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Abstract: In machining operations, minimizing the usage of resources such as energy, tools, costs,
and production time, while maximizing process outputs such as surface quality and productivity,
has a significant impact on the environment, process sustainability, and profit. In this context, this
paper reports on the utilization of advanced multi-objective algorithms for the optimization of
turning-process parameters, mainly cutting speed, feed rate, and depth of cut, in the dry machining
of AISI 1045 steel for high-efficient process. Firstly, a number of experimental tests were conducted in
which cutting forces and cutting temperatures are measured. Then the material removal rate and the
obtainable surface roughness were determined for the examined range of cutting parameters. Next,
regression models were developed to formulate the relationships between the process parameters
and the four process responses. After that, four different multi-objective optimization algorithms,
(1) Gray Wolf Optimizer (GWO) and (2) Weighted Value Gray Wolf Optimizer (WVGWO), (3) Multi-
Objective Genetic Algorithm (MOGA), and (4) Multi-Objective Pareto Search Algorithm (MOPSA),
were applied. The results reveal that the optimal running conditions of the turning process of AISI
1045 steel obtained by WVGWO are a feed rate of 0.050 mm/rev, cutting speed of 156.5 m/min,
and depth of cut of 0.57 mm. These conditions produce a high level of material removal rate of
4460.25 mm3/min, in addition to satisfying the surface quality with a roughness average of 0.719 µm.
The optimal running conditions were found to be dependent on the objective outcomes’ order.
Moreover, a comparative evaluation of the obtainable dimensional accuracy in both dry and wet
turning operations was carried out, revealing a minimal relative error of 0.053% maximum between
the two turning conditions. The results of this research work assist in obtaining precise, optimal, and
cost-effective machining solutions, which can deliver a high-throughput, controllable, and robust
manufacturing process when turning AISI 1045 steel.

Keywords: AISI 1045; turning operation; dry-cutting condition; multi-objective optimization; cutting
forces; cutting temperature; surface roughness; dimensional accuracy; performance indicator

1. Introduction

As modern industry increasingly transforms manufacturing into highly automated
systems, condition monitoring, process modeling, and optimization become more and
more important. Manufacturers with access to better predictors and optimizers of the
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manufacturing processes have an edge over their competitors [1]. Process optimization is
very important for manufacturing processes, as it improves efficiency in terms of process
economics and product quality [2]. For example, in the machining of component parts, cut-
ting parameters constitute the process variables to be optimized in order to simultaneously
minimize cost and consumed energy, while improving product quality and maximizing
the productivity at the same time. Given their high ability as a dependable means to tackle
complex non-linear processes, artificial-intelligence techniques have been widely utilized
to model and optimize machining operations [3].

A recent review presented a new approach that divides the turning-process energy
into two categories: the electrical energy consumed by the machine tool, and the embodied
energy of cutting tool and cutting fluid [4]. To support this point of view, it utilizes
results from other works to introduce a number of optimal cutting conditions. These
cutting conditions of turning operations, which are usually the subject of optimization
by different researchers, include the cutting speed (vc) in m/min, the feed rate ( fr) in
mm/rev, and the depth of cut (ap) in mm. Recently, the tool geometry has also been
under focus as a cutting parameter [5,6]. A thorough study used Response Surface Method
(RSM) and Analysis of Variance (ANOVA) to develop a model for the prediction of surface
roughness and temperature based on the three main cutting parameters, namely cutting
speed, feed rate, and depth of cut, with the target of relating surface roughness and work
piece temperature as dependent variables to cutting parameters as decision variables [7].
Moreover, by means of RSM, a multicriteria optimization model was developed in order
to enhance the surface roughness and vibration during the turning of AISI 5140 steel.
This optimization model targeted the cutting speed (vc), feed rate ( fr), and cutting edges
angles (κ) that led to the optimum parameters at vc = 190 m/min, fr = 0.06 mm/rev, and
κ = 60◦ [8]. The depth of cut was found to bear a strong effect on the surface temperature
of the work piece. Direct proportionality was detected between the feed rate and surface
roughness, while the opposite was found with surface temperature, which was inversely
proportional to the feed rate. Another study involved the influence flank wear in addition
to the three main turning parameters: feed rate, cutting speed, and depth of cut on the
resulting cutting forces and surface roughness [9]. It revealed that the tangential cutting
force was sensitively dependent on the depth of cut. It also stated that surface roughness
was found to depend on the variation of the feed rate. Interestingly, the study deduced
that the flank wear has a noticeable effect on surface roughness and the process cutting
forces. An experimental and statistical study on the turning operations of aluminum in dry
conditions also addressed the influence of the surface roughness and cutting forces [10].
The parameter with the highest effect on surface roughness was the feed rate, with more
than a 70% contribution. The cutting speed and depth of cut had less contribution. The
resulting cutting forces were influenced primarily by one single parameter, which is the
depth of cut, with almost 9.0% contribution. In addition, it was reported that the proposed
prediction models achieved a mean absolute error of 3.47% for surface roughness and
6.8% for the cutting forces. The work introduced an artificial neural network model (ANN)
to validate the regression model used to predict surface roughness and cutting forces. The
model prediction of surface roughness and cutting forces had acceptable accuracy.

Another parameter that may contribute to the variation of cutting forces or consumed
energy is the specific material of the cutting tool. This was investigated by Hernández-
González et al. [11], who used CT5015-P10 and GC4225-P25 inserts and different cutting
speeds to monitor forces and specific energy consumption (SEC) in the dry high-speed
turning of AISI 1045 steel. They compared cutting forces measured from experiments
with predicted results from the proposed models. The comparison criteria included
two performance metrics: coefficient of determination and root mean square error (RMSE).
It was found that the polynomial models showed a lack of regression, as the R-squared
value was less than 70%. The cutting speeds and machining times associated with extreme
values of SEC for both tool inserts were calculated. The results showed that the lowest
SEC values were obtained at a medium cutting speed. Moreover, the SEC for the GC4225
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insert was found to be higher than that for the CT5015 tool. Dhar et al. [12] investigated
the turning of AISI 1060 steel, using carbide inserts to evaluate the effects of using high-
pressure coolant on different process parameters, including cutting temperature, chip types,
cutting forces, tool wear and life, and surface finish. Moreover, Kuntoğlu et al. [13] used
chemical-vapor-deposition-coated carbide inserts with different levels of hardness in the
turning of AISI 1050. The surface roughness, tool wear, and acoustic emissions were in-
vestigated carefully. Finally, for better machinability, the hardness of the cutting tools was
recommended to be between 60 and 70 HRC.

Understandably, using a high-pressure coolant during cutting noticeably reduced
cutting forces and tool wear and produced improved surface roughness. Another favorable
result is that the tool life was remarkably extended because the temperature within the
cutting zone was considerably lower. Chip–tool and work–tool interactions have also
been improved. The effects of the turning-process conditions on cutting-tool temperature
and surface roughness for both dry conditions were studied. For both cases, the most
prominent factors were found to be the depth of cut and cutting speed. When fixing cutting
parameters, the cutting-tool minimum temperature was 59 ◦C for the case of dry operation,
and 32 ◦C for the case of coolant operation. A cutting-tool maximum temperature of 110 ◦C
was attained with higher cutting parameters. The effects of changing the three parameters,
depth of cut, cutting speed, and feed rate on the cutting-tool temperature varied. The effect
of the first two were more prominent than the latter. The sequence of significance is as
follows: first the cutting speed, then the depth of cut, and lastly the feed rate. Interestingly,
the surface roughness greatly improved when the depth of cut was reduced but the cutting
seed was increased [14].

The effects of the dry machining of Ti6Al4V on the surface integrity of machined work
piece were investigated. The driving motive was to detect changes occurring in subsurface
deformation when changing cutting speed and feed rate while keeping fixed depth of
cut. Damage on the machined edge of the work piece was induced by deformations
resulting from restructuring of microstructure, with a correlation to the chip microstructure.
Furthermore, at higher cutting parameters, the thermal softening phenomenon became
more dominant. This resulted in a higher surface roughness, lower microhardness values
beneath the surface, and a coarser microstructure when using high cutting parameters. The
chip microstructure validated the thermal softening and work-hardening phenomenon. A
further microstructure analysis showed that high cutting speeds and feed rate increase the
shear band formation and frequency of chip segmentation. However, using lower cutting
parameters reduced segmentation frequency and increased deformed grains around shear
bands [15]. With the aim of controlling the thermal softening of the material during
heavy-duty machining, He et al. [16] investigated the main cause of shear fracture of
2.25Cr-1Mo-0.25V steel. It is found that an elevated temperature can affect the shear flow
on the machining region, hence softening the steel workpiece.

Numerous optimization techniques were introduced to improve the turning process.
Until recently, the turning output parameters that are mostly under analysis were the sur-
face roughness, material removal rate, and cutting-tool life [17]. However, many researchers
started to investigate the effect of process running conditions on new outcomes, such as
machine tool power consumption [18], cutting forces, and temperature, among others.
As the number of outcomes under analysis increases the more the need for evolutionary
multi-objective optimization techniques increases. The optimization techniques are catego-
rized into many types as follows: the nature-inspired and population-based metaheuristics,
trajectory-based and graph-based algorithms, and the machine-learning and deep-learning
methods. In this research, the multi-objective genetic algorithm (MOGA) was used as
the population-based algorithm, the gray wolf multi-objective optimizer (GWO) [19] and
improved gray wolf optimizer using weighted values (WVGWO) [20] were used as nature-
inspired metaheuristics, and multi-objective pareto search algorithm (MOPSA) was used
as the graph-based algorithm. The two latter algorithms showed superior performance
in many benchmark problems and compared to many known algorithms, such as sim-
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ulated annealing (SA), particle swarm optimizer (PSO), evolutionary algorithm base on
decomposition (EA/D), and even the genetic algorithm (GA) [19].

Recently, an optimization study addressed the optimal turning parameters to the
reduce surface roughness while turning by high-speed steel-cutting tool, using the Taguchi
method [21]. It concluded that cooling affects surface roughness quality remarkably by con-
tributing about one-half of the total effect, and the feed rate accounts for about one-fourth.
The results from the optimization technique showed that a minimum surface roughness
is achieved with a cutting speed of 60 m/min, a depth of cut of 0.1 mm, and a feed rate
of 0.05 mm/rev under minimum quantity lubricant (MQL) condition. Meanwhile, a deep
investigation and optimization on the turning process of AISI 1050 under (MQL) was
carried out by using Taguchi’ method and RSM methodology. The optimization results
were MQL at 120 mL/h, speed of cut = 200 m/min, feed rate = 0.07 mm/rev, and depth
of cut = 1.2 mm [22]. Another study included effects of varying insert-tool-nose radii on
the surface quality and cutting forces for EN 10,503 steel alloy. It used a combination of
Taguchi and VIKOR methods. The result of optimization gave values of vc = 78.62 m/min,
fr = 0.08 mm/rev, and ap = 0.5 mm and an insert-nose radius of 0.4 mm. These cutting
conditions resulted in desirable values of surface roughness of 0.621 µm, resultant cutting
force of 360 N, and material removal rate (MRR) of 60,000 mm3/min [18]. Moreover, the
effect of the cutting speed, feed rate, and tool tip on the tool wear and acoustic emissions
was investigated, in addition to implementing a prediction sensor system for tool break.
The optimal running conditions to obtain the minimum tool wear and achieve higher
quality product are vc = 135 m/min, fr = 0.214 mm/rev, and tool tip of type P25 according
to authors’ coding [23]. Furthermore, using Taguchi and ANOVA analysis, the most influ-
ential factor on the surface roughness of steel (1.2738) was the depth of cut. This resulted
in the optimal cutting conditions of vc = 300 mm/min, fr = 0.3 mm/rev, and ap = 1 mm,
which produced a surface roughness of 1.10 µm [24]. The effects of process parameters
during machining of alloy steel AISI 1040 were analyzed by using RSM methodology. It
was shown that the chip formation frequency is proportional directly to the depth of cut
and indirectly to the cutting speed. The resulting optimal conditions were a cutting speed
of 50 mm/s, feed rate of 0.8 ft/rev., and depth of cut of 0.79 mm [25]. Finally, a parametric
optimization comparison on cutting forces and material removal rate of the turning of AISI
5140 showed that the Harmonic Artificial Bee Colony Algorithm and RSM outperformed
the accuracy of the optimization results of Taguchi’s method and Harmonic Bee Colony
at optimal running conditions of vc = 280 mm/min, fr = 0.18 mm/rev, and ap= 1 mm [26].
The literature review regarding the optimization of the machining of different steel alloys
is listed in Table 1.

Table 1. List of research results in the literature.

No. Material Optimization Algorithm vc (m/min) fr (mm/rev) ap (mm) Reference

1 AISI 5140 ANOVA a 190 0.06 - [8]
2 SKD61 Taguchi 60 0.05 0.1 [21]
3 AISI 1050 Taguchi and RSM b 200 0.07 1.2 [22]
4 EN 10503 Taguchi and VIKOR 78.62 0.08 0.5 [18]
5 AISI 1050 ANOVA 135 0.214 - [23]
6 AISI 1040 Taguchi and ANOVA 300 0.3 1 [24]
7 AISI 1040 RSM, TS and SA c 50 mm/s 0.80 ft/rot. 0.79 [25]
8 AISI 5140 RSM, H-ABC d and Taguchi 280 0.18 1 [26]

a ANOVA, Analysis of Variance. b RSM, Response Surface Methodology. c TS, Tabu Search optimization; SA,
simulated annealing. d H-ABC, Harmonic Artificial Bee Colony Algorithm.

Looking at the preceding reviewed literature, it is not difficult to see that a number
of research works attempted experimentally to investigate the effects of changing turning
operation parameters on a number of process outputs and the optimization of a single
response or multiple responses, such as productivity, surface quality, tool wear, cutting
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forces, and temperature. Nevertheless, a challenge yet to be addressed is to employ more
robust optimization techniques with multi-objective optimization tools to simultaneously
identify proper cutting conditions for a number of machining responses for more precise,
sustainable, high-throughput, and controllable machining processes [27]. In this context,
this study aimed to conduct both an experimental investigation and multi-objective opti-
mization tools for the concurrent identification of minimization of cutting forces, cutting
temperature, and surface roughness, while maximizing process productivity during the
turning of AISI 1045 in dry condition. The selection of dry condition while turning the
AISI 1045 alloy is experimentally justified by showing that the difference in dimensional
accuracy between wet and dry conditions can be neglected.

Following this introduction, the Materials and Methods section describes in depth
the AISI 1045 steel alloy and tools used in this study. It illustrates the microstructure and
mechanical properties of the material, the specifications of the machines and tools used in
experiments, and the optimization techniques applied. Then the Results and Discussion
section presents the results from both the experimental and computational investigations
and provides a comparison between them, in addition to the multi-objective optimization
of the turning process. Finally, the findings of this research work are presented at the end
of the document.

2. Materials and Methods

This section presents the experimental work conducted in this study. In particular,
this section starts with a brief introduction to the material processed and its chemical com-
position, mechanical properties, and microstructure. Then the machining setup, entailing
the computerized numerical control (CNC) machine, cutting tools, and characterization
devices used, is provided. Next, the section reports the design of experiment followed to
conduct the experimental trials. Finally, the optimization algorithms and their working
envelope are presented in detail.

2.1. Materials

The material used in this analysis is AISI 1045 steel, which is widely used in most
industrial applications requiring high wear resistance and strength. Typical applications of
AISI 1045 include gears, shafts, spindles, rolls, and crankshafts. Moreover, AISI 1045 has
good machinability in all machining operations, such as turning, milling, broaching, and
drilling. The characteristics of this steel alloy are shown in Tables 2 and 3, where Table 2
shows its chemical composition, and Table 3 shows the mechanical properties.

Table 2. Chemical compositions of AISI 1045.

Element C Fe Mn P S

Percentage % 0.45 98.75 0.65 0.03 0.04

Table 3. Mechanical Properties of AISI 1045.

Properties Value

Tensile Strength, Ultimate 565 MPa
Tensile Strength, Yield 310 MPa

Elongation at Break (in 50 mm) 16%
Reduction of Area 40%

Modulus of Elasticity (Typical for steel) 200 GPa
Hardness, Vickers 170

Microstructure of the Material

For optical microscopy, the sample was prepared according to standard metallographic
sample preparation, which includes grinding by using SiC sandpaper, then polishing
with diamond paste of 1.0 µm, and finally etching with 5% Nital to reveal the sample’s
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microstructure. Figure 1 shows the microstructure of the material investigated in this work.
As seen from the figure, the microstructure contains grains of pearlite (dark) in a matrix of
ferrite (light). The pearlite grains contain alternate lamellas of proeutectoid ferrite (Fe) and
cementite (Fe3C) with random orientation and inter-lamellar spacing. The pearlite phase
constituted 38% volume-fraction, whereas ferrite was 62%.
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Figure 1. Microstructure of AISI 1045.

2.2. Machining Setup

A conventional turning machine type, EMCOMAT- 20D by Emco Company (Salzburg,
Austria), was used for machining the test pieces. This machine has a permanent position
display for the bed, cross slide, and top slide on the thin film transistor (TFT) screen. The
position of the bed slide is monitored by a high-precision rack on the encoder. The position
of the cross slide is measured by a glass scale with an accuracy of 0.001 mm. This allows
diameters to be set with extremely high precision. The position of the top slide is measured
by the direct driven encoder. Functions: constant cutting speed, 999 tools, 999 reference
points, home position, remaining path, imperial/metric, radius/diameter display screen
size of 6.5 color TFT, 640 × 480 (VGA). It has a 5.3 kW drive motor and electronic speed
controls up to 3000 rpm. The longitudinal feed rate range is 0.045–0.787 mm/rev.

The cutting tool was manufactured by Sandvik (Stockholm, Sweden), with the follow-
ing ordering code: holder type, SDJCR 2020K 11; and insert type, DCMT11 T304-PF 4315.
This tool has the following specifications: insert shape angle = 55◦, clearance angle = 7◦,
rake angle = 6◦, and tool nose radius = 0.4 mm. This tool was designed for efficient material
removal rates. It is commonly used for all types of materials, from stainless steel to titanium
alloys. The workpiece has the following dimensions: length of 120 mm and diameter of
70 mm. The cut length for experiments is 30 mm for each run.

The test rig for the experimental work, comprising sets for the machining of test pieces,
measurement of cutting forces, and measurement of the cutting temperature, is shown in Figure 2.
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A dynamometer manufacturing by Kistler company type Kistler 5070 equipped with
dynoware software type 2825A (Liechtenstein, Switzerland) was used for evaluating the
three cutting forces: radial force (Fr), feed force (Ff ), and main cutting force (Fc), as shown
in Figure 3. Dubey et al. [28] selected the main cutting force to represent the cutting forces as
an objective to be optimized. However, in this work, the the combination of the three forces’
vectors is considered to be more representable for the machine power consumption. All forces
are measured in Newton (N). The resultant force (R) can be calculated from Equation (1):
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A thermographic camera of the type ThermoPro-TP8, provided by Guide (Wuhan,
China), was used to take the thermal images. The specifications of this camera are shown
in Table 4.

Table 4. ThermoPro-TP8 specifications.

Property Reference

Thermal Sensitivity ≤0.08 ◦C at 30 ◦C
Measuring range −20 ◦C–1000 ◦C

Detector type Micro-bolometer
UFPA384 × 288 pixels

Spectral Range 8~14 µm
Accuracy ± 2 ◦C
Emissivity 0.18

The stability and focus of the camera during imaging are very important. The camera
performs auto calibration; however, manual calibrations are recommended before taking
the needed images to ascertain that proper sensitivity is achieved that has to be stable
and focused on the target of interest for which the temperature is to be measured. The
camera has to be focused on the target, with the distance between them recorded and fed
to the analysis software among the parameters used for temperature evaluation. In this
experiment, the target of interest is the surface between the cutting edge of the tool and
the workpiece during the machining operation, as shown in Figure 4; hence, the mean
cutting temperature of this contact surface along the turning process was considered. The
emissivity coefficient is determined from the manual table. The value of the coefficient
depends on the material type, the surface condition (roughness), the temperature to be
measured, the angle of view, and the wavelength.
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A surface-tester-type Rugosurf 90-G, from Tesa (Bugnon, Switzerland) was used to
measure the surface roughness, Ra. The settings of measurement parameters are cutoff
length of 0.8 mm and measuring speed of 1 mm/s, as shown in Figure 5.
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2.3. Design of Experiment

A full factorial design of experiment 33 was set with 27 tests run as the following:
three levels of each parameter—cutting speed of 80, 120, and 160 m/min; depth of cut
0.5, 0.75, and 1.0 mm; and feed rate 0.045, 0.09, and 0.135 mm/rev, as shown in Table 5. The
desired outputs are 4 objectives: surface roughness (Ra) in µm, the resultant cutting force (R)
in N, the cutting temperature (T) in ◦C, and the material removal rate (MRR) in mm3/min.
Finally, each test was repeated three times, and the average results were considered.

Table 5. Running-condition parameters and their levels.

Parameter Levels

Cutting speed (vc) [80 120 160] m/min
Depth of cut (ap) [0.5 0.75 1] mm

feed rate ( fr) [0.045 0.09 0.135] mm/rev

2.4. Optimization Algorithms

There are many multi-objective optimization techniques in the literature that showed
robustness in finding the optimal solution through the recent decades, especially in the
manufacturing field. However, the researchers introduced many novel approaches that
could outperform the conventional and well-known techniques through benchmarking
problems. That is, the selection of the gray wolf optimizer (GWO) and weighted value gray
wolf optimizaer (WVGWO) algorithms against the robust multi-objective genetic algorithm
(MOGA) and multi-objective pareto search algorithm (MOPSA) shows a great challenge
between the past and the present.

Figures 6 and 7 illustrate the flowcharts of the gray wolf optimizer (GWO) and
weighted value gray wolf optimizer (WVGWO) algorithms clearly and sequentially, respec-
tively. The idea of these two algorithms is simulating the hunting movement of wolves.
Each wolf pack has a leader (alpha), two mid-ranking wolves (beta and delta), and the
rest of the pack is called (omega). Both algorithms start with initiating a random GW

population that consists of vectors of the process parameters, for example,
→
Xi = [ fri vci api ]

for i = 1 : n (population size). These vectors are evaluated and sorted ascendingly. The
first three vectors with best fitness function [MRR R Ra T] are the strongest wolves
in the pack (alpha, beta, and delta). In order to find a new prey during the hunt, wolves
move randomly in random directions. These directions are estimated by three parameters
(a

→
A

→
C) that change their values and direction in each new iteration (t). After each

movement, the fitness function is evaluated and sorted in order to find the new leaders.
The difference between the aforementioned algorithms is that the new location of the whole
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pack is calculated by the average of the three positions of the alpha, beta, and delta wolves
in GWO as in Step 8 in Figure 6 [19], and weighted average in WVGWO as in Step 10 in
Figure 7 [20]. The weighted values of WVGWO are dependent on the iteration number as
shown in Steps 3 and 4 in Figure 7. Finally, the new population becomes an output that
is checked for reaching the maximum iteration number or convergence condition. The
algorithms terminate after satisfying one of the latter two conditions.

Metals 2023, 13, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 6. Flowchart of GWO algorithm. 

 
Figure 7. Flowchart of WVGWO algorithm. 

Figure 6. Flowchart of GWO algorithm.

Metals 2023, 13, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 6. Flowchart of GWO algorithm. 

 
Figure 7. Flowchart of WVGWO algorithm. 

Figure 7. Flowchart of WVGWO algorithm.



Metals 2023, 13, 96 11 of 22

Next, a MOGA flowchart is depicted in detail in Figure 8. The first three steps
depend on generating a random population, calculating the fitness of this population,
and sorting it. Each chromosome in the population is the set of the used parameters
Chi = { fri Vci api

}
for i = 1 : n. In Step 4 in Figure 8, the selection of the elitist

chromosomes of each population occurs with a decision of keeping a certain percentage of
chromosomes, performing the crossover method to another percentage of chromosomes,
and mutating the rest of population. To simplify this step, an example is shown in Figure 8,
as keeping best 20%, doing crossover to 60%, and mutating the rest 20%. Then the fitness of
the new population is recalculated. Finally, two termination criteria are followed whether
a convergence condition is achieved or reaching the maximum population generation
number. If none of the latter mentioned conditions applied, the population is returned to
the next generation by following the selection, crossover, and mutation steps again.
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The final algorithm used in this research is the multi-objective pareto search algorithm
(MOPSA) in MATLAB. The function “paretosearch” in MATLAB applies the pattern search
algorithm that is illustrated in depth in Figure 9. The initial step in this algorithm is to
define the objective functions and the decision variables’ bounds, in addition to the initial
search point, search mesh size, and two factors of mesh expansion and contraction. The idea
of this algorithm is to define a grid or mesh around a certain point, X0 = ( fr0 Vc0 ap0), at
which the objective function fitness values are calculated and transformed into a directional

vector,
→
X0 = [MRR0 Ra0 R0 T0], in addition to the grid points around this point. If

the mesh is a success ( f itness(
→
Xnew) < f itness(

→
Xcurrent)), the mesh size is expanded by

factor ηexp; if not, the mesh size is contracted by factor ηcont. In this algorithm, the stopping
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criterium is defined as (mesh tolerance/number of variables)2 by default. Otherwise, a
function tolerance can be used.
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3. Results and Discussion
3.1. Experimental Results

Figure 10 shows the results of the turning trials conducted at a cutting speed of 80 m/min
for the nine combinations of three depths of cut and three feed rates. The reported responses
are the surface roughness, resultant cutting force, cutting temperature, and materials removal
rate. For the three levels of depths of cut, the generated surface roughness increases with the
increase in applied feed rate. Similar proportional trends to feed rates at a constant depth of
cut are observed for the resultant cutting forces and temperature.
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Figures 11 and 12 illustrate the results of the machining tests obtained at higher cutting
speeds of 120 m/min and 160 m/min under the same nine sets of feed rates and depths of
cut. Again, in both figures, and similar to the results presented in Figure 10, proportional
trends between the applied feed rates and obtainable surface roughness, cutting forces,
and temperatures are detected. Moreover, the increase in depth of cut is found to lead
to an increase in all process responses when the feed rate and cutting speeds are kept
constant. When comparing the results reported in the three figures, one can see that the
applied cutting speed has a negative effect wherein its higher value leads to an increase
in the generated cutting force, and in the temperature and surface roughness, as well.
Nevertheless, the increase in the three cutting parameters has led to an obvious increase
in the cutting temperature, cutting forces, and achievable surface roughness; it also led
to a significant increase in the material removal rate. This clearly indicate the trade-off
between the negative and positive effect of the process parameters, and thus the need
for the application of multi-objective optimization algorithms that help maximize the
process productivity while keeping the other three responses, namely cutting force, cutting
temperature, and surface roughness, to a minimum.
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3.2. Mathematical Model Regression

The MATLAB linear quadratic regression toolbox was used. The independent variables
of the model are the process parameters, feed rate ( fr) in mm/rev, cutting speed (vc) in
m/min, and depth of cut (ap) in mm. In order to obtain higher accuracy, we modeled the
normalized values of the independent variables in the interval by Equation (2). Hence,
adding the subscript n to the variables symbols is required. That is, the modified symbols
are frn , vcn , and apn .

x\\ = 2
x− xmin

xmax − xmin
− 1 (2)

The obtained models of the surface roughness (Ra) with R-squared = 94.7%
and p-value = 4.11 × 10−9, resultant cutting force (R) with R-squared = 89.6% and
p-value = 1.04 × 10−6, and the generated cutting temperature (T) with R-squared = 75.6% and
p-value = 0.000822 are shown in Equations (3)–(5), as follows:

Ra =1.6021 + 0.86533 frn + 0.31078Vcn + 0.35672apn

+0.12058 frn Vcn + 0.098417 frn apn + 0.15775Vcn apn

+0.24956 frn
2 − 0.015778Vcn

2 − 0.38461apn
2

(3)

R =322.37 + 93.266 frn − 9.733Vcn + 110.86apn

−2.5992 frn Vcn + 25.431 frn apn − 18.812Vcn apn

+28.028 frn
2 − 38.266Vcn

2 − 24.072apn
2

(4)

T =477.17 + 10.211 frn − 0.22778Vcn + 3.2833apn

−8.0583 frn Vcn − 4.7833 frn apn − 5.85Vcn apn

+1.7 frn
2 − 9.2833Vcn

2 − 6.0167apn
2

(5)

Meanwhile, the material removal rate (MRR) is a deterministic formula, with the
actual variable values by Equation (6) as follows:

MRR = 1000 frVcap (6)

The average absolute errors between both the output of the experimental trials and
the regression model are 15% for the surface roughness (Ra), 10.6% for the resultant cutting
force (R), and 1.2% for the temperature (T). The comparison between the experimental trials
and the obtained model are shown in Figure 13a–c.
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3.3. Optimization Model and Results

The optimization algorithms used in this research have almost the same inputs. The
objective functions and lower and upper bounds are the same for all algorithms, while
the initial searching point differs from one algorithm to another. The optimization model
is presented in Table 6. The objective functions aim to find the maximum MRR and
the minimum Ra, R, and T. The model is limited to the lower and upper bounds of the
experiment and the developed regression model. Hence, the optimal results are located
inside these intervals.
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Table 6. Optimization model development.

Item Description

Decision variables fr νc ap

Objective functions
max(MRR)
min(Ra)
min(R)
min(T)

Lower bounds fr νc ap
0.045 80 0.50

Upper bounds fr νc ap
0.135 160 1.00

Initial point fr νc ap
0.045 80 0.50, otherwise, it depends on the algorithm.

The first two algorithms, GWO and WVGWO, were used with the same population size
(100) and maximum iteration number (1000). Moreover, the initial point is created randomly.
The optimal running conditions obtained by GWO are a feed rate of 0.070 mm/rev, cutting
speed of 102.8 m/min, and depth of cut of 0.55 mm. These conditions give a best Ra of
0.717 µm, an MRR of 3957.8 mm3/min, an R of 181.55 N, and a T of 459.9 ◦C. Meanwhile,
the WVGWO achieved different optimal decision variables for feed rate, cutting speed,
and depth of cut as 0.05, 156.5, and 0.57, respectively. The optimal objectives fitness
of WVGWO are a best MRR of 4460.25 mm3/min, Ra of 0.719 µm, R of 161 N, and T
of 463.5 ◦C. Meanwhile, the MOGA and MOPSA algorithms used the default MATLAB
values of population size and maximum iterations without changing the optimization
function options. However, the initial point in both algorithms is as shown in Table 6. The
optimal running conditions obtained by MOGA are a feed rate of 0.075 mm/rev, cutting
speed of 91.5 m/min, and depth of cut of 0.55 mm. The corresponding optimal response
of the obtained variables are MRR = 3774.37 mm3/min, Ra = 0.739 µm, R = 175.35 N,
and T = 456.8 ◦C. Last, the MOPSA algorithm outperformed other algorithms, giving the
optimal running conditions as a feed rate of 0.090 mm/rev, cutting speed of 82.3 m/min,
and depth of cut of 0.50 mm. These optimal conditions reflected the objective functions,
giving the best resultant cutting force of 146.8 N and best temperature of 454.9 ◦C, while
the surface roughness is 0.721 and the material removal rate = 3703.3 mm3/min. Figure 14
shows a radar illustration of the optimal results obtained by the four algorithms.

Meanwhile, there is an optimization investigation that shows that the optimal surface
quality during the dry turning of AISI 1045 can be obtained by the genetic algorithm
(GA) at vc = 149 m/min, fr = 0.18 mm/rev, and ap= 0.27mm. Moreover, this investigation
provides a multi-decision model that is capable of selecting the optimal cutting parameters
in different cooling conditions, namely dry, flood, and MQL-nano fluid, and targeting
different objective outcomes, namely surface quality, power consumption, and machining
cost [29]. This led to the investigation carried out in this research to develop such a model
that provides the manufacturers with a guiding envelope of the turning parameters.

In order to determine which algorithm provides the best results, a minimum goal
scoring method is used. This method is supposed to work by sorting the results of all
algorithms in a matrix form based on each objective function. Then it assigns weights from
1 to 4 to the objective functions in a vector form ascendingly based on the preference of the
objective function. This led to our suggesting three case scenarios, as shown in Figure 15.
For example, Case 1 is sorting the preference of the objective functions as Ra, R, T, and
MRR. Then, multiplying the Case 1 vector by the rank matrix will give a score for each
algorithm. Eventually, the minimum score is the best solution.
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The results of the three cases are illustrated in Table 7. In Case 1, the optimal solution
to be considered as the best optimal solution is the WVGWO solution. For Cases 2 and 3,
MOPSA outperformed the other algorithms’ scores.
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Table 7. Optimal solutions comparison of different used algorithms.

Algorithm
Parameter Best Rank Objective Functions Priority

fr vc ap MRR Ra R T Case 1 (a) Case 2 (b) Case 3 (c)

GWO 0.07 102.8 0.55 2 1 4 3 26 27 29
WVGWO 0.05 156.5 0.57 1 2 2 4 22 25 26

MOGA 0.075 91.5 0.55 3 4 3 2 28 27 27
MOPSA 0.09 82.3 0.5 4 3 1 1 24 21 18

(a) Case 1: Ra > R > T > MRR. (b) Case 2: Ra > R > MRR > T. (c) Case 3: Ra > MRR > R > T.

To evaluate the effect of the dry cutting on the dimensional tolerance compared to
that of the wet conditions, three machining experiments were conducted. Cylindrical
specimens of 60 mm nominal diameter and 55 mm cutting length were used. The cutting
length was divided into two sections separated by a 5 mm width groove. Hence, the
cutting operation experiment was run over a length of 25 mm for each type of cutting
condition (wet/dry), as shown in Figure 16. The test run starts to cut the first 25 mm
long section with wet condition, after which the cooling is stopped during the cut of the
after-groove 25 mm section. The runs were conducted at the optimal speed, depth, and
feed rate recommended by the optimization algorithm, i.e., 156.5 m/min, 0.57 mm, and
0.05 mm/rev, respectively. In addition, three other feed rates chosen around the optimal
value (0.045 mm/rev, 0.056 mm/rev, and 0.070 mm/rev) were also tested, knowing the
sensitivity of this parameter Each test was conducted three times with different passes (1, 2,
and 3), while measuring the diameter three times along the 25 mm length for each sample.
The average values of the resultant diameter are shown in Table 8. The results show a
negligible effect on the dimensional accuracy of wet and dry conditions with a maximum
average difference of about 0.053%. The main effect of dry conditions will be on the surface
roughness and cutting forces and tool wear; however, dry conditions with steel material
have a very small effect on the dimensional accuracy, unlike brass or copper. Normally,
in real industrial practice, during machining, the cooling-fluid pump suddenly stops due
to any reason; nevertheless, the machining process continues with minimal influence on
dimensional accuracy (i.e., noisy factor). In the case that the design requirements impose
a high dimensional tolerance/high quality of surface roughness (i.e., low Ra value), the
grinding process is conducted after turning.
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Table 8. Effect of dry and wet conditions on dimensional tolerances.

Test
No.

vc
(m/min)

ap
(mm)

fr
(mm/rev)

Nominal
Dia. (60 mm) Dry Wet

Error Diff.%
In Dry/WetRequest

Dia.
Actual
Dia. Diff. %Error Actual

Dia. Diff. %Error

1
156.5 0.57

0.045 58.86 58.90 0.04 0.068% 58.88 0.02 0.034% 0.034%
2 0.056 57.72 57.77 0.05 0.087% 57.74 0.02 0.035% 0.052%
3 0.070 56.58 56.64 0.06 0.10% 56.61 0.03 0.053% 0.047%

4. Conclusions and Future Work

The aim of this study was to identify cutting conditions for optimal surface quality,
cutting forces and temperatures, and the productivity of turning operation of AISI 1045
alloy steel in dry condition. The process is optimized by using different multi-objective
optimization algorithms: GWO, WVGWO, MOGA, and MOPSA. The outcomes of this
research are listed as follows.

1. The carried-out experiments and the developed regression mathematical model are
found to be matching with average absolute errors of 15% for the surface roughness
(Ra), 10.6% for the resultant cutting force (R), and 1.2% for the temperature (T). That
promoted the mathematical model to represent and reflect the optimization of the
real experiment.

2. Proportional relationships between the applied feed rates and resultant surface rough-
ness, cutting forces, and temperatures are observed. Similar trends between depth of
cut and all process responses are detected when the feed rate and cutting speeds are
kept constant.

3. Looking at the experimental results, it is not so difficult to conclude that the increase
in the three cutting parameters has shown an obvious increase in the four cutting
responses, i.e., cutting temperature, cutting forces, surface roughness, and material
removal rate.

4. The optimal running conditions were obtained; however, the optimal solution is
dependent on the objective functions’ order.

5. For the most desired objective function order in Case 1, the optimal solution was
obtained by the WVGWO algorithm, as the feed rate ( fr) is 0.05 mm/rev, the cutting
speed (vc) is 156.5 m/min, and the depth of cut (ap) is 0.57 mm. That reflects on the
objective functions and gives the best productivity (MRR = 4460.25 mm3/min), in
addition to satisfying levels of surface roughness (Ra = 0.719 µm) and resultant cutting
force (R = 161 N).

6. In the other proposed cases, Cases 2 and 3, the MOPSA algorithm provided the op-
timal solution, despite of the low levels of productivity and surface quality results.
The reason is that MOPSA resulted in the best resultant cutting force (R = 146.8 N)
and best cutting temperature (T = 454.9 ◦C). The optimal running conditions are
fr= 0.090 mm/rev, vc = 82.3 m/min, and ap = 0.50 mm. Unfortunately, the productiv-
ity (MRR = 3703.3 mm3/min) of the MOPSA algorithm solution is 17% less than the
productivity obtained by WVGWO.

7. It is worth mentioning that the optimal surface quality is obtained by the GWO
algorithm, as the surface roughness R is 0.717 µm. However, the optimal solution of
WVGWO remains the best regardless of the surface roughness of 0.719 µm, which is
0.28% away from the best.

8. The effect of cooling condition on dimensional accuracy is found to be negligible, as
the dimensional error between dry and wet turning after three passes is experimentally
measured as 0.053%.

9. In future work, the investigation of different cutting-tool inserts geometries, such as
“wiper insert”, will be carried out and compared with the current work. Moreover, the
effect of running conditions and cutting-tool type on the tool life, surface roughness,
and machine vibration will be studied and optimized.
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8. Kuntoğlu, M.; Aslan, A.; Pimenov, D.Y.; Giasin, K.; Mikolajczyk, T.; Sharma, S. Modeling of Cutting Parameters and Tool
Geometry for Multi-Criteria Optimization of Surface Roughness and Vibration via Response Surface Methodology in Turning of
AISI 5140 Steel. Materials 2020, 13, 4242. [CrossRef]

9. Fnides, B. Cutting forces and surface roughness in hard turning of hot work steel X38CrMoV5-1 using mixed ceramic. Mechanics
2008, 70, 73–78.

10. Rabu, A.R. Correlation Among The Cutting Parameters, Surface Roughness And Cutting Forces In Turning Process By Exper-
imental Studies. In Proceedings of the Design and Research Conference, Assam, India, 12–14 December 2014; IIT Guwahati:
Assam, India, 2014.

11. Hernández-González, L.W.; Curra-Sosa, D.A.; Pérez-Rodríguez, R.; Zambrano-Robledo, P.D.C. Modeling Cutting Forces in
High-Speed Turning using Artificial Neural Networks. TecnoLógicas 2021, 24, e1671. [CrossRef]

12. Kamruzzaman, M.; Dhar, N.R. Effect of High-Pressure Coolant on Temperature, Chip, Force, Tool Wear, Tool Life and Surface
Roughness in Turning AISI 1060 Steel. Gazi Univ. J. Sci. 2009, 22, 359–370.
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