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Abstract
The concept of kurtosis is used to describe and compare theoretical and empirical
distributions in a multitude of applications. In this connection, it is commonly applied
to asymmetric distributions. However, there is no rigorous mathematical foundation
establishing what is meant by kurtosis of an asymmetric distribution and what is
required to measure it properly. All corresponding proposals in the literature centre the
comparisonwith respect to kurtosis around somemeasure of central location. Since this
either disregards critical amounts of information or is too restrictive, we instead revisit
a canonical approach that has barely received any attention in the literature. It reveals
the non-transitivity of kurtosis orderings due to an intrinsic entanglement of kurtosis
and skewness as the underlying problem. This is circumvented by restricting attention
to sets of distributions with equal skewness, on which the proposed kurtosis ordering
is shown to be transitive. Moreover, we introduce a functional that preserves this
order for arbitrary asymmetric distributions. As application, we examine the families
of Weibull and sinh-arcsinh distributions and show that the latter family exhibits a
skewness-invariant kurtosis behaviour.

Keywords Asymmetric distribution · Higher-order convexity · Kurtosis · Skewness ·
Stochastic order · Sinh-arcsinh distribution

1 Introduction

There has been much discussion in the literature concerning the question of what
kurtosis describes exactly. In particular, a number of articles have been published
both advocating its interpretation as ‘peakedness’ of a distribution and opposing it.
See Crack (2022, pp. 72–79) and Westfall (2014) for examples of either position and
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Fiori and Zenga (2009) for a more neutral historical review. Balanda andMacGillivray
(1988, p. 116) provide a critical review of the literature concerning kurtosis and, based
on that, aptly describe an increase in kurtosis as ‘the location- and scale-freemovement
of probability mass from the shoulders of a distribution into its center and tails’. This
heuristic, as is usually the case for kurtosis, is applied solely to unimodal symmetric
distributions.

As for other distributional characteristics, the concept of kurtosis is usually rooted
in a stochastic order. Among the first authors to introduce this order-based approach
for location and dispersion were Bickel and Lehmann (1975; 1976), it was later gen-
eralized by Oja (1981), among others. In particular, they required any measure ν of a
specific characteristic of a distribution to preserve a corresponding order �, i.e. that
F � G implies ν(F) ≤ ν(G) for all sufficiently regular distribution functions F,G.
The necessity of underpinning measures in this way is, e.g., demonstrated in Eberl and
Klar (2021). The most popular choice in the literature for this fundamental stochastic
order in the case of kurtosis was introduced by van Zwet (1964) and is denoted by ≤s .
Two distributions F,G are said to be ordered with respect to kurtosis in the sense of
F ≤s G, if the function x �→ RFG(x) = G−1(F(x)) is convex for x ≥ F−1(1/2).
Again, this fundamental order is only meaningful if F and G are symmetric.

Although not well-founded, the application of kurtosis and, more specifically, mea-
sures of kurtosis to asymmetric distributions is commonplace: when proposing new
families of continuous distributions or methods for generating such families, shape
parameters are often related to skewness and kurtosis. Examples are Goerg (2011),
Alzaatreh et al. (2013) and Fischer and Herrmann (2013). Only occasionally, authors
are more reluctant: Jones and Pewsey (2009) term the second shape parameter of their
sinh-arcsinh distribution as kurtosis only in the symmetric case, otherwise they speak
about tailweight, well aware of the underlying subtleties.

When modeling stock market volatility, Gabaix et al. (2006) consider distribu-
tions with large values of moment-based skewness and kurtosis and conclude “The
use of [moment] kurtosis should be banished from use with fat-tailed distributions.”
Asmussen (2022) studies higher order cumulants for a selection of financial models
from the literature. His motivation “comes from numerous statements in the financial
literature in the spirit that S [skewness] accounts for asymmetry and K [kurtosis] for
a sharper mode and heavier tails than for the Black–Scholes model.”

In particular in applied work, the notion of kurtosis is routinely used for skewed
distributions, and sample skewness and kurtosis are frequently documented in the
literature. Examples are Bai and Ng (2005) and Kim and White (2004) in the context
ofmodeling financial returns; Szczygielski et al. (2020) and López-Martín et al. (2022)
for modeling cryptocurrencies; Martins (1965) and Cooper (2020) for environmental
data; Eling (2012) and Sherrick et al. (2004) in the context of insurance risk.

All major approaches in the literature to define a fundamental kurtosis order for
asymmetric distributions have the same critical drawback. Namely, they artificially
centre the comparison of two distributions with respect to kurtosis around some mea-
sure of location, usually the median. Examples include the anti-skewness order ≤a by
MacGillivray and Balanda (1988) and the order ≤S by Balanda and MacGillivray
(1990), which is based on the so-called spread function. The order ≤a basically
imposes the same requirement as ≤s since F ≤a G is equivalent to RFG being
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concave up to the median of F and convex from there onward. While this switch
necessarily takes place at the median in a symmetric setting, it is very limiting and
not expedient to require this in the general case. A more flexible generalization of the
concave-convex order ≤s is proposed in Sect. 3.

For the second order ≤S , the spread function of a distribution function F is defined
by

SF (α) = F−1( 1
2 + α

) − F−1( 1
2 − α

)
, α ∈ [

0, 1
2

)
,

which can be interpreted as one half of a symmetrized quantile function of F . Heuris-
tically, the distribution is again artificially centred around the median by folding it
around the median and averaging out the two overlaying halves of the distribution. If
the resulting half of a distribution is then mirrored at the median, a symmetric dis-
tribution is obtained, which can be ordered with respect to kurtosis using ≤s . This
methodology is equivalent to defining the symmetrized kurtosis order ≤S by

F ≤S G ⇔ SG ◦ S−1
F is convex.

This definition of a kurtosis order is fairly easy to use and theoretically applicable to
all univariate distributions. It does, however, have significant downsides, especially
if it is intended to be used as a foundational order that establishes what is meant by
the notion of kurtosis. This was in part noted by Balanda and MacGillivray (1990, p.
29) themselves. First, a significant amount of information is lost in just combining the
two ‘sides’ (with respect to the median) of the distribution. The order≤S theoretically
allows arbitrarily large deviations from the desired concavity or convexity on one
side, if they are compensated by the other side. This kind of behaviour is not desirable
for a basic order. In a financial context, for instance, negative and positive values of
the distribution, i.e. losses and gains, have to be interpreted differently, and relevant
information about the shape of the distribution is lost by forcing symmetry. The second
downside becomes apparent if we consider skewed distributions on the positive half
line. In this case, the support ends close to the median on one side and is infinite
on the other side, and the symmetrized version is not representative of the original
distribution.

Further proposals of kurtosis orders for asymmetric distributions were discussed
by Oja (1981), Balanda andMacGillivray (1988), Arnold and Groeneveld (1992), and
Fiori (2008), but they exhibit similar drawbacks to ≤a and ≤S .

Oja (1981, p. 168) also briefly mentions the kurtosis order ≤3, where F ≤3 G
is said to hold if RFG is convex of order three. If both F and G are three times
differentiable, this is equivalent to R′′′

FG ≥ 0. This definition naturally arises from
basic orders of location, dispersion and skewness that are based upon the function
�FG(x) = RFG(x) − x . These orders, denoted ≤0, ≤1 and ≤2 by Oja (1981), hold
if �FG is non-negative, increasing and convex in the usual sense, respectively. For
continuous distributions, ≤0 coincides with the usual stochastic order. Under appro-
priate differentiability assumptions, the definition of all three orders can be unified by
stating that F ≤k G (k = 0, 1, 2) holds if �

(k)
FG ≥ 0. Since the concepts of location,

dispersion, skewness and kurtosis are hierarchically connected, as can be seen from
the classical measures, the first, second, third and fourth standardized moment, ≤3
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seems to be the canonical basic kurtosis order. In particular, ≤3 is naturally applicable
to asymmetric distributions. In spite of these observations, the order ≤3 is otherwise
not considered in the literature except by Hosking (1989), who shows that his kur-
tosis measure based on L-moments preserves ≤3 for symmetric distributions. This
disregard may partly be due to Oja (1981) criticizing the order for not being transitive.

If the order ≤3 was lacking transitivity on symmetric distributions, this would
indeed be a serious downside compared to ≤s . However, in Sect. 2, it is proved that
≤3 is transitive on this set. For the set of all distributions, we argue that transitivity
cannot be expected, since skewness or asymmetry interferes with the quantification
of kurtosis. This intrinsic entanglement was already mentioned by MacGillivray and
Balanda (1988) and Balanda and MacGillivray (1990), and proposals for skewness-
invariant kurtosis measures were made by Blest (2003) and Jones et al. (2011). In
Sects. 2 and 3, this entanglement is shown to be related to the transitivity of kurtosis
orders.

2 The kurtosis order≤3 and its transitivity properties

2.1 Basics

We begin by defining convex functions of order k ∈ N0 and the induced stochastic
orders.

Definition 1 Let I ⊆ R be an open interval and let ϕ : I → R be a function. For
k ∈ N and x0, . . . , xk ∈ I with x0 < · · · < xk , the zeroth and k-th divided difference,
respectively, of ϕ at x0, . . . , xk are defined by

[x0 | ϕ] = ϕ(x0),

[x0, . . . , xk | ϕ] = [x1, . . . , xk | ϕ] − [
x0, . . . , xk−1 | ϕ

]

xk − x0
.

ϕ is said to be convex of order k or k-convex on I , if

[x0, . . . , xk | ϕ] ≥ 0 (1)

holds for all x0, . . . , xk ∈ I with x0 < . . . < xk . Moreover, ϕ is said to be strictly
convex of order k on I , if inequality (1) is strict.

The k-convexity of functions can also be defined via the non-negativity of determi-
nants of (k + 1) × (k + 1)-matrices (see Oja 1981, p. 155). It is easy to see that both
approaches are equivalent. Throughout this work, we assume the following.

Assumption 2 All (univariate) distribution functions have interval support and are
three times differentiable. The interior of the support of a distribution function F is
denoted by DF and f = F ′ is assumed to be strictly positive on DF . The set of all
such distribution functions is denoted byP .
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Oja (1981, p. 156) defined a family of stochastic orders in the following way.

Definition 3 Let k ∈ N0 and F,G ∈ P . Then, F ≤k G is said to hold, if the function

�FG : DF → R, x �→ RFG(x) − x = G−1(F(x)) − x

is convex of order k.

Here, G−1 denotes both the inverse function and the quantile function of G, which
coincide given our regularity conditions.Note that≤0 coincideswith the usual stochas-
tic order ≤st , the most basic location order. Similarly, ≤1 coincides with the basic
dispersion order ≤disp and ≤2 coincides with the basic skewness order ≤c by van
Zwet (1964). For more details, see Oja (1981). Since the k-convexity of a k times
differentiable function ϕ is equivalent to ϕ(k) ≥ 0, one obtains the following corollary
(see, e.g., Oja 1981).

Corollary 4 Let k ∈ N0 and F,G ∈ P . Then, F ≤k G is equivalent to �
(k)
FG ≥ 0. If

k ≥ 2, F ≤k G is also equivalent to R(k)
FG ≥ 0.

2.2 Lack of transitivity and its implications

We now focus our attention on the order ≤3 as a canonical choice for a basic kurtosis
order. Whereas Definition 1 suggests that it is possible to relax the differentiability
requirements in Assumption 2, it is important to note that we are concerned only with
continuous distributions. Even the skewness order ≤2 is virtually meaningless for
discrete distributions (Eberl and Klar 2019), and the same holds for ≤3.

In a rare mention in the literature, Oja (1981, p. 168) states without proof that ≤3
is not transitive. This is confirmed by the following example.

Example 5 Define by

F : [0, 1] → [0, 1], t �→ t3,

G : [0, 1] → [0, 1], t �→ t,

H : [0, 1] → [0, 1], t �→ 1 − (1 − t)1/3

three infinitely often differentiable distribution functions on the unit interval. Note that
DF = DG = DH = (0, 1). Since both RFG and RGH are shifted versions of the third
monomial with restricted domains, both F ≤3 G and G ≤3 H hold. Straightforward
calculations yield

R′′′
FH (t) = 18(28t6 − 20t3 + 1),

which implies

R′′′
FH (t) < 0 for t ∈

((
5−3

√
2

14

)1/3
,
(
5+3

√
2

14

)1/3) ≈ (0.378, 0.871) ⊆ [0, 1],
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and thereby contradicts F ≤3 H .

The orders ≤0, ≤1 and ≤2 can all be equivalently characterized by families of
measures of location, dispersion and skewness, respectively.Because all suchmeasures
are mappings from a set of probability distributions to the real numbers, their values
are compared using the transitive relation ≤. Since this is not compatible with the
non-transitivity of the kurtosis order ≤3, we obtain the following negative result.

Corollary 6 There does not exist a family {κι : P → R | ι ∈ I } of mappings such
that

κι(F) ≤ κι(G) ∀ι ∈ I

is equivalent to F ≤3 G.

Note that stochastic orders are usually not strongly connected, which means that
F �3 H does not imply H ≤3 F . However, for the distributions in Example 5, it
can be shown that H ≤3 F does indeed hold. This is a more disturbing result than
the mere non-transitivity of ≤3: if one additionally requires that κ preserves the strict
version of ≤3, i.e. that F <3 G implies κ(F) < κ(G), it can be shown that there
exists no mapping κ : P → R that preserves the order ≤3.

Remark 7 It should be emphasized that missing transitivity can also be found in more
familiar areas. The best known example is probably the location order defined by
X ≤p Y if the relative effect p = P(X < Y ) + P(X = Y )/2 is greater than or
equal to 1/2. It is well known that this order is not transitive, as exemplified by non-
transitive dice (Gardner 1970). Still, the empirical counterpart to p is the key quantity
of important nonparametric tests like theWilcoxon–Mann–Whitney, Fligner–Policello
and Brunner–Munzel test (Divine et al. 2018).

An example for a non-transitive dispersion ordering is the dangerousness order:
given random variables X ,Y on the positive half line, X is said to be less dangerous
than Y if there is some c ≥ 0 with F ≤ G on [0, c), F ≥ G on [c,∞) and E(X) ≤
E(Y ). Here, the situation somewhat differs from the foregoing example, since the
dangerousness order has a transitive closure, the convex order (Müller 1996).

The observation precedingRemark 7 suggests that kurtosismeasures in the classical
order-based sense, used by Oja (1981) among others, do not exist. In the literature,
≤s is usually chosen as the kurtosis order to be preserved by a kurtosis measure.
Because of the limitations of≤s , this can only be used to validate kurtosis measures for
symmetric distributions, which is unsatisfactory for the reasons mentioned in Sect. 1.
The question how to use the much more general applicability of the order ≤3 in spite
of its non-transitivity can be answered in two ways.

The first possibility is to move away from the classical idea of measures of kurtosis
and instead consider functionals that quantify the difference in kurtosis between two
given distributions. For example, consider the quantile-based mapping

κ
α,η
Q : P → R, F �→ F−1(1 − α) − 3F−1(1 − η) + 3F−1(η) − F−1(α)

F−1(1 − η) − F−1(η)
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for 0 < α < η < 1/2, which is listed as a kurtosis measure by Ruppert (1987),
Balanda and MacGillivray (1988) and Jones et al. (2011) among others, since it pre-
serves the order≤s . Similarly constructed quantile-based mappings using lower-order
differences are measures of location, dispersion and skewness and can even be used
to characterize the orders ≤0, ≤1 and ≤2 in the sense of Corollary 6. By customizing
the evaluation points to a second distribution, one arrives at the functional

κα
QF (F,G) = G−1(1 − α) − 3G−1 (ηF (1 − α)) + 3G−1 (ηF (α)) − G−1(α)

G−1(1 − α) − G−1(α)

(0 < α < 1/2), where

ηF (q) = F
(
2
3 F

−1(q) + 1
3 F

−1(1 − q)
)

.

This functional preserves the kurtosis order ≤3 even for asymmetric distributions, as
the following result shows.

Proposition 8 Let F,G ∈ P . Then F ≤3 G implies κα
QF (F,G) ≥ 0.

Proof According to Definitions 1 and 3, F ≤3 G is equivalent to

G−1(p3)−G−1(p2)
F−1(p3)−F−1(p2)

− G−1(p2)−G−1(p1)
F−1(p2)−F−1(p1)

F−1(p3) − F−1(p1)
−

G−1(p2)−G−1(p1)
F−1(p2)−F−1(p1)

− G−1(p1)−G−1(p0)
F−1(p1)−F−1(p0)

F−1(p2) − F−1(p0)
≥ 0

(2)

for all 0 < p0 < p1 < p2 < p3 < 1. By choosing p0 = α, p1 = ηF (α), p2 =
ηF (1 − α) and p3 = 1 − α, (2) boils down to

G−1(1 − α) − 3G−1(ηF (1 − α)) + 3G−1(ηF (α)) − G−1(α) ≥ 0.

The subsequent division by the α-interquantile range of G is done to obtain a scale-
invariant functional. ��
Remark 9 Again, the situation is similar for the Wilcoxon–Mann–Whitney location
order ≤p in Remark 7. The usual unbiased estimator for the relative effect is a U-
statistic involving both samples, and there cannot exist a measure depending on one
sample like the mean or median, which is consistent with ≤p in general.

2.3 Transitivity sets

The second possibility is to restrict the comparison of kurtosis to suitable subsets of
distributions, e.g. the subset of symmetric distributions. In the following, we analyze
the transitivity sets of the order ≤3. As a starting point, all pairs of distributions that
are ordered with respect to ≤3 are divided into two mutually exclusive categories. For
that, let F,G ∈ P satisfy F ≤3 G, implying that the function R′′

FG is increasing.
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Now, F and G are either skewness-comparable with respect to ≤2, i.e., F ≤2 G
or G ≤2 F holds, or they are not. In the latter case, RFG has an inflection point
at a tFG ∈ DF = int(supp(F)) with R′′

FG(t) ≤ 0 for t ≤ tFG and R′′
FG(t) ≥ 0 for

t ≥ tFG . More specifically, there exist values t	, tu ∈ DF with t	 < tFG < tu such that
R′′
FG(t	) < 0 and R′′

FG(tu) > 0. The inflection point at tFG is, in general, not unique
since RFG can be linear on a given non-degenerate interval. However, any inflection
point of RFG can be uniquely identified by the value pFG = F(tFG) ∈ (0, 1).
Furthermore, note that F ≤2 G and G ≤2 F can be viewed as limiting cases with
tFG = inf DF or tFG = sup DF , yielding pFG = 0 or pFG = 1, respectively. So in
order to obtain the most general setting, we allow tFG ∈ DF = supp(F).

Definition 10 Let F and G be two cdf’s satisfying F ≤3 G. A value pFG ∈ [0, 1]
is said to be an inflection value of F and G, if R′′

FG(t) ≤ 0 for all t ≤ F−1(pFG)

and R′′
FG(t) ≥ 0 for all t ≥ F−1(pFG). The set of all inflection values of F and G is

denoted by 
FG .

As stated before, any pair F,G satisfying F ≤3 G has at least one inflection value.
Requiring R′′′

FG(t) > 0 for all t ∈ DF is sufficient for the inflection value pFG to be
unique. With this in mind, we analyze more closely why≤3 is not transitive. Let F,G
and H satisfy F ≤3 G and G ≤3 H . Then,

RFH (t) = H−1(F(t)) = H−1(G(G−1(F(t)))) = RGH (RFG(t)),

R′′
FH (t) = R′′

GH (RFG(t)) · (R′
FG(t))2 + R′

GH (RFG(t)) · R′′
FG(t), (3)

R′′′
FH (t) = R′′′

GH (RFG(t)) · (R′
FG(t))3 + R′

GH (RFG(t)) · R′′′
FG(t)

+ 3R′′
GH (RFG(t)) · R′

FG(t) · R′′
FG(t) (4)

holds for all t ∈ DF . Note that RFG and RGH are increasing as a composition of two
increasing functions. Hence, the first two summands on the right side of Eq. (4) are
non-negative and

R′′
GH (G−1(p)) · R′′

FG(F−1(p)) ≥ 0 for all p ∈ (0, 1)

is a sufficient condition for F ≤3 H . By assumption, the sets 
FG and 
GH are
both non-empty. If the intersection of these two sets is also non-empty, i.e., if there
exists a p0 ∈ [0, 1] such that p0 ∈ 
FG and p0 ∈ 
GH , the signs of R′′

FG(F−1(p))
and R′′

GH (G−1(p)) coincide for all p ∈ (0, 1) since they are both non-positive for
p < p0 and both non-negative for p > p0. Otherwise, if the intersection of 
FG

and 
GH is empty, choose a representative from each set such that their difference
is minimal. Assuming without restriction that pFG < pGH , where pFG ∈ 
FG and
pGH ∈ 
GH , it follows that

R′′
GH (G−1(p)) · R′′

FG(F−1(p)) < 0 for all p ∈ (pFG, pGH ).

We summarize our results thus far in the following proposition.
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Proposition 11 Let p0 ∈ [0, 1] and letF0 be a set of cdf’s such that any pair F,G ∈
F0 with F ≤3 G has p0 as an inflection value. Then, the order ≤3 is transitive on
F0.

We now study the structure of the sets mentioned in Proposition 11 or suitable
subsets thereof. First, we assume that F and G with F ≤3 G have an inflection value
pFG ∈ (0, 1). The fact that pFG = F(tFG) ∈ (0, 1) is an inflection value of the pair
F,G is equivalent to R′′

FG(tFG) = 0. Denoting by f and g the derivatives of F and
G, respectively, we get

R′′
FG(t) = f ′(t) · (g(RFG(t)))2 − f 2(t) · g′(RFG(t))

(g(RFG(t)))3
(5)

for all t ∈ DF . Hence, pFG is an inflection value of F and G, if and only if

f ′(F−1(pFG))

( f (F−1(pFG)))2
= g′(G−1(pFG))

(g(G−1(pFG)))2
. (6)

Thus, any pair that is ordered with respect to ≤3 out of a given set of cdf’s has the
same inflection value p0 ∈ (0, 1), if and only if

γ
p0
D (F) = f ′(F−1(p0))

( f (F−1(p0)))2

coincides for all cdf’s F in the set. The following result is obtained by combining this
observation with Proposition 11.

Proposition 12 Let p0 ∈ (0, 1) and letF0 be a set of cdf’s such that γ
p0
D (F) coincides

for all F ∈ F0. Then, all pairs F,G ∈ F0 with F ≤3 G have p0 as an inflection
value.

If pFG ∈ {0, 1} is the sole inflection value of F and G with F ≤3 G, (5) is not
valid because the densities f and g are not uniquely defined at the edges of their
respective supports. Thus, no easily verifiable sufficient condition for inflection points
as in Proposition 12 can be obtained in this case. In summary, defining the set

T t
D,p = {F ∈ P : γ

p
D(F) = t}

for all p ∈ (0, 1) and all t ∈ R gives the following result.

Theorem 13 For any t ∈ R and any p ∈ (0, 1), the kurtosis order ≤3 is transitive on
the set T t

D,p.

As mentioned in Sect. 1, a number of authors have identified an intrinsic entangle-
ment between skewness and kurtosis. By considering the mapping γ

p
D more closely,

this observation is confirmed and refined by Theorem 13. Recall that the critical prop-
erty of a skewness measure γ : P → R is that it preserves the skewness order≤2, i.e.

123



A. Eberl, B. Klar

that F ≤2 G implies γ (F) ≤ γ (G) for all F,G ∈ P . Since F ≤2 G is equivalent to
R′′
FG ≥ 0, changing Eqs. (5) and (6) into inequalities yields that γ p

D preserves ≤2 for
all p ∈ (0, 1) and thus measures skewness. In fact, γ p

D(F) ≤ γ
p
D(G) for all p ∈ (0, 1)

is equivalent to F ≤2 G, so these measures characterize the order ≤2 in a way that
is not possible for ≤3 according to Corollary 6. However, for p �= 1/2, γ p

D measures
skewness in an asymmetric or non-central way because the additional requirement
γ
p
D(−X) = −γ

p
D(X) (see,e.g., Groeneveld and Meeden 1984, p. 393) is not satisfied.

The fact that≤3 is transitive, if a suitable skewnessmeasure is constant, suggests that
the non-transitivity of ≤3 on the set of all cdf’s is because pairs of cdf’s with differing
degrees of skewness lack comparabilitywith respect to kurtosis.As opposed to location
and dispersion, a distribution cannot be standardized with respect to skewness by an
arithmetic operation like addition for location and scalar multiplication for dispersion.
Thus, in order to obtain a transitive kurtosis order without interference caused by
skewness, attention has to be restricted to sets of constant skewness. Note that, for all
p ∈ (0, 1), the sets T t

D,p, t ∈ R, constitute a partition of the set P of distributions.
For each partition, p is also the inflection value of every kurtosis comparable pair of
distributions from the same transitivity set of the partition. Thus, each F ∈ P lies
within a subset of P on which ≤3 is transitive. In the light of these observations,
one could adapt the classical order-based approach to define measures of location,
dispersion and skewness to kurtosis. Instead of requiring a mapping κ : P → R to
generally preserve the order≤3, one could require the restriction of κ to the transitivity
set T t

D,1/2 to preserve ≤3 for all t ∈ R.
These observations raise the question whether there exist other skewness measures

that induce transitivity sets analogous to Theorem 13. To that end, note that a simple
sufficient condition for the term γ

p0
D (F) to coincide is to require f ′(F−1(p0)) = 0

for all cdf’s F in the given set. Hence, for each p0 ∈ (0, 1), ≤3 is transitive on the set
of all cdf’s, the density of which has a stationary point at the p0-quantile. One well
known point, at which this commonly occurs, is the mode of a distribution. For the
following considerations, we assume that all distributions are unimodal and denote
the mode of F by MF . If the mode lies in the interior of the support, the assumptions
on F directly yield f ′(MF ) = 0. It follows that, for any p ∈ (0, 1), γ p

D(F) = 0 holds
for all cdf’s F in the set

T
p̃
Mode = {F : MF = F−1(p)} = {F : 1 − 2F(MF ) = p̃},

where p̃ = 1 − 2p. In combination with Propositions 11 and 12, this observation
yields the following result.

Theorem 14 For any p̃ ∈ (−1, 1), the kurtosis order≤3 is transitive on the setT
p̃
Mode.

For any p̃ ∈ (−1, 1) and any pair of cdf’s F,G ∈ T
p̃
Mode with F ≤3 G, the

corresponding inflection value is given by p = ( p̃ + 1)/2. Arnold and Groeneveld
(1995, p. 35) showed that γMode(F) = 1 − 2F(MF ), F ∈ P, is a measure of
skewness, which entails that it preserves the skewness order ≤2. Thus, the transitivity
of ≤3 on the sets T

p̃
Mode has a similar interpretation to before: for ≤3 to be transitive,

the skewness of the involved distributions needs to be constant in some sense.
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For distributions with modes at the boundaries of their supports, the above transi-
tivity property does not hold, i.e.,≤3 is not transitive onT

−1
Mode andT

1
Mode in general.

The crucial result in Proposition 12 does not hold in these cases. Counterexamples
can be constructed using Weibull distributions, applying the results given in Sect. 4
below. Thus, the sets T p̃

Mode, p̃ ∈ (−1, 1), do not provide a partition of the set of all
(sufficiently regular) probability distributions on the real numbers.

The notion of a mode can be generalized without losing the transitivity of ≤3 on
the corresponding sets T p̃

Mode. Specifically, Theorem 14 still holds if f only attains a
local maximum at MF , no longer assuming F to be unimodal. However, Arnold and
Groeneveld (1995) only proved γMode to be a skewness measure under the assumption
of unimodality.

The relationships between the transitivity sets found in this section and their con-
nection to the set of all symmetric distributions are summarized in the following
remark.

Remark 15 Let p̃ ∈ (−1, 1) and let F ∈ T
p̃
Mode be unimodal. It follows that MF =

F−1(p), where p = ( p̃+1)/2 ∈ (0, 1). SinceMF lieswithin the interior of the support
of F , we obtain f ′(F−1(p)) = 0 and therefore γ

p
D(F) = 0. Thus, the inclusion

T
p̃
Mode ⊆ T 0

D,p holds for all p ∈ (0, 1) with p̃ = 2p − 1. In particular, T 0
Mode ⊆

T 0
D,1/2.

Now, let F ∈ P be symmetric, denoted by F ∈ S . Since both γ
p
D and γMode are

invariant under transformations of the form x �→ ax + b for a > 0 and b ∈ R, we can
assume without restriction that the symmetry centre of F is 0. Because this implies
γ
1/2
D (F) = f ′(0)/( f (0))2 = 0, we obtain the inclusionS ⊆ T 0

D,1/2. If, additionally,
F is assumed to be unimodal, MF = 0 and γMode(F) = 0 follows. Thus, in this case,
S ⊆ T 0

Mode ⊆ T 0
D,1/2 holds.

Since ≤3 is transitive on T 0
D , it is also transitive on the set of all symmetric cdf’s.

Oja (1981), virtually the only work which mentions the order ≤3, dismissed it due to
its non-transitivity, and instead focused on the previously mentioned concave-convex
order≤s . However, Oja restricted his considerations concerning kurtosis to symmetric
distributions, and therefore also proved the transitivity of ≤s only on this class. Since
≤3 is also transitive on symmetric distributions, Oja’s argument is not convincing.

2.4 Equivalence with respect to≤3

Two distributions F,G ∈ P are said to be equivalent with respect to ≤3, denoted
by F =3 G, if both F ≤3 G and G ≤3 F hold. This is equivalent to R′′′

FG ≥ 0 and
R′′′
GF ≥ 0. Using RGF = R−1

FG to rewrite the third derivative of RGF as

R′′′
GF (t) = 3(R′′

FG(RGF (t)))2 − R′′′
FG(RGF (t))R′

FG(RGF (t))

(R′
FG(RGF (t)))5

,

123



A. Eberl, B. Klar

it follows that

G ≤3 F ⇔ R′′′
FG(t) ≤ 3

(R′′
FG(t))2

R′
FG(t)

∀t ∈ DF .

Hence, we have the following result.

Proposition 16 F =3 G holds, if and only if RFG satisfies the differential inequality

0 ≤ ϕ′′′(t) ≤ 3
(ϕ′′(t))2

ϕ′(t)
∀t ∈ DF . (7)

The fact that F =3 G is not equivalent to R′′′
FG ≡ 0 is notable as it systematically

differs fromwhat can be observedwith the orders≤0,≤1 and≤2 of location, dispersion
and skewness. Equivalence with respect to any of these orders occurs if and only if
the corresponding derivative of RFG is constantly zero. Thus, F =0 G is equivalent
to F = G, F =1 G is equivalent to F(·) = G(· + b) for a b ∈ R, and F =2 G is
equivalent to F(·) = G(a · +b) for an a > 0 and a b ∈ R. Heuristically, equivalence
with respect to dispersion means that G is a shifted or relocated version of F and
equivalence with respect to skewness means that G is a shifted and rescaled version
of F , allowing for changes in location and dispersion. This suggests that the functions
satisfying the differential inequality (7) can change the location, the dispersion and the
skewness of a distribution while being kurtosis-invariant. However, the fact that this
family of functions is not as simple as the family of all affine linear transformations
suggests that there exists no simple operation to standardize distributions with respect
to skewness.

In the following example, Proposition 16 is applied to monomials.

Example 17 Let RFG(t) = t p, 0 < t < 1, for some p > 0. This arises, for example,
for F(t) = t,G(t) = t1/p, for F(t) = t p,G(t) = t , or, with support t > 0, for
Weibull distributions (see Sect. 4). For p /∈ {1, 2}, F ≤3 G is equivalent to

0 ≤ R′′′
FG(t) = p(p − 1)(p − 2)t p−3 ∀t ⇔ p /∈ (1, 2).

Since R′′′
FG ≡ 0 for p ∈ {1, 2}, F ≤3 G is equivalent to p /∈ (1, 2). Conversely, for

p /∈ {1, 2}, G ≤3 F is equivalent to

R′′′
FG(t) ≤ 3

(RFG(t)′′)2

R′
FG(t)

= 3p(p − 1)2t p−3 ∀t ⇔ p /∈ ( 12 , 1).

Since the inequality is obviously satisfied for p ∈ {1, 2}, G ≤3 F is equivalent to
p /∈ ( 12 , 1). Overall, F =3 G is satisfied, if and only if

p ∈ (0, 1/2] ∪ {1} ∪ [2,∞).

In particular, F(t) = t, t ∈ (0, 1), and G(t) = t2, t ∈ (0, 1), are equivalent with
respect to ≤3.
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Note that R′′′
FG ≡ 0 and therefore also F =3 G holds if RFG is any polynomial of

degree ≤ 2. While F =2 G is equivalent to RFG being a polynomial of degree ≤ 1,
the fact that RFG is a polynomial of degree≤ 2 is only a sufficient, but not a necessary
condition for F =3 G.

3 Concave–convex kurtosis orders

In the literature, there exist two major proposals for generalizing the concave–convex
order ≤s to asymmetric distributions, denoted by ≤a and ≤S (see MacGillivray and
Balanda1988;Balanda andMacGillivray1990). Theorder≤S is not considered further
in the present work because it disregards a critical amount of information, as expanded
upon in Sect. 1. The critical drawback of the order ≤a can best be explained using the
notion of the inflection value from Definition 10. Just like in our considerations in
Sect. 2.3, F ≤a G requires that the function RFG has one change from negative to
positive curvature, whose location can be identified by an inflection value pFG ∈
(0, 1). While pFG = 1/2 necessarily holds if F and G are symmetric, there is no
reason to assume it to be a prerequisite for two asymmetric distributions to be ordered
with respect to kurtosis. Thus, whereas the generally applicable order ≤3 is stronger
than ≤s in a symmetric setting, the same can not be said about the generalized version
≤a of≤s in a general setting. In the following, we propose an alternative generalization
of ≤s that is not a priori restricted to a specific inflection value.

Definition 18 F is said to be less kurtotic in the concave–convex sense thanG, denoted
by F ≤gs G, if there exists a pFG ∈ [0, 1] such that RFG is concave on DF ∩
(−∞, F−1(pFG)) and convex on DF ∩ (F−1(pFG),∞).

The fact that F ≤3 G implies F ≤gs G for all F,G ∈ P is a direct consequence
of Theorem 20 below. The essential difference between the two orders is that the first
requires that a function (in this case R′′

FG) is increasing whereas the second requires
that the same function changes values from negative to positive at some point. This
principle has also been used in the literature to obtain weakenings of other orders from
the family ≤k, k ∈ N0. As an example, we can consider the visually more striking
characteristic of dispersion based on the order ≤1. Instead of assuming that �FG

increases, which is equivalent to F ≤1 G, we can require that the values of �FG

switch from negative to positive at some point. A similar dispersion order has been
proposed by Oja (1981, p. 158). He writes F ≤∗

1 G if there exists x0 ∈ DF such that
�FG(x) ≤ E(Y ) − E(X) for x ≤ x0 and �FG(x) ≥ E(Y ) − E(X) for x ≥ x0.
The sole difference to the order introduced before is the threshold, which changes
from zero to the difference of the expectations. Unlike zero, the difference of the
expectations is guaranteed to be taken as a value of �FG at some point. This can be
seen by considering the centred versions of F and G. If, for example, the locations of
F and G differ substantially, using the threshold zero is obviously not reasonable.

This line of argument can also be applied to the order ≤gs and the function R′′
FG .

For general distribution functions F and G, there is no reason to assume that R′′
FG

takes the value zero at some point. Thus, Definition 18 needs to be modified. However,
because F and G can only be standardized with respect to location and dispersion and
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not with respect to skewness, we cannot use the same technique as for ≤∗
1 to obtain

an alternative threshold. Therefore, the following definition uses a variable threshold.

Definition 19 Let t0 ∈ R. Then, F is said to be less kurtotic than G in the concave-
convex sense with threshold t0, denoted by F ≤t0

gs G, if there exists a pt0FG ∈ [0, 1]
such that R′′

FG(t) ≤ t0 holds for all t ∈ DF ∩ (−∞, F−1(pt0FG)) and R′′
FG(t) ≥ t0

holds for all t ∈ DF ∩ (F−1(pt0FG),∞).

Note that the orders ≤0
gs and ≤gs coincide. While the order ≤t0

gs is formally defined
for all t0 ∈ R, it is only meaningful if t0 ∈ int(R′′

FG(DF )). Otherwise, it is obvious
that either R′′

FG(t) ≤ t0 or R′′
FG(t) ≥ t0 holds for all t ∈ DF . Hence, all thresholds

t0 ∈ int(R′′
FG(DF )) are said to be reasonable. The only exception is the case that the

set of reasonable thresholds is empty, which is equivalent to R′′
FG being constant. In

this case, the sole value of R′′
FG is the only candidate for a reasonable threshold.

The relationship between ≤3 and the family ≤t0
gs, t0 ∈ R, given in the following

theorem, underpins the idea that the latter consists of natural weakenings of ≤3.

Theorem 20 Let F,G ∈ P . Then, F ≤3 G is equivalent to F ≤t0
gs G for all t0 ∈

int(R′′
FG(DF )).

Proof The implication from left to right holds by construction. For the reverse impli-
cation, let t1 ∈ DF . If t1 lies within an interval onwhich R′′

FG is constant, R′′′
FG(t1) = 0

follows. Otherwise, it follows that t0 = R′′
FG(t1) ∈ int(R′′

FG(DF )). Now

R′′′
FG(t1) = lim

ε↘0

R′′
FG(t1 + ε) − R′′

FG(t1 − ε)

2ε
≥ 0

holds because of R′′
FG(t1+ε) ≥ t0 and R′′

FG(t1−ε) ≤ t0 by assumption. The assertion
follows since t1 was arbitrary. ��

In Theorem 20, the set int(R′′
FG(DF )) can be replaced by R because either

R′′
FG(t) ≤ t0 or R′′

FG ≥ t0 is true by construction for all unreasonable thresholds
t0 /∈ int(R′′

FG(DF )).
The following result states that the proposed extension of the concave-convex order

≤s to asymmetric distributions is not transitive in general, implying that it is not
superior to ≤3 in this respect.

Proposition 21 For all t0 ∈ R, the kurtosis order ≤t0
gs is not transitive in general.

Proof A counterexample can be obtained for all t0 ∈ R by reusing Example 5 with a
rescaled version of H−1. For that, let c > 0 and

H : [0, c] → [0, 1], t �→ 1 − 3

√
c − t

c
.

This implies that the functions RGH and RFH as well as all of their derivatives are
multiplied by the factor c. So, additionally to F ≤3 G, R′′′

GH (t) = 6c ≥ 0 holds for
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all t ∈ [0, 1], and, thus, G ≤3 H . By Theorem 20, F ≤t0
gs G and G ≤t0

gs H hold for
all t0 ∈ R. In contrast, we have

R′′
FH (t) = 18c(4t7 − 5t4 + t)

⎧
⎪⎨

⎪⎩

< 0 for t ∈ (2− 2
3 , 1),

= 0 for t ∈ {0, 2− 2
3 , 1},

> 0 for t ∈ (0, 2− 2
3 ).

It follows that, for any t0 > 0, there exists c > 0 such that R′′
FH first takes values

smaller than t0, then larger, and finally smaller again. For any t0 < 0, there exists c > 0
such that R′′

FH first takes values larger than t0, then smaller and finally larger again.
For t0 = 0, we obtain R′′

FH (t) ≥ 0 for t ≤ 2−2/3 and R′′
FH (t) ≤ 0 for t ≥ 2−2/3. All

three cases pose a contradiction to F ≤t0
gs G. ��

For symmetric cdf’s F and G, RFG always has an inflection point at F−1(1/2).
Thus, ≤gs is equivalent to ≤s onS and therefore also transitive onS (see Oja 1981,
p. 165). The situation is different for ≤t0

gs, t0 �= 0 because the critical switch from
R′′
FG(t) ≤ t0 to R′′

FG(t) ≥ t0 cannot occur at F−1(1/2) due to the point symmetry of
RFG .

Remark 22 The specific order ≤0
gs (or, equivalently, ≤gs) can be altered slightly to

become transitive on themore general setsT p̃
Mode, p̃ ∈ (−1, 1), andT t

D,p, t ∈ R, p ∈
(0, 1). For two cdf’s F andG, we say that F <gss G holds if there exists a pFG ∈ [0, 1]
such that R′′

FG is strictly negative on DF ∩ (−∞, F−1(pFG)), and strictly positive
on DF ∩ (F−1(pFG),∞). Note that <gss is not equivalent to <gs since the latter is
defined by

F <gs G ⇔ F ≤gs G and F �=gs G ⇔ F ≤gs G and G �gs F,

as usual for strict versions of orders. To see that <gss is transitive, let p ∈ (0, 1) and
F,G, H ∈ T t

D,p with F <gss G and G <gss H . By the line of reasoning used to

prove Proposition 12 and Theorem 13, R′′
FG(F−1(p)) = 0 = R′′

GH (G−1(p)) then
holds. Since, by definition of <gss , there exists at most one t ∈ DF and one s ∈ DG

such that R′′
FG(t) = 0 and R′′

GH (s) = 0, t = F−1(p) and s = G−1(p) follows.
Considering (3) for t = F−1(p) along with the fact that RGH is increasing, this yields
R′′
FH (F−1(q)) < 0 for q < p and R′′

FH (F−1(q)) > 0 for q > p. Overall, F <gss H

follows. The transitivity of <gss on the sets T p̃
Mode, p ∈ (−1, 1), now follows from

T
p̃
Mode ⊆ T 0

D,p, where p = ( p̃ + 1)/2.

It is not possible to show the transitivity of the order ≤gs on the given sets in
the same way as for <gss , since, assuming F ≤gs G, R′′

FG(F−1(p)) = 0 for any
p ∈ (0, 1) is not sufficient to infer that p is an inflection value. Because the concavity
and the convexity of RFG on either side of the actual inflection value is not assumed
to be strict, the function could be convex on both sides of F−1(p) or concave on both
sides.
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4 Application to specific distributions

4.1 Weibull distribution

As an example of a well-known family of distributions with varying degrees of
skewness, we consider Weibull distributions. Without restriction, we set the scale
parameter to 1, and denote the distribution with shape parameter k by W(k). Let
X ∼ W(k),Y ∼ W(	) for 0 < k < 	. For t > 0, we have RFG(t) = tk/	. It follows
directly from Example 17 that F ≤3 G holds for all k < 	, whereas F =3 G holds for
2k ≤ 	. Thus, if the two parameters differ by less than a factor two, the distribution
with the higher parameter value is strictly more kurtotic. If the two parameters differ
at least by a factor two, the two distributions are equivalent with respect to the order
≤3. Considering that a large difference between the two parameter values is also asso-
ciated with a large difference in skewness, this may best be interpreted as follows. If
the difference in skewness between twoWeibull distributions is too large, they cannot
be unambiguously ordered with respect to kurtosis.

This rather unintuitive behaviour allows us to construct another counterexample for
the transitivity of ≤3 since, e.g., W(k) ≤3 W(1.5k) =3 W(0.7k) �3 W(k) holds for
all k > 0. Furthermore, it is easy to show that ≤t0

gs coincides with ≤3 on the family of
Weibull distributions for all reasonable thresholds t0. Thus, the given counterexample
also applies to ≤t0

gs .

4.2 Sinh-arcsinh distribution

The family of sinh-arcsinh distributions was introduced by Jones and Pewsey (2009).
It is dependent upon four parameters, which are associated with location, dispersion,
skewness and tailweight. Here, we consider a simplified two-parameter family by
fixing the location and dispersion parameters to zero and one, respectively. A random
variable X is said to be sinh-arcsinh-distributed with skewness parameter ν ∈ R and
tailweight τ > 0, denoted by X ∼ SAS(ν, τ ), if the random variable

Z = Sν,τ (X) = sinh(τ · arsinh(X) − ν)

is standard normal. Skewness to the right increases with increasing ν and tailweight
decreases with increasing τ . More specifically, F ≤2 G if νF ≤ νG , τF = τG and
F ≤gs G if νF = νG = 0, τF ≤ τG (see Jones and Pewsey 2009, pp. 763, 765,
766). One can directly infer the corresponding distribution function F = �◦ Sν,τ and
quantile function F−1 = S−1

ν,τ ◦ �−1 = S−ν/τ,1/τ ◦ �−1 of X .
There exist numerous other distribution families with four parameters that are asso-

ciatedwith location, dispersion, skewness and tailweight or kurtosis. Examples include
the skew-t distribution (Azzalini 1985; Azzalini and Capitanio 2003) and Tukey’s
g-and-h or g-and-k distributions (Tukey 1977; Hoaglin 2006; Haynes et al. 1997).
However, these families do not have similarly explicit representations of both their
distribution and quantile functions. Furthermore, while the skew-t distributions do
include the standard normal distribution, it only appears as a limiting case and not as
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Table 1 Behaviour of the function R′′
FG and kurtosis orders for distribution functions F and G of X ∼

SAS(νF , τF ) and Y ∼ SAS(νG , τG )

R′′
FG

Value of τ̃ Sign change? Monotonicity? limt→±∞ F ≤3 G? F ≤t0
gs G?

τ̃ ∈ (0, 1) ‘+’ to ‘−’ No 0 No No

τ̃ = 1 No No* 0 No** No**

τ̃ ∈ (1, 2) ‘−’ to ‘+’ No 0 No Iff t0 = 0

τ̃ = 2 ‘−’ to ‘+’ Increasing ± 4 Yes Yes

τ̃ ∈ (2, 3) ‘−’ to ‘+’ Increasing ±∞ sub-linear growth Yes Yes

τ̃ = 3 ‘−’ to ‘+’ Increasing ±∞ linear growth Yes Yes

τ̃ ∈ (3,∞) ‘−’ to ‘+’ Increasing ±∞ super-linear growth Yes Yes

*Constant, if ν̃ = 0. **Yes, if ν̃ = 0

a standard case as for the sinh-arcsinh distributions. Finally, the sinh-arcsinh transfor-
mation can also be applied to (symmetric) base distributions other than the standard
normal. For example, Rosco et al. (2011) applied it to Student’s t-distribution.

Let X ∼ SAS(νF , τF ) and Y ∼ SAS(νG , τG) with distribution functions F and
G. It follows that RFG(t) = Sν̃,τ̃ (t), where ν̃ = (νF − νG)/τG and τ̃ = τF/τG . Note
that the fulfilment of F ≤t0

gs G and F ≤3 G is solely dependent on RFG . Hence,
the ordering of F and G in terms of kurtosis only depends upon two parameters
instead of four. The following result gives conditions for the ordering of sinh-arcsinh
distributions with respect to the kurtosis orders ≤3 and ≤gs .

Theorem 23 Let F �= G and t0 ∈ int(R′′
FG(DF )). Then, F ≤3 G holds if and only if

τF ≥ 2τG. Likewise, for t0 �= 0, F ≤t0
gs G is equivalent to τF ≥ 2τG. Furthermore,

F ≤0
gs G if and only if τF > τG.

The key characteristics of R′′
FG are summarized in Table 1. The proof of Theorem

23 can be found in the supplementary material document.
Since the usual order of the real numbers used in the equivalent conditions in

Theorem 23 is transitive, the following result is directly implied.

Corollary 24 Let t0 ∈ int(R′′
FG(DF )). Then, the orders ≤3 and ≤t0

gs are transitive on
the set {F ∈ P : ∃ν ∈ R, τ > 0 : F = SAS(ν, τ )}.

Heuristically, Theorem 23 implies that, within the family of sinh-arcsinh distri-
butions, comparisons in terms of kurtosis are skewness-invariant. This is due to the
fact that equivalent characterizations for both major kurtosis orders are independent
of both νF and νG , which are skewness parameters by construction and also in the
sense of ≤2 for τF = τG (see Jones and Pewsey 2009, p. 763). Moreover, the charac-
terizations in Theorem 23 not only stay the same for equally skewed asymmetric
distributions, but also for pairs of distributions with arbitrarily big differences in
skewness. Also note that these results can be generalized to families of sinh-arcsinh
distributions that arise from symmetric base distributions other than the normal since
the functions RFG only depend on the transformations and not on the specific base dis-
tribution. The skewness-invariance of the sinh-arcsinh distribution in terms of kurtosis
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was noted by Jones et al. (2011, pp.91–92). Specifically, they showed that quantile-
based kurtosis measures that are constructed from symmetric differences of the form
F−1(1 − α) − F−1(α), α ∈ (0, 1/2), are invariant under changes of the skewness
parameter ν. Theorem 23 generalizes this skewness-invariance from a specific family
of kurtosis measures to the underlying kurtosis orders.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-023-01403-6.
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