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Abstract

It is argued that suitably trained neural language models exhibit key properties of epistemic

agency: they hold probabilistically coherent and logically consistent degrees of belief, which

they can rationally revise in the face of novel evidence. To this purpose, we conduct compu-

tational experiments with RANKERS: T5 models [Raffel et al. 2020] that are pretrained on care-

fully designed synthetic corpora. Moreover, we introduce a procedure for eliciting a model’s

degrees of belief, and define numerical metrics that measure the extent to which given

degrees of belief violate (probabilistic, logical, and Bayesian) rationality constraints. While

pretrained RANKERS are found to suffer from global inconsistency (in agreement with, e.g.,

[Jang et al. 2021]), we observe that subsequent self-training on auto-generated texts allows

RANKERS to gradually obtain a probabilistically coherent belief system that is aligned with logi-

cal constraints. In addition, such self-training is found to have a pivotal role in rational evi-

dential learning, too, for it seems to enable RANKERS to propagate a novel evidence item

through their belief systems, successively re-adjusting individual degrees of belief. All this,

we conclude, confirms the Rationality Hypothesis, i.e., the claim that suitable trained NLMs

may exhibit advanced rational skills. We suggest that this hypothesis has empirical, yet also

normative and conceptual ramifications far beyond the practical linguistic problems NLMs

have originally been designed to solve.

Introduction

Neural language models (NLMs) are powerful natural language processing systems which

have sparked a scientific revolution in the field of AI & NLP [1–4] and excel at such diverse

tasks as, e.g., machine translation [5], text summarization [6], question answering [7, 8], or

natural-language inference [9, 10]. The performance of these systems has exploded with the

advent of the so-called Transformer network architecture [11] and has been increasing steadily

over the last years (e.g., [12]) through further optimizations of machine learning algorithms

and system design, increases in model size, or quantitatively and qualitatively improved train-

ing datasets. Technically, and leaving aside all the details, NLMs are essentially probabilistic
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word prediction machines. They are, first and foremost, trained to fill in missing or next

words in a text; and they do predict a word by assigning probabilities to all words available in a

given vocabulary.

The strong performance of NLMs in natural language understanding tasks triggers the

more fundamental question whether NLMs are rational agents:

(Rationality Hypothesis) Suitably designed and trained NLMs may systematically display

advanced rational skills.

By discussing the (Rationality Hypothesis), we put the more specific questions addressed

in this study (see Q1–Q4 below) in a broader scientific context, sketching their potential rele-

vance for a variety of disciplines and fields.

Rationality is arguably a contested concept (like justice). So what exactly does it mean that a

NLM posseses advanced rational skills? We take it that such skills would include, more specifi-

cally, the abilities to reason correctly (infer, argue, and explain), to produce linguistic output

that is sufficiently stable and globally consistent, and to adjust a former output in the light of

novel evidence (or, more precisely, a linguistic representation of novel evidence). Moreover,

advanced rational behavior of NLMs would allow one to adopt an “intentional stance” [13]

towards these systems and to treat them as doxastic, if not epistemic agents holding beliefs and

acquiring knowledge. In this study, we focus on, further specify, and operationalize the afore-

mentioned epistemic competences. In doing so, we don’t, however, intend to imply that all
dimensions of rationality can be reduced to such theoretical or epistemic skills.

To say that future NLMs (trained on linguistic data) may exhibit artificial general intelli-

gence (AGI) means to endorse the Rationality Hypothesis.
The Rationality Hypothesis has ramifications far beyond the practical linguistic problems

NLMs have been developed (and are used) to solve. Normatively and conceptually, its investi-

gation may shed new light on the notion of rationality itself (see [14]), helping us to see

whether reason is an emergent property [15]: Is reliable rational behavior a cognitive macro

pattern that emerges when agents exercise basic linguistic skill (predicting missing words)? Or,

to give this a normative twist: The Rationality Hypothesis asks which, if any, rational practices

are grounded in elementary language norms. Empirically, an investigation of the Rationality
Hypothesis will potentially alter our scientific understanding of human cognition (see also [16,

17], especially so as NLMs are found to accurately predict humans’ behavioral and neural

responses to linguistic stimuli [18–20]. Accordingly, the Rationality Hypothesis evokes the pos-

sibility that humans may exhibit some kinds of advanced rational competences simply because,

and to the extent that they master a suitable language (in the sense of being able to generate

sensible texts, basically by next-word prediction). If next-word prediction were all you need

for rationality, then language acquisition might be explained without postulating Chomskyan

innate linguistic knowledge [21]; then neuro-cognitive theories of the mind could possibly dis-

pense with proper ‘rationality modules’ [22]; then so-called systems 1 and 2 in dual process

theories [23, 24] might simply correspond to different ‘modulations’ of (i.e., ways of exercis-

ing) an essentially linguistic cognitive capacity; and then the evolution of reason (as, for

instance, described by [25]) might proceed entirely through an evolution of language usage,

and without changes in the underlying neuro-cognitive mechanisms and their genetic basis.

All in all, these considerations stress the significance and fruitfulness of the Rationality
Hypothesis.

The breathtaking performance of NLMs, pro-active science communication (e.g., surround-

ing GPT-2), and the increasing use of powerful state-of-the-art NLMs in production environ-

ments have raised public attention and provoked a lively debate about the nature of these

systems. The popular and scientific hopes associated with NLMs have been denounced as hype

[26], as yet another wave of overly-optimistic AI dreams [27]. NLMs’ strong performance, it
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has been argued, might be due to memorization effects (quantified more thoroughly by [28,

29]), or hidden statistical cues in the datasets [30, 31]. And NLMs have been exposed by making

them produce nonsensical output [26, 32]. So, doesn’t this falsify the Rationality Hypothesis,
and thus settle the question whether NLMs are rational agents? Not at all. Note, first of all, that

the Rationality Hypothesis is an existential statement. Hence, on purely logical grounds, it can-

not be falsified by testing a specific NLM. And even if all current NLMs were shown to fail sys-

tematically, this would at best represent inductive (and hence defeasible) evidence against the

hypothesis. Secondly, while the critical debate has pointed out methodological pitfalls to avoid

and important shortcomings of current NLMs (and we will turn to these below), the specific

assessments of NLMs sometimes lack systematic rigour (as, e.g., in [32]), and are therefore

inconclusive.

So, what exactly is the evidence for or against the Rationality Hypothesis? Systematic evalua-

tions reveal that some NLMs display significant zero-shot performance [4] and transfer learn-

ing ability [33, 34], all of which speaks in favor of the Rationality Hypothesis. Likewise, NLMs

can be specifically trained (i.e., fine-tuned) to master diverse inferential and explanatory rea-

soning tasks, such as natural language inference [10], deductive argumentation [35, 36], enthy-

mematic and abductive inference [37], defeasible reasoning [38], rule-based planning [39],

explaining answers in QA tasks [40], proof generation in natural language [41, 42] and mathe-

matics [43–45], or argument analysis [46]. However, despite the astonishing and wide-ranging

successes of NLMs, studies that have carefully probed current systems equally point out major

limitations that are pertinent to the Rationality Hypothesis, namely: NLMs’ sheer inability to

produce coherent and consistent output [47, 48], along with a failure to properly handle

negations [49–51]. From this evidence, we must conclude that current pre-trained NLMs are

not doxastic, let alone epistemic agents.

In response to NLMs’ apparent lack of coherence and consistency, projects that seek to

build artificial rational agents have, recently, started to embed NLMs as sub-parts in modular

cognitive systems which contain further components, e.g., for monitoring the NLM and

enforcing output consistency relative to domain-specific constraints. Accordingly, [52] out-

line, in general terms, an architecture with persistent memory and language models, orches-

trated by a central controller. Following this framework, NLMs have been paired with

constraint-enforcing modules so as to build systems for causal inference [53], for knowledge

representation [54, 55], and for robust story generation [56]. Such an approach parallels dual-

process theories [23], equating NLMs with fast yet error-prone system 1, which is comple-

mented by a rule-based system 2. While being promising steps towards AGI, and representing

significant engineering projects in their own, these studies are only of limited relevance for

probing the Rationality Hypothesis: rationality is explicitly built into these systems via apriori

constraints. Therefore, the performance of such modular systems is neither evidence for nor

against the hypothesis that rational reasoning abilities may emerge from language skills alone.

Multi-modal coupling, where linguistic data is processed alongside sensorical data, repre-

sents an alternative way for embedding a NLM in a larger system. Here, the NLM is, e.g., cou-

pled with an image processing net—rather than with a constraint-enforcing module, as in

dual-process approaches. In a programmatic article, [57] argue that AI systems will only mas-

ter the full spectrum of human language usage if AI language learning is “grounded” in senso-

experiential, interactive, ultimately social environments. This represents an intriguing research

programme, and we may note: If meaning consists in proper language use [58], and if, for

example, it belongs to the function of an evidential statement that it may register a sensory

experience of an agent, or guide an agent’s course of action (intervention) which allows her to

probe the very statement, then, clearly, word prediction machines trained on linguistic data

only cannot fully “grasp” the meaning of an evidential statement. But to say so does not refute
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the Rationality Hypothesis (and [57] never claimed so). The interrelation between extra-lin-

guistic grounding and an AI system’s ability to exercise rational linguistic faculties is not set-

tled by the philosophical arguments [57] set forth, and it represents a pertinent research topic

in its own. In this regard, [59] seem to provide evidence that visual grounding increases the

global logical consistency of an AI system’s linguistic output: Accordingly, grounding may

very well be a suitable means for improving rational reasoning in NLMs. However, is ground-

ing also necessary for acquiring the competencies of sound reasoning, consistent belief forma-

tion, or rational belief revision? (There are philosophical reasons to doubt this: If perceptual

grounding were necessary for rational reasoning skill, then the whole notion of apriori ratio-

nality, i.e., the idea that at least some normative principles of correct reasoning, such as deduc-

tive inference, hold independently of any empirical facts and knowledge thereof, risks to be in

limbo. Because it would be puzzling if some apriori truth can only become to be known by

means of empirical learning—or wouldn’t it? To say that empirical experience is necessarily

required for mastering a certain rational faculty implies that norms which govern this faculty

are not analytic truths, but rather represent—to use a venerable terminology—synthetic apriori

statements.) This study, for sure, suggests otherwise: We present simple and pure NLMs

which, while being trained on synthetic text corpora alone, show clear signs of advanced ratio-

nal behavior.

This paper diagnoses and studies remedies for the poor consistency of current pre-trained

NLMs without suggesting to embed NLMs in a broader cognitive architecture, as in grounding

or dual-process approaches. It rests on three basic working assumptions: First, given that

NLMs are probabilistic word prediction machines, Bayesian epistemology [60]—broadly con-

strued—seems to be a suitable normative framework to conceptualize and probe NLMs’ ratio-

nality. Second, a NLM may form a stable, sufficiently consistent belief system through “self-

training,” i.e., training on coherent texts which the NLM has generated itself and which express

its provisional beliefs. Third, the laws and mechanisms of belief formation in NLMs can (so

far) best be studied in a fully-controlled experimental set-up, where NLMs are trained from

scratch on synthetic corpora in a simple, artificial language (we will resort to a language for

expressing linear orders). In these two latter regards, the paper follows [61].

More precisely, we experimentally test the Rationality Hypothesis by means of specific

NLMs, which we shall call RANKERS. RANKERS instantiate a T5 base configuration [1] and are

trained on an artificial language for expressing strict orders. We create an entire ensemble of

RANKERS by training on various, carefully created synthetic corpora. This allows us to fully con-

trol the pre-training data and to define a reliable procedure for eliciting the degrees of belief
(credences) of a RANKER. Thus equipped, we address four main questions:

Q1. Are the degrees of belief elicited from a pre-trained RANKER both probabilistically coherent

and logically consistent (i.e., aligned with the language’s logico-semantic constraints), pro-

vided that the RANKER itself has been trained on consistent texts?

Q2. Does self-training improve probabilistic coherence and logical consistency of degrees of

belief?

Q3. Can RANKERS successfully integrate novel evidence into their belief system without loosing

probabilistic coherence and logical consistency?

Q4. Do RANKERS adjust their belief state given novel evidence in accordance with Bayesian

learning (conditionalization)?

The results of our computational experiments appear to refute Q1, but represent evi-

dence for affirming Q2, Q3, and Q4. RANKERS, that is, can be considered as epistemic agents
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that hold a probabilistic belief system and rationally adjust their credences in light of novel

evidence. While the Rationality Hypothesis, for being an existential statement, cannot be

falsified by a single example, as noted before, it may very well be verified by a suitable

instance. That’s how we conceive—generally speaking—of this study: It develops and

assesses NLMs which, while being purely trained as word prediction machines, reliably dis-

play, to a certain extent, advanced rational behavior, and hence confirm the Rationality
Hypothesis.

The paper proceeds as follows. Section Formal approach develops the formal frameworks

used in the computational experiments, in particular: the simple artificial language RANKERS

will be trained on (Artificial language); the procedure for eliciting conditional degrees of belief

from a RANKER (Conditional elicitation); a global measure of a belief system’s informational

content (Doxastic entropy); as well as the rationality constraints on degrees of belief—and cor-

responding numerical metrics—pertaining to probabilistic coherence (Popper metrics), logical

consistency (Consistency metrics), and evidential learning (Bayesian metrics). Section Design

of Computational Experiments describes the design of our experiments, which are composed

of three consecutive phases: In PHASE 1, RANKERS are pre-trained on carefully designed synthetic

corpora (Corpus construction and Pre-training); in PHASE 2, the pre-trained RANKERS further

train on auto-generated texts (Self-training); finally, in PHASE 3, the self-trained RANKERS are

exposed to novel evidence according to different so-called evidence introduction regimes (Evi-

dential learning). Section Results presents our major empirical findings: Self-training improves

the probabilistic coherence and logical consistency of language models as measured by the

corresponding metrics (Pre evidence introduction (PHASE 2). In addition, continuously self-

training RANKERS are able to propagate novel evidence through their belief system in rough

agreement with rational constraints on evidential learning (Post evidence introduction (PHASE

3). Ablation studies, which turn off self-training, demonstrate its pivotal role during evidential

learning for maintaining a globally coherent belief system (Ablation studies). Section Discus-

sion concludes with a brief summary, a discussion of limitations, and directions of future

research.

Formal approach

Artificial language

The artificial language described in the following, which has been used in computational

experiments with NLMs before [61], unites efficient semantics with a sufficiently rich inferen-

tial structure. In particular, it has all the logical properties required to give rise to voting para-

doxes in judgment aggregation [62], which, it has been argued [61], is a potential reason for

why pretrained NLMs are prone to suffer from inconsistencies.

Let us first describe the syntax and then the simple semantics of the artificial language L. L’s

alphabet consists of k constants a1 . . . ak (we set k = 200 in our experiments), and two binary

predicates R, S. A L-sentence has the form xXy (with x, y and X being terms in the meta-lan-

guage referring to constants, respectively predicates in L). L just contains such “atomic”

sentences. The following rules define the logic of L (clearly, these rules are themselves not

expressible in L):

Irreflexivity. For any constant ai: aiRai ‘ ?.

Asymmetry. For any constants ai, aj (i 6¼ j): aiRaj, ajRai ‘ ?.

Duality. For any constants ai, aj (i 6¼ j): aiRaj a‘ajSai.

Transitivity. For any (pairwise non-identical) constants ai, aj, al: aiRaj, ajRal ‘ aiRal.
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A set of L-sentences is consistent iff one cannot deduce? by iteratively applying these

rules.

The semantics of this language are straightforward. Consider a domain with k objects,

mapped bijectively to L’s constants by interpretation I, then every total strict order of these

objects represents a possible world w, with R (S) corresponding to the order relation “<”

(“>”). A L-sentence φ (of form aiRaj, or aiSaj) is true in the possible world w with order <w, in

short ⊨w φ, iff I(ai)<w I(aj), resp. I(ai)>w I(aj). We write ⊨w A with A� L iff ⊨w φ for all φ 2
A. A set of L-sentences A is consistent iff there exists a possible world w such that all sentences

in A are true in w, i.e. ⊨w A. The proposition expressed by a set of L-sentences A is the set of all

possible worlds that model A, which can in turn be identified with a (typically non-total) strict

order on the domain. L-sentences A entail L-sentence φ, A⊨ φ, iff φ is true in every possible

world w with ⊨w A.

Let us establish, for convenience, the following conventions:

We write L for the set of all L-sentences.

For some L-sentence φ (of form aiRaj, or aiSaj), we obtain �φ by exchanging its predicate

(replacing R with S, or vice versa); given L’s semantics, �φ is the negation of φ. Similarly, we

obtain ~φ, the equivalent of φ, by exchanging its predicate and swapping the order of its two

constants (e.g., aiRaj is equivalent to ajSai).
We write Sall for the set of all finite sequences of L-sentences, including the empty

sequence. Sall is closed with respect to concatenation, i.e., if x 2 Sall and y 2 Sall, then xy 2 Sall.
The set of all L-sentences in some sequence x 2 Sall shall be referred to as kxk. Specific subsets

of Sall are:

• S� Sall: the set of all consistent finite sequences of L-sentences;

• Sφ� S: the set of all consistent finite sequences of L-sentences that contain some sentence

φ 2 L;

• SA� S: the set of all consistent finite sequences of L-sentences that contain every sentence

φ 2 A for some A� L.

Finally, let x|φ, ψ 2 S be the sequence that is obtained from sequence x 2 S by replacing

every occurrence of φ in x with ψ.

Conditional elicitation

Informally speaking, we equate a RANKER’s degree of belief in some statement aiRaj with its pro-

pensity to predict that the missing token in ai [mask] aj is R.

Let M be a neural language model capable of masked token prediction (i.e., probabilistic

missing-word prediction) in our language L. To elicit the model’s conditional credence in a L-

sentence aiRaj (likewise aiSaj) given a sequence of L-sentences x, we concatenate x and aiRaj,
mask the predicate letter, which yields x ai [mask] aj, query the model, and interpret the mod-

el’s probability prediction for [mask] = R, the so-called confidence, as its conditional degree

of belief in aiRaj given x, in short:

BelMðaiRajjxÞ ¼ ProbMð½mask� ¼ Rjx ai ½mask� ajÞ:

Doxastic entropy

Assuming that the credences of modelM, BelM(�), represent a joint probability distribution on

all L-sentences, we may defineM’s doxastic entropy as the credences’ Shannon entropy,H
(BelM).
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As we will see later on, credences are not perfect probability functions. However, we may

measure the doxastic entropy of a model’s belief system nonetheless by eliciting absolute cre-

dences for a random sample X� L of L-sentences (N = 1024) and calculating the mean joint
entropy of these N different probability functions (which we treat as independent), i.e.

HM ¼
1

jXj

X

φ2X

H BelMðφÞð Þ

with

HðBelMðφÞÞ ¼ � BelMðφÞ � log2
ðBelMðφÞÞ � ð1 � BelMðφÞÞ � log2

ð1 � BelMðφÞÞ:

Doxastic entropy measures, simply put, the global informativeness of a belief system; it is

minimal iff all credences are either 1 or 0, and maximal iff all credences equal.5 (zero informa-

tion content).

In Section Results, when analyzing the experimental results, we will distinguish and group

RANKER models according to their mean doxastic entropy during self-training (average PHASE 2-

entropy).

Popper metrics

Probabilities are typically defined and studied in a formal semantic framework, i.e. with refer-

ence to a given event space, or an algebra of propositions. Language models are, however,

basically syntactic systems, processing and manipulating token sequences. In this paper’s con-

text, in particular, degrees of belief are elicited for L-sentences (see Conditional elicitation),

rather than propositions. To assess the probabilistic coherence of a NLM’s degrees of belief, we

therefore resort to a sentential framework of probability, proposed by Popper [63]. In this

framework, conditional probabilities are introduced as a real-valued function from pairs

of sequences (S � S ! R). Popper assumes that two operations—complement and conjunc-

tion—are defined on the underlying set of sequences S, and that S is closed with respect to

both, i.e., if φ 2 S, then �φ 2 S, and if, in addition, c 2 S, then φ ^ c 2 S.

Now, the straightforward application of Popper’s framework to our case is to interpret S as

the set of all (finite) sequences of L-sentences (S ¼ Sall), to define the operation of conjunction

as concatenation, and to equate complement with syntactic negation. Yet, with this natural

interpretation, the operation of complement on S is not closed: Our artificial language only

allows for expressing the negation of individual sentences, and doesn’t provide resources to

directly express the negation of a sequence of L-sentences. Negation is restricted to atomic

sequences in Sall. This necessitates a first deviation from Popper’s framework: Probabilistic

constraints that refer to negation will have to be restricted to individual sentences, i.e. atomic
elements of Sall.

[63] discusses different versions of his system of probability. Our starting point is the fol-

lowing set of axioms (adapted from [64]):

Definition relative probability. A real-valued function Pr : S � S ! ½0; 1� is called a rel-

ative probability function (or, Popper measure), iff the following constraints hold for arbitrary

elements φ;c; w 2 S:

PrðφjφÞ ¼ 1 ðReflexivityÞ

PrðφcjwÞ ¼ PrðcφjwÞ ðCommutationÞ

PrðφjcwÞ ¼ PrðφjwcÞ ðCommutationÞ
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PrðφjcÞ þ Prð�φjcÞ ¼ 1 ðComplementÞ

PrðφcjwÞ ¼ PrðφjcwÞ � PrðcjwÞ ðMultiplicationÞ

We can now see a second problem with applying Popper’s framework to our case: Our elici-

tation procedure is only defined for individual L-sentences, and not for sequences thereof. The

expression Bel(φψ|χ) (with φ, ψ, χ being L-sentences) has simply no meaning. Rather than test-

ing for (Multiplication�) and (Commutation�), we therefore check whether degrees of belief

satisfy a weaker condition, namely the following implication of those two constraints (see also

S1 Appendix):

PrðφjcwÞ � PrðcjwÞ ¼ PrðcjφwÞ � PrðφjwÞ ðMultiplicationÞ

For each of the resulting four probabilistic constraints—(Reflexivity), (Commutation),

(Complement), (Multiplication)—, the corresponding Popper metric measures the extent to

which given degrees of belief violate the constraint. More specifically, given credence function

Bel(�|�), the Popper metric for a constraint equals the mean square difference (MSD) between

the left-hand side and the ride-hand side of the equation that expresses the constraint. For-

mally, for some X� L × L × S,

POPPERREFLXðXÞ ¼
1

jXj

X

hφ;c;wi2X

ð1 � BelðφjφÞÞ2

POPPERCOMMUðXÞ ¼
1

jXj

X

hφ;c;wi2X

ðBelðφjcwÞ � BelðφjwcÞÞ2

POPPERCOMPLðXÞ ¼
1

jXj

X

hφ;c;wi2X

ð1 � BelðφjwÞ � Belð�φjwÞÞ2

POPPERMLTPLðXÞ ¼
1

jXj

X

hφ;c;wi2X

ðBelðφjcwÞ � BelðcjwÞ � BelðcjφwÞ � BelðφjwÞÞ2

In order to assess the probabilistic coherence of a RANKER model at a given step t, we ran-

domly sample 1024 triples hφ, ψ, χi 2 L × L × S, containing two atomic sequences φ, ψ and a

consistent sequence of L-sentences χ with maximum length 3. We elicit, for each triple in X, all

conditional and absolute degrees of belief referenced in the equations above, and finally calcu-

late the four Popper metrics.

The Popper metrics can be considered as computationally handable proxies for a more sys-

tematic and conceptually compelling measure of global incoherence, namely the distance

between actual credences Bel(�|�) and the closest, probabilistically coherent credence function

PrBel(�|�) (see also [65, 66] and S2 Appendix).

Consistency metrics

Consistency metrics are supposed to measure the extent to which degrees of belief respect the

objective inferential relations which hold between the sentences in a domain. The artificial lan-

guage L contains two basic kinds of inferential relations: equivalence and transitivity. This

translates into the following logical constraints for degrees of belief on L. If sentence φ is
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entailed by sentences P, then the conditional degree of belief in φ given P is 1. Any two equiva-

lent sentences φ; ~φ are believed to the same degree, and exchanging these sentences in an ante-

cedent condition doesn’t alter the corresponding conditional degree of belief, either. Formally:

Definition logical alignment. The degrees of belief Bel(�|�) on L are logically aligned iff

the following constraints are satisfied:

BelðφjxPÞ ¼ 1 ðEntailmentÞ

BelðcjyÞ ¼ Belð~cjyÞ ðEquivalenceÞ

BelðwjzcÞ ¼ Belðwj½zcjc;~c �Þ ðA � EquivalenceÞ

for arbitrary L-sentences φ, ψ, χ 2 L with Bel(φ)6¼0, for any consistent set of L-sentences P� L
such that φ follows from P with L’s inference rules (possibly requiring multi-hop inference)

and corresponding L-sequence xP 2 S (i.e., ||xP|| = P), and for any consistent L-sequences

y, zψ 2 S.

For each logical alignment constraint, the corresponding consistency metric measures the

extent to which given degrees of belief Bel(�|�) violate the constraint. More specifically, given

suitable degrees of belief, the consistency metric for a constraint is the mean square error

(MSE) between the left-hand side and the ride-hand side of the equation that expresses the

constraint. Formally,

LOGALGNENTðXÞ ¼
1

jXj

X

hφ;xPi2X

ð1 � BelðφjxPÞÞ
2

for some sample X� {hφ, xPi : φ 2 L^xP 2 S^P� L^P ⊨ φ}; and

LOGALGNEQVðXÞ ¼
1

jXj

X

hφ;xi2X

ðBelðφjxÞ � Belð~φjxÞÞ2

for some sample X� {hφ, xi:φ 2 L^x 2 S}; and

LOGALGNEQVAðXÞ ¼
1

jXj

X

hφ;xci2X

ðBelðφjxcÞ � Belðφ j ½xcjc;~c �ÞÞ
2

for some sample X� {hφ, xψi:φ, ψ 2 L^xψ 2 S}.

In applying these consistency metrics to evaluate a RANKER, we restrict the sample

(N = 1024) to specific sequences; in particular, regarding (Entailment), we only consider

sequences xP with maximum length 5 (2 premises and up to 3 distractors); regarding (Equiva-

lence) and (A-Equivalence), we only consider sequences x, resp. xψ, with maximum length 4.

Moreover, if L-sentences φ, ψ entail L-sentence χ by transitivity, i.e. φ, ψ ⊨ χ, we may

require that

BelðwÞ � BelðφÞ � BelðcÞ; ðTransitivityÞ

which can be motivated with the probabilistic multiplication rule, and effectively expresses a

fuzzy product t-norm (see also S3 Appendix). Conceptually, (Transitivity) is however not a

probabilistic constraint of credences, but rather represents an additional objective constraint

on probabilistic degrees of belief.

We define two further consistency metrics that measure, specifically, the extent to which

(Transitivity) is violated given some sample X = {hφ, ψ, χi � L × L × L: φ, ψ⊨ χ}: (i) the relative
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frequency of triples in X which violate (Transitivity); (ii) a MSE metric, formally:

TRANSVIOLRATIOðXÞ ¼
jXvj
jXj

TRANSVIOLMSEðXÞ ¼
1

jXj

X

hφ;c;wi2Xv

ðBelðwÞ � BelðφÞ � BelðcÞÞ2

with Xv� {hφ, ψ, χi 2 X : Bel(χ)< Bel(φ) � Bel(ψ)}.

We sample 1024 triples of L-sentences such that two entail the remaining one in order to

assess RANKERS with respect to the two transitivity metrics.

Bayesian metrics

Bayesian metrics are supposed to measure whether an agent adequately adjusts her degrees of

belief when being exposed to novel evidence E. These metrics assess, in particular, the agent’s

posterior credences Prpost, held after the introduction of novel evidence, in comparison to

her credences prior to the exposition to evidence E, Prprior. We assume that the novel evi-

dence E is not uncertain, in other words, the model learns, being exposed to the evidence,

that E is a fact.

First, a Bayesian agent who learns that E is the case should adjust her posterior beliefs such

that the conditional credence in some sentence φ given evidence E is equal to the absolute

degree of belief in φ,

PrpostðφÞ ¼ PrpostðφjEÞ 8φ 2 L: ðSynchronicLearningÞ

The constraint (Synchronic Learning) is relatively weak, it actually follows from the

assumptions that learning evidence E implies Prpost(E) = 1 and that absolute credence equals

conditional credence relative to a certain event (i.e., an event believed with certainty).

Simple conditionalization amounts to a second, much stronger constraint. Accordingly,

agents who learn evidence E are supposed to update their degrees of belief in view of their

prior conditional credences relative to the evidence,

PrpostðφÞ ¼ PrpriorðφjEÞ 8φ 2 L: ðConditionalizationÞ

Simple conditionalization is a key—arguably: essential—tenet of standard Bayesian episte-

mology and Bayesian theories of evidential learning. Unlike all previously discussed con-

straints, Bayesian updating through conditionalization represents—by relating credences held

at different points in time—a diachronic constraint. Conditionalization regulates the shift from

one credence function to another, rather than the internal coherence of a single credence func-

tion. The justification of (Conditionalization) as a normative diachronic rationality constraint

for Bayesian learning requires further, more demanding arguments than the justification of

synchronic probabilistic constraints on credences [67].

(Conditionalization) entails that the conditional credences relative to the evidence E remain

the same while updating:

PrpostðφjEÞ ¼ PrpriorðφjEÞ 8φ 2 L: ðLikelihoodsÞ

(Conditionalization) and (Likelihoods) immediately imply (Synchronic Learning). But

(Synchronic Learning) may be satisfied while violating (Likelihoods), for example by keeping

prior absolute credences fix and updating conditional credences to prior absolute degrees of

belief (setting Prpost(φ|E) = Prprior(φ)), which may reflect a revision in one’s prior degree of
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belief in E. (To clarify the normative strength of these constraints, we note that the latter

amounts to a strategy deemed permissible by non-Bayesian epistemologists in the tradition of,

for example, [68–71]; it is, however, ruled out by Bayesians.)

We shall now describe the Bayesian metrics we use to track whether a RANKER’s degrees of

belief conform with the above constraints. We sample, first of all, a fixed set X of L-sentences

(N = 1024). At each self-training step t, before and after evidence introduction, we elicit the

RANKER model’s absolute and conditional degrees of belief, Belt(φ) and Belt(φ|E), for all φ in X.

We obtain Belprior(φ) as the average credence during the immediate run-up (Δ = 50) to the evi-

dence introduction at step te,

Belpriorð�jEÞ ¼ mean
ðte � DÞ<t<te

ðBeltð�jEÞÞ:

Treating all sentences in sample X as independent probabilistic variables, we may track the vio-

lations of the Bayesian constraints by means of joint relative entropy (Kullback-Leibler diver-

gence).

KLsynðtÞ ¼
1

jXj
KL Beltð�Þ jj Beltð�jEÞð Þ

KLdiaðtÞ ¼
1

jXj
KL Beltð�Þ jj Belpriorð�jEÞ
� �

KLcondðtÞ ¼
1

jXj
KL Beltð�jEÞ jj Belpriorð�jEÞ
� �

For an ideal Bayesian learner, all three metrics will become infinitely small after the introduc-

tion of novel evidence E. Plotting these time-dependent metrics will allow us to obtain detailed

insights into how RANKERS adjust their credences, and whether they do so in accordance with

Bayesian constraints.

If Belpre(φ)� Belpre(φ|E) for some φ 2 L, the novel evidence E is of limited significance for

some φ, and Bayesian constraints can trivially be satisfied by not changing the belief in φ too

much. That’s the reason why we focus in the analysis of evidential learning (Section Evidential

learning) on statements φ in the sample X such that Belpre(φ) substantially differs from

Belpre(φ|E). More technically, we filter the sample X according to the q-percentile of KLsynprior

in sample X, with

KLsynpriorð�jEÞ ¼ mean
ðte � DÞ<t<te

ðKLsyntð�jEÞÞ

and

X0 ¼ fφ 2 X : KLsynpriorðφjEÞ > xg

for some threshold x such that |X0|/|X| = q.

Design of computational experiments

Overview

The overall experimental design is illustrated in Fig 1. We generate 60 synthetic text corpora

with the artificial language L (Section Artificial language) by simulating authors who produce

texts which express their consistent belief states (cf. Section Corpus construction). On each

corpus, a randomly initialized T5 model [1] is trained on denoising and text-completion tasks
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(cf. Section Pre-training), yielding 60 pre-trained RANKERS at the end of PHASE 1. In PHASE 2,

each pre-trained RANKER is submitted to four independent self-training treatments, during

which the model continuously generates texts on which it trains instantly (cf. Section Self-

training). In PHASE 3, the 240 self-trained RANKER models are exposed to an evidence statement

that contradicts a shared assumption of the corresponding, original pre-training corpus. We

define two alternative ways for integrating this evidence item into the self-training loop, and

Fig 1. Overall design. A randomly initialized RANKER model (LM) is trained on a synthetic text corpus produced by artificial authors. The accordingly

pre-trained RANKER model (PTLM) subsequently trains on auto-generated texts, yielding a self-trained RANKER (STLM), which is eventually exposed to

novel evidence during training, resulting in an evidentially updated model (EULM).

https://doi.org/10.1371/journal.pone.0281372.g001
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also consider evidence integration regimes that turn off self-training (cf. Section Evidential

learning).

We track the Popper metrics (Section Popper metrics), the consistency metrics (Section

Consistency metrics), and the Bayesian metrics (Section Bayesian metrics) continuously dur-

ing PHASE 2 and PHASE 3.

Corpus construction

We construct synthetic pre-training corpora in language L with a domain D of constant size

k = 200 by simulating authors who produce texts. The constructed corpora vary, as will be

detailed below, in terms of inter-textual semantic agreement (the extent of which is controlled

by the ratio of authors’ background knowledge, rbg) and the degree of inferential closure (con-

trolled by the so-called reach threshold).

Constructing a corpus in our language L, we fix, first of all, a random permutation of rbg�k
items sampled from the domain D as shared background knowledge K of all authors (n = 15).

We construct, likewise semantically, the belief state Bi of author i = 1 . . . n as a randomly cho-

sen total strict order on a subset of D which extends the order induced by K (thus, allowing for

belief suspension). The ratio of background knowledge, rbg, hence controls the diversity of

beliefs held by the simulated authors.

We say that a statement φ is i-expressible iff φ is believed by author i and the rank-order dif-
ference according to Bi between the items referred to in φ is smaller than the global reach
threshold. The reach parameter constrains text generation and regulates, in particular, the

degree of inferential closure of text corpora. With reach < k, a corpus is (in general) not

deductively closed, i.e., there exist statements that are not contained in, but can be inferred

from the corpus.

An author i produces finite, truthful, unbiased, consistent, inferentially structured, nearly

non-redundant L-texts, i.e., sequences of i-expressible L-sentences φ1, φ2, . . ., φl. Texts are

truthful because they only contain sentences an author i believes to be true (Bi ⊨ φj for j = 1

. . . l). Texts are unbiased because all statements which (i) the author can express given the

reach threshold and which (ii) the author considers as true are equally likely to figure in a

text by the author. Texts are consistent because whatever they contain is believed by the

author, whose belief state is globally consistent. Texts are inferentially structured because,

rather than expressing an author’s beliefs in random order, texts follow the logical implica-

tions defined by L’s inference-rules, in particular, they contain transitivity arguments (e.g.,

aiRaj, ajRal, aiRal) and duality arguments (aiRaj, ajSai) as sub-sequences. Texts are nearly

non-redundant because, since they are unbiased, it is very unlikely that one and the same

sentence figures twice in a text. S1 Algorithm. gives further details of how simulated authors

sample texts.

All simulated authors (n = 15) contribute an equal share of texts to a corpus, which contains

100,000 training texts in total.

In the way described henceforth, we construct 60 corpora on a parameter grid with rbg 2
{0.05, 0.1, 0.15. . .0.75} and reach 2 {50,1}, and two corpora per parameter combination.

Pre-training

To train RANKERS (basically T5 models) on the synthetic corpora, the raw texts have to be trans-

formed into sequence-to-sequence data. We do so by defining a denoising task and a text com-
pletion task.

Denoising task. In analogy to the pre-training task used by [1], we replace subsequences

(1–2 tokens) of the raw text with special mask tokens. The masked text serves as input; the
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target text details the correct substitution for each mask. For example:

raw : a R b c S d a R e

input : a ½m1� c S d ½m2� R e

target : ½m1� R b ½m2� a ½m3�

Text completion task. This task consists in completing and continuing a given text. The

firstm sentences of a raw text (with l sentences) serve as input (randomm with 0<m< l), the

entire raw text is the target. For example:

raw : a R b c S d a R e

input : a R b c S d

target : a R b c S d a R e

Every raw text in a corpus is transformed into one denoising example and one text comple-

tion example, yielding 200.000 pre-training items, on which a randomly initialized RANKER

model is trained for 18 epochs, using the transformers framework [72]. S1 Fig displays eval

loss during pre-training for all 60 models.

Self-training

Self-training pre evidence introduction, i.e. PHASE 2, consists in 300 training steps and proceeds

—with the exception of data augmentation—in close analogy to self-training in [61]. Self-train-

ing is designed so as to mimic a local belief revision procedure that consists in (i) identifying

some strongly held beliefs, (ii) spelling out inferential consequences of these beliefs, and (iii)

reinforcing one’s beliefs in these consequences.

At each step in a self-training loop, the RANKER model generates texts, which are processed,

filtered, masked, augmented and finally used as training data for denoising training (see S2

Algorithm). More specifically, we generate, first of all, 200 prompts by sampling strong beliefs

from the RANKER (see also S3 Algorithm). Being queried with each of these prompts, the model

returns, with beam sampling, 5 generated text sequences and corresponding scores. Texts are

split into sub-sequences of length 3, discarding all sub-sequences which do not represent a syn-

tactically well-formed sentence. Next, we keep only sentences from texts with at least 6 well-

formed sentences and high beam scores (above 75th-percentile). These sentences are trans-

formed into training data by masking their predicate letters—similarly to the masking for

belief elicitation (cf. Section Conditional elicitation). These auto-generated training items are

augmented with denoising examples from the pre-training corpus (ratio: 4 corpus sentences

for 10 self-generated sentences). Finally, the RANKER model is trained with the thusly generated

training items for one epoch.

Evidential learning

In PHASE 3, RANKER models are exposed to novel evidence—which we represent through a single

statement that contradicts formerly uncontested assumptions. Moreover, we distinguish dif-

ferent evidence integration regimes (EIR), i.e., ways in which RANKERS train on the novel

evidence.

An evidence item E to which a model is exposed in PHASE 3 is a single L-sentence. In our

experimental set-up, it is chosen right at the beginning of PHASE 2 in such a way that it
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contradicts the background knowledge K underlying the corresponding, original pre-training

corpus. More specifically, we randomly sample some φ 2 L such that K⊨ φ and set E :¼ �φ.

The statement φ can be more or less strongly embedded, or “logically entrenched,” in K: on

the one extreme, φ is logically independent from all the other sentences entailed by K; on the

other extreme, many different sets of sentences entailed by K in turn imply φ. In the second

case, a revision of φ has major logical repercussions for K as a whole, whereas in the first case,

φmight simply be replaced with its negation in K without running into any contradictions

whatsoever. Now, we may exploit our simple semantics to define a straightforward measure of

evidential entrenchment of an evidence item E that negates some φ (with K ⊨ φ), namely the

rank order difference according to K between the items referred to in φ.

So, to illustrate the concept of entrenchment, let K be the strict order a b c d e f, then K⊨
aRb, bSa, bRc, . . . (assuming I(x) = x for every constant x). Sentence cRd, for example, having

rank order difference 1, is minimally entrenched in K: replacing it with its negation (dRc)
doesn’t generate any inconsistencies. Sentence cRf, however, has rank order difference 3, it is

more deeply entrenched and replacing it with its negation generates multiple inconsistencies,

e.g., because K⊨ cRd, dRf.
Evidential entrenchment will turn out to be an important explanatory variable for under-

standing the models’ responses to novel evidence (cf. Section Post evidence introduction

(PHASE 3)).

We shall next describe the different ways in which RANKER models are exposed to evidence

in PHASE 3, specifically, how an evidence item is integrated into the training data. The evidence

integration regimes prompt and append_genmake use of the novel evidence item while gener-
ating texts for self-training:

Prompt (EIR). This regime continues self-training as carried out in PHASE 2, with the exception

that a certain ratio (rprompt =.2) of prompts that are used to generate texts now contain—

besides two further, strongly believed sentences—the evidence statement itself. Already in

generating texts for self-training, models (may) respond to the novel evidence.

Append_gen (EIR). This regime, too, continues self-training as carried out in PHASE 2. How-

ever, the evidence item is appended to the pre-processed auto-generated texts and thereby

integrated into the training data (denoising tasks).

Besides these two similar regimes, we consider—in what is sometimes called an ablation

study—further EIRs that turn off self-training.

Append_bel (EIR). This regime appends the novel evidence item to texts (like append_gen),

which are then used for further denoising training, except that, here, the training texts are

not continously generated, but are simply sampled from (and thus reflect) the model’s past

beliefs pre evidence introduction (step = 300).

Evidence_only (EIR). Under this arguably most simple regime, the model merely trains on

the evidence item itself.

Results

Pre evidence introduction (phase 2)

Self-training markedly improves the probabilistic coherence (cf. Section Probabilistic coher-

ence below) and the logical consistency (cf. Section Logical alignment below) of RANKERS’

degrees of belief.

Probabilistic coherence. We observe that self-training may substantially reduce initial

violations of probabilistic coherence (as measured by Popper metrics). The epistemic benefits
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of self-training are especially transparent with respect tomultiplication and commutativity con-
straints (Fig 2), which are poorly satisfied by pre-trained models.

Yet, even pre-trained RANKERS comply with complementarity (credences assigned to contra-

dictory sentences add up to 1); self-training has no further effect here (S2 Fig). And all models,

self-trained or not, struggle with reflexivity (S2 Fig)—though we should bear in mind that this

may be an artifact of the synthetic training texts, which, being both consistent and nearly non-
redundant (cf. Section Corpus construction), don’t contain, by construction, any subsequence

corresponding to a masked reflexivity-query (e.g., a R b a R b or a R b b S a).

Logical alignment. Self-training improves logical alignment of credences. It brings down,

consistent with previous findings [61], the frequency of transitivity violations (Fig 3) and

improves further consistency metrics (see also S3 Fig).

We find nevertheless that credences are poorly aligned with entailment relations (LOGALG-

NENT), and self-training does seemingly not improve these deficits, at least as judged by aggre-

gate measures (Fig 3). This seems like an important flaw: If P entails φ, then the conditional

degree of belief in φ given P should be, but in fact is not close to 1.

However, a further analysis of pre-trained models reveals that Bel(φ|P), with P ⊨ φ, deviates

from 1 especially in cases where sentence φ is—unconditionally—strongly disbelieved, i.e. if

Bel(φ)� 0 (see S5 and S6 Figs). If, in contrast, Bel(φ)� 0, then Bel(φ|P)� 1! Plus, the belief in

some statement is nearly always increased by conditionalizing on an antecedent that entails

the very statement (see S7 and S8 Figs). This fine-grained analysis shows that degrees of belief

are in fact well aligned with entailment relations, especially so as the entailment constraint (cf.

Fig 2. Evolution of Popper metrics. Evolution of Popper metrics POPPERCOMMU (commutativity) and POPPERMLTPL (multiplication) during self-

training. Left: inferentially closed pre-training corpora (reach=1); right: inferentially incomplete pre-training corpora (reach=50). Metric

evolutions are aggregated over all agents whose belief systems display a similar doxastic entropy (cf. bins to the very right).

https://doi.org/10.1371/journal.pone.0281372.g002
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Section Consistency metrics) applies to regular, non-extreme unconditional credences only

(Bel(φ|P) 6¼ 0).

Post evidence introduction (phase 3)

Integrating evidence items into self-training loops allows RANKERS to acquire novel evidence

that contradicts previously held beliefs without sacrificing probabilistic coherence (Section

Probabilistic coherence below) and logical consistency (Section Logical alignment below), as

well as to propagate this novel evidence through their belief systems in approximate agreement

with Bayesian constraints (Section Evidential learning below). The following sections report

findings for the evidence introduction regime prompt; the regime append_gen, which relies

equally on self-training and only slightly modifies prompt’s training data generation, yields

highly similar results that are presented in the Appendix and will be referred to where appro-

priate. The evidence introduction regimes append_bel and evidence_only, which turn off self-

training, represent ablation studies and are discussed separately (Section Ablation studies).

Probabilistic coherence. Comparing the periods pre (PHASE 2) and post (PHASE 3) evidence

introduction, we find no statistically significant deterioration in the Popper metrics (see S1

Table). Under the evidence introduction regime prompt, a model’s response to novel evidence

doesn’t decrease probabilistic coherence (see also S11 Fig).

Logical alignment. Comparing the periods pre (PHASE 2) and post (PHASE 3) evidence intro-

duction, we do find, regarding consistency metrics, a statistically significant deterioration (see

Fig 3. Evolution of consistency metrics. Evolution of consistency metrics TRANSVIOLRATIO (transitivity violation ratio) and LOGALGNENT (entailment
alignment) during self-training. Left: inferentially closed pre-training corpora (reach=1); right: inferentially incomplete pre-training corpora

(reach=50). Metric evolutions are aggregated over all agents whose belief systems display a similar doxastic entropy (cf. bins to the very right).

https://doi.org/10.1371/journal.pone.0281372.g003
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S1 Table) only for metric LOGALGNENT (which systematically overestimates the model’s flaws,

see Section Logical alignment above), and for metric TRANSVIOLRATIO (reach=1). Yet the

latter increase in the frequency of transitivity violations is partially compensated by a simulta-

neous reduction in the average extent of transitivity violations as measured by TRANSVIOLMSE

(which had already been brought down to a low level in PHASE 2, before). All in all, under the

evidence introduction regime prompt, a model’s response to novel evidence doesn’t substan-

tially deteriorate logical consistency (see also S12 Fig).

Evidential learning. To study evidential learning, we track the evolution of four metrics

pre and post evidence introduction: the three Bayesian metrics (introduced in Section Bayesian

metrics), and the model’s absolute degree of belief in the evidence statement itself.

We focus, in analyzing the propagation of evidence through the belief system, on state-
ments φ such that the model’s prior absolute belief in φ deviates substantially from the mod-

el’s prior conditional belief in φ given the evidence E—or, in other words, on statements

with high KLsyn-average pre evidence introduction (see Section Bayesian metrics). It’s with

respect to these cases that we can study most clearly how the model adjusts its beliefs, and

whether it adheres to diachronic constraints of Bayesian learning. In the subplots of Fig 4,

each of the three lines (solid, dashed, dotted) focuses on a corresponding top qth-percentile

of pre-evidence KLsyn: the greater q, the more absolute and conditional belief initially

diverge.

Moreover, we distinguish models according to the inferential closure of their pre-training

corpus (reach), the evidence introduction regime deployed in PHASE 3, and the evidential

entrenchment, i.e., the degree of entrenchment of the background assumption which is contra-

dicted by the new evidence statement eventually introduced (see Section Evidential learning).

Fig 4 plots the evolution of Bayesian metrics with weak evidential entrenchment (left-hand

side, below 25th-percentile entrenchment) versus strong evidential entrenchment (right-hand

side, above 75th-percentile entrenchment). Qualitatively speaking, the metrics evolve in

similar ways: First of all, as shown in the bottom plots (red lines), the degree of belief in the

Fig 4. Evolution of Bayesian metrics. Evolution of Bayesian metrics before and after evidence introduction with evidence introduction regime prompt
and inferentially closed pre-training corpora (reach=1). Left: evidence contradicts a weakly entrenched background assumption; right: evidence

contradicts a strongly entrenched background assumption.

https://doi.org/10.1371/journal.pone.0281372.g004
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evidence E starts to increase as soon as the evidence is introduced, and the models eventually

come to fully believe E. Secondly, the KLsyn trajectories (green lines) drop upon evidence

introduction, which signifies that absolute beliefs and conditional beliefs (given the evidence)

are gradually aligned to each other. However, and thirdly, this synchronous mutual alignment

(measured by KLsyn) is at least partially due to changes in conditional beliefs (KLcond, orange

lines): Conditional beliefs start to deviate from their pre-evidence level after evidence intro-

duction. Fourthly, the KLdia trajectores (blue lines) decrease clearly after evidence introduc-

tion: the models tend to align their absolute beliefs with the prior conditional beliefs as

prescribed by Bayesian learning. Yet, diachronic alignment (KLdia) seems to be somewhat less

pronounced than synchronic alignment (KLsyn).

So the general upshot so far (further confirmed by S9 Fig) is that the models fully adopt the

evidence item they are supposed to learn, and that they adjust their other beliefs so as to syn-

chronously align absolute and conditional beliefs (given the novel evidence). This synchronous

convergence is achieved both through changes in conditional beliefs (in violation of simple

conditionalization) and by aligning absolute beliefs with corresponding priors (proper Bayes-

ian learning). This said, the models fall short of being perfect Bayesian agents (which would

require that metrics approach 0 after evidence introduction)—even the weak synchronous

constraint on evidential learning is substantially and continuously violated: they are, at most,

noisy Bayesian agents.

Can we also make sense of the differences we observe when comparing the left-hand and

the right-hand panels of Fig 4? We should first of all note that the two groups of self-training /

evidential learning runs (corresponding to the two panels) differ not only with respect to evi-

dential entrenchment, but also with regard to the average PHASE 2-entropy of the model’s global

belief system (H)—which stems from a selection bias: deep entrenchment is only possible if

the pre-training corpus contains a sufficiently broad background knowledge, which in turn

results in strong beliefs and low global doxastic entropy. This being said, the following differ-

ences pre evidence introduction seem coherent: evidence items, even though contradicting

background assumptions, are much more strongly believed in case of weak entrenchment and

high entropy (compare the initial levels of evBel); similarly, the higher doxastic entropy, that

is, the less degrees of belief tend to differ from.5, the smaller the Bayesian divergence metrics

(cf. initial levels of KLsyn and KLdia). Regarding post evidence introduction, it seems consistent

that models much more quickly adopt an evidence item they had partially believed rather than

an evidence item they had fully disbelieved (see the steep rise in evBEL trajectories for low

entrenchment). Moreover, the revision of a poorly entrenched belief should trigger—for lack

of inferential relations—fewer and less pronounced revisions of other beliefs, which is precisely

what we observe when comparing the pace and extent of changes in the Bayesian metrics after

evidence introduction.

In contrast to the highly aggregated analysis presented henceforth, S10 Fig plots individ-
ual (rather than mean) KLsyn trajectories for each statement (N = 1024) in a sample during

PHASE 2 and PHASE 3, focusing on 16 self-training runs with four different models (each

trained in a corpus with rbg = 0.5). Even for one and the same model and for evidence items

with comparable entrenchment, we may observe strikingly different patterns of belief adjust-

ment, e.g. regarding the durability of an immediate decrease in KLsyn after evidence intro-

duction. This clearly points to the limits of our current analysis. It is, for instance, not clear

whether these different dynamical patterns stem from properties of the auto-generated texts

used for training, from the way the evidential statement is embedded in the model’s actual

belief system (rather then in the background theory underlying the pre-training corpus), or

whether the different patterns represent a measurement artifact caused by small sample

sizes.
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Ablation studies

Our ablation studies, which vary the evidence introduction regime, confirm the pivotal role of

self-training for the consistent integration of novel evidence into a RANKER’s belief system: Evi-

dential learning seems not feasible without self-training.

The regime append_gen retains the self-training loop and merely modifies how an evidence

item is merged into the training data. Rather than integrating the evidence right in the

prompts used for generating texts (as with regime prompt), append_gen simply appends the

evidence statement to generated texts. This has only a minor effect: The Popper and consis-

tency metrics are as good as (if not slightly better than) with prompt (S11 and S12 Figs), and

the model partially succeeds in Bayesian evidential learning (S9 Fig).

However, things look entirely different as soon as we turn off self-training. With the regime

append_bel, the novel evidence is not appended to an auto-generated text, but to varying sets

of beliefs of the model elicited right before evidence introduction: The RANKER model trains on

its previous beliefs and the new evidence. This leads to a totally uninformative and inconsistent

belief state. The doxastic entropy of the model is maximal (S13 Fig), while consistency metrics

deteriorate (S12 Fig). Transitivity metrics, in particular, more than quadruple.

The second regime which does without self-training is evidence_only: RANKERS simply train

on the evidence statement. Here, the model fails to consistently integrate the evidence as well:

Both the Popper metrics and the consistency metrics increase—i.e., worsen—dramatically

(S11 and S12 Figs), leading to a probabilistically incoherent and logically inconsistent belief

state.

Discussion

The computational experiments with NLMs conducted in this paper provide evidence for the

Rationality Hypothesis, i.e., the claim that suitably trained neural language models are episte-

mic agents, exhibiting advanced rational behavior. For these purposes, we have pre-trained T5

text-to-text models—so-called RANKERS—from scratch on carefully designed synthetic corpora

composed of internally consistent texts (PHASE 1). Subsequently, the pre-trained RANKERS have

been submitted to self-training on auto-generated texts (PHASE 2). Finally, we have exposed the

self-trained RANKERS to novel evidence (PHASE 3), choosing evidence items which contradict the

uncontested statements contained in the original pre-training corpus, and which are hence

strongly disbelieved by the self-trained models. Our main concern of interest has been whether

the models, during pre- or self-training, gradually acquire probabilistically coherent and logi-

cally consistent credences, and whether these degrees of belief, once consolidated, are ratio-

nally revised given novel (unexpected) evidence. The latter challenge does not just amount to

adapting the degree of belief about the evidence statement itself, but consists, moreover, in

simultaneously re-adjusting the entire belief system so as to avoid probabilistic incoherence

and logical inconsistency.

We may summarize our results as follows.

Q1. Are the degrees of belief elicited from a pre-trained RANKER both probabilistically coherent

and logically consistent (i.e., aligned with the language’s logico-semantic constraints), pro-

vided that the RANKER itself has been trained on consistent texts?

No. The pre-trained models fail to aggregate collectively diverse, internally consistent texts

into a coherent and consistent probabilistic belief system. We observe substantial violations of

probabilistic constraints (e.g., regarding the multiplication rule and commutativity) and wide-

spread inconsistency (more specifically, and depending on the precise model, more than 15%

of the transitivity constraints may be violated). These results agree with previous findings [61],
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which suggest that NLMs’ inconsistent judgments emerge because pre-training emulates sen-

tence-wise judgment aggregation.

Q2. Does self-training improve probabilistic coherence and logical consistency of degrees of

belief?

Yes. We see clear progress regarding most Popper and consistency metrics during self-

training. And in case self-training doesn’t improve a specific metric (such as logical alignment

with entailment relation, reflexivity, or complementarity), we can explain the lack of improve-

ment, namely with reference to low initial levels, or by means of data segmentation and in-

depth analysis. The observed logical benefits of self-training are consistent with [61, 73].

Q3. Can RANKERS successfully integrate novel evidence into their belief system without loosing

probabilistic coherence and logical consistency?

Yes. To answer this question, we have explored alternative evidence integration regimes. If

the novel evidence is integrated into the self-training loop, and the model effectively trains on

the evidence item plus continuously auto-generated texts, RANKERS succeed well in (a) adopting

novel evidence, and (b) propagating novel evidence through the entire belief system so as to

preserve consistency and coherence. If, however, RANKERS train on novel evidence without

simultaneous self-training, the models newly adopt the evidence, but run into a highly incon-

sistent as well as incoherent belief state, while risking, in addition, to loose any informational

content (maximal entropy). These experiments underline the pivotal role of self-training for

rational, coherence-preserving evidential learning.

Q4. Do RANKERS adjust their belief state given novel evidence in accordance with Bayesian

learning (conditionalization)?

Yes, to some extent. With self-training turned on in PHASE 3, models tend to pay attention to

synchronic and diachronic constraints of evidential learning. Signs of Bayesian evidential

learning are most pronounced immediately after evidence introduction, and in cases where

the prior belief that is directly negated by the novel evidence is deeply entrenched in the back-

ground knowledge of the original pre-training corpus. A more detailed analysis of individual

ensemble runs reveals, however, stark differences between single runs with similar boundary

conditions, suggesting that RANKERS’ response to novel evidence might be further governed by

variables not controlled for in our experiments (such as, e.g., the entrenchment of an evidence

item in a model’s actual belief system, or further inferential properties of the randomly auto-

generated training texts).

We may conclude: Qua self-training, models carry out piecemeal adjustments of their

credences so as to iron out local inconsistencies, gradually improving the global coherence

of their belief state. It has been argued [61] that such self-training can be understood as a

simple form of reflective equilibration (cf. [74, 75]). Continuous reflective equilibration

turns our simple RANKERS into epistemic agents that, having acquired a language and proto-

beliefs, form a coherent and consistent belief system, and rationally revise it given novel

evidence.

While the experiments reported in this paper confirm the Rationality Hypothesis, the evi-

dence they provide is limited due to the strong idealizations they rely on, a lack of systematic

robustness analysis, and apparent explanatory gaps in understanding the detailed simulation

results:

• We simulate (arguably complex) probabilistic belief dynamics by training T5 models on a

most simple language with minimal syntax and logic. Our experiments don’t settle the
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question whether NLMs which are suitably trained on more complex languages, are episte-

mic agents, too.

• Moreover, regarding robustness, the ensemble of models we study doesn’t establish whether

our findings hold for larger NLMs, or for transformers with a different configuration (e.g.,

BART, GPT-3). We only cover corpora with particular agreement patterns, and haven’t sys-

tematically varied the auto-generation of texts (e.g., decoding parameters), either.

• This study lacks the resources to analyze and explain the micro-dynamics of belief forma-

tion and, specifically, revision. As one and the same model may display starkly different

responses to novel evidence items (given the same EIR), the micro-dynamics, remaining by

and large opaque, may however determine the degree of rationality of a model’s particular

response to novel evidence.

• We train RANKERS not only on a simple, but also on an artificial language. Properties of natu-

ral languages (such as, e.g., synonymity, homonymy, intensional contexts) might prevent

NLMs trained on, say, English text corpora from acquiring advanced rational faculties.

All this puts our experiments in perspective: In more complex and more realistic, or micro-

dynamically different experimental settings (than those studied here), NLMs might fail to dis-

play advanced rational behavior. While this would not amount to a refutation of the Rational-
ity Hypothesis, it would severely limit its scope and hence its conceptual, normative, and

empirical fruitfulness.

All this calls for further exploration. We shall close by outlining five directions of future

research:

1. Follow-up investigations may explore the robustness of the synthetic experimental set-up,

especially by reproducing the experiments with a richer and more expressive artificial lan-

guage (containing, e.g., FOL, epistemic operators, a truth predicate, or indirect speech).

2. Similarly, it seems important to further investigate the epistemic benefits of self-training in

natural languages. To begin with, NLMs might be trained from scratch on a clearly delin-

eated fragment of the English language (e.g., causal reasoning in a limited physical domain),

which will probably involve the usage of synthetic texts. But probabilistic belief formation

and revision should also be studied in NLMs that have been pre-trained on large natural

language corpora: In that case, belief elicitation might be initially restricted to domains cor-

responding to well-defined NLP-tasks (such as NLI), where extensive datasets are available.

The fact that machine translation benefits from iterative back-translation [73] and training

on pseudo-labels may improve predictive performance [76, 77] is further evidence for the

fruitfulness of self-training as a learning paradigm.

3. Improved diagnostic tools and further experiments are called for to better understand the

micro-dynamics of NLMs’ belief revisions. Such diagnostic tools would include, e.g., high-

resolution representations of an agent’s probabilistic belief system, and should allow one to

relate the semantic content and the inferential structure of training texts to the current

belief state of a model. Moreover, further ablation studies might replace auto-generation (in

order to better understand its effect) with rule-based, experimentally controlled generation

of training data.

4. Because of its mathematical affinity to probabilistic word prediction machines, Bayesian

epistemology suggests itself as a normative framework for testing the rationality of NLMs.

However, it seems worthwhile to assess NLMs with respect to further standards of epistemic

agency: Do NLMs, in revising their beliefs, opt for the best available explanation [78]? Do
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NLMs acquire beliefs that mutually support each other, rather than merely satisfying proba-

bilistic and logical constraints [79, 80]? Can NLMs’ credences be accounted for in terms of

ranking theory [81]? When faced with rival hypotheses, do NLMs acquire beliefs in accor-

dance with principles of rational scientific theory choice [82]? Can NLMs effectively engage

in causal reasoning [83]? Do NLMs succeed in acquiring accurate credences that are well-

calibrated relative to a ground-truth [84, 85]? May NLMs exhibit socio-epistemic rational-

ity, such as diagnosing and responding to peer disagreement, or resolving conflicting testi-

mony by means of competence ascriptions [86]?

5. Finally, a farther step beyond this study would be to let multiple self-training NLMs, which

form and revise their credences in parallel, interact with each other: reading and grading

each others’ texts, generating written responses, engaging in dialogues, and training on an

individually selected subset of the collectively and continuously generated text data. Such a

set-up might allow one to study the contribution of social interaction to the emergence of

rationality, extending the work on the emerhence of language in deep multi-agent systems

[87].

Supporting information

S1 Appendix. Credences of non-atomic sentences. Description of how degrees of belief can

be assigned to non-atomic L-sequences.

(PDF)

S2 Appendix. Measure of probabilistic incoherence. Discusses Popper metrics as proxies for

global probabilistic incoherence.

(PDF)

S3 Appendix. Transitivity constraint. Motivation of the transitivity constraint for credences.

(PDF)

S1 Algorithm. Text-production by simulated author.

(PDF)

S2 Algorithm. Self-training loop.

(PDF)

S3 Algorithm. Prompt construction.

(PDF)

S1 Fig. Eval loss during pre-training. Eval loss during pre-training, each line corresponds to

one of 60 models.

(PDF)

S2 Fig. Evolution of Popper metrics complementarity and reflexivity during self-training.

Left: inferentially closed pre-training corpora (reach=1); right: inferentially incomplete pre-

training corpora (reach = 50). Metric evolutions are aggregated over all agents whose belief

systems display a similar joint entropy (cf. bins to the very right).

(PDF)

S3 Fig. Evolution of Consistency Metrics transitivity violation ratio,equivalence, and ante-
cendent equivalence during self-training. Left: inferentially closed pre-training corpora

(reach=1); right: inferentially incomplete pre-training corpora (reach = 50). Metric evolu-

tions are aggregated over all agents whose belief systems display a similar joint entropy (cf.

PLOS ONE Neural language models as epistemic agents

PLOS ONE | https://doi.org/10.1371/journal.pone.0281372 February 9, 2023 23 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s009
https://doi.org/10.1371/journal.pone.0281372


legends in S2 Fig).

(PDF)

S4 Fig. Global dynamics (evolution of joint entropy, global distance, volatility) during self-

training. Left: inferentially closed pre-training corpora (reach=1); right: inferentially incom-

plete pre-training corpora (reach = 50). Metric evolutions are aggregated over all agents whose

belief systems display a similar joint entropy (cf. legends in S2 Fig).

(PDF)

S5 Fig. Logical alignment of pretrained models. Logical alignment of pretrained models

(step = 0) as a function of reach (rows) and number of distractors (columns). For each model,

1000 inferences (premises, conclusion, distractors) are sampled, and for each inference, the

unconditional degree of belief in the conclusion (x-axis) as well as the conditional degree of

belief given premises and distractors (y-axis) are elicited and shown.

(PDF)

S6 Fig. Logical alignment of pretrained models. Logical alignment of pretrained models

(step = 0) as a function of background knowledge ratio in the training corpus (rows) and num-

ber of distractors (columns). For each model, 1000 inferences (premises, conclusion, distrac-

tors) are sampled, and for each inference, the unconditional degree of belief in the conclusion

(x-axis) as well as the conditional degree of belief given premises and distractors (y-axis) are

elicited and shown.

(PDF)

S7 Fig. Logical alignment of pretrained models. Logical alignment of pretrained models

(step = 0) as a function of reach (rows) and number of distractors (columns). For each model,

1000 inferences (premises, conclusion, distractors) are sampled, and for each inference, the

unconditional degree of belief in the conclusion (x-axis) as well as the conditional degree of

belief given premises and distractors are elicited. The y-axis show the absolute difference

between conditional and unconditional beliefs.

(PDF)

S8 Fig. Logical alignment of pretrained models. Logical alignment of pretrained models

(step = 0) as a function of background knowledge ratio in the training corpus (rows) and num-

ber of distractors (columns). For each model, 1000 inferences (premises, conclusion, distrac-

tors) are sampled, and for each inference, the unconditional degree of belief in the conclusion

(x-axis) as well as the conditional degree of belief given premises and distractors are elicited.

The y-axis show the absolute difference between conditional and unconditional beliefs.

(PDF)

S9 Fig. Evolution of Bayesian metrics before and after evidence introduction. Evidence

introduction regimes: “prompt” (rows 1,2); and “append_gen” (rows 3,4). Inferential closure

of pre-training corpora: reach=1 (row 1,3); reach = 50 (rows 2,4). Evidential entrenchment:

columns correspond to quartiles.

(PDF)

S10 Fig. Synchronous KL divergence before and after evidence introduction. Synchronous

KL divergence (between unconditional belief and conditional belief given the evidence) before

and after evidence introduction (evidence introduction regime “prompt”) for 1024 individual

beliefs elicited in four selected models (pre-trained on corpora with background ratio 0.5).

Each row displays four different self-training runs of one and the same model.

(PDF)

PLOS ONE Neural language models as epistemic agents

PLOS ONE | https://doi.org/10.1371/journal.pone.0281372 February 9, 2023 24 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s016
https://doi.org/10.1371/journal.pone.0281372


S11 Fig. Comparison of Popper metrics before and after evidence introduction. Compari-

son of Popper Metrics before and after evidence introduction for different evidence introduc-

tion regimes. Left column: inferentially closed pre-training corpora (reach=1); right column:

inferentially incomplete pre-training corpora (reach = 50).

(PDF)

S12 Fig. Comparison of Consistency metrics before and after evidence introduction. Com-

parison of Consistency Metrics before and after evidence introduction for different evidence

introduction regimes. Left column: inferentially closed pre-training corpora (reach=1); right

column: inferentially incomplete pre-training corpora (reach = 50).

(PDF)

S13 Fig. Comparison of joint entropy and evidence belief before and after evidence intro-

duction. Comparison of joint entropy and evidence belief before and after evidence introduc-

tion for different evidence introduction regimes. Left column: inferentially closed pre-training

corpora (reach=1); right column: inferentially incomplete pre-training corpora (reach = 50).

(PDF)

S1 Table. Statistical comparison of metrics pre and post evidence introduction. Statistical

comparison of metrics pre (steps 0–299) and post (steps 300–600) evidence introduction for

evidence integration regime “prompt”: standard deviation of metric pre evidence introduction

(STD PRE); difference in means post vs pre (DELTA MEAN); p-value of t-test for indepen-

dence of pre and post metric samples (p); mean difference relative to standard deviation

(DELTA/STD); boolean variable indicating statistically significant (p<0.05) deterioration of

metric (sign).

(PDF)

Acknowledgments

We would like to thank the participants of the research seminar at KIT’s Department of Philos-

ophy, and especially Christian Seidel, for their astute comments regarding and earlier version

of this manuscript.

Moreover, the thorough and constructive feedback of two reviewers helped us to improve

the paper.

Author Contributions

Conceptualization: Gregor Betz, Kyle Richardson.

Data curation: Gregor Betz.

Formal analysis: Gregor Betz, Kyle Richardson.

Investigation: Gregor Betz, Kyle Richardson.

Methodology: Gregor Betz, Kyle Richardson.

Supervision: Kyle Richardson.

Writing – original draft: Gregor Betz.

Writing – review & editing: Gregor Betz, Kyle Richardson.

PLOS ONE Neural language models as epistemic agents

PLOS ONE | https://doi.org/10.1371/journal.pone.0281372 February 9, 2023 25 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281372.s020
https://doi.org/10.1371/journal.pone.0281372


References
1. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, et al. Exploring the Limits of Transfer

Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research. 2020; 21:1–

67.

2. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. In: NAACL-HLT. Minneapolis; 2019.

3. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language Models are Unsupervised Multi-

task Learners. Preprint. 2019;.

4. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language Models are Few-Shot

Learners. 2020;.

5. Akhbardeh F, Arkhangorodsky A, Biesialska M, Bojar O, Chatterjee R, Chaudhary V, et al. Findings of

the 2021 Conference on Machine Translation (WMT21). In: WMT; 2021.
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