair in the crystallographic b-direction in

the center of the crystal was extracted from the MD (5000 snapshots), as pairs along this

direction show the highest coupling values. Supermolecular couplings were calculated

with the analytical diagonalization approach (Equation 3.24). Excited state calculations

were performed with TD-LC-DFTB2
22,25,26,28,29

as implemented in DFTB+89,115
(version 19.1)

and density functional theory (DFT) using the ORCA program package
123,124

. For DFT the

ωB97X functional
120

with the Tamm-Danco� (TDA) and the resolution of the identity (RI)

approximation was used. The def2-TZVP basis set
121

was employed in combination with

semi-numeric exact exchange, RI-J was used for the Coulomb contribution together with

the def2/J auxiliary basis set
122

. Additionally, Coulomb couplings were calculated with

TD-LC-DFTB2.

Exciton di�usion constants were calculated using a master equation (MEQ) approach,

which was solved stochastically for a single exciton using kinetic Monte Carlo
5,134

sim-

ulations as described in [105]. Transfer rates were determined according to Marcus

theory
111,112

as

kij =
Vij

~

√
π

kBTλ
exp

(
−

λ

4kBT

)
, (7.1)

with a reorganization energy λ of 0.56 eV105
and the coupling V . Coupling values were

obtained for the crystal structure (static) and are used beside the root mean square (RMS)

value
135

or the sampled structures to incorporate �uctuations (dynamic).

RMS =
√
〈V 2〉 =

√
〈J 〉2 + σ 2

(7.2)
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A value to quantify the degree of in�uence is the coherence parameter
135

C =
〈V 〉2

〈V 2〉
=

1

1 + σ 2

〈J 〉2

(7.3)

reaching values near one or zero, when the coupling is de�ned by the average structure or

by non-equilibrium conformations, respectively. The mean-square displacement (MSD) of

the exciton averaged over 10 000 trajectories was used to calculate di�usion constants, as

described in subsection 3.2.5.

7.3. Results and Discussion

7.3.1. Geometric Influences on Supermolecular Excitonic Couplings

Sampled structures of an anthracene crystal were utilized to assess the in�uence of geom-

etry �uctuations on supermolecular couplings calculated with DFTB and DFT. In this case,

the two monomers were not identical and a (hypothetical) separation to large distances in

general did not yield degenerate excitation energies. This implies that in case of the MD

simulation for each snapshot not only the dimer energies ∆EA
12

have to be calculated, but

also the individual monomers to obtain the monomer energies ∆ED
12

(Equation 3.24).

However, it must be pointed out that numerical issues can occur. If the excitation energy

gap of the dimer is smaller than the di�erence of monomer excitation energies, the square-

root term becomes negative and the coupling turns imaginary. This problem may be rooted

in the approximate nature of the overall approach, which assumes that the dimer states

are a linear combination of the corresponding monomer states. Approximately 1 % of the

couplings turned out to be imaginary and the corresponding snapshots were neglected for

the analysis.

In Figure 7.1 the coupling distributions are shown. Calculated statistical measures can

be found in Table 7.1. The results of the supermolecular approach showed only slightly

increased mean values as well as slightly broader distributions of couplings compared

to Coulomb couplings, indicating that e�ects of exchange and overlap are relevant for

anthracene in b-direction to a certain extent. DFT couplings were only a little higher

in energy, but at a comparable width of the distribution. The coherence parameters of

approximately 0.97 indicated, that the coupling and thus the transfer is governed by the

average structure in general.

To estimate the in�uence of couplings on the transfer, di�usion constants were estimated

using a master equation (MEQ) approach, which was solved for coupling values calculated

on the static crystal structure (static) and on the RMS value of sampled structures (dynamic).

The latter contained �uctuations of couplings on top of the mean value. The calculated

di�usion constants can be found in Table 7.2, the time derivative of the exciton MSD is

shown in the appendix (Figure C.1).
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Figure 7.1.:Histograms of supermolecular excitonic couplings for sampled structures of an anthracene dimer

in b-direction as calculated with DFTB and DFT from an analytical diagonalization approach. Additionally,

DFTB Coulomb couplings are given.

Method Type mean STD RMS C

LC-DFTB2

Coulomb 32 5 33 0.979

supermol. 39 8 40 0.963

DFT supermol. 47 8 48 0.972

Table 7.1.: Analysis of the histograms: mean values, standard deviations, root mean square values as in

Equation 7.2 and coherence parameters as in Equation 7.3.

Di�erences between the di�usion constants were small and in agreement with the experi-

mental value of 5 × 10−8m2
s
−1136

. As expected, di�usion was faster with higher coupling

values, but the in�uence of short range e�ects overall was low. Comparing values ob-

tained by static and dynamic couplings, �uctuations turned out to have a minor impact

on di�usion constants. The coupling was mostly de�ned by the average structure, while

non-equilibrium structures seemed to account for a small additional enhancement of the

coupling, leading to a slightly better agreement with the experiment.

Coulomb Supermol.

LC-DFTB2 LC-DFTB2 LC-DFT

Static 2.6 4.4 5.9

Dynamic 3.5 5.2 7.6

Table 7.2.:Di�usion constants (in 10
−8

m
2
s
−1

) for exciton transfer along a linear chain of crystal anthracene

in b-direction calculated with a MEQ approach with static and dynamic (RMS) coupling values. The

experimental value is 5 × 10−8 m2
s
−1136

.
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7.3.2. An Improved Approach for Supermolecular Couplings

The simple approach for the calculation of supermolecular couplings employing the

analytical diagonalization presents two issues. Firstly, if the excitation energy gap of the

dimer is smaller than the di�erence of monomer excitation energies, the resulting coupling

is imaginary and thus nonphysical. Secondly, only the magnitude of the coupling can be

calculated with this approach, whereas information about the sign is lost completely. While

this may not be an issue for dimers exhibiting a constantly large value of the coupling

without sign changes, a continuous sign is necessary for use in transfer simulations. The

relative sign must be consistent within a dimer along a trajectory and also between di�erent

pairs of fragments. These requirements hold for both Coulomb and supermolecular

couplings. The sign of a set of atomic transition charges and thus the coupling is generated

randomly. This is due to the phase of the orbitals (resp. the orbital coe�cients) in DFTB

being initialized randomly regarding their sign.

To address the issue of numerical instability, a more advanced method for the computation

of supermolecular couplings was successfully implemented. It is based on a diabatization

scheme and was developed by Aragó et al.
50,54

. The details are described in subsection 3.2.4.

Comparing the new approach to the previously used analytical diagonalization, no addi-

tional calculations had to be run. This means both approaches are comparable regarding

their computational cost.

(a) No sign tracking (b)With sign tracking

Figure 7.2.:Coulomb and supermolecular couplings for anthracene in b-direction without and with the sign

tracking procedure.

Until this point, the absolute value of the coupling was used for Coulomb as well as

supermolecular couplings. This is a result of orbital coe�cients and thus the atomic

transition charges (ATQs) and transition dipoles (TDPs) �uctuating along a trajectory in

an arbitrary manner, which directly transfers to nonphysical �uctuations of the coupling

(cf. Figure 7.2). Test calculations showed, that arti�cially inverting the sign of ATQs/TDPs

of one monomer inverts the sign of the coupling, while the magnitude is not a�ected.

Performing the same for both monomers or for the dimers does not a�ect the sign of the

coupling. Aragó et al.
50,54

proposed to set one transition charge with a large magnitude
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to always be positive. If this particular charge is found to be negative, the sign of all

elements of ATQs/TDPs for the speci�c monomer are inverted. In most of the cases this

procedure led to a consistent sign for both Coulomb and supermolecular couplings from

diabatization, as observed in Figure 7.2.

During excessive sampling however, some structures occurred, where this procedure could

not be applied successfully. This issue occurred since the previously chosen transition

charge reached values around zero and eventually were negative, although most other

transition charges did not change their sign. To circumvent this problem a more general

procedure was implemented. Interpreting the ATQs as an n-dimensional vector, where n
is the number of atoms in the molecule, the scalar product is a measure of similarity of

two di�erent sets of ATQs. A positive scalar product indicates that both vectors point in

the same direction, while a negative scalar product indicates opposing directions. Setting

one set of ATQs as a reference from the beginning, all signs of other ATQs are inverted

whenever the scalar product is negative. This procedure was successful in all encountered

cases and is used for Coulomb and supermolecular couplings throughout the following.

Figure 7.3.: Time series of excitonic couplings of an anthracene dimer in a-direction. Coulomb and super-

molecular couplings from a diabatization with ATQs/TDPs are shown as obtained with TD-LC-DFTB2.

The distributions of couplings with corrected relative signs for anthracene in a-and b-

direction are shown in the appendix (Figure C.2). For the a-direction the use of the

diabatization scheme was crucial to get reasonable results, as the analytical diagonalization

approach led to 53 % of imaginary values that had to be excluded. Figure 7.3 shows a time

series of couplings for the a-direction in anthracene. For Coulomb and supermolecular

couplings from ATQs, no observable discontinuities were observed, while some huge leaps

for supermolecular couplings from TDPs occurred. This indicates that representing the

adiabatic and diabatic states in terms of a three-dimensional vector is not su�ciently

accurate for some geometries. The most accurate representation would be achieved

through transition densities, to which atomic transition charges seem to be a reasonably

�ne-grained and reliable approximation.
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7.4. Conclusion and Outlook

An MD simulation was used to investigate the in�uence of geometry �uctuations on

supermolecular excitonic couplings for an anthracene crystal in comparison to Coulomb

couplings. At short distances, exchange and overlap contributions can have a signi�cant

e�ect on excitonic couplings, enhancing the long range dominated Coulomb part. However,

small shifts and tilts of the neighbors in the crystal structure, as observed during an MD

simulation of a crystal, showed a decreasing e�ect on these contributions. Apparently,

anthracene molecules are packed in such a way that short range e�ects are reduced. Short

range molecular interactions could lead to strong Pauli repulsion in case of overlapping

wave functions and could thus destabilize, e.g., the crystal structure. Therefore, stable

crystal structures could exhibit conformations for which repulsion due to overlapping wave

functions is minimized. This might explain the reduced importance of these e�ects for

excitonic couplings of dimers occurring in organic crystals. Approximating the coupling

in terms of Coulomb coupling and thus neglecting short range e�ects should therefore be

justi�ed in most cases. On the other hand, the benchmark
133

also showed an overestimation

of LC-DFTB2 Coulomb couplings at long distances. Hence, a calculation of supermolecular

couplings can be reasonable at least for comparison. Additionally, e�ects on the transfer

in organic crystals cannot be completely excluded and may be interesting to investigate in

direct transfer simulations with non-adiabatic MD in the future.

The diabatization scheme implemented and tested is clearly preferable to the previously

used analytical diagonalization approach. Its �exibility allows for the inclusion of multiple

locally excited and charge transfer states, while circumventing the numerical issues and

keeping information about the sign of the coupling. Additionally, in the context of this

scheme, a generally applicable procedure for generating a consistent relative sign for

molecular pairs along and within trajectories was implemented, which works for both

supermolecular and Coulomb couplings.
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8. Exciton Transfer Simulations in Organic
Semiconductors driven by Machine
Learned Hamiltonians and Derivatives

8.1. Introduction

The chapters 5 and 6 mostly dealt with charge transfer. Nevertheless, within the approach

used in this work, the di�erences between charge and exciton transfer in terms of the

methodology are quite small. The most signi�cant change is the calculation of the coarse-

grained transfer Hamiltonian. For charge transfer, the orbitals of a molecule are assumed

to be una�ected by the charge occupation. In practice this means, that only the orbitals

of the neutral molecules have to be computed and the site energies and couplings can be

obtained from the orbitals of interest (usually HOMO or LUMO).
10

This approximation does not hold for excitons. The excitation energy is di�erent from, e.g.,

the HOMO–LUMO gap, due to electron correlation. Hence, a calculation of the ground

state is not su�cient and an excited state calculation becomes necessary, which comes at

a higher computational cost compared to a ground state calculation.

Apart from the di�erent origin of the transfer Hamiltonian elements, the description of

the transfer itself is almost the same. The coupled equations of motion are solved with

the same algorithms and there are only slight di�erences in the feedback from electronic

to nuclear degrees of freedom. The quantum forces for explicit relaxation are calculated

either from the gradients of the transfer Hamiltonian or via a ∆-SCF approach. In the

latter, only the involved states are of a di�erent nature.

In this chapter, neural network (NN) models are utilized for the prediction of exciton

transfer Hamiltonian elements as well as their diagonal and o�-diagonal derivatives for

anthracene and diindenoperylene.
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8.2. Computational Details

8.2.1. Generation of Training Data

An anthracene crystal was created based on an experimental crystal structure
92

, containing

5 × 30 × 5 molecules along the a-, b- and c-crystallographic axes, respectively. For

diindenoperylene, the respective crystal
137

had a size of 15 × 10 × 5 molecules. Force �eld

parameters for both systems were derived from the general AMBER force �eld (GAFF)
93,94

.

Atomic charges were generated from the restrained electrostatic potential (RESP) �tting

procedure
95,96

, calculated at HF/6-31G*
97,98

level of theory using Gaussian 09
99

.

After an initial energy minimization the systems were equilibrated for 1 ns with a time

step of 2 fs using the modi�ed Berendsen thermostat
138

at 500 K in the NVT ensemble.

Subsequently, a productive classical MD simulation in the ground state was run for every

system at the same temperature for 10 ns with a time step of 2 fs. Here, the Nose-Hoover

thermostat
102

was employed. Ground state structures were saved every 5 ps. Excited state

structures were sampled in 38 QM/MM simulations with the same MD settings, with the

exception that simulation time was reduced to 200 ps with a time step of 1 fs and structures

were saved every 100 fs. The shorter simulation time was due to the computational cost of

QM/MM simulations. In every QM/MM simulation only one molecule was placed inside

the QM region, which was simulated in an excited state.

All MM MD simulations were performed with the GROMACS 2020.2 software package
100,101

,

while for QM/MM MD simulations a modi�ed version of GROMACS 2021 was used. The

latter version is combined with the DFTB+89,115
program. As a QM method, self-consistent-

charge density functional tight binding
22

utilizing a long-range corrected functional
25,26

and the time-dependent linear-response extension
28,29

(TD-LC-DFTB2) was used. The

ob2-1-1/base
139

parametrization was employed.

This resulted in a set of 60 000 single molecule as well as 60 000 pair structures for both

ground and excited state, which were taken from the center region of the crystals. This

applied to both the anthracene and diindenoperylene systems. Only nearest neighbor

pairs were considered. Subsequently, the elements of the transfer Hamiltonian and their

derivatives were calculated. Site energies, atomic transition charges as well as ground and

excited state forces for single molecules were obtained in vacuum from TD-LC-DFTB2 as

implemented in DFTB+, taking the parametrization from reference [29]. Additionally, su-

permolecular calculations of dimers were performed with the same method and parameter

set.

Derivatives of site energies were calculated with the ∆-SCF approach (Equation 3.11)

as the di�erence of excited and ground state forces, similar to the strategy used in the

previous chapter for charge transfer (chapter 6). Three di�erent types of couplings were

computed. Static Coulomb couplings were obtained with only one set of atomic transition

charges, which was calculated on the unoptimized experimental crystal structure of a single

molecule once and used for all subsequent calculations. In contrast, dynamic Coulomb

couplings employ on-the-�y atomic transition charges, which change for every geometry.
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Lastly, supermolecular couplings were computed with a diabatization scheme based on

atomic transition charges of the monomers and pairs.

As mentioned, for static coulomb couplings the transition charges were kept constant

for di�erent geometries. Thus, it was possible to calculate the derivative analytically

from the derivative of the Coulomb interaction ζ in Equation 3.22 with respect to atomic

coordinates. The derivatives for the other coupling types were not obtained, as there are

currently no implemented routines for derivatives of the atomic transition charges needed

for derivatives of dynamic Coulomb couplings.

8.2.2. Training and Evaluation of Machine-Learned Models

The same neural network architecture
84

as presented in subsection 6.2.2 was used. Models

were trained on site energies and their gradients, static Coulomb couplings and their

gradients, or only dynamic Coulomb or supermolecular couplings, respectively. In contrast

to chapter 5, the sign tracking scheme as tested in chapter 7 was employed and NN models

were trained on the signed couplings and not on the absolute values. This is necessary

to achieve a di�erentiable function in case of crossing zero, which is a prerequisite for

the calculation of gradients. The models used the spatial coordinates of the atoms in the

system as inputs, from which inverse interatomic distances between atoms were calculated

as a translationally and rotationally invariant representation. For site energies and their

gradients, all intramolecular atomic distances were used. The static Coulomb couplings

and their respective gradients were represented by only the intermolecular part of the

matrix, while for dynamic Coulomb and supermolecular couplings the full matrix (intra-

and intermolecular part) was chosen.

All models received training and validation data in a 9:1 ratio, with 50 000 and 30 000 total

data points for the training of site energies and couplings, respectively. The loss on the

validation set was monitored every epoch and training was aborted if it did not improve

for more than 20 epochs.

For the training of models including gradients, the loss was calculated on both the network’s

prediction for energies and gradients with respect to input coordinates. The values were

multiplied with weighting coe�cients, determining the importance of their contribution,

before summing them up for the total loss function. The relative weights of these two

parts were considered as hyperparameters of the models. Merged R2
scores were set as

the objective in hyperparameter optimization.

All details on the network con�guration, training and hyperparameter search can be found

in the appendix Table D.1.

8.2.3. Exciton Transfer Simulations

Separate crystals were generated for the transfer simulations containing 54 × 10 × 5 (16)

molecules for anthracene in a-direction and 10 × 54 × 5 (16) molecules for anthracene
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in b-direction. One-dimensional lines of molecules along the respective directions in the

middle of each crystal were chosen for the QM region, with the number of fragments

speci�ed in brackets above. After equilibration at 300 K, 500 structures in equidistant time

intervals of 2 ps were chosen as starting structures for subsequent simulations of exciton

transfer. The wave function was initially localized on the �rst molecule of the linear chain.

A time step of 0.1 fs was used for the propagation of nuclei and the TDSE was integrated

numerically with the fourth-order Runge-Kutta algorithm with an integration time step of

0.01 fs. The fewest switches surface hopping method with the Boltzmann-correction (BC-

SH) was used for most of the NAMD simulations with the explicit relaxation (ER) scheme.

If derivatives of the couplings were available, the SH method was employed without the BC

approximation, but employing the correct re-scaling scheme with non-adiabatic coupling

vectors (NACVs). Averages of observables were calculated on 500 trajectories, which were

simulated for 1 ps each, while the �rst 200 fs were regarded as initial equilibration of the

exciton. All transfer simulations were performed within a local version of GROMACS 4.6

where the NN as well as the SH/BC-SH methods were implemented. Values of mean square

displacement (MSD), inverse participation ratio (IPR) and exciton di�usion constants were

obtained from the simulations as averaged over all run trajectories (c.f. subsection 3.2.5).

8.3. Results and Discussion

8.3.1. Analysis and Preparation of the Data-Set

Consistency of calculated properties and generated data sets is important, especially for

the application in machine learning. If there are inconsistent or wrong data points, the

models may be prevented from �nding the desired patterns in the overall data set and from

learning their data accurately. Therefore, the generated data should be carefully analyzed

beforehand, which is demonstrated in the following.

For all investigated anthracene structures, the energetically lowest excitation was domi-

nated by the HOMO to LUMO transition and additionally showed the highest oscillator

strength. This state was separated from higher lying excitations by an energy gap of

approximately 800meV. Hence, this state was chosen as the state of interest for the gener-

ation of the data sets. For supermolecular calculations the diabatization was performed

with the two lowest transitions of every monomer.

The distributions of site energies are depicted in Figure 8.1 and showed a Gaussian shape.

Site energies for ground state structures had a mean of 3.03 eV with a standard deviation

of 0.14 eV. While the mean value for excited state structures was shifted to a lower value

of 2.80 eV, the distribution was broader with a standard deviation of 0.17 eV. This was

expected due to the relaxation of the molecule in the excited state. The di�erence in site

energies from ground and excited state is an estimate of the reorganization energy. Here,

this value was not meaningful, because the ground state structures from the force �eld

and the QM method deviate.
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8.3. Results and Discussion

Figure 8.1.:Distribution of site energies for anthracene molecules. Geometries were sampled in ground and

excited state.

The distributions of couplings for both crystallographic directions and for all coupling types

are shown in Figure 8.2. Again, all distributions exhibited a Gaussian shape. No signi�cant

di�erences between ground and excited state structures were observed. Mean values for

static and dynamic Coulomb couplings for both a- and b-directions were approximately

the same with 13meV and 30meV, respectively. Standard deviations slightly increased

when including �uctuations of ATQs. Supermolecular couplings for the b-direction were

comparable to Coulomb couplings, while for the a-direction, the supermolecular couplings

were only half the size of the Coulomb couplings. Results for the b-direction were in

agreement with reported values of 29meV for DFT TrEsp couplings
140

, 25meV for super-

molecular couplings from simpli�ed analytic diagonalization with SCS-CC2
110

and 35meV

from DFT supermolecular couplings employing the diabatization scheme. A reported

value for supermolecular coupling (7meV)
50

in the more distant and tilted a-direction

agrees well with results results shown here, while Coulomb couplings are overestimated

compared to reported DFT TrEsp couplings (5meV)
140

.

Choosing the correct states for diindenoperylene was more involved, as this molecule

exhibited state swapping along the simulated trajectories. For most of the generated struc-

tures, the energetically lowest excitation was identi�ed as the state of interest, showing the

highest oscillator strength and being dominated by the HOMO to LUMO transition. The

second excited state in these cases had an oscillator strength near zero and was dominated

by the HOMO-1 to LUMO transition.

However, for roughly 10 % and 30 % of the ground and excited state structures, respectively,

the �rst and second excited states swapped. This was also indicated by the shapes of the

involved orbitals, which did not change signi�cantly along the trajectory. DFT calculations

with the ωB97X (def2-TZVP) functional supported these �ndings, both in terms of orbital

shapes and composition of excited states. In fact, this seemed to be a DFTB issue, as no

state swapping was present for a few representative DFT calculations. Distributions of

site energies and couplings without the correction of state swapping are shown in the

appendix (Figure D.1) along with DFTB and DFT orbitals (Figure D.3).
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(a) Static Coulomb couplings (b) Static Coulomb couplings

(c) Dynamic Coulomb couplings (d) Dynamic Coulomb couplings

(e) Supermolecular couplings (f) Supermolecular couplings

Figure 8.2.:Distributions of couplings for �rst neighbors of anthracene pairs in a- (left) and b-direction

(right). Static (constant ATQs, top) and dynamic (varying ATQs, middle) Coulomb couplings as well as

supermolecular couplings (bottom). Geometries were sampled in ground and excited state.
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Additionally, some structures were excluded from the data set, because the �rst and second

excited states were mixed and could not be ascribed with certainty. For instance, the �rst

and second excited states were both found to be a mixture of transitions from HOMO

to LUMO and HOMO-1 to LUMO. This behavior was observed in less than 2 % of the

structures. Choosing the correct state was important to obtain consistent data and led to

reasonable distributions of site energies and dynamic Coulomb couplings with �uctuating

ATQs. Static Coulomb couplings with �xed ATQs do not exhibit this issue, as the same set

of ATQs is used throughout the calculations and only the geometry changes.

Moreover, an issue was noticed when calculating supermolecular couplings for diindenop-

erylene. A two state diabatization with the correctly chosen states led to long tails in the

distributions (Figure D.2). This is rooted in the low energetic separation of the �rst and

second excited states of the molecule, which were found to swap for some structures as

mentioned before. As a consequence, the adiabatic states are combinations of the two

close lying diabatic states. The issue was solved by including the correctly chosen second

excited states in a four state diabatization.

Figure 8.3.: Distribution of site energies for diindenoperylene molecules. Geometries were sampled in

ground and excited state.

All distributions of corrected site energies and couplings can be found in Figure 8.3

and Figure 8.4. The di�erence of mean values of site energies from ground and excited

state structures as well as the standard deviations were lower compared to anthracene,

while couplings were generally much higher. Again, mean values for Coulomb couplings

with constant and varying ATQs were similar, but the standard deviations for the latter

were approximately doubled. This re�ects the neglect of the �uctuations of the ATQs as

in�uence on coupling values. Supermolecular couplings were signi�cantly lower compared

to Coulomb couplings, but agree well with a reported value (74meV)
110

from an analytic

diagonalization approach for the a-direction employing SCS-ADC(2).

Couplings from supermolecular calculations encompass all short- and long-range contri-

butions and should by de�nition be larger compared to Coulomb type couplings, which

only include the long-range part. As indicated from previous applications of TD-LC-

DFTB2 Coulomb couplings to organic molecules
133

and Bacteriochloriphyll a molecules
113

,
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(a) Static Coulomb couplings (b) Static Coulomb couplings

(c) Dynamic Coulomb couplings (d) Dynamic Coulomb couplings

(e) Supermolecular couplings (f) Supermolecular couplings

Figure 8.4.:Distributions of couplings for �rst neighbors of diindenoperylene pairs in a- (left) and b-direction

(right). Static (constant ATQs, top) and dynamic (varying ATQs, middle) Coulomb couplings as well as

supermolecular couplings (bottom). Geometries were sampled in ground and excited state.
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Coulomb couplings were overestimated compared to supermolecular couplings. This is in

line with the �ndings in this work.

8.3.2. Model Training and Evaluation

All trained models for anthracene converged within 1000 epochs. Similar to chapter 6,

the hyperparamters seemed to have a minor impact on the quality of the models. Here,

their predictions on 30 000 unseen training data points were used to evaluate the models.

Error metrics as well as coe�cients of determinations are summarized in Table 8.1 and

Table 8.2.

site energy stat. Coulomb cpl.

energy gradient energy gradient

MAE 4.692 14.802 0.137 0.040
max err 83.559 966.415 1.953 4.294

R2
0.999 0.999 1.000 1.000

Table 8.1.:Quality metrics for models predicting site energies and their derivatives as well as static Coulomb

couplings and their derivatives for anthracene: mean absolute error (MAE), maximum error and coe�cient

of determination (R2
). All metrics except R2

-scores in meV (meVÅ
−1

).

Site energies and their derivatives as well as static Coulomb couplings and their derivatives

were learned almost perfectly. All R2
values were near 1. Mean absolute errors were orders

of magnitude lower compared to the mean values of the references. Additionally, no strong

outliers can be seen in Figure 8.5.

dyn. Coulomb cpl. supermol. cpl.

MAE 3.055 2.716
max err 27.305 129.689

R2
0.972 0.958

Table 8.2.:Quality metrics for models predicting dynamic Coulomb couplings and supermolecular couplings

for anthracene: mean absolute error (MAE), maximum error and coe�cient of determination (R2
). All

metrics except R2
-scores in meV.

Usually, couplings for the application to charge and exciton transfer are represented by

the intermolecular part of the inverse distance matrix, as mentioned and used in chapter 6.

This was also successfully performed for static Coulomb couplings. For the two other

coupling types, however, this representation led to a low accuracy of the model predictions.

Switching to the full representation by inclusion of inter- and intramolecular parts of

the inverse distance matrix, the quality of the models was improved signi�cantly. This

may be rooted in the internal geometric �uctuations, which a�ect these coupling types

strongly and which are represented in the intramolecular blocks of the matrix, rather than

in the intermolecular block. Still, the dynamic Coulomb couplings and supermolecular
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couplings were learned less well compared to static Coulomb couplings. Mean absolute

errors were one order of magnitude higher and R2
values only reached 0.96 to 0.97. The

distributions of prediction versus reference values shown in Figure 8.6 were broader

and showed more deviations. For supermolecular couplings, a few outliers were noted.

Nonetheless, both models were comparable in quality to the pentacene models for charge

transfer couplings (c.f. subsubsection 6.3.1.1) in terms of quality and thus had to be tested

in NAMD simulations to judge the in�uence of errors.

Figure 8.5.: Two-dimensional histograms of site energies, static Coulomb couplings and their gradients:

model predictions vs. TD-LC-DFTB2 targets for 30 000 structures in anthracene. Bright colors indicate high

data density, unoccupied areas shown in white.

First tests for the training of models for diindenoperylene were also performed and can be

found in the appendix (section D). This larger molecule appeared to be more di�cult to

learn and models still have to be optimized further. Therefore, NAMD simulations are yet

to be performed for this molecule.

8.3.3. Time Evolution of Hamiltonian Elements

A better estimate of model quality can be given by the investigation of the evolution of site

energies and couplings along simulation time. Therefore, reference values were computed

with TD-LC-DFTB2 along 1 ps NAMD trajectories of arbitrary �rst neighbor pairs from the
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Figure 8.6.: Two-dimensional histograms of dynamic Coulomb couplings and supermolecular couplings:

model predictions vs. TD-LC-DFTB2 targets for 30 000 structures in anthracene. Bright colors indicate high

data density, unoccupied areas shown in white.

investigated anthracene crystals and compared with predicted values. Throughout these

simulations, one molecule carried an exciton and was relaxed by quantum forces predicted

by NN models, while the other was in the ground state. The time-series of site energies

and couplings for anthracene in b-direction are shown in Figure 8.7. The corresponding

plots for the a-direction can be found in the appendix (Figure D.4).

Predictions and reference values for site energies and static Coulomb couplings exhibited

negligible deviations, which highlights the quality of the models further. Dynamic Coulomb

and supermolecular couplings showed minor deviations, but were still able to reproduce

most of the �uctuations of the reference. Similar results were obtained for anthracene

in a-direction. These results are promising with regard to an application in transfer

simulations.

8.3.4. Comparison of Obtained Observables

In the following, the trained NN models were applied to perform NAMD simulations

of exciton transfer along linear chains of anthracene molecules in a- and b-direction.

Simulations were performed either with the BC-SH method, in cases where no derivatives

of couplings were available for the calculation of NACVs, or with the SH method, employing

the correct re-scaling scheme for atomic momenta. Throughout all simulations, the

explicit relaxation scheme was used, either with onsite or full relaxation. The former

includes only quantum forces obtained from diagonal (site energy) derivatives, while the

latter additionally includes o�-diagonal (coupling) derivatives. Obtained exciton di�usion

constants are shown in Table 8.3 with the corresponding curves of averaged MSDs in the

appendix (section D).

For anthracene in b-direction, di�usion constants obtained from BC-SH simulations em-

ploying onsite relaxation and various coupling types showed rather low deviations. Higher

values from dynamic Coulomb couplings as well as supermolecular couplings may be

the result of reduced coupling �uctuations due to poorer predictions compared to static
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(a) Site energy (b) Static Coulomb coupling

(c) Dynamic Coulomb coupling (d) Supermolecular coupling

Figure 8.7.: Time evolution of anthracene site energies as well as di�erent coupling types for anthracene in

b-direction. Values were calculated with the TD-LC-DFTB2 reference and NN models.

Method Relaxation coupling ANT-b ANT-a

BC-SH onsite

stat. Coul. 8.9 2.1
dyn. Coul. 9.5 1.4
supermol. 10.1 0.8

SH

onsite stat. Coul. 4.3 0.5
full stat. Coul. 4.8 0.4

Experiment
141

5.0 1.8

Table 8.3.: Exciton di�usion constants (in 10
−3

cm
2
s
−1

) for anthracene.

Coulomb couplings. Results in the a-direction were signi�cantly smaller, as the average

coupling in this direction is lower. The di�usion constant obtained for supermolecular

couplings is strongly reduced, compared to static Coulomb couplings. Here, the overesti-

mation of Coulomb couplings became visible.
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The Boltzmann-correction led to an overestimation of the di�usion coe�cient for the

b-direction and switching to the correct re-scaling scheme in SH simulations led to a

reduction of the values by a factor of two. The latter were in close agreement with the

experimental value. Moreover, the di�usion constants for the a-direction were decreased

in SH simulations, but were underestimated compared to the experiment. It has to be

noted, that the values for this direction were generally quite small compared to exciton

di�usion constants of other materials
140

, and thus are prone to errors. The inclusion of

derivatives for couplings in the full ER scheme did not show a signi�cant e�ect. Therefore,

neglecting these terms is reasonable.

Inverse participation ratios were computed as 1.1 and 1.0 for the two directions b and a,

respectively. This indicates a strongly localized hopping mechanism for the transfer. The

obtained di�usion constants and IPR values were in agreement with recently published

simulation results
140

.

E�ective reorganization energies were estimated as averages of site energies for a ground

and excited state molecule in a 10 ps simulation without transfer. The obtained value of

410meV is roughly 17 % smaller compared to the actual reorganization energy, which was

calculated with TD-LC-DFTB2 via four-point calculation (494meV). This supports the

evidence from the analysis of the charge transfer simulations in chapter 6 and solidi�es, that

it is crucial to compute the site energies and gradients with the same method. Nevertheless,

the deviations indicate either an introduction of small errors by the ML models or a con�ict

of quantum and classical forces from the force �eld.

8.4. Conclusion and Outlook

In this chapter, non-adiabatic molecular dynamics simulations of exciton transfer were

successfully performed. The simulations were driven by neural network models, which

predicted Hamiltonian elements and their gradients.

Generating data sets for the training of machine learned models was much more time

consuming compared to charge transfer in terms of both computational e�ort and data

engineering. While data generation for anthracene was comparatively easy, the choice of

the correct transitions for diindenoperylene was more di�cult. Additionally, the calcu-

lation of supermolecular couplings for the latter molecule required the inclusion of two

diabatic states on every monomer and thus four adiabatic states on the dimer.

The trained models for anthracene showed high performance. Site energies, static Coulomb

couplings and the gradients for both were predicted with near perfect accuracy. Models

for dynamic Coulomb couplings and supermolecular couplings performed less well, but

were still able to reproduce most of the coupling �uctuations along a time-series, which

were far more pronounced in general.

For the b-direction of anthracene, utilizing di�erent coupling types did not lead to signi�-

cant changes in di�usion constants, while Coulomb couplings seemed to be overestimated
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in the a-direction and supermolecular couplings led to a decrease of the di�usion constant.

Employing the correct re-scaling scheme with NACVs decreased exciton di�usion con-

stants. The obtained value for the b-direction was in close agreement with the experiment.

Contributions of couplings to relaxation were negligible.

Anthracene showed a strongly localized and incoherent transfer mechanism, as indicated

by the IPR values of 1 for both directions. Di�usion constants as well as IPR values were

in agreement with reported simulation results. The e�ective reorganization energy was

underestimated by 17 %.

For the calculation of TD-LC-DFTB2 reference values, the time limiting step for the

Hamiltonian of the Coulomb type is the calculation of site energies and atomic transition

charges, which was in the order of about 1 s for anthracene. Supermolecular couplings are

far more costly, taking at least two computations of the dimer amounting to an increase

of computational cost by one order of magnitude. Explicit quantum forces for relaxation

require about 5 s to be calculated. The time limiting prediction in NN driven simulations

is the coupling prediction, which takes roughly 0.1ms independent of the coupling type.

Overall, the NN models outperformed DFTB by 4 to 5 orders of magnitude for anthracene.

The favorable scaling with the system size will only reinforce this performance.

Employing a fast data-driven approach is what makes these kind of cost intense simulations

possible in the �rst place. Now, this methodology needs to be evaluated carefully on a

bigger benchmark set to test its accuracy. Additionally, the relevance of charge transfer

excitations, which are known to couple with pure locally excited Frenkel states, should

be investigated. This may be relevent for organic molceules as well as biological light-

harvesting complexes.
142,143
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9. Application: Exciton Transfer
Simulations in the Light-Harvesting
Complex II

Author Contributions:
The generation of ∆-charges was done by Dr. Sebastian Höfener and Dr. Monja Sokolov.

All simulations and analyses were performed by myself.

9.1. Introduction

Photosynthesis is one of the most fundamental energy conversion processes. Through the

absorption of sunlight by chromophore molecules, an excitation or exciton is created. This

excitation and the contained energy is subsequently transferred to a reaction center, where

it is utilized for a charge separation. Further electron transfer steps allow the synthesis of

energy-rich chemical compounds, e.g. adenosinetriphosphate (ATP), which provide the

energy for biochemical reactions in living organisms.
144

The �rst step of photosynthesis, the collection and transfer of light, is called light-

harvesting. Biological light-harvesting complexes operate at extremely high quantum

e�ciency, meaning the probability of an absorbed photon to reach a reaction center and

drive charge separation is high.
144

To date, arti�cial appliances lack this highly desirable

e�ciency. Therefore, these so-called antennae are interesting compounds for an inspira-

tion of a new generation of photovoltaic devices, concentrators or sensitizers for solar

cells and other appliances.
44

One of the best studied antennae is the major light-harvesting complex derived from

anoxygenic purple bacteria, e.g. from the organism Rhodospirillum molischianum (Rs.
molischianum) – light-harvesting complex II (LH2). In this α-helical transmembrane

protein, the protein sca�old serves as an embedding for the photosynthetic pigments. The

two bands in the absorption spectrum of this complex at 800 nm and 850 nm are caused by

the absorption of Bacteriochlorophyll a (BChl a) chromophores, which are arranged in two

rings of 8 (B800) and 16 (B850) molecules inside the protein complex (c.f. Figure 9.1).
145

Numerous studies
146–149

have been conducted to investigate the properties of this and

similar systems, which mostly relied on a ground state description of the complex. Thus,

the dynamics of the excited state as arising from the coupled motion of electronic and
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nuclear degrees of freedom could not be simulated. Only these kind of simulations would

be able to reliably reveal transfer mechanisms and time scales. The size of the system,

with 24 chromophores and more than 100 atoms each, renders the necessary quantum

mechanical (QM) description and thus the direct dynamics challenging.

So far, only one study
150

managed to perform such a simulation, at the investment of

tremendous computational resources. Sisto et al. employed an ab initio non-adiabatic

molecular dynamics (NAMD) simulation of the LH2 complex from Rhodoblastus acidophilus
with time-dependent density functional theory (TD-DFT) and the surface hopping (SH)

approach. Due to the extreme computational demands of such simulations, only a single

trajectory of 300 fs length was run via a highly parallellized GPU accelerated approach.

Longer trajectories and more sampling of di�erent initial conditions would be necessary

to obtain observables reliably.

With the methodological progress presented throughout the previous chapters, it is now

possible to perform on-the-�y exciton transfer simulations with NAMD methods for

LH2 without having to invest an enormous amount of resources. This becomes feasible

through the availability of neural networks for the e�cient prediction of exciton transfer

Hamiltonian elements. In the following, preliminary results are presented as a proof of

principle application to light-harvesting complexes. 1000 trajectories with a length of

10 ps were run for each ring separately.

Figure 9.1.: Top (left) and side (right) view of BChl a chromophores in LH2. B800 depicted in red, B850 in

blue. The magnesium ions are given as black spheres.

94



9.2. Computational Details

9.2. Computational Details

9.2.1. Generation of Training Data

Subject to this investigation is the LH2 complex from the purple bacterium Rs. molischi-
anum. The simulated system was taken from reference [151] and is based on the crystal

structure with the PDB code 1LGH
145

. The complex was inserted into a lipid bilayer

(1-Palmitoyl-2-oleoylphosphatidylcholine) and solvated in water.

For classical MD simulations the GROMACS program package
100,101

(version 2020.2) with the

CHARMM27
152

force �eld was used. After an initial energy minimization the temperature

was equilibrated at 300 K for 5 ns using the Berendsen thermostat
153

and position restraints

on the protein, chromophores and lipids. Afterwards, the pressure was equilibrated for

5 ns at 1 bar with the Parrinello-Rahman barostat
154

. Subsequently, the position restraints

were removed in two simulation steps of 5 ns length each, �rst for the lipids, then for

the protein and chromophores. To sample structures, productive simulations of 200 ns

with the Nose-Hoover thermostat
102

and the Parrinello-Rahman barostat were performed.

Atomic positions were saved every 40 ps, resulting in 5000 snapshots. The time step in all

simulation steps was 1 fs.

Subsequently, the elements of the transfer Hamiltonian were calculated. Site energies

and atomic transition charges were obtained in vacuum from long-range corrected self-

consistent-charge density functional tight binding
22,25,26

with the time-dependent linear-

response extension
28,29

(TD-LC-DFTB2) as implemented in DFTB+89,115
, taking the parame-

trization from reference [29]. Static Coulomb couplings were obtained with only one set of

atomic transition charges, which was calculated on the unoptimized experimental crystal

structure of a single BChl a molecule once and employed for all subsequent calculations.

Only nearest neighbor pairs inside the two respective rings of BChl molecules were

considered. To restrict the computational cost, the phytyl tail of the BChl a molecule is

not considered in the QM calculations. This reduces the QM region from 140 to 85 atoms

per molecule.

9.2.2. Training and Evaluation of Machine-Learned Models

The same neural network architecture
84

as presented in subsection 6.2.2 was used. One

model was trained for the prediction of site energies for all BChl a molecules. A second

model was trained on Coulomb couplings for all intra-ring couplings of only nearest neigh-

bors. The models used the spatial coordinates of the atoms in the system as inputs, from

which inverse interatomic distances between atoms were calculated as a translationally

and rotationally invariant representation. For site energies, all intramolecular atomic

distances were used, while for couplings only the intermolecular part was chosen.

All models received training and validation data in a 9:1 ratio, with 100 000 and 50 000

total data points for the training of site energies and couplings, respectively. The loss
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on the validation set was monitored every epoch and training was aborted, if it did not

improve for more than 500 epochs for site energies and 100 epochs for couplings.

All details on the network con�guration, training and hyperparameter search can be found

in the appendix section E.

9.2.3. Exciton Transfer Simulations

The same starting structure used for the sampling of training data was utilized to sample

structures in equidistant time intervals of 1 ps as initial condition for subsequent NAMD

simulations of exciton transfer. Both rings of chromophores (B800, B850) were simulated

separately, because no inter-ring couplings were calculated so far. The wave function

was initially localized on one molecule of the respective rings. A time step of 0.1 fs was

used for the propagation of nuclei and the TDSE was integrated numerically with the

fourth-order Runge-Kutta algorithm with an integration time step of 0.01 fs.

The fewest switches surface hopping method with the Boltzmann-correction (BC-SH) was

used for the NAMD simulations with the implicit relaxation (IR) scheme. The reorganiza-

tion energy of 65meV was taken from reference [155], which depicted an experimental

determination.

For an additional feedback from electronic to nuclear degrees of freedom, ∆-charges (∆q)

were obtained from TD-DFT calculations as the di�erence of atomic partial charges in

the excited and ground state. For the ground state structure of BChl a, optimized with

B3LYP
119

(6-31G(d,p)
98

), charges in the ground and excited state were obtained via an ESP

�t with CAM-B3LYP
156

within the KOALA program
157

. These charges were multiplied with

the diabatic occupation and added to the force �eld charges (q):

q′ii = qii + |aii |
2∆qii . (9.1)

1000 trajectories were run for 10 ps each for both of the two rings. All transfer simulations

were performed within a local version of GROMACS 4.6, where the NN as well as the BC-SH

methods were implemented. Values of mean square displacement (MSD) and inverse par-

ticipation ratio (IPR) were obtained from the simulations, averaged over all run trajectories

(c.f. subsection 3.2.5).

9.3. Results and Discussion

9.3.1. Model Training and Evaluation

Analyzing the obtained data set revealed the lowest excited state to be the state of interest,

which was the transition with the highest oscillator strength and was dominated by the

HOMO to LUMO transition. No state swapping occurred.
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All trained models for BChl a converged within 1000 epochs. Here, the quality of their

predictions was evaluated on 10 000 unseen training data points. Error metrics as well as

coe�cients of determinations are summarized in Table 9.1, two-dimensional histograms

of model predictions versus TD-LC-DFTB2 reference values are given in Figure 9.2

site energy coupling

MAE 10.466 0.345
max err 112.009 4.939

R2
0.876 1.000

Table 9.1.:Quality metrics for models predicting site energies and couplings for Bacteriochlorophyll a: mean

absolute error (MAE), maximum error and coe�cient of determination (R2
). All metrics except R2

-scores in

meV.

Figure 9.2.:Two-dimensional histograms of site energies and couplings: model predictions vs. TD-LC-DFTB2

targets for 10 000 structures of BChl a. Bright colors indicate high data density, unoccupied areas shown in

white.

Models for BChl a site energies required signi�cantly more data compared to anthracene

in the previous chapter. 100 000 data points were necessary to reach a coe�cient of

determination of only 0.9. The mean absolute error of 10meV was still more than two

orders of magnitude lower compared to the mean of the reference values. Additionally, the

two-dimensional histogram showed a high data density on the diagonal line, indicating that

most of the data set is learned accurately. Moreover, no extreme outliers were visible.

Contrastingly, Coulomb couplings with static atomic transition charges were learned

almost perfectly. This is in accordance with results for anthracene from the previous

chapter.

9.3.2. Comparison of Obtained Observables

The trained NN models were applied to perform 1000 NAMD simulations of exciton

transfer in each of the two rings of chromphores in LH2 independently. Single trajectories
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with a length of 10 ps took a time of approximately 16 h and 23 h for B800 and B850

chromophores on single CPU cores, respectively.

Firstly, the degree of delocalization was investigated. The B850 chromophores exhibited an

average coupling of 60meV, which is in the order of the reorganization energy (65meV).

Therefore, transfer in this ring was expected to be highly delocalized and Marcus theory

could not be applied. B800 chromophores on the other hand showed a small coupling of

only 5meV and the excitons were thus expected to be localized. These expectations were

con�rmed. Inverse participation ratios were calculated for both rings and are depicted in

Figure 9.3. Excitons in the B800 ring were strongly localized and occupied 1.3 molecules

on average. Contrastingly, excitons in the B850 ring were delocalized over approximately

a third of the whole ring (4.7 molecules).

Figure 9.3.:Averaged inverse participation ratio versus simulation time for B800 and B850 chromophores.

For an estimate of the velocity of the transfer, di�usion constants can be calculated. In

systems, where excitons are transferred along linear chains of molecules, this can be

performed easily via the mean square displacement (MSD), which is a measure of how

far an exciton traveled compared to its initial position. For an arrangement of molecules

on a ring, a simple de�ned MSD would be meaningless. Hence, a modi�ed de�nition of

the MSD is desired, which must take into account the ring shape of the system, e.g. via

transformation into a polar coordinate system.

Without consideration of the ring shape, di�usion constants of 82 × 10−3 cm s
−1

(B800)

and 227 × 10−3 cm s
−1

(B850) were measured. Since the actually traveled distance on the

ring path is greater than just the distance to the initial position, the di�usion constant is

actually even greater in reality.
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Figure 9.4.:Averaged mean square displacement versus simulation time for B800 and B850 chromophores.

From the plot of the standard MSD (Figure 9.4) it can be observed, that the MSD initially

increased steadily until it was almost constant after a certain point. For all trajectories,

the exciton was localized on the same molecule in the �rst step. From this point onward,

the trajectories diverged and the exciton was transferred along the ring, either to the left

or to the right side. The MSD increased with the distance to the initial position and the

maximum was reached with the farthest molecule, which is the one opposing the initial

molecule. Afterwards, the excitons in di�erent trajectories are on average spread over the

whole ring and the MSD stays constant. Assuming isotropic transfer due to the symmetry

of the ring structure, the excitons should have traveled across one fourth of the ring on

average. By measuring the diameter as the distance of two opposing molecules the traveled

distance can be calculated as one fourth of the perimeter of each ring. This can be used for

a rough estimate of the di�usion constant under consideration of the ring. The estimated

di�usion constants were 140 × 10−3 cm s
−1

(B800) and 435 × 10−3 cm s
−1

(B850). These

values were much larger compared to singlet exciton di�usion in organic semiconductors,

which highlights the e�ciency of biological light-harvesting complexes.
158

For a visualization of the transfer in single trajectories, the diabatic occupation of the sites

was plotted against the simulation time (Figure 9.5 and Figure 9.6). A transfer in discreet

hops between neighboring molecules was observed for chromophores in the B800 ring,

while the exciton was rapidly transferred in a delocalized state in the B850 ring.
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Figure 9.5.:Diabatic occupation of the sites in the B800 ring versus the simulation time for a single trajectory.

Figure 9.6.:Diabatic occupation of the sites in the B850 ring versus the simulation time for a single trajectory.
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9.4. Conclusion and Outlook

In this chapter, non-adiabatic molecular dynamics simulations of exciton transfer in

the LH2 complex were presented. With the aid of machine learning techniques, 1000

simulations were run for both rings of chromophores, with a length of 10 ps each, without

the need to invest tremendous computational resources. This is important for su�cient

sampling, when observables are to be obtained.

It was shown, that excitons within the B800 ring were strongly localized and transferred

in discreet hops to neighboring molecules. In contrast, the exciton was delocalized over

approximately 5 molecules in the B850 ring, where transfer was signi�cantly faster and

coherent. The di�usion constant as a measure for the velocity of the transfer was roughly

estimated to be in the order of about 100 × 10−3 cm s
−1

and 300 × 10−3 cm s
−1

for B800 and

B850, respectively. The transfer was much faster compared to singlet exciton transfer in

organic semiconductors in general.

In future experiments, it will be the objective to include inter-ring couplings between

B800 and B850 molecules, to also simulate the transfer between both rings. Additionally,

diagonal and o�-diagonal gradients can be learned together with the transfer Hamiltonian

elements for the employment of more advanced propagator methods and the explicit

treatment of exciton relaxation. Moreover, a strategy to account for the ring shape of the

system, when calculating the MSD, is highly desirable to get more accurate results for

di�usion constants.

So far, the site energies and couplings of the chromophores have been computed in vacuum

without the consideration of the protein environment. Work ongoing already deals with the

inclusion of these e�ects, which are known to be of importance to describe the di�erences

of complexes from di�erent organisms or mutants like the LH3 complex.
83,113,159

This work represents a milestone in the development of e�cient NAMD methods and

enables the exploration of light-harvesting complexes through simulations in new levels of

detail. Eventually, the goal is to obtain the full picture of exciton transfer from the initial

absorption of the light to the �nal charge separation in the reaction center. To this end,

transfer between multiple complexes, e.g. from LH2 to another LH2 and further to the

LH1 complex, which is associated with the reaction center will be investigated.
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10. Summary and Outlook

This work aimed at the integration of machine learning (ML) techniques into the multi-

scale work�ow of charge and exciton transfer simulations.

In chapter 5, it was shown that simple and compact ML models can be utilized for the

conduction of non-adiabatic molecular dynamics (NAMD) simulations of charge and

exciton transfer in anthracene. Kernel ridge regression models were trained for the

prediction of transfer Hamiltonian elements of anthracene and did not require much e�ort

during the training process. The semiempirical DFTB reference method was reproduced

closely in ML driven simulations with the mean-�eld Ehrenfest and surface hopping

algorithms. However, the models did not accelerate the charge transfer simulations and

training set sizes were highly limited, which may prohibit the training of more complex

and larger molecules. Additionally, there was no feasible extension for the prediction

of derivatives of the Hamiltonian elements, which are needed for the correct re-scaling

of momenta and for explicit relaxation. Instead, approximations (implicit relaxation and

Boltzmann-correction) had to be used, which introduce errors and may not be generally

valid.

These issues were addressed in the next chapter (chapter 6). Neural network (NN) models

provided a signi�cant boost in e�ciency compared to standard DFTB and an even larger

speedup for higher levels of theory. Additionally, the favorable scaling of the models

compared to QM methods ampli�ed this advantage for larger molecules. Yet, the great

performance of the NN models came with the downside of complex and di�cult train-

ing procedures. The NN models were simultaneously trained on diagonal Hamiltonian

derivatives in addition to the Hamiltonian elements, so the approximation of implicit

relaxation could be dropped. This allowed for explicit relaxation without setting limits to

the training set size. Simulations with the implicit relaxation scheme agreed well with

the reference method, while for explicit relaxation e�ective reorganization energies were

underestimated. This issue was traced back to an inconsistent use of methods for the

calculation of site energies and gradients. However, an error contribution introduced by

the ML models could not be excluded completely. This will be addressed in future work.

The next two chapters extended the methodology to exciton transfer. In chapter 7, the

in�uence of short range e�ects via supermolecular couplings was investigated, which was

indicated to be small in �rst tests. Nevertheless, it can be bene�cial to calculate super-

molecular couplings, as Coulomb couplings were shown to be overestimated. Furthermore,

a diabatization scheme for more accurate and reliable computations of supermolecular

couplings was implemented. In this course, a sign tracking procedure for all di�erent

coupling types was implemented as well.
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The following chapter demonstrated the di�culties and importance of the generation of a

correct training data set for exciton transfer in the case of diindenoperylene (chapter 8),

although simulations with this compound are still pending. This chapter can also be seen

as a continuation of chapter 6. Neural network models were expanded to the prediction of

o�-diagonal derivatives, which are necessary for the correct re-scaling of momenta with

non-adiabatic coupling vectors, overcoming the Boltzmann-correction. The application to

anthracene could reproduce experimental di�usion constants and showed highly localized

transfer.

The �nal results chapter (chapter 9) combined the developments of this thesis and cul-

minated in the application of on-the-�y NAMD simulations to exciton transfer in the

light-harvesting complex II (LH2) from purple bacteria. This biological complex contains

huge chromophores, which are arranged in two rings (B800, B850). To date, only one

study was able to perform a single simulation of 300 fs length, which is insu�cient for

sampling. This was due to the tremendous computational cost of such simulations, which

were lifted by the developed data-driven approach shown here. The transfer in both rings

was simulated for 10 ps in 1000 trajectories each, with a feasible amount of resources.

Excitons in the B800 ring were highly localized and transferred in discreet hops, while the

B850 chromophores induced coherent transport and a spread of the exciton on multiple

molecules. Estimated exciton di�usion constants for both rings appeared much higher

compared to those of organic semiconducting materials.

The underestimation of explicit relaxation must be analyzed by retraining NN models

on data, which was generated with a consistent employment of the same method for

the calculation of site energies and gradients. Future work should focus on a thorough

examination of the accuracy of the presented approach, e.g. by extending the work

in chapter 8 to more organic semiconductor compounds in a benchmark study. The

simulations of light-harvesting complexes should be re�ned by the use of more advanced

couplings, explicit treatment of relaxation and the correct re-scaling scheme with non-

adiabatic coupling vectors. Obtaining data for comparison with experimental measures,

e.g. lifetimes and 2D electronic spectra, should validate the shown approach. A more

accurate way of estimating the di�usion constant for such a nonlinear system should also

be investigated. Moreover, the integration of further extensions for the method, e.g. the

inclusion of electrostatic e�ects induced by the environment, are highly desired.

This work contributes to the methodological development of highly e�cient methods

for multi-scale simulations of charge and exciton transfer. Especially the latter enable

the possibility for a re�nement of the understanding of exciton transfer in terms of

structural features, mechanisms and time scales. Now, large scale simulations, aiming

at a comprehensive picture of the complete light-harvesting process in photosynthetic

organisms from absorption to charge separation, are in reach.
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A. Charge and Exciton Transfer
Simulations in Organic Semiconductors
driven by Machine Learned
Hamiltonians

Detailed Propagation Results

Charge Transfer

Figure A.1.: Time evolution of the averaged MSD in a- and b-direction using the MFE method for hole

propagation with DFTB and ML-models with various training-size.
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Figure A.2.: Time evolution of the averaged MSD in a- and b-direction using the BC-FSSH method for hole

propagation with DFTB and ML-models with various training-size.

Exp. DFTB ML-100 ML-1000 ML-5000 ML-10000 ML-25000

MFE

a 1.1 1.4 3.2 1.5 1.7 1.7 1.6
b 2.9 3.4 3.7 3.7 3.5 3.1 3.2

BC-FSSH

a 1.1 8.0 10.1 7.7 8.7 7.6 8.1
b 2.9 13.3 14.3 11.1 10.6 11.8 11.0

Table A.1.:Hole mobility in cm
2
V
−1

s
−1

as calculated from the averaged MSD in a- and b-direction using the

MFE and BC-FSSH methods for charge propagation with DFTB and ML-models with various training-size.
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Exciton Transfer

Figure A.3.:Time evolution of the averaged MSD in a- and b-direction using the BC-FSSH method for exciton

propagation with a ML-model with a training-size of 1000.
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B. Charge Transfer Simulations in Organic
Semiconductors driven by Machine
Learned Hamiltonians and Diagonal
Forces

Training and Evaluation of Machine Learned Models

Models were trained using version 1.0.3 of the pyNNsMD code available from GitHub

(https://github.com/aimat-lab/NNsForMD), using TensorFlow 2.4.1 [117] in Python 3.8.8

on NVidia GTX1080Ti cards. Visualizations were generated using Matplotlib version 3.3.4

[160]. All models used a batch size of 32 and were trained for at most 1000 epochs with

an initial learning rate of 1 × 10−3. The learning rate was reduced as training progressed

to improve convergence: the models were trained for 20 steps at 1 × 10−3, 100 steps at

1 × 10−4, 400 steps at 1 × 10−5 and 480 steps at 1 × 10−6.

Hyperparameter search was performed using the Hyperband algorithm as implemented

in the Keras Tuner package (version 1.0.1) using a culling factor of 3. Optimizable hyper-

parameters and the optimal con�gurations for each model found in the hyperparameter

search can be found in Table B.1 and Table B.2.

NN depth neurons/layer weight reg.

search space 3, 4 or 5 [20, 1000] L1, L2 or None

ANT

site energies 4 70 None

couplings 3 60 None

PEN

site energies 3 30 None

couplings 3 290 L2

Table B.1.: Hyperparameter search space and parameters of best models obtained from hyperparameter

search. These models were trained to predict only energies (site energies or couplings).
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NN depth neurons/layer weight reg. E loss weight

search space 3, 4 or 5 [20, 1000] L1, L2 or None [1, 5000]

ANT

FMO-DFTB1 3 80 L2 581

∆-LC-DFTB2 4 60 None 4421

∆-B3LYP 3 50 None 4981

∆-ωB97X 5 50 None 4731

PEN

FMO-DFTB 3 110 L2 4781

∆-LC-DFTB2 4 150 L2 4091

Table B.2.:Hyperparameter search space and parameters of best models obtained from hyperparameter

search. These models were trained to predict site energies and their derivatives.

Reorganization Energies

It should be noted, that the gradients for the ∆-ωB97X model were generated with the

ωB97X functional, while the reported value for λ114
was computed with the ωB97XD

functional. We do not expect this to have a qualitative impact on the results.

Table B.3.: Reorganization energies (λ) as calcualted from QM and used for implicit relaxation. E�ective

reorganization energies (λe�) as estimated from NAMD simulations (DFTB or NN) employing explicit

relaxation as well as QM-MD simulations with DFTB. All values in meV.

Energies Forces ANT PEN

λ

DFTB1 DFTB1 91 37
114

LC-DFTB2 LC-DFTB2 138 91

B3LYP B3LYP 142
114

98
114

ωB97XD ωB97XD 202
114

170
114

λe�

FMO-DFTB1 FMO-DFTB1/MM 86 38

NN (FMO-DFTB1) NN (FMO-DFTB1)/MM 87 38

NN (∆-LC-DFTB2) NN (∆-LC-DFTB2)/MM 102 48

NN (∆-B3LYP) NN (∆-B3LYP)/MM 96 - -

NN (∆-ωB97X) NN (∆-ωB97X)/MM 130 - -

DFTB1 DFTB1 94 - -

LC-DFTB2 LC-DFTB2 109 - -

DFTB1 DFTB1 93 - -

LC-DFTB2 LC-DFTB2 132 - -

DFTB1 DFTB1 91 - -

DFTB1 LC-DFTB2 109 - -

DFTB1 B3LYP 112 - -

DFTB1 ωB97XD 167 - -
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B. Charge Transfer Simulations driven by Machine Learned Hamiltonians and DiagonalForces

Detailed Propagation Results

Simulations Employing the IR Scheme

(a) (b)

Figure B.1.:Mean suqare displacement (MSD) versus simulation time for anthracene a-direction. Simulations

employed the implicit relaxation scheme with reorganization energies from various QM methods and the

Hamiltonian elements were obtained from (a) FMO-DFTB1 or (b) NN models.

(a) (b)

Figure B.2.:Mean suqare displacement (MSD) versus simulation time for anthracene b-direction. Simulations

employed the implicit relaxation scheme with reorganization energies from various QM methods and the

Hamiltonian elements were obtained from (a) FMO-DFTB1 or (b) NN models.
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B. Charge Transfer Simulations driven by Machine Learned Hamiltonians and DiagonalForces

(a) (b)

Figure B.3.:Mean suqare displacement (MSD) versus simulation time for pentacene T1-direction. Simulations

employed the implicit relaxation scheme with reorganization energies from various QM methods and the

Hamiltonian elements were obtained from (a) FMO-DFTB1 or (b) NN models.

116
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Simulations Employing the ER Scheme

(a) (b)

(c)

Figure B.4.:Mean suqare displacement (MSD) versus simulation time for anthracene in a (a) and b-direction

(b) as well as petacene in T1-direction (c). Simulations employed the explicit relaxation scheme with forces

from FMO-DFTB1 or NN models trained on various QM forces.
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C. Calculation of Supermolecular
Excitonic Couplings
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Figure C.1.: Time derivative of the exciton MSD from the MEQ approach for Coulomb and supermolecular

excitonic couplings at TD-LC-DFTB2 and TD-LC-DFT level of theory, calculated on the crystal structure

(“static”, solid lines) and on the RMS of sampled structures (“dynamic”, dashed lines).
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C. Calculation of Supermolecular Excitonic Couplings

Figure C.2.:Histograms of excitonic couplings for sampled structures of an anthracene dimer in a- (solid

lines) and b-direction (dashed lines). Coulomb and supermolecular couplings (diabatisation with ATQs/TDPs)

are given.
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D. Exciton Transfer Simulations in Organic
Semiconductors driven by
Machine-Learned Hamiltonians and
Derivatives

Analysis and Preparation of the Data-Set
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D. Exciton Transfer Simulations driven by Machine-Learned Hamiltonians and Derivatives

(a) (b)

(c) (d)

(e) (f)

Figure D.1.: Site energies (top) and Coulomb couplings with �uctuating ATQs (middle and bottom) for

diindeoperylene using the energetically lowest (left) versus the HOMO-LUMO transition (right), respectively.
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D. Exciton Transfer Simulations driven by Machine-Learned Hamiltonians and Derivatives

(a) (b)

(c) (d)

(e) (f)

Figure D.2.: Supermolecular couplings for diindeoperylene using the energetically lowest versus the HOMO-

LUMO transition in a 2- or 4-state diabatization, respectively.
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D. Exciton Transfer Simulations driven by Machine-Learned Hamiltonians and Derivatives

(a) LUMO (DFTB) (b) LUMO (DFT)

(c) HOMO (DFTB) (d) HOMO (DFT)

(e) HOMO-1 (DFTB) (f) HOMO-1 (DFT)

Figure D.3.: LUMO (top), HOMO (middle) and HOMO-1 (bottom) for diindeoperylene as calculated with

DFTB (left) and DFT (right).
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D. Exciton Transfer Simulations driven by Machine-Learned Hamiltonians and Derivatives

(a) Static Coulomb coupling (b) Dynamic Coulomb coupling

(c) Supermolecular coupling

Figure D.4.: Time evolution of di�erent coupling types for anthracene in a-direction. Values were calculated

with the TD-LC-DFTB2 reference and NN models.
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D. Exciton Transfer Simulations driven by Machine-Learned Hamiltonians and Derivatives

Model Training and Evaluation

parameter depth neur./layer reg. weight E loss weight ∇E loss weight

search space 3, 4, 5 [20, 1000] L1, L2 [1, 1000] [1, 1000]

site energies 3 190 L1 51 911

stat. Coul. cpl. 3 90 L2 191 871

dyn. Coul cpl. 3 60 L2 - - - -

supermol. cpl. 3 100 L2 - - - -

Table D.1.:Hyperparameter search space and parameters of best models obtained from hyperparameter

search.

Figure D.5.: Two-dimensional histograms of site energies, static Coulomb couplings and their gradients:

model predictions vs. LC-DFTB2 targets for 10 000 structures in diindenoperylene. Bright colors indicate

high data density, unoccupied areas shown in white.
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D. Exciton Transfer Simulations driven by Machine-Learned Hamiltonians and Derivatives

Figure D.6.: Two-dimensional histograms of dynamic Coulomb couplings and supermolecular couplings:

model predictions vs. LC-DFTB2 targets for 10 000 structures in diindenoperylene. Bright colors indicate

high data density, unoccupied areas shown in white.
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D. Exciton Transfer Simulations driven by Machine-Learned Hamiltonians and Derivatives

Comparison of Obtained Observables

Figure D.7.: Time evolution of the averaged MSD in the a-direction of anthracene driven by NN models.

Simulations employ the SH or BC-SH methods, respectively, with explicit relaxation (ER) and di�erent

variants of couplings: static and dynamic Coulomb couplings as well as supermolecular couplings.

128



D. Exciton Transfer Simulations driven by Machine-Learned Hamiltonians and Derivatives

Figure D.8.: Time evolution of the averaged MSD in the b-direction of anthracene driven by NN models.

Simulations employ the SH or BC-SH methods, respectively, with explicit relaxation (ER) and di�erent

variants of couplings: static and dynamic Coulomb couplings as well as supermolecular couplings.
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E. Application: Exciton Transfer
Simulations in the Light-Harvesting
Complex II

Model Training and Evaluation

parameter depth neur./layer reg. weight

search space 3, 4, 5 [20, 1000] L1, L2, None

site energies 3 320 None

couplings 5 50 None

Table E.1.: Hyperparameter search space and parameters of best models obtained from hyperparameter

search. These models were trained to predict site energies and couplings.
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