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Abstract

The theoretical investigation of charge and energy transfer phenomena requires the
use of computationally demanding multi-scale simulations, which combine a quantum
and a classical description. This work aims at the integration of data-driven machine
learning techniques into the workflow of such simulations to accelerate the simulations
by substituting the costly quantum-chemical part.

It is shown that simple and compact kernel ridge regression models are able to drive
non-adiabatic molecular dynamics simulations by predicting the elements of the trans-
fer Hamiltonian. Reference data from a semiempirical method was closely reproduced.
However, these models did not lead to an acceleration and training set sizes were highly
limited, which may prohibit the training of more complex and larger molecules.

In contrast, neural network models provide a significant boost in efficiency compared to
a semiempirical reference and an even larger speedup for higher levels of theory, while
at the same time setting no limit to training set size. Additionally, they allow for the
simultaneous prediction of transfer Hamiltonian elements and their derivatives, which is
necessary for explicit treatment of the relaxation process and correct re-scaling of atomic
momenta with non-adiabatic coupling vectors.

Further, the methodology was extended to exciton transfer. The influence of short range
effects via supermolecular couplings was investigated and a diabatization scheme for more
accurate and reliable computations was implemented. The application of neural networks
to exciton transfer in anthracene could reproduce experimental diffusion constants and
showed highly localized transfer.

Finally, the developments of this thesis were combined and culminated in the application
of exciton transfer simulations in the light-harvesting complex II (LH2) from purple
bacteria. This biological complex contains chromophores, which are arranged in two rings
(B800, B850). To date, only one study was able to perform a single simulation of 300 fs
length. This was due to the tremendous computational cost of such simulations, which
are lifted by the developed data-driven approach shown in this work. The transfer in
both rings was simulated for 10 ps in 1000 trajectories each, with a feasible amount of
resources. Excitons in the B800 ring were highly localized and transferred in discreet hops,
while the B850 chromophores induced coherent transport and a spread of the exciton
on multiple molecules. Estimated exciton diffusion constants for both rings appeared
much higher compared to those of organic semiconducting materials. Now, large scale
simulations, aiming at a comprehensive picture of the complete light-harvesting process
in photosynthetic organisms from absorption to charge separation, are in reach.






Zusammenfassung

Die theoretische Untersuchung von Ladungs- und Energietransferphdnomenen erfordert
rechenintensive Multi-Skalen-Simulationen, die eine quantenmechanische und eine klassi-
sche Beschreibung kombinieren. Diese Arbeit strebt eine Integration von datengesteuerten
Methoden des maschinellen Lernens in den workflow solcher Simulationen an. Indem der
kostspielige quantenchemische Teil ersetzt wird, konnen diese beschleunigt werden.

Es wird gezeigt, dass einfache und kompakte Kernel-Regressionsmodelle in der Lage sind,
nicht-adiabatische Molekulardynamiksimulationen durch die Vorhersage der Elemente
des Transfer-Hamiltonian voranzutreiben. Referenzdaten einer semiempirischen Methode
wurden genau reproduziert. Diese Modelle fithren jedoch nicht zu einer Beschleunigung
und die Menge der Trainingsdaten ist deutlich eingeschrankt. Dies konnte das Training
komplexerer und groflerer Molekiile erschweren.

Im Gegensatz dazu bieten neuronale Netze eine erhebliche Effizienzsteigerung im Vergleich
zu einer semiempirischen Referenzmethode und eine noch grofiere Beschleunigung fiir
genauere quantenmechanische Methoden. Gleichzeitig besteht keine Begrenzung fiir die
Grofle der Trainingsdatenmenge. Auflerdem ermoglichen die Modelle die gleichzeitige
Vorhersage von Transfer-Hamiltonianelementen und deren Ableitungen, was fiir die expli-
zite Behandlung des Relaxationsprozesses und die korrekte Neuskalierung der atomaren
Impulse mit nicht-adiabatischen Kopplungsvektoren notwendig ist.

Dariiber hinaus wurde die Methodik auf den Exzitonentransfer ausgeweitet. Der Einfluss
von Kurzstreckeneffekten in supermolekularen Kopplungen wurde untersucht und ein
Diabatisierungsschema fiir genauere und zuverlassigere Berechnungen wurde implemen-
tiert. Die Anwendung von neuronalen Netzen auf den Exzitonentransfer in Anthracen
konnte die experimentell ermittelten Diffusionskonstanten reproduzieren und zeigte einen
stark lokalisierten Transfer.

SchlieBlich wurden die Entwicklungen dieser Arbeit kombiniert und resultierten in der
Anwendung von Exzitonentransfer-Simulationen auf den Lichtsammelkomplex II (LH2)
von Purpurbakterien. Dieser biologische Komplex enthélt Chromophore, die in zwei Rin-
gen angeordnet sind (B800, B850). Bisher war es nur in einer Studie moglich, eine einzige
Simulation von 300 fs Lange durchzufiihren. Dies ist auf die enormen Rechenkosten solcher
Simulationen zuriickzufithren, die durch den in dieser Arbeit entwickelten datengesteuer-
ten Ansatz verringert werden. Der Transfer in beiden Ringen wurde fiir 10 ps in jeweils
1000 Trajektorien simuliert, was mit einem vertretbaren Aufwand an Ressourcen reali-
sierbar war. Die Exzitonen im B800-Ring waren stark lokalisiert und wurden in diskreten
Spriingen tibertragen, wihrend die B850-Chromophore einen koharenten Transport und
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Zusammenfassung

eine Delokalisierung des Exzitons tiber mehrere Molekiile ermdglichen. Die abgeschatzten
Diffusionskonstanten fiir den Transfer in beiden Ringen waren deutlich grofier als die von
organischen Halbleitermaterialien. Jetzt werden grof3 angelegte Simulationen mit dem
Ziel moglich, den gesamten Lichtsammelprozess in photosynthetisch aktiven Organismen
von der Absorption bis zur Ladungstrennung aufzuklaren.
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Introduction






1. Introduction

Theoretical chemistry, computational chemistry and molecular modeling are related and
overlapping subdomains in the overarching field of chemistry. They are not clearly
delineated from each other and have in common that they deal with the development,
improvement and application of theories and models for the description of chemical
structures and their properties. These techniques may serve as a lens to gain insights into
chemical and physical phenomena, that may not be easily accessible or accessible at all
through experiments. In this way, computational chemistry can aid in the comprehension
and interpretation of chemical processes.! Additionally, it may serve as a predictive tool
to replace or shorten experimental efforts, e.g. by high-throughput screening of chemical
structures with regard to specific properties on the quest for novel or optimized chemical
compounds.??

The importance and usability of computational methods in chemistry has emerged and
increased with the computing power and affordability of modern hardware, e.g. central
processing units (CPUs), graphics processing units (GPUs) and the use of specialized high-
performance computing (HPC) clusters. This was accompanied by progress in software
development, for instance implementations of new and more accurate computational
methods.!

In practice, calculations and simulations of chemical systems are limited by their com-
putational cost. There is an interplay between accuracy and reachable time and length
scales on one hand and affordability of calculations on the other hand. The more precise
the method, the greater the computational demands. Molecular mechanics (MM) methods
are able to describe huge chemical systems with thousands of atoms on long time scales
efficiently. Even bigger system sizes and time scales can be reached with coarse-grained
models, although information on the atomic scale is lost. However, classical physics may
not be sufficiently accurate to describe the relevant phenomena or to precisely predict
physical observables of the system. Additionally, these methods are not able to capture
processes such as chemical reactions or the interaction of matter and light, which limits
their applicability.*

Contrastingly, these phenomena can be captured by quantum mechanical (QM) methods,
which are more exact. Semi-empirical QM methods solve the Schrédinger equation, but
introduce approximations and empirically derived parameters. They can treat a few
hundreds of atoms on short time scales. Ab initio methods calculate molecular systems
from first principles, meaning the only input are physical constants and the coordinates of
the system. Computational cost grows with the accuracy of the level of theory.!



1. Introduction

Some chemical or physical phenomena involve different time and length scales, which
need to be bridged in order to be accurately described. Charge (CT)> and exciton transfer
(ET)® processes, as investigated in this work, require such multi-scale approaches. For
this purpose, the system is divided into an active region of interest, where e.g. QM
methods are employed and the transfer takes place, while the remainder is treated with
a cheaper MM method. As in similar hybrid QM/MM approaches, the simulation is
limited by the demanding QM calculations. The efficiency can be improved by introducing
approximations and by employing semi-empirical QM methods. Still, the system sizes and
simulation lengths are restricted.

Data-driven approaches, more specifically machine learning (ML) methods, can make
use of the fact that the quantum chemical calculations are highly repetitive, i.e. the
conformations sampled during such simulations are very similar. This motivates the
substitution of the costly QM methods by more efficient ML models. By training an ML
model on a small but representative data set, for which the relevant electronic parameters
have been calculated beforehand, the computationally simpler ML model could then be
used to drive the transfer simulations.”®

This thesis aims at an integration of machine learning techniques into the multi-scale
workflow of charge and exciton transfer simulations. Charge transfer in simple organic
semiconductors (OSCs) has been studied with non-adiabatic molecular dynamics (NAMD)
simulations® 2 and serves as a test case for the application of ML models in this work.
The ML/MM approach is examined for its accuracy and the desired increase in efficiency.
Furthermore, the same methodology is extended to exciton transfer simulations, whose
computational cost is several orders of magnitude higher compared to charge transfer
simulations. To this end, organic semiconductors again function as proof of principle
examples. Finally, with the tested methodology at hand, exciton transfer in biological
light-harvesting complexes becomes feasible. It was not possible to investigate the latter
systems in detail with the methods available so far.

The outline of this thesis is as follows: At first, the theories and methods, that are relevant
for this work are introduced. Among them are MM and QM methods for the calculation
of energies and forces of molecular structures (chapter 2), as well as molecular dynamics
(MD) methods for the simulation of ensemble and time dependent properties (chapter 3).
This also includes the simulation approach for charge and exciton transfer. Additionally,
ML models for the acceleration of MD simulations are introduced (chapter 4).

Chapter 5 covers the application of kernel ridge regression (KRR) models for charge and ex-
citon transfer simulations in anthracene (Figure 1.1a), a well studied organic semiconductor.
The elements of the transfer Hamiltonian are learned and used to drive the transfer. The
observed restrictions when employing KRR models and their overcoming are addressed in
chapter 6 for charge transfer. Here, neural network (NN) models are employed to learn
transfer Hamiltonian elements and diagonal derivatives for anthracene and pentacene
(Figure 1.1b).

The following chapters extend the integration of ML models into simulations of exciton
transfer. Firstly, in chapter 7, the calculation of supermolecular excitonic couplings is
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addressed and a more advanced scheme is implemented. Secondly, anthracene and diin-
denoperylene (Figure 1.1c) are candidates, on which NN driven exciton transfer simulations
are examined. Moreover, the learning is extended to off-diagonal derivatives (chapter 8) of
the transfer Hamiltonian. Eventually, the efficiency improvements are utilized in chapter 9
to perform exciton transfer simulations in the biological light-harvesting complex II (LH2),
a huge molecular system containing several bacteriochlorophylla (BChla) molecules
(Figure 1.1d).

Finally, the most important results and findings as well as open questions are summarized
in chapter 10. This last chapter closes with an outlook on future work.

(a) Anthracene (b) Pentacene

(c) Diindenoperylene

d) Bacteriochlorophyll a
( phy

Figure 1.1.: Molecules investigated in this work.
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2. Calculation of Energies

This chapter introduces the various methods to describe the state of a molecule and to
calculate the corresponding energy, forces and other properties of a particular molecular
configuration. These methods are based on either classical or quantum mechanics. Because
of differences in their nature, accuracy and computational cost, they are suited for different
applications.

2.1. Molecular Mechanics

Molecular mechanics (MM) makes use of classical physics to model molecular systems.
The smallest unit or particle to comprise such a molecular system in this approach is an
atom. Within MM, the potential energy, which is related to the interactions between these
particles, is given by an analytic function of atom coordinates, called the force field (FF).
In the following, the all-atom force field is illustrated, as used in this work. There are
also other types of force fields for applications to larger molecular complexes, e.g. the
united-atom or coarse-grained approach, which merge hydrogen atoms to their heavy
atomic partners or even combine several heavy atoms into one particle.l3

2.1.1. All-Atom Force Fields

In an all-atom force field, a molecular structure is represented by a “ball and spring”
model. Atoms are considered to be points having a defined position, mass and charge.
Electrons are not taken into account as individual particles, but rather are merged into
their respective nuclei. Bonds between atoms are modeled as springs with Hooke’s law,
assigned a length and a stiffness. Analyzing molecular structures of different kinds reveals
the composition of structurally similar atoms and bonds (functional groups). For example
all C-H single bonds have a similar length and a similar bond oscillation frequency, even
in very different molecules. This leads to the principle of a force field parametrization and
the introduction of atom types, depending on the respective element types and bonding
partners.

The force field itself describes the potential energy of all atoms in the form of a sum
over all atomic interactions (e.g. as in Equation 2.1). The interactions can be divided into
bonding and non-bonding terms, the former being represented by bond stretching, angle
torsion and dihedral torsion, the latter by electrostatic and van-der-Waals interactions.
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Bond stretching and angle torsion are both modeled with a harmonic potential, while for
the dihedral torsion a sum of periodic potentials (e.g. cosines) is needed. The electrostatic
interaction (Coulomb potential) is a inverse first-power potential. The van-der-Waals
interaction consists of two contributions, the (short-ranged) Pauli-repulsion, which is due
to the Pauli exclusion principle, and the attractive (long-ranged) London-dispersion, caused
by interactions of induced and instantaneous dipoles. It is modeled with the Lennard-Jones
(12-6) potential.

MM
Vtot = Vbond + Vangle + Vdihedral + VCoulomb + VLennard-Jones

bonding non-bonding
1 b 0)2
= EZki (ri_ri)
1 a 0 2
+ 52"1’ (91' ‘91) (2.1)
J

1
+ > Z Z Vk(l) (1 + cos [nﬁk - 3,&0)"])
k I
1 gmq oo\ 12 oo\
" mYn + dep, Omn _ mn
Z Z (471'50 "mn : 'mn "'mn

m n>m

The parameters required within a force field are the force-constants (k) and equilibrium
distances/angles (r, 0°, 9°) for the different bonding potentials, as well as atomic partial
charges (q), depth (¢€) and distance (), where the Lennard-Jones potential is zero. These
parameters are empirically derived, e.g., from experiments (spectroscopy, calorimetry) or
ab initio calculations. The atomic partial charges are tailor-made for specific molecules or
classes of molecules e.g. DNA, proteins, lipids or small organic molecules, which limits
their transferability to other classes of molecules. The functional form of the potentials
and the parameters can differ between force fields.

The non-bonded interactions lead to the N?-scaling of the computational cost with the
number of atoms, which can be optimized further. This allows for simulation of huge
molecular systems with up to millions of atoms and/or on long time scales of up to
milliseconds. But the method also comes with limitations. The parameters are derived
for a specific electronic state and drastic changes can not be represented within a single
parametrization of a force field. Additionally, due to the harmonic potential used to
describe the chemical bonds, the quantum nature inherent to electrons is neglected. As a
consequence, formation and breakage of bonds, interactions with light or other phenomena,
that involve the change of electronic states, cannot be simulated.’!3

10
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2.2. Quantum Chemistry

The discovery of the wave-particle duality and the quantization of energy led to the
development of a new theory for the description of matter: quantum mechanics (QM).
The fundamental aspects of this theory as well as the methods relevant for this work are
introduced in this chapter.

2.2.1. Foundations of Electronic Structure Theory

Quantum mechanics as a theory cannot be derived rigorously as it comes with a few
postulates: The state of a quantum system or particle is described by the wave function,
which does not have a physical meaning. Nevertheless, the square of the wave function
has a physical meaning, which is the probability of finding the system in a given state.
Any physical observable can be obtained by applying the corresponding operator to the
wave function. The behavior of such a system in space and time is described by the
time-dependent Schrédinger equation

2} “I’(?, R t)> - ih% ‘lp(?, R t)> , 2.2)

with the Hamiltonian operator H, the wave function for electrons and nuclei ¥, with their
positions 7 and R. iis the imaginary unit and A the reduced Planck’s constant. If the
potential energy and thus the Hamiltonian of the system is not explicitly time-dependent,
the wave function can be separated into parts depending on space or time variables only.
The result of this separation is the time independent or stationary Schrédinger equation
(Equation 2.3), and the wave function takes the form of a standing wave for a stationary
state.

ol (lp(?, 13)} _F ‘l//(?, 13)> 2.3)

This equation is an eigenvalue problem with the eigenvalues being the energies of the
system (E;) and the eigenvectors or eigenstates being the corresponding wave functions
(i(7, R)). If the Hamiltonian is known, solving the Schrédinger equation yields these
energies and states. The only interaction relevant at the atomic or molecular level is the
electromagnetic interaction between nuclei-nuclei, electron-electron and electron-nuclei,
which can be described by the Coulomb potential. The Hamiltonian operator for a molecule
(in atomic units) reads

N 27, 1
H:—EZAi——Z—Ak—Zth 2 rkkl’+ o (2.4)

i<j

with the nuclear mass (M) and charge (Z), the distance between two particles i and j (r;j),
the Laplace operator (A) and indices i, j for electrons and k, [ for nuclei, respectively. The

11
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Hamiltonian consists of terms for the kinetic energy of electrons and nuclei as well as
the potential energy of interactions between electrons-nuclei, nuclei-nuclei and electrons-
electrons.

Assuming that the nuclei are infinitely heavier than the electrons, the motion of the latter
is much faster compared to the former. In fact, the mass difference is high enough to
expect an instantaneous adjustment of the electronic positions to the nuclear geometry.
This is known as the Born-Oppenheimer approximation!*, which leads to a separation of
nuclear and electronic wave functions and allows for the electronic Schrédinger equation
(Equation 2.5) to be solved for a given set of stationary nuclei. Then, the electronic wave
function only depends on the electronic coordinates.

H, |¢(F)) = E. lp(P) (2.5)

By solving this equation for a large set of nuclear arrangements, the electronic energy
forms a hypersurface as a function of the nuclear coordinates, which is called potential
energy surface (PES). As a consequence of the Born-Oppenheimer approximation, the
kinetic energy of the nuclei can be neglected, while the nuclei-nuclei repulsion becomes
a constant term. The Hamiltonian operator for the electronic structure of a molecule
(Equation 2.6) can be simplified.

A

H, = ’fe + Ven + Vee (2~6)

There are a lot of different electronic structure methods, which try to solve the electronic
Schrodinger equation (Equation 2.5). A basic principle that can be found in most methods
is the variational principle (Equation 2.7). It states that an arbitrarily chosen trial wave
function always leads to a higher (or equal) energy than that of the ground state. The wave
function of the actual ground state (¢o(7)) is the one associated with the lowest possible
energy of the system (E;). Hence, a trial wave function can be used as a starting point,
which is subsequently improved through variation. Improvement in this case means, that
the new wave function leads to a lower energy.

<§0trial(?) | I:Ie | qotrial(?)> = Eyjal = Eo = <(P0(’7) |I:Ie | ¢O(?)> (2~7)
The construction of a trial wave function is usually done via the linear combination of
atomic orbitals (LCAO) approach (Equation 2.8). The wave function is constructed in the

shape of a Slater determinant, which contains one-electron functions, so called molecular
orbitals (MO) V.

d; = Z Ci Xi (2-8)

The latter are formed as linear combinations (superposition) of atomic orbitals (AO) y,
which are called a basis set. Solving the Schrodinger equation now becomes equivalent

12
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to minimizing the energy of the trial wave function constructed from MOs by varying
the AO-coefficients."!* The electronic structure methods used in this work are described
throughout the next chapters.

2.2.2. Density Functional Theory

In contrast to wave function based methods such as Hartree-Fock (HF) or Coupled Cluster
(CC), Density Functional Theory (DFT) is based on the electron density (Equation 2.9) for
the description of the electronic structure of a molecular system. The electron density is
a probability density, stating the probability of finding an electron in a volume element.
The dimensionality is reduced from 4N spatial and spin variables for the wave function to
only 4 variables for the density. N refers to the number of electrons.

p(F) = |(F)° (2.9)

Using the electron density as a possible representation of the system is intuitive because
of its properties. Integrating the electron density yields the number of electrons in the
system. The position of the nuclei can be identified by the cusps in the electron density.
Their height contains information about the corresponding nuclear charge.

E=E [P (7)] and Etrial [ptrial (7)] > Ey [pO (?)] (2-10)

Hohenberg and Kohn' provided proof for this in two theorems (Equation 2.10). The first
demonstrates, that the energy of the ground state can be formulated as a functional of
the electron density, while the second is similar to the variational principle, associating
the ground state density with the lowest possible energy. The total energy in terms of
functionals of the density consists of the kinetic energy of the electrons, as well as the
interaction energies of electrons-nuclei and electrons-electrons.

Elp] = Te[p] + Ven[p] + Vee [p] (2.11)

The last term can be split into the classical electrostatic Coulomb repulsion (J [p]) and
the remainder of non-classical origin, the correction for self-interaction, exchange and
correlation. Kohn and Sham!® achieved a major breakthrough in the practical use of
DFT by offering a way to effectively calculate the contribution of the kinetic energy.
They considered a fictitious reference system of non-interacting electrons in an effective
potential (Veg) similar to HF, for which the kinetic energy (Tief[p]) could be computed
easily by reintroducing orbitals. The effective potential is set in a way that the density of
the reference system is equal to that of the real interacting system

P = Pref = Z il (2.12)
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2. Calculation of Energies

The (orthonormal) orbitals can be calculated within the variational principle using the
Kohn-Sham equations (Equation 2.13). This has to be performed in an iterative process
until self-convergence, because the external potential already depends on the density and
thus on the orbitals.

(—%A + Veﬁ) ¢i = €i¢i (2~13)

The solution by Kohn and Sham describes the main part of the kinetic energy, which only
misses a small contribution. The stated terms of classical origin and the main part of the
kinetic energy can be formulated exactly, while all unknown contributions (correction
for self-interaction and kinetic energy, exchange and correlation) are combined into the
exchange-correlation functional (E,. [p]).

E [p] = Tret [P] +J [P] + Ven [P] + Exc [P] (2.14)

If the correct exchange-correlation functional was known, the exact ground state energy
of a molecular system could be calculated. However, the explicit form of this functional is
not known, so that approximations must be introduced for this otherwise exact theory.
The crucial task in the development and advancement of DFT is to find better forms for the
exchange-correlation functional, which can include empirically derived parameters.’!317

Simple formulations of functionals make use of the local density (LDA) or generalized
gradient (GGA) approximation. The former is based on the uniform electron gas and
the energy is assumed to only depend on the local value of the electron density. GGA
class functionals additionally include the dependence of the energy on the gradient of
the density at every point. Today, hybrid functionals are popular, as they have proven
to be a versatile method for calculating many properties and often have a good balance
between accuracy and efficiency. They contain a fraction of exact Hartree-Fock (HF)
exchange in the exchange part of the functional.!® Finally, long-range corrected (LC) or
range-separated functionals have been developed. Here, exact exchange is added with a
distance dependence and some severe problems in DFT are improved.!®

2.2.3. Density Functional Tight Binding

Density functional tight binding (DFTB) is a semi-empirical QM method based on DFT.
The term tight-binding comes from models of solid-state physics, where core electrons
are assumed to be tightly bound to the atomic nucleus. Hence, they do not affect the
electronic structure of their surroundings much and only valence electrons are treated
explicitly. Additionally, a minimal basis for the valence electrons in an LCAO approach
(Equation 2.15) is introduced.

[¥:) = Z Cu; |¢/1> (2.15)

[
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2.2. Quantum Chemistry

The atomic orbitals (¢) are obtained from single atom DFT calculations, which employ an
additional harmonic potential for a confined basis. The total energy in DFTB is determined
from a Taylor expansion of the total DFT energy (Equation 2.14) in terms of neutral atomic
reference densities (p°) and their fluctuation (§p) as a representation for the true density
minimizing the energy (Equation 2.16)."

EPPTB (00 4+ 5p| = E' + B+ E* + E® +

A
E1:Zni<‘1’ +Vne+/|r_r/|dr + Vxe ["] ‘I’>
__2 // e r/|drdr' —/VXC [,00] p°dr + Exc ['DO] * Enn (2.16)

£ // 52EXC[P]
r—r " Spdp’

E=- ///53EXC
Spdp’'Sp”|

Depending on the truncation of this Taylor series, a hierarchy of DFTB can be derived:
First order DFTB (DFTB1)%*2!, second order self-consistent charge DFTB (SCC-DFTB2 or
just DFTB2)?? and third order DFTB (DFTB3)%. The energy of DFTB1 (zeroth and first

order term) is further approximated as

) SpSp’drdr’
pO’pO/

Spdp'Sp” drdr’'dr”
P pO/ po ’”

1
Epprp = E' + E° = Z niei+ = y VP (2.17)
- 2
i ab
The first term is often denoted the electronic energy. The eigenvalues (with occupa-

tion numbers n) are calculated in a non-self-consistent way from Kohn-Sham equations
(Equation 2.18).

D e (Hjjv - eiS,JV) =0 (2.18)

14

For the Hamiltonian and overlap matrices (Equation 2.19) only two-center integrals are
evaluated, the elements of both matrices are computed once and then tabulated. There-
fore, no integrals have to be evaluated during runtime, significantly speeding up DFTB
calculations. DFTB is up to three orders of magnitude faster than conventional DFT.

Hﬁv = <¢,u |HO | ¢v> Spv = <¢y | ¢v> (2.19)
All other terms (third line in Equation 2.16) are merged into a repulsive energy term

(E° = Erep), which is approximated as a sum of atomic pair potentials on atoms a and b
and is obtained by fitting e.g. to reference DFT calculations.?*
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2. Calculation of Energies

For molecular systems where charge transfer between atoms plays a role, e.g. heteroatomic
molecules with significant difference in electronegativity, higher order terms must be
included. The second order contribution is contained in DFTB2 as

1
Eprre2 = EpFrB1 + 2 Z AgaAqpyab » (2.20)
ab
incorporating charge fluctuations on atoms (Equation 2.21).

Aga = qa — q, (2.21)

The additional term essentially is a Coulomb interaction between atomic partial charges
(Aq,) at long distances and electron-electron interaction within one atom at short distances.
The gross charges q, are obtained via Mulliken population analysis from the MO coeffi-
cients and the charge of the core q° is subtracted. The MO coefficients are obtained from
the Hamiltonian, which already involves the partial charges. Therefore, a self-consistent
charge formalism must be introduced.?* The performance of DFTB can be further improved
by adding even higher order terms.

Standard DFTB is parameterized with a GGA functional. Thus, DFTB inherits some of the
problems associated with GGA DFT, e.g. the self-interaction error, which severely affects
the quality of several calculated properties. In Hartree-Fock, however, the interaction of an
electron with itself does not occur. Therefore, long-range corrected functionals have been
developed for DFT to reduce this error and have been adopted into the DFTB formalism.
The electron-electron interaction is split into two parts, a short- and a long-range part
(Equation 2.22).

1 1 —erf(wr erf (wr
~ - (@riz) + (@r1z) (2.22)
r12 ri2 r12

The empirical range separation parameter o has to be optimized through fitting to data
from experiments or higher level of theory. It defines the splitting between the short- and
long-range parts. The long-range part approaches exact HF exchange at long distances,
while a pure density functional is employed at short distances. The correlation contribution
is still evaluated by means of a GGA functional.

Exc = ESGA + EQPA + EOHF (2.23)

The use of LC functionals leads to the correct —% asymptotic behavior of the Kohn-Sham
potential 2>%6

For the calculation of excited states and their properties, the time-dependent linear response
extension to DFTB (TD-DFTB) has to be used. This approach does not calculate the excited
state directly, but rather properties of this state are obtained as a linear response. The
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2.3. Hybrid Approaches

linear response in this case is the interaction with electromagnetic waves, mediating the
transition from the ground state to an excited state. It can be seen as a small perturbation
of the electronic structure.

Therefore, a TD-DFTB calculation is carried out on top of a DFTB ground state calculation.
In a first step, the single particle energies and orbitals of the ground state are calculated.
Afterwards, the pseudo-eigenvalue problem of the Casida equation (Equation 2.24)%7 is

solved.
A B -1 0\ (X
AR () 220

Q denotes the excitation energies, while A and B are matrices, whose elements are calcu-
lated from the energy differences of the Kohn-Sham orbitals and the linear response in
terms of Coulomb and exchange-correlation contributions.?®%’

—

X
Y

2.3. Hybrid Approaches

The potential energy of a molecular system can be used to calculate forces on the nuclei,
which are necessary to perform molecular dynamics simulations. Different methods, e.g.
molecular mechanics force fields or one of the various quantum-chemical methods, may
be employed to derive the potential energy. MM approaches are efficient, but less accurate
and quantum effects, e.g. bond forming and breaking or transitions between electronic
states, are not treated. Thus, large molecular systems can be simulated on long time scales,
but no chemical reactions and interactions with electromagnetic waves can be described.
In contrast, QM methods are able to simulate quantum effects. However, they come with
high computational cost, which prohibits large system sizes and time scales. One way
to overcome this is the application of hybrid QM/MM approaches, which combine both
methods. The system is divided into different regions, where the energies and forces
on nuclei are obtained by different methods. Usually, only a small region with a few
nuclei is of primary interest and must be treated quantum-mechanically, while the entire
environment is sufficiently treated by a force field.

Eiot = Eom + Evim + Eommm (2.25)

To account for the coupling between QM and MM regions (Equation 2.25), different
embedding schemes have been developed. The easiest form in terms of computational effort
is mechanical embedding, where the QM and MM densities are completely independent
from each other. The interaction between them is treated purely by a non-bonding force
field term (Equation 2.26), similar to the electrostatic and Van-der-Waals interaction in
Equation 2.1. The partial charges of nuclei (i) in the QM region come directly from the QM
calculation and are updated in every step. Meanwhile, the force field charges for atoms
(m) in the MM region are kept fixed.
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2. Calculation of Energies

Nom Num gid; o \2 (g \®
E = ot de, [[22] - (22 2.26
QM/MM Z Zm: ( Fim im (( Fim Tim ( )

This scheme completely neglects polarization of both regions. The electronic embedding
scheme includes the polarization of the electronic structure of the QM region, which
is caused by the MM region. Therefore, an additional term in the QM Hamiltonian is
introduced (Equation 2.27), while the interaction of nuclei in the QM and MM region is
kept within the QM/MM term.

oM Nvm q
H{ = Hommm — (—m) (2.27)
QM/MM Q Z ; Fim

In polarized embedding schemes, the mutual polarization of both regions is included via
a polarizable force field. Therefore, both the QM and MM calculations have an iterative
nature, which highly increases the computational cost.

Beside the mentioned QM/MM approaches, hybrid QM/QM approaches are also possible
for small systems. Moreover, the system can be partitioned into more than two regions,
e.g. QM1/QM2/MM, employing different levels of theory.!* An implementation of this is

the ONIOM (Our own n-layered Integrated molecular Orbital and Molecular mechanics)
method.*
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3. Molecular Dynamics

The previous chapter introduced theories and methods for the description of molecular
configurations in terms of classical and quantum mechanics. Energies and forces from
these methods can be used to evolve a molecular system in time, going beyond the picture
of static molecules. This allows the dynamics of the system to be studied, which often
goes hand in hand with its function. In addition, time-dependent and thermodynamic
properties can be calculated.

3.1. Adiabatic Molecular Dynamics Simulations

In the standard case of molecular dynamics (MD) simulations, the Born-Oppenheimer
approximation as mentioned in the previous chapter is considered valid. This approxima-
tion usually works well for heavy and slowly moving particles like atomic nuclei, whose
movement can be decoupled from the movement of the electrons. Thus, the nuclei evolve
on a single PES, which is associated with a single electronic state (an adiabatic state),
usually the ground state. In standard MD simulations, the system is propagated classically,
i.e. Newtons second law (Equation 3.1) is used as the equation of motion.

= md; = mj——
dt?

(3.1)
The force can be calculated as the negative gradient of the energy, which can be obtained
e.g. from force fields or electronic structure calculations.'?

OV (F1, - Tn)

F=-VV=- _
' ari

(3.2)

3.1.1. Integration

Solving the resulting differential equation, which contains derivatives of the nuclear
coordinates with respect to time and space, reveals the time-dependent motion of the
system. Unfortunately, only one- or two-body systems can be solved analytically, while
many-body systems require a numerical solution. There are algorithms serving this
purpose, e.g. the Verlet algorithm. It is based on a Taylor expansion of the nuclear
coordinates as a function of time, which is truncated after the second order. In the
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3. Molecular Dynamics

derivation, one step is performed in positive time (¢ + At) and one in negative time (t — At).
Adding up both equations eliminates the first derivative of the coordinates with respect
to time (velocity) and by rearrangements an equation is obtained, which can be used to
propagate the system (Equation 3.3).

?@+Aﬂ:7m+aaﬂn+%aomﬂ2

F(t— At =T (1) - (1) At + %5(1‘) (At)? (33)
F(t+ At) = 27 (1) + d(t) (At)? = F (t — At)

New nuclear positions at t + At can be obtained from the current positions (t), the positions
from the last step (t — At) and the current acceleration, which can be calculated from the
force.

The movement of the system is completely deterministic. This means with given coordi-
nates and velocities at t = 0 the positions and velocities at all future time points can be
obtained. However, the number of integration steps of the equation of motion and thus the
time scales, which can be reached within an MD simulation, are limited. This is due to the
finite valued time step. The numerical integration of the equation of motion introduces an
error, which depends on the length of At. The size of the error increases with the length
of the time step. On the other hand, the computational effort of a simulation depends
on the number of time steps to be calculated. Therefore, a trade-off between accuracy
and computational cost must be made. Usually, simulations are stable, if the time step
is chosen one order of magnitude smaller compared to the period of the fastest motion.
Without special treatment the fastest motions in an atomic system are vibrations of bonds
containing hydrogen, with a period on a time scale of 10 fs. Thus, the time step is normally
set to 1fs.!3

3.1.2. Thermodynamic Ensembles

The concept of classical molecular dynamics simulation, carried out with energies and
forces either from classical or quantum mechanics, is based on a microscopic theory. The
system is assigned a microstate, which is defined by the coordinates (¥) and velocities (7)
or momenta (p) of every particle of the system. The dynamic behavior of the system is
obtained by solving the equation of motion, resulting in a sequence of microstates along
time (F(¢), p(t)). This is called a trajectory and it can be understood as a curve in the
6N-dimensional phase space, which is the set of all possible microstates.

By contrast, a macrostate is defined by thermodynamic properties, such as the number
of particles, volume, temperature and pressure. Statistical thermodynamics provides a
link between the microscopic and macroscopic description. The partition function, which
contains information about all microstates, allows the calculation of all thermodynamic
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3.2. Non-Adiabatic Molecular Dynamics Simulations

properties of a microscopic system. However, it cannot be derived analytically for a huge
molecular system.

Instead, MD simulations can be employed to sample a representative part of the phase
space, which is called an ensemble. For an ergodic system, this sampled time average
equals the ensemble average, meaning that every point in phase space can be reached
from any starting point within infinite time (Equation 3.4). Finally, this averaging enables
thermodynamic properties to be obtained from simulations.

M
1 [T 1 R
X) = lim - X(()dt = lim — ) X; (7, 3.4
00 = tim =[x Jm 5 2% 7 (3.4
This is of importance, because most experimental measurements are carried out on a
macroscopic sample. It contains a number of particles of the size of Avogadro’s number
and the measurement itself takes a finite amount of time. Therefore, properties are

measured as averages over an ensemble of particles and averages over time.

Furthermore, experiments take place at defined thermodynamic properties such as temper-
ature and pressure. Controlling these parameters is a key task in order to create comparable
conditions to an experiment. This can be accomplished by means of special algorithms,
e.g. so called thermostats and barostats, which emulate the coupling of the system to
external heat or pressure baths. This allows sampling in an ensemble of choice with certain
thermodynamic properties held constant, e.g. the number of particle N, the energy E,
the temperature T, volume V, or the pressure P. The corresponding ensembles are the
micro-canonical ensemble (NVE) in an isolated system, the canonical ensemble (NVT) or
the isothermal-isobaric ensemble (NPT) in a closed system.!?

3.2. Non-Adiabatic Molecular Dynamics Simulations

In adiabatic MD simulations, the heavy and slowly moving nuclei can be propagated
classically. However, light and fast moving particles such as electrons, which show both
particle and wave characteristics, must be propagated quantum mechanically.!® The Born-
Oppenheimer approximation uncouples nuclear and electronic motions and thus allows the
classical propagation of nuclei on a single PES of one electronic state. This approximation
breaks down for processes such as charge transfer, exciton transfer or photochemical reac-
tions, which involve transitions between different electronic states. At (avoided) crossings,
the PES from different electronic states come close and couple, which renders a separation
of nuclear and electronic motion impossible. Transitions between these adiabatic states
become possible. To describe the non-adiabatic phenomena in non-adiabatic molecular
dynamics (NAMD) simulations, a quantum mechanical treatment of the dynamics of the
system becomes necessary.>!
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3. Molecular Dynamics

3.2.1. The Semi-Classical Approach

Since a full quantum mechanical treatment of a molecular system with more than just a few
degrees of freedom is not feasible, some simplifications have to be introduced in order to
simulate larger systems. One category of methods, called mixed quantum-classical models,
uses a semi-classical approach to describe non-adiabatic processes. The electronic degrees
of freedom are treated quantum mechanically and are propagated according to the time-
dependent Schriodinger equation (TDSE). All nuclear degrees of freedom are computed
classically and their movement follows Newton’s equation of motion. Additionally, the
quantum propagation may be restricted to a subset of the system, which is called the QM
region, similar to classical QM/MM MD simulations. But this QM region, other than in
conventional QM/MM MD, only contains the electronic degrees of freedom, while no
electronic degrees of freedom are calculated for the remainder of the system.>! Since QM
calculations involve much larger computational cost compared to force fields, they set the
time limiting step in NAMD simulations.

Therefore, a subsystem-based approach can be applied to fragment the QM region into
smaller parts. Organic semiconductors, the DNA base pairs or chromophores in biological
complexes usually exhibit weak non-covalent intermolecular interactions. Thus, the
electronic structure of two molecules in proximity can be assumed to be essentially
identical to that of the isolated molecules. This allows for a conceptually simple coarse
graining. The system can be divided into so called fragments or sites, which can be
whole molecules or molecular parts and which are treated independently. Thus, the QM
calculations are restricted to a reasonable size and they can be easily parallelized. With
this fragmentation, a coarse-grained transfer Hamiltonian (Equation 3.5) for the electronic
degrees of freedom can be defined, consisting of (on-)site energies (diagonal elements) for
every fragment and pairwise couplings (off-diagonal elements) between them.

€1 Vig - Vin
Vo1 € - Von

Hiransfer = . . . (3.5)
Vi Vae EN

The representation in this fragmented and localized basis is called diabatic. Diagonalizing
the diabatic Hamiltonian matrix yields the potentially delocalized adiabatic states.*

3.2.2. Integration

The equations of motion for electronic and nuclear degrees of freedom in NAMD sim-
ulations are coupled and any propagator algorithm used has to be able to describe this
coupling. The most prominent propagators are the mean-field Ehrenfest method®* and
variants of trajectory surface hopping (SH)***. In the Ehrenfest method, the nuclei are
propagated on an effective PES, which is obtained as the average of all adiabatic states
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3.2. Non-Adiabatic Molecular Dynamics Simulations

weighted by their respective occupation. In surface hopping on the contrary, the trajectory
evolves on a single adiabatic PES, but the current adiabatic state is allowed to change.

This work mainly uses the fewest-switches surface hopping (FSSH) method in the adiabatic
representation. This means, the wave function is expressed as a linear combination of
adiabatic states (Equation 3.6).

¥= ) Ci) (3.6)

The occupation of a state is given as the square of the corresponding coefficient (|C;|?).
The probability for a transition from adiabatic state m to n is obtained as

2Rd, Re (Cadcad
mn e( n m)At}’ (37)

PFSSH (m — n) = max 0, D)

e
with the non-adiabatic coupling vector (NACV) d and the adiabatic expansion coefficients
C (Re denotes the real part of a complex number). A uniform random number ({) is
generated according to which a hop takes place or is rejected (Equation 3.8).

n—1 n
D Prssu(m — i) < { < > Prssu (m — i) (3.8)

The equation of motion for the electronic degrees of freedom is the TDSE, into which
Equation 3.6 is inserted.

Cm = CoHEY = > Ca Ry (3.9)

n

This equation is used to update the occupation of the fragments by transformation back to
the diabatic basis.3!*

When a transfer happens, a formerly unoccupied molecule will relax to a new equilibrium
structure, which in turn leads to a decrease in its site energy. This response of a molecule
to a change in its occupation can be taken into account by explicit relaxation (ER), where
the QM forces weighted by the occupation drive the nuclear relaxation. The total energy of
the system is a sum of energies of the MM environment, the QM region and an interaction
term. The forces are obtained in a diabatic basis as

F = mRy = ——2 — aa—2 - (3.10)
i)

Fou
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3. Molecular Dynamics

with the nuclear coordinates R of atoms k. i denotes the fragments of the QM region.
The quantum forces can be expanded in terms of the derivatives of (diabatic) transfer
Hamiltonian elements weighted by the diabatic coefficients a. Another strategy is to
approximate the quantum forces with a A-SCF approach by calculating the differences of
forces/gradients of the occupied (e.g. charged or excited) and unoccupied (e.g. neutral or
ground) states Equation 3.11.

0 poccupied _ d [unoccupied (3.11)

Frcer =
A-SCF R, 3Ry

Alternatively, this feedback from electronic to nuclear degrees of freedom can be modeled
via a phenomenological equation (Equation 3.12), where the site energy is reduced accord-
ing to the occupation of a fragment by an empirically determined (internal) reorganization
energy (1), which is called implicit relaxation (IR).*’

Hj; = Hjj — |aq|*A (3.12)

When a transfer or hop takes place, the involved states do not necessarily have the same
energy. To ensure the conservation of total energy for each trajectory, the nuclear momenta
must be adjusted when a hop occurs. This is usually achieved by re-scaling the nuclear
momenta along the direction of the non-adiabatic coupling vector (NACV) to compensate
for the change in energy.*

P =p+ads (3.13)

Here m, n are are the involved adiabatic states and d is the NACV. The NACV can be related
to the diabatic gradients as

vt v U|
Jad _ L ¥ lmn
Ao = Hgd _ H,?,d ) (3.14)

with the diabatic to adiabatic transformation matrix U. If the adjustment of momenta
is not sufficient to compensate the change in energy (an energy-forbidden or frustrated
hop), the trajectory continues in the original electronic state j, and the momenta along
the NACV are reversed. Alternatively, this momenta re-scaling scheme can be replaced
by re-scaling the hopping probability with a Boltzmann factor and leaving the velocities
unchanged.®

Had _ Had

P =gscPmn with gpc = exp (_ T ) H > g2 (upwards hop)
- mn =
b 1 H* < HY  (downwards hop)

(3.15)
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3.2. Non-Adiabatic Molecular Dynamics Simulations

This so-called Boltzmann-corrected FSSH (BC-FSSH) method has the advantage that
the computationally demanding NACVs need not to be evaluated, which is much more
efficient.

3.2.3. Charge Transfer

Charge transfer can occur in two different scenarios, either the transfer of a negative
excess charge in a system with an additional electron compared to the neutral state, or the
transfer of a positive hole in an electron deficient system (Figure 3.1). In both cases, only
one electron is transferred.

- ) A )

e =D
A B A B* )
O—. > - - O—
A B A B- )

Figure 3.1.: Top: Transfer of a positive hole. Bottom: Transfer of a negative excess electron.

Since low-energy charge transfer typically occurs in a narrow energy window around the
Fermi level, it is sufficient to consider only frontier orbitals on the fragments. Therefore,
the size of the QM region can be reduced further by restricting it to a set of such frontier
orbitals, e.g. the highest occupied molecular orbitals (HOMO) for hole transfer.!’ The hole
wave function is then expressed as a linear combination of orthogonal molecular orbitals
(l¢m)) localized on fragment molecules A (Equation 3.16).

%)= D > anlom) (3.16)
A meA

This is called the fragment molecular orbital approach (FMO)*4°. The elements of the
corresponding coarse grained Hamiltonian (Equation 3.5) are then calculated as orbital
energies (site energies) and Hamiltonian elements between different orbitals (couplings)
in neutral fragments (Equation 3.17).

Hpn = (¢m | H [pol | ¢n) (3.17)
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3. Molecular Dynamics

3.2.4. Exciton Transfer

The transfer of excitation energy can be described in terms of excitons, quasi-particles
that can be understood as a bound excited electron and hole pair. In a simplified scheme
an electron is promoted to an energetically higher orbital (e.g. the lowest unoccupied
molecular orbital - LUMO) through interaction with light of suitable energy (Figure 3.2).
The former occupied but now empty orbital (e.g. the highest occupied molecular orbital
- HOMO) is called a hole. Excitons are classified according to the localization of the
excited electron and hole: They can be localized on one fragment (Frenkel exciton), on two
neighboring fragments (charge transfer exciton) or on distant fragments (Wannier-Mott

exciton).*! Frenkel excitons are of interest in this work.
( _ )
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Figure 3.2.: Formation of an exciton by light absorption of fragment A, followed by Forster or Dexter transfer
to a neighboring fragment B. Modified from [41]

The exciton and its energy can be transferred from one fragment to another via either
of two possible mechanisms as depicted in Figure 3.2. In Forster transfer, the excited
fragment is deexcited, while the neighboring fragment is excited. Both fragments interact
through a long-range interaction. The same final state can be reached via the Dexter
mechanism, where two electrons are exchanged between the involved fragments. This
requires a sufficient overlap between the wave functions on the two fragments. For the
transfer of Frenkel excitons, the Frenkel Hamiltonian (Equation 3.18)*>*3 can be used as a
coarse-grained model of the electronic structure (Equation 3.5).4!

N N
Hvenket = ) € li) (il + ) Vi 1) Gl (3.18)
i i#j

The first term in Equation 3.18 or the diagonal elements in Equation 3.5 are the site
energies of individual fragments, into which the system is divided. They describe local
excitations of sites, which can be obtained as excitation energies by any quantum-chemistry
method that gives access to excited states, e.g. TD-DFT or TD-DFTB. Excitations of the

26



3.2. Non-Adiabatic Molecular Dynamics Simulations

whole system are then described as linear combinations of single molecular excitons.
The interactions between sites are the second term in Equation 3.18 or the off-diagonal

elements of Equation 3.5.41:44

The coupling can be split into a short-range and a long-range contribution. The former
contains interactions like overlap, exchange, and charge-transfer excitations. Thus, it
depends on the spatial overlap of the wave functions of sites, which decreases rapidly
(exponentially) with increasing distance between the sites. For fragments at longer dis-
tances, on the other hand, only the long-range interaction is usually considered, which
only decays slowly with the distance. It can be described as a Coulomb interaction between
transition densities (Equation 3.20).*° The transition density has no classical analog like a
charge density and is computed by integrating the product of ground and excited state

wave functions over all spin and all but one spatial coordinate.*®

p(F) = / ds / 0Py Ayl PG G- ) (3.19)

pil (F) p
// J)m@ (3.20)
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This can be understood as an interaction between charge distributions, which can be
approximated in their representation by applying approaches from electrostatics. The
most simple approach is called the point-dipole approximation (PDA) and only considers
the first-order term of the multipole expansion of each transition density, the transition
dipole. This approximation is only valid for large inter-site distances compared to the size
of the sites themselves, yet it does not provide accurate results even for long distances.
A more fine-grained representation of transition densities can be achieved by placing a
number of transition charges (monopoles) on the sites. In the transition charges from
electrostatic potentials (TrEsp) method?’, one transition charge is placed on every atom.
These charges are then varied to fit the electrostatic potential of the reference transition
density as closely as possible and provide significantly improved couplings compared to
the PDA approximation. The transition density cube (TDC)* approach uses a grid in
Cartesian coordinates to place the transition charges. This makes it a direct numerical
integration of Equation 3.20, but it requires a large number of charges to be placed on
a fine grid making it extremely demanding in terms of computational cost. The TrEsp
and TDC methods are usually not applied to compute excitonic couplings on the fly, e.g.
during molecular dynamics simulations, due to their computational demands. Instead, the
respective transition charges are calculated once before the simulation and then kept fixed,
which significantly decreases computation time during the simulation.®

Coul
Vij

When using TD-DFTB based methods, atomic transition charges can be obtained by a
Mulliken population analysis. Due to the efficiency of the method, these charges can be
computed on the fly. The coupling between transitions from ground state (0) to states a and
b on fragments i and j can be calculated as Coulomb interaction ({) of atomic transition

charges (Q)
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v = 3" " 0Ry QY (3.21)

Xei Yej

where X, Y are atoms of the respective fragments.!** The Coulomb interaction in the
DFTB formalism is defined as

/ / ¢X<r>‘by<r’>d AP with  @y(7) = Zm(rn (3.22)

yeX

u(r) are the basis functions on atom X and Ny is the total number of basis functions.?®

The total coupling with short and long range contributions can be obtained via super-
molecular calculations, which include the whole dimer for which the coupling should
be evaluated. Considering this coupled dimer, the two lowest adiabatic states {¥2, ¥5'}
with energies {E4, Eg‘} are linear combinations of the two interacting diabatic states
{wD, ‘I’ZD } of the monomers with energies {EP, Eg }. The adiabatic states can be obtained
by diagonalization of the diabatic Hamiltonian.*!

EDP v,
D _ 1 12
m=[i

EA 0
A _ 1
H" = [0 E,;] (3.23)

To calculate the supermolecular coupling, the opposite must be achieved: The adiabatic
Hamiltonian matrix, which can be obtained from a dimer calculation, must be transformed
back to the diabatic Hamiltonian matrix. A simple way to achieve this is by analytical diago-
nalization. For a dimer, the matrix diagonalization can be performed analytically. From the
energetic gap of the adiabatic (dimer) and diabatic (monomers) states the supermolecular
coupling can be computed as

1
Vip = \/ AEA AED) . (3.24)

Besides this analytical diagonalization method, there are more advanced approaches
for the calculation of supermolecular couplings, e.g. approaches utilizing an algebraic
diabatisation procedure based on molecular properties.’® Here the diabatic and adiabatic
Hamilton matrices are connected through an orthogonal transformation

HP = cHACT, (3.25)

where C is the orthogonal transformation matrix and C7 is its transpose. To obtain the
transformation matrix, the diabatization scheme makes use of a representation of the
involved states in terms of a molecular property. The relation between diabatic (p”) and
adiabatic states (p) then reads
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pP =pict. (3.26)

Regarding the molecular property, the target diabatic states should be as close as possible
to a set of well defined reference states p”™f. In other words, the applied transformation
to p® needs to result in a p” that minimizes the distance to pPref:

C" = arg min, HpAR —pD’ref” : (3.27)

Here || - || is the Frobenius norm, the square root of the sum of all squared matrix elements.
Equation 3.27 is a matrix approximation problem in linear algebra that is termed orthogonal
Procrustes problem®!>2, The solution to this is given by

cl=uv?, (3.28)

with the unitary matrices U and V7, which can be determined by a singular value decom-
position:

M= (pA)T pPrel = ysyT (3.29)

The scheme described so far is based on a two-state approximation. In principle, this
approach can be applied to any number of states involving the two fragments of the dimer.
These can be multiple Frenkel states on single fragments, which are close in energy™.
Indeed the diabatization is not limited to locally excited (LE) Frenkel states, but can also
be adopted to states of a different character, e.g. charge transfer (CT) excitations.’*

The molecular properties proposed by the authors>*>* and used in this work are atomic tran-

sition charges (ATQ) and transition dipole moments (TDP). For ATQ, p# is calculated on the
dimer and corresponds to a matrix with one column of ATQ {g%, ¢, ¢4 - - - g/} for every ex-
cited state of interest. Likewise, pP is derived depending on the character of the diabatic
excited states. For locally excited states, the ATQ for the lowest excited states of interest
on each individual monomer are calculated, while the ATQs on the remaining monomer

D,ref _D,ref D,ref D,ref D,ref D,ref
are set to zero: {q," ,q, , " njz > 050: --0} and {0,0, - 0G0, 10 Doz G o}

The calculations for TDP are performed similarly, with p* and pP**f being matrices made
of the Cartesian elements of the corresponding TDP for each considered state.

3.2.5. Calculation of Observables

A measure for the distance of a propagated (pseudo-) particle from its initial position is the
mean-square displacement (MSD). It describes the spatial deviation of an entity compared
to a reference position (e.g. the starting position) along time. For an ensemble average of
Niraj independent trajectories the MSD can be computed as
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N traj

1 - o Z
le ZAl (1 - 2a0)) PP, (3.30)

MSD(t) = ~—
traj

where ¥4(+)") and PX)(t) are the center of mass of fragment A and the corresponding

(diabatic) population along trajectory [, respectively. ¥4(0)) is the center of mass at ¢ = 0.
The MSD can be used to calculate the diffusion coefficient D> as

D= — lim

1 dMSD(p)
2nt—eo dt

(3.31)

where n is the dimensionality (e.g. n = 1 for a one-dimensional chain). The derivative of
the MSD with respect to time is usually estimated as the slope of the linear part when
plotting the MSD versus the simulation time. Finally for charges (electrons or holes) the
mobility y can be obtained with the Einstein-Smoluchowski equation®®.

eD

- = 3.32
H= T (3.32)

e is the elementary charge, kg is the Boltzmann constant and T denotes the temperature.
The inverse participation ratio (IPR) is an estimate for the delocalization of a particle in
terms of a dimensionless number (of molecules), over which the particle is delocalized. It

is calculated as
Ntraj 1

IPR= > —a (3.33)
T Se|ud
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The previous two chapters introduced physics based theories and methods for the de-
scription of molecular structure and properties. Contrastingly, machine learning (ML)
techniques offer a variety of non-physical but instead data-driven or statistical methods,
which can be applied to problems in chemistry and physics for the very same purpose.

4.1. Foundations of Machine Learning

Any ML*"7%° model can be understood as a complex function, which maps some input
variables (x;), often called features, to some output variables (y;), regularly referred to as
labels or targets (Equation 4.1). This mapping is done by implicitly extracting patterns from
sets of given reference data. Different learning techniques such as supervised, unsupervised
or reinforcement learning can be distinguished. Using a data set consisting of pairs of
features and associated labels refers to supervised learning. The target in supervised
learning may consist of a continuous or discrete quantity, which should be predicted
either quantitatively or qualitatively (categorized). These two cases refer to the two main
classes of problems, which can be addressed with supervised machine learning, regression
and classification. In this work only supervised ML approaches were employed to tackle
regression problems and will be discuss in the following.

Model: x; — y; (4.1)

To generate such a ML model, the parameters of the underlying function or model must be
adjusted in a way that the reference labels are best reproduced when given the correspond-
ing features as inputs. Therefore, the deviation between predicted and true labels must be
estimated. This can be measured with a cost or loss function, e.g. the mean squared error
between prediction and reference. Minimizing the loss or cost function for a data set can
be understood as training the model.

Beside the parameters necessary to calculate the targets, a model can have several other
internal parameters, which for example define the architecture of the model. These so
called hyperparameters may have a huge impact on the quality of the model, which is
why they have to be optimized. Hyperparameter optimization is not performed while
training a specific model. Instead, multiple different models are trained on the same data
(training set) with varying hyperparameters, chosen a priori (cf. Figure 4.1). Afterwards,
their performance is evaluated on additional and unseen data, the validation set, to select
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training set candidate models
data shuffled data
features  labels features labels -
validation set selected model
test set |

E —— » | accuracy

Figure 4.1.: llustration of data sets in machine learning and their particular purpose in training, validation
and evaluation. Modified from [61]

the model with optimal hyperparameters. This can be achieved with a simple but often
costly grid-search or more specialized techniques to reduce computational costs.

A common issue that can appear in model training is overfitting. Here, the model is
fitted very closely to the training data, including statistical noise. This can be reflected
in the performance on different data sets: performance on the training set will be much
better compared to the validation set. If beside the measurement of the loss or another
suitable metric on the training set the very same metric is measured on the validation set
during training, the training process can be stopped as soon as the two metrics deviate
more than a chosen threshold (early stopping). This is often used in iterative training
processes as they occur e.g. for neural networks. Another technique to prevent overfitting
is regularization®?, which sets a preference for having simple models. For example, among
all trained models, the one with the fewest variations or the smoothest one may be chosen.
L1 regularization applies a penalty to the cost function, that should drive the model towards
smaller weights:

A
C=C0+N;|W|. (4.2)

Here A is the regularization strength and N is the number of data points.

The opposite to overfitting is underfitting, which can occur when there is insufficient
training data, the hyperparameters are not well optimized, the relationship between
features and labels is not valid or cannot be represented within the chosen model type.

Finally after training and validation, the model must be tested on a third held-out data set
to judge the predictive performance (cf. Figure 4.1). In this context, various metrics can be
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calculated. One frequently used metric to assess the quality of a trained and optimized
model is the coefficient of determination (or R?-score, Equation 4.3).

R=1-

N red) 2
3 )
(4.3)

y

i
(yref _ —ref)z
i

It describes the error of a trained model relative to a fictitious model, that would only ever
predict the mean value of the data set. An R*-score of 1, which is the highest possible
value, describes a perfectly fitted model. A value of 0 means the model is as good as if
it would only ever predict the mean value, while values below zero (there is no lower
boundary) indicate worse models. Additionally, some common error metrics such as the
mean absolute error (MAE, Equation 4.4), the mean relative error (MRE, Equation 4.5) and
the maximum error (maxE) can be computed.

1

N
2

N

1
MAE:NZ

1

ref pred
Y —Y

(4.4)

The MAE represents the distance of every reference label from the fitted function. Some-
times normalizing this metric is reasonable, because relative errors between models with
different absolute values for their labels can be compared better. However, this is not
always possible, as some distributions of labels have a mean near zero. Single bad predic-
tions, so called outliers, cannot be captured with these metrics. Instead, maximum errors or
scatter-plots, which are two-dimensional histograms of predicted versus reference labels,
are better suited to detect outliers.

ref pred
N oy -y

1

i

In chemistry and physics structure-property relationships are usually the subject of in-
vestigation. In order to suitably encode the information of a molecular structure and to
make it machine readable, it is converted into a so called descriptor or representation.
This representation should capture the physics of the underlying theory and at best be
unique and obey certain invariances, such as permutational, translational and rotational
invariance®*%4. Shifting a molecule along or rotating it around an axis does not change the
molecule’s properties, thus the relationships between input and output should not change.
Therefore, the descriptor should stay the same, which is not the case when using 3D
Cartesian coordinates. Instead, these coordinates can be transformed to simple descriptors
such as the inverse distance matrix®! (Equation 4.6), where the diagonal does not contain
any information, but the off-diagonal elements are the inverse distance between all atoms
of the system.
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Xij = — (4.6)

To encode more of the underlying physics, e.g. the types and arrangement of nuclei, the
Coulomb matrix (CM)®® can be utilized (Equation 4.7). The diagonal elements represent a
polynomial fit of atomic energies to nuclear charges, while the off-diagonal elements are
similar to the inverse distance matrix. They are based on the Coulomb interaction between
the nuclei. Both representations scale with N? or rather N(AZI_I)
triangle of the symmetric matrix is used.

, if only the upper/lower

0.522% |ifi=j
j= (4.7)

77, e
Tj] Jif i #
More advanced descriptors are e.g. the symmetry functions developed by Behler et al.®®
or FCHL?. They also include information about the atomic environment, however, are
much more costly to calculate compared to the inverse distance or Coulomb matrix. In the
following, the two ML methods used in this work are introduced.

4.2. Kernel Ridge Regression

Kernel Ridge Regression (KRR) is a popular ML method, which employs the kernel trick.
This allows for linear regression in a non-linear problem by implicitly transforming the
features from the lower dimensional feature space into the higher dimensional kernel
space, where the relationship between features and labels becomes linear. Here their
relationship can be fitted with a linear function, which is much easier than with a non-
linear function. Afterwards, the transformation is performed back to the original feature
space. The advantage is, that the transformation into kernel space and thus the mapping
in this space is not performed explicitly, but rather only implicitly by means of kernel
functions. These non-linear functions measure the similarity of two data points (or rather
of their representation) in kernel space. In essence, a kernel function is placed on every
point in the training set to encode the information for the similarity of data points. A label
can then be calculated as a sum of kernel functions, weighted by coefficients (w,,), which
have to be trained:

Ntrain
g = > k(X Xon) W (4.8)

m

X is the representation of a query datum, that is to be predicted, and X, are the rep-
resentations of all training data points. Often the Gaussian (Equation 4.9) or Laplace
(Equation 4.10) kernel (k) is used.
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X — X/ 2
X X) = exp (X=Xl (49)
202
X-X
k(X,X') =exp (—u) (4.10)
202

o denotes the kernel width and is a hyperparameter to the model. It is related to the
distance between training data points in kernel space. For the training the coefficients can
be obtained in a closed form solution as

w = (K - A" yTain (4.11)

with the kernel matrix K, all coefficients w and the training labels ™", Training is
directly combined with regularization, to avoid overfitting. The regularization strength A
also improves the invertability of the kernel matrix.

The only hyperparamters of a KRR model are the kernel width o, the regularization
strength A and the kernel type, which makes KRR models easy to train compared to most
other ML methods (e.g. neural networks). However, the disadvantage is that for every
prediction the kernel between the query datum and all training data points has to be
evaluated (Equation 4.8). This results in a dependency of the prediction time on the size of
the training set. Thus, KRR is a method that works well with small data sets.61:68

4.3. Neural Networks

Neural networks (NN) are inspired by the design of the human brain for processing infor-
mation. The smallest unit of a neural network is a neuron. For a set of inputs (x;) a neuron
holds the value (y) of the sum of linear functions of these inputs with some associated
weights (w;), which was passed though an activation function f (Equation 4.12).

y=f (Z wix; + bi) (4.12)

Multiple neurons are arranged in layers, which form the actual network (see Figure 4.2).
The first layer (input layer) consists of a number of neurons, which receive as inputs the
values of the representation. Every neuron in one of the following layers receives the
outputs of the neurons from the previous layer as its inputs. The final layer combines the
results into one or multiple outputs of the network. All layers after the input layer are
called hidden layers, while the very last layer is called the output layer. Not all neurons
are necessarily connected to all layers in the former and next layer, which would be called
a fully connected network.
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N
yi=f (bf ) Wffly}'l) (413)
7

The output of a neuron i in layer [ is calculated as the linear combination of outputs
from neurons j in the previous layer (I — 1), of which there are N;_;, passed through the
activation function (Equation 4.13). A bias (b;) can be used in every linear combination
to achieve higher flexibility via shifting of the values of this specific contribution. The
activation function usually is a nonlinear function, which makes it possible to fit and
describe highly complex nonlinear behavior within a neural network. Commonly used
examples are the hyperbolic tangent, the sigmoid function or modifications of the rectified
linear unit (ReLU), e.g. the leaky softplus function (Equation 4.14).

leaky-softplus(v) = (1 — a) log (exp (v) + 1) + av (4.14)

(IO—A
1%
/
,

7
[
é&{%‘ﬁ.@é‘*
/A“\\Qél‘iv
RS

——— < Y J —
Input layer Hidden layers Output layer

Figure 4.2.: Example architecture of a fully connected neural network: neurons (circles) arranged in layers.
Modified from [62].

The weights (and biases) are the adjustable parameters of the model, which are randomly
initialized and subjected to training. As described previously, the cost function is computed
and needs to be minimized. This is realized using the backpropagation algorithm, which
consists of the following steps. In a forward propagation step, the features of training
data are fed to and processed by the model to generate a predicted label. Next, the cost is
evaluated. This is followed by the actual backpropagation, which refers to the iterative
calculation of the derivatives of the cost with respect to the weights and biases, starting
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from the output layer. This is accomplished by applying the chain rule from the last to the
first layer of the network. Afterwards, all parameters, which are subject to optimization, are
updated e.g. according to the gradient descent method. These steps are applied recursively
to train a NN model. An important (hyper-) parameter controlling the learning process is
the learning rate. It can be adapted during model training and controls the step size that is
taken towards the minimum of the cost function.®!:626?

Neural networks are highly flexible tools, which can fit extremely complex relationships
of features and labels. This comes with the disadvantage of a huge number of hyper-
parameters, which makes such models prone to overfitting and the overall training and
hyperparameter optimization potentially difficult and sophisticated. Despite these draw-
backs, machine learning methods and neural networks in particular are highly promising
for carrying out expensive multi-scale simulations that require quantum mechanical
treatment at least partly and would not be easily possible without them.
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5. Charge and Exciton Transfer
Simulations in Organic Semiconductors
driven by Machine Learned
Hamiltonians
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Charge and Exciton Transfer Simulations Using Machine-Learned
Hamiltonians
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Author Contributions:

The results presented in this chapter were generated in collaboration. Training data for
the machine learned models was generated by Dr. Daniel Wehl (charge transfer) and me
(exciton transfer). Training and evaluation of all models was done by Dr. Mila Kramer. All
transfer simulations for charges and excitons were performed and analyzed by myself.

5.1. Introduction

Molecular organic semiconductors (OSCs) have become ubiquitous components of elec-
tronic devices, in the forms of organic light emitting diodes (LEDs) in modern display
technologies’®""2, organic field effect transistors’>~”>, or organic photovoltaic devices’®78.
Compared to the silicon-based technologies for LEDs, transistors, or photovoltaic devices,
OSCs are inexpensive and easier to manufacture and process’’. With the near-limitless
variety of organic compounds, searching for novel candidates with specific properties or
optimizing known materials is a costly process. Here, theoretical approaches using simu-
lation techniques can supplement or shorten experimental studies by efficiently screening
large portions of chemical space for compounds with promising properties before commit-
ting to synthesizing them. This requires fast and robust methods for simulating charge
and exciton transfer in large molecular systems which can reproduce experimentally
observable quantities such as charge carrier mobilities or exciton diffusion lengths.’
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5. Charge and Exciton Transfer Simulations driven by Machine Learned Hamiltonians

Simple models used to describe the transfer of charges assume either a band-like or
hopping-like regime. In the band model, the charge is strongly delocalized as the couplings
between the charge carriers are large and the reorganization energy is small. The band
theory holds for inorganic semiconductors, however, fails to reproduce e.g the charge
mobility for OSCs. In contrast, hopping-like transfer occurs when the reorganization
energy is large and the coupling is small, creating an activation barrier which is only
overcome via thermal fluctuations. This results in a strong localization of the carrier on
single molecules, and transfer occurs in discrete hops. The hopping model is widely used
to compute the charge mobility for disordered organic systems. In organic molecular
crystals, however, neither of these approximations hold.”

Novel approaches’ 2 to go beyond the limits of model theories use the direct simulation of
charge or exciton transfer employing non-adiabatic molecular dynamics (NAMD) methods.
These methods allow the explicit propagation of the electronic degrees of freedom and
therefore do not depend on any prior assumptions on the underlying transfer mechanism.
The coupled electron-nuclear motion is described with the time-dependent Schrédinger
equation (TDSE) using a simplified electronic structure, while the nuclei are treated classi-
cally. The electronic structure is reduced to three parameters: site energies, reorganization
energies, and coupling energies. While these values are not too costly to calculate on an ab
initio or semiempirical level of theory for individual structures, extensive sampling along
a molecular dynamics (MD) trajectory is necessary to obtain macroscopically observable
materials properties. As the sampling process repeatedly passes through similar pairwise
molecular conformations, the question naturally arises whether a machine learning (ML)
model could substitute the repetitive calculations using a costly quantum mechanical
(QM) method. An ML model trained on a limited set of quantum chemical data obtained
before a simulation could then take over for the non-adiabatic molecular dynamics, greatly
speeding up the prediction of materials properties in multi-scale workflows.

The application of machine learning methods to charge and exciton transfer properties
has been investigated recently. Lederer et al.3° used a kernel ridge regression model paired
with a geometric representation to predict charge transfer couplings in pentacene crystals.
As Musil et al.3! showed, charge transfer couplings in both pentacene and azapentacene
can be predicted using Gaussian process regression models with a simplified SOAP-Kernel
to within a few meV with only a few thousand high-quality training examples. In another
work, Caylak et al.3? presented a neural network model, which is able to predict hole
mobilities and charge transfer couplings for an amorphous aluminum complex. For
excitonic properties, Hise et al.®* used a modified Coulomb matrix combined with a neural
network to predict excitation energies of bacteriochlorophyll in the Fenna-Matthews-Olson
complex and study the exciton dynamics. There has been extensive work on ML-driven
excited-state molecular dynamics [84-87] for small organic molecules. Finally, Wang
et al.®® systematically investigated the effects of representation and target value on model
training and prediction performance. Most published models require large amounts of
ab initio-level training data or extensive hyperparameter optimization, which can be
prohibitive if a model is to be trained anew for every specific application. Also, it is
unclear how the raw accuracy of the ML model affects a system’s observable properties,
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e.g. charge transfer mobilities and exciton diffusion constants, as this can only be examined
by performing explicit simulations.

d20-22,25,28,29.89 45 4 fast and accurate method

In this work, the semiempirical DFTB metho
for training data generation was used. This method has previously been shown to per-
form very well for the calculation of couplings®*®! in conjunction with an empirically
determined scaling factor. Kernel ridge regression (KRR) models were trained on this
data and their accuracy was evaluated not just on static reference data points but also in
explicit NAMD simulations of charge and exciton transfer. By keeping the model and the
training procedure as simple as possible, a generic procedure that is easy to integrate into

multi-scale workflows was obtained.

5.2. Computational Details

5.2.1. Generation of Training Data

Based on the reported crystal structure’?, an anthracene crystal was constructed containing
10 X 40 x 5 molecules along the a-, b-, and c-crystal axes, respectively. Force field parame-
ters were obtained from the general AMBER force field (GAFF)*** and atomic charges
were generated by the restrained electrostatic potential (RESP) fitting procedure®*° cal-
culated at the HF/6-31G**"-8 level of theory using Gaussian 09%°. For system setup and
classical MD simulations, the GROMACS 5.0.4 package!?®1°! was used. After an initial energy
minimization, the temperature was equilibrated for 1 ns at 300 K using the Nose-Hoover
thermostat'?2. A productive simulation of 10 ns was performed with a time step of 2 fs to
sample structures, which were saved every 1000th step.

A subset of 75 anthracene molecules (5 X 5 X 3) was used to generate the training data
in three different data sets: the first data set (full) contained couplings between all
possible anthracene pairs. The other data sets contained reduced data, including only
couplings of molecule pairs within center of mass (COM) distance cutoffs of 0.75 (short)
and 1.25 nm (long), respectively. These cutoffs were chosen to include specific neighbors
of any individual fragment in the crystal. The first neighbors along the a- and b-crystal
axes lied within the short cutoff, while the long cutoff also included the first neighbors
along the c-axis as well as the second neighbors in the b-direction.

For training, the geometries and reference Hamiltonians of these data sets were used.
The charge transfer Hamiltonians were calculated with the non-self-consistent variant
of DFTB?*?! as discussed in reference [10], considering only the HOMO (hole trans-
fer). A scaling factor of 1.54 was used for electronic couplings to reach the accuracy of
second-order coupled cluster (CC2) calculations.”® For exciton transfer, excited states were
computed using time-dependent long-range corrected density functional tight binding
(TD-LC-DFTB2)?%2>%82% a5 implemented in DFTB+%. The lowest excitation of individual
molecules was considered and couplings between these Frenkel states were calculated as
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Coulomb couplings (Equation 3.21) with transition charges calculated for every individual
structure.

5.2.2. Training and Evaluation of Machine Learned Models

Training and evaluation of all ML models was performed by Dr. Mila Kramer.

Separate models were used for the prediction of site energies and couplings, as their
respective absolute values lie orders of magnitude apart and the dimensionality of the
representation is different. For site energies only the coordinates of one individual molecule
have to be considered, while the coupling is an intermolecular property and thus the
coordinates of a molecular pair have to be taken into account. For the prediction of
couplings, models used the absolute value as the target. The sign of the coupling is a
consequence of the usually arbitrary signs of the wave function on the individual fragments.
For simulation of transfer along a one-dimensional chain of molecules, taking the absolute
value of the coupling is sufficient!%3,

Models were trained for each of the coupling data sets short, long, and full and for site
energies, along a learning curve (100, 1000, 5000, 10 000, and 25 000 training examples).
The unsorted Coulomb matrix representation was used as implemented in the QML
package!®.

Detailed information and all results can be found in reference [105].

5.2.3. Simulations of Charge and Exciton Transfer

A second anthracene crystal was constructed containing 40 X 30 X 14 molecules along
the crystal axes in the same manner as described above for training data generation. For
this system, simulations of charge and exciton transfer using both DFTB and the trained
ML models were performed. One dimensional lines along the a- and b-directions of 36
and 28 fragments in the middle of the crystal were chosen as a QM zone. No simulations
were performed along the c-direction, as coupling and thus transfer in this direction is
very small. Furthermore, the crystallographic c-direction and the experimental c-direction
differ by about 35°, making direct comparison difficult.!?® Structures in equidistant time
intervals were chosen as starting structures for subsequent simulations of charge and
exciton transfer.

The mean-field Ehrenfest®*1%7 (MFE) and Boltzmann-corrected fewest switches surface
hopping (BC-FSSH)**> methods were employed for non-adiabatic molecular dynamics
simulations. The scheme of implicit relaxation (IR) was employed in both methods. As a
systematic comparison of the performance of these propagation methods is beyond the
scope of this work, the interested reader is referred to reference [108].

The hole/exciton wave function was initially localized on the first molecule, ¥(0) = ¥(0).
Time steps of 1 fs were used for the MFE simulations and 0.1 fs for the BC-FSSH simulations.
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The TDSE was integrated numerically with the fourth-order Runge-Kutta algorithm with
an integration time step of 0.01fs. To calculate averages of the observables, swarms
of 100 (MFE) and 500 (BC-FSSH) trajectories were propagated, simulated for 1 and 5 ps,
respectively. The KRR, MFE, and BC-FSSH methods as well as DFTB were implemented in
a local version of GROMACS 4.6'°.

The reorganization energy used for charge transfer was calculated with DFTB as 0.084 eV'°.
The corresponding value for exciton transfer was computed with TD-LC-DFTB2 as 0.563 eV,
which is in good agreement with reported CC2 calculations.!!?. Charge transfer mobilities
and exciton diffusion constants were obtained from the mean-square displacement (MSD)
as described in subsection 3.2.5.

5.3. Results and Discussion

In the propagation simulations, only the models trained on the short data set were used,
as the code for propagation only evaluates the couplings to the nearest neighbors along
the chain. For the sake of brevity, only results for models trained on 100, 1000, and 25 000
examples of the short data set are presented.

5.3.1. Time Evolution of Couplings

To evaluate the performance of models for the prediction of charge and exciton transfer
couplings more closely to actual transfer simulations, a time-series can be investigated.
Therefore, predicted coupling values were compared with reference couplings along a
trajectory of temporally sequential pair geometries. One single pair of first neighbors in a-
and b-direction was arbitrarily chosen from the crystal for propagation. Coupling values
were calculated along a 0.6 ps trajectory with a time step of 1fs, as shown in Figure 5.1.

Predictions of all models appeared smooth and continuous, without jumps. However, some
noise in the predictions was visible, although there were no strong outliers compared to the
DFTB reference. Evidently, the models trained on the short data set started learning the
couplings along the a-axis properly only at a training set size of 1000. The predictions for
the b-direction were slightly better at lower training set sizes compared to the a-direction
for both charge and exciton transfer. However, the model trained on 1000 examples already
showed a close agreement with the reference for both crystal directions, indicating that it
could be sufficiently accurate for use in propagation simulations.

5.3.2. Machine Learned Driven Simulations

In the following, the presented ML models were applied to perform non-adiabatic molecular
dynamics simulations of hole and exciton transfer along the a- and b-crystallographic axes
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Figure 5.1.: Time evolution of the hole and excitonic couplings between a pair of first neighbors in a- and
b-directions. The DFTB reference is shown in black; colored lines show predictions of models trained on the
short data set with training set sizes of 100 (blue), 1000 (orange) and 25 000 (green).

of anthracene. All propagation simulations used models trained on the short data set, as
only nearest-neighbor couplings were calculated.

Charge Transfer

Simulations of hole transfer, where the Hamiltonian was calculated by ML models trained
on 100, 1000, and 25 000 examples, were compared to simulations using the corresponding
DFTB reference. The averaged time-dependent MSD when employing the MFE as well
as the BC-FSSH method is shown in Figure 5.2a and Figure 5.2b, with the corresponding
mobilities given in Table 5.1. Results for all training set sizes can be found in the appendix
(Appendix A).

Using the MFE method for the a-direction, the smallest model with only 100 training
examples showed an overestimation of the MSD and hole mobility by a factor of two
compared to the DFTB reference. This was not unexpected, as the model only learned the
average coupling in this direction (Figure 5.1). The model with 1000 training examples
came within 0.12cm? V™' s7! (8.5 %) of the DFTB value and within 0.39 cm? V™! s™! (34 %)
of the experiment. Further increase of the training set size showed only slight improve-
ment, indicating that small errors for individual couplings only have a low impact on the
mobilities obtained from simulations. In contrast to the a-direction, the b-direction seemed
to be easier to learn, as all models performed well compared to both DFTB and the experi-
ment. The medium sized model deviated by 0.36 cm®? V™' s™! (11 %) and 0.79 cm? V157!
(27 %) from the reference method and the experiment, respectively.
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Figure 5.2.: Time evolution of the averaged MSD in a- and b-direction using the MFE (a) and BC-FSSH (b)
methods for hole propagation with DFTB and ML models with various training-sizes.

For simulations using the BC-FSSH method, the performance of the machine learned
models compared to DFTB was similar to the MFE simulations. For the a-direction, at
least 1000 training examples were required, while 100 data points were sufficient for
the b-direction to reproduce DFTB results. Again, the medium model with only 1000
training examples already returned quite robust and reasonable results. The obtained hole
mobilities came within 0.27 cm? V™!s™! (3.4 %) and 2.24cm? V™! s™! (17 %) of the DFTB
reference for the two crystallographic directions, respectively. In contrast, the absolute hole
mobilities obtained from all BC-FSSH simulations differed strongly from the experimental
values, even when DFTB was used to calculate the Hamiltonian. Hole mobilities were
overestimated by a factor of 4 to 8.

Exp.1% | DFTB | ML-100 | ML-1000 | ML-25000
al 114 | 1.41 3.20 1.53 1.58
MEE 1 p | 203 | 336 3.67 3.72 3.22
al 1.14 | 8.00 | 10.05 7.73 8.14
BOESSH | 1 203 | 1332 | 1430 11.08 11.02

Table 5.1.: Hole mobility in cm? V™! 57! as calculated from the averaged MSD in a- and b-direction using the
MFE and BC-FSSH methods for hole propagation with DFTB and ML models with various training-sizes.

As shown in a recent study>®, an FSSH scheme can predict mobilities close to the ex-
perimental value if properly corrected, e.g. using non-adiabatic coupling vectors. The
overestimation of mobilities observed here is rooted in two approximations that have to
be applied to accommodate the machine learning model. First, in the BC-FSSH method,
the velocities are not adjusted according to the non-adiabatic coupling vectors, as these
are not obtained from the machine learning method. Instead, the hopping probabilities
are re-scaled with a Boltzmann factor. This leads to an overestimation of hole mobilities*.
Therefore, machine learning of non-adiabatic coupling vectors is a natural next step beyond
the scope of the present work.

47



5. Charge and Exciton Transfer Simulations driven by Machine Learned Hamiltonians

Second, the relaxation of the fragments in response to the charge was taken into account
only implicitly (IR scheme). Relaxation describes the geometric response of a fragment to a
change in its charge occupation. To reproduce this behavior explicitly, the machine learned
models would need to explicitly learn the QM forces necessary to drive this phenomenon.
The forces can be calculated e.g. as derivatives of the transfer Hamiltonian elements with
respect to atomic coordinates. Explicit relaxation is currently impossible with the machine
learning model as used here, since it would requires the additional prediction of these
quantum forces.

To examine whether explicit relaxation alone could be sufficient for an accurate description,
additional simulations with DFTB were performed using a different relaxation scheme
including QM forces for the relaxation of every fragment. These forces were calculated as
the derivatives of site energies and couplings with respect to atomic coordinates. Employ-
ing the explicit relaxation scheme decreased the MSD and slowed down the corresponding
mobilities to 1.83 and 4.03 cm? V™1 57! for the a- and b-directions, respectively. These val-
ues are in much better agreement with the experiment, indicating that implicit relaxation
accounts for the bulk of the error.

Exciton Transfer

In analogy to the application of machine learned models to charge transfer, their behavior
in exciton transfer simulations along the a- and b-directions in the anthracene crystal
was investigated. The ratio of average coupling and reorganization energy in the exciton
transfer case is 10 times lower than that for charge transfer. This indicates that the exciton
diffusion is in the hopping regime. The MFE method was not used in these simulations, as it
is known to delocalize the wave function too quickly and thus cannot describe the expected
hopping-like behavior.!! As the program for explicit propagation of exciton transfer using
TD-LC-DFTB?2 is still under development, the diffusion constants calculated using the
ML models were compared with those obtained by kinetic Monte Carlo simulations to
solve the master equation (ME) within Marcus theory!'»!'2. The time average over 5000
structures of one pair along each axis was used to obtain the average Coulomb couplings
for the Marcus rate formula. The diffusion constants obtained from this reference and the
ML models are shown in Table 5.2. The averaged time-dependent MSD for the propagation
using one selected ML model can be found in the appendix (Figure A.3).

|  ME | ML-1000 (BC-FSSH)
7.4%x107° 2.8x 1077
4.2x1078 1.9 x 107

a

b

Table 5.2.: Diffusion constants in m? s as calculated from the averaged MSD in a- and b-direction using
the ME and BC-FSSH with an ML model for Coulomb couplings with different methods for propagation.

The BC-FSSH method again showed significant overestimation of the diffusion constants,

here by a factor of 40 compared to ME results. While it is currently not possible to directly
simulate exciton transfer using TD-LC-DFTB2 to analyze the same comparisons as for
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charge transfer, it stands to reason that the implicit relaxation scheme and lack of non-
adiabatic coupling vectors are the causes of the overestimation here as well. Therefore,
machine learning models for non-adiabatic coupling vectors and quantum forces are highly
desirable.

5.3.3. Timings

The primary motivation for the application of machine learned models in non-adiabatic
molecular dynamics simulations of charge and exciton transfer is the replacement of ex-
pensive quantum mechanical methods with such models in order to increase the efficiency
of these simulations. Therefore, durations were measured for the calculation of transfer
Hamiltonian elements.

Calculation of the charge transfer Hamiltonian using the DFTB reference method took
on average 0.57 ms per anthracene pair on one core of an Intel Xeon CPU E5-2630 v4
@ 2.20 GHz processor, while the calculation of the exciton transfer Hamiltonian required
55ms per pair on the same processor. The timings for the different ML models varied
strongly with the number of training examples, as the kernel calculation is the rate limiting
step. For site energies, a model trained on 1000 examples was always used, while the
number of training examples for the coupling model was varied.

As shown in Table 5.3, only machine learned models trained on 1000 or fewer exam-
ples could outperform DFTB for charge transfer couplings. This is a consequence of
the simplicity of DFTB and the coarse-grained formalism. The costly calculations are
done individually for the fragments, and assembling the Hamiltonian is an almost trivial
operation once the fragment calculations are done. In contrast, the KRR model needs to
calculate the comparatively costly kernel with every training representation. However,
the more the individual fragments grow in the number of atoms, the more the models’ N*
scaling resulting from the Coulomb matrix will win out compared to that of DFTB (N?).
This improved scaling will make simulations of systems with large fragments (such as
rubrene or phthalocyanine) feasible. Additionally, the DFTB calculations necessary for
exciton transfer are far more costly than those for charge transfer, so the machine learned
model for anthracene is at least one order of magnitude faster even with a huge training
set size.

ML DFTB

Ntrain CT ‘ ET
100 | 3.1x107%s
1000 | 3.8%x107%s | 5.7x107*s | 5.5x 107%s

25000 | 3.1 x1073s

Table 5.3.: Comparison of timings (in seconds) for the calculation of couplings per pair.

The presented models can also provide significant gain in efficiency for simulations using
the kinetic Monte Carlo model for hopping-like transfer. These simulations require an
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5. Charge and Exciton Transfer Simulations driven by Machine Learned Hamiltonians

efficient sampling of the average couplings in a system to calculate accurate transfer rates.
This is straightforward for ordered structures such as crystalline anthracene. Here, the
average couplings for only one fragment pair along each crystal axis must be computed
from a sufficient amount of sampled structures (usually hundreds or thousands). In more
disordered materials, every pair of fragments must be sampled in this way, leading to
a combinatorial explosion of computational effort. In this type of simulation, using a
machine learned model instead of QM methods for the calculation of the couplings thus
results in a substantial decrease in computational cost.

5.4. Conclusion and Outlook

In this chapter, it was shown that it is possible to create compact and simple machine
learning models that can drive charge and exciton transfer simulations. Even with a
rudimentary representation and a low amount of training data, these models performed
well enough to reproduce hole mobilities within 8.5 % of the DFTB reference and within
30 % of the experimental values in anthracene. This accuracy comes at a computational
cost several orders of magnitude lower than ab initio methods. While the model was only
a little faster than the semiempirical DFTB method in simulations of charge transfer in
anthracene, it outperformed DFTB significantly for exciton transfer. With increasing size of
the fragments, the improved scaling of the ML model will only increase this margin. While
the simple Ehrenfest propagation scheme works well for materials with low reorganization
energy°®, it tends to fail in other cases, resulting in fast artificial delocalization of the
charge or exciton. As shown above, more sophisticated propagation methods require the
calculation of additional properties such as non-adiabatic coupling vectors and molecular
relaxation effects to give reliable estimates of mobilities or diffusion constants. Training
machine learned models to also predict these properties is an essential step towards reliable
and fast computational models.

For an application to biological systems like light-harvesting complexes!', the influence
of an electrostatic environment on electronic structure properties is essential. To this
end, the representation can be modified and additional interaction terms such as those in
reference [83] can be added.

While it is usually desirable to construct ML models that generalize across chemical space,
this requires a large investment in training data and higher computational cost for more
sophisticated representations. The use of a fast but accurate semiempirical model as a
reference and the low requirements on training data enable the quick and easy training
of an ML model for every specific system. For these models, specialization is a quality,
and generalization can be limited to the conformational space of one specific system. This
training step could be included in the setup of a multi-scale simulation approach, where
the machine learning models trained using structures obtained during equilibration can
then directly be used for propagation of charges or excitons.
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6. Charge Transfer Simulations in Organic
Semiconductors driven by Machine
Learned Hamiltonians and Diagonal
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Author Contributions:

The results presented in this chapter were generated in collaboration. Training data for
the machine learned models was generated by me, except for the FMO-DFTB1 data for
anthracene, which was done by Dr. Weiwei Xie. Training and evaluation of all models for
the prediction of gradients was done by Dr. Mila Kramer, while the other models were
trained and evaluated by myself. I also performed and analyzed all time-series, transfer
simulations and timings.

6.1. Introduction

Molecular organic semiconductors (OSCs) are of prime interest for a variety of different
applications’?"7®. With the near-limitless variety of organic compounds, searching for
novel candidates with specific properties or optimizing known materials is a costly process.
Here, theoretical approaches using simulation techniques can supplement or shorten ex-
perimental studies by efficiently screening large portions of chemical space for compounds
with promising properties before committing to synthesizing them. This requires fast
and robust methods for simulating charge transfer in large molecular systems, which can
reproduce experimentally observable quantities such as charge carrier mobilities. This can
be done with non-adiabatic molecular dynamics (NAMD) methods by explicitly taking
into account the electronic degrees of freedom by solving the time-dependent Schrodinger
equation (TDSE)’~!2, To mitigate the computational cost inherent in a quantum-chemical
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description of large systems along extensive molecular dynamics (MD) trajectories, the
nuclei are treated classically and the electronic structure of the individual molecules is
simplified.

Using a conceptual coarse-graining of the transfer process, the electronic structure of the
entire system can be compacted to two key parameters: the energies of frontier orbitals
on each molecule (site energies) and the pairwise coupling terms which describe their
interaction. Upon getting charged, a formerly uncharged molecule will relax to a new
equilibrium structure, which in turn leads to a decrease in its site energy. This response
of a molecule to a change in its charge occupation can be taken into account by explicit
relaxation (ER), where the forces in the charged state weighted by the charge occupation
drive the nuclear relaxation. Alternatively, this feedback from electronic to nuclear degrees
of freedom can be modeled via a phenomenological equation, where the site energy is
reduced according to the charge occupation of a molecule by an empirically determined
reorganization energy, which is called implicit relaxation (IR)!!“.

However, the cost of the ab initio or semi-empirical models used to describe the electronic
structure can be prohibitively large, when the system size and trajectory lengths needed
to accurately obtain observables are large. Data-driven approaches, more specifically
machine learning (ML) methods, can make use of the fact that the quantum-chemical
calculations are highly repetitive, i.e. the conformations sampled during such simulations
are very similar. By training the ML model on a small but representative data set for
which the relevant electronic parameters have been calculated using a quantum chemistry
method, the computationally simpler ML method could then be used to drive the transfer
simulations. Several works have previously investigated the applicability of ML models
to charge and exciton transfer properties: Both kernel ridge regression (KRR)®%%810> and
neural network (NN) models®"*2 have been used for predicting charge transfer couplings
in organic and metal-organic systems. For excitonic properties, neural networks have been
used to predict excitation energies in biological systems®®, and there has been extensive
work on ML-driven excited-state molecular dynamics®*®” for small organic molecules.

In the previous chapter, kernel ridge regression (KRR) models were employed for the
prediction of site energies and couplings in anthracene for both charge and exciton
transfer applications. By using the fast and accurate density functional tight binding
(DFTB) method?°-22:28.2989.115 {4 generate reference data cheaply and automating model
training, a scheme was created which was easily applicable to new systems without
requiring individual models to generalize across chemical space. These models were
then applied in charge propagation simulations for anthracene, comparing the resulting
observables with DFTB reference values and experimental data. The models were able to
reproduce hole mobilities close to the reference and experimental values when using the
mean-field Ehrenfest (MFE) propagator together with the implicit relaxation (IR) scheme
with a fixed reorganization energy. When using the Boltzmann-corrected fewest-switches
surface hopping (BC-FSSH) method for propagation, the ML method was close to the
appropriate DFTB reference, while both were far off from the values obtained if molecular
relaxation was explicitly (ER) taken into account. This is due to three reasons. Firstly, the
employed scheme of implicit relaxation used the adiabatic surface occupation to weight
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the reorganization energy. A recent study [114] showed, that using the diabatic wave
function occupation of the charge instead leads to good agreement compared to explicit
relaxation. Secondly, the reorganization energy was obtained from DFTB, which is known
to underestimate this value!!. Lastly, the Boltzmann-correction is an approximation that
is known to cause overestimation of charge mobilities compared to the correct re-scaling
of atomic momenta in the direction of the non-adiabatic coupling vectors (NACV)3®,

While the scheme of implicit relaxation yields good results for some materials, it is still
an approximation. This may only have limited applicability, e.g. in systems where the
assumption, that the molecules relax instantly, does not hold. Therefore, obtaining QM
forces, which are required for explicit molecular relaxation, from a ML model is an obvious
next step. These forces can be considered as a correction to the neutral state forces provided
by the force field (FF) driving the nuclear dynamics in the simulation and can be obtained
as derivatives of the Hamiltonian used for propagation with respect to the atomic positions.
Unfortunately, obtaining a prediction of a property and its derivatives with respect to the
inputs from a KRR model is problematic. Efforts to extend the KRR formalism!!¢ to this
end were unsuitable for the application due to the high computational cost they incur.
Furthermore, replacing DFTB with KRR models to drive simulations of charge transfer did
not decrease the computational demands of such simulations!%.

Therefore, in this chapter neural network based models are presented, which are able
to predict not just site energies and couplings but also the gradients of the site energy
necessary for explicit relaxation. Neural networks come with the advantage that the
computational cost for a prediction does not depend on the training set size, but only
on the architecture of the network. Furthermore, there are efficient built-in routines
for the calculation of derivatives of such models, e.g. when using TensorFlow!!”. The
application was restricted to simulations of charge transfer and the models were trained
on DFTB-quality data for anthracene and pentacene. Additionally, the investigations
were extended to gradients from higher-level methods such as long-range corrected self-
consistent DFTB and density functional theory (DFT). By using the obtained models
in propagation simulations, their performance in reproducing hole mobilities in these
materials in terms of both quality and computational cost is evaluated.

6.2. Computational Details

6.2.1. Generation of Training Data

It is crucial that gradient predictions are reliable across the entirety of the potential energy
surface (PES) accessible throughout the simulation. To explore and train on a broader
variety of structures geometries were sampled at a higher temperature (500 K) than the
one used in the NAMD simulations for obtaining mobilities (300 K). In NAMD simulations
using the IR scheme, only the PES of neutral molecules is explored. Contrastingly, when
employing the ER approach, the PES of both neutral and charged molecules will be reached.
Thus the training data set for site energy models applied in the IR scheme was constructed
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from only neutral structures, while the analogue models for the ER scheme received
sampled geometries along both the PES of the neutral and charged system in a 50:50 ratio.
The models for couplings can be employed in both IR and ER type simulations, which
is why only one model for anthracene and one for pentacene was trained on structures
sampled from the neutral and charged state.

The procedure for generating training data was identical for both the anthracene and
pentacene systems. For each system, a crystal based on experimental structures of the
supercell was created. The anthracene crystal®? contained 8 X 8 X 5 molecules along the
crystal axes (a, b and c), respectively. In pentacene, the size of the crystal'® was 8 x 16 x 5
molecules. Force field parameters for each system were derived from the general AMBER
force field (GAFF)****. Atomic charges were generated from the restrained electrostatic
potential (RESP) fitting procedure®> %, calculated at HF/6-31G**”%8 level of theory using
Gaussian 09%.

After an initial energy minimization the system was equilibrated for 1 ns with a time step
of 2 fs using the Nose-Hoover thermostat'?? at 500 K in the NVT ensemble. Subsequently,
a productive classical MD simulation was run at the same temperature for 1 ns with a
time step of 1fs, in which neutral structures were saved every 1 ps. For the sampling of
charged structures multiple separate NAMD simulations were performed with the same
MD settings, where the charge was constrained to one molecule. All classical and non-
adiabatic MD simulations were performed with the GROMACS 4.6 software package!'*%!°1.

Eventually, single molecule structures and pair structures sampled in the neutral and
charged states were randomly selected from a 5 X 5 X 3 molecular cube in the center of
the crystal for subsequent calculations of site energies, their derivatives and couplings.
The HOMO was chosen as the frontier orbital for hole transport in the studied systems.
Site energies and electronic couplings were calculated using the FMO approach with
non-self-consistent DFTB?%21, often referred to as DFTB1. For the derivatives of the site
energies, different data sets were constructed corresponding to the two approaches to
obtain the gradients and the applied QM methods. FMO-gradients (see Equation 3.10) were
computed with DFTB1 in the FMO approach, while A-gradients (see Equation 3.11) were
obtained with self-consistent-charge DFTB2% with a long-range corrected functional®
(LC-DFTB2) and the DFT functionals B3LYP!!® and wB97X'%’. LC-DFTB2 calculations
were carried out with the dftb+3>!1> program (version 19.1). LC-DFTB2 was used for
this data set, as the long-range corrected functional can correct the underestimation of
the reorganization energies observed when using the GGA derived non-self-consistent
DFTB1'!*. The same holds for the ®B97X DFT-functional. DFT calculations employed
the def2-TZVP basis set'?! together with the def2/] auxiliary basis!?* as implemented in
orca?®12% (version 5.0.1). It has to be noted, that all data sets for site energies include the
same site energies from FMO-DFTB1 and only differ in the derivatives.
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6.2.2. Training and Evaluation of Machine Learned Models

The neural network architecture previously presented by Li et al.3* was adapted for
this work, as it has been constructed in order to predict energies and gradients/forces
for electronic states of small organic molecules. Either only energies (site energies or
couplings) were learned, or site energies were trained together with their respective
gradients in a single network. In contrast to the work!% presented in the previous chapter
chapter 5, the NN models were trained on the signed couplings and not on the absolute
values. This is necessary to achieve a differentiable function in case of crossing zero. The
models used the spatial coordinates of the atoms in the system as inputs, from which
inverse interatomic distances between atoms were calculated as a translationally and
rotationally invariant representation. Different models were trained for the prediction of
site energies and couplings, as the dimensionality of the input was different: in models
predicting the site energies (and their derivatives), all intramolecular interatomic distances
were included in the representation, while for the coupling models only the intermolecular
block of the matrix of inverse distances was used. This has been shown to be superior
for the prediction of coupling elements®® and to reduce the computational cost of each
prediction. Initial experiments confirmed that the reduced representation gives lower
errors at all training set sizes.

The trainable part of the network was a multi-layer dense feed-forward NN using the
leaky softplus activation function (Equation 4.14)! with a slope of a = 0.03. Models were
trained using the pyNNsMD package®* and Tensorflow 2.3!17 with the Keras API'26, Weights
were optimized using the Adam optimizer'?’” and mean-squared-error loss. All models
received training and validation data in a 9:1 ratio, and the loss on the validation set was
monitored every epoch, so training could be stopped when it did not improve for more
than 100 epochs (early stopping). Feature calculation and scaling were both implemented
as layers of the neural network, reducing implementation overhead when using the models
for prediction. While training models for only energies (site energies or couplings) was
straightforward, during training of models for site energy and their gradients the loss
was calculated on both the network’s energy prediction and the gradients with respect to
input coordinates. The relative weights o and f of these two parts of the loss function
were considered as hyperparameters of the models Equation 6.1).

loss = aMSE [E™!, EP*4] + BMSE [(VE)ref, (VE)Pred 6.1)

The Hyperband algorithm was used as an efficient and automatable way to find working
combinations of hyperparameters!?8. Objective for this optimization was the R? score on
the validation set in case of only training energies. For models trained in both energies
and gradients, the objective was set to be a combination of validation R? scores for both
properties:

& _2-exp [1-R2] —exp [1-R%,]
merged 2 :

(6.2)
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This should ensure, that models trained energies and gradients equally well. However, the
quality of the resulting models was only weakly dependent on the chosen hyperparameters,
indicating that a thorough hyperparameter search is unnecessary and can be omitted when
applying the method to new systems. All models were obtained using a training set size
of 30 000 structures, with 3333 additional structures used for validation and the optimal
hyperparameter configurations. More details on the network configuration, training and
hyperparameter search can be found in the appendix (section B).

6.2.3. Charge Transfer Simulations

Separate crystals were generated for the transfer simulations containing 40 X 30 x 14
(36) molecules for anthracene in a-direction, 20 X 40 X 5 (36) molecules for anthracene in
b-direction and 42 X 84 X 3 (73) molecules for pentacene in T1-direction (i.e. the diagonal
direction in the ab-plane). One-dimensional lines of molecules were chosen along the
respective directions in the middle of each crystal for the QM region, with the number of
fragments specified in brackets above. After equilibration at 300 K, structures in equidistant
time intervals of 10 ps were chosen as starting structures for subsequent simulations of
charge transfer. The hole wave function was initially localized on the first molecule. A
time step of 0.1fs was used for the propagation of nuclei and the TDSE was integrated
numerically with the fourth-order Runge-Kutta algorithm with an integration time step of
0.01 fs. The FSSH method with Boltzmann-correction (BC-FSSH) was used for the NAMD
simulations for hole transport in anthracene and pentacene, either with the IR or ER scheme
for relaxation. In the IR scheme, reorganization energies of 84 meV'° and 37 meV!!* were
used for anthracene and pentacene, respectively, which have been calculated with DFTB1.
Averages of observables were calculated on 1000 trajectories, which were simulated for
1ps each, while the first 350 fs were regarded as initial equilibration of the charge. All
charge transfer simulations were performed within a local version of GROMACS 4.6 where
DFTB, NN as well as the BC-FSSH methods were implemented.

6.3. Results and Discussion

6.3.1. Implicit Relaxation
As a first step neural network models were trained, evaluated and applied in NAMD

simulations employing the implicit relaxation scheme. This means only the transfer
Hamiltonian elements (site energies and couplings) were predicted by these models.

6.3.1.1. Model Training and Evaluation

After training the models as described in subsection 6.2.2, their predictions on 10 000
held-out test data from their respective reference data set were evaluated. All trained
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models converged well within thousand epochs, with prediction errors shrinking as
training set sizes increased. Overall, the hyperparameters included in the search had only
a negligible influence on the quality of models obtained compared to the statistical noise
from the initialization of the weights. While it is possible that specific hyperparameter
configurations might also reduce the number of epochs needed until convergence, the
added computational cost of the hyperparameter search far exceeds these gains. Therefore,
it can be concluded that for this application a full hyperparameter search can be omitted.
The full results of the hyperparameter search can be found in the appendix section B.

ANT PEN
site energy coupling site energy coupling
MAE 2.652 1.772 2.802 5.520
max. err. 18.207 48.349 27.014 68.075
R? 0.998 0.955 0.993 0.958

Table 6.1.: Quality metrics for models predicting Hamiltonian elements for anthracene and pentacene: mean
absolute error (MAE), maximum error and coefficient of determination (R?). All metrics except R?-scores in
meV.

Here, the evaluation results for the models, which were used in the propagation simulations
with the IR scheme (subsubsection 6.3.1.3), are summarized. Corresponding quality metrics
for models trained on the data obtained from FMO-DFTB1 are given in Table 6.1. Site
energies for both anthracene and pentacene were learned accurately with models giving
low mean absolute and maximum errors compared to the mean of the reference value,
which is in the order of several eV. This was also reflected in the high R%-scores (above
0.99) and the absence of outliers, as shown in the two-dimensional histograms in Figure 6.1
and Figure 6.2.

In contrast, the couplings were learned less well, with mean absolute errors of similar
magnitude and even higher maximum errors compared to site energies, although the
reference values are several orders of magnitude lower. The couplings along the different
crystal directions in pentacene are quite dissimilar, leading to the bimodal distribution
seen in the left of Figure 6.2 and a more difficult learning target for the ML model. As
the mean magnitude of couplings in the pentacene data set is 28 meV compared to 8 meV
in anthracene, the MAE of the coupling predictions in pentacene is greater. Still both
coupling models showed R%-scores higher than 0.95 and all investigated metrics were
similar to the KRR models reported previously'®’, which indicates that these models should
be good enough for use in propagation simulations.

6.3.1.2.Time Evolution of Couplings
To investigate the quality of the coupling models closer to transfer simulation, the evolution

of couplings along simulation time was computed. Therefore, reference coupling values
from FMO-DFTB1 were calculated along 1 ps NAMD trajectories of arbitrary first neighbor
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Figure 6.1.: Two-dimensional histograms of model predictions vs. FMO-DFTB1 targets for 10 000 structures
in anthracene. Bright colors indicate high data density, unoccupied areas shown in white.
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Figure 6.2.: Two-dimensional histograms of model predictions vs. FMO-DFTB1 targets for 10 000 structures
in pentacene. Bright colors indicate high data density, unoccupied areas shown in white.

pairs of the investigate crystals and compared with predicted values of coupling models.
The time-series of couplings are shown in Figure 6.3.
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Figure 6.3.: Time evolution of hole transfer couplings between a pair of first neighbor anthracene molecules

in a- (a) and b-direction (b) as well as an analogue pair of pentacene molecules in T1-direction (c). Couplings
were calculated with FMO-DFTB1 and NN models.



6.3. Results and Discussion

Predicted coupling values were smooth and continuous along the simulation time with-
out showing jumps and outliers. Compared to FMO-DFTB1 the predicted couplings for
anthracene in b-direction were in close agreement along the whole trajectory. For an-
thracene in a-direction as well as pentacene in TI-direction the models captured the
general trend of the reference coupling but failed to reproduce the fluctuations on short
time scales. Whether the accuracy of the models is sufficient must therefore be investigated
by application in charge transfer simulations.

6.3.1.3.Comparison of Obtained Observables

In the following, the trained neural network models were applied to perform NAMD
simulations of hole transfer along linear chains of anthracene molecules in a- and b-
direction as well as pentacene molecules in T1-direction. The elements of the transfer
Hamiltonian were predicted by the models or calculated by the FMO-DFTB1 method
as a reference. All simulations employed the implicit relaxation scheme with different
values of reorganization energies obtained from various methods (c.f. Table B.3). All
simulations were analyzed in terms of accuracy in reproducing hole mobilities compared to
the reference method and experimentally determined values as well as inverse participation
ratios (IPR) compared to the reference method. The latter is a quantity that expresses
the degree of delocalization over a number of molecules. Calculated observables are
displayed in Table 6.2, the corresponding plots of MSD vs time can be found in the
appendix (section B).

o ) ANT-a ANT-b PEN-T1
I IPR 4 IPR 4 IPR
DFTB 2.4 2.0 6.6 2.5 11.6 4.0

DFTB1
NN 1.5 2.1 5.8 2.3 123 4.7
DFTB 1.1 1.7 2.8 1.9 9.7 3.5
NN LC-DFTB2 0.8 1.7 2.3 1.8 7.3 4.0
DFTB 0.9 1.7 2.8 1.9 6.6 3.4
NN B3LYP ¢ 1.7 2.0 1.7 7.9 3.9
DFTB 0.4 1.3 0.5 1.3 2.7 2.6
NN 9BIXD oo 13 03 12 37 2.9
Experiment 1.11% - 209106 __ 10512 _.

Table 6.2.: Hole mobilities (in cm? V™! s71) and inverse participation ratios (IPR) for the investigated systems
as obtained from simulations, where the transfer Hamiltonian (H) was obtained from the DFTB reference or
NN models. In all simulations the BC-FSSH method with the IR scheme was employed. Different values for
the reorganization energy A were used.

The estimated mobilities from DFTB and NN driven simulations were in good agreement

and were of similar quality compared to previously reported KRR models'®®. For both
anthracene directions, the NN models constantly underestimated the mobilities by a small
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6. Charge Transfer Simulations driven by Machine Learned Hamiltonians and Diagonal Forces

factor, whereas NN driven simulations for pentacene employing the DFTB1 and B3LYP
reorganization energies were slightly overestimated. The same picture was observed
for the IPR values. Results from DFTB and NN models were in close agreement, while
deviations appear larger for pentacene.

Both the reference and the ML mobilities were too large compared to experimentally
determined hole mobilities when utilizing the DFTB1 reorganization energies. This is due
to the strong underestimation of reorganization energies of OSCs by DFTB!!*, leading
to an overestimation of hole mobilities. A previous study''* showed that the BC-FSSH
mobility tends to be lower, when the reorganization energy as an input for the IR scheme
gets higher, which is the case when turning to higher level of theory. Thus, results from
simulations with LC-DFTB2 and B3LYP reorganization energies were close to experimental
values, while the high reorganization energy from @wB97XD led to an underestimation of
the mobility.

6.3.1.4.Comparison of Computational Cost

A primary motivation for the use of neural network models or machine learned models in
general in non-adiabatic simulations of charge transfer is the replacement of computation-
ally demanding QM methods to gain significant speedup. Here, the performance of the
models was assessed in respect to simulation time. To compare timings with the different
methods and models, 100 trajectories were run with only two molecules for 1000 steps
of NAMD simulation with the exact same settings compared to the previous calculations
to obtain observables. The timings were estimated as averages of time spent on single
calculations of site energies and for couplings and are shown in Table 6.3. All computations
were performed on single CPU cores of Intel Xeon Silver 4214 @ 2.2 GHz processors.

Table 6.3.: Comparison of timings (in ms) for the calculation of Hamiltonian elements (site energies and
couplings) in anthracene and pentacene with DFTB and NN models.

site energy coupling
FMO-DFTB1 NN FMO-DFTB1 NN
ANT 3.2 0.2 1.7 0.1
PEN 10.0 0.2 3.8 0.2

The computational cost for site energies of anthracene molecules was reduced by one
order of magnitude when turning from DFTB to neural network models. For pentacene the
models outperformed DFTB by one to two orders of magnitude, which shows the favorable
N? scaling with the system size of the NN models compared to the N* scaling of DFTB (N
being the number of atoms). Furthermore, the computational efforts for couplings were
reduced by one order of magnitude for both anthracene and pentacene. This performance
of neural network models is a clear advantage over KRR models, which were used in the
previous chapter, and which could not speed up charge transfer simulations.
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6.3.2. Explicit Relaxation

As a second step, additional neural network models were trained, evaluated and applied,
which were able to predict the derivatives of site energies in addition to site energies
within the same model. From these derivatives the forces necessary for explicit relaxation
in NAMD simulations can be obtained. For couplings, the same models as in the IR based
simulations were used.

6.3.2.1.Model Training and Evaluation

After training the models as described, they were evaluated in the same way on 10 000
held-out test data from their respective reference data set. These models also converged
well within 1000 epochs with decreasing errors. The hyperparameter search had a minor
influence on model quality. Full results of the hyperparameter search can be found in
the appendix (Table B.2). Table 6.4 gives a few crucial metrics for models trained on the
anthracene data obtained from DFTB methods. The corresponding metrics for models
trained on DFT data are displayed in Table 6.5.

FMO-DFTB1 A-LC-DFTB2
site energy gradient site energy gradient
MAE 2.554 10.581 9.467 41.130
max err 18.207 257.772 50.091 533.835
R? 0.998 0.998 0.975 0.986

Table 6.4.: Quality metrics for models predicting site energies and their derivatives for anthracene, trained
on different DFTB data: mean absolute error (MAE), maximum error and coefficient of determination (R?).
All metrics except R2-scores in meV (meV A™).

A-B3LYP A-0B97X
site energy gradient site energy gradient
MAE 6.009 27.239 17.637 67.067
max err 40.308 308.923 87.480 5945.549
R? 0.990 0.993 0.914 0.971

Table 6.5.: Quality metrics for models predicting site energies and their derivatives for anthracene, trained
on DFT data: mean absolute error (MAE), maximum error and coefficient of determination (R?). All metrics
except R%-scores in meV (meV A_l).

Most models gave excellent predictions with few outliers, as can be seen in Figure 6.4 and
Figure 6.5. The only exception was the model trained on A-wB97X data, where learning
was slightly poorer and a few outliers can be seen. For the FMO-DFTB1 site energies and
their gradients, the model reached a MAE of 2.55 meV for the energies and 10.58 meV AT
for the gradients, with R? scores above 0.99 for both. This is comparable to the equivalent
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model without gradients in the previous section. The model trained on the A-LC-DFTB2
data gave slightly worse results, and did not perform equally well for both energies and
gradients in contrast to the model for the FMO-DFTB1 data. This may be due to the
construction of the LC-DFTB2 data set, where LC-DFTB2 is only used to calculate the
gradients, and these are learned in conjunction with the FMO-DFTB1 site energies. The
same holds for the models trained on DFT data. While the A-B3LYP model turned out
excellent, the A-wB97X model showed larger errors on site energies and gradients. Still
the R? scores for the latter model were above 0.91.
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Figure 6.4.: Two-dimensional histograms of model predictions vs. DFTB targets for 10 000 structures in
anthracene. Bright colors indicate high data density, unoccupied areas shown in white.

The errors for site energies and couplings were comparable to those obtained for similar
training set sizes in the previously presented work (chapter 5)!%°, indicating that the models
should be sufficiently accurate to give good mobilities in simulations. The effects of the
error on the forces cannot be easily quantified, but the maximum prediction errors can be
an indication whether the predicted forces could impede the stability of the simulation.
The maximum prediction errors for both the FMO-DFTB1 (0.26 eV A_l) and A-LC-DFTB2
gradients (0.53 eV A_l) as well as the A-B3LYP model (0.31eV A_l) were well below the
forces needed to break covalent bonds (~1eV A~ to 2eV A™'130). For the A-wB97X model,
there were only few outliers exceeding these values. Overall, these large errors were only
seen for a few individual outliers, as e.g. less than one percent of gradient predictions
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Figure 6.5.: Two-dimensional histograms of model predictions vs. DFT targets for 10 000 structures in
anthracene. Bright colors indicate high data density, unoccupied areas shown in white.

showed errors above 40 meV A~ (FMO-DFTB1) or 160 meV A (A-LC-DFTB2). The met-
rics indicate that the gradient predictions should be sufficiently reliable for performing
molecular dynamics simulations.

In pentacene, the results were quite similar. They are summarized in Table 6.6 and
visualized in Figure 6.6. DFT data for pentacene were not computed due to their demands
on resources. The prediction errors for site energies and their gradients in the pentacene
system were slightly worse than for the anthracene models. Maximum prediction errors for
the gradients were slightly lower than in anthracene and the error distribution remained
narrow.

6.3.2.2.Time Evolution of Site Energies

To get a clearer estimate of the quality of the models for gradient prediction, time-series
of site energies for single charged molecules of anthracene and pentacene were calculated.
Trajectories of 1 ps were run, propagated with forces from the force-field and additional
QM forces from FMO-DFTB1 or neural networks, which were trained on data from the
same method. All simulations started from the same initial geometry. Unfortunately, this
comparison was not possible for the rest of the models, because their reference methods
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FMO-DFTB1 A-LC-DFTB2
site energy gradient site energy gradient
MAE 3.434 17.086 5.549 41.003
max err 22.456 239.181 31.647 414.127
R? 0.990 0.988 0.974 0.959

Table 6.6.: Quality metrics for models predicting site energies and their derivatives for pentacene, trained
on different DFTB data: mean absolute error (MAE), maximum error and coefficient of determination (R?).
All metrics except R2-scores in meV (meV A™").
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Figure 6.6.: Two-dimensional histograms of model predictions vs. DFTB targets for 10 000 structures in
pentacene. Bright colors indicate high data density, unoccupied areas shown in white.

are not implemented for a use in NAMD simulations and would moreover be too time
consuming. For a clearer view the site energy of the molecules are shown along a period
of 500 fs only (from 250 to 750 fs of simulation time) in Figure 6.7.

The predicted site energies were in close agreement with those from the reference method
at the beginning of the trajectories. After 300 fs slight deviations occurred, which increased
in intensity over time. For anthracene the deviations stayed small, but became more
pronounced along the trajectory for pentacene. This indicates a form of potential error
accumulation for the latter molecule, but the error did not significantly increase until the
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Figure 6.7.: Time evolution of site energies for a single charged molecule of anthracene (a) and pentacene
(b). Site energies and corresponding forces were obtained from FMO-DFTB1 or a NN model.

end of the trajectory. The site energy is a property, that is very sensitive for changes in the
geometry, and thus is a good measure for the quality of the applied forces. Deviations of site
energies were small, although they were affected by error contributions (i) directly from
the prediction of the site energy as well as (ii) indirectly from changes of the geometry due
to the predicted forces. Thus, the time-series indicated that the model for the prediction of
FMO-DFTBI1 site energies and gradients should be sufficiently accurate for use in charge
transfer simulations.

6.3.2.3.Comparison of Obtained Observables

In order to perform stable NAMD simulations, where the nuclear dynamics are partly
driven by machine learned models, it turned out to be necessary to sample geometries for
training data on the PES of both neutral and charged molecules. First tests with models
trained on geometries in the neutral state only led to unstable and crashing simulations.
Adding geometries that were sampled in the charged state gave robust models and stable
simulations, so that no exceptionally bad predictions occurred in the more than 100 million
simulation time steps performed in this work. As the QM forces are approximately one
order of magnitude smaller than the forces from the MM force field, the margin of error
that the ML models can produce before simulation stability is impacted is quite large and
no further efforts (e.g. active learning) were necessary in this study.

The NAMD simulations presented here were driven by models, which were trained on the
same site energies but different gradients for relaxation, calculated either with FMO-DFTB1,
A-LC-DFTB2, A-B3LYP or A-wB97X. Additionally, FMO-DFTB1 driven simulations were
performed as the reference method, using FMO-gradients for the relaxation. The calculated
hole mobilities and IPR values for all investigated systems are displayed in Table 6.7, the
corresponding plots of MSD vs time can be found in the appendix (Figure B.4).
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ANT-a ANT-b PEN-T1
H Force
7] IPR p IPR p IPR
DFTB 3.2 20 84 2.4 11.6 4.0
NN FMO-DFTB1 2.9 2.1 8.7 2.3 14.6 4.8

NN LC-DFTB2 2.7 1.9 8.1 2.1 142 4.5
NN A-B3LYP 2.5 2.0 8.1 2.2 - -
NN A-0wB97X 1.9 1.7 5.8 1.8 - -

Experiment 1.11% - 2.9106 . 10.5'%°

Table 6.7.: Hole mobilities (in cm? V™! s7!) and inverse participation ratios (IPR) for the investigated systems
as obtained from simulations with the DFTB reference or various NN models. In all simulations the BC-FSSH
method with the ER relaxation scheme was employed.

Comparing mobilities from NN-driven simulations with those from DFTB reference simula-
tions (both using FMO forces), a good agreement for anthracene was found with deviations
of 9% and 4 % for a- and b-direction, respectively. The results for pentacene differed more,
showing an overestimation of the mobility by roughly 26 % by the NN driven simulations.
The exact same trend was observed for IPR values, where NN-driven simulations agree
closely with the reference for anthracene but are overestimated for pentacene. The lower
agreement with the DFTB reference for pentacene in contrast to anthracene was expected
to be caused by the less accurate prediction of site energy gradients.

Again, both the DFTB reference and the ML values were too large compared to experimen-
tally determined hole mobilities. This is expected due to the employment of forces, which
lead to a low reorganization energy, similar to the previously discussed IR simulations.
Therefore, it would be expect that the NAMD simulations driven by NN models trained on
LC-DFTB2 or DFT gradients, would yield lower mobilities in better agreement with the
experiments, just as observed when using higher reorganization energies from the same
methods in the IR scheme (subsubsection 6.3.1.3). In fact, the expected trend of decreasing
mobilities was observable, although the effect turned out to be smaller in magnitude
compared to results utilizing the IR scheme.

For anthracene the simulations using A-LC-DFTB2 and A-B3LYP gradients only showed a
slight decrease of the hole mobility, similarly to pentacene using A-LC-DFTB2. Results with
A-wB97X gradients for anthracene were improved, but the mobility was still overestimated
by a factor of approximately 2 compared to the experiment. Moreover, all mobilities
obtained by simulations within the ER scheme were smaller compared to their analog
simulations within the IR scheme, also for FMO-DFTBI1. In contrast, the delocalization in
terms of IPR values were very similar for IR and ER simulations.

To investigate these findings, effective reorganization energies of anthracene were com-
pared to “real” reorganization energies. An effective reorganization energy (d.g) can be
estimated from the difference in site energies for a charged and uncharged molecule. The
geometries for these two molecules can be generated in NAMD simulations in QM/MM
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or ML/MM MD fashion, from pure QM MD simulations or from single QM optimized
structures. Various combinations of structures from different approaches and different
methods for the estimation of A.g are visualized in Figure 6.8 together with the actual
reorganization energies (1). All values are listed in the appendix (Table B.3).
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Figure 6.8.: Reorganization energies (1) and effective reorganization energies (Af) for anthracene. The latter
were obtained with DFTB1 for structures from different approaches, which are given in brackets. For the
orange curve, Ad.f was calculated with the same QM method, that was used to generate the structures.

The effective reorganization energies obtained from NN driven NAMD simulations (yellow
curve) were significantly lower compared to the actual reorganization energies (black
curve). The only exception was DFTB1, where both values agreed well with each other
and with the DFTB1 NAMD reference (blue point).

To check, weather this result was rooted in the structures, effective reorganization energies
were computed for structures from DFTB1 and LC-DFTB2 QM MD simulations, without
involving the force field. The resulting values (red curve) were only slightly higher
compared to those from NAMD simulations. Therefore, the structures do not seem to be
the reason for the discrepancy. The corresponding DFT QM MD simulations were started,
but are still running.

Until this point, all effective reorganization energies were obtained with DFTB1. Con-
trastingly, when the other QM methods were utilized to compute the site energy gap
(orange curve), the effective reorganization energies were in good agreement with the
actual A values. To prove the opposite, DFTB1 was used to calculate the effective A values
on the optimized geometries (brown curve). Here, the values decreased significantly and
were similar to their effective counterparts from NN driven NAMD simulations. This
strongly indicates, that it is not sufficient to use only forces from more accurate methods.
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In addition, it is necessary to calculate the site energies with the same method to reproduce
the full effect of the QM reorganization.

The exceptional behavior of DFTB1, where all values match, is due to the formalism of
the method. DFTB1 determines the energy as a sum of orbital energies and an additional
repulsive energy term (Equation 2.17). The repulsive term depends only on the geometry
and thus is the same for a neutral and charged molecule with the same structure. Hence, this
term is canceled out and the reorganization energy is equal to the effective reorganization
energy. This is not the case for all other QM methods.

6.3.2.4.Comparison of Computational Cost

Timings for simulations employing the ER scheme are shown in Table 6.8 and were
generated in the same way as for simulations employing the IR scheme (shown in section
6.3). For the computation of gradients in the A-approach timings were averaged on the
training-data calculations.

Table 6.8.: Comparison of timings (in ms) for the calculation of site energies plus gradients in anthracene
and pentacene with DFTB, DFT and NN models.

FMO-DFTB1 A-LC-DFTB2 A-B3LYP A-wB97X NN

ANT 3.2 7.9 X 102 2.1x10° 3.7x10° 4.7x 107!
PEN 1.0 x 10! 2.8 %103 -- -- 8.6 x 107!

Timings for FMO-DFTB1 in the IR and ER scheme (without and with gradients) for both
anthracene and pentacene were approximately the same. This shows that the time for
the computation of FMO-DFTB1 gradients is negligible compared to the calculation of
site energies, while this is not the case for NN models. Here, the prediction time for site
energies and gradients (ER) was higher compared to the prediction of only site energies
(IR). Still the computational cost for site energies and their gradients in the FMO scheme
was reduced by about one order of magnitude when turning from DFTB to NN models.
For the much more costly gradients calculated with LC-DFTB2, the respective neural
network models outperformed DFTB by three orders of magnitude. Again, the favorable
scaling with the system size becomes apparent when comparing timings for anthracene
and pentacene. Switching to even more costly DFT gradients, the speedup for the NN
models is about seven orders of magnitude for anthracene.

6.4. Conclusion and Outlook

In this chapter, non-adiabatic molecular dynamics simulations driven by neural network
based Hamiltonian elements and diagonal gradients for hole transport in OSCs were

68



6.4. Conclusion and Outlook

performed. In contrast to the KRR models!? used in the previous chapter, the NN models

allow for the learning of gradients and Hamiltonian elements simultaneously. Sampling
both the neutral and charged state of the molecules was necessary to obtain models for
stable simulations, which were partly driven by NN forces (explicit relaxation).

Hole mobilities and inverse participation ratios from the DFTB reference were reproduced
with NN models in BC-FSSH simulations utilizing precalculated reorganization energies
for implicit relaxation in anthracene and pentacene. Good agreement was also achieved in
simulations, where the relaxation was accounted for explicitly by applying FMO-DFTB1
forces. However, the NAMD simulations driven by NN models trained on A-LC-DFTB2
gradients for anthracene and pentacene, as well as A-B3LYP gradients for anthracene, gave
only a slight decrease of the mobilities. While the use of a A-wB97X model for anthracene
significantly reduced the mobility, mobilities from ER simulations were generally higher
compared to IR simulations.

The estimated effective reorganization energies from NAMD simulations explained this
finding, being lower compared to actual reorganization energies from LC-DFTB2, B3LYP
and wB97XD,. This issue could possibly be solved by employing the same method that was
used to calculate the gradients for the computation of site energies as well. So far, it cannot
be excluded that the error caused by the neural networks also contributes to this issue.
However, switching to a consistent use of the same methods for the computation of site
energies and gradients could further improve model predictions, as the gradients would
then be the actual derivatives of the site energies. This is subject to ongoing work.

Moreover, employing the Boltzmann-correction is known to lead to an overestimation
of the mobility®®. Therefore, a next step will be to extend the approach to derivatives
of couplings, which can be used to compute non-adiabatic coupling vectors. The com-
putational cost of NN models was about one order of magnitude lower than for DFTB,
two orders of magnitude lower than for LC-DFTB2 and seven orders of magnitude lower
compared to DFT. These low computational demands allow the use of NN-driven NAMD
simulations for charge transport in large-scale OSCs, such as charge transport in 2D
crystals. Such data-driven approaches could also allow the simulation of exciton transfer
in molecular materials, which can be described in a very similar way, but is significantly
more challenging in terms of computational efforts.
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7. Calculation of Supermolecular
Excitonic Couplings

Reprinted in parts with permission from
Nils Schieschke, Beatrix M. Bold, Philipp M. Dohmen, Daniel Wehl, Marvin
Hoffmann, Andreas Dreuw, Marcus Elstner and Sebastian Hoéfener:
Geometry Dependence of Excitonic Couplings and the Consequences for
Configuration-Space Sampling
J. Comput. Chem. 2021, 42, 20, 1402-1418.

7.1. Introduction

Excitonic coupling plays a key role for the understanding of excitonic energy transport,
e.g. in organic photovoltaics!31*2, However, the calculation of realistic systems is often
beyond the applicability range of accurate wave function methods, so that lower scaling
semi-empirical methods have to be used to model exciton transfer. The semi-empirical
long-range corrected density functional tight binding method with the time-dependent
linear response extension (TD-LC-DFTB2) has been benchmarked in comparison to more
accurate methods such as coupled cluster singles and doubles (CC2) for the distance
and angle dependence of supermolecular excitonic couplings. The test set consisted of
dimers of selected organic molecules (acenes, guanine, purine and nitrogen-substituted
naphthalenes). It was discovered, that TD-LC-DFTB2 yields accurate excitation energies,
which are in agreement with the CC2 reference. However, for supermolecular couplings
from an analytical diagonalization the standard confined parametrization of DFTB led to
an underestimation of couplings compared to CC2.13?

Therefore, a new parameter set was generated, which was based on the set used in
Reference [29]. In the DFTB method, the atomic orbitals are calculated from atomic Kohn-
Sham equations. Because free atomic orbitals are too diffuse, an additional harmonic
potential is introduced, which confines the atomic orbitals. So called confinement radii
for the wave function and the atomic density are usually set to reproduce atomization
energies, geometries and vibrational frequencies. This leads to a very compact basis,
resulting in accurate excitation energies and Coulomb couplings. Excitonic couplings in a
supermolecular approach, however, require a more diffuse basis, as they largely depend on
the exchange and overlap of separated fragments. The confinement radii of carbon were
subject to the optimization. Different combinations of increased radii have been tested for
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the calculation of couplings on a face-to-face anthracene dimer in comparison to CC2. A
new parameter set was chosen leading to improved results.'*?

However, this benchmark used optimized face to face or tilted molecular homo-dimers
at short distances. Because the two monomers comprising the dimer had the exact same
structure, the excitation energies were degenerate, i.e. (AE?Z)2 = 0 (c.f. Equation 3.24).
Thus, the coupling was estimated as half the energy difference of the dimer states that
were coupled. The underlying condition for this to be valid is that the two monomers have
identical geometries and a separation over large distances yields degenerate energies for
the coupling states.!>> These static model systems do not necessarily represent structures
of real crystals. Therefore, in the following the influence of geometric fluctuations on
supermolecular excitonic couplings of anthracene were investigated in comparison to
Coulomb couplings. Additionally, occurring issues regarding the supermolecular approach
were resolved by implementing a new diabatization method.

7.2. Computational Details

Sampled structures were taken from a simulation, which was performed for training data
generation in chapter 5!%°. One anthracene pair in the crystallographic b-direction in
the center of the crystal was extracted from the MD (5000 snapshots), as pairs along this
direction show the highest coupling values. Supermolecular couplings were calculated
with the analytical diagonalization approach (Equation 3.24). Excited state calculations
were performed with TD-LC-DFTB2%22>26:28.29 a5 jmplemented in DFTB+11> (version 19.1)
and density functional theory (DFT) using the ORCA program package'?>!24, For DFT the
©B97X functional'?’ with the Tamm-Dancoff (TDA) and the resolution of the identity (RI)
approximation was used. The def2-TZVP basis set!?! was employed in combination with
semi-numeric exact exchange, RI-] was used for the Coulomb contribution together with
the def2/] auxiliary basis set'??. Additionally, Coulomb couplings were calculated with
TD-LC-DFTB2.

Exciton diffusion constants were calculated using a master equation (MEQ) approach,
which was solved stochastically for a single exciton using kinetic Monte Carlo>!** sim-
ulations as described in [105]. Transfer rates were determined according to Marcus
theory!11:112 a5

Vij T A
J= = - : 1
5=\t eXp( 4kBT) (7.1)

with a reorganization energy A of 0.56 eV1?® and the coupling V. Coupling values were

obtained for the crystal structure (static) and are used beside the root mean square (RMS)
value!®® or the sampled structures to incorporate fluctuations (dynamic).

RMS = v(V2) = \J(J)? + o2 (7.2)
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A value to quantify the degree of influence is the coherence parameter!®

IS

S (v2y o
(V2) 1+ 55

C

(7.3)

reaching values near one or zero, when the coupling is defined by the average structure or
by non-equilibrium conformations, respectively. The mean-square displacement (MSD) of
the exciton averaged over 10 000 trajectories was used to calculate diffusion constants, as
described in subsection 3.2.5.

7.3. Results and Discussion

7.3.1. Geometric Influences on Supermolecular Excitonic Couplings

Sampled structures of an anthracene crystal were utilized to assess the influence of geom-
etry fluctuations on supermolecular couplings calculated with DFTB and DFT. In this case,
the two monomers were not identical and a (hypothetical) separation to large distances in
general did not yield degenerate excitation energies. This implies that in case of the MD
simulation for each snapshot not only the dimer energies AEZ, have to be calculated, but

also the individual monomers to obtain the monomer energies AEY, (Equation 3.24).

However, it must be pointed out that numerical issues can occur. If the excitation energy
gap of the dimer is smaller than the difference of monomer excitation energies, the square-
root term becomes negative and the coupling turns imaginary. This problem may be rooted
in the approximate nature of the overall approach, which assumes that the dimer states
are a linear combination of the corresponding monomer states. Approximately 1% of the
couplings turned out to be imaginary and the corresponding snapshots were neglected for
the analysis.

In Figure 7.1 the coupling distributions are shown. Calculated statistical measures can
be found in Table 7.1. The results of the supermolecular approach showed only slightly
increased mean values as well as slightly broader distributions of couplings compared
to Coulomb couplings, indicating that effects of exchange and overlap are relevant for
anthracene in b-direction to a certain extent. DFT couplings were only a little higher
in energy, but at a comparable width of the distribution. The coherence parameters of
approximately 0.97 indicated, that the coupling and thus the transfer is governed by the
average structure in general.

To estimate the influence of couplings on the transfer, diffusion constants were estimated
using a master equation (MEQ) approach, which was solved for coupling values calculated
on the static crystal structure (static) and on the RMS value of sampled structures (dynamic).
The latter contained fluctuations of couplings on top of the mean value. The calculated
diffusion constants can be found in Table 7.2, the time derivative of the exciton MSD is
shown in the appendix (Figure C.1).
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Figure 7.1.: Histograms of supermolecular excitonic couplings for sampled structures of an anthracene dimer
in b-direction as calculated with DFTB and DFT from an analytical diagonalization approach. Additionally,
DFTB Coulomb couplings are given.

Method Type mean STD RMS C
Coulomb 32 5 33 0.979

LC-DFTB2 supermol. 39 8 40 0.963

DFT supermol. 47 8 48  0.972

Table 7.1.: Analysis of the histograms: mean values, standard deviations, root mean square values as in
Equation 7.2 and coherence parameters as in Equation 7.3.

Differences between the diffusion constants were small and in agreement with the experi-
mental value of 5 X 1078 m? s71136, As expected, diffusion was faster with higher coupling
values, but the influence of short range effects overall was low. Comparing values ob-
tained by static and dynamic couplings, fluctuations turned out to have a minor impact
on diffusion constants. The coupling was mostly defined by the average structure, while
non-equilibrium structures seemed to account for a small additional enhancement of the
coupling, leading to a slightly better agreement with the experiment.

Coulomb Supermol.
LC-DFTB2 LC-DFTB2 LC-DFT
Static 2.6 4.4 5.9
Dynamic 3.5 5.2 7.6

Table 7.2.: Diffusion constants (in 1078 m? s™!) for exciton transfer along a linear chain of crystal anthracene
in b-direction calculated with a MEQ approach with static and dynamic (RMS) coupling values. The
experimental value is 5 X 1078 m? s71136,
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7.3.2. An Improved Approach for Supermolecular Couplings

The simple approach for the calculation of supermolecular couplings employing the
analytical diagonalization presents two issues. Firstly, if the excitation energy gap of the
dimer is smaller than the difference of monomer excitation energies, the resulting coupling
is imaginary and thus nonphysical. Secondly, only the magnitude of the coupling can be
calculated with this approach, whereas information about the sign is lost completely. While
this may not be an issue for dimers exhibiting a constantly large value of the coupling
without sign changes, a continuous sign is necessary for use in transfer simulations. The
relative sign must be consistent within a dimer along a trajectory and also between different
pairs of fragments. These requirements hold for both Coulomb and supermolecular
couplings. The sign of a set of atomic transition charges and thus the coupling is generated
randomly. This is due to the phase of the orbitals (resp. the orbital coefficients) in DFTB
being initialized randomly regarding their sign.

To address the issue of numerical instability, a more advanced method for the computation
of supermolecular couplings was successfully implemented. It is based on a diabatization
scheme and was developed by Aragé et al.’*>*. The details are described in subsection 3.2.4.
Comparing the new approach to the previously used analytical diagonalization, no addi-
tional calculations had to be run. This means both approaches are comparable regarding
their computational cost.
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Figure 7.2.: Coulomb and supermolecular couplings for anthracene in b-direction without and with the sign
tracking procedure.

Until this point, the absolute value of the coupling was used for Coulomb as well as
supermolecular couplings. This is a result of orbital coefficients and thus the atomic
transition charges (ATQs) and transition dipoles (TDPs) fluctuating along a trajectory in
an arbitrary manner, which directly transfers to nonphysical fluctuations of the coupling
(cf. Figure 7.2). Test calculations showed, that artificially inverting the sign of ATQs/TDPs
of one monomer inverts the sign of the coupling, while the magnitude is not affected.
Performing the same for both monomers or for the dimers does not affect the sign of the
coupling. Aragé et al.’*>* proposed to set one transition charge with a large magnitude
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to always be positive. If this particular charge is found to be negative, the sign of all
elements of ATQs/TDPs for the specific monomer are inverted. In most of the cases this
procedure led to a consistent sign for both Coulomb and supermolecular couplings from
diabatization, as observed in Figure 7.2.

During excessive sampling however, some structures occurred, where this procedure could
not be applied successfully. This issue occurred since the previously chosen transition
charge reached values around zero and eventually were negative, although most other
transition charges did not change their sign. To circumvent this problem a more general
procedure was implemented. Interpreting the ATQs as an n-dimensional vector, where n
is the number of atoms in the molecule, the scalar product is a measure of similarity of
two different sets of ATQs. A positive scalar product indicates that both vectors point in
the same direction, while a negative scalar product indicates opposing directions. Setting
one set of ATQs as a reference from the beginning, all signs of other ATQs are inverted
whenever the scalar product is negative. This procedure was successful in all encountered
cases and is used for Coulomb and supermolecular couplings throughout the following.
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Figure 7.3.: Time series of excitonic couplings of an anthracene dimer in a-direction. Coulomb and super-
molecular couplings from a diabatization with ATQs/TDPs are shown as obtained with TD-LC-DFTB2.

The distributions of couplings with corrected relative signs for anthracene in a-and b-
direction are shown in the appendix (Figure C.2). For the a-direction the use of the
diabatization scheme was crucial to get reasonable results, as the analytical diagonalization
approach led to 53 % of imaginary values that had to be excluded. Figure 7.3 shows a time
series of couplings for the a-direction in anthracene. For Coulomb and supermolecular
couplings from ATQs, no observable discontinuities were observed, while some huge leaps
for supermolecular couplings from TDPs occurred. This indicates that representing the
adiabatic and diabatic states in terms of a three-dimensional vector is not sufficiently
accurate for some geometries. The most accurate representation would be achieved
through transition densities, to which atomic transition charges seem to be a reasonably
fine-grained and reliable approximation.
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7.4. Conclusion and Outlook

An MD simulation was used to investigate the influence of geometry fluctuations on
supermolecular excitonic couplings for an anthracene crystal in comparison to Coulomb
couplings. At short distances, exchange and overlap contributions can have a significant
effect on excitonic couplings, enhancing the long range dominated Coulomb part. However,
small shifts and tilts of the neighbors in the crystal structure, as observed during an MD
simulation of a crystal, showed a decreasing effect on these contributions. Apparently,
anthracene molecules are packed in such a way that short range effects are reduced. Short
range molecular interactions could lead to strong Pauli repulsion in case of overlapping
wave functions and could thus destabilize, e.g., the crystal structure. Therefore, stable
crystal structures could exhibit conformations for which repulsion due to overlapping wave
functions is minimized. This might explain the reduced importance of these effects for
excitonic couplings of dimers occurring in organic crystals. Approximating the coupling
in terms of Coulomb coupling and thus neglecting short range effects should therefore be
justified in most cases. On the other hand, the benchmark!3? also showed an overestimation
of LC-DFTB2 Coulomb couplings at long distances. Hence, a calculation of supermolecular
couplings can be reasonable at least for comparison. Additionally, effects on the transfer
in organic crystals cannot be completely excluded and may be interesting to investigate in
direct transfer simulations with non-adiabatic MD in the future.

The diabatization scheme implemented and tested is clearly preferable to the previously
used analytical diagonalization approach. Its flexibility allows for the inclusion of multiple
locally excited and charge transfer states, while circumventing the numerical issues and
keeping information about the sign of the coupling. Additionally, in the context of this
scheme, a generally applicable procedure for generating a consistent relative sign for
molecular pairs along and within trajectories was implemented, which works for both
supermolecular and Coulomb couplings.
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8. Exciton Transfer Simulations in Organic
Semiconductors driven by Machine
Learned Hamiltonians and Derivatives

8.1. Introduction

The chapters 5 and 6 mostly dealt with charge transfer. Nevertheless, within the approach
used in this work, the differences between charge and exciton transfer in terms of the
methodology are quite small. The most significant change is the calculation of the coarse-
grained transfer Hamiltonian. For charge transfer, the orbitals of a molecule are assumed
to be unaffected by the charge occupation. In practice this means, that only the orbitals
of the neutral molecules have to be computed and the site energies and couplings can be
obtained from the orbitals of interest (usually HOMO or LUMO).!?

This approximation does not hold for excitons. The excitation energy is different from, e.g.,
the HOMO-LUMO gap, due to electron correlation. Hence, a calculation of the ground
state is not sufficient and an excited state calculation becomes necessary, which comes at
a higher computational cost compared to a ground state calculation.

Apart from the different origin of the transfer Hamiltonian elements, the description of
the transfer itself is almost the same. The coupled equations of motion are solved with
the same algorithms and there are only slight differences in the feedback from electronic
to nuclear degrees of freedom. The quantum forces for explicit relaxation are calculated
either from the gradients of the transfer Hamiltonian or via a A-SCF approach. In the
latter, only the involved states are of a different nature.

In this chapter, neural network (NN) models are utilized for the prediction of exciton
transfer Hamiltonian elements as well as their diagonal and off-diagonal derivatives for
anthracene and diindenoperylene.
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8.2. Computational Details

8.2.1. Generation of Training Data

An anthracene crystal was created based on an experimental crystal structure®?, containing
5 X 30 x 5 molecules along the a-, b- and c-crystallographic axes, respectively. For
diindenoperylene, the respective crystal'®” had a size of 15 X 10 X 5 molecules. Force field
parameters for both systems were derived from the general AMBER force field (GAFF)*>**.
Atomic charges were generated from the restrained electrostatic potential (RESP) fitting
procedure® %, calculated at HF/6-31G*?7-%8 level of theory using Gaussian 09%°.

After an initial energy minimization the systems were equilibrated for 1 ns with a time
step of 2 fs using the modified Berendsen thermostat!*® at 500 K in the NVT ensemble.
Subsequently, a productive classical MD simulation in the ground state was run for every
system at the same temperature for 10 ns with a time step of 2 fs. Here, the Nose-Hoover
thermostat!%? was employed. Ground state structures were saved every 5 ps. Excited state
structures were sampled in 38 QM/MM simulations with the same MD settings, with the
exception that simulation time was reduced to 200 ps with a time step of 1 fs and structures
were saved every 100 fs. The shorter simulation time was due to the computational cost of
QM/MM simulations. In every QM/MM simulation only one molecule was placed inside
the QM region, which was simulated in an excited state.

All MM MD simulations were performed with the GROMACS 2020.2 software package!%®101,
while for QM/MM MD simulations a modified version of GROMACS 2021 was used. The
latter version is combined with the DFTB+%*11°> program. As a QM method, self-consistent-
charge density functional tight binding?? utilizing a long-range corrected functional®>2®
and the time-dependent linear-response extension®®?° (TD-LC-DFTB2) was used. The
ob2-1-1/base!® parametrization was employed.

This resulted in a set of 60 000 single molecule as well as 60 000 pair structures for both
ground and excited state, which were taken from the center region of the crystals. This
applied to both the anthracene and diindenoperylene systems. Only nearest neighbor
pairs were considered. Subsequently, the elements of the transfer Hamiltonian and their
derivatives were calculated. Site energies, atomic transition charges as well as ground and
excited state forces for single molecules were obtained in vacuum from TD-LC-DFTB2 as
implemented in DFTB+, taking the parametrization from reference [29]. Additionally, su-
permolecular calculations of dimers were performed with the same method and parameter
set.

Derivatives of site energies were calculated with the A-SCF approach (Equation 3.11)
as the difference of excited and ground state forces, similar to the strategy used in the
previous chapter for charge transfer (chapter 6). Three different types of couplings were
computed. Static Coulomb couplings were obtained with only one set of atomic transition
charges, which was calculated on the unoptimized experimental crystal structure of a single
molecule once and used for all subsequent calculations. In contrast, dynamic Coulomb
couplings employ on-the-fly atomic transition charges, which change for every geometry.
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Lastly, supermolecular couplings were computed with a diabatization scheme based on
atomic transition charges of the monomers and pairs.

As mentioned, for static coulomb couplings the transition charges were kept constant
for different geometries. Thus, it was possible to calculate the derivative analytically
from the derivative of the Coulomb interaction { in Equation 3.22 with respect to atomic
coordinates. The derivatives for the other coupling types were not obtained, as there are
currently no implemented routines for derivatives of the atomic transition charges needed
for derivatives of dynamic Coulomb couplings.

8.2.2. Training and Evaluation of Machine-Learned Models

The same neural network architecture®* as presented in subsection 6.2.2 was used. Models
were trained on site energies and their gradients, static Coulomb couplings and their
gradients, or only dynamic Coulomb or supermolecular couplings, respectively. In contrast
to chapter 5, the sign tracking scheme as tested in chapter 7 was employed and NN models
were trained on the signed couplings and not on the absolute values. This is necessary
to achieve a differentiable function in case of crossing zero, which is a prerequisite for
the calculation of gradients. The models used the spatial coordinates of the atoms in the
system as inputs, from which inverse interatomic distances between atoms were calculated
as a translationally and rotationally invariant representation. For site energies and their
gradients, all intramolecular atomic distances were used. The static Coulomb couplings
and their respective gradients were represented by only the intermolecular part of the
matrix, while for dynamic Coulomb and supermolecular couplings the full matrix (intra-
and intermolecular part) was chosen.

All models received training and validation data in a 9:1 ratio, with 50 000 and 30 000 total
data points for the training of site energies and couplings, respectively. The loss on the
validation set was monitored every epoch and training was aborted if it did not improve
for more than 20 epochs.

For the training of models including gradients, the loss was calculated on both the network’s
prediction for energies and gradients with respect to input coordinates. The values were
multiplied with weighting coefficients, determining the importance of their contribution,
before summing them up for the total loss function. The relative weights of these two
parts were considered as hyperparameters of the models. Merged R? scores were set as
the objective in hyperparameter optimization.

All details on the network configuration, training and hyperparameter search can be found
in the appendix Table D.1.

8.2.3. Exciton Transfer Simulations

Separate crystals were generated for the transfer simulations containing 54 X 10 X 5 (16)
molecules for anthracene in a-direction and 10 X 54 X 5 (16) molecules for anthracene
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in b-direction. One-dimensional lines of molecules along the respective directions in the
middle of each crystal were chosen for the QM region, with the number of fragments
specified in brackets above. After equilibration at 300 K, 500 structures in equidistant time
intervals of 2 ps were chosen as starting structures for subsequent simulations of exciton
transfer. The wave function was initially localized on the first molecule of the linear chain.
A time step of 0.1fs was used for the propagation of nuclei and the TDSE was integrated
numerically with the fourth-order Runge-Kutta algorithm with an integration time step of
0.01fs. The fewest switches surface hopping method with the Boltzmann-correction (BC-
SH) was used for most of the NAMD simulations with the explicit relaxation (ER) scheme.
If derivatives of the couplings were available, the SH method was employed without the BC
approximation, but employing the correct re-scaling scheme with non-adiabatic coupling
vectors (NACVs). Averages of observables were calculated on 500 trajectories, which were
simulated for 1 ps each, while the first 200 fs were regarded as initial equilibration of the
exciton. All transfer simulations were performed within a local version of GROMACS 4.6
where the NN as well as the SH/BC-SH methods were implemented. Values of mean square
displacement (MSD), inverse participation ratio (IPR) and exciton diffusion constants were
obtained from the simulations as averaged over all run trajectories (c.f. subsection 3.2.5).

8.3. Results and Discussion

8.3.1. Analysis and Preparation of the Data-Set

Consistency of calculated properties and generated data sets is important, especially for
the application in machine learning. If there are inconsistent or wrong data points, the
models may be prevented from finding the desired patterns in the overall data set and from
learning their data accurately. Therefore, the generated data should be carefully analyzed
beforehand, which is demonstrated in the following.

For all investigated anthracene structures, the energetically lowest excitation was domi-
nated by the HOMO to LUMO transition and additionally showed the highest oscillator
strength. This state was separated from higher lying excitations by an energy gap of
approximately 800 meV. Hence, this state was chosen as the state of interest for the gener-
ation of the data sets. For supermolecular calculations the diabatization was performed
with the two lowest transitions of every monomer.

The distributions of site energies are depicted in Figure 8.1 and showed a Gaussian shape.
Site energies for ground state structures had a mean of 3.03 eV with a standard deviation
of 0.14 eV. While the mean value for excited state structures was shifted to a lower value
of 2.80 ¢V, the distribution was broader with a standard deviation of 0.17 eV. This was
expected due to the relaxation of the molecule in the excited state. The difference in site
energies from ground and excited state is an estimate of the reorganization energy. Here,
this value was not meaningful, because the ground state structures from the force field
and the QM method deviate.
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Figure 8.1.: Distribution of site energies for anthracene molecules. Geometries were sampled in ground and
excited state.

The distributions of couplings for both crystallographic directions and for all coupling types
are shown in Figure 8.2. Again, all distributions exhibited a Gaussian shape. No significant
differences between ground and excited state structures were observed. Mean values for
static and dynamic Coulomb couplings for both a- and b-directions were approximately
the same with 13 meV and 30 meV, respectively. Standard deviations slightly increased
when including fluctuations of ATQs. Supermolecular couplings for the b-direction were
comparable to Coulomb couplings, while for the a-direction, the supermolecular couplings
were only half the size of the Coulomb couplings. Results for the b-direction were in
agreement with reported values of 29 meV for DFT TrEsp couplings!® , 25 meV for super-
molecular couplings from simplified analytic diagonalization with SCS-CC2!!? and 35 meV
from DFT supermolecular couplings employing the diabatization scheme. A reported
value for supermolecular coupling (7 meV)® in the more distant and tilted a-direction
agrees well with results results shown here, while Coulomb couplings are overestimated
compared to reported DFT TrEsp couplings (5 meV)'.

Choosing the correct states for diindenoperylene was more involved, as this molecule
exhibited state swapping along the simulated trajectories. For most of the generated struc-
tures, the energetically lowest excitation was identified as the state of interest, showing the
highest oscillator strength and being dominated by the HOMO to LUMO transition. The
second excited state in these cases had an oscillator strength near zero and was dominated
by the HOMO-1 to LUMO transition.

However, for roughly 10 % and 30 % of the ground and excited state structures, respectively,
the first and second excited states swapped. This was also indicated by the shapes of the
involved orbitals, which did not change significantly along the trajectory. DFT calculations
with the wB97X (def2-TZVP) functional supported these findings, both in terms of orbital
shapes and composition of excited states. In fact, this seemed to be a DFTB issue, as no
state swapping was present for a few representative DFT calculations. Distributions of
site energies and couplings without the correction of state swapping are shown in the
appendix (Figure D.1) along with DFTB and DFT orbitals (Figure D.3).
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Figure 8.2.: Distributions of couplings for first neighbors of anthracene pairs in a- (left) and b-direction
(right). Static (constant ATQs, top) and dynamic (varying ATQs, middle) Coulomb couplings as well as
supermolecular couplings (bottom). Geometries were sampled in ground and excited state.
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Additionally, some structures were excluded from the data set, because the first and second
excited states were mixed and could not be ascribed with certainty. For instance, the first
and second excited states were both found to be a mixture of transitions from HOMO
to LUMO and HOMO-1 to LUMO. This behavior was observed in less than 2 % of the
structures. Choosing the correct state was important to obtain consistent data and led to
reasonable distributions of site energies and dynamic Coulomb couplings with fluctuating
ATQs. Static Coulomb couplings with fixed ATQs do not exhibit this issue, as the same set
of ATQs is used throughout the calculations and only the geometry changes.

Moreover, an issue was noticed when calculating supermolecular couplings for diindenop-
erylene. A two state diabatization with the correctly chosen states led to long tails in the
distributions (Figure D.2). This is rooted in the low energetic separation of the first and
second excited states of the molecule, which were found to swap for some structures as
mentioned before. As a consequence, the adiabatic states are combinations of the two
close lying diabatic states. The issue was solved by including the correctly chosen second
excited states in a four state diabatization.

Diindenoperylene
(HOMO->LUMO transition)
4 T T T T T T

| |— ground state (GS)
— excited state (ES)
— GS+ES

Normalized counts
S
T
1

" 1 1 L 1 "
0l 1.5 25 3

2
Site energy [eV]

Figure 8.3.: Distribution of site energies for diindenoperylene molecules. Geometries were sampled in
ground and excited state.

All distributions of corrected site energies and couplings can be found in Figure 8.3
and Figure 8.4. The difference of mean values of site energies from ground and excited
state structures as well as the standard deviations were lower compared to anthracene,
while couplings were generally much higher. Again, mean values for Coulomb couplings
with constant and varying ATQs were similar, but the standard deviations for the latter
were approximately doubled. This reflects the neglect of the fluctuations of the ATQs as
influence on coupling values. Supermolecular couplings were significantly lower compared
to Coulomb couplings, but agree well with a reported value (74 meV)!'? from an analytic
diagonalization approach for the a-direction employing SCS-ADC(2).

Couplings from supermolecular calculations encompass all short- and long-range contri-
butions and should by definition be larger compared to Coulomb type couplings, which
only include the long-range part. As indicated from previous applications of TD-LC-

DFTB2 Coulomb couplings to organic molecules'** and Bacteriochloriphyll a molecules!!?,
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Figure 8.4.: Distributions of couplings for first neighbors of diindenoperylene pairs in a- (left) and b-direction
(right). Static (constant ATQs, top) and dynamic (varying ATQs, middle) Coulomb couplings as well as
supermolecular couplings (bottom). Geometries were sampled in ground and excited state.
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Coulomb couplings were overestimated compared to supermolecular couplings. This is in
line with the findings in this work.

8.3.2. Model Training and Evaluation

All trained models for anthracene converged within 1000 epochs. Similar to chapter 6,
the hyperparamters seemed to have a minor impact on the quality of the models. Here,
their predictions on 30 000 unseen training data points were used to evaluate the models.
Error metrics as well as coeflicients of determinations are summarized in Table 8.1 and
Table 8.2.

site energy stat. Coulomb cpl.

energy gradient energy gradient

MAE  4.692 14.802 0.137 0.040
max err 83.559 966.415  1.953 4.294
R?  0.999 0.999 1.000 1.000

Table 8.1.: Quality metrics for models predicting site energies and their derivatives as well as static Coulomb
couplings and their derivatives for anthracene: mean absolute error (MAE), maximum error and coefficient
of determination (R%). All metrics except R?-scores in meV (meV A™").

Site energies and their derivatives as well as static Coulomb couplings and their derivatives
were learned almost perfectly. All R? values were near 1. Mean absolute errors were orders
of magnitude lower compared to the mean values of the references. Additionally, no strong
outliers can be seen in Figure 8.5.

dyn. Coulomb cpl. supermol. cpl.

MAE 3.055 2.716
max err 27.305 129.689
R? 0.972 0.958

Table 8.2.: Quality metrics for models predicting dynamic Coulomb couplings and supermolecular couplings
for anthracene: mean absolute error (MAE), maximum error and coefficient of determination (R?). All
metrics except R?-scores in meV.

Usually, couplings for the application to charge and exciton transfer are represented by
the intermolecular part of the inverse distance matrix, as mentioned and used in chapter 6.
This was also successfully performed for static Coulomb couplings. For the two other
coupling types, however, this representation led to a low accuracy of the model predictions.
Switching to the full representation by inclusion of inter- and intramolecular parts of
the inverse distance matrix, the quality of the models was improved significantly. This
may be rooted in the internal geometric fluctuations, which affect these coupling types
strongly and which are represented in the intramolecular blocks of the matrix, rather than
in the intermolecular block. Still, the dynamic Coulomb couplings and supermolecular
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couplings were learned less well compared to static Coulomb couplings. Mean absolute
errors were one order of magnitude higher and R? values only reached 0.96 to 0.97. The
distributions of prediction versus reference values shown in Figure 8.6 were broader
and showed more deviations. For supermolecular couplings, a few outliers were noted.
Nonetheless, both models were comparable in quality to the pentacene models for charge
transfer couplings (c.f. subsubsection 6.3.1.1) in terms of quality and thus had to be tested
in NAMD simulations to judge the influence of errors.
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Figure 8.5.: Two-dimensional histograms of site energies, static Coulomb couplings and their gradients:
model predictions vs. TD-LC-DFTB2 targets for 30 000 structures in anthracene. Bright colors indicate high
data density, unoccupied areas shown in white.

First tests for the training of models for diindenoperylene were also performed and can be
found in the appendix (section D). This larger molecule appeared to be more difficult to
learn and models still have to be optimized further. Therefore, NAMD simulations are yet
to be performed for this molecule.

8.3.3. Time Evolution of Hamiltonian Elements

A better estimate of model quality can be given by the investigation of the evolution of site
energies and couplings along simulation time. Therefore, reference values were computed
with TD-LC-DFTB2 along 1 ps NAMD trajectories of arbitrary first neighbor pairs from the
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Figure 8.6.: Two-dimensional histograms of dynamic Coulomb couplings and supermolecular couplings:
model predictions vs. TD-LC-DFTB2 targets for 30 000 structures in anthracene. Bright colors indicate high
data density, unoccupied areas shown in white.

investigated anthracene crystals and compared with predicted values. Throughout these
simulations, one molecule carried an exciton and was relaxed by quantum forces predicted
by NN models, while the other was in the ground state. The time-series of site energies
and couplings for anthracene in b-direction are shown in Figure 8.7. The corresponding
plots for the a-direction can be found in the appendix (Figure D.4).

Predictions and reference values for site energies and static Coulomb couplings exhibited
negligible deviations, which highlights the quality of the models further. Dynamic Coulomb
and supermolecular couplings showed minor deviations, but were still able to reproduce
most of the fluctuations of the reference. Similar results were obtained for anthracene
in a-direction. These results are promising with regard to an application in transfer
simulations.

8.3.4. Comparison of Obtained Observables

In the following, the trained NN models were applied to perform NAMD simulations
of exciton transfer along linear chains of anthracene molecules in a- and b-direction.
Simulations were performed either with the BC-SH method, in cases where no derivatives
of couplings were available for the calculation of NACVs, or with the SH method, employing
the correct re-scaling scheme for atomic momenta. Throughout all simulations, the
explicit relaxation scheme was used, either with onsite or full relaxation. The former
includes only quantum forces obtained from diagonal (site energy) derivatives, while the
latter additionally includes off-diagonal (coupling) derivatives. Obtained exciton diffusion
constants are shown in Table 8.3 with the corresponding curves of averaged MSDs in the
appendix (section D).

For anthracene in b-direction, diffusion constants obtained from BC-SH simulations em-
ploying onsite relaxation and various coupling types showed rather low deviations. Higher
values from dynamic Coulomb couplings as well as supermolecular couplings may be
the result of reduced coupling fluctuations due to poorer predictions compared to static
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Figure 8.7.: Time evolution of anthracene site energies as well as different coupling types for anthracene in
b-direction. Values were calculated with the TD-LC-DFTB2 reference and NN models.

Method Relaxation coupling ANT-b ANT-a

stat. Coul. 8.9 2.1

BC-SH onsite dyn. Coul. 9.5 1.4
supermol. 10.1 0.8

SH onsite stat. Coul. 4.3 0.5
full stat. Coul. 4.8 0.4
Experiment!'#! 5.0 1.8

Table 8.3.: Exciton diffusion constants (in 1073 cm? s7!) for anthracene.

Coulomb couplings. Results in the a-direction were significantly smaller, as the average
coupling in this direction is lower. The diffusion constant obtained for supermolecular
couplings is strongly reduced, compared to static Coulomb couplings. Here, the overesti-
mation of Coulomb couplings became visible.
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The Boltzmann-correction led to an overestimation of the diffusion coefficient for the
b-direction and switching to the correct re-scaling scheme in SH simulations led to a
reduction of the values by a factor of two. The latter were in close agreement with the
experimental value. Moreover, the diffusion constants for the a-direction were decreased
in SH simulations, but were underestimated compared to the experiment. It has to be
noted, that the values for this direction were generally quite small compared to exciton
diffusion constants of other materials!*°, and thus are prone to errors. The inclusion of
derivatives for couplings in the full ER scheme did not show a significant effect. Therefore,
neglecting these terms is reasonable.

Inverse participation ratios were computed as 1.1 and 1.0 for the two directions b and q,
respectively. This indicates a strongly localized hopping mechanism for the transfer. The
obtained diffusion constants and IPR values were in agreement with recently published
simulation results'?,

Effective reorganization energies were estimated as averages of site energies for a ground
and excited state molecule in a 10 ps simulation without transfer. The obtained value of
410 meV is roughly 17 % smaller compared to the actual reorganization energy, which was
calculated with TD-LC-DFTB2 via four-point calculation (494 meV). This supports the
evidence from the analysis of the charge transfer simulations in chapter 6 and solidifies, that
it is crucial to compute the site energies and gradients with the same method. Nevertheless,
the deviations indicate either an introduction of small errors by the ML models or a conflict
of quantum and classical forces from the force field.

8.4. Conclusion and Outlook

In this chapter, non-adiabatic molecular dynamics simulations of exciton transfer were
successfully performed. The simulations were driven by neural network models, which
predicted Hamiltonian elements and their gradients.

Generating data sets for the training of machine learned models was much more time
consuming compared to charge transfer in terms of both computational effort and data
engineering. While data generation for anthracene was comparatively easy, the choice of
the correct transitions for diindenoperylene was more difficult. Additionally, the calcu-
lation of supermolecular couplings for the latter molecule required the inclusion of two
diabatic states on every monomer and thus four adiabatic states on the dimer.

The trained models for anthracene showed high performance. Site energies, static Coulomb
couplings and the gradients for both were predicted with near perfect accuracy. Models
for dynamic Coulomb couplings and supermolecular couplings performed less well, but
were still able to reproduce most of the coupling fluctuations along a time-series, which
were far more pronounced in general.

For the b-direction of anthracene, utilizing different coupling types did not lead to signifi-
cant changes in diffusion constants, while Coulomb couplings seemed to be overestimated
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in the a-direction and supermolecular couplings led to a decrease of the diffusion constant.
Employing the correct re-scaling scheme with NACVs decreased exciton diffusion con-
stants. The obtained value for the b-direction was in close agreement with the experiment.
Contributions of couplings to relaxation were negligible.

Anthracene showed a strongly localized and incoherent transfer mechanism, as indicated
by the IPR values of 1 for both directions. Diffusion constants as well as IPR values were
in agreement with reported simulation results. The effective reorganization energy was
underestimated by 17 %.

For the calculation of TD-LC-DFTB2 reference values, the time limiting step for the
Hamiltonian of the Coulomb type is the calculation of site energies and atomic transition
charges, which was in the order of about 1 s for anthracene. Supermolecular couplings are
far more costly, taking at least two computations of the dimer amounting to an increase
of computational cost by one order of magnitude. Explicit quantum forces for relaxation
require about 5s to be calculated. The time limiting prediction in NN driven simulations
is the coupling prediction, which takes roughly 0.1 ms independent of the coupling type.
Overall, the NN models outperformed DFTB by 4 to 5 orders of magnitude for anthracene.
The favorable scaling with the system size will only reinforce this performance.

Employing a fast data-driven approach is what makes these kind of cost intense simulations
possible in the first place. Now, this methodology needs to be evaluated carefully on a
bigger benchmark set to test its accuracy. Additionally, the relevance of charge transfer
excitations, which are known to couple with pure locally excited Frenkel states, should
be investigated. This may be relevent for organic molceules as well as biological light-
harvesting complexes, 42143
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9. Application: Exciton Transfer
Simulations in the Light-Harvesting
Complex i

Author Contributions:
The generation of A-charges was done by Dr. Sebastian Hofener and Dr. Monja Sokolov.
All simulations and analyses were performed by myself.

9.1. Introduction

Photosynthesis is one of the most fundamental energy conversion processes. Through the
absorption of sunlight by chromophore molecules, an excitation or exciton is created. This
excitation and the contained energy is subsequently transferred to a reaction center, where
it is utilized for a charge separation. Further electron transfer steps allow the synthesis of
energy-rich chemical compounds, e.g. adenosinetriphosphate (ATP), which provide the
energy for biochemical reactions in living organisms.!4*

The first step of photosynthesis, the collection and transfer of light, is called light-
harvesting. Biological light-harvesting complexes operate at extremely high quantum
efficiency, meaning the probability of an absorbed photon to reach a reaction center and
drive charge separation is high.!** To date, artificial appliances lack this highly desirable
efficiency. Therefore, these so-called antennae are interesting compounds for an inspira-
tion of a new generation of photovoltaic devices, concentrators or sensitizers for solar
cells and other appliances.*!

One of the best studied antennae is the major light-harvesting complex derived from
anoxygenic purple bacteria, e.g. from the organism Rhodospirillum molischianum (Rs.
molischianum) — light-harvesting complex II (LH2). In this a-helical transmembrane
protein, the protein scaffold serves as an embedding for the photosynthetic pigments. The
two bands in the absorption spectrum of this complex at 800 nm and 850 nm are caused by
the absorption of Bacteriochlorophyll a (BChl a) chromophores, which are arranged in two
rings of 8 (B800) and 16 (B850) molecules inside the protein complex (c.f. Figure 9.1).14°

Numerous studies'**"1*° have been conducted to investigate the properties of this and
similar systems, which mostly relied on a ground state description of the complex. Thus,
the dynamics of the excited state as arising from the coupled motion of electronic and
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nuclear degrees of freedom could not be simulated. Only these kind of simulations would
be able to reliably reveal transfer mechanisms and time scales. The size of the system,
with 24 chromophores and more than 100 atoms each, renders the necessary quantum
mechanical (QM) description and thus the direct dynamics challenging.

So far, only one study'® managed to perform such a simulation, at the investment of

tremendous computational resources. Sisto et al. employed an ab initio non-adiabatic
molecular dynamics (NAMD) simulation of the LH2 complex from Rhodoblastus acidophilus
with time-dependent density functional theory (TD-DFT) and the surface hopping (SH)
approach. Due to the extreme computational demands of such simulations, only a single
trajectory of 300 fs length was run via a highly parallellized GPU accelerated approach.
Longer trajectories and more sampling of different initial conditions would be necessary
to obtain observables reliably.

With the methodological progress presented throughout the previous chapters, it is now
possible to perform on-the-fly exciton transfer simulations with NAMD methods for
LH2 without having to invest an enormous amount of resources. This becomes feasible
through the availability of neural networks for the efficient prediction of exciton transfer
Hamiltonian elements. In the following, preliminary results are presented as a proof of
principle application to light-harvesting complexes. 1000 trajectories with a length of
10 ps were run for each ring separately.

Figure 9.1.: Top (left) and side (right) view of BChla chromophores in LH2. B800 depicted in red, B850 in
blue. The magnesium ions are given as black spheres.
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9.2. Computational Details

9.2.1. Generation of Training Data

Subject to this investigation is the LH2 complex from the purple bacterium Rs. molischi-
anum. The simulated system was taken from reference [151] and is based on the crystal
structure with the PDB code 1LGH!%. The complex was inserted into a lipid bilayer
(1-Palmitoyl-2-oleoylphosphatidylcholine) and solvated in water.

For classical MD simulations the GROMACS program package!?®1%! (version 2020.2) with the
CHARMM27%2 force field was used. After an initial energy minimization the temperature
was equilibrated at 300 K for 5 ns using the Berendsen thermostat!®® and position restraints
on the protein, chromophores and lipids. Afterwards, the pressure was equilibrated for
5ns at 1 bar with the Parrinello-Rahman barostat'>*. Subsequently, the position restraints
were removed in two simulation steps of 5ns length each, first for the lipids, then for
the protein and chromophores. To sample structures, productive simulations of 200 ns
with the Nose-Hoover thermostat!?? and the Parrinello-Rahman barostat were performed.
Atomic positions were saved every 40 ps, resulting in 5000 snapshots. The time step in all
simulation steps was 1 fs.

Subsequently, the elements of the transfer Hamiltonian were calculated. Site energies
and atomic transition charges were obtained in vacuum from long-range corrected self-
consistent-charge density functional tight binding?*2?>?° with the time-dependent linear-
response extension?®?* (TD-LC-DFTB2) as implemented in DFTB+%*11>, taking the parame-
trization from reference [29]. Static Coulomb couplings were obtained with only one set of
atomic transition charges, which was calculated on the unoptimized experimental crystal
structure of a single BChl a molecule once and employed for all subsequent calculations.
Only nearest neighbor pairs inside the two respective rings of BChl molecules were
considered. To restrict the computational cost, the phytyl tail of the BChla molecule is
not considered in the QM calculations. This reduces the QM region from 140 to 85 atoms
per molecule.

9.2.2. Training and Evaluation of Machine-Learned Models

The same neural network architecture! as presented in subsection 6.2.2 was used. One
model was trained for the prediction of site energies for all BChla molecules. A second
model was trained on Coulomb couplings for all intra-ring couplings of only nearest neigh-
bors. The models used the spatial coordinates of the atoms in the system as inputs, from
which inverse interatomic distances between atoms were calculated as a translationally
and rotationally invariant representation. For site energies, all intramolecular atomic
distances were used, while for couplings only the intermolecular part was chosen.

All models received training and validation data in a 9:1 ratio, with 100 000 and 50 000
total data points for the training of site energies and couplings, respectively. The loss
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on the validation set was monitored every epoch and training was aborted, if it did not
improve for more than 500 epochs for site energies and 100 epochs for couplings.

All details on the network configuration, training and hyperparameter search can be found
in the appendix section E.

9.2.3. Exciton Transfer Simulations

The same starting structure used for the sampling of training data was utilized to sample
structures in equidistant time intervals of 1 ps as initial condition for subsequent NAMD
simulations of exciton transfer. Both rings of chromophores (B800, B850) were simulated
separately, because no inter-ring couplings were calculated so far. The wave function
was initially localized on one molecule of the respective rings. A time step of 0.1fs was
used for the propagation of nuclei and the TDSE was integrated numerically with the
fourth-order Runge-Kutta algorithm with an integration time step of 0.01 fs.

The fewest switches surface hopping method with the Boltzmann-correction (BC-SH) was
used for the NAMD simulations with the implicit relaxation (IR) scheme. The reorganiza-
tion energy of 65 meV was taken from reference [155], which depicted an experimental
determination.

For an additional feedback from electronic to nuclear degrees of freedom, A-charges (Aq)
were obtained from TD-DFT calculations as the difference of atomic partial charges in
the excited and ground state. For the ground state structure of BChl a, optimized with
B3LYP!? (6-31G(d,p)*®), charges in the ground and excited state were obtained via an ESP
fit with CAM-B3LYP'*® within the KOALA program®®’. These charges were multiplied with
the diabatic occupation and added to the force field charges (g):

@i = i + laii|*Agii . (9.1)

1000 trajectories were run for 10 ps each for both of the two rings. All transfer simulations
were performed within a local version of GROMACS 4.6, where the NN as well as the BC-SH
methods were implemented. Values of mean square displacement (MSD) and inverse par-
ticipation ratio (IPR) were obtained from the simulations, averaged over all run trajectories
(c.f. subsection 3.2.5).

9.3. Results and Discussion

9.3.1. Model Training and Evaluation
Analyzing the obtained data set revealed the lowest excited state to be the state of interest,

which was the transition with the highest oscillator strength and was dominated by the
HOMO to LUMO transition. No state swapping occurred.
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All trained models for BChla converged within 1000 epochs. Here, the quality of their
predictions was evaluated on 10 000 unseen training data points. Error metrics as well as
coefficients of determinations are summarized in Table 9.1, two-dimensional histograms
of model predictions versus TD-LC-DFTB2 reference values are given in Figure 9.2

site energy coupling

MAE 10.466 0.345
max err 112.009 4.939
R? 0.876 1.000

Table 9.1.: Quality metrics for models predicting site energies and couplings for Bacteriochlorophyll a: mean
absolute error (MAE), maximum error and coefficient of determination (R?). All metrics except R?-scores in
meV.
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Figure 9.2.: Two-dimensional histograms of site energies and couplings: model predictions vs. TD-LC-DFTB2
targets for 10 000 structures of BChla. Bright colors indicate high data density, unoccupied areas shown in
white.

Models for BChl a site energies required significantly more data compared to anthracene
in the previous chapter. 100000 data points were necessary to reach a coefficient of
determination of only 0.9. The mean absolute error of 10 meV was still more than two
orders of magnitude lower compared to the mean of the reference values. Additionally, the
two-dimensional histogram showed a high data density on the diagonal line, indicating that
most of the data set is learned accurately. Moreover, no extreme outliers were visible.

Contrastingly, Coulomb couplings with static atomic transition charges were learned
almost perfectly. This is in accordance with results for anthracene from the previous
chapter.

9.3.2. Comparison of Obtained Observables

The trained NN models were applied to perform 1000 NAMD simulations of exciton
transfer in each of the two rings of chromphores in LH2 independently. Single trajectories

97



9. Application: Exciton Transfer Simulations in LH2

with a length of 10 ps took a time of approximately 16 h and 23 h for B800 and B850
chromophores on single CPU cores, respectively.

Firstly, the degree of delocalization was investigated. The B850 chromophores exhibited an
average coupling of 60 meV, which is in the order of the reorganization energy (65 meV).
Therefore, transfer in this ring was expected to be highly delocalized and Marcus theory
could not be applied. B800 chromophores on the other hand showed a small coupling of
only 5meV and the excitons were thus expected to be localized. These expectations were
confirmed. Inverse participation ratios were calculated for both rings and are depicted in
Figure 9.3. Excitons in the B800 ring were strongly localized and occupied 1.3 molecules
on average. Contrastingly, excitons in the B850 ring were delocalized over approximately
a third of the whole ring (4.7 molecules).
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Figure 9.3.: Averaged inverse participation ratio versus simulation time for B800 and B850 chromophores.

For an estimate of the velocity of the transfer, diffusion constants can be calculated. In
systems, where excitons are transferred along linear chains of molecules, this can be
performed easily via the mean square displacement (MSD), which is a measure of how
far an exciton traveled compared to its initial position. For an arrangement of molecules
on a ring, a simple defined MSD would be meaningless. Hence, a modified definition of
the MSD is desired, which must take into account the ring shape of the system, e.g. via
transformation into a polar coordinate system.

Without consideration of the ring shape, diffusion constants of 82 x 1073 cms™! (B800)
and 227 X 1072 cms™! (B850) were measured. Since the actually traveled distance on the
ring path is greater than just the distance to the initial position, the diffusion constant is
actually even greater in reality.
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Figure 9.4.: Averaged mean square displacement versus simulation time for B800 and B850 chromophores.

From the plot of the standard MSD (Figure 9.4) it can be observed, that the MSD initially
increased steadily until it was almost constant after a certain point. For all trajectories,
the exciton was localized on the same molecule in the first step. From this point onward,
the trajectories diverged and the exciton was transferred along the ring, either to the left
or to the right side. The MSD increased with the distance to the initial position and the
maximum was reached with the farthest molecule, which is the one opposing the initial
molecule. Afterwards, the excitons in different trajectories are on average spread over the
whole ring and the MSD stays constant. Assuming isotropic transfer due to the symmetry
of the ring structure, the excitons should have traveled across one fourth of the ring on
average. By measuring the diameter as the distance of two opposing molecules the traveled
distance can be calculated as one fourth of the perimeter of each ring. This can be used for
a rough estimate of the diffusion constant under consideration of the ring. The estimated
diffusion constants were 140 X 107> cms™! (B800) and 435 x 10~3 cm s™! (B850). These
values were much larger compared to singlet exciton diffusion in organic semiconductors,
which highlights the efficiency of biological light-harvesting complexes.!>

For a visualization of the transfer in single trajectories, the diabatic occupation of the sites
was plotted against the simulation time (Figure 9.5 and Figure 9.6). A transfer in discreet
hops between neighboring molecules was observed for chromophores in the B800 ring,
while the exciton was rapidly transferred in a delocalized state in the B850 ring.
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9. Application: Exciton Transfer Simulations in LH2
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Figure 9.5.: Diabatic occupation of the sites in the B800 ring versus the simulation time for a single trajectory.
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Figure 9.6.: Diabatic occupation of the sites in the B850 ring versus the simulation time for a single trajectory.
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9.4. Conclusion and Outlook

In this chapter, non-adiabatic molecular dynamics simulations of exciton transfer in
the LH2 complex were presented. With the aid of machine learning techniques, 1000
simulations were run for both rings of chromophores, with a length of 10 ps each, without
the need to invest tremendous computational resources. This is important for sufficient
sampling, when observables are to be obtained.

It was shown, that excitons within the B800 ring were strongly localized and transferred
in discreet hops to neighboring molecules. In contrast, the exciton was delocalized over
approximately 5 molecules in the B850 ring, where transfer was significantly faster and
coherent. The diffusion constant as a measure for the velocity of the transfer was roughly
estimated to be in the order of about 100 X 10~ cm s™! and 300 x 10~ cm s™! for B800 and
B850, respectively. The transfer was much faster compared to singlet exciton transfer in
organic semiconductors in general.

In future experiments, it will be the objective to include inter-ring couplings between
B800 and B850 molecules, to also simulate the transfer between both rings. Additionally,
diagonal and off-diagonal gradients can be learned together with the transfer Hamiltonian
elements for the employment of more advanced propagator methods and the explicit
treatment of exciton relaxation. Moreover, a strategy to account for the ring shape of the
system, when calculating the MSD, is highly desirable to get more accurate results for
diffusion constants.

So far, the site energies and couplings of the chromophores have been computed in vacuum
without the consideration of the protein environment. Work ongoing already deals with the
inclusion of these effects, which are known to be of importance to describe the differences
of complexes from different organisms or mutants like the LH3 complex.%3-113:159

This work represents a milestone in the development of efficient NAMD methods and
enables the exploration of light-harvesting complexes through simulations in new levels of
detail. Eventually, the goal is to obtain the full picture of exciton transfer from the initial
absorption of the light to the final charge separation in the reaction center. To this end,
transfer between multiple complexes, e.g. from LH2 to another LH2 and further to the
LH1 complex, which is associated with the reaction center will be investigated.
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10. Summary and Outlook

This work aimed at the integration of machine learning (ML) techniques into the multi-
scale workflow of charge and exciton transfer simulations.

In chapter 5, it was shown that simple and compact ML models can be utilized for the
conduction of non-adiabatic molecular dynamics (NAMD) simulations of charge and
exciton transfer in anthracene. Kernel ridge regression models were trained for the
prediction of transfer Hamiltonian elements of anthracene and did not require much effort
during the training process. The semiempirical DFTB reference method was reproduced
closely in ML driven simulations with the mean-field Ehrenfest and surface hopping
algorithms. However, the models did not accelerate the charge transfer simulations and
training set sizes were highly limited, which may prohibit the training of more complex
and larger molecules. Additionally, there was no feasible extension for the prediction
of derivatives of the Hamiltonian elements, which are needed for the correct re-scaling
of momenta and for explicit relaxation. Instead, approximations (implicit relaxation and
Boltzmann-correction) had to be used, which introduce errors and may not be generally
valid.

These issues were addressed in the next chapter (chapter 6). Neural network (NN) models
provided a significant boost in efficiency compared to standard DFTB and an even larger
speedup for higher levels of theory. Additionally, the favorable scaling of the models
compared to QM methods amplified this advantage for larger molecules. Yet, the great
performance of the NN models came with the downside of complex and difficult train-
ing procedures. The NN models were simultaneously trained on diagonal Hamiltonian
derivatives in addition to the Hamiltonian elements, so the approximation of implicit
relaxation could be dropped. This allowed for explicit relaxation without setting limits to
the training set size. Simulations with the implicit relaxation scheme agreed well with
the reference method, while for explicit relaxation effective reorganization energies were
underestimated. This issue was traced back to an inconsistent use of methods for the
calculation of site energies and gradients. However, an error contribution introduced by
the ML models could not be excluded completely. This will be addressed in future work.

The next two chapters extended the methodology to exciton transfer. In chapter 7, the
influence of short range effects via supermolecular couplings was investigated, which was
indicated to be small in first tests. Nevertheless, it can be beneficial to calculate super-
molecular couplings, as Coulomb couplings were shown to be overestimated. Furthermore,
a diabatization scheme for more accurate and reliable computations of supermolecular
couplings was implemented. In this course, a sign tracking procedure for all different
coupling types was implemented as well.
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10. Summary and Outlook

The following chapter demonstrated the difficulties and importance of the generation of a
correct training data set for exciton transfer in the case of diindenoperylene (chapter 8),
although simulations with this compound are still pending. This chapter can also be seen
as a continuation of chapter 6. Neural network models were expanded to the prediction of
off-diagonal derivatives, which are necessary for the correct re-scaling of momenta with
non-adiabatic coupling vectors, overcoming the Boltzmann-correction. The application to
anthracene could reproduce experimental diffusion constants and showed highly localized
transfer.

The final results chapter (chapter 9) combined the developments of this thesis and cul-
minated in the application of on-the-fly NAMD simulations to exciton transfer in the
light-harvesting complex II (LH2) from purple bacteria. This biological complex contains
huge chromophores, which are arranged in two rings (B800, B850). To date, only one
study was able to perform a single simulation of 300 fs length, which is insufficient for
sampling. This was due to the tremendous computational cost of such simulations, which
were lifted by the developed data-driven approach shown here. The transfer in both rings
was simulated for 10 ps in 1000 trajectories each, with a feasible amount of resources.
Excitons in the B800 ring were highly localized and transferred in discreet hops, while the
B850 chromophores induced coherent transport and a spread of the exciton on multiple
molecules. Estimated exciton diffusion constants for both rings appeared much higher
compared to those of organic semiconducting materials.

The underestimation of explicit relaxation must be analyzed by retraining NN models
on data, which was generated with a consistent employment of the same method for
the calculation of site energies and gradients. Future work should focus on a thorough
examination of the accuracy of the presented approach, e.g. by extending the work
in chapter 8 to more organic semiconductor compounds in a benchmark study. The
simulations of light-harvesting complexes should be refined by the use of more advanced
couplings, explicit treatment of relaxation and the correct re-scaling scheme with non-
adiabatic coupling vectors. Obtaining data for comparison with experimental measures,
e.g. lifetimes and 2D electronic spectra, should validate the shown approach. A more
accurate way of estimating the diffusion constant for such a nonlinear system should also
be investigated. Moreover, the integration of further extensions for the method, e.g. the
inclusion of electrostatic effects induced by the environment, are highly desired.

This work contributes to the methodological development of highly efficient methods
for multi-scale simulations of charge and exciton transfer. Especially the latter enable
the possibility for a refinement of the understanding of exciton transfer in terms of
structural features, mechanisms and time scales. Now, large scale simulations, aiming
at a comprehensive picture of the complete light-harvesting process in photosynthetic
organisms from absorption to charge separation, are in reach.
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A. Charge and Exciton Transfer
Simulations in Organic Semiconductors
driven by Machine Learned
Hamiltonians

Detailed Propagation Results
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Figure A.1.: Time evolution of the averaged MSD in a- and b-direction using the MFE method for hole
propagation with DFTB and ML-models with various training-size.
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A. Charge and Exciton Transfer Simulations driven by Machine Learned Hamiltonians
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Figure A.2.: Time evolution of the averaged MSD in a- and b-direction using the BC-FSSH method for hole
propagation with DFTB and ML-models with various training-size.

Exp. | DFTB | ML-100 | ML-1000 | ML-5000 | ML-10000 | ML-25000
a| 1.1 1.4 3.2 1.5 1.7 1.7 1.6
MFE b| 2.9 3.4 3.7 3.7 3.5 3.1 3.2
a| 1.1 8.0 10.1 7.7 8.7 7.6 8.1
BC-FSSH b| 2.9 13.3 14.3 11.1 10.6 11.8 11.0

Table A.1.: Hole mobility in cm? V™! s7! as calculated from the averaged MSD in a- and b-direction using the
MFE and BC-FSSH methods for charge propagation with DFTB and ML-models with various training-size.
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A. Charge and Exciton Transfer Simulations driven by Machine Learned Hamiltonians

Exciton Transfer
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Figure A.3.: Time evolution of the averaged MSD in a- and b-direction using the BC-FSSH method for exciton
propagation with a ML-model with a training-size of 1000.
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B. Charge Transfer Simulations in Organic
Semiconductors driven by Machine
Learned Hamiltonians and Diagonal
Forces

Training and Evaluation of Machine Learned Models

Models were trained using version 1.0.3 of the pyNNsMD code available from GitHub
(https://github.com/aimat-lab/NNsForMD), using TensorFlow 2.4.1 [117] in Python 3.8.8
on NVidia GTX1080Ti cards. Visualizations were generated using Matplotlib version 3.3.4
[160]. All models used a batch size of 32 and were trained for at most 1000 epochs with
an initial learning rate of 1 x 1073, The learning rate was reduced as training progressed
to improve convergence: the models were trained for 20 steps at 1 X 1073, 100 steps at
1x 107, 400 steps at 1 x 10> and 480 steps at 1 X 107°.

Hyperparameter search was performed using the Hyperband algorithm as implemented
in the Keras Tuner package (version 1.0.1) using a culling factor of 3. Optimizable hyper-
parameters and the optimal configurations for each model found in the hyperparameter
search can be found in Table B.1 and Table B.2.

NN depth | neurons/layer | weight reg.
search space | 3,4 o0r5 [20, 1000] L1, L2 or None

site energies 4 70 None
ANT couplings 3 60 None

site energies 3 30 None
PEN couplings 3 290 L2

Table B.1.: Hyperparameter search space and parameters of best models obtained from hyperparameter
search. These models were trained to predict only energies (site energies or couplings).
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B. Charge Transfer Simulations driven by Machine Learned Hamiltonians and DiagonalForces

NN depth | neurons/layer | weight reg. | E loss weight

search space | 3,4 0r5 [20,1000] L1, L2 or None [1,5000]
FMO-DFTB1 3 80 L2 581
ANT A-LC-DFTB2 4 60 None 4421
A-B3LYP 3 50 None 4981
A-0wB97X 5 50 None 4731
PEN FMO-DFTB 3 110 L2 4781
A-LC-DFTB2 4 150 L2 4091

Table B.2.: Hyperparameter search space and parameters of best models obtained from hyperparameter
search. These models were trained to predict site energies and their derivatives.

Reorganization Energies

It should be noted, that the gradients for the A-wB97X model were generated with the
wB97X functional, while the reported value for A''* was computed with the ©B97XD
functional. We do not expect this to have a qualitative impact on the results.

Table B.3.: Reorganization energies (1) as calcualted from QM and used for implicit relaxation. Effective
reorganization energies (d.f) as estimated from NAMD simulations (DFTB or NN) employing explicit
relaxation as well as QM-MD simulations with DFTB. All values in meV.

Energies Forces ANT  PEN

DFTB1 DFTB1 91 37114

] LC-DFTB2 LC-DFTB2 138 91
B3LYP B3LYP 142114 ggll4

wB97XD wB97XD 202114 170114
FMO-DFTB1 FMO-DFTB1/MM 86 38

NN (FMO-DFTB1) NN (FMO-DFTB1)/MM 87 38

NN (A-LC-DFTB2) NN (A-LC-DFTB2)/MM 102 48

NN (A-B3LYP) NN (A-B3LYP)/MM 96 --

NN (A-0B97X) NN (A-wB97X)/MM 130 --

At DFTBI1 DFTB1 94 --
LC-DFTB2 LC-DFTB2 109 --

DFTBI1 DFTB1 93 --

LC-DFTB2 LC-DFTB2 132 --

DFTB1 DFTB1 91 --

DFTBI1 LC-DFTB2 109 --

DFTB1 B3LYP 112 --

DFTBI1 wB97XD 167 --
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B. Charge Transfer Simulations driven by Machine Learned Hamiltonians and DiagonalForces

Detailed Propagation Results

Simulations Employing the IR Scheme
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Figure B.1.: Mean suqare displacement (MSD) versus simulation time for anthracene a-direction. Simulations
employed the implicit relaxation scheme with reorganization energies from various QM methods and the
Hamiltonian elements were obtained from (a) FMO-DFTB1 or (b) NN models.
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Figure B.2.: Mean suqare displacement (MSD) versus simulation time for anthracene b-direction. Simulations
employed the implicit relaxation scheme with reorganization energies from various QM methods and the
Hamiltonian elements were obtained from (a) FMO-DFTB1 or (b) NN models.
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B. Charge Transfer Simulations driven by Machine Learned Hamiltonians and DiagonalForces
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Figure B.3.: Mean suqare displacement (MSD) versus simulation time for pentacene TI-direction. Simulations
employed the implicit relaxation scheme with reorganization energies from various QM methods and the
Hamiltonian elements were obtained from (a) FMO-DFTB1 or (b) NN models.
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B. Charge Transfer Simulations driven by Machine Learned Hamiltonians and DiagonalForces

Simulations Employing the ER Scheme
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Figure B.4.: Mean suqare displacement (MSD) versus simulation time for anthracene in a (a) and b-direction
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