KIT | KIT-Bibliothek | Impressum | Datenschutz

Neural networks for cosmic ray simulations

Sampathkumar, Pranav; Pierog, Tanguy ORCID iD icon 1; Alves Junior, Antonio Augusto
1 Institut für Astroteilchenphysik (IAP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Simulating cosmic ray showers at high energies is memory and time intensive. Apart from the traditional methods such as thinning and cascade equations, novel methods are needed for the modern needs in astroparticle physics.

A hybrid model of generating cosmic ray showers based on neural networks is presented. We show that the neural network learns the solution to the governing cascade equation in one dimension. We then use the neural network to generate the energy spectra at every height slice. Pitfalls of training to generate a single height slice is discussed, and we present a sequential model which can generate the entire shower from an initial spectrum. Errors associated with the model and the potential to generate the full three dimensional distribution of the shower and detector footprints are discussed.


Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Publikationstyp Vortrag
Publikationsdatum 23.03.2023
Sprache Englisch
Identifikator KITopen-ID: 1000156241
HGF-Programm 51.13.04 (POF IV, LK 01) Kosmische Strahlung Technologien
Veranstaltung 86th Jahrestagung der DPG und DPG-Frühjahrstagung der Sektion Materie und Kosmos - Arbeitskreis Beschleunigerphysik (SMuK 2023), Dresden, Deutschland, 20.03.2023 – 24.03.2023
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page