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Kurzzusammenfassung

Bei langen horizontalen Ausbreitungswegen in Bodennähe ist die Atmosphä-
re und nicht die Qualität moderner bildgebender Systeme ausschlaggebend
für die Qualität aufgenommener Bilddaten. Besonders wird die Bildqualität
durch atmosphärische Turbulenz beeinträchtigt, die je nach Schweregrad
zeitlich und räumlich variierende Unschärfe, (scheinbare) Bildbewegungen
und geometrische Deformationen, sowie Intensitätsfluktuationen (Szintilla-
tion), verringerten (Farb-)Kontrast und Rauschen verursacht.
Korrekturverfahren haben entsprechend die Aufgabe, einen, mehrere oder
ggfs. alle dieser Turbulenzeffekte in Bilddaten zu reduzieren und diese best-
möglich zu rekonstruieren. Im Idealfall wäre eine solche Rekonstruktion
identisch mit einer Aufnahme am Diffraktionslimit ohne Turbulenz. Diverse
Anwendungsgebiete, die mit der Akquisition von Bilddaten über ausgedehn-
te (horizontale) Wegstrecken unter potenziell turbulenten Bedingungen
befasst sind, können von einer effizienten Turbulenzkorrektur deutlich pro-
fitieren. Neben speziellen Formen optischer Kommunikation betrifft dies
insbesondere klassische Fernerkundungsaufgaben, wie z. B. militärische
Aufklärung oder (Grenz-)Überwachung. Während für Beobachtungen punkt-
förmiger, (annähernd) statischer Objekte über vertikalen Ausbreitungswe-
gen bereits etablierte Korrekturmethoden existieren (z. B. Adaptive Optik
für astronomische Anwendungen oder optische Freiraumkommunikation),
handelt es sich bei der Turbulenzkorrektur für horizontale Bilderfassung
ausgedehnter und u. U. bewegter Objekte hingegen nach wie vor um ein
aktives Forschungsfeld. Hierfür bieten sich vor allem softwarebasierte Ver-
fahren an, deren Hauptvorteile gegenüber Hardware-Lösungen nicht nur in
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den vergleichsweise geringen Materialkosten liegen, die zur Herstellung und
Nutzung erforderlich sind, sondern hauptsächlich in ihrer Flexibilität (inkl.
Mobilität) und Vielzahl von Anwendungsmöglichkeiten, wie insbesondere
für den Fall ausgedehnter und ggfs. bewegter Objekte.
Diese Arbeit beschäftigt sich vor allem mit den praktischen Aspekten der
Frage, wie genau (d. h. mit welchen Methoden) man solche Turbulenzbe-
einträchtigungen am besten (oder ggfs. am schnellsten) abmildern und die
Qualität der Bilddaten mit Hilfe von problemspezifisch selektierten Rekon-
struktionsverfahren gezielt verbessern kann. Ein besonderer Fokus liegt
dabei auf Bildsequenzen, die insbesondere auch (gerichtete) Objektbewe-
gung enthalten, sowie auf einer potenziellen Echtzeitfähigkeit der einzelnen
Methoden. In dieser Arbeit werden verschiedene Verfahren zur Korrektur der
am stärksten ausgeprägten Turbulenzeffekte untersucht. Dies umfasst die
Auswahl und Implementierung geeigneter Algorithmen, sowie eine bewer-
tende Diskussion ihrer Leistungsfähigkeit im Vergleich. Neben Entfaltungs-
methoden zur Rekonstruktion hoher Frequenzanteile und Verbesserung
der Bildschärfe ist dabei die Kompensation globaler und speziell lokaler
Bildbewegungen mithilfe von “Block Matching”-Algorithmen und Schätz-
verfahren für den Optischen Fluss ein zentrales Thema. Insbesondere wird
eine gerichtete lokale Bildstapelung zur Kompensation von Objektbewe-
gungen und Reduktion von Bewegungsunschärfe konzipiert und umgesetzt,
wobei es sich um eine innovative Kombination aus Bewegungsschätzung
und modifizierter Bildstapelung handelt. Ein grundlegender Aspekt ist dabei
die Differenzierung von eigenständiger Objektbewegung und Bewegung,
die durch Turbulenz verursacht wird. Des Weiteren wird eine modifizierte
mehrstufige Form der iterativen blinden Entfaltung nach Ayers und Dain-
ty mit spezieller Gewichtung der Kanten im Bild vorgestellt, womit sich
“Ringing”-Effekte in homogenen Bildregionen reduzieren lassen.
Einen weiteren Kernpunkt der Arbeit bildet zudem die Entwicklung einer
Methodik zum Vergleich derartiger Rekonstruktionsverfahren unter Berück-
sichtigung anwendungsspezifischer Prioritäten bei der Bewertung. Zwar
existiert eine Vielzahl an Qualitätsmetriken, die zu Vergleichen herange-
zogen werden können, jedoch ist eine objektive Ergebnisevaluation ohne
verfügbare “Ground Truth”-Daten eine nicht-triviale Aufgabe. Es wird daher
ein tabellarischer Lösungsansatz vorgeschlagen, anhand dessen sich ähnli-
che Voraussetzungen zusammenfassen lassen, um Algorithmen für typische
Anwendungsszenarien besser miteinander vergleichbar zu machen.



Abstract

In the case of long horizontal propagation paths near the ground, the atmo-
sphere and not the quality of modern imaging systems is the determining
factor for the quality of acquired image data. Image quality is particular-
ly affected by atmospheric turbulence, which, depending on its severity,
causes temporally and spatially varying blurring, (apparent) image motion
and geometric deformations, as well as intensity fluctuations (scintillation),
reduced (colour) contrast and noise. Accordingly, correction methods are
tasked with reducing one, several or possibly all of these turbulence effects
in image data and reconstructing them in the best possible way. Ideally,
such a reconstruction would be identical to an image at the diffraction limit
without turbulence.
Various application areas that are concerned with the acquisition of image
data over extended (horizontal) distances under potentially turbulent condi-
tions can benefit significantly from efficient turbulence correction methods.
In addition to special forms of optical communication, this applies in par-
ticular to classic remote sensing tasks, such as military reconnaissance or
(border) surveillance. While established correction methods exist for ob-
servations of point-like, (approximately) static objects over (near) vertical
propagation paths (e.g. adaptive optics for astronomical applications or
optical free-space communication), turbulence correction for horizontal
imaging of extended and possibly moving targets is still an area of active
research. For this purpose, software-based methods are particularly well
suited, since their main advantages over hardware solutions include not
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only the comparatively low costs of materials required for their production
as well as their utilisation, but also their flexibility (incl. mobility) and the
large number of possible applications, especially in the case of extended
and potentially moving objects.
This thesis is primarily concerned with the practical aspects of the question
of how exactly (i. e. with which methods) such turbulence impairments can
be mitigated most effectively (or most rapidly, as the case may be) and how
the quality of the image data can be specifically improved by employing
problem-specific reconstruction methods. A special focus is placed on image
sequences that also contain (directional) object motion in particular, as well
as on a potential real-time capability of the individual methods. In this work,
different methods for the correction of the most pronounced turbulence
effects are investigated. This includes the selection and implementation of
suitable algorithms, as well as an evaluative discussion of their performance
by comparison.
A central topic here, in addition to deconvolution methods for reconstruc-
ting high frequency components and improving image sharpness, is the
compensation of global and especially local image movements with the
aid of block matching algorithms and estimation methods for the optical
flow. More specifically, directional local image stacking is proposed and
implemented to compensate for object motion and reduce motion blur,
involving an innovative combination of motion estimation and modified
image stacking. A fundamental aspect is the differentiation of independent
object motion and motion caused by turbulence. Furthermore, a modified
multi-stage form of iterative blind deconvolution according to Ayers and
Dainty with special weighting of the edges in the image is presented, with
which ringing effects in homogeneous image regions can be substantially
reduced.
Another key point of the work is the development of a methodology for
comparing such reconstruction methods, taking into account priorities in
the evaluation that are specific to the application. Although there is a wide
range of quality metrics that can be used for such comparisons, an objective
evaluation of results is a non-trivial task without available ground truth data.
Therefore, a tabular solution approach is proposed, which can be used to
summarise similar prerequisites in order to make algorithms for typical
application scenarios easier to compare with each other.
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f T Transponierte von f



Symbolverzeichnis xiii

I(·) Imaginärteil einer komplexen Zahl

max Maximum einer Funktion oder Menge

argmin Argument des Minimums

min Minimum einer Funktion oder Menge

~∇ Nabla-Operator, Vektor der partiellen Ableitungsoperatoren
∂
∂xi

O Landau-Symbol (auch: O-Kalkül), asymptotische obere Schran-
ke für die Rechnenkomplexität eines Algorithmus

Prob{·} Die Wahrscheinlichkeit eines Ereignisses

R(·) Realteil einer komplexen Zahl

Griechische Symbole

δx (Kleine) Verschiebung in x-Richtung

η Dynamische Viskosität

κ Ortsfrequenz

λ Wellenlänge des Lichts (sofern nicht anders angegeben)

µ Erwartungswert

µk k-tes Moment

ν Kinematische Viskosität

ω Kreisfrequenz

Φφ Powerspektrum der Phasenfluktuationen

φ Phase

Φn Powerspektrum der Fluktuationen im Brechungsindex



xiv Symbolverzeichnis

ρ Dichte

Σ Summenzeichen

σ Standardabweichung

σ2 Varianz

τ0 Kohärenzzeit

Θ Phasenänderungen

θ Phase

θ0 Isoplanatischer Winkel

υ Mittlere Strömungsgeschwindigkeit

Lateinische Symbole

A Amplitude

An Numerische Apertur

c0 Lichtgeschwindigkeit im Vakuum

C 2
n Strukturparameter der Brechungsindexfluktuationen

C 2
T Strukturparameter der Temperaturfluktuationen

D Aperturdurchmesser

d Auflösungsgrenze

Dφ Strukturfunktion der Phasenfluktuationen

DT Strukturfunktion der Temperaturfluktuationen

E Elektrische Feldstärke

f̂ Schätzung für f



Symbolverzeichnis xv

f (x,y) 2-dimensionale Funktion f der (Orts-)Koordinaten x und y ,
hier i. A. : ungestörtes, ideales Bild)

F Fouriertransformierte von f
kontextbezogen auch: Blendenzahl

f Funktion f
kontextbezogen auch: Brennweite

g (x,y) hier i. A. : durch Turbulenz gestörtes, reales Bild

h(x,y) hier i. A. : (atmosphärische) Filterfunktion

Ii hier i. A. : i -tes Bild einer Bildsequenz

i , j Imaginäre Einheit, d. h. die Wurzel aus (−1)
kontextbezogen hier auch als Laufindex verwendet

k Polarisierungsausrichtung

L0 Äußere Skalenlänge

l0 Innere Skalenlänge

L Optische Weglänge

n(x,y) hier i. A. : Noise-Komponente

n Brechungsindex

nL Brechungsindex von Luft

nW Brechungsindex von Wasser

P Pupillenfunktion

ps Pixelgröße auf dem Sensor (in Radians)

px Pixel

r0 Kohärenzlänge (Fried-Parameter)
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1
Einleitung

Atmosphärische Turbulenz und ihre negativen Auswirkungen auf elektroop-
tische (EO) Systeme spielen vornehmlich in der Fernerkundung eine große
Rolle. Dies gilt insbesondere für militärische Aufklärungsaufgaben, aber
es gibt zunehmend auch in Anwendungen der zivilen Sicherheit Bedarf
an der Korrektur bzw. Abmilderung von Turbulenzeffekten, z. B. bei der
Grenzüberwachung in ariden Gebieten oder der Personenerkennung in der
Strafverfolgung.
Im Allgemeinen gilt, je größer die Entfernung ist, desto stärker wirkt sich
Turbulenz auf die Bildqualität bei der Datenerfassung aus. Dennoch gibt
es auch auf kleinem Raum Anwendungsmöglichkeiten für Verfahren zur
Turbulenzkorrektur. So ist in der medizinischen Bildverarbeitung z. B. die
Beeinträchtigung der Bildqualität von MRT Aufnahmen aufgrund von Turbu-
lenz innerhalb von MRT Geräten durchaus ein Thema, ebenso wie entspre-
chende Verfahren zur Bildverbesserung. Daneben ist in der Zukunft auch
für Sportübertragungen die Anwendung von Turbulenzkorrektur in Echtzeit
vorstellbar, insbesondere z. B. bei Autorennen, bei denen sich häufig ein
Flimmern in der Luft über dem aufgeheizten Asphalt beobachten lässt.

1
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Anmerkungen

Leider gibt es für einige wiederkehrende Begriffe und Konzepte keine ad-
äquate deutsche Übersetzung, weshalb die englischen Begriffe verstärkt
auch in deutschen Texten verwendet werden. Dies betrifft insbesondere
atmosphärisches “Blurring”, das sich auf die Weichzeichner-Wirkung und
den Tiefpass-Filter-Effekt der Atmosphäre bezieht, wodurch ein beobach-
tetes Objekt unscharf erscheint. Ein weiterer solcher Begriff ist “Noise”, der
zwar als “Rauschen” sinnvoll übersetzt werden kann, welches aber nicht den
vollen Umfang der Bedeutung widerspiegelt. Aus diesem Grund werden in
dieser Arbeit die englischen Begriffe verwendet, sofern dies angebracht ist.

1.1 Motivation
Dank der technologischen Fortschritte der letzten Jahre bei der Entwicklung
moderner hochwertiger elektrooptischer Systeme sind es inzwischen längst
nicht mehr Qualität und Design, die deren Leistungsfähigkeit limitieren.
Stattdessen sind es vielmehr die Atmosphäre, sowie die vorherrschenden me-
teorologischen Bedingungen, die der Performanz derartiger bildgebender
Sensoren eine obere Grenze setzen. Speziell auf langen Ausbreitungswegen
zwischen Beobachter und beobachtetem Objekt in warmen Klimaregionen,
wie z. B. häufig bei Aufklärungsaufgaben in der Fernerkundung der Fall,
machen sich atmosphärische Effekte bei der Erfassung von Bilddaten ne-
gativ bemerkbar. Die Abbildung 1.1 zeigt ein Beispiel für die Auswirkungen
atmosphärischer Turbulenz- und Refraktionseffekte.

Abbildung 1.1: Beispiel für atmosphärische Turbulenz- und Refraktionseffek-
te (St. Peter Ording, Foto: M. Hebel)



1.1 Motivation 3

Die Ursache dafür sind die vorherrschenden kontinuierlichen und rapiden
Änderungen von Temperatur und Druck innerhalb der Atmosphäre. Hier-
durch entsteht ein turbulenter Fluss von Luftzellen, welcher sich mit Hilfe
der Gesetze der Fluiddynamik beschreiben lässt [Kol41]. Die Folge sind zu-
fällige zeitliche und räumliche Variationen im optischen Brechungsindex
entlang des Ausbreitungswegs. Die daraus resultierenden Effekte werden
gemeinhin unter dem Begriff “optische Turbulenz” zusammengefasst. Beson-
ders ausgeprägt ist Turbulenz innerhalb der “Troposphäre”, der untersten
Schicht der Erdatmosphäre, wobei hierin die “Peplosphäre”, die atmosphäri-
sche Grenzschicht nahe der Erdoberfläche (engl. “Atmospheric Boundary
Layer”, ABL), deutlich am stärksten betroffen ist.
Die Abbildung 1.2 visualisiert das inhomogene Gemisch aus unterschiedlich
großen Zellen kälterer und wärmerer Luft, die wie Linsen mit unterschiedli-
chem Brechungsindex agieren. Eine einfallende ebene (Licht-)Wellenfront
(wie sie von einer punktförmigen Lichtquelle in großer Entfernung ausgeht,
z. B. von einem Stern), die sich durch dieses turbulente Gemisch ausbreitet,
wird aufgrund dessen sukzessive immer weiter abgelenkt und deformiert.
Es sind in erster Linie Turbulenzen in der Nähe der Optik für die Phasen-
verzerrungen der eintreffenden Wellenfronten verantwortlich, welche den
Gehalt an Raumfrequenzen eines Bildes determinieren, während Volumen-
turbulenzen über eine größere Entfernung wiederum Phasenverzerrungen

Abbildung 1.2: Auswirkung atmosphärischer Turbulenz auf eine ebene Wel-
lenfront
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in Amplitudenverteilungen umwandeln, was allgemein als Szintillation be-
zeichnet wird ([Rog96]). In der Astronomie beschreibt Szintillation zufällige
Fluktuationen in der Helligkeit von Sternen, wodurch der Anschein erweckt
wird, dass diese funkeln. Szintillation tritt vor allem bei langen Ausbreitungs-
wegen des Lichts durch die Atmosphäre auf, weshalb sie sich bei Sternen am
stärksten in der Nähe des Horizonts bemerkbar macht. Unterschiedliche De-
formationen der Wellenfront, verursacht durch atmosphärische Turbulenz,
können bei der Ausbreitung zu konstruktiver oder destruktiver Interferenz
führen. Die resultierenden Amplitudenschwankungen lassen sich vor allem
mit Optiken wahrnehmen, die kleine Aperturen haben, wie z. B. auch die
Pupille des menschlichen Auges. Die entstehenden Interferenzmuster sind
sehr gut an den beiden Beispielen in der Abbildung 1.3 zu erkennen.

Abbildung 1.3: Szintillationseffekte bei starker Turbulenz. Links: reale Mes-
sung eines Laserspots; rechts: simulierte PSF.

Die dominantesten zu beobachtenden Turbulenzeffekte bei der Aufnahme
von Bildern sind jeweils zeitlich und räumlich variierende Unschärfe (“Image
Blurring”), scheinbare Bewegungen des ganzen Bildes (“Image Dancing”)
und geometrische Deformationen (“Image Warping”), sowie die oben be-
schriebenen Intensitätsfluktuationen, d. h. Szintillation. In den Abbildungen
1.4 und 1.5 sind Beispiele für derartige turbulenzbedingte Bildunschärfe
bzw. Bilddeformationen zu sehen.
Bei der Erfassung von Bilddaten durch Turbulenz spielt insbesondere die
Belichtungs- bzw. Integrationszeit eine wichtige Rolle. Bei längeren Belich-
tungszeiten, d. h. wenn die Belichtungszeit die Dauer der Turbulenz über-
steigt, werden Turbulenzzellen aller Größenordnungen gemittelt. Dabei
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Abbildung 1.4: Beispiel für turbulenzbedingte Bildunschärfe. Links: Original-
bild, rechts: Ausschnittsvergrößerung.

Abbildung 1.5: Beispiel für turbulenzbedingte Bilddeformationen. Links:
Originalbild, Mitte u. rechts: Ausschnittsvergrößerung zwei weiterer Frames
mit jeweils unterschiedlichen Deformationen.

sind es die größten Zellen, welche größer sind als der Durchmesser der
verwendeten Optik, die überwiegend für den “Image Dancing” Effekt ver-
antwortlich sind, während sie sich über die Öffnung der Optik bewegen. Bei
kurzen Belichtungszeiten hingegen werden diese großen Zellen gleichsam
“eingefroren” und nur die kleinen Turbulenzzellen, die für die Unschärfe ver-
antwortlich sind, bewegen sich so schnell, dass sie sich im Bild bemerkbar
machen. Im Wesentlichen bedeutet dies, dass die Geometrie einer Szene
erhalten bleibt, d. h. Linien bleiben gerade, während Details verschwimmen.
Dieser Umstand wird in Abschnitt 5.2 in der Abbildung 5.2 demonstriert.
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Bilddeformationen werden wiederum von Turbulenzzellen verursacht, wel-
che einerseits kleiner sind als die Apertur, andererseits aber größer (auf der
Bildebene) als die Objektstrukturen.
Kontrastreduktion und chromatischer Verlust zählen ebenfalls zu den nach-
teiligen Effekten atmosphärischer Turbulenz, wie beispielhaft in der Ab-
bildung 1.6 gezeigt. Die Abbildung verdeutlicht insbesondere auch den
verstärkenden Effekt von Rekonstruktionsmethoden auf (Farb-)Rauschen.

Abbildung 1.6: Beispiel für turbulenzbedingten Verlust von (Farb-)Kontrast.
Links: Originalbild, Mitte: Rekonstruktion mit Rauschverstärkung, rechts:
Detailvergrößerung.

Die Abbildung 1.7 zeigt überdies, dass atmosphärische Turbulenz im in-
fraroten Wellenlängenbereich (IR) grundsätzlich die gleichen negativen
Turbulenzeffekte verursacht wie im visuellen Spektrum (VIS), auch wenn de-
ren Ausprägung etwas geringer ausfällt aufgrund der größeren Wellenlänge.
Zusätzlich lassen sich Luftspiegelungen über dem (durch Sonneneinstrah-
lung) aufgeheizten Rollfeld beobachten, ein Effekt, welcher im VIS ebenfalls
auftritt. Insbesondere illustriert die Abbildung 1.7 wie sich längere Ausbrei-
tungswege durch die turbulente Atmosphäre in Bildaufnahmen auswirken.
Hier sollte angemerkt werden, dass alle vier Sequenzen mit demselben
EO-System akquiriert wurden, mit einer Originalauflösung von 640×480 Pi-
xeln. Die Bildausschnitte wurden absichtlich so gewählt, dass der Jet überall
(nahezu) gleich groß ist. Zwar wird dadurch die relative Bildauflösung mit
zunehmender Distanz geringer, dennoch lässt sich erkennen, dass es die
Turbulenzeinflüsse sind, die in den Aufnahmen dominieren.
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Distanz: 0,8 km Distanz: 1,3 km

Distanz: 1,8 km Distanz: 2,3 km

Abbildung 1.7: Infrarot-Aufnahmen eines Jets in unterschiedlichen Entfer-
nungen zur Kamera unter vergleichbaren Turbulenzbedingungen.

Turbulenz ist naturgemäß nicht auf atmosphärische Turbulenzen beschränkt.
Optische Turbulenz kann in jedem flüssigen und transparenten Medium
beobachtet werden. Und obwohl sich der Großteil der Forschung in der
Fachliteratur mit atmosphärischen Turbulenzeffekten befasst, hat die Zahl
der Studien über Unterwasserturbulenzen in den letzten Jahren zugenom-
men. Dennoch sind Anwendungen für atmosphärische Korrekturen nach
wie vor weitaus häufiger als für Unterwasser. Dies liegt vor allem an der
vergleichsweise kurzen Sichtweite von nur wenigen Metern, während Sonar-
systeme bis zu Hunderte von Metern (abhängig von der Betriebsfrequenz)
durchdringen können. Obwohl der Schwerpunkt hier also auf Luft und nicht
auf Wasser liegt, gelten die in diesem Abschnitt beschriebenen atmosphäri-
schen Effekte auch für Wasser. Allerdings sind die optischen Turbulenzen
unter Wasser aufgrund der unterschiedlichen Brechungseigenschaften des
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Wassers, die je nach Salzgehalt und Verschmutzung variieren, viel stärker
ausgeprägt. Da sich Turbulenz über den Strukturparameter der Fluktuatio-
nen im Brechungsindex des Ausbreitungsmediums charakterisieren lässt,
spielen naturgemäß die Eigenschaften dieses Mediums eine entscheiden-
de Rolle in der Ausprägung der optischen Turbulenz. So hat Wasser einen
deutlich höheren refraktiven Index als Luft (nW ≈ 1.3330, nL ≈ 1.000292).
Standardmäßig wird der Brechungsindex n für Flüssigkeiten bei T = 20 °C
angegeben, während bei Gasen T = 0 °C, P = 1 atm als Standardwerte gelten.
Turbulenz unter Wasser wie im Beispiel in Abbildung 1.8 kann mithilfe von
Heizplatten an den Seiten eines Wassertanks erzeugt werden.

Abbildung 1.8: Beispiel für Unterwasserturbulenz. Oben: Wasser im Ruhezu-
stand; unten: mithilfe von Heizplatten künstlich erzeugte Turbulenz.

Die Abbildung 1.9 veranschaulicht am einfachen Beispiel eines binären
zeitabhängigen Signals wie sehr sich bereits Szintillation (dargestellt als
grüne Sinuskurve) allein in Verbindung mit Rauschen (violett eingezeichnet)
auf die Signalintensität auswirken kann. Das Ausgangssignal (schwarze Linie
ganz oben in der Grafik) wird aufgrund der durch Szintillation verursachten
Amplitudenschwankungen teilweise völlig ausgelöscht bzw. verfälscht wie
die letztlich gemessenen Daten (schwarze Linie ganz unten in der Grafik)
erkennen lassen. In welchem Ausmaß dieser Effekt durch das vorliegende
Rauschen weiter verstärkt wird, hängt dabei sowohl vom durchschnittlichen
Rauschpegel ab, als auch vom eingestellten Detektionsschwellwert. Das
Beispiel unterstreicht die Bedeutung und die Notwendigkeit entsprechender
Korrekturmethoden, insbesondere für die optische Kommunikation.
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Abbildung 1.9: Wirkung von Szintillation und Rauschen auf ein binäres
Signal (x-Achse: Zeit t , y-Achse: Intensität, skaliert auf [0,1]).

Es gibt eine ganze Reihe von Anwendungsbereichen, die aufgrund von at-
mosphärischer Turbulenz signifikant beeinträchtigt werden können. Dies
betrifft vor allem die nachfolgend aufgelisteten Anwendungen:

• Bilderfassung (“Imaging”) über ausgedehnte Wegstrecken

• Fernerkundung (“Remote Sensing”), z. B. Aufklärung (“Reconnais-
sance”) oder (Grenz-)Überwachung (“Surveillance”)

• Astronomische Beobachtungen

• LIDAR (optische Entfernungsmessung)

• Optische Freiraumdatenübertragung (“Free-Space Optical communi-
cation”, FSO)

• Satelliten-Laserkommunikation (Uplink und Downlink)
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1.2 Problemstellung
Verfahren zur Turbulenzkompensation haben die Aufgabe, einen, mehrere
oder ggfs. sogar alle der zuvor beschriebenen Turbulenzeffekte in erfassten
Bilddaten (oder anderen optischen Signalen) zu reduzieren und diese so gut
wie möglich zu rekonstruieren. Im Idealfall wäre eine solche Rekonstruktion
identisch mit einer Aufnahme am Diffraktionslimit, ohne jede (optische)
Turbulenz.
In diesem Zusammenhang stellt sich auch die Frage nach der Evaluierung
solcher Rekonstruktionsergebnisse. Aufgrund der Diversität aktueller Korrek-
turverfahren ist es nahezu unmöglich, die Korrekturresultate unterschiedli-
cher Verfahren tatsächlich objektiv zu beurteilen und miteinander zu verglei-
chen. Zum einen ist bei Bilddaten, die durch reale Turbulenz beeinträchtigt
sind, davon auszugehen, dass keine zugehörigen “Ground Truth”-Daten
vorliegen und somit eine (weitgehend) objektive Beurteilung über einen
direkten Vergleich entfällt. Zum anderen unterscheiden sich die Zielstellun-
gen und Leistungsparameter dieser Verfahren z. T. signifikant voneinander,
so wie ihrerseits auch die Anforderungen und Prioritäten verschiedener
Anwendungen stark variieren können. Aufgrund dessen wäre ein einheit-
liches Konzept sehr von Nutzen, welches eine methodische Evaluierung
solch heterogener Verfahren ermöglicht, ohne dabei die problemspezifi-
schen Vorgaben und Ziele unterschiedlicher Anwendungen aus dem Auge
zu verlieren.
Die Bildbeeinträchtigungen aufgrund von Turbulenz bei der Erfassung eines
realen Bildes g lassen sich vereinfacht als Faltung (“Convolution”) des idea-
len, d. h. nicht durch Turbulenz gestörten Bildes f mit der atmosphärischen
Punktspreizfunktion h beschreiben, wie in der Abbildung 1.10 veranschau-
licht, zuzüglich einer additiven Noise-Komponente n. Diese vereinfachte
Darstellung ist in der Literatur weit verbreitet und wird entsprechend häufig
verwendet.
Dabei ist zu beachten, dass es sich um eine Momentaufnahme für einen
bestimmten Zeitpunkt t = t0 handelt, und dass h, f und n nicht nur von
den Ortskoordinaten (x,y) abhängen, sondern auch zeitlich veränderliche
Funktionen darstellen (und dementsprechend auch g ).
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Abbildung 1.10: Modellierung des turbulenzbedingten Degradationsprozes-
ses von Bilddaten in Form einer Faltung mit der atmosphärischen Filterfunk-
tion.

Die Gleichung aus der Abbildung 1.10 lautet dann entsprechend:

g (x,y,t ) = h(x,y,t ) ∗ f (x,y,t ) + n(x,y,t ) (1.1)

Ob sich das zugrundeliegende ideale Bild f tatsächlich mit der Zeit verän-
dert, ist zwar vom Inhalt der abgebildeten Szene abhängig, die Annahme
der zeitlichen Veränderlichkeit von f stellt jedoch keine Einschränkung dar.
Streng genommen müsste die Filterfunktion h auch nicht nur die genannten
Turbulenzeffekte beinhalten, sondern ebenso die Störeinflüsse des verwen-
deten optischen Systems. In der Praxis werden für Forschungsarbeiten (wie
die vorliegende) mit besonderem Fokus auf die negative Auswirkung at-
mosphärischer (bzw. optischer) Turbulenz nahezu ausschließlich qualitativ
hochwertige elektrooptische Systeme zur Erfassung entsprechender Bildda-
ten eingesetzt. Die Turbulenzeffekte (sofern vorhanden) überwiegen daher
im Normalfall deutlich gegenüber Beeinträchtigungen, wie sie z. B. durch
eine minderwertige Optik verursacht werden. Somit ist es durchaus gerecht-
fertigt, letztere in dem abgebildeten Turbulenzmodell zu vernachlässigen
und etwaige Abbildungsfehler als Teil der atmosphärischen Störungen zu
behandeln.
Es sollte dazu angemerkt werden, dass die Parameter des jeweils verwen-
deten optischen Systems sehr wohl in zahlreiche Korrekturverfahren mit
einfließen, entweder direkt oder indirekt. Ebenso werden häufig weitere
(oder ggfs. andere) Turbulenzeffekte berücksichtigt, insbesondere der Ver-
lust von (Farb-)Kontrast.
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1.3 Lösungsansatz
Zielsetzung dieser Arbeit ist die methodische Evaluierung verschiedener
Verfahren zur Korrektur atmosphärischer Turbulenz mit Hinblick auf die
praktischen Aspekte bei der Anwendung auf Bilddaten mit realen Beein-
trächtigungen aufgrund von Turbulenzeinflüssen. Dies umfasst die Auswahl
und Implementierung geeigneter Algorithmen, sowie eine bewertende Dis-
kussion ihrer Leistungsfähigkeit im Vergleich. Ein besonderes Augenmerk
liegt jeweils auf Bildsequenzen, die insbesondere auch gerichtete Objektbe-
wegung enthalten.
Die Turbulenzeinflüsse lassen sich als eine Reihe von Turbulenzeffekten
interpretieren, die voneinander (mehr oder weniger) unabhängig sind. Ins-
besondere lassen sich Bildbewegungen und Bildunschärfe sehr effektiv von-
einander getrennt betrachten und behandeln, ebenso wie z. B. auch der
Bildkontrast. Es liegt daher nahe, ein Verfahren zur Turbulenzkorrektur mo-
dular aufzubauen, so dass diese Turbulenzeffekte mithilfe entsprechender
Methoden jeweils einzeln, nacheinander korrigiert werden (in einer geeig-
neten Reihenfolge). In der Abbildung 1.11 sind die generell am stärksten
ausgeprägten Turbulenzeffekte mit Auflistungen möglicher Korrekturan-
sätze verknüpft, die sich eignen, um den jeweiligen Effekt zu korrigieren

Abbildung 1.11: Typische Turbulenzeffekte und zugehörige Korrekturansätze
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bzw. abzumildern. Durch die Punkte “...” soll hier angedeutet werden, dass
es sich um beliebig erweiterbare Listen handelt und kein Anspruch auf
Vollständigkeit besteht.
Die Problematik der Turbulenzkorrektur wird hier in vier Hauptaufgaben
eingeteilt:

1. “Bewegungskompensation” (Kapitel 4)

2. “Deblurring” (Kapitel 5)

3. “Turbulenzkorrektur” (Kapitel 6)

4. “Methodik zur Evaluierung” (Kapitel 7)

Zu 1. “Bewegungskompensation”:

“Block Matching”-Algorithmen und Methoden zur Bestimmung des opti-
schen Flusses können ebenso wie eine Kreuzkorrelation zur Bewegungsde-
tektion und Bewegungsschätzung eingesetzt werden. Anhand dieser Infor-
mationen lassen sich globale und lokale Bildbewegungen kompensieren,
wobei ein bewegungskompensierender gleitender Mittelwert bestimmt und
als Referenz zur Registrierung verwendet wird. Dadurch wird im Video eine
bildstabilisierende Wirkung und Reduktion von Bildverformungen erzielt.
Überdies werden Bewegungen, die gewisse Kriterien erfüllen, als Objekt-
bewegungen kategorisiert, z. B. wenn sie einen bestimmten Schwellwert
überschreiten. Eine Unterscheidung zwischen bewegten und statischen
Bildregionen ermöglicht eine separate Behandlung von bewegten Objekten
im Vordergrund und dem (zumindest temporär) statischen Hintergrund.
Dadurch kann die Anzahl gemittelter Frames im Vordergrund gezielt redu-
ziert und im Hintergrund erhöht werden, ohne Bewegungsunschärfe dabei
zu verstärken.

Zu 2. “Deblurring”:

Wie der Gleichung (1.1) zu entnehmen ist, liegt der Turbulenzkorrekturaufga-
be im Prinzip ein inverses Problem zugrunde, das im mathematischen Sinn
schlecht gestellt ist. Bei einem inversen Problem wird zu einer Abbildung
f : X → Y , y = f (x) die zugehörige Umkehrabbildung f −1 gesucht, wobei
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nur Beobachtungen y aus dem Bildbereich Y vorliegen, während die zuge-
hörigen Elemente x des Definitionsbereichs X unbekannt sind ([Bey12]). Ge-
mäß Hadamard ist ein Problem im mathematischem Sinn schlecht gestellt,
wenn keine eindeutige Lösung existiert, die zudem stabil ist, also stetig von
den gegebenen Eingangsdaten abhängt. Speziell für ein inverses Problem
bedeutet dies dann, dass keine bijektive und stetige Umkehrabbildung f −1

existiert. Lösungsansätze für das Problem der Entfaltung (“Deconvolution”)
stützen sich daher auf Zusatzinformationen, wie etwa Vorwissen und Rand-
bedingungen, die z. B. nur für ganz bestimmte Situationen Gültigkeit haben.
Vorwissen kann z. B. aus früheren Schleifendurchläufen stammen oder für
eine gegebene Position aus einer lokalen Umgebung extrapoliert werden.
Es können zusätzlich auch (häufig vereinfachende) Annahmen getroffen
werden, oder bestimmte Eigenschaften der Lösung gefordert werden (wie
z. B. Glattheit), so dass Ausreißer unterdrückt werden.
Der gesamte Vorgang von der durch Turbulenz verursachten Bildverschlech-
terung bis hin zur näherungsweisen Bildrekonstruktion f̂ des idealen Bildes
ist schematisch in der Abbildung 1.12 dargestellt.

Abbildung 1.12: Schematische Darstellung turbulenzbedingter Bildbeein-
trächtigung und Bildrekonstruktion mittels inverser Filterung

Bildbewegungen sind in dieser Darstellung zwar nicht explizit berücksich-
tigt, aber falls eine effiziente Bewegungskompensation durchgeführt wird,
können (nahezu) isoplanatische Bedingungen angenommen werden, so
dass die atmosphärische Filterfunktion h (näherungsweise) als räumlich
invariant betrachtet werden kann.

Zu 3. “Turbulenzkorrektur”:

In diesem Aufgabenblock wird thematisch alles zusammengeführt, das zu-
sätzlich zu Algorithmen zur Bewegungskompensation und Entfaltung mit
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zum Themenfeld Turbulenzkorrektur gehört. Neben Schätzmethoden für
die Turbulenzstärke und Möglichkeiten zur PSF-Approximation werden hier
vor allem eigene Arbeiten und Ergebnisse vorgestellt, insbesondere die MCA
und LIS Korrekturprinzipien zur Bewegungskompensation, sowie auch die
WIBD Modifikation für eine abschließende blinde Entfaltung.
Des Weiteren werden praktische Aspekte beleuchtet, wie z. B. sinnvolle Mög-
lichkeiten zur Vorverarbeitung der Bilddaten unter verschiedenen Bedin-
gungen, um die Rekonstruktion zu unterstützen. Eine besonders hohe Fra-
merate kann beispielsweise zusätzliche Maßnahmen erfordern, um Objekt-
bewegung zwischen Frames detektieren zu können. Gleiches gilt auch bei
ausgeprägten lokalen Bildbewegungen infolge starker Turbulenz, die u. U.
gegenüber Objektbewegungen überwiegen können.
Die Abbildung 1.13 zeigt die verschiedenen Stufen im hier vorgestellten
Lösungsansatz zur Turbulenzkompensation, angefangen mit einer optiona-
len Vorverarbeitung der Eingabedaten über eine Bewegungsdetektion und
Bewegungsschätzung zur Bewegungskompensation mit abschließendem
Deblurring.
Während der Bewegungsdetektion/-schätzung wird zunächst entschieden,
ob eine Kamerabewegung vorliegt, die sich mithilfe entsprechender Maß-
nahmen ausgleichen lässt. Bei einer gleichmäßigen Schwenkbewegung kann
z. B. “Stitching” eingesetzt werden. Andernfalls, d. h. bei schnellen nicht prä-
dizierbaren Bewegungen, muss auf eine Bewegungskompensation (zeitwei-
lig) verzichtet werden. Dies gilt im Übrigen auch für abrupte Szenenwechsel
oder Änderungen des Zoomfaktors seitens der Optik.
Des Weiteren wird ermittelt, ob bewegte Objekte enthalten sind und ggfs.
eine Segmentierung in Vorder- und Hintergrund, d. h. bewegte und statische
Bildregionen, vorgenommen. Bei der Bewegungskompensation werden die
ermittelten Informationen zur Bildstabilisierung mittels bewegungskom-
pensierender Bildstapelung (MCA) eingesetzt, wobei eine separate Korrektur
des Vordergrunds mittels gerichteter lokaler Bildstapelung (LIS) durchge-
führt wird.
Das Resultat der Bewegungskompensation kann im Idealfall als (weitge-
hend) unverzerrtes Bild betrachtet werden, welches allerdings noch eine
Unschärfe in der gleichen Größenordnung aufweist wie die zugehörige sta-
tistische “short exposure”-PSF (s. a. Gleichung (6.14)). Als abschließender
Schritt wird daher noch ein entsprechendes Deblurring durchgeführt.
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Abbildung 1.13: Prozessierungskette mit den wesentlichen Verfahrensschrit-
ten zur Turbulenzkorrektur

Dieser Ansatz zur Turbulenzkorrektur ist vergleichsweise robust, da er auch
bei starker Turbulenz noch eine deutliche Verbesserung zu erzielen kann.
Zudem lässt er sich ohne zusätzliche Modifikationen auch auf andere Spek-
tralbereiche wie IR anwenden, inklusive aktiver Beleuchtung.

Zu 4. “Methodik zur Evaluierung”:

Im letzten Aufgabenblock geht es hingegen darum, die Rekonstruktionser-
gebnisse verschiedener Verfahren zur Turbulenzkorrektur vergleichend zu
bewerten, um daraus eine Aussage über die Leistungsfähigkeit der korre-
spondierenden Algorithmen ableiten zu können. Zu diesem Zweck werden
die jeweiligen Vor- und Nachteile unterschiedlicher Typen von Metriken dis-
kutiert, sowie alternative Möglichkeiten zur Bewertung der Rekonstruktions-
qualität erörtert. Zur Lösung wird ein tabellarischer Ansatz vorgeschlagen, in
dem eine Kombination ausgewählter Metriken als Kriterien zur Bewertung
der Rekonstruktionsergebnisse herangezogen wird, wobei eine anwendungs-
bezogene Priorisierung ermöglicht wird. Zusätzlich werden die Eingabeda-
ten kategorisiert, da unterschiedliche Ausgangsszenarien unterschiedliche
Korrekturmaßnahmen erfordern. Insbesondere können die Prioritäten bei
der Bewertung stark von der jeweiligen Anwendung abhängen.
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1.4 Wissenscha�liche Beiträge
Die Hauptbeiträge dieser Arbeit zum Stand der Forschung und Technik
lassen sich zusammenfassen wie folgt:

B Entwicklung und Realisierung eines ganzheitlichen Verfahrens zur
schritthaltenden Turbulenzkorrektur (s. a. Abbildung 1.13), das auf-
grund zahlreicher optionaler Komponenten (z. B. Vorverarbeitung),
sowie etlicher Freiheitsgrade sehr flexibel nutzbar ist. In diversen Kor-
rekturbeispielen (u. a. in Abschnitt 6.7) wird die Verbesserungsleistung
spezifischer Komponenten demonstriert.

B Umfassende Untersuchung verschiedenster Algorithmen zur Bewe-
gungsdetektion und zur Bewegungsschätzung hinsichtlich ihrer An-
wendbarkeit auf turbulenzgestörte Daten zur Bewegungskompensati-
on [Hue16] (Kapitel 4).

B Konzipierung und Umsetzung einer gerichteten lokalen Bildstape-
lung (“Local Image Stacking”, LIS), einer innovativen Kombination
aus Bewegungsschätzung mittels “Block Matching” und modifizierter
Bildstapelung, zur Kompensation von gerichteten Objektbewegungen
in atmosphärisch beeinträchtigten Bildsequenzen [Hue11] (Abschnitt
6.5.3).

B Qualitative und quantitative Evaluierung verschiedener Entfaltungs-
methoden in Bezug auf ihre Eignung in unterschiedlichen Turbu-
lenzbedingungen unter Berücksichtigung des (potenziellen) Echtzeit-
Aspekts, sowie Untersuchung des Einflusses ultra-kurzer Integrations-
zeiten auf die Bildrekonstruktion [Hue08], [Gre08].

B Entwicklung und Implementierung einer mehrstufigen Variante des
IBD-Entfaltungsalgorithmus mit besonderer Gewichtung der Kanten
im Bild [Hue09] (Abschnitt 6.6).

B Untersuchung verschiedener Qualitätsmetriken zur Identifikation der
besten und schlechtesten Frames mit dem Ziel, bessere Frames mit
einer stärkeren Gewichtung in die Korrektur einfließen zu lassen, wäh-
rend die schlechtesten Frames verworfen werden [Hue10].
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B Entwurf und Erstellung einer synthetischen Videosequenz als “Ground
Truth”-Basis für Turbulenzsimulationen. Erzeugung von Videosequen-
zen mit unterschiedlicher Turbulenzstärke (isoplanatischer Simulati-
on) als Testdaten für diverse Korrekturverfahren [Hue12b] (Abschnitt
6.9).

B Untersuchung der Einflüsse verschiedener Farbräume auf die Kon-
trastverbesserung atmosphärisch beeinträchtigter Farbbilddaten, mit
besonderem Fokus auf dem CIE LAB-Farbraum [Hue15].

B Modifikation und Implementierung eines Verfahrens zur Schätzung
des Fried-Parameters r0 anhand von hinreichend langen Bildsequen-
zen.

B Entwicklung und Implementierung einer auf dem Lakunaritätsmaß
basierenden Methode zur Erstellung von Homogenitätskarten (Ab-
schnitt 6.3.2), womit sich die Zuverlässigkeit der geschätzten Turbu-
lenzstärke (r0) erhöhen lässt.

B Erstellung eines Konzepts zur methodischen Evaluation von Verfahren
zur Turbulenzkorrektur anhand eines tabellarischen Ansatzes unter
Berücksichtigung anwendungsspezifischer Prioritäten.

1.5 Gliederung

Dieser Einleitung schließt sich in Kapitel 2 eine Übersicht über den derzei-
tigen Stand der Forschung und Technik zum Thema Turbulenzkorrektur
an. Diese Übersicht beginnt mit der hardwarebasierten “Adaptiven Optik”
in Abschnitt 2.1. Es folgt ein Literaturüberblick über softwarebasierte Kor-
rekturansätze mit Bezug zu den hier behandelten Aufgabenstellungen in
Abschnitt 2.2. Dazu werden repräsentativ ausgewählte Verfahren vorgestellt
und diskutiert, geordnet jeweils nach Turbulenzeffekten mit geeigneten
Korrekturprinzipien. Eine abschließende Diskussion von hardware- und
softwarebasierten Korrekturansätzen wird in Abschnitt 2.4 gegeben.
Die Einflüsse des Phänomens “Turbulenz” erstrecken sich auf eine ganze
Reihe von Forschungsgebieten. Daher sind im Kapitel 3 die für die weiteren
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Kapitel relevanten theoretischen Grundlagen zu diesem Themenkomplex
fachübergreifend zusammengefasst. Dies beinhaltet zunächst Definitionen
aus der Statistik im Abschnitt 3.1, sowie einige Grundbegriffe aus der Fluiddy-
namik im Abschnitt 3.2. Hinzu kommen wichtige Definitionen aus der Astro-
nomie, wie insbesondere Isoplanasie und Anisoplanasie im Abschnitt 3.3,
sowie einige Grundprinzipien aus der Optik im Abschnitt 3.4, einschließlich
einer Diskussion diverser systembedingter limitierender Einflüsse.
Zahlreiche softwarebasierte Korrekturverfahren verwenden eine Bewegungs-
kompensation, um turbulenzbedingte Bildbewegungen auszugleichen oder
Eigenbewegungen von Objekten zu detektieren. Aus diesem Grund wer-
den typische Algorithmen zur Bewegungsdetektion und Bewegungsschät-
zung ausführlich in Kapitel 4 beschrieben und bzgl. ihrer Eignung zur Tur-
bulenzkorrektur diskutiert. Neben einer Diskussion verschiedener Bewe-
gungstypen in Abhängigkeit von der vorliegenden Situation in Abschnitt 4.1,
beinhaltet dies zum einen verschiedene “Block Matching”-Algorithmen
im Abschnitt 4.2 und zum anderen mehrere Methoden zur Bestimmung
des “Optischen Flusses” im Abschnitt 4.3. In Abschnitt 4.4 werden diese
Algorithmen vergleichend evaluiert und sowohl mit Hinblick auf den Ein-
satz bei Objektbewegung diskutiert, als auch hinsichtlich der praktischen
Anwendung auf turbulenzgestörte Bilddaten.
Bildunschärfe hat einen signifikanten Anteil an turbulenzbedingten Be-
einträchtigungen der Bildqualität. Deshalb enthalten Verfahren zur Turbu-
lenzkorrektur in der Regel auch ein “Deblurring”, d. h. eine Methode zur
Verbesserung der Bildschärfe. In Kapitel 5 geht es speziell darum, die Eig-
nung verschiedener Entfaltungsmethoden für einen Einsatz bei zunehmend
starker Turbulenz zu bewerten. Dazu werden zunächst verschiedene Entfal-
tungsalgorithmen genauer beschrieben (in Abschnitt 5.1). Es handelt sich
dabei in erster Linie um etablierte Methoden, da sich auch viele neuere
Entfaltungsalgorithmen im Kern auf die ein oder andere dieser Methoden
zurückführen lassen. Denn wie u. a. der Artikel von Hardie et al. [Har17] er-
kennen lässt, haben auch etablierte Verfahren wie “Wiener Filter” und “Block
Matching” ihre Relevanz noch nicht verloren. In Abschnitt 5.2 sind einige
repräsentative Entfaltungsergebnisse (für eine Auswahl dieser Algorithmen)
abgebildet, die in Abschnitt 5.3 verglichen und evaluiert werden. In dem Ab-
schnitt 5.4 werden die Eigenschaften der verschiedenen Algorithmus-Typen
noch einmal vergleichend zusammengefasst und diskutiert.
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Das Kapitel 6 bildet den Schwerpunkt dieser Arbeit und befasst sich mit den
verschiedenen praktischen Aspekten, die rund um das Thema Turbulenzkor-
rektur zu berücksichtigen sind. In Abschnitt 6.1 werden die Anforderungen
an geeignete Testsequenzen erörtert und die Spezifikationen der hier bevor-
zugt verwendeten Testsequenzen angegeben. In Abschnitt 6.2 geht es um
konkrete Möglichkeiten, die atmosphärische Filterfunktion (PSF) mithilfe
verfügbarer Informationen statistisch zu approximieren. Messwerte der hier-
zu erforderlichen Kohärenzlänge (r0) stehen jedoch nur im Ausnahmefall
zur Verfügung, daher wird in Abschnitt 6.3 eine modifizierte Methode zur
zuverlässigen Abschätzung dieser Information anhand von Bildsequenzen
vorgestellt. Je nach Ausmaß der turbulenzbedingten Beeinträchtigungen in
gegebenen Bilddaten, können entsprechende Korrekturverfahren auch von
einer angemessenen Vorverarbeitung dieser Daten profitieren, wofür die
besten Optionen in Abschnitt 6.4 diskutiert werden. Es folgt eine Beschrei-
bung eigener Korrekturverfahren, wobei die Funktionsweise der lokalen
Bewegungskompensation (MCA) und das Prinzip der lokalen Bildstapelung
(LIS) in Abschnitt 6.5 erläutert werden. Die entwickelte Entfaltungsmethode
wird überdies in Abschnitt 6.6 im Detail beschrieben. Repräsentive Resultate
dieser Verfahren werden insbesondere in Abschnitt 6.7 gezeigt. Für eine ob-
jektive Bewertung von Korrekturalgorithmen liegen idealerweise ungestörte
Bilddaten vor, die mit den Rekonstruktionsergebnissen verglichen werden
können. Dies ist in der Regel nur bei simulierten Daten der Fall, die den
zusätzlichen Vorteil bieten, dass der Szeneninhalt nach Bedarf ausgewählt
werden kann. Maximale Flexibilität besteht insbesondere, wenn es sich um
eine vollständig synthetische Simulation handelt, wie sie in Abschnitt 6.9
beschrieben ist.
In Kapitel 7 geht es schlussendlich um die methodische Evaluierung von Tur-
bulenzkorrekturverfahren. In Abschnitt 7.1 wird der Begriff der Bildqualität
in Zusammenhang mit der jeweiligen Anwendung gebracht, und es werden
verschiedene Metriken zur Bestimmung der Bildqualität vorgestellt. Welche
Einflussfaktoren zu berücksichtigen sind, wird in Abschnitt 7.3 diskutiert.
Eine abschließende Zusammenfassung ist in Abschnitt 7.4 gegeben.
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Generell lassen sich Verfahren zur Turbulenzkorrektur in Bilddaten in zwei
Kategorien einteilen: hardware- und softwarebasierte Lösungen, wobei
durchaus auch Hybrid-Ansätze existieren, welche sowohl Hardware- als
auch Software-Elemente miteinander vereinen.
Wenn man von reinen Hardware-Systemen zur Kompensation von Turbu-
lenzeffekten spricht, handelt es sich in der Regel um Adaptive Optik-Systeme,
welche einfallendes Licht (von einer punktförmigen Quelle) durch Adap-
tierung einer Optik so modifizieren können, dass die Abbildungsqualität
verbessert wird.
Das Spektrum an softwarebasierten Korrekturverfahren ist hingegen deut-
lich vielfältiger. Zu den wohl bekanntesten und verbreitetsten Prinzipien
zählen dabei “Lucky Imaging” und “Speckle”-Interferometrie, ebenso wie
zahlreiche Methoden zur Bewegungskompensation. Insbesondere diese be-
wegungskompensierenden Verfahren, darunter diverse “Block Matching”
und “Optical Flow” Algorithmen, werden häufig in Verbindung mit “Super-
resolution”-Algorithmen oder einer Form von “Deblurring” eingesetzt, z. B.
(mehr oder weniger) “Blinde” Entfaltung.

21
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2.1 Adaptive Optik
Adaptive Optik (AO) dient dazu, die Leistungsfähigkeit elektrooptischer
Systeme zu erhöhen. Ursprünglich für Anwendungen der Astronomie ent-
wickelt, wird AO inzwischen auch für viele Laseranwendungen, wie z. B.
in der Laserkommunikation eingesetzt. Insbesondere in der Astronomie,
z. B. in der Sonnenphysik, kommen heutzutage zusätzlich zur Hardware-
Korrektur auch softwarebasierte Verfahren zum Einsatz, aufgrund dessen
unter günstigen Bedingungen mitunter ein Verbesserungsgrad nahe dem
Diffraktionslimit erreicht werden kann.
Wie das Funktionsschema in Abbildung 2.1 veranschaulicht, werden bei
AO-Systemen zunächst die Wellenfronten einfallenden Lichts mit Hilfe von
Wellenfrontsensoren gemessen und etwaige Verformungen ermittelt. Dies
geschieht in der Regel unter der Annahme, dass sich die betreffende (punkt-
förmige) Lichtquelle in hinreichend großer Entfernung befindet, so dass die
Wellenfront idealerweise planar sein müsste. Somit können Abweichungen
bestimmt und mit Hilfe eines deformierbaren Spiegels korrigiert werden.

Abbildung 2.1: Funktionsschema eines AO-Systems (Grafik: A. Zepp)
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2.1.1 Wellenfrontsensoren
Besonders verbreitet unter den Wellenfrontsensoren sind sogenannte Shack-
Hartmann Sensoren. Diese bestehen aus einem Mikrolinsenarray, welches
das einfallende Licht in kleine Subaperturen aufteilt und auf einen Bild-
sensor fokussiert, so dass jede Linse einen eigenen Fokus erzeugt. Aus den
relativen Positionen dieser Foki lässt sich dann die (aufgrund von Turbulenz
gestörte) Form der einfallenden Wellenfront anhand von geometrischen
Betrachtungen und vermittels entsprechender Algorithmen ermitteln. Zwar
existieren auch andere Methoden zur Wellenfrontmessung, deren Einsatz-
möglichkeiten sind jedoch meist auf bestimmte Anwendungen beschränkt.
Beispielsweise ist der (noch im Entwicklungsstadium befindliche) Ansatz
eines holografischen Wellenfrontsensors, wie in [Zep13] beschrieben, durch-
aus vielversprechend, nicht zuletzt dank seiner Unempfindlichkeit gegen-
über Szintillation. Aufgrund seiner konstruktionsbedingten Limitierung auf
einzelne Wellenlängen ist sein Einsatz jedoch nur für schmalbandige An-
wendungen wie die Laserkommunikation geeignet.

2.1.2 Deformierbare Spiegel
Die eigentliche Korrektur erfolgt schließlich mit Hilfe eines deformierbaren
Spiegels, welcher aus einer sehr dünnen spiegelnden Membran besteht.
Unterhalb dieser Membran befindet sich ein Array von Aktuatoren, welche
über Anlegung einer Spannung (nahezu) unabhängig voneinander gesteuert
werden können. Dies bedeutet, dass sich die Spiegeloberfläche über ent-
sprechende Steuersignale gezielt lokal verformen lässt, um die (Turbulenz-
verursachten) Deformationen der Wellenfront auszugleichen und auf diese
Weise zu kompensieren.
Diese Art der Spiegel-Kontrolle über eine Feedback-Schleife zu einem Wel-
lenfrontsensor bezeichnet man als “Closed-Loop”. Naturgemäß müssen die
Messungen hinreichend schnell wiederholt (und in entsprechende Steu-
ersignale umgewandelt) werden, bevor sich die einfallende Wellenfront
aufgrund von Turbulenz zu stark verändert hat. Alternativ lässt sich der
deformierbare Spiegel aber auch in einer sogenannten “Open-Loop” ansteu-
ern. Dabei wird anstelle von aktuell gemessenen Wellenfronten eine Menge
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an vorab berechneten oder gespeicherten Wellenfront-Formen verwendet,
anhand derer iterativ nach einer möglichst optimalen Lösung gesucht wird.

2.1.3 Zernike-Polynome
Für die Steuerung der Aktuatoren wiederum muss natürlich eine geeignete
Beschreibung der erwünschten Oberflächenform vorliegen, welche dann in
geeignete Steuersignale umgewandelt werden kann. Hierzu wird zumeist
eine Zerlegung in sogenannte Zernike-Polynome vorgenommen, welche in
Abhängigkeit von Radius und Azimutwinkel ausgedrückt werden. Jeder Term
in einer solchen Zerlegung repräsentiert einen spezifischen Aberrationstyp.
So beschreiben Terme 1. radialer Ordnung sogenannte “Tip-Tilt” Störungen,
welche globalen Bildbewegungen entsprechen, genauer “Verkippungen” in
horizontaler bzw. in vertikaler Richtung. Analog korrespondieren Terme
2. radialer Ordnung zu den Aberrationstypen “Defocus” (in Längsrichtung)
sowie Astigmatismus (in schräger bzw. in vertikaler Richtung), und Terme
3. radialer Ordnung korrespondieren zu den Aberrationstypen “Coma” (in
horizontaler bzw. vertikaler Richtung) sowie “Trefoil” (in schräger bzw. in
vertikaler Richtung).
Zur Veranschaulichung zeigt Abbildung 2.2 die zugehörigen Formen der
(orthogonalen) Zernike-Polynome 1. bis 4. (sowie eines 5.) radialer Ordnung.
Mit steigender (radialer) Ordnung lässt die Stärke des Einflusses der indivi-
duellen Aberrationen deutlich nach. Demgemäß können bereits Korrekturen
der niedrigeren Ordnungen signifikante Verbesserungen der Bildqualität
erzielen. Aus diesem Grund beschränken sich zahlreiche AO-Anwendungen
nur auf die Korrektur der ersten 2 bis 3 radialen Ordnungen, nicht zuletzt
zur Laufzeitbeschleunigung bzw. zur Erhöhung der Iterationsrate bei der
Spiegelkontrolle.
Es sollte angemerkt werden, dass die Zernike-Polynome zwar im mathema-
tischen Sinn “orthogonal” und demgemäß voneinander unabhängig sind,
dass physikalisch betrachtet jedoch das Vorhandensein von Aberrationen
höherer Ordnung normalerweise auch das Vorhandensein der korrespon-
dierenden Aberrationen niederer Ordnung bedeutet (d. h. Aberrationen mit
niederer radialer Ordnung, aber von gleicher azimutaler Ordnung).
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Abbildung 2.2: Zernike-Polynome 1. bis 4. Ordnung 1

2.2 So�warebasierte Verfahren
Neben klassischen Verfahren wie der nachfolgend vorgestellten “Speckle”-
Interferometrie und dem “Lucky Imaging” gibt es noch eine Vielzahl von
anderen Algorithmen, die mit der Korrektur von einem oder mehreren der
in der Abbildung 1.11 aufgelisteten Turbulenzeffekte befasst sind. Aufgrund
der großen Fülle an existierenden Verfahren zur Turbulenzkorrektur, die
sich in der Literatur finden lassen, wäre hier eine vollständige Auflistung
kaum möglich und wenig zielführend. Stattdessen wurden einige Korrektur-
ansätze ausgewählt, die für den Themenkomplex in der vorliegenden Arbeit
besonders relevant sind. Jedem dieser Ansätze wurden beispielhaft ein oder
mehrere repräsentative Verfahren zugeordnet und ggfs. eingehender disku-
tiert.

1 Quelle: R. J. Mathar, CC BY-SA 3.0, via Wikimedia Commons https://commons.
wikimedia.org/wiki/File:Zernike_polynomials3.pdf

https://commons.wikimedia.org/wiki/File:Zernike_polynomials3.pdf
https://commons.wikimedia.org/wiki/File:Zernike_polynomials3.pdf
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2.2.1 “Speckle Interferometry”
Statt von “Speckle”-Interferometrie (SI) spricht man oft auch von “Speck-
le Imaging”, wobei es sich um ein hochauflösendes Bildgebungsverfahren
handelt. SI geht auf Arbeiten des französischen Astronoms Antoine Labeyrie
von 1970 zurück [Lab70] und findet in erster Linie Anwendung in der Astro-
nomie, ebenso wie die Adaptive Optik. Während bei der AO Störungen der
Phase (d. h. der elektrischen Feldstärke) ankommender Wellenfronten mit-
tels geeigneter Sensorik gemessen und kompensiert werden (siehe Abschnitt
2.1), werden bei der SI die Amplitude und die Phase der Fouriertransformier-
ten der Bildintensitätswerte rekonstruiert. Genauer wird die sogenannte
Bispektrum-Methode verwendet, erstmalig beschrieben von Gerd Weigelt in
[Wei75], um Schätzungen für die tatsächliche Phase zu bekommen. Hierbei
wird eine möglichst große Anzahl von Interferogrammen (d. h. von Bildern,
deren Belichtungszeit so kurz ist, dass die Variationen in der atmosphäri-
schen Turbulenz quasi “eingefroren” sind) einer Fourier-Analyse unterzogen
und das durchschnittliche Bispektrum berechnet. Die eigentliche Rekon-
struktion erfolgt dann über dessen Invertierung.
Durch SI kann die Winkelauflösung bodengebundener Teleskope signifikant
erhöht werden. Allerdings ist die Anwendung normalerweise auf helle (und
idealerweise punktförmige) Zielobjekte beschränkt, wodurch der Einsatz
für ausgedehnte Ziele nur mit viel zusätzlichem Aufwand möglich ist und
hohe Rechenleistung erfordert. In der Sonnenphysik ist speziell die Rekon-
struktion ausgedehnter Areale auf der Sonnenoberfläche ein grundlegendes
Forschungsthema (z. B. zur Beobachtung von Sonnenflecken) [Lüh93]. Ver-
fahren wie die Knox-Thompson-Methode [Kno74] und die heute vorwiegend
verwendete Triplekorrelation [Lüh83, Rod86] wurden speziell für die solare
Bilderfassung entwickelt, um die Erstellung photometrisch exakter Karten
der Intensität von kleinmaßstäblichen Strukturen auf der solaren Oberfläche
zu ermöglichen. Mithilfe dieser Techniken können Sichtfelder beliebiger
Größe rekonstruiert werden, sogar wenn diese viel größer sein sollten als der
isoplanatische Patch (siehe Abschnitt 3.3). Die Abbildung 2.3 zeigt am Bei-
spiel eines Sonnenfleckens auf der solaren Oberfläche ein Korrekturergebnis
der Triplekorrelationsmethode.
Für die Punktziel-Problematik gibt es eine relativ gut funktionierende Lö-
sungsmethode, die speziell in der solaren Astronomie seit ca. 1985 im Ein-
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Abbildung 2.3: Beispielrekonstruktion eines Sonnenfleckens mittels Triple-
korrelation.2

satz ist. Diese besteht darin, dass große Bilder in kleinere Kacheln unterteilt
werden, die jeweils einzeln korrigiert werden. Anschließend werden sie wie-
der zusammengefügt und die Übergänge zwischen den Kacheln mithilfe
von Hamming-Windows überblendet. Diese Methode wurde insbesondere
von Carmen Carrano (LLNL, USA) für horizontale Bilderfassung eingesetzt
[Car02]. Eine entsprechende Implementierung der Firma EM Photonics auf
FPGAs [Cur09] kann unter optimalen Bedingungen sogar eine Korrektur in
Echtzeit durchführen (abgesehen von einem zeitlichen Delay am Anfang).

2.2.2 “Lucky Imaging”
Bei dem “Lucky Imaging” (LI) Prinzip wird ausgenutzt, dass die Bildqualität
im Verlauf einer Sequenz lokal variiert aufgrund von lokalen Schwankungen
im Brechungsindex der Atmosphäre. Es besteht sogar die Chance, dass die
turbulenten Luftschichten das einfallende Licht vom Zielobjekt stellenweise
so gut fokussieren wie es im Idealfall ohne Turbulenz möglich wäre. Einzelne
Bildregionen können also kurzzeitig nur geringfügig bis gar nicht durch

2 Quelle: Bildmaterial freundlicherweise von Prof. O. v. d. Lühe vom Leibniz-Institut für
Sonnenphysik (KIS) zur Verfügung gestellt.
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Turbulenz beeinträchtigt sein. Die Wahrscheinlichkeit dafür, dass dieser Fall
eintritt, lässt sich gemäß [Fri78] statistisch bestimmen.
Um diese “Glücksfälle” nutzen zu können, wo und wann immer sie auftreten,
wird eine Art Qualitätskarte zur Bewertung der lokalen Bildqualität für die
Einzelbilder einer Sequenz benötigt. Hierzu können geeignete Qualitätsme-
triken (“Image Quality Metrics”, IQM) verwendet werden (s. a. Abschnitt 7.1).
Anhand dessen können die jeweils besten Bildregionen (innerhalb eines
gegebenen Zeitraums) identifiziert und zu einem neuen, stabilisierten Bild
zusammengesetzt werden. Auf diese Weise kann unter besonders günstigen
Bedingungen (und mit entsprechend qualitativ hochwertiger Optik) sogar
ein Verbesserungsgrad nahe dem Diffraktionslimit erreicht werden. Ange-
sichts der synthetischen Konstruktionsweise wird diese Technik häufig auch
als “Lucky Region Fusion” oder “Synthetic Imaging” bezeichnet.
Die Abbildung 2.4 zeigt ein Beispiel für eine “Lucky Imaging”-Korrektur
gemäß dem in [Aub08] beschriebenen Ansatz, welcher z. T. auf den Arbeiten
in [Joh03] beruht. Die Bewegungsartefakte im unteren Bildbereich stammen
von einem Vogel, der durch das Bild fliegt. Dies geschieht aufgrund der
neuen Information, die gleich in mehreren Einzelbildern hintereinander an
unterschiedlichen Stellen auftaucht. Dadurch wird dem Algorithmus sug-
geriert, dass sich dort etwas qualitativ Hochwertiges befindet, das erhalten
werden muss. Daran lässt sich gleich die Haupt-Problematik dieser Methode
erkennen: sie ist nicht (bzw. nicht ohne zusätzliche Maßnahmen) für Szenen
geeignet, die bewegte Objekte enthalten. Überdies ist im vorliegenden Fall
keine echte Verbesserung gegenüber dem besten Einzelbild der Sequenz er-
kennbar, auch nicht in den Bildregionen ohne Einwirkung von Störobjekten.
Ob die Methode letzten Endes zu einer Bildverbesserung führt, kann also
tatsächlich “Glücksache” sein.

2.2.3 Bildbewegung - Bildstabilisierung
Anwendungen von Turbulenzkorrekturverfahren sind überwiegend an ei-
nem ganzheitlichen Lösungsansatz interessiert. Das heißt, idealerweise soll
eine Korrektur sämtlicher Turbulenzeffekte durchgeführt und eine optimale

3 Quelle: M. Vorontsov, G. Carhart
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Abbildung 2.4: “Synthetic Imaging”-Korrektur einer Beispielsequenz. Links:
Mittelwert von 930 Frames, Mitte: bester Frame, rechts: Korrekturergebnis
mit Bewegungsartefakten.3

Verbesserung des Eingangsbildes erzielt werden. Spezialisierte Algorithmen
priorisieren allerdings häufig die Korrektur ganz bestimmter Turbulenzef-
fekte (ohne zwangsläufig darauf beschränkt zu sein). Beispielsweise gibt es
Verfahren, die in erster Linie auf eine Bildstabilisierung von Videos setzen
wie z. B. beschrieben in den Arbeiten von Li [Li09] und Yifei et al. [Lou13]. Zur
Videostabilisierung wird häufig eine zeitliche Glättung der Pixelintensitäten
eingesetzt, sowie insbesondere auch der CARES-Algorithmus4 von G. Pot-
vin (DRDC, Kanada) [Pot14]. Speziell bei diesem Algorithmus wird sowohl
eine zeitliche als auch eine räumliche Filterung durchgeführt. Dazu wer-
den die zeitlichen Intensitätsfluktuationen der einzelnen Pixel über einen
vorgegebenen Zeitraum analysiert (unter Verwendung eines Bildpuffers).
Hinreichend große Intensitätsänderungen, deren Dauer eine vorgegebene
Grenze nicht überschreitet, werden als Bewegung erkannt und beibehalten,
während kleine Fluktuationen mittels Tiefpassfilterung geglättet werden.
Genauer wird eine Zerlegung des Eingangsbild unter Verwendung einer
Laplace-Pyramide vorgenommen in mehrere Tiefpass- und Hochpass-, so-
wie auch Bandpass-Komponenten, deren Gesamtsumme wiederum das
Eingangsbild ergibt. Zuvor werden auf die jeweiligen Komponenten noch
unterschiedliche auto-regressive exponentielle Glättungsfilter (ARES-Filter)

4 CARES: “Cascaded Auto-Regressive Exponential Smoothing”
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angewendet. Das Ergebnis der folgenden Aufsummierung wird abschlie-
ßend wieder mit einem Schärfungsfilter behandelt.
Der CARES-Algorithmus überzeugt durchaus bei der Bildstabilisierung von
Video-Streams, ohne Zusatzmaßnahmen kann er jedoch trotz Schärfungsfil-
ter keine völlig zufriedenstellende Bildqualität erzielen. Daher bietet sich
hierfür z. B. ein nachträgliches Deblurring der einzelnen Ausgabebilder an.
Die Abbildung 2.5 zeigt am Beispiel der “China Lake”-Testsequenz (für De-
tails siehe Abschnitt 6.1.1), wie sehr der CARES-Algorithmus mit Standar-
deinstellungen (Mitte) von einer zusätzlichen blinden Entfaltung (rechts)
profitieren kann. Hier wurde dazu der WIBD-Algorithmus aus Abschnitt 6.6
verwendet. Insbesondere lässt die Mustertafel im Hintergrund erkennen,
dass die Bildverformungen bei so starker Turbulenz, wie sie in der Sequenz
vorliegt, nur unzureichend abgemildert werden können. Dazu sollte noch
erwähnt werden, dass diese Methode für die zeitliche Analyse der Pixelin-
tensitäten eine Bildpufferung einsetzt, aufgrund derer sich für das Ausga-
bevideo ein Delay (d. h. eine zeitliche Verzögerung) von einer halben Puf-
ferlänge ergibt. Für anisoplanatische Turbulenzbedingungen müsste dieser
Puffer gegenüber der Standardgröße deutlich vergrößert werden, um eine
hinreichende Glättung zu erzielen. Allerdings hätte dies wiederum eine uner-
wünschte Verstärkung der Unschärfe zur Folge, verbunden mit potenziellem
Detailverlust.
Des Weiteren wird das Thema “Bewegungskompensation” mit Hinblick
auf die Korrektur turbulenzbedingter Bildbewegungen auch eingehend in
Kapitel 4 behandelt.

2.2.4 Bildverzerrung - Bewegungskompensation
In weiteren Verfahren geht es vornehmlich um eine Korrektur geometri-
scher Bildverzerrungen wie z. B. in dem Artikel von Fraser et al. [Fra06] oder
Anantrasirichai et al. [Ana13], sowie Furhad et al. [Fur16].
Dabei besteht eine gewisse Verwandtschaft zu den Methoden zur Bildsta-
bilisierung, denn eine geschickte Bewegungskompensation (global, sowie
lokal) stellt nicht nur eine Möglichkeit zur Reduktion geometrischer Bildde-
formierungen dar, sondern hat durchaus auch eine stabilisierende Wirkung.
Neben klassischen pixelbasierten Algorithmen zur Bewegungsschätzung
(und Bewegungskompensation) so wie “Block Matching” oder der “Opti-
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Abbildung 2.5: Beispielergebnis des CARES-Algorithmus. Links: Original-
frame; Mitte: CARES-Korrekturergebnis; rechts: mit zusätzlicher blinder
Entfaltung (mittels WIBD).

sche Fluss” existieren noch weitere Möglichkeiten für eine effektive (lokale)
Bildregistrierung. Beispielsweise kann eine Kreuzkorrelation zur Bildregis-
trierung eingesetzt werden oder auch eine nicht-rigide Bildregistrierung
unter Verwendung von “B-Splines” (unter zusätzlichen Symmetrievorgaben)
wie in dem Ansatz von Zhu und Milanfar [Zhu13] vorgeschlagen wird.
Ein nicht unwesentliches Problem der meisten dieser bewegungskompen-
sierenden Verfahren besteht allerdings in der Frage nach einem geeigne-
ten Referenzbild, welches sinnvollerweise als Grundlage für jede Art von
Bildregistrierung dienen kann. Selektiert man ein beliebiges Einzelbild ei-
ner Sequenz, wird dieses Bild ebenfalls turbulenzbedingte Verformungen
aufweisen. Verwendet man stattdessen einen Mittelwert, werden solche
Bildverzerrungen zwar reduziert, zugleich erhöht sich aber der Unschärfe-
grad, wodurch wiederum die Registrierung erschwert wird. Von Furhad et
al. [Fur16] (UNSW, Australien) wird deshalb ein Lösungsansatz vorgeschla-
gen, bei dem ein geeignetes Referenzbild nach dem “Lucky Shot”-Prinzip
konstruiert wird. Hierzu wird erst die Bildschärfe der einzelnen Frames über
eine Summierung der hohen Frequenzanteile des Bildes ermittelt. Dazu
ließen sich allerdings auch andere Metriken verwenden, die den Schärfe-
bzw. Unschärfegrad eines Bildes hinreichend gut quantisieren können, wie
z. B. die “Blur”-Metrik von Dolmiere et al. [Dol07] (s. a. Abschnitt 7.1.3), die
zudem den Vorteil hat, dass die Werte auf das Intervall [0,1] normiert sind.
Anhand ihres jeweiligen Schärfegrades werden die Frames unter Verwen-
dung einer “k-Means” Clusteranalyse in Kategorien mit unterschiedlichem
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Schärfegrad eingeteilt (k = 3). Aus den beiden Gruppen mit mittlerer und
bester Bildschärfe werden mittels “Lucky Imaging”-Verfahren die “besten”
Bildregionen ausgewählt und fusioniert, wobei die Teilmenge mit dem ge-
ringsten Schärfegrad nicht berücksichtigt wird. Mit dem Fusionsergebnis als
Referenz wird daraufhin eine lokale Bildregistrierung der gesamten Bildse-
quenz durchgeführt (gemäß [Zhu13]) mit abschließender blinder Entfaltung
wie es bei der Mehrzahl von Turbulenzkorrekturverfahren der Fall ist.
Dieser Ansatz hat den Nachteil, dass eine Bildsequenz erst vollständig analy-
siert wird, bevor eine Ausgabe erzeugt wird. Das bedeutet, dass er zunächst
nicht für Echtzeitanwendungen geeignet ist. Denkbar wäre allerdings die
Verwendung eines Bildpuffers, so dass es im Idealfall nur eine Verzögerung
gäbe, die der Pufferlänge entspricht. Das würde aber voraussetzen, dass der
Rechenaufwand die Kapazitäten moderner Systeme nicht übersteigt.
Auch der Ansatz von Anantrasirichai et al. [Ana13] verwendet eine Art von
“Lucky Imaging”, wobei hier eine “Dual Tree” komplexe Wavelet-Transfor-
mation (DT-CWT) eingesetzt wird, um eine rekursive Fusion auf Merkmal-
sebene statt auf Pixelebene durchzuführen und so auch semantische Fu-
sionsregeln berücksichtigen zu können. Die DT-CWT verwendet zwei ver-
schiedene (reelle) diskrete Wavelet-Transformationen (DWT), eine für den
Realteil und die andere für den Imaginärteil der CWT. Von Vorteil ist hier
zum einen, dass die Phase von DT-CWT-Koeffizienten gegenüber zeitlichen
Intensitätsschwankungen, sowie auch Rauschen relativ robust ist, und zum
anderen, dass sie nahezu invariant gegenüber Verschiebungen ist. Letztlich
wird dadurch eine Glättung der zeitlichen Intensitätsschwankungen für jede
Pixelspalte erreicht. Statt blinder Entfaltung zum Abschluss wird hier jedoch
nur eine Kontrastverbesserung mittels adaptivem Histogrammausgleich
durchgeführt (unter Verwendung des CLAHE-Algorithmus von Zuiderveld
[Zui94]). Die Fusionsergebnisse sind etwas schärfer als es bei Verfahren
mit einer Form von Bildmittelung typischerweise der Fall ist. Diese Art der
Fusion kann auch auf bewegte Objekte angewendet werden, dazu müsste al-
lerdings zuvor eine Segmentierung der bewegten Objekte und des statischen
Hintergrunds vorgenommen werden.
Die Problematik eines geeigneten Referenzbildes wird im Übrigen auch in
Kapitel 4 behandelt und wird noch einmal im Abschnitt 6.5.1 in Kapitel 6
aufgegriffen. Beschreibungen eigener Methoden zur lokalen Bewegungs-
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kompensation sind darüber hinaus in [Hue09], sowie insbesondere im Ab-
schnitt 6.5 zu finden.

2.2.5 Bildunschärfe - Entfaltung
Andere Verfahren konzentrieren sich wiederum besonders auf eine Schät-
zung und Reduktion der Unschärfe wie es z. B. in den Arbeiten von Yitzhaky
et al. der Fall ist ([Yit97a],[Yit98]), sowie auch in Greco et al. [Gre08].
Für diese Korrekturaufgabe bieten sich insbesondere Algorithmen zur (blin-
den) Entfaltung an, u. U. in Verbindung mit einer Schätzmethode für die
atmosphärische Filterfunktion wie z. B. von Molina et al. [MM15] für ani-
soplanatische Bedingungen beschrieben. In diesem Ansatz wird zunächst
die Turbulenzstärke (d. h. die Kohärenzlänge r0, siehe Abschnitt 3.3.2) direkt
aus einer Bildsequenz geschätzt anhand der “Angle of Arrival” Varianzen.
Mithilfe der Kohärenzlänge lässt sich eine statistische PSF konstruieren, die
anschließend zur Entfaltung verwendet wird. Die verwendete Schätzmetho-
de für r0 folgt dem von Gladysz et al. beschriebenen Verfahren [Gla13], das
auf den Arbeiten von Beaumont et al. [Bea98], sowie von Zamek und Yitz-
haky [Zam06] aufbaut. Aber auch neuere Ansätze wie z. B. der von McCrae
et al. [McC17] basieren in der Regel auf einer ähnlichen Grundidee.
Einen allgemeinen Überblick über klassische Entfaltungsalgorithmen geben
z. B. Kundur und Hatzinakos in [Kun96b] sowie Chaudhuri et al. in ihrem
Buchkapitel [Cha14]. Levin et al. haben ihren Fokus in [Lev09] speziell auf
etwas neuere Entfaltungsalgorithmen gelegt, die sie anhand der jeweiligen
Rekonstruktionsergebnisse für künstlich erzeugte Bildstörungen evaluieren.
Bei den Testdaten handelte es sich ausschließlich um Simulationen von
Kamerabewegungen, die sich global auf das gesamte Bild auswirken, so wie
sie z. B. im Fall einer handgehaltenen Kamera auftreten können. Über die
Leistungsfähigkeit der einzelnen Algorithmen unter realen Turbulenzbedin-
gungen kann entsprechend keine schlüssige Aussage getroffen werden. Bei
der Schätzung von Kamerabewegungen in Einzelbildern vermochte speziell
der Algorithmus von Fergus et al. aus [Fer06] zu überzeugen. Ob sich dieser
Erfolg ohne Weiteres auch auf turbulenzgestörte Daten übertragen ließe,
darf hingegen angezweifelt werden. Zum einen sorgen turbulenzbedingte
lokale Bildbewegungen nicht nur für eine zeitliche, sondern auch für eine
räumlich veränderliche Filterfunktion, und zum anderen werden durch den
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Tiefpassfilter-Effekt der Atmosphäre höherfrequente Signalanteile entfernt
(d. h. kleine Details), die für die Funktionsweise dieser Methode benötigt
werden. Es ist bedeutend leichter ein im Grunde genommen scharfes Bild
zu rekonstruieren, das global mit einer einzigen PSF gefiltert wurde, als ei-
nes, das bereits eine gewisse Grundunschärfe aufweist und mit einer lokal
variablen Filterfunktion gefiltert wurde.
Während in der Mehrheit vergleichbarer Ansätze eine räumliche Invarianz
der atmosphärischen Filterfunktion angenommen wird, wird in dem An-
satz von Hirsch et al. [Hir10] neben der zeitlichen Variabilität über mehrere
Bilder einer Sequenz speziell auch die räumliche Veränderlichkeit mitbe-
rücksichtigt. Zwar liegen die potenziellen Vorteile dieser Herangehensweise
auf der Hand, das gilt allerdings auch für die Nachteile. Statt einer einzi-
gen Filterfunktion pro Bild müsste hier für jedes Teilbild eine eigene Filter-
funktion geschätzt werden, im schlimmsten Fall sogar für jedes einzelne
Pixel (zzgl. einer Umgebung). Dabei wächst der Rechenaufwand mit der
Bildgröße und Framerate, was u. U. extrem viel Rechenzeit in Anspruch neh-
men kann. Ohnehin ist die Annahme räumlicher Invarianz für diverse Fälle
durchaus zutreffend, wie z. B. in isoplanatischen Turbulenzbedingungen
(s. a. Abschnitt 3.3). Zudem kann auch in anisoplanatischen Bedingungen
eine räumliche Invarianz ggfs. (näherungsweise) künstlich erzeugt werden,
z. B. über eine intelligente Bildmittelung und/oder mithilfe lokaler Bildregis-
trierungstechniken. Alternativ wird von Dudorov und Eremina in [Dud18]
die Verwendung eines Multi-Apertur-Systems vorgeschlagen, wobei der-
artige Systeme bislang höchstens als Spezialanfertigungen erhältlich sind.
Daher wird mithilfe einer Simulation gezeigt, dass sich aus den kleinen Teil-
bildern, die von den Subaperturen erfasst werden, ein großes Gesamtbild
zusammensetzen lässt, das selbst ebenfalls isoplanatisch ist. Um dies zu
erreichen, sollten die einzelnen Subaperturen aber nicht größer als die Kohä-
renzlänge r0 sein (s. a. Abschnitt 3.3.2). Die synthetische Zusammensetzung
der Teilbilder zu einem Gesamtbild erfolgt nach dem gleichen Prinzip wie
die Bildformierung bei einer Lichtfeldkamera mit einer Multi-Linsen-Optik,
wenn auch in etwas vereinfachter Form, da die 3-D Informationen nicht
berücksichtigt werden ([Ng06]). Das Potenzial zur Bildverbesserung mithilfe
dieser Art der Aufnahmetechnik ist unbestreitbar. Ob sie sich in absehba-
rer Zukunft jedoch für horizontale Bilderfassung durchzusetzen vermag,
bleibt abzuwarten. An dieser Stelle ist anzumerken, dass es sich bei vielen
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“neuen” Entfaltungsalgorithmen vor allem um Weiterentwicklungen oder
Optimierungen bewährter Verfahren handelt. Insbesondere werden häufig
Regularisierungen zur Problemlösung eingesetzt.
An dieser Stelle sei für eine weiterführende Behandlung des Themas auf das
Kapitel 5 verwiesen, das sich schwerpunktmäßig mit der Beschreibung und
Evaluierung von Entfaltungsalgorithmen bei atmosphärischer Turbulenz
befasst.

2.2.6 Objektbewegung - Detektion und Tracking
Zu den bisherigen Verfahren kommen weitere, deren Fokus insbesonde-
re auf Szenen mit bewegten Objekten liegt wie z. B. in Carrano und Brase
[Car04] oder in [Pao14], sowie in diversen Publikationen des TNO (Nieder-
lande), darunter z. B. Dijk et al. [Dij16], sowie Nieuwenhuizen et al. [Nie19].
Im Großen und Ganzen ist die Literatur rund um das Thema Objektbewe-
gung und Turbulenz dennoch als vergleichsweise spärlich zu bezeichnen,
und erst in der jüngeren Vergangenheit ist das wissenschaftliche Interes-
se an diesem Themenkomplex enorm angestiegen. Es sollte deshalb nicht
unerwähnt bleiben, dass eigene Arbeiten durchaus mit zu den ersten Veröf-
fentlichungen auf diesem Gebiet gehören, vor allem [Hue11] und [Hue12a],
insbesondere aber auch [Hue16].
Bei [Car04] handelt es sich lediglich um eine Erweiterung des “Speckle
Imaging”-Verfahrens für ausgedehnte Objekte bei horizontalem Ausbrei-
tungsweg in [Car02], um auch bewegte Objekte berücksichtigen zu können.
Bei dem originalen SI-Verfahren werden für ein Ausgabebild u. a. jeweils
ca. 100 Kurzzeitbelichtungen registriert und gemittelt. Dabei sollten die
Aufnahmen über einen Zeitraum von mindestens einer Sekunde verteilt
erfolgen mit einer Belichtungszeit im Millisekundenbereich, so dass die
atmosphärischen Störungen weitgehend unkorreliert sind, während die
Turbulenz in den Einzelbildern zugleich quasi “eingefroren” ist. Entspre-
chend bedeutet jede zusätzliche Bewegung auch eine Verstärkung der (Bewe-
gungs-)Unschärfe im Ergebnis der Bildmittelung. Aus diesem Grund funk-
tioniert die vorgeschlagene Anpassung auch nur für bewegte Objekte (z. B.
Fahrzeuge), die mithilfe einer (manuellen) Nachführung der Kameraoptik
vergleichsweise statisch und mittig im Bild gehalten werden, während sich
stattdessen der Hintergrund zu bewegen scheint.
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Die eigentliche Modifikation besteht darin, dass der ursprüngliche Algorith-
mus nur auf einen kleinen rechteckigen Bildausschnitt mit dem betreffen-
den Objekt angewendet wird (wobei die eigentliche Segmentierung vom
Hintergrund über ein Gauß-Fenster erfolgt), anstelle des gesamten (geka-
chelten) Bildes wie zuvor. Das Ergebnis wird anschließend zurück in die Roh-
daten eingeblendet, wobei die Überblendung wie beim Hauptalgorithmus
wieder unter Verwendung von Hamming-Fenstern erfolgt. Es überrascht
demnach nicht, dass sich diese Methode besonders gut in Verbindung mit
dem Tracking von Flugkörpern u. Ä. eignet, wobei der Hintergrund in der
Regel ohnehin sehr homogen ist und sich nur wenig verändert.
In [Pao14], sowie auch in [Kel17] liegt der Fokus auf Lösungsansätzen für
drei verschiedene Bewegungsszenarios (s. a. Abschnitt 4.1) im Zusammen-
hang mit einer Echtzeit-Implementierung dieses SI-Verfahrens (unter der
Bezeichnung ATCOM). Für Kameraschwenks wird z. B. eine dynamische
Aktualisierung des Mittelwerts vorgeschlagen, während Tracking mit einem
gleitenden ROI für Szenarien mit Flugkörpern oder Fahrzeugen (wie zuvor
beschrieben) vorgeschlagen wird. Für komplexere Szenarien mit strukturier-
ten Hintergründen und nicht-linearen Bewegungsmustern (z. B. Personen)
wird zusätzlich ein mehrstufiges Prädiktionssystem zur Detektion von echter
Objektbewegung zur Unterscheidung von turbulenzbedingter Bewegung
vorgeschlagen. Genauer wird aus dem Verlauf vergangener Frames unter
Verwendung einer Hauptkomponentenanalyse extrapoliert wie der nach-
folgende Frame aller Wahrscheinlichkeit nach aussehen wird. Besonders
große Abweichungen von dieser Vorhersage werden als Objektbewegung
gekennzeichnet.
Eine objektive Beurteilung dieser Lösungsvorschläge wird dadurch erschwert,
dass die Autoren weitgehend auf die Angabe spezifischer Details verzich-
tet haben, wahrscheinlich aus proprietären Gründen. So wird auch bzgl.
des eingesetzten Tracking keine spezielle Methode genannt, sondern nur
auf eine Übersicht verschiedener Tracking-Verfahren verwiesen in [Yil06].
In diesem Zusammenhang ist der Artikel von Chen et al. [Che14] deutlich
informativer, da es dort ganz konkret um die Detektion und das Tracking
von bewegten Objekten unter Turbulenzbedingungen geht, speziell in einer
Entfernung von mehreren Kilometern. Ein Ergebnisvergleich verschiedener
Methoden macht deutlich, wie sehr die Leistungsfähigkeit selbst der besten
unter den getesteten Algorithmen beeinträchtigt wird, wenn die Turbulenz-
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stärke zunimmt und damit auch die Turbulenzeffekte.
Bei den am TNO entwickelten Korrekturverfahren hingegen liegt ein beson-
derer Fokus auf maritimen Anwendungen, nicht zuletzt aufgrund seiner
geographischen Nähe zur Küste. Unter anderem wurde dort ein Software-
System zur Bildrekonstruktion für die Fernerkundung bei moderater Turbu-
lenz über See entwickelt (je nach Version auch mit Hardware-Komponenten),
um Schiffe in großer Entfernung besser klassifizieren und identifizieren
zu können. An dessen Entwicklung waren u. a. Adam van Eekeren [vE12],
Maarten Kruithof [Kru12], Klamer Schutte [Sch12] und Judith Dijk [Dij16]
maßgeblich beteiligt.
Bei diesem Ansatz wird als erstes eine globale Bildregistrierung durchge-
führt, auf die eine Objekterkennung hinreichend großer Objekte folgt (mind.
10×10 px). Für jedes detektierte Objekt wird ein ROI definiert, dessen Spur in
Relation zum Hintergrund verfolgt wird, während die Bewegung innerhalb
des ROIs kompensiert wird. Dabei ist anzumerken, dass für das Tracking
auch Auf- und Abwärtsbewegungen der Schiffe, sowie seitliche Neigungen
(d. h. Teilrotationen) aufgrund des Wellengangs berücksichtigt werden. Ähn-
lich wie auch bei der Modifikation des SI-Algorithmus in [Car04] erfolgt die
eigentliche Turbulenzkorrektur, bezeichnet als “Dynamic Superresolution”
(DSR) [Sch03], nur auf den ROIs. Dabei handelt es sich im Wesentlichen um
eine lokale Bildregistrierung und Rauschreduktion in Verbindung mit einem
Schärfungsfilter und einer adaptiven Kontrastverbesserung. Die Auswahl
(und Parametereinstellungen) der tatsächlich durchzuführenden Korrektur-
schritte ist aber letztlich abhängig von der Qualität der Eingabedaten und
den Randbedingungen bei der Aufnahme. Bei besonders geringem Kontrast
und starkem Rauschen kann die Bildregistrierung z. B. nicht mehr sinnvoll
durchgeführt werden, so dass nur eine Rauschreduktion mit nachfolgender
Kontrastverstärkung durchgeführt wird.
Dieses Software-System wird im Übrigen permanent überarbeitet und er-
weitert, wie z. B. in [Nie19] durch eine ähnliche Bildstabilisierung wie beim
CARES-Algorithmus. Dort wird die Bewegung zwischen den einzelnen Fra-
mes mithilfe des Algorithmus von Lucas und Kanade [Luc81] zur Bestim-
mung des Optischen Flusses pixelgenau bestimmt. Dann wird ein einfacher
zeitlicher autoregressiver Filter verwendet, der so eingestellt ist, dass er auch
Objektbewegung erkennen und berücksichtigen kann.
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Auf diesem Themenbereich liegt ein besonderer Schwerpunkt in dieser
Arbeit, daher sei für eine weiterführende Diskussion dieser Problematik
insbesondere auf den Abschnitt 4.1, sowie auch auf den Abschnitt 6.4.4
verwiesen.

2.2.7 “Superresolution”
Der Begriff “Superresolution” taucht sehr häufig in Verbindung mit Algo-
rithmen zur Bildverbesserung und Rekonstruktion auf. Eine diesbezügliche
Evaluierung verschiedener Superresolution-Algorithmen hinsichtlich ihrer
Leistungsfähigkeit bei realen Bilddaten ist z. B. in [vE07] gegeben.
Es hat sich gezeigt, dass sich nur vergleichsweise selten eine echte Erhöhung
der Bildauflösung erzielen lässt, falls die Bildqualität der Eingabedaten zu
stark durch Turbulenzeffekte beeinträchtigt ist. Deshalb wird unter derarti-
gen Turbulenzbedingungen z. B. bei der zuvor erwähnten DSR-Bildkorrektur
des TNO [Sch03] auf den Versuch einer solchen Auflösungsverbesserung
sogar verzichtet.
Bei geringer bis moderater Turbulenz können hingegen Algorithmen wie das
Verfahren von Kruithof et al. [Kru12] überzeugen, welches ganz speziell auf
die Erkennung und Rekonstruktion von Schriftzügen zugeschnitten ist, wie
z. B. von Schiffskennungen oder Nummernschildern. Dabei wird ausgenutzt,
dass der Hintergrund eines Schildes normalerweise unifarben ist und sich
der zugehörige Bildausschnitt als dünn besetzte Matrix interpretieren lässt.
Die Rekonstruktion von Schriftzügen erfolgt hier unter Verwendung einer
hinreichend großen Bibliothek von simulierten Templates, die für Buch-
staben (und ggfs. Zahlen) typische Teilstrukturen enthalten. Dabei ist zu
beachten, dass dieses Verfahren nicht auf beliebige Bildinhalte anwendbar
ist. Bereits für unterschiedliche Arten von Schildern (z. B. bei Kursivschrift)
können verschiedene Template-Bibliotheken erforderlich sein.
In dem Ansatz von Andrew Lambert et al. [Lam02] (UNSW, Australien) wird
wiederum postuliert, dass “Superresolution” nur unter anisoplanatischen
Bedingungen möglich ist, d. h. falls eine positionsabhängig veränderliche
PSF der Atmosphäre vorliegt. Aufgrund von Turbulenz werden einige Fre-
quenzanteile des abgebildeten Objekts so stark abgelenkt, das sie nicht mehr
von der verwendeten Optik aufgenommen werden. Die Idee besteht darin,
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diese Frequenzanteile unter Ausnutzung Fresnelscher Diffraktionseffekte
wiederherzustellen.
Dabei sollte angemerkt werden, dass es bei diesem Ansatz nicht um “Super-
resolution” durch analytische oder nicht-lineare Extrapolation geht, son-
dern um eine aktive Veränderung des optischen Systems, vergleichbar mit
der Verschiebung von einem Gitterraster. Zwar wird durchaus ein gewisses
Potenzial bzgl. einer Erhöhung der Auflösung angedeutet, aber ein funktio-
nelles “Superresolution”-Verfahren für atmosphärische Turbulenz konnte
dort nicht demonstriert werden.
In der Theorie klingt “Superresolution” sehr vielversprechend und tatsäch-
lich lässt sich mithilfe solcher Algorithmen eine signifikante Bildverbesse-
rung mit echter Erhöhung der Bildauflösung erreichen, sofern nur geringe
oder gar keine Turbulenz vorliegt. Für die im Rahmen dieser Arbeit bevor-
zugt betrachteten Anwendungsfälle von moderater bis sehr starker Turbu-
lenz sind derartige Ansätze hingegen weniger gut geeignet, weshalb sie bei
der Konzeption eigener Verfahren auch nicht speziell berücksichtigt wurden.
Für die Diskussion in Kapitel 7 gilt diese Einschränkung allerdings nicht,
hier sind prinzipiell alle Arten von Verfahren zugelassen.

2.2.8 “Deep Learning”
Verfahren, in denen eine “Deep Learning”-Architektur mit künstlichen neu-
ronalen Netzen (insbesondere CNNs) eingesetzt werden, haben sich in den
letzten Jahren in nahezu allen wissenschaftlichen Forschungsgebieten ra-
sant ausgebreitet. Diese Art von Verfahren entstammt einem Teilgebiet des
Maschinellen Lernens und stützt sich vor allem auf umfangreiche Mengen an
Trainingsdaten. Am besten sind sie zur Erkennung und / oder Klassifikation
von Objekten geeignet, die denen möglichst ähnlich sind, auf die sie gezielt
trainiert wurden.
Eine sehr beliebte Anwendung für “Deep Learning” ist die Erkennung von
Gesichtern. Gleichzeitig gibt es inzwischen auch entsprechende Verfahren
zur Bildrekonstruktion und Bildverbesserung. Der Ansatz von Yasarla und
Patel [Yas20] ist z. B. speziell auf die Rekonstruktion von Gesichtern bei Bild-
beeinträchtigungen aufgrund von (milder) Turbulenz ausgelegt. Dadurch
werden diese beiden Anwendungsbereiche sowohl miteinander als auch mit
der Turbulenzthematik verbunden.
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Das Kernprinzip derartiger Verfahren ist im Grunde genommen immer das
Gleiche, allerdings muss die verwendete Architektur jeweils individuell an
die vorliegende Anwendung angepasst werden. Insbesondere ließe sich
sehr wahrscheinlich auch das “Superresolution”-Verfahren in [Kru12] zur
Erkennung von Schriftzügen mithilfe einer passenden “Deep Learning”-
Architektur umsetzen.
Da die möglichen Einsatzbereiche für solche Algorithmen sehr weit gefä-
chert sind, werden entsprechend unterschiedliche Architekturen benötigt.
Welche Art von “Deep Learning”-Architektur sich besonders gut für die
Rekonstruktion turbulenzgestörter Bilddaten bei langen Ausbreitungswe-
gen eignet, wird z. B. in dem Artikel von Vint et al. [Vin20] behandelt. Dort
werden die Rekonstruktionsergebnisse für die Implementierungen meh-
rerer unterschiedlicher Architekturen miteinander verglichen, wobei stets
dieselben (simulierten) Trainingsdaten verwendet wurden. Rekonstruiert
wurden hier in erster Linie Bilddaten mit simulierter Turbulenz, um die Qua-
lität und Korrektheit der Rekonstruktionsergebnisse mithilfe der “Ground
Truth” evaluieren zu können. Dieselben Architekturen wurden aber auch an
Bildmaterial mit realen Turbulenzbeeinträchtigungen getestet.
“Deep Learning”-Verfahren lassen sich im Zusammenhang mit dem The-
menkomplex “Turbulenz” nicht nur für die Rekonstruktion von Bilddaten,
sondern auch anderweitig zur Charakterisierung von Turbulenz einsetzen.
Von Vorontsov et al. [Vor20] wird “Deep Learning” beispielsweise zur Vorher-
sage des Strukturparameters der Fluktuationen des atmosphärischen Bre-
chungsindex bei Turbulenz (d. h. C 2

n) verwendet. Als Trainingsdaten dienen
hier zahlreiche Kurzzeitaufnahmen von Laserstrahlprofilen mit turbulenz-
bedingter Szintillation, sowie die zugehörigen C 2

n-Messwerte.
Auf den ersten Blick erscheint “Deep Learning” fast wie eine Art Wunderlö-
sung. Dennoch gibt es einige Gründe, weshalb derartige Verfahren für die
vorliegende Arbeit nicht näher in Betracht gezogen wurden. Beispielsweise
ist das “Black Box”-Prinzip von “Deep Learning”-Verfahren etwas kritisch
zu sehen, da Rekonstruktionsergebnisse zwar optisch plausibel aussehen
mögen, zugleich aber nicht verifizierbar ist, ob sie tatsächlich auch der Rea-
lität entsprechen. Insbesondere muss alles, was später rekonstruiert werden
soll, zuvor entsprechend erst antrainiert werden. Dadurch besteht ein Risiko,
dass Objekte falsch erkannt werden, weil sie z. B. gar nicht in den Trainings-
daten vorkommen, oder weil sie mit sehr ähnlichen Objekten verwechselt
wurden.
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Ein nicht unbeträchtlicher Anteil von Turbulenzkorrekturanwendungen sind
in der Fernerkundung zu finden, darunter nicht wenige im Zusammenhang
mit militärischer Erkundung oder Aufklärung. Entsprechend kommt es hier
weniger darauf an, ob ein Ergebnisbild “gut” aussieht, als vielmehr darauf,
dass die abgebildeten Objekte durch die Rekonstruktion nicht zusätzlich
verfälscht werden. In der Abbildung 2.6 ist z. B. eine Person zu sehen, die ein
Sprechfunkgerät in der Hand hält. Stattdessen könnte es sich jedoch auch
um eine Waffe handeln. Es liegt auf der Hand, dass eine solche Verwechslung
nicht akzeptabel wäre. Das heißt, eine optisch gute, aber faktisch inkorrekte
Rekonstruktion könnte durchaus schlimmer sein als eine schlechtere oder
ggfs. gar keine Rekonstruktion.

Abbildung 2.6: Beispielbild einer Person mit Funkgerät bei starker Turbulenz
(“China Lake”-Testsequenz, Standardturbulenzkorrektur)

Ein zusätzlicher Kritikpunkt ist die Störanfälligkeit dieser Algorithmusklasse
gegenüber sogenannten “Adversarial Attacks”, wobei bereits an Lösungsan-
sätzen hierfür gearbeitet wird (GANs). Insbesondere werden auch bei dem
Verfahren von Gao et al. [Gao19] GANs eingesetzt. Es handelt sich hier in
gewisser Weise um eine Weiterentwicklung von [Ana13], wobei nun “Deep
Learning” mit den zuvor entwickelten Algorithmen verknüpft werden.
Hinzu kommt eine mangelnde Flexibilität bzgl. der Eingabedaten, denn
diese Verfahren sind so stark spezialisiert, dass bereits relativ kleine Än-
derungen der Eingangsdaten die Leistungsfähigkeit des Verfahrens stark
einschränken können. In einem solchen Fall werden geeignete neue (oder
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modifizierte) Trainingsdaten benötigt, mit denen das System entweder zu-
sätzlich oder ggfs. sogar komplett neu trainiert werden muss. Das bedeutet,
dass jedes Mal große Mengen an spezifischen Trainingsdaten benötigt wer-
den, die nur mithilfe entsprechender Simulationen sinnvoll zur Verfügung
gestellt werden könnten. Eine Änderung des verwendeten Spektralbereichs
(z. B. von VIS nach IR) könnte dies u. U. bereits erforderlich machen oder
auch Änderungen am (Bewegungs-)Inhalt der abgebildeten Szene (wie z. B.
Objektbewegung). Selbst eine Verstärkung des Turbulenzgrades in den Ein-
gabedaten kann dies bewirken, falls die Turbulenzeffekte zu sehr von denen
in den (alten) Trainingsdaten abweichen sollten.
Im Übrigen wurden die ersten verhältnismäßig praktikablen Ansätze zur
Turbulenzkorrektur mit “Deep Learning” Unterstützung erst in den letzten
1-2 Jahren veröffentlicht, von denen sich keiner in überzeugender Weise
mit der Problematik bewegter Objekte auseinandersetzt. Zwar wird das
Verfahren in [Gao19] auch an einer Sequenz mit einem Fahrzeug getestet,
aber da sich dieses frontal auf die Kamera zu bewegt, handelt es sich lediglich
um Änderungen in der Größenskalierung.
In dieser Arbeit liegt der Fokus zwar weitgehend auf konventionellen Kor-
rekturverfahren, dennoch sind auch Verfahren, die auf “Deep Learning”
basieren, nicht von der Diskussion in Kapitel 7 ausgeschlossen.

2.3 Hybrid-Ansatz
Ein typischer Hybrid-Ansatz, so wie in [Vor96] oder [Pol99] beschrieben, be-
steht aus einem (hardwarebasierten) AO-System, welches (softwarebasierte)
Qualitätsmetriken verwendet anstelle eines Wellenfrontsensors, um die
Form des deformierbaren Spiegels in einem iterativen Prozess zu optimie-
ren, z. B. mittels SPGD-Algorithmus (“Stochastic Parallel Gradient Descent”)
wie in [Vor97] vorgeschlagen und eingesetzt in [Sch10].
Deutlich verbreiteter sind hingegen klassische AO-Systeme, die zusätzlich
auch eine Software-Korrektur einsetzen, wie beispielsweise ein Deblurring.
Allerdings handelt es sich dabei nicht um Hybrid-Systeme im eigentlichen
Sinne. Unter Umständen ließe sich noch die “Speckle”-Interferometrie bei
den Hybrid-Ansätzen einordnen, da das zugrundeliegende Prinzip einige
Ähnlichkeiten mit dem AO-Prinzip aufweist. Streng genommen handelt es
sich dennoch im Wesentlichen um eine softwarebasierte Methode. Echte
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Hybrid-Systeme sind tatsächlich vergleichsweise selten, weshalb an dieser
Stelle auch nicht näher darauf eingegangen werden soll.

2.4 Diskussion

2.4.1 Hardwarebasierte Ansätze
In der Regel sind Hardware-Systeme mit Adaptiver Optik relativ kosteninten-
siv aufgrund der notwendigen (teuren) optischen Elemente. Überdies sind
sie typischerweise als stationäre Aufbauten konzipiert und verhältnismäßig
unflexibel, sowohl bezüglich ihrer Mobilität als auch im Hinblick auf jede
Parameteränderung, die ggfs. mit umständlichen Änderungen des optischen
Aufbaus verbunden sein kann. Hinzu kommt, dass AO am besten für nahezu
punktförmige oder zumindest relativ klein erscheinende Objekte in großer
Entfernung funktioniert, wie z. B. für Sterne oder Laserstrahlen, weshalb sie
zurzeit sicherlich die erste Wahl für Anwendungen in der Astronomie und
in der Laserkommunikation darstellt. Ideal ist dabei zudem eine möglichst
vertikale Ausrichtung, weil so der Weg durch die turbulente Atmosphäre
minimiert wird.
Obwohl eine Anwendung auf ausgedehnte Objekte nicht unmöglich ist,
werden hierbei dennoch mehr Probleme aufgeworfen als gelöst. So ist bei-
spielsweise jede Korrektur mit Hilfe von AO genau auf das Pixel im Zentrum
des Bildes ausgerichtet, und je größer die Distanz von diesem Zentrum ist,
desto weniger ist die Korrektheit dieser “Korrektur” gewährleistet. Im Ge-
genteil, statt einer Verbesserung kann in den äußeren Regionen hierdurch
sogar eine Verschlechterung bewirkt werden. Zwar gibt es bereits Lösungs-
ansätze für dieses Problem, wie z. B. der Einsatz eines ganzen AO-Arrays,
aber dies führt wiederum zu ähnlichen Apodisationsproblemen wie sie bei
der Bispectrum-Methode (Speckle-Interferometrie) auftreten.
Sollen auch noch Bewegungen im Bild berücksichtigt werden, sei es durch
Objektbewegung oder aufgrund von Kamerabewegungen, werden abermals
neue Probleme aufgeworfen. Das Hauptaugenmerk in dieser Arbeit liegt
jedoch gerade auf der Verbesserung von Bilddaten mit ausgedehnten Ob-
jekten, inklusive der Berücksichtigung möglicher Bewegungen. Angesichts
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der diesbezüglich überwiegenden Nachteile, wurde der Hardware-Ansatz
im Rahmen dieser Arbeit nicht näher in Betracht gezogen.
Für die in Abschnitt 2.3 erwähnten Hybrid-Ansätze gelten im Übrigen die
gleichen Beschränkungen wie für klassische Hardware-Systeme, weshalb
auch diese hier nicht weiter verfolgt wurden.

2.4.2 So�warebasierte Ansätze
Softwarebasierte Korrekturverfahren sind ihrerseits i. A. nicht auf teure Kom-
ponenten angewiesen, wobei der Einsatz von Hochleistungsrechnern oder
spezieller Computer-Hardware wie z. B. GPUs oder FPGAs durchaus mit hö-
heren Kosten verbunden sein kann. Die Hauptvorteile gegenüber Hardware-
Lösungen liegen jedoch nicht nur in den vergleichsweise geringen Materi-
alkosten, die zur Herstellung und Nutzung erforderlich sind, sondern vor
allem in ihrer Flexibilität und Vielzahl von Anwendungsmöglichkeiten.
Ein Nachteil der meisten Methoden ist die vergleichsweise lange Rechenzeit,
die sie benötigen, um bestmögliche Korrekturen zu erzielen. Mithilfe einer
geeigneten Implementierung, z. B. über eine Parallelisierung der Algorith-
men oder eine Hardware-Implementierung, lassen sich einige Methoden
aber bereits jetzt in (oder zumindest nahe) Echtzeit ausführen.
Wie sich in dem Überblick über die verschiedenen Verfahren in Abschnitt 2.2
bereits abzeichnet, bietet sich am ehesten ein modularer Lösungsansatz
an. Damit ist gemeint, dass die einzelnen Turbulenzeffekte quasi nach dem
Baukastenprinzip voneinander (relativ) getrennt betrachtet und behandelt
werden können, so wie es ohnehin von den meisten ganzheitlichen Turbu-
lenzkorrekturverfahren gehandhabt wird, u. a. in [Fur16], sowie in [Dij16].
Eine solche Vorgehensweise bietet die besten Optionen und ermöglicht die
größte Flexibilität, da z. B. einzelne Komponenten je nach Bedarf neu hin-
zugefügt oder gegen modifizierte Versionen ausgetauscht werden können.
Dabei ist die Reihenfolge der einzelnen Komponenten zwar nicht zwingend
festgelegt, im Normalfall ist sie allerdings auch nicht völlig frei wählbar,
da sie zu einem gewissen Grad von dem Informationsfluss zwischen den
Komponenten abhängt. Zum einen müssen erforderliche Informationen
rechtzeitig vorliegen, sobald sie benötigt werden, und zum anderen sollten
Informationen, die für mehrere Komponenten nutzbar sind (z. B. Bewe-
gungsvektoren) sinnvollerweise nur einmal ermittelt werden und bei Bedarf
an weitere Komponenten übergeben werden. Die Austauschbarkeit dieser
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Komponenten wird dadurch entsprechend eingeschränkt, wobei sich insbe-
sondere eine Bildregistrierung zu Beginn und ein Deblurring zum Abschluss
bewährt hat.
Zwar werden hier überwiegend konventionelle Methoden zur Bewegungs-
schätzung (siehe Kapitel 4), sowie zur Entfaltung (siehe Kapitel 5) behandelt,
dennoch betrifft diese Einschränkung nicht das Evaluierungskonzept in
Kapitel 7. Wie zudem der Artikel von Hardie et al. [Har17] erkennen lässt,
haben auch etablierte Verfahren wie z. B. “Block Matching” und Wiener
Filterung ihre Relevanz noch nicht verloren.
Wenngleich im Abschnitt 2.2.8 einige Argumente gegen die Verwendung von
“Deep Learning”-Architekturen in der vorliegenden Arbeit angeführt wurden,
ist anzunehmen, dass es in Zukunft höchstwahrscheinlich noch sehr viel
mehr dieser Verfahren geben wird. Es ist daher wahrscheinlich, dass auch
Lösungen für derzeit noch bestehende Probleme gefunden werden können.





3
Theoretische Grundlagen

Bei der Erfassung von Bilddaten durch eine turbulente Atmosphäre sind di-
verse Turbulenzeffekte zu beobachten. Einige Beispiele für die markantesten
Effekte (d. h. Unschärfe, Bildbewegung und Deformierung) wurden bereits
in der Einleitung in den Abbildungen 1.4 und 1.5 gezeigt. Verantwortlich
dafür sind zufällige Fluktuationen im Brechungsindex des Ausbreitungsme-
diums (i. A. Luft oder ggfs. Wasser), wodurch einfallende ebene Lichtwellen
kumulativ gebeugt und die Wellenfronten deformiert werden.
Will man die Effekte optischer Turbulenz in Bilddaten korrigieren, ist es
zunächst wichtig zu verstehen wie Turbulenz überhaupt erst entsteht, und
wie sie sich unter bestimmten Umständen auf den Bilderfassungsprozess
auswirkt. Zu diesem Zweck werden entsprechende Werkzeuge benötigt. Die
notwendige Terminologie hierfür entstammt verschiedenen ineinandergrei-
fenden Forschungsfeldern, insbesondere der Statistik, der Strömungslehre,
sowie der Astronomie und nicht zuletzt der Optik. In diesem Kapitel sind des-
halb die wichtigsten Definitionen und Konzepte zur Charakterisierung und
Modellierung von Turbulenz aus diesen Bereichen zusammengefasst, mit
besonderem Augenmerk auf den Eigenschaften atmosphärischer Turbulenz.
Die Ausbreitung von (Licht-)Wellen durch eine turbulente Atmosphäre lässt
sich näherungsweise mithilfe theoretischer Modelle beschreiben. Weit ver-
breitet ist beispielsweise Kolmogorovs “Power Spectral Density” Modell, wel-
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ches nach wie vor verwendet wird. Die wegweisenden Beiträge von Kolmo-
gorov [Kol41], Tatarskii [Tat61], [Tat71], von Kármán [Kár37a], [Kár37b] und
Fried [Fri66],[Fri82] bilden die theoretische Grundlage für fast alle nachfol-
genden Arbeiten in der atmosphärischen Optik.

3.1 Definitionen aus der Statistik
Turbulenz ist in hohem Maße instabil, und das chaotische Verhalten eines
turbulenten Mediums ist analytisch nicht präzise vorhersagbar. Es liegt
daher nahe, Turbulenz stattdessen anhand ihrer statistischen Eigenschaften
zu charakterisieren. Die zufällige Natur von Turbulenz kann z. B. mithilfe
stochastischer Prozesse modelliert werden. Insbesondere lässt sich die durch
Turbulenz verursachte Phasenverzerrung einer einfallenden Lichtwelle sehr
gut über eine Gauß-Verteilung quantifizieren.
Die Wahrscheinlichkeitsdichtefunktion (“Probability Density Function”, PDF)
p( f ) einer Zufallsvariablen F mit Wert f ist ganz allgemein definiert wie
folgt [Dai00]:

p( f )d f := Prob
{

f ≤ F < f +d f
}

(3.1)

Das bedeutet, dass sich keine genaue Aussage über den Wert f der Zufalls-
variablen F treffen lässt. Man kann nur die Wahrscheinlichkeit (“Prob”)
angeben, mit der F (im diskreten Fall) einen bestimmten Wert annimmt bzw.
(im kontinuierlichen Fall) innerhalb eines bestimmten Intervalls liegt.

3.1.1 Stationäre stochastische Prozesse
Ein stochastischer Prozess (auch: Zufallsprozess) F (x) beschreibt eine Menge
von Zufallsvariablen, die zeit- und/oder ortsabhängig sind. Die Phase einer
Lichtwelle, die eine turbulente Atmosphäre durchquert hat, entspricht z. B.
einem räumlich und zeitlich veränderlichen Zufallsprozess.
Der Wert eines Zufallsprozesses zu einem gegebenen Punkt x ist eine Zu-
fallsvariable mit zugehöriger PDF p( f [x]), Erwartungswert µ(x) und Varianz
σ(x). Falls die PDF invariant ist gegenüber Translationen bzgl. x, handelt es
sich um einen stationären Prozess. Das bedeutet, dass keine der Zustands-
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größen von x abhängig ist und die statistischen Eigenschaften (d. h. µ,σ und
die Autokorrelationsfunktion) überall konstant sind. Das trifft insbesondere
auch auf atmosphärische Turbulenz zu, bei der es sich (in guter Näherung)
um einen stationären Prozess handelt.

3.1.2 Momente µk

In der Praxis ist es zuweilen von Vorteil, das Verhalten von Zufallsvariablen
mithilfe der sogenannten Momente µ1,µ2, . . . ,µN , (N ∈N) zu beschreiben,
anstatt die gesamte Funktion p( f ) zu bestimmen. Diese Momente sind
definiert durch:

µk =
〈

f k
〉
=

+∞∫
−∞

p( f ) f k d f (k = 1, . . . ,N ) (3.2)

3.1.3 Erwartungswert µ und Standardabweichung σ

Die beiden wichtigsten Parameter zur Beschreibung einer Zufallsvariablen
sind der Erwartungswert µ und die Varianz σ2, die sich über die ersten
beiden Momente µ1 und µ2 ausdrücken lassen wie folgt:

µ = µ1 (3.3)

σ2 = µ2 − µ2
1 (3.4)

Insbesondere wird σ, d. h. die Wurzel aus der Varianz, als Standardabwei-
chung bezeichnet. Es hängt von der jeweiligen Anwendung ab, welcher der
beiden Ausdrücke besser geeignet ist. In der AO wird z. B. bevorzugt die
Varianz eingesetzt.
Hierbei ist anzumerken, dass in dieser Arbeit sehr häufig diskrete Messdaten
betrachtet werden. Nachfolgend sind deshalb auch die entsprechenden
Schätzungen µ̂ und σ̂ für den diskreten Fall notiert, d. h. für eine Anzahl von
n ∈N diskreten Messwerten x1, . . . , xn :

µ̂ = 1

n

n∑
k=1

xk (3.5)
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σ̂2 = 1

n

n∑
k=1

(
xk −µ

)2 (3.6)

3.1.4 Die Gauß-Funktion
Die Wahrscheinlichkeitsdichtefunktion einer Gaußschen Normalverteilung
wird häufig auch Gauß-Funktion genannt. Sie lässt sich vollständig mit-
hilfe des Erwartungswertes µ und der Varianz σ2 beschreiben. Die Gauß-
Funktion f ist definiert wie folgt:

f (x) = 1p
2π ·σ e−

(x−µ)2

2σ2 (−∞< x <+∞) (3.7)

3.1.5 Die Strukturfunktion
Die Strukturfunktion Dx (r1,r2) einer Zufallsvariablen x entspricht dem Er-
wartungswert der Differenz der an den Stellen r1,r2 gemessenen Werte von x,
d. h. Dx ist definiert durch:

Dx (r1,r2) := 〈|x(r1)−x(r2)|〉 (3.8)

Nähere Ausführungen zur physikalischen Bedeutung von Strukturfunktio-
nen im Zusammenhang mit Kolmogorov-Turbulenz sind in Abschnitt 3.2.6
zu finden.

3.1.6 Die Kovarianzfunktion
Die Wahrscheinlichkeitsdichtefunktion p( f ) beschreibt nur die stochasti-
schen Eigenschaften in einem einzigen Punkt x, deshalb spricht man auch
von einer PDF 1. Ordnung. Es bedarf jedoch einer PDF 2. Ordnung, um auch
die zeitliche und/oder räumliche Struktur eines Zufallsprozesses zu erfassen.
Von besonderem Interesse ist hier, wie hoch die Geschwindigkeit ist, mit der
Veränderungen eintreten.
Auch die PDF 2. Ordnung lässt sich wieder mithilfe ihrer Momente aus-
drücken, insbesondere anhand der wichtigen Kovarianzfunktion C (x ′). Die
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Kovarianzfunktion C eines reellwertigen stationären stochastischen Prozes-
ses lässt sich gemäß [Dai00] folgendermaßen formulieren:

C (x ′) := 〈(
f (x)−〈

f
〉) · ( f (x +x ′)−〈

f
〉)〉

(3.9)

Falls
〈

f
〉 = 0 gilt, stimmt die Kovarianzfunktion mit der Autokorrelations-

funktion überein, und die Varianz σ2 lässt sich folgendermaßen ausdrücken:

σ2 = C (x ′ = 0) = 〈
f 2〉 − 〈

f
〉2 (3.10)

Im Fall atmosphärischer Turbulenz ist die Kovarianzfunktion nicht ohne
Weiteres messbar, daher wird stattdessen die folgende Strukturfunktion D
definiert:

D(x ′) :=
〈(

f (x)− f (x +x ′)
)2

〉
= 2 · (C (0)−C (x ′)

)
(3.11)

3.1.7 Das Wiener-Khinchin Theorem

Das Wiener-Khinchin Theorem1 (auch: “Wiener-Chintchin-Kolmogorov”)
besagt, dass die Autokorrelationsfunktion eines stationären stochastischen
Prozesses mit der zugehörigen spektralen Leistungsdichte (“Power Spectral
Density”) korrespondiert, die generell als auch Powerspektrum bezeichnet
wird. Anders ausgedrückt, das PowerspektrumΦ eines stationären Prozes-
ses ist für die Ortsfrequenz κ definiert als die Fourier-Transformierte der
Kovarianzfunktion in Gleichung (3.9):

Φ(κ) =
+∞∫

−∞
C (x ′)e−2πiκx′

dx (3.12)

Mit Hilfe des Powerspektrums lässt sich die Struktur eines Zufallsprozesses
im Fourier-Raum beschreiben, siehe auch Abschnitt 3.2.7.

1 So benannt nach dem amerikanischen Mathematiker Norbert Wiener (1894 bis 1964) und
dem russischen Mathematiker Aleksandr Yakovlevich Khinchin (1894 bis 1959)
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3.2 Turbulenz in der Fluiddynamik
Viele Beschreibungen atmosphärischer Turbulenz lassen sich auf Erkennt-
nisse und Begrifflichkeiten aus der Strömungslehre, speziell der Fluiddyna-
mik, zurückführen. Hier wird Turbulenz als der Zustand eines physikalischen
Systems betrachtet, das von einem Gleichgewichtszustand weit entfernt ist.
Ursache dafür ist die gegenseitige Wechselwirkung zahlreicher Einflussfak-
toren. Dieser Zustand ist instabil und irregulär, sowohl in zeitlicher als auch
in räumlicher Hinsicht.

3.2.1 Fluide mit turbulenter Strömung
Fluide bezeichnen sowohl Flüssigkeiten als auch Gase, somit handelt es
sich auch bei der Atmosphäre um ein Fluid. Man unterscheidet Fluide nach
ihrem Strömungsverhalten. Fluide mit laminarer Strömung fließen geordnet
und in einem regelmäßigen, gleichbleibenden Strömungsmuster, wobei sich
benachbarte Schichten mit unterschiedlichen Fließgeschwindigkeiten nicht
gegenseitig stören. Fluide mit turbulenter Strömung verhalten sich hingegen
ungeordnet und chaotisch, wobei sich das Strömungsmuster permanent
verändert. Besonders charakteristisch für eine turbulente Strömung ist dabei
die Entstehung von Verwirbelungen.

3.2.2 Die Reynoldszahl Re

Zur Unterscheidung von laminarer und turbulenter Strömung kann die
sogenannte Reynoldszahl 2 Re eingesetzt werden. Bei der Reynoldszahl han-
delt es sich um eine dimensionslose Kennzahl in der Strömungslehre, die
das Verhältnis von Trägheitskräften zu viskosen Kräften innerhalb eines
Fluids beschreibt. Mit ihrer Hilfe kann jede Strömung beschrieben werden.
Liegt Re unterhalb eines kritischen Wertes handelt es sich um laminare
Strömung, und falls Re darüber liegt, handelt es sich um turbulente Strö-
mung. In Bodennähe, wo die Atmosphäre hochgradig turbulent ist, liegt die
Reynoldszahl beispielsweise in der Größenordnung Re ∼ 105.

2 So benannt nach dem britischen Physiker Osborne Reynolds (1842-1912)
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Die Reynoldszahl Re ist definiert als:

Re = ρ ·υ ·d

η
= υ ·d

ν
(3.13)

Während ρ die Dichte (in kg/m3), υ die mittlere Strömungsgeschwindigkeit
(in m/s) und d die jeweilige Bezugslänge (in m) bezeichnen, repräsentiert η
die dynamische Viskosität, ein Maß für die Zähflüssigkeit und das Fließver-
halten von Fluiden. Die kinematische Viskosität ν ist insbesondere definiert
als ν= η/ρ.
Da die Viskosität von Luft sehr nahe bei Null liegt, kann die zugehörige
Reynoldszahl infolgedessen extrem groß werden. Luft um den Gefrierpunkt
besitzt beispielsweise eine kinematische Viskosität von ν= 0,132 cm2/s.

3.2.3 Die Navier-Stokes Gleichungen
Mathematisch lässt sich das Strömungsverhalten von Fluiden (d. h. Flüs-
sigkeiten oder Gasen mit einem ähnlichen Strömungsverhalten) ganz all-
gemein mithilfe der Navier-Stokes3 Differentialgleichungen beschreiben.
Darin muss zwischen kompressiblen Fluiden und inkompressiblen Fluiden
unterschieden werden. Das heißt, bei kompressiblen Fluiden ändert sich die
Dichte bei Druckeinwirkung, wohingegen die Dichte bei inkompressiblen
Fluiden unverändert bleibt.
Gase gehören zur Gruppe der kompressiblen Fluide, deshalb wird zur Mo-
dellierung der Atmosphäre die Navier-Stokes Differentialgleichung für kom-
pressible Fluide benötigt, in der sowohl die Impulserhaltung als auch die
Energieerhaltung, sowie die Zustandsgleichung des Gases berücksichtigt
werden. Die allgemeine Form der Navier-Stokes Gleichung für kompressible
Fluide lautet:

−~∇p +η∆~υ+ρ~f + (
λ+η)

~∇(
~∇·~υ) = ρ

∂

∂t
~υ+ρ (

~υ ·~∇)
~υ (3.14)

3 So benannt nach dem französischen Mathematiker und Physiker Claude Louis Marie Henri
Navier (1785 bis 1836), sowie dem irischen Mathematiker und Physiker George Gabriel
Stokes (1819 bis 1903)
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Dabei bezeichnet p den Druck,~∇p entspricht der Druckgradient und ~f ist
die Kraftdichte. Der Parameter λ bezeichnet hier ausnahmsweise die (erste)
Lamé-Materialkonstante4 (in N/m2), die den Zusammenhang zwischen
Dehnung und der daraus resultierenden Spannung beschreibt.
Die Navier-Stokes Gleichungen sind komplizierte nicht lineare Differenti-
algleichungen, die zu den sieben Millennium-Problemen der Mathematik
zählen. Das heißt, es gibt bis heute keine analytische Lösung für die Glei-
chungen (im dreidimensionalen Fall). In der Praxis werden daher nume-
rische Lösungsverfahren eingesetzt, wobei die Ausgangsgleichung soweit
möglich vereinfacht wird. Insbesondere lässt sich die Navier-Stokes Glei-
chung (3.14) zur Beschreibung des Verhaltens einer turbulenten Atmosphäre
aufgrund der vernachlässigbar geringen Viskosität η von Luft (d. h. η ≈ 0)
auf die nachfolgende Euler Gleichung (3.15) reduzieren:

−~∇p +ρ~f = ρ
∂

∂t
~υ+ρ (

~υ ·~∇)
~υ (3.15)

3.2.4 Das Turbulenzmodell von Kolmogorov

Das physikalische Turbulenzmodell von Kolmogorov5 (auch: Kolmogorow)
hat seinen Ursprung in der Strömungslehre und fußt u. a. auf von Kármáns
Arbeiten zur statistischen Theorie von isotroper Turbulenz [Kár37a]. Es han-
delt sich um ein vergleichsweise einfaches physikalisches Modell, das zu-
nächst zur analytischen Evaluation der Auswirkungen von Turbulenz in
turbulenten Strömungen entwickelt wurde [Kol41]. Innerhalb des Gültig-
keitsbereichs lässt es sich jedoch weitgehend auch auf atmosphärische Tur-
bulenz anwenden.
Grundannahme in dem Modell ist, dass dem turbulenten Medium von
außen auf großen räumlichen Skalen Energie zugeführt wird, wodurch sich
turbulente Luftwirbel (“Eddies”) bilden, die dann in einer selbstähnlichen
Kaskade in immer kleinere Wirbel zerfallen. Die Abbildung 3.1 visualisiert
die Mechanismen, die in dem Turbulenzmodell von Kolmogorov wirken.

4 So benannt nach dem französischen Mathematiker und Physiker Gabriel Lamé (1795 bis
1870)

5 So benannt nach dem russischen Mathematiker Andrei Kolmogorov (1903 bis 1987)
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Abbildung 3.1: Mechanisches Turbulenzmodell von Kolmogorov6

Im sogenannten Produktionsbereich befinden sich die größten und zu-
gleich energiereichsten Wirbel, wobei man häufig auch von Turbulenzzellen
spricht. Dabei gibt die äußere Skalenlänge L0 (“Outer Scale”) die Größen-
ordnung an, in der kinetische Energie in das System gesteckt wird. Im Fall
atmosphärischer Turbulenz ist dies z. B. die Erwärmung durch Sonnenein-
strahlung in Verbindung mit Scherwinden, welche die Anfangsenergie (nicht
nur) in der äußeren Skalenlänge zuführen. Typische Windgeschwindigkei-
ten, mit denen während der Bilderfassung über horizontalen Ausbreitungs-
wegen in den häufigsten Anwendungsszenarien zu rechnen ist, liegen in der
Größenordnung von 2 m/s bis 7 m/s.
Im Trägheitsbereich (“Inertial Subrange”) befindet sich die Energiekaska-
de, innerhalb derer die großen Turbulenzwirbel in immer kleinere Wirbel

6 Quelle: [Hip04] www.spektrum.de/pdf/suw-2004-10-s032-pdf/834028?file
(Grafik leicht modifiziert)

www.spektrum.de/pdf/suw-2004-10-s032-pdf/834028?file
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zerfallen bis schließlich die kinetische Energie der kleinsten Wirbel mit der
inneren Skalenlänge (“Inner Scale”) l0 im Dissipationsbereich durch viskose
Reibung (der Luft) in Wärme umgewandelt wird ([Rod81]).
Während die äußere Skalenlänge L0 die Grenze zwischen Produktions- und
Trägheitsbereich angibt, entspricht die innere Skalenlänge l0 der Grenze
zwischen Trägheits- und Dissipationsbereich.
Typische Größenordnungen der Skalenlängen im Fall horizontaler Bilderfas-
sung in (relativer) Bodennähe liegen für l0 im Millimeterbereich und für L0

in der Größenordnung von wenigen Metern. In astronomischen Anwen-
dungen kann L0 u. U. aber auch 100 m übersteigen, wobei erwähnt werden
sollte, dass L0 generell nur schwer korrekt messbar ist [Dai00].
Insbesondere besteht die folgende Beziehung zur Reynoldszahl Re :

Re = υ0L0

ν0
=⇒ l0 = L0

Re 3/4
(3.16)

Hier bezeichnet υ0 die mittlere Geschwindigkeit der Turbulenz bei der äuße-
ren Skalenlänge L0. Demnach wird l0 größer, wenn sich die Geschwindigkeit
v0 erhöht (unter der Annahme, dass sich die äußere Skalenlänge L0 dabei
nicht verändert).
Für die Bilderfassung ist dabei relevant, dass es vor allem die großen Turbu-
lenzzellen der Größenordnung L0 sind, welche die Phase einfallender ebener
(Licht-)Wellenfronten am stärksten beeinträchtigen. Sie sind insbesondere
für die stärksten Tilt-Effekte verantwortlich, wohingegen Szintillation von
den kleinsten Turbulenzzellen der Größenordnung l0 verursacht wird.

3.2.5 Der Brechungsindex n

Die Geschwindigkeit c von Licht der Wellenlänge λ und Frequenz f im
jeweiligen Ausbreitungsmedium ist von dessen Brechungsindex n abhängig,
d. h. es gilt:

c =λ · f = c0

n
(3.17)

wobei c0 die Lichtgeschwindigkeit im Vakuum bezeichnet (c0 ≈ 3 ·108 m/s).
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Der Brechungsindex n von Luft ist im Grunde genommen eine Funktion der
Temperatur T (in K), des Drucks P (in mbar) und der Wellenlänge λ (in µm):

n =
(
1+7,52 ·10−3 1

λ2

)
· P

T
(3.18)

Im vorliegenden Zusammenhang ist die Abhängigkeit vom (Luft-)Druck al-
lerdings weitestgehend vernachlässigbar, weil sich Fluktuationen des Drucks
mit Schallgeschwindigkeit bereits wieder ausgleichen. Das Verhalten von
Temperaturschwankungen ist hingegen deutlich träger, weshalb es die Tem-
peratur ist, welche die Statistik der Fluktuationen des Brechungsindex ent-
scheidend bestimmt. Bei den Fluktuationen des Brechungsindex n handelt
es sich insbesondere um eine Funktion der Zeit t und des Orts r , wobei
sich diese zufälligen Fluktuationen in hinreichender Näherung als Gauß-
förmiger Zufallsprozess darstellen lassen ([Dai00]). Die statistischen Größen
Erwartungswert und Standardabweichung (bzw. Varianz) werden dabei am
häufigsten zur Charakterisierung verwendet.

3.2.6 Die Strukturfunktionen für Kolmogorov-Turbulenz
Homogene isotrope Turbulenz beschreibt eine idealisierte Form der Turbu-
lenz, bei der die statistischen Eigenschaften invariant sind gegenüber jeder
Art von Translation und Rotation, sowie auch Spiegelung an den Koordina-
tenachsen. In diesem Fall hängen zugehörige Strukturfunktionen nur von
der Distanz ∆r = ‖~r1 −~r2‖ der Punkte ~r1, ~r2 im Raum ab.

Die Strukturfunktion der Brechungsindexfluktuationen Dn

In der Literatur ist allgemein anerkannt, dass das Powerspektrum der Fluk-
tuationen im Brechungsindex mit dem Powerspektrum der Temperatur über-
einstimmt und dass Temperaturfluktuationen dem gleichen 2/3-Potenzgesetz
unterliegen, das auch für Fluktuationen der Geschwindigkeit gilt, wie von
Kolmogorov in [Kol41] mithilfe von Dimensionsanalyse (“Dimensional Ana-
lysis”) gezeigt wurde. Die Strukturfunktion Dn des Brechungsindex n ist
dementsprechend gegeben durch (s. a. Abschnitt 3.1.5):

Dn(∆r ) = 〈|n(~r1)−n(~r2)|2〉 = C 2
n(z) ·∆r 2/3 (l0 <∆r < L0) (3.19)
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Das bedeutet, dass die durchschnittliche Differenz des Brechungsindex
zwischen zwei Raumpunkten ~r1 und ~r2 innerhalb des Trägheitsbereichs
gemäß dem 2/3-Potenzgesetz ansteigt, je mehr sich ihr Abstand ∆r = ‖~r1 −
~r2‖ vergrößert. Die äußere Skalenlänge entspricht dabei einem Maß für die
physikalische Grenze, ab der diese mittlere Differenz nicht weiter zunimmt.
Die Abbildung 3.2 zeigt dazu noch eine andere, etwas vereinfachte Dar-
stellung des Turbulenzmodells von Kolmogorov, worin insbesondere die
Bedeutung der Distanz r (bzw. ∆r ) veranschaulicht wird.

Abbildung 3.2: Darstellung des Turbulenzmodells von Kolmogorov (Grafik: K.
Weiß-Wrana)

Es sollte noch angemerkt werden, dass der Strukturparameter der Fluktua-
tionen des Brechungsindex C 2

n(z) von der Höhe z abhängig ist, wobei dies
vor allem für astronomische Beobachtungen mit (nahezu) vertikalem Be-
obachtungswinkel relevant ist. Im Fall horizontaler Bilderfassung ist die
Höhe dagegen relativ konstant, denn auch bei leichter Schrägsicht haben et-
waige Höhenunterschiede nur vernachlässigbar geringe Auswirkungen auf
C 2

n(z). Deshalb spricht man in diesem Zusammenhang zuweilen auch von
einer Strukturkonstante. Hier wird daher bis auf weiteres auf die explizite
Nennung der Höhenabhängigkeit verzichtet.
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Speziell auf die Signifikanz von C 2
n als Maß zur Beschreibung der Turbulenz-

stärke wird im Folgenden noch in Abschnitt 3.3 näher eingegangen.

Die Strukturfunktion der Temperaturfluktuationen DT

Analog zu Gleichung (3.19) lässt sich auch eine Strukturfunktion für die
Temperaturfluktuationen mithilfe eines korrespondierenden Strukturpara-
meters C 2

T formulieren:

DT (∆r ) = C 2
T ·∆r 2/3 (l0 <∆r < L0) (3.20)

Dabei unterscheiden sich Cn und CT nur um einen Faktor, der vom Druck P
und der Temperatur T abhängt und die Dimension mbar/K2 aufweist.

Die Strukturfunktion der Phasenfluktuationen Dφ

Für Kolmogorov-Turbulenz lässt sich auch eine Strukturfunktion Dφ für die
Phasenfluktuationen mithilfe von r0 formulieren ([Dai00]):

Dφ(~x) = 6,88 ·
(‖~x‖

r0

)5/3

(l0 < ‖~x‖ < L0) (3.21)

Dabei bezeichnet ~x einen zweidimensionalen Ortsvektor in der Pupillen-
ebene. (3.39)

3.2.7 Powerspektren für Kolmogorov-Turbulenz

Das Powerspektrum Φn

Das Powerspektrum der Fluktuationen im BrechungsindexΦn ist definiert
für dreidimensionale Variablen~r und~κ und ergibt sich zu ([Dai00]):

Φn(~κ) = 0,033 ·C 2
n‖~κ‖−11/3 (1/L0 < ‖~κ‖ < 1/l0) (3.22)

Hierbei ist zu beachten, dass das Spektrum gegen unendlich strebt, wenn
‖~κ‖→ 0.
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Für endlich große Skalenlängen l0 und L0 gilt das modifizierte “von Kármán”-
Spektrum ([Dai00]):

Φn(~κ) = 0,033 ·C 2
n(‖~κ‖2 +κ2

0

)11/6
·exp

(
−‖~κ‖2

κ2
m

)
(3.23)

Dabei ist κ0 = 2π/L0 und κm = 5,92/l0.

Das Powerspektrum Φφ

Das Powerspektrum der Phasenfluktuationen Φφ lässt sich in ähnlicher
Weise zuΦn formulieren ([Dai00]):

Φφ(~κ) = 0,023

r 5/3
0

· ‖~κ‖−11/3 (3.24)

3.3 Isoplanasie und Anisoplanasie
Bei der Abbildung ausgedehnter Objekte (d. h. mit großer Winkelausdeh-
nung) durch ein turbulentes Medium muss Licht, das von verschiedenen
Bereichen des Objekts ausgeht, Gebiete unterschiedlicher Turbulenz durch-
queren bevor es die Optik erreicht, was zu einer räumlichen und zeitlichen
Dekorrelation der Wellenfront führt.
Der maximale Winkel, innerhalb dessen man davon ausgehen kann, dass
einfallende Lichtwellen nahezu identische Regionen atmosphärischer Stö-
rungen durchquert haben, wird allgemein als isoplanatischer Winkel be-
zeichnet, siehe Abbildung 3.3.
Für die Bilderfassung bedeutet dies somit, dass im Optimalfall der isoplana-
tische Winkel größer als das Sichtfeld (“Field of View”, FOV) der verwendeten
Optik ist, da dann das gesamte Bild den gleichen Turbulenzstörungen un-
terworfen ist. Genauer, das Licht, welches die einzelnen Detektorelemente
des Bildsensors beleuchtet, hat auf seinem Weg vom Objekt zum Sensor die
gleichen atmosphärischen Turbulenzen durchquert. Man spricht in diesem
Fall von Isoplanasie. Dementsprechend tritt der ungünstigste Fall ein, wenn
der isoplanatische Winkel genauso groß (oder kleiner) ist als das jeweilige
Sichtfeld der einzelnen Detektorelemente (“Instantaneous Field Of View”,
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Abbildung 3.3: Illustration des isoplanatischen Winkels und der Kohärenz-
länge r0 (Grafik: E. Mauer [Mau04])

IFOV), was bedeutet, dass das Licht für jedes Pixel völlig andere Turbulenzge-
biete durchquert hat. Man spricht in diesem Fall von (totaler) Anisoplanasie.
Mit “lokaler Isoplanasie” wird entsprechend eine Mischung aus beidem
bezeichnet, wobei zwar nicht das gesamte Bild, aber zusammenhängen-
de Bildregionen unter gleichen atmosphärischen Bedingungen entstanden
sind. Diese Bildregionen liegen innerhalb sogenannter isoplanatischer Pat-
ches.

3.3.1 Der isoplanatische Winkel θ0

Gemäß [Fri82] lässt sich der isoplanatische Winkel θ0 für eine gegebene
Wellenlänge λ ausdrücken wie folgt:

θ0 = 0,95 ·
(

2π

λ

)−6/5

L−8/5 (
C 2

n

)−3/5
(3.25)

Dies gilt unter der Annahme, dass C 2
n , der Strukturparameter der Fluktuatio-

nen im Brechungsindex von Luft n, entlang des horizontalen Ausbreitungs-
pfads L konstant ist. Tatsächlich ist der Brechungsindex n eine Funktion der
Wegstrecke s, und L entspricht der optischen Weglänge, d. h. es gilt:

L =
∫

n(s)ds
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Aufgrund der zufälligen Natur der Fluktuationen im Brechungsindex und
des integrierenden Messprinzips von (Laser-)Szintillometern, wie sie auch
zu Messungen von C 2

n für hier verwendete Bilddaten eingesetzt wurden, ist
die Betrachtung eines konstanten C 2

n Wertes durchaus sinnvoll.

3.3.2 Der Fried-Parameter r0

Mit dem isoplanatischen Winkel eng verwandt, und für die Charakteri-
sierung von Turbulenz ein ganz zentraler Parameter, ist der sogenannte
Fried-Parameter7 r0, der auch als atmosphärische Kohärenzlänge bekannt
ist ([Fri66]) und üblicherweise in der Einheit “cm” angegeben wird. Der
Fried-Parameter ist definiert als der Durchmesser (d. h. nicht der Radius,
trotz der “r ” Notation) eines Teleskops, welches ohne jede Turbulenz die-
selbe optische Auflösung erzielen würde wie ein Teleskop mit unendlichem
Durchmesser, aber unter Turbulenzbedingungen. Für ein gegebenes Te-
leskop dient r0 somit als Maß für die damit maximal erzielbare optische
Auflösungsqualität. Anders ausgedrückt beschreibt r0 den Durchmesser
des kreisförmigen Gebiets, innerhalb dessen das quadratische Mittel des
Wellenfrontfehlers bei ≈1 rad liegt.
Für den Fall horizontaler Ausbreitung von sphärischen (Licht-)Wellen lässt
sich die Kohärenzlänge r0 für eine gegebene Wellenlänge λ (d. h. Wellenzahl
k = 2π/λ) gemäß [Fri82] analog zu (3.25) ausdrücken:

r0 = 3,02 ·
(

2π

λ

)−6/5

L−3/5 (
C 2

n

)−3/5
(3.26)

3.3.3 Der Strukturparameter C 2
n

Aus praktischen Gründen kann es u. U. zweckdienlicher sein, C 2
n anstelle von

r0 zu verwenden. Die Gleichung (3.26) lässt sich ganz einfach diesbezüglich
umstellen:

C 2
n = 0,16 · r−5/3

0 λ2L−1 (3.27)

d. h. für C 2
n ergibt sich die Dimension m−2/3.

7 So benannt nach dem amerikanischen Wissenschaftler David L. Fried
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Für große Teleskope, wie sie in der Astronomie Verwendung finden, liegt
der Fried-Parameter r0 typischerweise in der Größenordnung von 10 cm
bis 30 cm im sichtbaren Spektralbereich und zwischen 30 cm bis 150 cm
im IR. Bei horizontaler Bilderfassung in Bodennähe, die in der Regel mit-
hilfe mobiler EO-Systeme erfolgt (mit vergleichsweise sehr viel kleineren
Optiken), wirkt sich die Beeinträchtigung durch Turbulenz ungleich stär-
ker aus. Entsprechend liegen typische Werte für r0 im Millimeter- (VIS) bis
Zentimeterbereich (IR).
Die Abbildung 3.4 zeigt, wie die Kohärenzlänge r0 mit zunehmendem Aus-
breitungsweg L und ansteigender Turbulenz (v.o.n.u.) unterschiedlich im
visuellen Spektralbereich (links) und im IR (rechts) abnimmt. Hierzu wurden
Turbulenzstärken in häufig vorkommenden Größenordnungen ausgewählt:

• C 2
n = 10−15 m−2/3: leichte bis moderate Turbulenz

• C 2
n = 10−14 m−2/3: moderate bis starke Turbulenz

• C 2
n = 10−13 m−2/3: starke bis sehr starke Turbulenz

• C 2
n = 10−12 m−2/3: sehr starke bis extreme Turbulenz

Aus dem sichtbaren Spektrum, welches den Wellenlängenbereich von 380 nm
bis 780 nm abdeckt, wurden repräsentativ die Wellenlängen λ = 500 nm
(grün), λ= 600 nm (gelb-orange) und λ= 700 nm (rot) ausgewählt. Aus dem
daran anschließenden infraroten Spektrum, welches von 780 nm bis 1 mm
reicht, wurden repräsentativ die Wellenlängen λ= 1,55 µm, λ= 3,5 µm und
λ= 8,5 µm selektiert (unter Berücksichtigung wesentlicher Wasserabsorpti-
onslinien und verbreiteter Detektoren).
Im Zuge dessen sollte noch erwähnt werden, dass extreme Turbulenz der
Größenordnung C 2

n = 10−12 m−2/3 (oder größer) normalerweise nicht allein
durch Sonneneinstrahlung erreicht wird. Hierzu sind größere Temperatur-
unterschiede erforderlich, wie sie z. B. in der Nähe eines Feuers oder des
Abgasstrahls eines Flugzeugtriebwerks entstehen (s. a. Abbildung 3.5).

Der modifizierte Fried-Parameter

Bei dem Verhältnis D/r0 aus dem Aperturdurchmesser D der Optik des
verwendeten EO-Systems und der Kohärenzlänge r0, welches auch als mo-
difizierter Fried-Parameter bezeichnet wird (u. a. in [Rod81]), handelt es
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Abbildung 3.4: Die Kohärenzlänge r0 in Abhängigkeit von der Wegstrecke
L für ausgewählte Turbulenzstärken C 2

n (in m−2/3, v.o.n.u. zunehmend) und
Wellenlängen λ. Links: VIS, rechts: IR.
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Abbildung 3.5: Extreme Turbulenz verursacht durch den Abgasstrahl eines
Jet-Triebwerks

sich um ein verbreitetes Maß zur Charakterisierung der Turbulenzstärke
in Bilddaten. Denn je kleiner r0 ist in Relation zur Apertur D , desto stärker
ist die Turbulenz, und dementsprechend größer ist die Beeinträchtigung
der Bildqualität durch Turbulenzeffekte. Das heißt r0 dient gewissermaßen
als Normierungsfaktor für die Apertur. Auch hier wird D/r0 später (siehe
Abschnitt 7.3) als ein solches Maß verwendet. Insbesondere gilt der Zu-
sammenhang D = f /F , wobei f die Brennweite und F die Blendenzahl der
Optik bezeichnen. Alternativ wird auch der Kehrwert r0/D als normierter
Fried-Parameter verwendet ([Lüh84]).
Die Abbildung 6.41 zeigt überdies einen Vergleich der aus verschiedenen
Turbulenzstärken C 2

n resultierenden PSF-Größen anhand von simulierten
Daten.

3.3.4 Die Taylor-Hypothese
Die Taylor-Hypothese besagt, dass man annehmen kann, dass Turbulenz-
wirbel gewissermaßen “eingefroren” sind, während sie sich an der verwen-
deten Optik vorbei bewegen, da die zeitliche Größenordnung für Verände-
rungen des “Turbulenzmusters” deutlich darüber liegt.
Dieser Annahme liegt ein Schichtenmodell zugrunde, in dem die Turbulenz
als eine Schicht (“Layer”) mit eingefrorenem Turbulenzmuster modelliert
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wird oder auch als eine Reihe von solchen Schichten, deren Zwischenräume
jeweils turbulenzfrei sind. Jede Schicht bewegt sich mit Windgeschwindig-
keit fort (in Windrichtung), wobei jede Schicht eine etwas andere Geschwin-
digkeit und Richtung haben kann.

3.3.5 Die Kohärenzzeit τ0

Zur Kohärenzlänge r0 gehört auch die Kohärenzzeit τ0 atmosphärischer Tur-
bulenz. Dabei handelt es sich um die Zeit, die eine Turbulenzzelle benötigt,
um sich mit der (Wind-)Geschwindigkeit v um die eigene Größe bzw. die
Distanz r0 fortzubewegen. Dementsprechend ist τ0 definiert durch:

τ0 := r0

v
(3.28)

Im Schichten-Modell des vorangegangenen Abschnitts 3.3.4 entspricht die
Geschwindigkeit v in Gleichung (3.28) dann der Geschwindigkeit der domi-
nanten Schicht.
Die räumliche Strukturfunktion Dφ in Gleichung (3.21) lässt sich mithilfe
der Kohärenzzeit τ0 auch als zeitliche Strukturfunktion ausdrücken:

Dφ(t ) = 6,88 ·
(

t

τ0

)5/3

(3.29)

Insbesondere entspricht die Kohärenzzeit dem Zeitraum, über den die PSF
annähernd konstant bleibt. Das bedeutet, dass τ0 eine effektive Obergrenze
für die Belichtungsdauer des bildgebenden Systems darstellt. Demnach
handelt es sich für t À τ0 um den “long exposure” Fall, während t ≤ τ0 den
“short exposure” Fall beschreibt.

3.4 Grundlagen aus der Optik
Der vielschichtige Charakter von Licht, sei es als geradlinige Lichtstrahlen,
als transversale Lichtwellen oder als Teilchen (d. h. Photonen) erfordert un-
terschiedliche Modelle zu seiner Beschreibung. Das Strahlenmodell wird
nach wie vor in der geometrischen Optik eingesetzt, während das Wellen-
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modell speziell in der Wellenoptik Anwendung findet. Das Teilchenmodell
wiederum wird in der Quantenphysik verwendet und ist insbesondere beim
Einsatz von Lasern relevant, z. B. für die Laserkommunikation.
Im Zusammenhang mit der Lichtausbreitung durch die Atmosphäre spielen
mehrere Aspekte eine signifikante Rolle. Einerseits ist das Strahlenmodell
zweckdienlich für die Betrachtung des Brechungsindex in den verschiede-
nen Luftschichten, andererseits wird das allgemeinere Wellenmodell und
das Konzept der Phase benötigt, um Eigenschaften wie Kohärenz und Inter-
ferenz, sowie die atmosphärisch bedingte Verformung von Wellenfronten
sich ausbreitender Lichtwellen zu erklären.

3.4.1 Lichtwellen und Wellenfronten
Bei elektromagnetischen Wellen im Allgemeinen und Lichtwellen im Beson-
deren handelt es sich um Transversalwellen, d. h. sie breiten sich orthogonal
zu ihrer Schwingungsrichtung aus. Punktlichtquellen im freien Raum er-
zeugen kreisförmige Wellenfronten, wobei der Radius der Wellenfronten
von sehr weit entfernten Objekten wie z. B. Sternen so groß ist, dass die Wel-
lenfronten als eben angenommen werden können. Entsprechend muss im
Fall horizontaler Bilderfassung in Bodennähe von einer sphärischen Form
der Wellenfronten ausgegangen werden, die sich radial von ihrem Ursprung
entfernen. Dies ist in Abbildung 3.6 veranschaulicht.
Die Abbildung ausgedehnter Objekte kann man sich gemäß des Huygen-
schen Prinzips so vorstellen, dass jeder Punkt eines Objekts der Ausgangs-
punkt einer (halb-)kugelförmigen Elementarwelle ist. Die kombinierte Wel-
lenfront ergibt sich aus der Überlagerung all dieser Elementarwellen.

3.4.2 Wellenfront W

Eine Wellenfront beschreibt die zusammenhängende Menge aller Punkte,
die zeitlich die gleiche Entfernung zu ihrem Ursprung haben. Die Punkte
innerhalb einer Wellenfront befinden sich also im gleichen Schwingungszu-
stand, d. h. sie schwingen in gleicher Phase.
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Abbildung 3.6: Beipiele für Transversalwellen. Links: kreisförmige Wellen-
front (schwarz) mit radialer Ausbreitungsrichtung (rot); rechts: gerade Wel-
lenfront (schwarz) mit geradliniger Ausbreitungsrichtung (rot).

Der Zusammenhang zwischen einer Wellenfront W (~x) und der Phase φ(~x)
lässt sich für jeden Ort~x in der (2-D) Pupillenebene folgendermaßen aus-
drücken:

W (~x) = λ

2π
·φ(~x) ⇐⇒ φ(~x) = 2π

λ
·W (~x) (3.30)

3.4.3 Phasoren
Eine Sinusfunktion kann auch über ihren Phasor (eigentlich Phasenvektor,
auch komplexe Amplitude) beschrieben werden. Es handelt sich dabei um
eine komplexe Konstante, die von der Amplitude und der Phase abhängig
ist. Genauer wird der Term A eiθ als Phasor einer Sinusfunktion der Form
A cos(ωt+θ)+i ·A sin(ωt+θ) bezeichnet, mit Amplitude A, Kreisfrequenzω
und Phase θ. Unter Verwendung der Eulerschen Formel (eiα = cosα+i ·sinα)
lässt sich somit schreiben:

A cos(ωt +θ)+ i · A sin(ωt +θ) = A ei (ωt+θ) = A eiθ ·eiωt (3.31)
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3.4.4 Elektrische Feldstärke E

Die elektrische Feldstärke E ist definiert für den Ort~r und die Zeit t wie folgt:

E(~r ,t ) = a(~r ) ·ei (ωt−~k~r ) (3.32)

Dabei bezeichnen a (bzw. a2) die Intensität, ω die Frequenz und ~k~r die
Phase, wobei ~k die Ausrichtung angibt, die für die Polarisation und die
Form der Wellenfront verantwortlich ist. Insbesondere entspricht ‖~k‖ der
Wellenzahl k.

3.4.5 Bildentstehung
Der 3-D Objektraum wird mithilfe eines EO-Kamerasystems auf die 2-D
Bildebene abgebildet, wobei räumliche Informationen durch diese Projekti-
on verloren gehen. Genauer fällt das Licht, welches von den beobachteten
Objekten ausgeht, durch die Optik auf den in der Bildebene der Kamera
befindlichen Sensor bzw. Detektor und wird in ein 2-D digitales Signal um-
gewandelt. Hierzu werden die eintreffenden Photonen in den einzelnen
Detektorelementen erfasst und je nach ihrer Anzahl in entsprechende “Bins”
eingeordnet, die jeweils Intensitätswerten innerhalb eines vorgegebenen
Wertebereichs (i. A. 8-Bit Kodierung mit 256 Grauwerten) entsprechen. Das
2-D Signal, das man letztlich erhält, ist eine Matrix-Repräsentation der be-
obachteten Szene, d. h. das eigentliche Bild.
Mathematisch kann ein solches Bild als vektorielle Funktion g : R2 →Rd

formuliert werden, die jeder (2-D) Position~x ∈Ωg im Bild einen Bildwert
~y = g (~x) zuordnet:

g : Ωg −→Rd , Ωg ⊆R2 (3.33)

g (~x) =


g1(~x)
g2(~x)

...
gd (~x)

 mit ~x =
(

x
y

)
(3.34)

Die Zahl d ∈N gibt hier die Zahl der Farbkanäle an, d. h. im Fall von Grau-
wertbildern ist d = 1 und bei RGB-Farbbildern ist d = 3.
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3.4.6 PSF, OTF und MTF
Bislang wurde die Punktabbildungsfunktion vornehmlich als Filterfunk-
tion der Atmosphäre betrachtet (siehe Abschnitt 5.1). Genau genommen
beschreibt die PSF jedoch die Systemantwort auf einen Dirac-Impuls, wobei
der Begriff “System” sehr allgemein zu verstehen ist und sowohl sämtli-
che im Einsatz befindliche Sensorik als auch die aktuell vorherrschenden
atmosphärischen Eigenschaften beinhaltet.
Neben der PSF sind auch die optische Transferfunktion (OTF), und die Modu-
lationstransferfunktion (MTF) wichtige Kenngrößen zur Beschreibung der
Abbildungsqualität optischer Systeme. Genauer handelt es sich bei der OTF
um die Fouriertransformierte der PSF, d. h. eine komplexwertige Funktion,
die das Verhalten eines abbildenden Systems als Funktion der Ortsfrequenz
beschreibt. Es gilt also:

OTF( f ) = F (PSF(r )) (3.35)

Die (reellwertige) MTF ist wiederum definiert als Absolutbetrag der OTF und
entspricht der Amplitudenantwort des optischen Systems auf Sinusschwin-
gungen unterschiedlicher Ortsfrequenzen. Mithilfe der MTF lässt sich der
relative Kontrast beschreiben, d. h. die Dämpfung der Modulation bei zuneh-
mender Frequenz, weshalb die MTF auch als Kontrastübertragungsfunktion
bezeichnet wird. Der Kontrastverlust wird dabei durch das Verhältnis von
Objekt- zu Bildmodulation beschrieben, d. h.

MTF( f ) = ∣∣OTF( f )
∣∣ = Bildmodulation( f )

Objektmodulation( f )
(3.36)

In diesem Zusammenhang bezieht sich Modulation zunächst nur auf die
Veränderung eines Signals durch ein bildgebendes System. Aber auch Verän-
derungen durch atmosphärische Störeinflüsse, speziell Turbulenz, lassen
sich mithilfe ihrer zugehörigen MTF charakterisieren.
Das Beispiel in Abbildung 3.7 zeigt wie das Linienmuster des Objekts un-
scharf abgebildet wird und mit zunehmender Frequenz an Kontrast verliert,
so dass höhere Frequenzen gar nicht mehr aufgelöst werden können. Da-
durch wird aus der rechteckigen Signalform des Objekts ein sinusförmiges
Signal, dessen Amplitude immer stärker gedämpft wird.



3.4 Grundlagen aus der Optik 71

Abbildung 3.7: Grafische Darstellung der MTF.8

3.4.7 Die Pupillenfunktion P

Die Pupillenfunktion P ist eine komplexe Funktion, mit deren Hilfe sich
die relativen Änderungen der Amplitude und Phase einer Lichtwelle bei der
Durchquerung eines abbildenden optischen Systems beschreiben lassen.
Sie ist ganz allgemein definiert durch:

P (~r ) = A(~r ) ·eiΘ(~r ) (3.37)

Hier bezeichnen~r einen Vektor in der Pupillenebene, A die Amplitude der
einfallenden Lichtwelle und Θ die Phasenänderungen, wobei sämtliche
Einflüsse zusammengefasst sind, die zwischen der Fokal- und der Bildebene
auf die Phase der Lichtwelle einwirken.
Mit der Gleichung (3.30) kann P auch über die Wellenfront W beschrieben
werden:

P (~r ) = ei k W (~r ) (3.38)

Insbesondere kann die kreisförmige Apertur einer Optik mit Durchmesser D

8 Quelle: Wikipedia https://commons.wikimedia.org/wiki/File:MBq_MTF.jpg

https://commons.wikimedia.org/wiki/File:MBq_MTF.jpg
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mithilfe der Pupillenfunktion eines idealen Systems P0 beschrieben werden.
Die Amplitude und Phase bleiben in einem solchen System unverändert, so
dass P nur angibt, wo Licht durchgelassen wird und wo nicht:

P0(~r ) =
{

1, ‖~r‖ ≤ D/2

0, ‖~r‖ > D/2
(3.39)

Im Fall eines diffraktionslimitierten optischen Systems kann die Phasen-
änderung Θ(~r ) als Zufallsvariable im Punkt~r interpretiert werden. Wenn
l (~r ) die zufälligen Fluktuationen des Logarithmus der Amplitude bezeichnet
(wobei ohne Beschränkung der Allgemeinheit angenommen werden kann,
dass die Amplitude der einfallenden Welle ohne Störeinflüsse gleich Eins ist),
dann lassen sich die Amplituden- und Phasenfluktuationen gemäß [Fri66]
in einer komplexen Größe U zusammenfassen wie folgt:

U (~r ) = P (~r ) ·el (~r )+iΘ(~r ) (3.40)

3.4.8 Optische Auflösung
Die optische bzw. räumliche Auflösung eines abbildenden Systems ent-
spricht der minimalen Distanz d , die zwei nebeneinanderliegende Punkt-
objekte voneinander haben müssen, um in einer Abbildung dieses Systems
noch als separate Objekte wahrnehmbar zu sein.
Die Auflösungsgrenze d ist gegeben durch:

d = 0,61 · λ
An

mit An = n · sinα (3.41)

An beschreibt die sogenannte numerische Apertur, welche über den Bre-
chungsindex n des Materials zwischen Fokus und Linse und über den halben
(objektseitigen) Öffnungswinkel α des Objektivs definiert ist.
Insbesondere besagt das Rayleigh-Kriterium, dass zwei punktförmige Licht-
quellen als zwei verschiedene Objekte erkannt werden können, wenn das
Zentrum der Airy-Disk des einen Objekts mindestens so weit vom Zentrum
der Airy-Disk des anderen Objekts entfernt ist, wie dessen erste Nullstelle.
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3.4.9 Limitierende Einflüsse
Es lassen sich grundsätzlich drei Fälle unterscheiden, die einen limitieren-
den Einfluß auf die Abbildungsqualität eines bildgebenden Systems haben:

1. Turbulenzlimitierung

2. Beugungsbegrenzung

3. Detektorlimitierung

In den Fällen 1 und 2 lassen sich näherungsweise passende PSFs berechnen,
mit deren Hilfe sich erfasste Bilddaten korrigieren lassen (geeignete Metho-
den finden sich in den Kapiteln 5 und 6), wobei Verfahren zur Reduktion
der Turbulenzlimitierung das zentrale Thema dieser Arbeit ist.
Im Fall 3, d. h. bei einer Limitierung seitens des Detektors befindet sich die
Leistungsfähigkeit des Systems hingegen bereits an der äußersten Grenze.
Mit herkömmlichen Methoden können deshalb keine zusätzlichen Verbes-
serungen erzielt werden, da die Bildqualität weder durch die Optik noch
Turbulenz beeinträchtigt ist.
Die Faktoren λ/D und λ/r0 können zur Fallunterscheidung eingesetzt wer-
den, um die Art der bestehenden Limitierung festzustellen. Der detektorli-
mitierte Fall tritt z. B. ein, falls die folgende Bedingung erfüllt ist:

IFOV > 1

2

λ

D
und IFOV > 1

2

λ

r0
(3.42)

Der diffraktionslimitierte Fall tritt ein, falls

IFOV < 1

2

λ

D
und

λ

D
> λ

r0
(3.43)

Falls keine der beiden Bedingungen erfüllt ist, tritt der turbulenzlimitierte
Fall ein.
Die Abbildung 3.8 zeigt beispielhafte Simulationen für diese drei Fälle (Ori-
ginalbild in Abbildung 6.42 im Abschnitt 6.9.3).
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Abbildung 3.8: Beispielhafte Simulation der limitierenden Einflüsse auf
die Bildgebung. Links: Beugungsbegrenzung; Mitte: Detektor-Limitierung;
rechts: Turbulenzlimitierung. (Simulationen: S. Gładysz)

3.4.10 Systembedingte Einflüsse auf die Bildqualität
Zusätzlich zu atmosphärischen Einflüssen können auch systembedingte Ab-
bildungsfehler die Qualität erfasster Bilddaten beeinträchtigen. Dies betrifft
hauptsächlich Fehler in den verwendeten Optiken, vor allem durch fehler-
hafte Linsen (z. B. Unregelmäßigkeiten, Verzeichnungen), sowie Detektor-
bedingte Probleme, speziell aufgrund geringer Größe (relativ zur Optik) und
hoher Pixeldichte. Aber auch die Umgebung spielt eine Rolle, da Sensor-
rauschen beispielsweise durch schlechte Lichtverhältnisse oder auch hohe
Umgebungstemperaturen noch verstärkt wird.

Verzeichnungen der Optik

Je nach Art und Qualität der verwendeten Linsen können bei der Bildgewin-
nung verschiedene Verzeichnungen auftreten. Dies kann durchaus gewollt
sein, wie z. B. im Fall von Fischaugen- oder Shift-Objektiven, systembedingt
wie z. B. Vignettierung oder aber ungewollt wie im Fall von Linsenfehlern.
Die Abbildung 3.9 zeigt einige Beispiele für verschiedene optische Verzeich-
nungen, wie z. B. Simulationen einer Tonnen- (“barrel”) und Kissenverzeich-
nung (“pincushion”), sowie eines Fischaugenobjektivs.
Im Gegensatz zu Linsentrübungen oder Unebenheiten lässt sich diese Art
von Verzeichnung verhältnismäßig leicht korrigieren, während sich Abbil-
dungsfehler wie z. B. sphärische oder chromatische Aberrationen nur einge-
schränkt vermeiden lassen.
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Abbildung 3.9: Simulierte Beispiele für typische Optik-Verzeichnungen.
Obere Reihe (v.l.n.r.): unverzerrtes Originalbild, Vignette-Effekt, Fischaugen-
objektiv; untere Reihe (v.l.n.r.): perspektivische Verzeichnung, Tonnen- und
Kissenverzeichnung

Aus praktischen Erwägungen wird im weiteren Verlauf angenommen, dass
die Abbildungseigenschaften der verwendeten Optiken stets einwandfrei
sind, da etwaige Linsenfehler ggfs. als Bestandteil der atmosphärischen
Filterfunktion behandelt (und korrigiert) werden können.

“Interlacing”

Des weiteren können Effekte wie “Interlacing” oder “Rolling-Shutter” auftre-
ten. Die Abbildung 3.10 zeigt ein Beispiel dafür, wie sich speziell die Effekte
des Zeilensprungverfahrens im Turbulenzfall noch verstärken. Das hat auch
entsprechende Auswirkungen auf Algorithmen zur Turbulenzkorrektur wie
insbesondere in [Lou13] zu bemerken ist.
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Abbildung 3.10: Beispiel für “Interlacing”-Effekte. Oben: Bildausschnitt ohne
Turbulenz; unten: mit Heizgerät künstlich erzeugte Turbulenz.

In solchen Fällen sollte vor Anwendung einer Turbulenzkorrektur zusätzlich
noch ein Deinterlacing durchgeführt werden, um diese Effekte zu minimie-
ren. Häufig geschieht dies bereits anhand einer speziellen Kamera-Software
des Herstellers. So sind in den Daten, die hier verwendet wurden, keine
nennenswerten Interlacing-Effekte zu beobachten.
“Rolling-Shutter”-Effekte sind dagegen bedeutend schwieriger zu identifi-
zieren, da es im Turbulenzfall nicht ohne weiteres möglich ist, zwischen
Bildverzerrungen aufgrund von Turbulenz und Verzerrungen aufgrund der
Aufnahmetechnik zu unterscheiden. Dies näher zu untersuchen, würde
den Rahmen dieser Arbeit sprengen, insbesondere, da die konkrete Ursa-
che für Bildverformungen für die hier vorgestellten Algorithmen letztlich
unerheblich ist.



3.4 Grundlagen aus der Optik 77

Bildrauschen

Unter dem Begriff Bildrauschen (bzw. “Image Noise”) lassen sich mehrere
technisch bedingte Effekte zusammenfassen, die Einfluss auf die elektro-
optische Bilddatengewinnung nehmen. Im Hinblick auf Turbulenz sind in
diesem Zusammenhang grundsätzlich dieselben Arten von Rauschen zu
erwarten, wie sie auch ohne Turbulenz auftreten.
Sogenanntes Schrotrauschen (“Shot Noise”) tritt z. B. durch die Messung
einzelner Photonen auf und lässt sich über eine Poisson-Verteilung model-
lieren, die das Auftreten von unabhängigen Zufallsereignissen beschreibt.
Mit zunehmender Anzahl gemessener Photonen nähert sich diese Poisson-
Verteilung einer Normalverteilung an. Sogenanntes Dunkelrauschen ist da-
gegen unabhängig von einfallendem Licht und kann auf elektronische, aber
auch auf thermische Effekte zurückgeführt werden, d. h. es wird durch hohe
Detektortemperaturen noch verstärkt. Insbesondere lässt sich diese Art Rau-
schen mithilfe einer Gauß-Normalverteilung modellieren. Neben Schrot-
und Dunkelrauschen gibt es noch eine weitere Noise-Arten, die durch die
Aufnahme- und Auslesetechnik verursacht werden, wie z. B. zufällige Bitfeh-
ler, die bei der Datenübertragung auftreten, oder Ausleserauschen (“Readout
Noise”), welches hauptsächlich durch den Ausleseverstärker verursacht wird.
Hinzu kommt periodisches Rauschen, welches z. B. durch elektrische oder
elektromechanische Störungen während der Bildaufnahme verursacht wird,
sowie sogenanntes “Fixed Pattern Noise”, wobei es sich um ein spezifisches
Rauschmuster des Sensor-Arrays handelt, welches aufgrund unterschied-
licher Empfindlichkeiten der einzelnen Pixel entsteht (bei identischer) Be-
leuchtung. In diesem Zusammenhang sollten auch noch Pixelfehler auf dem
Detektor erwähnt werden, speziell tote Pixel (“dead pixel”), die immer dun-
kel sind, oder überempfindliche Pixel (“hot pixel”), sowie Pixel, die immer
dieselbe (maximale) Intensität anzeigen (“stuck pixel”).
Die Abbildung 3.11 zeigt einige Beispiele für besonders häufig vorkommen-
de bzw. markante Rauscharten, wobei das jeweilige Rauschen simuliert
wurde. Die Unterschiede sind ohne Vergrößerung nicht unbedingt auf den
ersten Blick erkennbar. Ein Vergleich speziell der grauen, sowie der dunklen
Bildregionen verdeutlicht die Unterschiede.
Je nach Anwendungsbereich können allerdings auch andere Rauschtypen
an Signifikanz gewinnen. So tritt Chrominanzrauschen (bzw. Farbrauschen)
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Abbildung 3.11: Simulationsbeispiele häufig vorkommender Rauschtypen.
Obere Reihe (v.l.n.r.): Gauss-verteiltes Rauschen, Salz-und-Pfeffer Rauschen,
Farbrauschen; untere Reihe (v.l.n.r.): Poisson-verteiltes Rauschen, Gauss-
verteiltes Rauschen mit lokaler Varianz, Speckle-Rauschen

nur auf, wenn mehrere Farbkanäle vorhanden sind. Zudem gibt es spezielle
Farbkameras, bei denen ein einzelner Farbkanal (z. B. der blaue Kanal) mehr
verstärkt wird als die anderen, so dass dieser Kanal entsprechend auch mehr
Rauschen aufweisen kann. Aufgrund der Wellenlängendifferenzen zwischen
den einzelnen Kanälen, kann es insbesondere infolge von Turbulenz zu einer
Verstärkung des Farbrauschen kommen.
Des Weiteren ist die Sensorik thermischer Bildgeber, neben “normalem”
Bildrauschen, auch sehr anfällig für systematisches Rauschen in Form von
starker Streifenbildung, z. B. verursacht durch das mechanische Abtastsys-
tem älterer 2-D Spiegelscanner, sowie für ganze Cluster von benachbarten
toten sowie heißen Pixeln. Wenngleich moderne IR-Systeme inzwischen
bereits von Herstellerseite mit entsprechenden Korrekturmethoden ausge-
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stattet sind, kann zusätzlich eine spezifische Rauschreduktion erforderlich
sein, da es ansonsten bei der Anwendung von Verfahren zur Turbulenzkor-
rektur zu einer übermäßigen Rauschverstärkung kommen kann.
An dieser Stelle sollte noch erwähnt werden, dass von der EMVA zur Verein-
heitlichung von Messverfahren und der Datendarstellung der Standard 12889

definiert wurde, um Vergleiche von Kameras und Bildsensoren zu erleich-
tern. Dies schließt insbesondere auch die Spezifikation der Rauschcharakte-
ristiken solcher Geräte mit ein.

9 https://www.emva.org/standards-technology/emva-1288/

https://www.emva.org/standards-technology/emva-1288/




4
Bewegungskompensation

Die meisten der existierenden Bildverarbeitungsmethoden zur Turbulenz-
korrektur zielen nach wie vor ausschließlich auf die Verarbeitung von stati-
schen Szenen ab. Dennoch besteht ein zunehmendes Interesse daran, diese
Methoden so zu modifizieren, dass auch bewegte Objekte berücksichtigt
werden können. Das bedeutet allerdings, dass auch Bewegungsunschärfe
auftreten und die Bildqualität beeinträchtigen kann.
Im Umgang mit atmosphärisch gestörten und verrauschten Daten ist es
beinahe unvermeidlich, zur Reduzierung dieser Störungen irgendeine Form
der Mittelwertbildung anzuwenden. Infolgedessen ist die Bildstapelung zu
einem integralen Bestandteil diverser Turbulenzkompensationsverfahren
geworden. Das bedeutet allerdings auch, dass jede Bewegungsunschärfe
(real oder durch die Mittelung erzeugt) proportional zur Anzahl der gesta-
pelten Bilder verstärkt wird. Dadurch kann eine Art “Geistereffekt” auftreten
wie das Beispiel in der Abbildung 4.1 demonstriert. Darin sind das erste
und letzte Bild einer Reihe von 150 Frames abgebildet, die den Beginn und
das Ende einer Bewegung zeigen, sowie der Durchschnitt der 150 Frames,
worin die Person in Bewegung (rechts im Bild) transparent zu sein scheint.
Nicht zuletzt daran lässt sich die besondere Bedeutung erkennen, die der
Verwendung von Bewegungsdetektion und Bewegungsschätzung zur Bewe-
gungskompensation im Zusammenhang mit Turbulenzkorrekturverfahren
zukommt .

81
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Abbildung 4.1: Beispiel für den “Geistereffekt”, der durch Bewegung bei der
Mittelwertbildung entsteht. Links u. Mitte: Einzelbilder von Anfang bis Ende
des Bewegungsablaufs; rechts: zugehöriger Mittelwert (150 Frames)

4.1 Situationsabhängige Bewegung
Im Kontext turbulenzgestörter Bildaufnahmen können grundsätzlich die
folgenden vier Situationen unterschieden werden:

1. Statischer Beobachter, statische Szene.

2. Dynamischer Beobachter, statische Szene.

3. Statischer Beobachter, dynamische Szene.

4. Dynamischer Beobachter, dynamische Szene.

Der “Beobachter” entspricht hier dem beobachtenden bzw. bildgebenden
Sensorsystem, z. B. einer Kamera. Entsprechend bezieht sich der “statische”
Beobachter auf eine unbewegliche Kamera, die z. B. auf einem Stativ steht,
ebenso wie sich der “dynamische” Beobachter auf eine bewegte Kamera
bezieht, die z. B. schwenkt oder von Hand geführt wird.
Bei der “Szene” handelt es sich demgemäß um die vom Sensorsystem erfass-
te 2-D Projektion der real beobachteten dreidimensionalen Umgebung mit
statischem oder dynamischem Bildinhalt. Diese Szene wird als dynamisch
bezeichnet, sofern sie ein oder mehrere bewegte Objekte enthält.
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4.1.1 Bewegungsdetektion
Bei der Bewegungsdetektion in Bilddaten geht es um die Segmentierung
von Vorder- und Hintergrund, d. h. um die grundsätzliche Unterteilung der
abgebildeten Szene in dynamische Elemente (Vordergrund) und in statische
Elemente (Hintergrund). Im Kontext der Turbulenzkorrektur bedeutet dies,
dass statische und dynamische Bildelemente separat behandelt und kor-
rigiert werden können, z. B. indem unterschiedliche Parameter verwendet
werden oder auch verschiedene Methoden angewendet werden.
Jede Bewegung verursacht Änderungen zwischen aufeinanderfolgenden
Bildern einer Sequenz. Bei der “Kamerabewegung” handelt es sich aus-
schließlich um Bewegungen auf globaler Ebene, welche zu Änderungen des
gesamten Bildes führen. Individuelle “Objektbewegung” beschreibt dagegen
in erster Linie Bewegungen auf lokaler Ebene, so dass es nur zu Änderungen
einzelner Bildbereiche kommt. Vorausgesetzt ist hier, dass die Objektgröße
(in der Bildebene) kleiner als die Bildgröße ist. “Turbulenzbewegung” be-
zieht sich wiederum auf die scheinbaren Bewegungen, welche aufgrund
optischer Turbulenz wahrgenommen werden. In Abhängigkeit von der vor-
liegenden Turbulenzstärke können sich diese Bewegungen sowohl global
als auch lokal auswirken. Es lassen sich also drei Hauptbewegungstypen
unterscheiden:

• Kamerabewegung

• Objektbewegung

• Turbulenzbewegung

Situation 1

Die Situation 1 beschreibt den einfachsten Fall, da weder globale Szenenän-
derungen noch individuelle Objektbewegung zu erwarten sind. Stattdessen
wird jede wahrnehmbare Bewegung durch optische Turbulenzeffekte verur-
sacht, wobei das Ausmaß dieser Bewegung von der vorherrschenden Stärke
der Turbulenz abhängt. Dieser Fall wird von allen bekannten Verfahren zur
Turbulenzkorrektur abgedeckt.
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Situation 2

Zur Einschätzung des Schwierigkeitsgrades der Situation 2 kommt es auf die
Art der Kamerabewegung an. Die gleichmäßige Translationsbewegung eines
langsam schwenkenden Systems (“Panning”) ist z. B. vergleichsweise gut-
artig. Mittels globaler Bildregistrierung aufeinanderfolgender (größtenteils
überlappender) Frames lässt sich dieser Fall innerhalb eines Zeitfensters,
das durch die Geschwindigkeit der Schwenkbewegung limitiert ist (und
die gewählte Pufferlänge), gewissermaßen auf die Situation 1 zurückführen.
Wird die Geschwindigkeit zu hoch, wird das Zeitfenster (und damit der Über-
lappungsbereich) für eine effektive Turbulenzkorrektur allerdings zu klein.
In begrenztem Umfang ist eine solche Korrektur dennoch möglich, z. B. in
Form einer Einzelbildkorrektur. Kommt es außerdem auch noch zu Bewe-
gungsunschärfe aufgrund der Kamerabewegung, wird das Korrekturergebnis
zusätzlich beeinträchtigt. Handelt es sich speziell um eine regelmäßige Hin-
und Herbewegung (“Swivelling”) kann mittels “Stitching” sogar ein Mosaik
des gesamten abgebildeten Bereichs zusammengesetzt und so das Problem
wiederum in die Situation 1 überführt werden.
Im Falle unvorhersehbarer Kamerabewegungen, z. B. durch Schütteln oder
ruckartige Bewegungen einer von Hand geführten Kamera, sieht es wieder
anders aus. Neben globalen Translationsbewegungen müssen auch noch
Rotation und Skalierungs- sowie Schereffeke (d. h. nicht-lineare Translation)
mit berücksichtigt werden. Hinzu kommt, dass Aufnahmen dieser Art in der
Regel von geringer Qualität und Aussagekraft sind und durch eine Turbu-
lenzkorrektur kaum an Informationsgehalt gewinnen würden. Der Aufwand
würde den möglichen Gewinn bei weitem übersteigen, daher wird dieser
Spezialfall im Rahmen dieser Arbeit auch nicht explizit behandelt.

Situation 3

Ein typisches Anwendungsszenario für die Situation 3 entspricht einem
statischen Sensorsystem, mit dem über eine größere Entfernung ein oder
mehrere bewegte Objekte beobachtet werden, z. B. Personen oder Fahrzeuge.
Dies bedeutet, dass nur mit Bewegungen auf lokaler Ebene zu rechnen ist,
wobei die wesentliche Aufgabe darin besteht, gerichtete lokale Objektbewe-



4.1 Situationsabhängige Bewegung 85

gungen von ungerichteten lokalen Turbulenzbewegungen zu unterscheiden.
Auf diesen Anwendungsfall richtet sich das Hauptaugenmerk dieser Arbeit.

Situation 4

Die Situation 4 ist natürlich die komplexeste von allen, da hier drei Bewe-
gungsarten zugleich zu berücksichtigen (und insbesondere voneinander
zu trennen) sind. Wie bereits in der Situation 2 kann ein Verfahren zur Tur-
bulenzkorrektur auch hier nur dann sinnvoll eingesetzt werden, wenn es
sich bei der Kamerabewegung im Wesentlichen um eine nicht zu schnelle
Translationsbewegung handelt, so dass Kamera- und Objektbewegungen
separierbar sind.

4.1.2 Bewegungsschätzung
Bei der Bewegungsschätzung geht es darum, Bewegungsvektoren zu extra-
hieren, mit deren Hilfe sich ein Bild in ein anderes transformieren lässt.
Üblicherweise handelt es sich dabei um aufeinanderfolgende Einzelbilder
einer Videosequenz. Diese Aufgabe ist ein im mathematischen Sinn schlecht
gestelltes Problem, da es sich bei Bildern um 2-D Projektionen der realen
3-D Welt handelt. Entsprechend lassen sich Bewegungsvektoren nie wirklich
exakt berechnen, weshalb man i. A. von Bewegungsschätzungen anstelle
von Berechnungen spricht.
Bewegungsvektoren können einerseits eine globale Bewegung des gesamten
Bildes beschreiben oder aber nur die lokale Bewegung einzelner Bildelemen-
te. Sogenannte “Block Matching”(BM)-Algorithmen (siehe auch Abschnitt
4.2) unterteilen Bilder beispielsweise in gleichgroße (typischerweise quadra-
tische) Pixelblöcke, wobei es theoretisch auch möglich ist, ganz willkürliche
Formen zu verwenden oder sogar einzelne Pixel. Generell lassen sich Verfah-
ren zur Bewegungsschätzung in zwei Hauptkategorien einteilen: indirekte
merkmalsbasierte Methoden und direkte Methoden.
Beim merkmalsbasierten Ansatz wird zunächst separat für jedes Bild eines
Bildpaares eine Menge von charakteristischen Punkten bestimmt, z. B. unter
Verwendung des “Harris Corner”-Detektors. Korrespondenzen zwischen
den Punktmengen, und damit entsprechend auch zwischen den Bildern,
werden unter Ausnutzung der statistischen Eigenschaften der Punkte und
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ihrer lokalen Umgebung hergestellt. Ein Überblick über merkmalsbasierte
Methoden findet sich in [Tor00].
Direkte Methoden zur Bewegungsdetektion stützen sich im Allgemeinen
auf die Unterschiede zwischen zwei oder mehreren aufeinanderfolgenden
Bildern. Hierbei werden pixelbasierte Fehlermaße eingesetzt und für jedes
Pixel eine Korrespondenz bestimmt. Damit eng verwandt ist das Konzept
des “Optischen Flusses” (OF), bei dem Bewegungsvektoren der wahrgenom-
menen Pixelbewegung entsprechen. Verfahren zur OF-Bestimmung können
zu den direkten Methoden gezählt werden ebenso wie BM-Verfahren. Eine
allgemeine Übersicht über direkte Methoden findet sich in [Ira00], während
[Hor81] eine genauere Beschreibung des OF-Konzeptes bietet.

4.1.3 Abhängigkeit vom Szeneninhalt
Algorithmen zur Kompression von Videodaten, wie z. B. die im nächsten
Abschnitt beschriebenen BM-Algorithmen, speichern nicht jedes Bild einer
Sequenz einzeln, sondern detektieren und codieren lediglich die Änderun-
gen (und speziell Bewegungen) zwischen aufeinanderfolgenden Frames.
Dazu müssen sie Veränderungen aller Art berücksichtigen, d.h. nicht nur
Objekte, die sich bewegen, sondern auch Kamerabewegungen und Änderun-
gen des Hintergrunds müssen einbezogen werden. Die Abbildung 4.2 zeigt
die verschiedenen Fälle, die auftreten können mit aufsteigendem Komplexi-
tätsgrad, wobei (a) der einfachste Fall ist, da keinerlei Änderungen vorliegen,
und (e) der komplexeste, da bei einem Szenenwechsel das gesamte Bild neu
codiert werden muss.
Die Bewegungsvektoren selbst sind bei diesen Algorithmen von unterge-
ordneter Bedeutung. Beim Objekttracking ist dies dagegen ganz anders,
denn hier sind es hauptsächlich die Bewegungen der einzelnen Objekte,
die interessieren. Alles andere, d.h. der Hintergrund, geringfügige Kame-
rabewegungen ebenso wie vernachlässigbare, kleinere Bewegungen (z. B.
verursacht durch Regen, Schnee, fallende Blätter, etc., und insbesondere
auch durch atmosphärische Turbulenz) muss wie Rauschen herausgefiltert
werden. Entsprechend gibt es eine ganze Anzahl von potentiellen Schwie-
rigkeiten für jede Art von Bewegungsdetektions- und Trackingalgorithmen,
von denen die wesentlichen die folgenden sind:
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Abbildung 4.2: Mögliche Szenarien in Videosequenzen

• Okklusion, d. h. vollständige oder Teilverdeckung von einem oder
mehreren Objekten (möglicherweise gegenseitig)

• Verschwindende Objekte, die sich z. B. aus dem Bild heraus bewegen

• Neue Objekte, die sich z. B. erst in das Bild hinein bewegen

• Objekte, die ihre Form verändern, z. B. weil sich der Aspektwinkel
zwischen Objekt und Beobachter verändert

• Objekte, die als Hintergrund erscheinen, z. B. weil sie sich nicht oder
nur wenig vom Hintergrund unterscheiden (ähnliche Farbe, Form,
etc.)

• Objekte, die als Rauschen erscheinen, z. B. wenn sie sich in dunkle
oder neblige Bildregionen bewegen, aber auch wenn sie (noch) zu
weit entfernt und zu klein im Bild sind

• Rauschen mit ähnlichen Charakteristiken wie echte Szenenelemente,
wie z. B. Regen oder Schnee
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• Globale Beleuchtungsänderungen, z. B. dadurch, dass eine Wolke tem-
porär die Sonne verdeckt oder eine Lichtquelle in der Szene ein- oder
ausgeschaltet wird

• Lokale Beleuchtungsänderungen, z. B. weil sich Lichtreflexionen an
der Oberfläche eines Objekts aufgrund von Bewegungen des Objekts
(oder der Lichtquelle) ändern können

• Das sogenannte Apertur-Problem tritt in homogenen Bildbereichen
auf, wenn diese größer sind als die (Teil-)Fläche (z. B. ein Block), für
die eine Bewegung bzw. Änderung ermittelt werden soll

Inzwischen wurden zahlreiche mehr oder weniger anspruchsvolle Verfahren
entwickelt, insbesondere in der Robotik oder für Überwachungs- und Auf-
klärungsaufgaben, die eine solche Analyse des vorliegenden Szeneninhalts
einschließen und in der Lage sind, diverse dieser limitierenden Faktoren,
wenn auch nicht alle, zu überwinden. Allerdings ist es solchen Algorithmen
nur dann möglich, die Änderungsinformationen in Form von (geschätzten)
Bewegungsvektoren korrekt zu interpretieren und ggfs. ein Modell der sicht-
baren Szene zu erstellen, falls einerseits hinreichendes a priori Wissen über
den vorliegenden Szeneninhalt verfügbar ist und andererseits bestimmte
Annahmen getroffen werden können, welche die limitierenden Faktoren
signifikant einschränken können. A priori Wissen über Szeneninhalt kann
beispielsweise bedeuten, dass ein Roboter sich nur innerhalb von Büroräu-
men bewegt, in denen z. B. der Boden ein bekanntes Muster aufweist, das bei
der Navigation helfen kann. In diesem Fall ist allerdings davon auszugehen,
dass atmosphärische Einflüsse weder bei der Bilddatenerfassung noch bei
der Datenauswertung eine Rolle spielen.
“Block Matching” (BM)-Algorithmen (s. Abschnitt 4.2) sind vergleichsweise
unkompliziert und benötigen üblicherweise kein derartiges a priori Wissen.
Das ist von Vorteil vor dem Hintergrund, dass die Zielsetzung hier letzt-
endlich die Korrektur atmosphärischer Turbulenzeffekte in Bilddaten ist.
Üblicherweise können für Daten, die eine solche Korrektur benötigen, in
der Regel nur wenige Vorannahmen gemacht werden, wobei zumeist einige
Informationen über das verwendete Sensorsystem vorliegen und gelegent-
lich auch Messdaten zur Schätzung der Turbulenzstärke zum Zeitpunkt der
Aufnahme verfügbar sind. Das bedeutet nicht, dass zusätzliche Informatio-
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nen über den vorliegenden Szeneninhalt (sofern verfügbar) nicht genutzt
werden können, um das Korrekturergebnis zu verbessern. Sollten also bei-
spielsweise die Größe eines beobachteten Objekts und die Entfernung vom
Objekt zum Sensor bekannt sein, ist es u. a. möglich über die korrespondie-
rende Größe des Objekts in der Bildebene auf eine geeignete Blockgröße für
einen der BM-Algorithmen in Abschnitt 4.2 zu schließen. BM-Algorithmen
können auch eingesetzt werden, um ganz grundsätzlich Objektbewegungen
zu detektieren, vorausgesetzt die Eigenbewegungen der Objekte sind größer
als die scheinbaren Bewegungen aufgrund atmosphärischer Turbulenz.

4.2 “Block Matching”-Algorithmen
“Block Matching” (BM)-Algorithmen sind Standardverfahren zur Kompres-
sion von Videodaten, bei denen Änderungen zwischen zwei Frames, und
insbesondere wahrgenommene Bewegungen, detektiert und codiert wer-
den. Hierzu wird ein Einzelframe typischerweise in gleichgroße quadratische
(nicht überlappende) Blöcke der Größe B unterteilt. Jede Bewegung bzw.
Änderung in Bezug auf den vorangegangenen Frame in der Sequenz wird
blockweise detektiert. Genauer wird jeder der Blöcke über einen vorgegebe-
nen Suchraum (auch “Search Space” genannt) von bis zu N Pixeln in jeder
Richtung verschoben, so dass er bestmöglich mit dem korrespondierenden
Block im nachfolgenden Frame übereinstimmt. Die jeweils resultierenden
Verschiebungen werden in Form von Verschiebungsvektoren (“Shift Vec-
tors”) bzw. Bewegungsvektoren (“Motion Vectors”) beschrieben, die aus
horizontalen und vertikalen Komponenten δx bzw. δy bestehen. Hierbei
ist zu beachten, dass nur Verschiebungen kleiner oder gleich der halben
Blockgröße sinnvoll bestimmt werden können, d. h. es muss N ≤ B/2 sein.
Ansonsten wären nicht mehr genug Informationen im Überlappungsbereich
enthalten, um diese Entscheidung treffen zu können.
Es muss auch erwähnt werden, dass sich der Einsatz von BM-Algorithmen
zur Bewegungskompensation bei atmosphärischer Turbulenz in einem klei-
nen, aber signifikanten Punkt von der Standardanwendung (Kompression
von Videodaten) unterscheidet. Es geht nicht darum, Neues mit Hilfe alter
Informationen zu codieren, sondern darum Neues mit Hilfe von Vorwissen
zu korrigieren. Statt die Bewegungen des vorherigen Bildes Ii−1 in Bezug auf
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das aktuelle Bild Ii zu bestimmen, werden daher die Bewegungen des aktu-
ellen Bildes Ii in Bezug auf ein gegebenes Referenzbild Ri bestimmt. Dies
geschieht, um turbulenzbedingte lokale Bildbewegungen (“Image Dancing”)
zu kompensieren, bei denen sich einzelne Bildbereiche in verschiedene
Richtungen bewegen. In Ermangelung von “Ground Truth” Daten, die es im
Fall realer Turbulenzaufnahmen in der Regel gar nicht gibt, kann beispiels-
weise ein gleitender Mittelwert als Referenz Ri dienen. Je nach Anzahl der
gemittelten Bilder (und Turbulenzstärke) liegt der Vorteil bei einem solchen
Mittelwert darin, dass sich kleine Bildwegungen statistisch ausmitteln, wo-
durch Ri potenziell korrektere Informationen über die (statische) Geometrie
der abgebildeten Szene enthält als das vorherige Bild Ii−1. Der Nachteil liegt
in der erhöhten Unschärfe. Mittelungsbedingt gehen feine Details verloren,
so dass Übereinstimmungen zwischen korrespondierenden Blöcken u. U.
nicht korrekt gefunden werden können.

Abbildung 4.3: Illustration des “Block Matching” Grundprinzips

Abbildung 4.3 illustriert das BM-Grundprinzip mit der Neuanordnung indi-
vidueller Pixelblöcke in Bezug auf ein gegebenes Referenzbild. Die Grafik
lässt Bereiche erkennen, in denen mehrere Blöcke überlappen, ebenso wie
Lücken, in die gar kein Block eingepasst wurde. Dementsprechend ist der
Einsatz eines Interpolationsverfahren erforderlich. Um Blockstrukturen im
Endergebnis zu vermeiden, kann das BM auch als “Sliding Neighbourhood”
Operation, d. h. mit überlappenden Blöcken, implementiert werden. Falls
die entsprechend hohe Berechnungsdauer unerwünscht sein sollte, besteht
auch die Möglichkeit Hamming-Windows o. Ä. zu verwenden, um überla-
gerte Blöcke ineinander zu blenden.
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Die folgenden Abschnitte bieten einen Überblick über die interessantesten
der untersuchten BM-Methoden, wobei die wesentlichen Unterschiede in
den Suchmustern bestehen, die zur Bestimmung der bestmöglichen Ver-
schiebung verwendet werden. Die Auswahlkriterien waren hierfür zualler-
erst die Qualität der Ergebnisse gefolgt von der Geschwindigkeit bei der
Ausführung der Berechnungen. Dies wird insbesondere in den Veröffentli-
chungen [Hue11], [Hue12a],sowie [Hue16] detailliert.

4.2.1 Vollständige Suche
Wie die Bezeichnung bereits nahelegt, führt dieser Algorithmus eine voll-
ständige Suche des kompletten Suchraums durch. Das heißt, jede mögliche
Suchrichtung wird geprüft und erst nach Abschluss des gesamten Suchvor-
gangs steht die resultierende Verschiebungsrichtung fest. Demzufolge spielt
es auch keine Rolle, in welcher Reihenfolge die einzelnen Richtungen durch-
sucht werden. Entsprechend ist dieser spezielle BM-Algorithmus zugleich
der gründlichste (und potentiell genaueste), sowie erwartungsgemäß auch
der (Zeit-)aufwändigste.

Parameter

Die Hauptparameter des Basis-Algorithmus sind die Blockgröße B und der
Suchraum N . Jede Vergrößerung des Suchraumes erhöht automatisch die
Berechnungskomplexität gemäß (2N +1)2, so dass nur Suchraumgrößen
von wenigen Pixeln (z. B. N ≤ 5) wirklich praktikabel sind, zumindest ohne
effiziente Parallelisierung des Algorithmus. Um Subpixel-Genauigkeit zu
erreichen, müsste der Algorithmus in zwei Stufen implementiert werden:
einmal, um in ganzen Pixel-Schritten die “grobe” Richtung herauszufinden,
und ein zweites Mal, um das Ergebnis auf Subpixel-Ebene zu verfeinern.
Angesichts der ohnehin sehr langen Laufzeiten und des zusätzlich erfor-
derlichen hohen Rechen- und Zeitaufwandes wurde hier jedoch darauf
verzichtet, dieses Verfahren mit Subpixel-Genauigkeit zu implementieren.
Die Wahl der Blockgröße ist ebenfalls nicht ganz trivial. Einerseits kann
eine größere Blockgröße Abhilfe hinsichtlich des Apertur-Problems schaffen,
das in homogenen Bildregionen auftritt, die größer als B ×B Pixel sind.
Andererseits verbessern kleinere Blöcke die Objektkonturen.
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Insbesondere hat sich in [Hue12a] gezeigt, dass bei stärkerer Turbulenz
größere Blöcke (z. B. 32×32 px) zu bevorzugen sind, wodurch bessere Er-
gebnisse erzielt werden. Das liegt zum einen an der Tiefpassfilterwirkung
der Atmosphäre und zum anderen an der Mittelwertbildung, denn die dar-
aus resultierende Verringerung der Bildschärfe und des Kontrastes hat eine
Ausweitung der unstrukturierten (homogenen) Bildregionen zur Folge.

Algorithmus

Nachfolgend bezeichnen In und In+1 das jeweils n-te bzw. (n+1)-te Einga-
bebild,~x = (x,y)T die zugehörigen Pixelkoordinaten (2-D), N die Größe des
Suchraumes, wobei Nmax = (2N +1)2 die maximale Anzahl an Suchrichtun-
gen angibt, so dass M ∈Z×Z, M(~x) = (δx,δy) den Vektor bezeichnet, der al-
le möglichen (ganzzahligen) Verschiebungen δx,δy ∈ {−N ,−(N −1), . . . ,−1,
0,1,2, . . . , N } enthält. Alle möglichen “Shift”-Varianten Si

n des Eingabebildes
In lassen sich somit ausdrücken als:

Si
n (~x) = In (~x + M(~x)), (i = 1, . . . , Nmax ) (4.1)

“Best Match” Kriterien

Als Entscheidungskriterium, was in diesem Kontext tatsächlich die “beste”
oder vielmehr “genaueste” Übereinstimmung ausmacht, kommen diverse
Ansätze in Frage. Der Vorteil einfacher Fehlersummationsmetriken, wie
z. B. dem mittleren absoluten Fehler MAE (“Mean Absolute Error”), dem
mittleren quadratischen Fehler MSE (“Mean Square Error”) oder der Wurzel
aus dem mittleren quadratischen Fehler RMSE (“Root Mean Square Error”)
liegt in ihrer vergleichsweise geringen Berechnungskomplexität, wodurch
sie sich relativ schnell berechnen lassen:

MAE (~x) = 1

X Y

∑
~y∈N bh(~x)

∣∣∣In+1(~y) − Si
n(~y)

∣∣∣ (4.2)

MSE (~x) = 1

X Y

∑
~y∈N bh(~x)

∣∣∣In+1(~y) − Si
n(~y)

∣∣∣2
(4.3)

RMSE (~x) =
p

MSE (4.4)
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Hierbei bezeichnen X , Y die Dimensionen der (rechteckigen) Umgebung
Nbh) (“Neighbourhood”) von~x. Die beste Übereinstimmung zwischen In+1

und Si
n erhält man bei diesen Metriken über Minimierung des ausgewählten

Fehlermaßes, wie z. B. für RMSE:

BestMatchRMSE (In , In+1) = min
i=1,...,Nmax

(RMSE) (4.5)

4.2.2 “Adaptive Rood” Suchmuster
Dieser spezielle BM-Algorithmus, vorgeschlagen in [Nie02], setzt sogenann-
te “Adaptive Rood Patterns” (ARP) ein, d. h. adaptive kreuzähnliche Suchmus-
ter. Dabei handelt es sich um reduzierte Suchmuster mit nur wenigen verteil-
ten Suchpunkten zur Detektion kleiner Bewegungen. Die Geschwindigkeit
und die Genauigkeit solcher Algorithmen hängen zum einen stark von der
Größe der Suchmuster ab, zum anderen sind sie mit dem Ausmaß des an-
gestrebten Bewegungsvektors verknüpft. Aus diesem Grund arbeitet dieser
Algorithmus in zwei Phasen, eine Initialphase und eine Verfeinerungsphase.
In der Initialphase wird ein ARP verwendet wie z. B. in der Abbildung 4.4
dargestellt ist.

Abbildung 4.4: Beispiel für AR-Suchmustertypen. Der blaue Punkt markiert
den aktuellen Block, und grün kennzeichnet die Blöcke, die zur Prädiktion
verwendet werden.

Die tatsächliche Form des ARP wird dynamisch bestimmt in Abhängig-
keit von prädiziertem Bewegungsverhalten des aktuell betrachteten Blocks.
Diese Prädiktion basiert auf bereits verfügbaren (d. h. geschätzten) Bewe-
gungsvektoren benachbarter Blöcke und nutzt den Umstand aus, dass sich
benachbarte Blöcke mit hoher Wahrscheinlichkeit in ähnlicher Weise verhal-
ten, d. h. mit vergleichbarer Geschwindigkeit in ähnlicher Richtung bewegen
werden. In der Verfeinerungsphase wird eine weitere lokale Suche auf Pi-
xelebene ausgeführt zur Verfeinerung der Ergebnisse aus der Initialphase.
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Hierfür wird dieses Mal ein festes Suchmuster mit Einheitsgröße verwendet
und vollständig durchsucht. Typischerweise handelt es sich dabei entweder
um die direkte 4-er oder 8-er Nachbarschaft des aktuell betrachteten Pixels.
Da der ARP-Algorithmus reduzierte Suchmuster einsetzt, arbeitet er wesent-
lich schneller als die vollständige Suche bei vergleichbar guten Endergebnis-
sen.

4.2.3 Kreuzkorrelation
Alternativ kann z. B. eine Suche auf Basis der Kreuzkorrelation durchgeführt
werden. Dabei handelt es sich um ein ähnlich direktes Block-Matching wie
bei der vollständigen Suche. Allerdings setzt man hier die normalisierte
Kreuzkorrelation als Kriterium der besten Übereinstimmung zwischen kor-
respondierenden Blöcken ein, woraus sich die resultierende Verschiebung
direkt ableiten lässt.
Die (normalisierte) Kreuzkorrelations eines Bildes bzw. Blocks f (x,y) und
eines Templates bzw. korrespondierenden Blocks g (u,v) lässt sich über die
Korrelationskoeffizienten γxcorr ausdrücken wie folgt:

γxcorr(u,v) =

∑
x,y

[
f (x,y)− f̄u,v

] [
g (x −u,y − v)− ḡ

]
√∑

x,y

[
f (x,y)− f̄u,v

]2 ∑
x,y

[
g (x −u,y − v)− ḡ

]2
(4.6)

Dabei bezeichnet ḡ den Mittelwert des Templates bzw. Blocks g und f̄u,v

den Mittelwert des Areals von f , das unter dem Template bzw. Block g liegt.
Demnach kann f zwar größer sein aber nicht kleiner als der Block g , der um
die Koordinaten (u,v) zentriert ist, welche wiederum innerhalb des (lokalen)
Koordinatenbereichs (x,y) von f liegen. Die Abweichung der Position des
Korrelationsmaximum vom Zentrum liefert die relative lokale Verschiebung
zwischen f (x,y) und g (u,v). Die Normalisierung ist wichtig für Robustheit
gegenüber von Intensitätsvariationen, z. B. infolge von Änderungen in der
Illumination.
Die Abbildung 4.5 visualisiert das Ergebnis einer Kreuzkorrelation am Bei-
spiel zweier Einzelframes einer Bildsequenz mit simulierter Turbulenz, wo-
bei 4.5a und 4.5b eine 2-D bzw. 3-D Ansicht zeigt, während 4.5c einen Ein-
zelframe der Sequenz zeigt.
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(a) 2-D Ansicht (b) 3-D Ansicht (c) Einzelbild

Abbildung 4.5: Beispielhafte Visualisierung des Korrelationsergebnisses (a)
2-D und (b) 3-D für (c) zwei Frames einer simulierten Bildsequenz.

Die Kreuzkorrelation bietet den Vorteil, dass die erforderliche Berechnungs-
komplexität von der Größe des Suchraumes unabhängig ist und mit relativ
einfachen Mitteln (d. h. vorherige Bildvergrößerung) eine hohe Subpixelge-
nauigkeit erreicht werden kann. Prinzipiell könnte immer das gesamte Bild f
nach der besten Übereinstimmung mit dem jeweiligen Block g durchsucht
werden. Dies würde allerdings die Fehleranfälligkeit erhöhen, da z. B. sich
wiederholende Strukturen im Bild mehrere Korrelationsmaxima und damit
mehrere mögliche Verschiebungsvektoren erzeugen würden. Im Normalfall
ist diese Art der Implementierung daher wenig sinnvoll.
Auch bei der Kreuzkorrelation gilt, dass nur Verschiebungen in heterogenen
Bildregionen sinnvoll geschätzt werden können. Der Korrelationskoeffizient
γxcorr ist auf das Vorhandensein von Strukturen im Bild angewiesen, da er in
Regionen ohne Varianz (d. h. homogenen Bereichen) nicht definiert ist.
Eine mögliche Lösung besteht darin, die lokale Varianz oder Standardab-
weichung einzusetzen (oder auch Lakunarität), um homogene Bereiche zu
identifizieren und Bewegungsvektoren dort entsprechend direkt auf Null zu
setzen (s. a. Abschnitt 6.3.2). Im Kontext der Turbulenzkorrektur gewinnt dies
zunehmend an Signifikanz angesichts des Verlustes hoher Frequenzanteile
und dem damit verbundenen Informationsverlust infolge atmosphärischen
Blurrings. Der Grad an Homogenität wächst mit zunehmender Turbulenz,
während zugleich der Bildkontrast abnimmt.
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4.3 Optischer Fluss
Der Optische Fluss (OF) bezieht sich auf die augenscheinliche Bewegung,
die ein Beobachter wahrnimmt, während er sich selbst durch die 3-D Welt
bewegt. Statische Objekte scheinen sich zu bewegen, obwohl es der Beob-
achter ist, der sich an ihnen vorbei bewegt. Je kleiner die Entfernung zu
den Objekten ist, desto schneller erscheint ihre Bewegung. Im Sinne der
Bildverarbeitung beschreibt OF die Bewegung zwischen aufeinanderfolgen-
den Frames einer Bildsequenz, d. h. es wird die Transformation von einem
Frame in den nächsten beschrieben.
In “Computer Vision”-Anwendungen wird OF-Schätzung oft eingesetzt, um
die Bewegung von Objekten in einem Videostream sofort quantitativ zu
beschreiben, insbesondere in der bewegungsorientierten Objektdetektion
oder für Trackingsysteme.

4.3.1 Grundprinzip
Wenn man Objektbewegung schätzen will, muss man unterscheiden zwi-
schen der Bewegung, die im 2-D Bild wahrgenommen wird und der theoreti-
schen Projektion der tatsächlichen 3-D Bewegung in die Bildebene. Genauer
lässt sich die Bewegung von Objekten in der beobachteten 3-D Szene in
Bezug auf eine abbildende Optik mit Hilfe eines Vektorfeldes beschreiben.
Dieses Vektorfeld enthält eine zugehörige Geschwindigkeit und Richtung
für jeden Punkt des 3-D Objektraums, der nach Projektion in die Bildebene
sichtbar ist.
Differenzielle, d. h. Gradienten-basierte Methoden, wie die von Horn und
Schunck eingeführte [Hor81] oder von Lucas und Kanade entwickelte [Luc81],
basieren auf Approximationen der Taylor-Reihe. Das heißt, es werden parti-
elle Ableitungen des Intensitätsbildes I verwendet, wobei I = I (x,y,t), mit
räumlichen Koordinaten x,y und zeitlichen Koordinaten t .
Es wird die folgende Annahme getroffen: für ein Teilstück eines bewegten
Objekts bleibt die Intensität an korrespondierenden Positionen (x,y,t) in
aufeinanderfolgenden Frames einer Bildsequenz konstant, so dass die In-
tensität an einer nur wenig entfernten Position und zu einem nur wenig
späteren Zeitpunkt (x+∆x,y+∆y,t +∆t ) übereinstimmen. Damit erhält man
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eine Bedingung für die Konstanz der Helligkeit, die auch als “Brightness
Constancy Constraint” bekannt ist:

I (x,y,t ) = I (x +∆x,y +∆y,t +∆t ) (4.7)

Die Intensitätsverschiebung lässt sich mittels lokaler Taylor-Approximation
folgendermaßen ausdrücken, wobei R die verbleibenden Terme höherer
Ordnung bezeichnet:

I (x +∆x,y +∆y,t +∆t ) = I (x,y,t )+ ∂I

∂x
∆x + ∂I

∂y
∆y + ∂I

∂t
∆t +R (4.8)

Nimmt man an, dass es sich um eine lineare Bewegung handelt, d. h. R ∼= 0,
ergibt sich die folgende Bedingung:

∂I

∂x
∆x + ∂I

∂y
∆y + ∂I

∂t
∆t = 0 (4.9)

Teilen durch ∆t liefert:

∂I

∂x

∆x

∆t
+ ∂I

∂y

∆y

∆t
+ ∂I

∂t

∆t

∆t
= 0 (4.10)

Oder anders ausgedrückt, wobei Vx und Vy jeweils die Geschwindigkeit in
x- bzw. y-Richtung bezeichnen:

IxVx + Iy Vy = −It (4.11)

Unglücklicherweise handelt es sich bei dieser grundlegenden OF-Gleichung
(4.11) um ein im Sinne von Hadamard schlecht gestelltes Problem. Das
bedeutet, um diese Gleichung lösen zu können, sind zusätzliche Bedin-
gungen bzgl. der Glattheit der Bewegung erforderlich. Aus diesem Grund
beinhalten alle OF-Algorithmen Zusatzbedingungen für die Schätzung des
tatsächlichen Flusses, d. h. des Geschwindigkeitsvektorfeldes (u,v)T . Eine
Leistungsevaluierung der verbreitetsten Verfahren ist gegeben in [Bar92].
Die Abbildung 4.6a zeigt einen Einzelframe der synthetisch erzeugten Yose-
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(a) Yosemite-Testsequenz (b) Optischer Fluss “Ground Truth”

Abbildung 4.6: Optischer Fluss am Beispiel der “Yosemite” Testsequenz.

mite-Sequenz1, bei der es sich um eine beliebte Standardtestsequenz für
OF-Schätzungsverfahren handelt. Als Vorlage bei der Erstellung der Sequenz
diente eine digitale topographische Karte mit Bergketten in unterschiedli-
chen Entfernungen2.
Die Sequenz ist vergleichsweise komplex, denn sie beinhaltet nicht nur ein
divergierendes OF-Feld, sondern auch Okklusionen, sowie Bewegungsuns-
tetigkeiten und multiple Bewegungen am Horizont. Da es sich um eine
synthetisch erzeugte Sequenz handelt, existieren “Ground Truth”-Daten,
exemplarisch gezeigt in 4.6b. Aus diesem Grund wird diese Sequenz in den
nachfolgenden Abschnitten zur evaluativen Demonstration der vorgestell-
ten Algorithmen herangezogen.

4.3.2 Horn-Schunk
Das Horn-Schunck Verfahren folgt dem bereits erwähnten, differenziellen
Ansatz zur Schätzung des optischen Flusses. Es handelt sich dabei zudem
um eine globale Methode, die die Annahme trifft, dass der Fluss global, d. h.
über dem gesamten Bild glatt ist. Um das Apertur-Problem zu umgehen,

1 http://vision.middlebury.edu/flow/data (Middlebury Optical Flow Evaluation Da-
tasets)

2 http://cs.brown.edu/people/mjblack/Sequences/yosFAQ.html

http://vision.middlebury.edu/flow/data
http://cs.brown.edu/people/mjblack/Sequences/yosFAQ.html
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wird eine entsprechende globale Glattheitsbedingung eingeführt. Diese
bewirkt, dass der Algorithmus Verzerrungen im OF-Vektorfeld minimiert,
während glattere Lösungen bevorzugt werden.
Das OF-Vektorfeld lässt sich mit Hilfe eines globalen Energiefunktionals
E ausdrücken, welches für das Geschwindigkeitsvektorfeld (u,v)T gelöst
werden kann:

E =
Ï [

(Ix u + Iy v + It )2 +α2(|∆u|2 +|∆v |2)
]

dx dy (4.12)

Hierbei stehen Ix , Iy und It jeweils für die partiellen Ableitungen der Inten-
sitätswerte entlang der Dimensionen x, y und t , d. h. ∂I/∂x, ∂I/∂y und ∂I/∂t .
Der Horn-Schunck Algorithmus liefert ein relativ dichtes OF-Vektorfeld, in
dem fehlende Informationen in homogenen Regionen anhand der Vektoren
an den Bewegungsbegrenzungen (d. h. beispielsweise an den Übergängen

Abbildung 4.7: Schätzung des optischen Flusses mittels Horn-Schunk Algo-
rithmus
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zwischen einem Bildbereich mit Bewegung und einem statischen Bildbe-
reich) ergänzt werden. Unglücklicherweise bedeutet dies, dass der Algorith-
mus anfälliger ist gegenüber Rauschen als dies bei lokalen Methoden der Fall
ist, wie z. B. bei dem nachfolgend beschriebenen Lucas-Kanade Verfahren.
Die Abbildung 4.7 zeigt ein Beispielergebnis des Horn-Schunk Verfahrens,

(a) OF-Betrag (b) OF-Orientierung

Abbildung 4.8: Optischer Fluss mittels Horn-Schunk Algorithmus: (a) Betrag
und (b) Orientierung der geschätzten Bewegungsvektoren.

(a) Horizontale Komponente (b) Vertikale Komponente

Abbildung 4.9: Optischer Fluss mittels Horn-Schunk Algorithmus: (a) hori-
zontale und (b) vertikale Komponenten der geschätzten Bewegungsvektoren.
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wobei die Bewegungsvektoren zur besseren Veranschaulichung vergrößert,
d. h. nicht maßstabsgerecht, eingezeichnet sind. Es muss erwähnt werden,
dass die Wahl der Parameter einen großen Einfluss auf die resultierende
Qualität und Dichte des OF-Vektorfeldes hat.
Die Abbildungen 4.8 und 4.9 visualisieren zwei verschiedene Repräsentatio-
nen der einzelnen Komponenten des OF-Vektorfelds, wobei 4.8a den Betrag
(Magnitude) und 4.8b den Phasenwinkel (Orientierung) der Bewegungsvek-
toren im OF-Vektorfeld darstellt, während 4.9a direkt die horizontalen und
4.9b vertikalen Komponenten der Verschiebungsvektoren anzeigt.

4.3.3 Lucas-Kanade
Das ähnlich weit verbreitete Lucas-Kanade Verfahren wurde bereits 1981 in
[Luc81] vorgestellt und folgt ebenfalls einem differentiellen Ansatz. Hierbei

Abbildung 4.10: Schätzung des optischen Flusses mittels Lucas-Kanade
Algorithmus
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handelt es sich um eine lokale Methode, die die Annahme trifft, dass Bildver-
schiebungen zwischen zwei aufeinanderfolgenden Frames einer Sequenz
sehr klein sein müssen, d. h. < 1 Pixel. Überdies wird angenommen, dass
das Geschwindigkeitsfeld [u,v]T innerhalb einer lokalen Umgebung einer
gegebenen Pixelposition (x,y) näherungsweise konstant ist. Die zugrunde
liegende Gleichung (4.11) kann somit für alle Pixel in dieser Umgebung mit-
tels “Least Squares” Methode (d. h. Methode der kleinsten Quadrate) gelöst
werden. Das Ergebnis kann weiter verbessert werden, indem bei der Least
Squares Methode eine Gewichtung eingeführt wird: Pixel innerhalb der lo-
kalen Umgebung des zentralen Pixels werden in Abhängigkeit ihrer radialen
Entfernung vom Zentrum gewichtet, wobei Pixel im näheren Umkreis höher
gewichtet werden.
Die Abbildung 4.10 zeigt ein Beispielergebnis des Lucas-Kanade Verfahrens,
wobei auch hier die Dichte des resultierenden Vektorfeldes von der Para-
meterwahl abhängt und die Bewegungsvektoren nicht maßstabsgerecht
eingezeichnet sind.
In den nachfolgenden Abbildungen 4.11 und 4.12 sind jeweils die beiden zu
4.8 und 4.9 korrespondierenden Visualisierungen der einzelnen Komponen-
ten des OF-Vektorfelds dargestellt (d. h. Betrag und Phasenwinkel, sowie die
horizontalen und vertikalen Anteile der Verschiebungsvektoren).

(a) OF-Betrag (b) OF-Orientierung

Abbildung 4.11: Optischer Fluss mittels Lucas-Kanade Algorithmus: (a)
Betrag und (b) Orientierung der geschätzten Bewegungsvektoren.
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(a) Horizontale Komponente (b) Vertikale Komponente

Abbildung 4.12: Optischer Fluss mittels Lucas-Kanade Algorithmus: (a) hori-
zontale und (b) vertikale Komponenten der geschätzten Bewegungsvektoren.

Damit auch größere Bewegungen berücksichtigt werden können, welche
die Annahme der kleinen Bewegungen nicht erfüllen würden, wird Lucas-
Kanade typischerweise über einen pyramidalen Ansatz implementiert. Ge-
nauer bedeutet dies, dass das Verfahren jeweils auf mehrere Versionen der
Eingabedaten mit unterschiedlicher (reduzierter) Auflösung angewendet
wird (erst grob, dann feiner werdend). Eine weitere Option besteht in ei-
ner zeitlichen und/oder räumlichen Gauß-Filterung der Eingabedaten, um
das geschätzte (primär globale) Bewegungsvektorfeld zu glätten. Dies ge-
schieht allerdings auf Kosten kleinerer, abrupter Bewegungen, die dadurch
unterdrückt werden.

4.3.4 Farnebäck
Das etwas später entwickelte Farnebäck-Verfahren wurde zuerst in [Far03]
vorgestellt. Hierbei werden Bewegungen zwischen zwei Frames mit Hilfe
sogenannter polynomialer Expansion geschätzt. Nach [Far02] handelt es
sich bei polynomialer Expansion um eine Transformation, die ein Signal
an jedem Punkt in eine Menge von Koeffizienten mit Bezug auf ein polyno-
miales lokales Signalmodell überführt. Die Expansionskoeffizienten werden
dazu mit Hilfe normalisierter Faltung (im Ortsraum) bestimmt.
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Abbildung 4.13: Schätzung des optischen Flusses mit Farnebäck Algorithmus

Bei der OF-Schätzmethode von Farnebäck wird zuerst für jedes Pixel eine
vorher festgelegte lokale Umgebung mittels polynomialer Expansion zwei-
ten Grades approximiert. Die korrespondierenden Expansionskoeffizienten
hierfür lassen sich mit Hilfe der Ausgleichsrechnung bestimmen, genauer
der Methode der kleinsten Quadrate, wobei ein ähnliches Gewichtungssche-
ma verwendet wird wie bereits für das Lucas-Kanade Verfahren umrissen.
Das Farnebäck-Verfahren folgt dann einem pyramidalen Ansatz, bei dem
multiple Auflösungen zur Bestimmung des OF-Vektorfeldes eingesetzt wer-
den, zuerst grob danach immer feiner werdend. Es gilt die Annahme, dass
sich Verschiebungen nur langsam verändern, so dass a priori Informationen
über die lokale Umgebung eines Pixels verwendet werden können. Dar-
über hinaus kann das Vektorfeld mit den Verschiebungen für ein lineares
Bewegungsmodell des Geschwindigkeitsvektorfelds [u,v]T parametrisiert
werden, um die Robustheit des Verfahrens zu verbessern. Im Gegensatz zu
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Horn-Schunck und Lucas-Kanade ist die hohe Dichte des resultierenden
Vektorfeldes relativ unabhängig von der Parameterwahl.
Die Abbildung 4.13 zeigt ein repräsentatives Ergebnis des Farnebäck-Ver-
fahrens wieder am Beispiel der Yosemite-Sequenz, wobei auch hier die
Bewegungsvektoren nicht maßstabsgerecht eingezeichnet sind.

(a) OF-Betrag (b) OF-Orientierung

Abbildung 4.14: Optischer Fluss mittels Farnebäck Algorithmus: Visualisie-
rung (a) des Betrags und (b) der Orientierung der geschätzten Bewegungsvek-
toren.

(a) Horizontale Komponente (b) Vertikale Komponente

Abbildung 4.15: Optischer Fluss mittels Farnebäck Algorithmus: Visualisie-
rung (a) der horizontalen und (b) der vertikalen Komponenten der geschätz-
ten Bewegungsvektoren.
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Die Abbildungen 4.14 und 4.15 zeigen wie zuvor die beiden zu 4.8 und
4.9 korrespondierenden Visualisierungen der einzelnen Komponenten des
OF-Vektorfelds (d. h. Betrag und Phasenwinkel, bzw. die horizontalen und
vertikalen Anteile der Verschiebungsvektoren).

4.4 Evaluierung
In realen Situationen können sich eine ganze Anzahl von Schwierigkei-
ten ergeben, die im gleichen Maße bei der OF-Schätzung und der Evalu-
ierung von OF-Algorithmen Probleme bereiten können wie bei der BM-
Bewegungsschätzung und der Evaluierung von BM-Algorithmen. Ein be-
liebtes Beispiel für eine solche Situation ist eine rotierende Kugel, deren
homogene, unifarbene Oberfläche Lambertsche Reflexionseigenschaften
aufweist. Bei konstanter Beleuchtung durch eine statische Lichtquelle ist es
unmöglich, die Bewegung allein aufgrund visueller Informationen in den
Bilddaten zu eruieren [Hor81]. Auf der anderen Seite würde eine Lichtquelle,
die um eine statische Kugel (gleicher Art) herum bewegt wird infolge sich
gleitend verändernder Intensitätswerte den Eindruck erzeugen, dass es die
Kugel ist, die sich in Bewegung befindet.
Wie bereits zuvor in Abschnitt 4.1.3 diskutiert, können noch eine ganze Reihe
anderer Probleme auftreten, verursacht z. B. durch Schatten, veränderliche
Beleuchtung, Spiegelungen, Transparenz, komplexe Oberflächenstrukturen,
unstetige Bewegungen, Objekte, die das Blickfeld der Kamera verlassen
oder betreten, Kamera-Noise, Kamerabewegung und - nicht zu vergessen -
atmosphärische Effekte, vor allem Turbulenz.
Während BM-Methoden Bewegung generell nur lokal erfassen können, in-
dem Verschiebungen zwischen korrespondierenden Blöcken zweier aufein-
anderfolgender Frames geschätzt werden, sind OF-Methoden etwas viel-
seitiger. OF kann einerseits eingesetzt werden, um eine mehr oder weniger
globale Bewegung des Beobachters zu schätzen, z. B. bei einer Kamera, die
auf einer bewegten Plattform befestigt ist und rundum oder von einer Seite
zur anderen schwenkt. Andererseits können auch spezifische Bewegungen
individueller Objekte geschätzt werden, z. B. Fahrzeuge oder Personen, die
mehr auf lokaler Ebene betrachtet werden müssen.
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Für alle OF-Verfahren gilt, dass im Vorfeld eine Entscheidung darüber getrof-
fen werden muss, welcher Art Anwendung die höhere Priorität beigemessen
werden sollte, da die Parameterwahl in direktem Zusammenhang mit dem
Glattheitsgrad des OF-Vektorfeldes steht. Für globale Bewegung sollte die
Glattheit möglichst hoch sein, im Gegensatz zu lokaler Bewegung, bei der
stattdessen eher potenziell abrupte Bewegungen erhalten bleiben sollten.
Das Beispiel in Abbildung 4.16 verdeutlicht diesen Unterschied in der Heran-
gehensweise. Links werden die großen, langsamen Bewegungen der Kamera
und des Kindes in der Mitte erkannt, während rechts die kleinen, schnellen
Bewegungen des Balls und des Kindes an der rechten Seite angezeigt werden.
Welche Priorisierung zu bevorzugen ist, hängt jeweils von der entsprechen-
den Anwendung ab. Denkbar ist auch eine Kombination der Ergebnisse
aus mehreren Durchläufen mit unterschiedlichen Parametrisierungen. Der
damit verbundene erhöhte Rechenaufwand steht dem allerdings (zurzeit
noch) entgegen.

(a) Globale Bewegung (b) Lokale Bewegung

Abbildung 4.16: Optischer Fluss: (a) Globale und (b) lokale Bewegung

4.4.1 Testdaten
In Anbetracht der Tatsache, dass “Ground Truth”-Daten für den optischen
Fluss üblicherweise nicht zur Verfügung stehen (außer die Daten wurden
künstlich erzeugt oder von Hand erfasst und aufgezeichnet), erfolgten die
meisten der durchgeführten Tests auf Basis synthetischer Testsequenzen
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aus der Middlebury Datenbank3. Die dort vorliegenden “Ground Truth”-
Daten bestehen aus Geschwindigkeitsvektoren mit je zwei Komponenten
für jedes Pixel, d. h. jeweils der horizontalen und vertikalen Komponenten
der Verschiebungen zwischen dem aktuellen und dem vorherigen Frame
mit Subpixel-Genauigkeit. Alle OF-Schätzmethoden generieren automatisch
dieselbe Art von Information für jedes Pixel. Da bei BM-Methoden pro Block
jeweils nur ein einziger Verschiebungsvektor ermittelt wird, wurde diese
Information allen im Block enthaltenen Pixeln zugewiesen, um den direkten
Vergleich von OF- und BM-Methoden zu erleichtern.
Auf den folgenden Seiten sind zum Vergleich exemplarische Ergebnisse der
hier vorgestellten BM-Methoden (vollständige Suche, “Adaptive Rood” Such-
muster und Kreuzkorrelation) gezeigt, gefolgt von den korrespondierenden
Ergebnissen der aufgeführten OF-Schätzverfahren (Horn-Schunck, Lucas-
Kanade, sowie Farnebäck). Verwendet wurde hierfür die sogenannte “Grove”
Sequenz, bei der es sich um eine synthetischen Bildfolge handelt, die eben-
falls der Middlebury Datenbank3 entstammt und für die “Ground Truth”
Daten verfügbar sind. Zum besseren Verständnis des Bewegungsinhalts
der vorliegenden Szene ist in der Abbildung 4.17a zunächst ein Einzelbild
der Sequenz gezeigt, sowie das zugehörige Differenzbild in Bezug auf den
nächsten Frame der Sequenz in der Abbildung 4.17b.

(a) Einzelbild (b) Differenzbild

Abbildung 4.17: Beispielsequenz “Grove”

3 http://vision.middlebury.edu/flow/data

http://vision.middlebury.edu/flow/data
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4.4.2 Bildhomogenität
Die lokale Standardabweichung kann sehr gut zur Beurteilung der Homo-
genität bzw. Heterogenität von Bilddaten eingesetzt werden. Dies ist insbe-
sondere aufgrund des Apertur-Problems relevant, denn große homogene
Bereiche bereiten allen der hier vorgestellten Verfahren zur Bewegungsschät-
zung Probleme. Entsprechend liefert die “Homogenitätskarte” in Abbildung
4.18 Hinweise darauf, wo die verschiedenen Algorithmen keine zuverlässi-
gen Werte liefern können (d. h. in den dunklen Regionen). Somit kann die
Karte 4.18a gewissermaßen als Indikator für die erreichbare Zuverlässigkeit
eines Algorithmus dienen, die umso höher ist, je heller die Karte ist. Die
binärisierte Version 4.18b zeigt hauptsächlich wo es sinnvoll ist, ermittelte
Werte zu berücksichtigen (weiß) und wo nicht (schwarz).
Zur Erstellung dieser speziellen Art von Homogenitätskarte wird die Stan-
dardabweichung für ein Einzelbild (oder auch für ein Array aus mehreren
Frames) blockweise ermittelt, unter Einsatz einer ganzen Reihe von verschie-
denen Blockgrößen. Anschließend wird an jedem Pixel der Mittelwert (oder
Median) aus den Ergebnissen aller Blockgrößen bestimmt und das Ergebnis
auf das Intervall [0,1] skaliert. Für weitere Details und Alternativen sei auf
den Abschnitt 6.3.2 verwiesen.

(a) STD-Karte (b) Binärkarte

Abbildung 4.18: Homogenitätskarte für die “Grove” Sequenz: (a) Karte loka-
ler Standardabweichung und (b) binarisierte Version
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4.4.3 �alitative Evaluation
Die Ground Truth für die “Grove” Sequenz ist in Abbildung 4.19 zu sehen,
wie zuvor aufgeteilt in horizontale 4.19a und vertikale Verschiebungskom-
ponenten 4.19b des OF-Vektorfeldes.

(a) Horizontale Komponente (b) Vertikale Komponente

Abbildung 4.19: Ground Truth für “Grove” Sequenz aufgeteilt in (a) horizon-
tale und (b) vertikale Komponenten

Nachfolgend sind in der Abbildung 4.20 die Ergebnisse der drei ausgewähl-
ten BM-Algorithmen für die “Grove” Sequenz dargestellt, angefangen mit der
vollständigen Suche (obere Reihe), gefolgt von der “Adaptive Rood Pattern”-
Suche (in der Mitte) und der Suche mittels normalisierter Kreuzkorrelation
(unten). Dabei ist links jeweils die horizontale Komponente und rechts die
vertikale Komponente abgebildet.
Es sollte angemerkt werden, dass bei den BM-Verfahren keine besondere
Behandlung der Ränder erfolgt ist. Aufgrund dessen weisen die zugehörigen
Ergebnisse dort teils erratische Werte auf. Zur Erhaltung des originalen
Maßstabs und Bildformats wurde aber darauf verzichtet, diese Ränder für
die Darstellung hier zu entfernen.
In analoger Weise sind in der Abbildung 4.21 die Ergebnisse der drei aus-
gewählten OF-Schätzverfahren dargestellt, angefangen mit dem Schätzver-
fahren nach Horn-Schunck (obere Reihe), gefolgt von dem Schätzverfahren
nach Lucas-Kanade (Mitte) und dem Schätzverfahren nach Farnebäck (un-
ten).
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Abbildung 4.20: “Block Matching”-Ergebnisse, links: horizontale Komponen-
te, rechts: vertikale Komponente. Oben: vollständige Suche; Mitte: “Adaptive
Rood Pattern”-Suche; unten: Korrelationsbasierte Suche
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Abbildung 4.21: “Optical Flow”-Ergebnisse, links: horizontale Komponente,
rechts: vertikale Komponente. Oben: Schätzverfahren nach Horn-Schunck;
Mitte: Schätzverfahren nach Lucas-Kanade; unten: Schätzverfahren nach
Farnebäck
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Ein Vergleich der vorliegenden Ergebnisse mit der Ground Truth in der
Abbildung 4.19 zeigt, dass die Qualität der Ergebnisse stark variiert, wobei
das OF-Schätzverfahren nach Farnebäck alle anderen Methoden qualitativ
deutlich übertrifft. Die größten Abweichungen zur Ground Truth finden
sich erwartungsgemäß in weitgehend homogenen Bildbereichen wie der
Vergleich mit der Homogenitätskarte in der Abbildung 4.18 verdeutlicht.
Weder das OF-Schätzverfahren nach Horn-Schunck noch das nach Lucas-
Kanade vermag Informationen über den optischen Fluss in homogene Regio-
nen hinein zu extrapolieren. Beide sind darauf beschränkt, Verschiebungen
entlang von horizontalen bzw. vertikalen Kanten zu bestimmen, was sich
entsprechend in den Ergebnissen in der Abbildung 4.21 (oben und Mitte)
niederschlägt.
Unter den BM-Algorithmen schneiden die vollständige Suche und die “Ad-
aptive Rood Pattern” Suche vergleichbar gut ab, wobei die Auflösung der
Ergebnisse naturgemäß aufgrund der inhärenten Blockstruktur wesentlich
geringer ausfällt als die der OF-Schätzverfahren.

4.4.4 Laufzeit-Evaluierung
Bei der Auswahl bestimmter Methoden sollte grundsätzlich immer die Qua-
lität der Ergebnisse im Vordergrund stehen. In Abhängigkeit von der ge-
planten Anwendung können die Ausführungszeiten der zugrundeliegenden
Algorithmen dennoch eine nicht unwesentliche Rolle spielen. So schwingt
in dieser Arbeit in Bezug auf die Turbulenzkorrektur insbesondere immer
die Frage nach der potenziellen Echtzeitfähigkeit mit. Bei vergleichbar guten
Ergebnissen wird demnach die Geschwindigkeit der entscheidende Faktor
sein bzw. im Umkehrschluss werden bei gleichen Geschwindigkeiten die
besseren Ergebnisse den Ausschlag geben.
Die Abbildungen 4.22 und 4.23 vergleichen die Ausführungszeiten von BM-
Methoden und OF-Schätzverfahren. Hierfür wurden alle Verfahren auf 8 ver-
schiedene Sequenzen aus aus der Middlebury Datenbank angewendet. Die
Sequenzen sind z. T. von unterschiedlicher Länge (meist 2 oder 7 Frames),
daher wurde pro Sequenz nur die jeweils durchschnittliche Berechnungszeit
pro Bildpaar verwendet. In den Legenden der Plots werden Abkürzungen
der Verfahrensbezeichnungen verwendet: “ARPS” in 4.22 steht für “Adaptive
Rood Pattern Search”, “ES” steht für “Exhaustive Search” und “CS” steht für
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Abbildung 4.22: Geschwindigkeit von BM-Algorithmen im Vergleich

Abbildung 4.23: Geschwindigkeit von OF-Schätzverfahren im Vergleich
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“’Correlation based Search’; “FB” in 4.23 steht für “Farnebäck”, “HS” steht für
“Horn-Schunck”, wobei “HS1” sowie “HS2” unterschiedliche Parameterein-
stellungen bedeuten, und “LK” steht für “’Lucas-Kanade’.
Wie zu erwarten war, ist die vollständige Suche zugleich die langsamste
aller getesteten Methoden und die beste bzw. genaueste unter den BM-
Methoden, während das “Adaptive Rood”-Suchmuster bei vergleichbar gu-
ten Ergebnissen am schnellsten unter den BM-Algorithmen abschneidet.
Das Lucas-Kanade Verfahren (mit minimalen Parametereinstellungen) ist
wiederum das insgesamt schnellste aller getesteten Methoden (inklusi-
ve der BM-Methoden). Obwohl das Farnebäck-Verfahren unter den OF-
Schätzverfahren das langsamste ist, liegt die durchschnittliche Ausführungs-
zeit in der gleichen Größenordnung wie der schnellste BM-Algorithmus.

Anmerkungen

Neben den vorgestellten Verfahren wurden für den Vergleich noch ein paar
weitere Varianten mit getestet. Bei den BM-Algorithmen wurde z. B. noch
die “Adaptive Rood Pattern”-Suche mit festem Suchmuster in Diamantform
eingesetzt (in 4.22 mit “DS” gekennzeichnet), während bei den OF-Verfahren
noch das Verfahren nach Lucas-Kanade mit “Derivative of Gaussian” Kan-
tenfilter getestet wurde (in 4.23 mit “LKDoG” gekennzeichnet). Da sich diese
Varianten jedoch weder in der Funktionsweise noch in den Ergebnissen
nennenswert von den zugrundeliegenden Verfahren unterscheiden, wurde
hier darauf verzichtet, näher auf sie einzugehen.
Es sollte noch angemerkt werden, dass die Ausführungszeiten der BM-
Methoden nur deshalb so hoch ausgefallen sind, weil es sich um Software-
Implementationen handelt, während sie typischerweise mit Hardwareunter-
stützung eingesetzt werden.

4.4.5 Anwendung auf Turbulenz
Abbildung 4.24 zeigt ein Einzelbild aus einer Beispielsequenz, aufgenommen
im IR, mit simulierter Turbulenz. Für die Simulation wurde die GPU-basierte
Software IMOTEP [Mon14] verwendet, wobei ein Ausbreitungspfad von
L = 3 km und Turbulenzbedingungen von C 2

n = 10−14 m−2/3 angenommen
wurden.
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(a) Original (b) Simulierte Turbulenz

Abbildung 4.24: IR Beispielsequenz (a) originaler Einzelframe, (b) Frame mit
simulierter Turbulenz

Die Abbildung 4.25 verdeutlicht die Hauptproblematik, die alle bekannten
Registrierungsmethoden gleichermaßen beeinträchtigt. Besonders deut-
lich wird das in den Detailausschnitten in der Abbildung 4.26. Mit zuneh-
mender Turbulenz verstärkt sich auch der atmosphärische Blurring-Effekt,
wodurch wiederum der Kontrast verringert wird und (Objekt-)Strukturen
verschmieren oder ggfs. ganz verschwinden. Zurück bleiben (nahezu) homo-
gene Bildregionen, innerhalb denen die Schätzung von Bewegungsvektoren,
wie zuvor bereits erwähnt, entsprechend fehleranfällig ist.
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Abbildung 4.25: Beispiel für OF-Schätzung nach Horn-Schunck bei simulier-
ter Turbulenz

Abbildung 4.26: Beispiel für OF-Schätzung nach Horn-Schunck, Ausschnitts-
vergrößerung. Oben: Kopfdetail, unten: Fußdetail





5
Deblurring

“Deblurring” bedeutet so viel wie “die Entfernung von Unschärfe” und stellt
einen wesentlichen Aspekt bei den meisten Verfahren zur Turbulenzkorrek-
tur dar. Dies gilt insbesondere für alle der hier vorgestellten MCA-Varianten.
Deblurring-Methoden reichen von einfachen Schärfungsfiltern über die Me-
thode der Unscharf-Maskierung bis hin zu (Blinden) Entfaltungsverfahren.
Jedoch bieten weder Schärfungsfilter noch Unscharf-Maskierung hinrei-
chende Lösungen für Turbulenz-bedingte Bildunschärfe. Zudem haben
diese Methoden den Nachteil, dass vorhandenes Rauschen übermäßig ver-
stärkt wird. In dieser Arbeit liegt der Fokus daher auf Entfaltungsverfahren,
welche in dieser Hinsicht deutlich leistungsfähiger sind. Bei den in den nach-
folgenden Abschnitten beschriebenen Entfaltungsmethoden handelt es sich
lediglich um eine repräsentative Teilmenge derartiger Methoden. Darüber
hinaus gibt es natürlich es noch eine Vielzahl anderer Lösungsmöglichkeiten
für das Entfaltungsproblem. So verwendet das in [Ori10a] vorgeschlagene
Entfaltungsverfahren, die sogenannte Unsupervised Wiener-Hunt Deconvo-
lution (UWH), beispielsweise ein Bayes’sches Wahrscheinlichkeitsmodell.
Die Parameterschätzung (einschließlich der PSF-Parameter) erfolgt hierin
mithilfe von Markov-Ketten und Monte-Carlo-Simulation (“Markov Chain
Monte Carlo”, MCMC). Einen umfassenderen Überblick über die breite Fülle
existierender Verfahren zur blinden Entfaltung von Bilddaten kann man u. a.
mithilfe der Publikationen [Kun96a], [Kun96b] und [Cha14] gewinnen.

119
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5.1 Blinde Entfaltung
Bei einer Entfaltung (“Deconvolution”) handelt es sich um ein inverses Pro-
blem. Prinzipiell geht es dabei um die scheinbar einfache Aufgabe der Sepa-
rierung zweier gefalteter Funktionen f und h. Wenn h ebenfalls unbekannt
ist, spricht man speziell von Blinder Entfaltung (“Blind Deconvolution”). Im
Ortsraum nimmt diese Problemstellung die folgende Form an (s. a. Abbil-
dung 1.10):

g (x,y) = h(x,y)∗ f (x,y)+n(x,y) (5.1)

Hierbei bezeichnen g = g (x,y) das real beobachtete Bild an der Stelle (x,y)
im Koordinatenraum, h die (typischerweise) unbekannte Blurring-Filter-
funktion, f das (hypothetische) ideale Bild, ∗ den Faltungsoperator und n
eine ebenfalls unbekannte, additive Noise-Komponente.
Die Filterfunktion h wird dabei generell als PSF, d. h. “Point Spread Functi-
on” bzw. Punktspreizfunktion bezeichnet. Es sollte noch angemerkt werden,
dass h in dieser Arbeit des öfteren auch als atmosphärische Filterfunktion
umschrieben wird. Tatsächlich ist h in dieser Problemformulierung nicht
ausschließlich durch die störenden Einflüsse der Atmosphäre (zum Zeit-
punkt der Aufnahme) bestimmt, sondern beinhaltet grundsätzlich auch die
Abbildungseigenschaften des verwendeten optischen Systems. Bei vorlie-
gender Turbulenz sind die atmosphärischen Einflüsse allerdings in der Regel
so dominant, dass alles andere im Vergleich vernachlässigbar ist.
Zur Vereinfachung lässt sich die Problemstellung (5.1) vom Ortsraum in
den Fourier-Raum transferieren, wo gemäß dem Faltungstheorem aus einer
relativ komplexen Faltungsoperation eine einfache Multiplikation wird:

G(u,v) = H(u,v) ·F (u,v)+N (u,v) (5.2)

Hierbei bezeichnen G , H , F und N jeweils die zu g , h, f und n korrespondie-
renden Fourier-Transformierten (FT) an der Stelle (u,v) im Frequenzraum.
Auf den ersten Blick erscheint die Aufgabe der Entfaltung recht einfach.
Dieser Eindruck täuscht allerdings, da das Problem als solches schlecht ge-
stellt ist. Aufgrund der additiven Rauschkomponente N (bzw. n), welche
zwangsläufig unbekannt bleibt, ist es quasi unmöglich, das ungestörte Bild
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f tatsächlich zu 100% korrekt zu rekonstruieren, auch falls die Filterfunktion
H (bzw. h) genauestens bekannt sein sollte.
Für dieses Entfaltungsproblem gibt es verschiedene Lösungsansätze, von
denen einige der verbreitetsten Algorithmen, wie z. B. der Inverse Wiener
Filter (IWF) oder die Lucy-Richardson Dekonvolution (LRD), in den nachfol-
genden Abschnitten vorgestellt werden. Diese Algorithmen unterscheiden
sich grundlegend in zweierlei Hinsicht. Zum einen unterscheiden sie sich
darin, ob es sich jeweils um blinde oder nicht-blinde Methoden handelt,
d. h. ob die PSF dafür bekannt sein muss oder nicht. Es sollte angemerkt
werden, dass “unbekannt” in diesem Zusammenhang bedeutet, dass nicht
die PSF als Ganzes bekannt sein muss, sehr wohl aber der Träger (“Support”)
der Filterfunktion (d. h. die Stellen, an denen die PSF nicht Null ist bzw.
verschwindend klein wird).
Zum anderen unterscheiden sich die Algorithmen auch darin, ob es sich
dabei jeweils um iterative oder direkte (bzw. explizite) Methoden handelt,
d. h. ob die Lösung zunächst mehr oder weniger grob geschätzt wird und in
weiteren Algorithmus-Folgedurchläufen immer besser approximiert wird
oder ob die Lösung bereits direkt im ersten Durchlauf gefunden werden
kann. Die nachstehende Tabelle 5.1 ordnet die hier aufgeführten Algorith-
men in diese grundlegenden Kategorien ein.

Typ Nicht-blinde Methoden Blinde Methoden
PSF bekannt (oder Schätzung) (PSF-Träger bekannt)

Iterativ Lucy / Richardson (LRD) Iterative Blinde Entfaltung (IBD)

⇒ Blinde Version von LRD

Direkt Inverser Wiener Filter (IWF) PCA-basierte Entfaltung

Tabelle 5.1: Übersicht über Typen von Entfaltungsalgorithmen

5.1.1 Inverser Wiener Filter
Der sicherlich einfachste Ansatz zur Lösung von Gleichung (5.2) besteht
in direkter inverser Filterung, wobei eine Schätzung F̂ für F (die FT des
ungestörten idealen Bildes f ) formuliert werden kann wie folgt [Gon08]:

F̂ (u,v) = G(u,v)

H(u,v)
⇐⇒ F̂ (u,v) = F (u,v)+ N (u,v)

H(u,v)
(5.3)
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Dieser “naive” Ansatz führt allerdings zu Problemen infolge einer Division
durch (nahezu) Null im Frequenzraum, denn typischerweise wird H (die
FT von h) zahlreiche Nullen oder zumindest verschwindend kleine Wer-
te enthalten, wodurch der Quotient auf der rechten Seite der Gleichung
(5.3) signifikante Fehler in der Schätzung F̂ erzeugen und diese ggfs. sogar
überwiegend bestimmen wird. Mit zunehmenden Raumfrequenzen wird
die Ratio (N /H) noch weiter anwachsen, so dass bereits geringes Rauschen
überproportional verstärkt wird, selbst wenn die Noise-Komponente N als
solches vernachlässigbar ist.
Ausgefeiltere inverse Filter Varianten machen sich aus diesem Grund zu-
sätzliche Informationen zunutze, insbesondere über die zu erwartenden
Noise-Charakteristika. Über geschickte Einschränkungen der Randbedin-
gungen lassen sich u. U. dennoch sehr gute Näherungslösungen finden.
Sogenannte pseudoinverse Filter führen z. B. eine gesonderte Behandlung
der Nullstellen (bzw. verschwindend kleinen Werte) von H durch. Eine an-
dere effektive Methode besteht darin, die Filterfrequenzen auf die nähere
Umgebung ringsum den Ursprung einzugrenzen. In diesem Bereich sind
die Werte am größten, weshalb die Wahrscheinlichkeit für verschwindende
Werte dort entsprechend am geringsten ist.
Speziell beim Inversen Wiener Filter1 (IWF) wird der folgende Fehler zwi-
schen der Schätzung f̂ und dem idealen Bild f minimiert ([Gon08]):

err2 = E
{
( f − f̂ )2} (5.4)

Die Größen f̂ und f (so wie im übrigen auch g und h) werden dabei als
Zufallsvariablen interpretiert. Tatsächlich beschreibt die Gleichung (5.4)
die mittlere quadratische Abweichung (MSE) als Fehlermaß. Wenn R, C die
Dimensionen, d. h. die Anzahl an Zeilen und Spalten (“rows” und “columns”)
von f und f̂ bezeichnen, lässt sich der MSE insbesondere folgendermaßen
formulieren (vgl. auch Gleichung (4.3)):

MSE = 1

RC

R−1∑
y=0

C−1∑
x=0

[
f (x,y)− f̂ (x,y)

]2
(5.5)

1 zuerst 1942 von Norbert Wiener vorgeschlagen, bekannt als Begründer der Kybernetik
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Zur Vereinfachung des Problems werden beim IWF drei wesentliche Annah-
men getroffen (([Gon09])):

1. Das Bild f und das Rauschen n sind unkorreliert.

2. f oder n hat den Mittelwert Null

3. Die Intensitätswerte der Schätzung f̂ sind eine lineare Funktion der
Werte im real gemessenen Bild g .

Unter diesen Voraussetzungen lässt sich die Lösung F̂ , welche die Gleichung
(5.4) (bzw. (5.5)) minimiert, im Frequenzraum ausdrücken wie folgt:

F̂ (u,v) =
[

H∗(u,v)S f (u,v)

S f (u,v) |H(u,v)|2 +Sn(u,v)

]
G(u,v)

=
[

H∗(u,v)

|H(u,v)|2 +Sn(u,v)/S f (u,v)

]
G(u,v)

=
[

1

H(u,v)

|H(u,v)|2
|H(u,v)|2 +|N (u,v)|2 / |F (u,v)|2

]
G(u,v)

(5.6)

Hierbei bezeichnet H∗ die Konjugierte von H , wobei insbesondere ausge-
nutzt wird, dass gilt:

H∗(u,v)H(u,v) = |H(u,v)|2

Weiterhin bezeichnen S f (u,v) = |F (u,v)|2 bzw. Sn(u,v) = |N (u,v)|2 das je-
weilige Powerspektrum (auch spektrale Leistungsdichte oder Autokorrelation)
des ungestörten Bildes f bzw. der Rauschkomponente n.
Der besondere Vorteil in der Formulierung von Gleichung (5.6) liegt darin,
dass hier die Probleme des direkten inversen Filters mit verschwindenden
Werten in der Filterfunktion H nicht auftreten. Insbesondere reduziert sich
der Ausdruck in Gleichung (5.6) auf den direkten inversen Filter in Glei-
chung (5.3), falls die Rauschkomponente ganz verschwindet (d. h. n = 0 und
somit |N |2 = 0).
Das Verhältnis Sn(u,v)/S f (u,v) (für Sn 6= 0) der Powerspektren ist norma-
lerweise nicht genau bekannt und muss entsprechend approximiert bzw.
geschätzt werden. Häufig wird stattdessen auch der Kehrwert des damit
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verbundenen Signal-zu-Rausch Verhältnisses (“Signal-to-Noise Ratio”, SNR)
bzw. ein Schätzwert dafür eingesetzt. Im Frequenzraum lässt sich SNR nähe-
rungsweise über das Verhältnis SNR = MPS f /MPSn der korrespondierenden
(skalarwertigen) mittleren Powerspektren MPS f und MPSn beschreiben, wo-
bei:

MPS f =
M−1∑
u=0

N−1∑
v=0

S f (u,v) und MPSn =
M−1∑
u=0

N−1∑
v=0

Sn(u,v).

Genauer wird der Quotient Sn/S f in Gleichung (5.6) in einigen Varianten
des IWF durch den Skalarwert R = 1/SNR ersetzt, wobei es im übrigen auch
Varianten gibt, in denen jeweils die Quadratwurzel verwendet wird. R kann
somit als Regularisierungsparameter fungieren und die Qualität der Schät-
zung f̂ kann über das Variieren von R gesteuert werden.
Die zugehörigen Powerspektren von f bzw. n sind allerdings oftmals un-
bekannt. Speziell im Zusammenhang von Turbulenz-gestörten Bilddaten
ist dies sogar der Normalfall. Eine Möglichkeit, dennoch eine gute Lösung
f̂ zu finden, besteht darin, die Gleichung (5.6) über eine Konstante K zu
parametrisieren:

F̂ (u,v) =
[

1

H(u,v)

|H(u,v)|2
|H(u,v)|2 +K

]
G(u,v) (5.7)

Tatsächlich würde das Noise-Powerspektrum beispielsweise im Fall von
spektralem weißen Rauschen einer Konstante entsprechen.

5.1.2 Richardson-Lucy Entfaltung

Bei der Richardson-Lucy Entfaltung2 (“Lucy-Richardson Deconvolution”,
LRD), beschrieben in [Ric72] sowie in [Luc74], handelt es sich um eine nicht-
blinde Methode ebenso wie der IWF. Das bedeutet, die Filterfunktion h (oder
eine gute Schätzung dafür) wird hier ebenfalls als bekannt vorausgesetzt,
wobei weiterhin die Bezeichnungen aus Gleichung (5.1) verwendet werden.
Im Gegensatz zum IWF handelt es sich bei der LRD allerdings auch um
einen nicht-linearen und insbesondere iterativen Algorithmus.

2 1972 von William H. Richardson und 1974 von Leon B. Lucy unabhängig voneinander
entwickelt
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Die LRD ist aus der Bayes’schen Wahrscheinlichkeitstheorie abgeleitet, d. h.
Bilddaten werden wie beim inversen Wiener Filter als Zufallsvariablen inter-
pretiert. Genauer entsteht die LRD aus der sogenannten “Maximum Like-
lihood Estimation” (MLE, auch “Schätzungsmethode der maximalen Mut-
maßlichkeit”) heraus. Dabei handelt es sich um ein Verfahren zur Schätzung
der Parameter einer Verteilungsfunktion mit dem Ziel, dass die Messda-
ten (bzw. statistischen Beobachtungen) die größte Wahrscheinlichkeit für
das zugrunde gelegte statistische Modell aufweisen. Dies geschieht über
iterative Maximierung einer entsprechenden Wahrscheinlichkeitsfunktion
(“Likelihood Function”). Im vorliegenden Fall wird speziell die Wahrschein-
lichkeit, dass das geschätzte Bild f̂ nach Faltung mit der PSF h (bis auf Noise)
identisch mit dem gemessenen Bild g ist, als eine solche Likelihood Func-
tion formuliert. Dabei gilt die Annahme, dass die Schätzung nur Poisson-
verteiltes Rauschen enthält, während etwaiges Gauß-verteiltes Rauschen
ignoriert wird.
Ein punktförmiges Objekt in einem Bild g , das mithilfe eines EO-Systems
aufgenommen wurde, wird in dieser Aufnahme nicht mehr als Punkt er-
scheinen, sondern vielmehr die Gestalt der Punktspreizfunktion h selbst
annehmen. Dementsprechend können ausgedehnte Objekte in die Summe
vieler einzelner Punktobjekte unterteilt werden, so dass das reale Bild g auch
als Matrixoperation mit der Filterfunktion h dargestellt werden kann, die auf
dem idealen Bild f ausgeführt wird. Dabei beschreiben die Matrixelemente
h(x,y)(i , j ) den jeweiligen Lichtanteil, der vom Pixel (i , j ) ausgeht und am
Pixel (x,y) gemessen wird, so dass die Filtermatrix h auch einfach durch den
räumlichen Abstand (“Offset”) zwischen dem “Quellpixel” (i , j ) und dem
“Messpixel” (x,y) ausgedrückt werden kann:

h(x,y)(i , j ) = h(x − i ,y − j ) = h(∆x,∆y)

In [She82] wurde empirisch gezeigt, wenn die folgende Iterationsvorschrift
zur Schätzung von f̂ konvergiert, dass sie gegen die Lösung der maximalen
Wahrscheinlichkeit für f konvergiert, wobei “(k)” die jeweils k-te Iteration
kennzeichnet.

f̂ (k+1)(x,y) = f̂ (k)(x,y)

[
h(−x,− y)∗ g (x,y)

h(x,y)∗ f̂ (k)(x,y)

]
(5.8)
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Hervorzuheben ist hierbei, dass es die Division durch die Schätzung f̂ ist,
welche die nichtlinearen Eigenschaften des Algorithmus ausmacht.
So wie im Fall der meisten nicht-linearen Methoden, lässt sich auch bei
der IBD die Frage nach der “richtigen” Anzahl von Iterationen (bzw. geeig-
neten Stopp-Kriterien) nicht allgemeingültig beantworten. Ansätze hierfür
beinhalten in der Regel eine Prüfung, ob die aktuelle Schätzung bestimmte
Eigenschaften erfüllt, deren Auswahl jeweils von der vorliegenden Anwen-
dung abhängig sind.
Die Ergebnisqualität lässt sich u. U. noch verbessern, beispielsweise über die
Verwendung einer Gewichtungsmatrix, in der jedem Pixel ein Gewichtungs-
faktor zugeordnet wird, welcher dessen Qualität widerspiegelt. Besonders
schlechte Pixel oder sogar ganze Bereiche (z. B. an den Bildrändern) kön-
nen somit über eine Gewichtung mit Faktor Null aus weiteren Iterationen
ausgenommen werden. Weitere Verbesserungen lassen sich auch über die
Einführung eines zusätzlichen Schwellwerts für die zulässige Abweichung
der aktuellen Schätzung f̂ von der vorherigen Iteration erreichen. Wenn wei-
tere Iterationen an denjenigen Stellen (bzw. Pixeln) unterdrückt werden, an
denen dieser Schwellwert überschritten wird, lassen sich Bilddetails besser
erhalten, während zugleich vermieden wird, dass Rauschen sowie “Ringing”
weiter verstärkt werden.

5.1.3 Iterative blinde Entfaltung
Bei der iterativen blinden Entfaltung (“Iterative Blind Deconvolution”, IBD),
wie in [Aye88] von Ayers und Dainty vorgeschlagen, handelt es sich im Prin-
zip um eine blinde Version der im vorangegangenen Abschnitt beschriebe-
nen LRD. Das heißt, es werden weiterhin die Bezeichnungen aus Gleichung
(5.1) verwendet. Entsprechend muss die (Filter-)Funktion h hierfür auch
nicht bekannt sein, sondern lediglich der Träger von h. Überdies wird vor-
ausgesetzt, dass f und h beide reellwertig und überall nicht-negativ sind.
Bei der IBD wird die iterative Maximierung der LRD-Likelihood Function
mit zusätzlichen Nebenbedingungen durchgeführt, um gleichzeitig mit der
Schätzung f̂ für das Bild f auch eine Schätzung ĥ für die Filterfunktion h zu
bestimmen.
Der IBD-Algorithmus zeichnet sich durch eine Rechenkomplexität der Größen-
ordnung O(N log N ) pro Iteration aus, wobei N der Gesamtzahl der Pixel in
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einem einzelnen Frame entspricht, während normalerweise mehr als eine
Iteration für seine Konvergenz erforderlich ist. Insbesondere wird bei der
IBD auch die Fourier-Phase mit berücksichtigt, anders als bei vergleichba-
ren iterativen Algorithmen, wie z. B. bei dem Verfahren von Lane und Bates
[Lan87].
Die Abbildung 5.1 illustriert die generelle Struktur von Entfaltungsalgorith-
men wie sie auch in [Aye88] beschrieben ist. Im Wesentlichen bestehen
Entfaltungsalgorithmen aus einer vorgegebenen Anzahl von Iterationen der
acht nachfolgend beschriebenen Schritte. Der Parameter k kennzeichnet
dabei die jeweils k-te Iteration (k ∈N0). Zuvor wird als Input allerdings noch
eine initiale Schätzung ĥ0 ∈R+ (d. h. k = 0) für die Filterfunktion benötigt.
Eine einfache Möglichkeit ist hierfür z. B. eine Bildmatrix, die über dem (als
bekannt vorausgesetzten) Träger von h aus Einsen besteht.

Abbildung 5.1: Grundlegender Ablauf eines Entfaltungsalgorithmus

Basis-Algorithmus für IBD

(1) Fourier-Transformation zur Überführung des Problems in den Fourier-
Raum:

ĥ0(x,y) ⇒ Ĥ0(u,v) bzw. ĥk (x,y) ⇒ Ĥk (u,v)

(2) Inverse Filterung liefert (neue) Schätzung für F , d. h.

F0 =G/Ĥ0 bzw. Fk =G/Ĥk

(3) Inverse Fourier-Transformation zur Rückkehr in den Ortsraum:

F0(u,v) ⇒ f0(x,y) bzw. Fk (u,v) ⇒ fk (x,y)
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(4) Erfüllung der Nichtnegativität im Bildbereich, indem alle Punkte der
Schätzung f0 bzw. fk , die einen negativen Wert haben, auf Null gesetzt
werden. Dies ergibt eine neue, positive Schätzung f̂0 bzw. f̂k für das
ideale Bild f .

(5) Erneute Fourier-Transformation:

f̂0(x,y) ⇒ F̂0(u,v) bzw. f̂k (x,y) ⇒ F̂k (u,v)

(6) Inverse Filterung liefert neue Schätzung für H , d. h.

H1 =G/F̂0 bzw. Hk+1 =G/F̂k

(7) Inverse Fourier-Transformation zur Rückkehr in den Ortsraum:

H1(u,v) ⇒ h1(x,y) bzw. Hk+1(u,v) ⇒ hk+1(x,y)

(8) Erfüllung der Nichtnegativität, indem alle Punkte der Schätzung h1

bzw. hk+1 mit negativem Wert, sowie alle Punkte außerhalb des Trä-
gers auf Null gesetzt werden. Dies ergibt eine neue, positive Schätzung
ĥ1 bzw. ĥk+1 für die Filterfunktion h.

Dabei bringt die inverse Filterung in den Schritten (2) und (6) natürlich die
bereits in Abschnitt 5.1.1 diskutierten Probleme mit sich. Hinzu kommt,
dass Nullen bei bestimmten Raumfrequenzen in F oder H dazu führen,
dass in der Faltung dort keine Informationen vorhanden sind. Auch hat sich
gezeigt ([Aye88]), dass die Bedingung der Nichtnegativität im Bildbereich in
den Schritten (4) und (8) zu verbesserter Konvergenz führt, wenn zugleich
bei jeder Iteration auf die Energieerhaltung (bzgl. der Intensitätsverteilung)
geachtet wird. Dies lässt sich realisieren, indem die Summe der negativen
Werte gleichmäßig über die jeweilige Schätzung umverteilt wird.
Für die eigentliche Bildentfaltung (des Originalbildes und der geschätzten
PSF) wird jeweils der LRD-Algorithmus verwendet.

5.1.4 Entfaltung mi�els Hauptkomponentenanalyse
Wie der IWF ist auch die Entfaltung mittels Hauptkomponentenanalyse
(“Principal Component Analysis”, PCA), gemäß dem Ansatz von [Li07], ein
direkter (also nicht-iterativer) Algorithmus und wird vergleichsweise schnell
ausgeführt. Anders als beim IWF handelt es sich hier jedoch insbesondere
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um eine blinde Methode, die je nach Variante nur minimale bzw. gar keine
Zusatzinformationen (wie die Größe des Filter-Supports) vorab benötigt.
Darüber hinaus ist der Algorithmus robust gegenüber weißem Rauschen.
Die Bildunschärfe entfernt hochfrequente Komponenten aus einem Bild
oder einer Bildsequenz, was bedeutet, dass die räumliche Varianz eines
Bildes reduziert wird. Der PCA-Algorithmus zielt darauf ab, die durch atmo-
sphärische (und systemische) Unschärfe verursachte Korrelation zwischen
Bildmatrixspalten zu de-korrelieren, um so diese hochfrequenten Kom-
ponenten aus einem Bild oder einer Sequenz wiederherzustellen. Hierfür
werden in [Li07] gleich zwei Implementierungen des Algorithmus vorge-
schlagen, von denen die eine Version als wahrhaft blinde Entfaltung funk-
tioniert, welche auf einer Folge von mehreren Bildern desselben Motivs (als
“Multiple Observations” bezeichnet) operiert, auf Basis derer ein einzelnes
Ausgabebild berechnet wird. Die andere Version operiert direkt auf Einzel-
bildern (“Single Observations”) und benötigt ebenso wie die IBD zusätzliche
Informationen über die Größe des Trägers der Filterfunktion. In [Gre08] wird
zusätzlich noch eine Verallgemeinerung des ursprünglichen Algorithmus
vorgeschlagen.
Es wird das folgende Modell für die turbulenzbedingten Störungen zugrunde
gelegt, wobei hier die Bezeichnungen (wie sie speziell auch in [Gre08] und
[Hue08] verwendet wurden) etwas angepasst wurden, um die Konsistenz
mit der zuvor verwendeten Notation so gut wie möglich zu wahren:

gm(x,y) = hm(x,y)∗ f (x,y)+nm(x,y), (m = 1,2, . . . , M) (5.9)

Das bedeutet, es gibt eine Anzahl von M durch Turbulenz gestörte Beobach-
tungen (d. h. Bildaufnahmen) gm von derselben Szene (mit der ungestörten
Abbildung f ), wobei sich die Filterfunktion h ebenso wie die Rauschkompo-
nente n mit der Zeit verändern, so dass diese für jede der Beobachtungen
etwas unterschiedlich sind (d. h. h = hm und n = nm).
Hierbei sollte angemerkt werden, dass die Beobachtungen zeitlich nicht
zu weit auseinanderliegen sollten (z. B. im Millisekundenbereich), da der
Algorithmus von der Prämisse ausgeht, dass das ungestörte Bild für alle M
Beobachtungen identisch ist. Dies gilt vor allem, falls bewegte Objekte in
der beobachteten Szene enthalten sind (speziell hierzu sei auf Abschnitt 4
über Bewegungskompensation verwiesen).
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(A) PCA - “Multiple Observations”

Bei dem PCA-Ansatz für “Multiple Observations” (MO) werden die M Beob-
achtungen g1, . . . ,gM zunächst vektorisiert, d. h. in Vektoren ~g1, . . . ,~gM der
Länge L umgeformt (L = RC , wobei R, C wieder die Bilddimensionen be-
zeichnen). Die Vektoren ~g1, . . . ,~gM können als Realisierungen voneinander
unabhängiger Zufallsvektoren {~G1,~G2, . . . ,~GM } ∈RL mit identischen Vertei-
lungen und dem Mittelwert µ~G betrachtet werden.

Der Algorithmus sucht nun eine lineare Transformation~s (~s ∈RM ) für die
Zufallsvektoren ~Gm , (m = 1, . . . ,M), welche die Varianz des Ergebnisses, d. h.
der Schätzung F̂ , maximiert. Dazu muss die folgende Kostenfunktion K (~s)
maximiert werden ([Li07]):

K (~s) =
〈(

F̂ −µF̂

)T (
F̂ −µF̂

)〉
(5.10)

Die Schätzung für das ungestörte Bild f wird dabei durch eine Realisierung
f̂ des Zufallsvektors F̂ repräsentiert, wobei insbesondere gilt: µF̂ =µ~G . Den
korrespondierenden Zufallsvektor F̂ gewinnt man mit Hilfe der folgenden
linearen Transformation:

F̂ = [
~G1 −µ~G , ~G2 −µ~G , . . . , ~GM −µ~G

]
~s + µ~G (5.11)

Unter Einführung der Variablen X und A lässt sich die Kostenfunktion K (~s)
vereinfacht ausdrücken:

K (~s) =~sT A~s

Dabei gelten für die Variablen X und A die folgenden Definitionen:

X := [
~G1 −µ~G , ~G2 −µ~G , . . . , ~GM −µ~G

]
A := 〈

X T X
〉

Derartige Maximierungsprobleme (sowie entsprechende Lösungsmetho-
den) sind in der Literatur weit verbreitet [Jen79]. Im vorliegenden Fall han-
delt es sich bei der Lösung~s um einen Vektor der Länge M . Für die Bestim-
mung von~s müssen zunächst die Eigenwerte {αm} sowie die zugehörigen
Eigenvektoren {~vm}, (m = 1, . . . , M) für die folgende Gleichung berechnet
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werden:

Â ~vm =αm ~vm (5.12)

Dabei wurden die folgenden Definitionen verwendet:

Â :=~xT~x

~x := [
~g1 − µ̂~G , . . . , ~gM − µ̂~G

]
µ̂~G := 1

M

∑M
m=1 ~gm

Das heißt, Â ist eine (skalierungsinvariante) Stichprobenschätzung von
A, und bei µ̂~G handelt es sich um die mittlere Stichprobenschätzung von
µ~G . Die Lösung des Maximierungsproblems für M gestörte Beobachtun-
gen ergibt sich aus dem maximalen Eigenwert α1 und dem zugehörigen
Eigenvektor ~v1:{

K (~s =~v1) =α1

f̂ =~x~v1 + µ̂~G
(5.13)

Die lineare Transformation~s kann als Hochfrequenzfilterung betrachtet wer-
den, welche es ermöglicht, die maximale räumliche Varianz innerhalb der M
gestörten Eingangsbilder (d. h. Beobachtungen) zu extrahieren. Ziel dabei
ist es, die hochfrequenten Komponenten, die zuvor durch den Blurring-
Filtereffekt der turbulenten Atmosphäre entfernt wurden, so gut wie möglich
wiederherzustellen. Die Schätzung f̂ in Gleichung (5.13) entspricht dem
Rekonstruktionsergebnis des unbekannten idealen Bilds f nach blinder
Entfaltung.

(B) PCA - “Single Observations”

Der PCA-Ansatz für “Single Observations” (SO) benötigt zusätzlich die In-
formation über die Größe des Trägers der Filterfunktion, wobei jedoch nur
ungerade Filtergrößen berücksichtigt werden. Zwar folgt diese Algorithmus-
Variante im Grunde dem MO-Ansatz, die erforderliche Anzahl von M Beob-
achtungen wird aber künstlich erzeugt über Verschiebungen des Eingangs-
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bildes (ganzzahlige ungerade Pixel-Shifts), wobei M gleich der Pixelanzahl
im Träger der Filterfunktion ist.

5.2 Resultate
Eine ausführliche Evaluation der Leistungsfähigkeit dieser Algorithmen wur-
de in [Gre08] anhand von simulierten Turbulenzdaten (d. h. mit vorliegen-
den “Ground Truth”-Daten) durchgeführt, während in [Hue08] eine entspre-
chende Evaluierung anhand von realen Turbulenzdaten unterschiedlichen
Schweregrades (ohne “Ground Truth”-Daten) vorgenommen wurde, von
denen hier im folgenden einige repräsentative Ergebnisse gezeigt werden.

5.2.1 Spezifikation der Testdaten und Instrumente
Die nachfolgend als Testsequenzen verwendeten Bildsequenzen wurden un-
ter verschiedenen Turbulenzbedingungen aufgezeichnet, welche von relativ
leichter bis sehr starker Turbulenz reichen. Sie wurden aus insgesamt über
100 Videosequenzen ausgewählt, die vom damaligen FGAN-FOM3im Rah-
men einer NATO Messkampagne der RTG 40 auf der “White Sands Missile
Range” in New Mexico, USA, im Jahr 2005 aufgezeichnet wurden [Rep06].
Beispielbilder der ausgewählten Sequenzen sind in der Abbildung 5.2 zu
sehen.
Alle Sequenzen hatten jeweils eine Länge von 1000 Einzelbildern und eine
Bildauflösung von 240× 256 Pixeln, wobei jede Sequenz ein Paneel mit
einem Testmuster zeigt, welches in einer Entfernung von 1 km von der Optik
angebracht ist. Die Sequenzen wurden jeweils paarweise ausgewählt, so dass
jedes der insgesamt drei Sequenzpaare ein unterschiedliches Musterpaneel
zeigt. Die jeweiligen Aufnahmezeiten der Sequenzen eines solchen Paares
lagen dabei nicht mehr als max. 10 Minuten auseinander, so dass man von
nahezu identischen Turbulenz- (und Licht-)Bedingungen ausgehen kann.

3 FGAN-FOM: früherer Name des Ettlinger Teils des heutigen Fraunhofer IOSB (FGAN: For-
schungsGesellschaft für Angewandte Naturwissenschaften, FOM: Forschungsinstitut für
Optronik und Mustererkennung)
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Oben: Seq. 1(7:15),
unten: Seq. 2 (7:20).

Oben: Seq. 4(7:48),
unten: Seq. 3 (7:48).

Oben: Seq. 6(8:22),
unten: Seq. 5 (8:12).

Abbildung 5.2: Testsequenzen (v.l.n.r.) mit leichter, mittlerer und starker
atmosphärischer Turbulenz; oben: extrem kurze Integrationszeit (Seq. 1 u. 3:
<0,1 ms, Seq. 5: 0,045 ms), unten: 1 ms Integrationszeit.

Ein wesentliches Auswahlkriterium war insbesondere die unterschiedliche
Belichtungszeit, welche für eine Sequenz jeden Paares immer bei 1,0 ms
(Kurzzeit-Belichtung) lag und für die andere Sequenz unter 0,1 ms (extrem
kurze Belichtungszeit). Generell sind kurze Integrationszeiten von Vorteil,
weil dies bedeutet, dass die Turbulenz gewissermaßen eingefroren ist. In der
Regel geht man davon aus, dass dies bereits bei Aufnahmen in der Größen-
ordnung von wenigen Millisekunden der Fall ist [Rog96]. Ein Vergleich der
Sequenzen mit extrem kurzer Integrationszeit (<0,1 ms, jeweils oben in der
Abbildung 5.2) zeigt, dass die Geometrie der abgebildeten Objekte korrekter
wiedergegeben wird als bei der etwas längeren Integrationszeit (1,0 ms),
unten in Abbildung 5.2. Dabei fällt auf, dass diese Sequenzen trotz der ver-
besserten Geometrie mehr Unschärfe aufweisen. Das liegt darin begründet,
dass nur größere (und langsamere) Turbulenzzellen tatsächlich im Bild ein-
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gefroren sind, welche insbesondere ja die Ursache für turbulenzbedingte
Bildverformungen sind (s. a. Abschnitt 1.1). Je kleiner die Turbulenzzellen
sind, desto schneller bewegen sie sich, insbesondere sehr kleine Turbu-
lenzzellen in der Größenordnung ≤ 1 Pixel. Das Resultat erscheint als eine
gleichförmige Unschärfe des ganzen Bildes.
Um nicht nur geometrisch rechtwinklige Muster zu berücksichtigen, deren
Rekonstruktion u. U. leichter fällt, wurden ganz bewusst die Sequenzen
3 und 4 selektiert, in denen stattdessen eine Tafel mit einem Schriftzug
abgebildet ist, der sowohl diagonale als auch runde Strukturen beinhaltet.
Es sollte noch erwähnt werden, dass die Nummerierung der Sequenzen 1-7
rein chronologisch gemäß ihrer Aufnahmezeit vorgenommen wurde.
Zum Setup des Experiments ist zu sagen, dass der Ausbreitungsweg in einer
Höhe von ca. 1,8 m parallel zum Boden verlief. In der gleichen Höhe wurden
gleichzeitig Messungen von Cn

2, dem Strukturparameter der Schwankungen
im Brechungsindex der Luft durchgeführt, so dass für jede der Sequenzen
korrespondierende Werte vorliegen. Für diese Messungen wurde ein Scintec
BLS900 Szintillometer verwendet. Alle Bilddaten wurden von einer Photron
Fastcam PCI-R2 Kamera mit einer Auflösung von 240×256 Pixeln mit ei-
nem Texas Instruments TC237B CCD-Sensor mit Progressive Scan und einer
Nikon Nikkor ED 800 Optik mit 800 mm fester Brennweite aufgezeichnet.
Für die Sequenzen wurde in den Fällen extrem kurzzeitiger Integrationszeit
(<0,1 ms) die (bestmögliche) Blendenskala f /5,6 verwendet und entweder
f /16 oder f /22 für die restlichen Sequenzen. Alle wesentlichen Daten für die
ausgewählten Sequenzen sind noch einmal in der Tabelle 5.2 zusammenge-
fasst, einschließlich der Daten für eine zusätzliche Sequenz, die während der
Mittagshitze aufgezeichnet und wegen der zu diesem Zeitpunkt besonders
starken Turbulenz ausgewählt wurde.
Der Fried-Parameter r0 in der Tabelle wurde mithilfe der Gleichung (3.26)
berechnet, wobei L der Entfernung zwischen dem abgebildeten Objekt (d. h.
der jeweiligen Mustertafel) und dem Sensor (d. h. dem Kameraobjektiv)
entspricht. Unter Verwendung der aus der Optik wohlbekannten Beziehung
fnr = f /D (d. h. D = f / fnr) zwischen der Blendenzahl fnr, der Apertur D und
der Brennweite f , wurde damit auch die Turbulenzstärke D/r0 bestimmt.
Die Größen “Kantenbreite” , “Gauß-PSF” und “Noise” in der Tabelle 5.2 be-
ziehen sich dagegen auf geschätzte Parameter, da ja sowohl für den IWF
als auch für den LRD-Algorithmus eine Schätzung der PSF als Input be-
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Tabelle 5.2: Eckdaten der Testsequenzen, zeitlich geordnet

nötigt wird. In den nachfolgend gezeigten Beispielen wurde die einfachste
Approximation für eine solche atmosphärische Filterfunktion verwendet,
d. h. ein Gauß-Filter. Dies ist eine durchaus sinnvolle Annahme, da die opti-
sche Turbulenz im Wesentlichen als Tiefpassfilter wirkt, welcher die hohen
Ortsfrequenzen herausfiltert, wodurch scharfe Kanten und punktförmige
Objekte verwischt werden. Das Hauptproblem besteht darin, die richtige
Filtergröße in Bezug auf den Mittelwert µ und die Standardabweichung
σ zu schätzen. Wird σ zu groß gewählt, führt dies zu sogenannten “Rin-
ging”-Effekten (siehe Anmerkungen in Abschnitt 5.4.3), und falls es zu klein
gewählt wird, bleibt zu viel Unschärfe im Ergebnis zurück. Da bereits zuvor
in [Rep08] für jede der Sequenzen entsprechende Statistiken über die Tur-
bulenzbedingungen erstellt und mit speziellem Fokus auf die Verbreiterung
der Kanten in Abhängigkeit von der Turbulenzstärke ausgewertet worden
waren, konnten diese Informationen über die Kantenverbreiterung mit den
gemessenen Cn

2-Werten korreliert werden und daraus geeignete σ-Werte
abgeleitet werden. Natürlich gibt es auch andere Möglichkeiten zur PSF-
Schätzung. Unter anderem lässt sich die zugehörige theoretische (mittlere)
PSF bestimmen (Näheres dazu in Abschnitt 6.2).
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5.2.2 Entfaltungsergebnisse im Vergleich
Bei der LRD wie auch der IBD besteht die Möglichkeit, Zusatzinformationen
über die Rauschcharakteristiken der Daten einfließen zu lassen. Hier wurde
zur Noise-Abschätzung die zeitliche Varianz einer Bildregion mit homoge-
nen Grauwerten verwendet. Zur Rauschreduktion wurde darüber hinaus ein
gleitender Mittelwert (“Average”) von je 100 Frames als Basis für die Entfal-
tung verwendet. Dies ist relativ unkritisch, da es sich um statische Szenen
handelt, die zudem mit einer hohen Frequenz aufgenommen wurden. Den-
noch gehen feine Strukturen bei dieser Art der Mittelwertbildung verloren.
Zur Erhaltung solcher Details wurde daher auch ein (gleitender) temporaler
Median von je 100 Frames mit den Entfaltungsalgorithmen getestet.

Abbildung 5.3: Beispielergebnisse für Seq. 1 (grün markiert) u. Seq. 2 (gelb).
1.+2. Reihe (v.l.n.r.): temp. Median von 100 Frames, Entfaltungsergebnisse für
IBD, LRD und IWF; unten: Ergebnisse für PCA-basierte Entfaltung (SO- und
MO-Version) jeweils für alle vier HK (1 + 2 + 3 + 4).
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Abbildung 5.4: Beispielergebnisse für Seq. 3 (grün markiert) u. Seq. 4 (gelb).
1.+2. Reihe (v.l.n.r.): temp. Median von 100 Frames, Entfaltungsergebnisse
für IBD, LRD und IWF; unten: Ergebnisse für PCA-basierte Entfaltung (nur
SO-Version) für verschiedene HK (1 + 4), (2 + 3), (1 + 2 + 3 + 4).

Tatsächlich ist das Ergebnis dieses Medians ein wenig besser als das des
Mittelwerts. Aber da die Unterschiede zwischen Mittelwert und Median
visuell kaum wahrnehmbar sind (insbesondere bei den Sequenzen 1 bis
6), werden in den nachfolgenden Abbildungen 5.3, 5.4 und 5.5 nur einige
repräsentative Ergebnisse gezeigt, die aus dem Medianbild resultieren.
Die Ergebnisse sind paarweise angeordnet, d. h. die Abbildung 5.3 enthält
repräsentative Entfaltungsergebnisse für die Sequenzen 1 und 2 (7.15 Uhr
und 7.20 Uhr) mit moderater Turbulenz. Die Abbildung 5.4 enthält korre-
spondierende Ergebnisse für die Sequenzen 3 und 4 (7.45 Uhr und 7.48 Uhr)
mit mittlerer bis starker Turbulenz. Die Abbildung 5.5 enthält schließlich
Ergebnisse für die Sequenzen 5 und 6 (8.12 Uhr und 8.22 Uhr) mit starker
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Turbulenz. Die Bildunterschriften sind farblich entsprechend unterlegt, um
die Zuordnung der Ergebnisse zu den einzelnen Sequenzen zu erleichtern.
Jeder Satz an Entfaltungsergebnissen beinhaltet den zeitlichen Median von
100 Frames als Referenz (d. h. als Input für die Algorithmen), sowie die zuge-
hörigen Restaurationsergebnisse für IWF, LRD und IBD.
Für die PCA-basierte Entfaltung sind in erster Linie Ergebnisse der SO-
Version abgebildet für verschiedene Hauptkomponenten (HK). Dabei bedeu-
tet “C 23” beispielsweise, dass speziell die Komponenten 2 und 3 ausgewertet
wurden unter Verwendung der in [Gre08] hergeleiteten Verallgemeinerung.
Hintergrund für die scheinbare Inkonsistenz bei der Auswahl der Haupt-

Abbildung 5.5: Beispielergebnisse für Seq. 5 (grün markiert) u. Seq. 6 (gelb).
1.+2. Reihe (v.l.n.r.): temp. Median von 100 Frames, Entfaltungsergebnisse
für IBD, LRD und IWF; unten: Ergebnisse für PCA-basierte Entfaltung (nur
SO-Version) für verschiedene HK (1), (2), (1 + 2 + 3 + 4).
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komponenten war die unterschiedliche und teilweise schlechte Qualität der
Ergebnisse, weshalb hier auch nur für die Sequenzen 1 und 2 Ergebnisse für
beide Versionen (d. h. SO und MO) abgebildet sind.
Zur Visualisierung des turbulenzbedingten Bewegungsinhalt in den gemes-
senen Daten, enthält die Abbildung 5.6 die zeitliche Standardabweichung
(STD) der Sequenzen 1 bis 6, jedes Mal betrachtet über die gesamte Sequenz-
länge (1000 Frames). Dazu wurden die Grauwerte jeweils auf das Intervall
[0,1] skaliert, was insbesondere das etwas unterschiedliche Aussehen für die
STD in der Sequenz 1 erklärt. Die Breite der Kanten (gemessen in Pixeln)
lässt entsprechende Rückschlüsse darauf zu, wie große turbulenzbeding-
te Bewegungen aus statistischer Sicht zu erwarten sind, und wie groß (in
Pixeln) der Support für die atmosphärische PSF folglich sein muss.

Oben: Seq. 1(7:15),
unten: Seq. 2 (7:20).

Oben: Seq. 4(7:48),
unten: Seq. 3 (7:45).

Oben: Seq. 6(8:22),
unten: Seq. 5 (8:12).

Abbildung 5.6: Standardabweichung der Testsequenzen (v.l.n.r.) mit leich-
ter, mittlerer und starker atmosphärischer Turbulenz; oben: extrem kurze
Belichtung (Seq. 1 u. 3: <0,1 ms, Seq. 5: 0,045 ms), unten: 1 ms Belichtung.
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5.2.3 Spezialfall: stark anisoplanatische Turbulenz
Der Fokus in dieser Arbeit liegt zu einem nicht unbeträchtlichen Teil auf
starker und real gemessener Turbulenz. Aus diesem Grund wurde, wie im
Abschnitt 5.2.1 zuvor erwähnt, zusätzlich die Testsequenz 7 selektiert, die
in der Mittagshitze unter stark anisoplanatischen Turbulenzbedingungen
aufgenommen wurde (Aufnahmezeit 13:07 Uhr). Beispielergebnisse hierfür
sind nachfolgend in den Abbildungen 5.7 und 5.8 abgebildet.

Abbildung 5.7: Beispielergebnisse für Seq. 7, Teil 1: IBD, LRD u. IWF.
Oben (v.l.n.r.): Einzelframe, Mittelwert u. Median (je 100 Fr.), MW (1000 Fr.);
Mitte: IBD- u. LRD-Ergebnisse jeweils für MW u. für Med. (je 100 Fr.); unten
(v.l.n.r.): STD σ (1000 Fr.), IWF-Ergebnisse für MW u. Med. (100 Fr.), Ergebnis
für PCA (SO) für alle vier HK (1 + 2 + 3 + 4).
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Abbildung 5.8: Beispielergebnisse für Seq. 7, Teil 2: Entfaltung mit PCA.
1.+2. Reihe: SO-Version; 1. Reihe: Ergebnisse für jede der 4 HK für MW
(100 Fr.); 2. Reihe: Ergebnisse für 1. HK u. alle 4 HK für Med. (20 Fr. u. 10 Fr.).
3.+4. Reihe: MO-Version; 3. Reihe: Ergebnisse für 1. HK u. alle 4 HK für Med.
(20 Fr. u. 10 Fr.); 4. Reihe: Ergebnisse für HK (1), (4), (3 + 4) u. alle 4 HK.
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5.3 Evaluierung
Am Einzelbild der Sequenz 7 in der Abbildung 5.7 (1. Reihe, ganz links) fällt
besonders der scheinbare Raucheffekt (oder Wolkeneffekt) auf, der sich erst
bei mittlerer oder starker Turbulenz beobachten lässt. Dieser Effekt macht
sich vorwiegend in den Grenzbereichen zwischen hellen und dunklen Mus-
teranteilen bemerkbar und resultiert daraus, dass das einfallende Licht
von größeren Turbulenzzellen (d. h. > r0 aber < D) abgelenkt und über die
(Farb-)Grenzen in benachbarte Bildregionen hinein gestreut wird. Dadurch
entsteht in eigentlich homogen schwarzen bzw. weißen Bildbereichen ein
Farbgemisch an Grautönen, und es bilden sich Strukturen, Rauchschwaden
ähnlich, mit höheren (Raum-)Frequenzanteilen und größerer Standardab-
weichung (STD). Diese unechten, durch Turbulenz erzeugten Strukturen
stellen besondere Herausforderungen für Korrekturverfahren dar und kön-
nen unerwünschte Artefakte in den Ergebnissen verursachen.
Erwartungsgemäß sind die Ergebnisse für die Sequenzen 1, 4 und 6 mit einer
ultra-kurzen Belichtungszeit (< 0,1 ms) generell exakter hinsichtlich der zu-
grundeliegenden Geometrie der abgebildeten Szene, siehe die Abbildungen
5.3, 5.4 und 5.5. Währenddessen sehen die Ergebnisse der Sequenzen 2, 3,
5 und 7 mit etwas längerer Belichtungszeit (1 ms) entsprechend schärfer
aus, weisen einen vergleichsweise höheren Kontrast auf und enthalten mehr
Details.
Die Ergebnisqualität von IBD, LRD und IWF ist weitgehend ähnlich, und
die zumeist geringfügigen Unterschiede lassen sich in erster Linie mit der
geschätzten (Gauß-)PSF begründen, die für die nicht-blinden Methoden
(IWF und LRD) verwendet wurde. Die Qualität der Ergebnisse für die PCA-
basierte Entfaltung variiert hingegen signifikant, was speziell für die MO-
aber auch für die SO-Version des Algorithmus gilt.

5.3.1 Diskussion: IWF, LRD und IBD
Größtenteils lassen sich die Ergebnisse von IBD, LRD und IWF kaum un-
terscheiden und bieten für die Sequenzen 1, 2, 5 und 6 vergleichsweise
wenig Verbesserung gegenüber dem Median-Referenzbild, das als Basis für
die Entfaltung verwendet wurde. Dagegen sind die Unterschiede in den
Sequenzen 3 und 4 deutlicher ersichtlich. Speziell in der Sequenz 3 liefert
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der IWF die beste Auflösung insofern, dass dieser als einziger die erste Text-
zeile “A BEAR” lesbar aufzulösen vermag. Davon abgesehen ist es allerdings
der IBD-Algorithmus, der für die Sequenzen 3 und 4 das schärfste Ergebnis
liefert, während der LRD-Algorithmus das glatteste Ergebnis liefert (besser
erkennbar in der originalen Bildgröße), ohne zugleich unscharf wie die PCA-
Ergebnisse zu sein. Für alle anderen Sequenzen (einschließlich Sequenz 7)
sehen IBD- und LRD-Resultate im Wesentlichen gleich aus. Dies in Ver-
bindung mit den zufriedenstellenden IWF-Ergebnissen bedeutet, dass die
verwendeten (Gauß-)PSF-Schätzungen durchaus annehmbare Näherungen
darstellen.
Es sollte noch erwähnt werden, dass die Anzahl an Iterationen für die LRD
und IBD bewusst gering (d. h. 5-10 Iterationen) gehalten wurde. Ein speziel-
ler Aspekt dieser Untersuchung war das Potential für Echtzeitfähigkeit der
getesteten Algorithmen, wobei jede zusätzliche Iteration in dieser Hinsicht
wertvolle Zeit kostet. Aus diesem Grund wurde eine qualitative Untersu-
chung darüber durchgeführt, wie viele Iterationen zu einem gegebenen
Datensatz mindestens erforderlich sind, um ein akzeptables Ergebnis zu er-
zielen. Hinzu kamen rein praktische Erwägungen, denn aufgrund der hohen
Framerate, mit der die Sequenzen aufgezeichnet wurden, lag insgesamt eine
verhältnismäßig große Menge an Rohdaten vor, die mit mehreren verschie-
denen Parametersätzen verarbeitet werden musste.
Bezüglich des verwendeten Rauschparameters konnte weder eine Verbes-
serung noch eine Verschlechterung festgestellt werden gegenüber den Er-
gebnissen, in denen das Rauschen zu Null angenommen wurde. Dies liegt
aller Wahrscheinlichkeit nach daran, dass der Rauschparameter in den un-
tersuchten Fällen ohnehin sehr gering ausfiel (s. a. Tabelle 5.2) weil als Basis
für die Entfaltung der Mittelwert (bzw. Median) einer relativ großen Anzahl
an Frames (z. B. 100 Frames) verwendet wurde, wodurch das ursprünglich
enthaltene Rauschen in den Daten entsprechend reduziert wurde.

5.3.2 PCA: Multiple Observation und Single Observation
Wie eingangs bereits erwähnt, kann der durch Turbulenz bedingte Wolkenef-
fekt eine beeinträchtigende Wirkung auf Korrekturverfahren haben, speziell
auf die hier vorgestellten Entfaltungsverfahren. Die PCA-basierte Entfaltung
ist hierfür besonders anfällig, wie die entsprechenden Ergebnisse in den
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Abbildungen 5.3 bis 5.8 zeigen, wobei die MO-Version des Algorithmus deut-
lich stärker beeinträchtigt wird als die SO-Version. Dies liegt u. a. daran, dass
hierin, anders als bei allen anderen Methoden, die unveränderten Rohdaten
verwendet wurden. Das heißt, es wurde keine temporale Mittelwert- oder
Median-Filterung zur Glättung der Daten durchgeführt (mit entsprechender
Reduktion des Raucheffekts). Stattdessen wurden bestehende Varianzen
zwischen den Einzelbildern maximiert.
Die PCA-basierte Entfaltung (in beiden Varianten) gehört zu denjenigen
Algorithmen, die den Kontrast eines Bildes anhebt und höhere Frequenzan-
teile (z. T. extrem) verstärkt. Dadurch wird sie anfällig für die Verstärkung
von Rauschen, was zu unnatürlichen Hochfrequenzkomponenten und ho-
hem Kontrast führt. Die Ergebnisse in den beiden untersten Reihen von
Abbildung 5.8 verdeutlichen, dass sich dies nicht notwendigerweise positiv
auswirkt. Insbesondere werden starker Kontrast und hohe Frequenzanteile
von zahlreichen (Bild-)Qualitätsmetriken als positiv bewertet.
Wie das letzte Bild (d. h. ganz unten rechts) in der Abbildung 5.3 mit mo-
derater Turbulenz bereits anmuten lässt, ist die originale MO-Version für
anisoplanatische Bedingungen eher ungeeignet. Zwar erscheint das Ergeb-
nis durchaus scharf, und einige Details sind tatsächlich besser erkennbar
(z. B. das Seil rechts unten im Bild, Objekte im Hintergrund), dennoch sind
es die fälschlich erhaltenen Deformationen, die das Endergebnis dominie-
ren. Wie sehr zunehmende Turbulenz diesen Effekt noch negativ verstärkt
verdeutlicht die Abbildung 5.8. Dabei kann die MO-Version bei schwacher
Turbulenz durchaus gute Ergebnisse liefern, wie unter anderem in [Li07]
und [Gre08] gezeigt. Betrachtet man vor allem die zugrundeliegende Geome-
trie der abgebildeten Mustertafeln, stellt sich allerdings heraus, dass sich die
Ergebnisse mit zunehmender Turbulenzstärke immer mehr verschlechtern.
Wie die Abbildung 5.3 erkennen lässt, wirkt sich dies bereits bei moderater
Turbulenz signifikant aus. Bei starker Turbulenz wie in Sequenz 7 versagt
die MO-Variante des Algorithmus bei 100 Eingabebildern sogar völlig, wie
speziell die unterste (4.) Bildreihe in der Abbildung 5.8 demonstriert. Die
entsprechenden Ergebnisse (in der 3. Reihe) mit reduzierter Anzahl an Ein-
gabebildern, d. h. nur 10 oder 20, fallen etwas besser aus. Deren Qualität
reicht dennoch nicht an die der anderen Entfaltungsalgorithmen heran oder
auch nur an die des einfachen temporalen Medians oder Mittelwert (bei
gleicher Anzahl an Eingabebildern).
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Die Ergebnisse der SO-Version des PCA-Algorithmus schneiden dagegen
verhältnismäßig gut ab. Bei schwacher Turbulenz wurden damit sogar die
besten Ergebnisse erzielt, z. B. für die Sequenzen 1 und 2 (siehe Abbildung
5.3, unterste Reihe). Besonders überzeugt die Fähigkeit des Algorithmus,
horizontale und vertikale Linien gut aufzulösen. Dies ist auch bei modera-
ten und sogar bei starken Turbulenzbedingungen der Fall, wie die Ergeb-
nisse für die Sequenzen 5 bis 7 belegen (siehe Abbildungen 5.5, 5.7 und
5.8). Interessanterweise funktioniert diese Methode nicht so gut für die fei-
neren, teilweise organischen Strukturen und runden Konturen, wie sie in
den Sequenzen 3 und 4 enthalten sind (siehe Abbildung 5.4). Dies liegt vor
allem an einer horizontalen bzw. vertikalen Verstärkung, die den ersten
Hauptkomponenten (HK) inhärent ist. Die 1. Bildreihe in der Abbildung
5.8 veranschaulicht die charakteristische Gestalt der vier einzelnen HK am
Beispiel von Sequenz 7. Daran lässt sich erkennen, dass die 1. HK eine be-
sonders starke vertikale Ausprägung aufweist, während die 2. HK deutlich
horizontal ausgerichtet ist. Die 3. und 4. HK weisen ebenfalls vertikale und
horizontale Strukturen auf, allerdings in einer kleineren Größenordnung.
Dem PCA Prinzip nach sollte grundsätzlich die 1. HK das beste Ergebnis
liefern. Die Anwendung hat allerdings gezeigt, dass es in der Realität zumeist
Kombinationen mehrerer Komponenten waren, die zu einem gegebenen
Testdatensatz tatsächlich die besten Ergebnisse liefern konnten.
Auffällig ist bei der SO-Version zudem ein scheinbarer 3-D Eindruck. Be-
trachtet man z. B. das letzte Ergebnis für die Sequenz 6 in der Abbildung
5.5, lässt sich eine gerichtete Kontrastverstärkung an den Kanten im Bild
erkennen. Die weißen Quadrate und Streifen des Schachbrettmusters auf
der Mustertafel erscheinen in der Hauptsache hellgrau, wobei die Kanten
oben und links (fast) weiß sind, während die Kanten unten und rechts (fast)
schwarz sind. Dies vermittelt fälschlicherweise den optischen Eindruck,
dass die weißen Areale nach vorne aus der Mustertafel herausragen. Die-
ser unerwünschte 3-D Effekt hängt zum einen mit der horizontalen bzw.
vertikalen Ausprägung der Hauptkomponenten zusammen, und zum ande-
ren damit, dass die erforderliche Anzahl von Beobachtungen anhand von
Verschiebungen des Eingangsbildes künstlich erzeugt wurde. Die Stärke die-
ses Effekts ist insbesondere von der (geschätzten) Größe des PSF-Supports
(entspricht der Kantenbreite” in der Tabelle 5.2) abhängig, weshalb er sich
mit zunehmender Turbulenz verstärkt. Dies ist bei leichter Turbulenz (mit
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kleiner PSF) relativ unkritisch, wie die Ergebnisse für die Sequenzen 1 und 2
in Abbildung 5.3 belegen. Mit zunehmender und insbesondere bei starker
Turbulenz wie im Fall von Sequenz 7 (siehe Abbildung 5.8) dominiert dieser
Effekt die Ergebnisse und verfälscht z. T. den tatsächlichen Bildinhalt.
Wie sich speziell für die Verarbeitung von ganzen Videosequenzen als pro-
blematisch herausgestellt hat, kann es des öfteren zu künstlichen Verschie-
bungen zwischen den Entfaltungsergebnissen aufeinander folgender Einzel-
bilder kommen. Die Größe der Verschiebungen (in Pixeln) entspricht dabei
maximal der Größe der PSF. Werden diese Ausgabebilder zu einem Video zu-
sammengefügt, erscheinen diese Verschiebungen wie Sprünge bzw. Ruckeln
im Video. Dieser Effekt lässt sich nicht mithilfe einer einfachen Bildregis-
trierung beseitigen, da der unechte 3-D Effekt auch quasi “umkippen” kann.
Das heißt, es sind nicht nur positionelle, sondern auch (Bild-)inhaltliche
Unstetigkeiten möglich.

5.4 Zusammenfassung und Diskussion
Bei den eingangs beschriebenen Entfaltungsmethoden handelt es sich ledig-
lich um eine repräsentative Teilmenge an Entfaltungsmethoden. Darüber
hinaus gibt es natürlich es noch eine Vielzahl anderer Lösungsmöglichkeiten
für das Entfaltungsproblem. Ziel der Auswahl hier war es, für jeden der in
Tabelle 5.1 aufgelisteten Algorithmus-Typen speziell ein typisches Verfahren
herauszugreifen und vorzustellen. Die Auswahlkriterien hierfür waren in ers-
ter Linie auf den Bekanntheitsgrad der jeweiligen Algorithmen beschränkt
und darauf, wie weit diese verbreitet sind und tatsächlich eingesetzt werden.

5.4.1 Vor- und Nachteile der Algorithmus-Typen

Direkte vs. iterative Entfaltungsmethoden

Der größte Vorteil direkter Entfaltungsmethoden gegenüber iterativen Me-
thoden im Hinblick auf Turbulenzkorrekturverfahren liegt auf der Hand.
Algorithmen, welche die gesuchte Lösung innerhalb eines einzigen Pro-
grammdurchlaufs liefern können, bieten (potenziell) eine höhere Geschwin-
digkeit und u. U. sogar Echtzeitfähigkeit. Dies gilt speziell für den IWF, der
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selbst für große Bilder Ergebnisse mit ausreichender Bildrate für Echtzeitwie-
dergabe liefern kann. Bei der ebenfalls direkten PCA-basierten Entfaltung
sieht das ein wenig anders aus. Obwohl es sich hierbei um eine direkte und
tatsächlich relativ schnelle Methode handelt, benötigt die Ausführung in der
Regel dennoch deutlich mehr Zeit als dies beim reinen IWF der Fall ist, bei
dem die PSF-Schätzung separat erfolgen muss.

Blinde vs. nicht-blinde Entfaltungsmethoden

Entsprechend offensichtlich ist auch der diesbezüglich größte Nachteil von
nicht-blinden Entfaltungsverfahren gegenüber blinden Verfahren, welcher
in der im Normalfall (d. h. für den vorliegenden Turbulenz-Kontext “nor-
mal”) unbekannten PSF begründet liegt. Das bedeutet, dass vor der eigentli-
chen Dekonvolution erst noch die Filterfunktion h mit Hilfe einer geeigneten
Methode bestimmt (bzw. geschätzt) werden muss. Hierfür müssen somit
zusätzliche Ressourcen eingesetzt werden. Tatsächlich ist die Schätzung
derartiger Blurring-Funktionen eines der schwierigsten Probleme bei der
Bildrekonstruktion überhaupt. Entsprechend kann jede Art von Vorwissen
über die Natur der aktuell vorliegenden Störungen bei der Rekonstruktion
von Vorteil sein. Speziell bei bekannten Rahmenbedingungen, wie z. B. bei
Anwendungen in der medizinischen Bildverarbeitung häufig der Fall, kön-
nen blinde Entfaltungsverfahren auch zu kurzsichtigen (“myopic”) Verfahren
werden.

5.4.2 Überblick über die Algorithmen

IWF-Algorithmus

Der IWF zählt zu den direkten Entfaltungsmethoden, während er zugleich
auch zu den nicht-blinden Methoden gehört, inklusive aller im vorangegan-
genen Abschnitt aufgeführten Vor- (Echtzeitfähigkeit) und Nachteile (PSF
unbekannt). Darüber hinaus ist insbesondere seine extreme Sensibilität
bereits gegenüber minimalem Rauschen negativ hervorzuheben. Ebenso
nachteilig ist der erforderliche hohe Aufwand, um sinnvolle Parametrisie-
rungen zu finden, die speziell auf die jeweilige Anwendung angepasst sind.
Würde man darauf verzichten, hätte dies im Regelfall signifikante Beein-
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trächtigungen in der Ergebnisqualität zur Folge.
Nichtsdestoweniger werden spezialisierte Versionen des IWF in zahlreichen
Verfahren zur Korrektur optischer Turbulenz eingesetzt.

LRD-Algorithmus

Bei dem relativ robusten LRD-Algorithmus handelt es sich um eine iterative,
aber nicht-blinde Entfaltungsmethode. Das bedeutet, es müssen Abbruch-
kriterien gefunden werden, welche darüber entscheiden, wann bzw. ob eine
hinreichende Konvergenz der Schätzung f̂ des ungestörten Bildes f erreicht
wurde. Zudem muss eine möglichst gute PSF-Schätzung ĥ gefunden wer-
den. An dieser Stelle sei auf den nachfolgend diskutierten IBD-Algorithmus
verwiesen, welcher dieses Problem löst.
Der LRD-Algorithmus dient im übrigen häufig als qualitativer Vergleichs-
maßstab für reine (d. h. nicht-blinde) Entfaltungsalgorithmen. Seine Ge-
schwindigkeit hängt insbesondere von der Bildgröße und der Anzahl von
Iterationen ab. Je nachdem können die Berechnungen mehrere Sekunden
bis hin zu mehreren Tagen in Anspruch nehmen.

IBD-Algorithmus

Der IBD-Algorithmus zählt zu den iterativen, sowie blinden Entfaltungs-
methoden und ist im Grunde genommen, wie zuvor erwähnt, eine blinde
LRD-Variante. Auch der IBD-Algorithmus dient häufig als eine Art Refe-
renzverfahren, allerdings speziell für blinde Entfaltungsalgorithmen. Seine
Geschwindigkeit hängt ebenfalls von der Bildgröße und der Anzahl von
Iterationen ab. Genauer zeichnet sich dieser Algorithmus durch eine Re-
chenkomplexität der Größenordnung O(N log2 N ) pro Iteration aus, wobei
N der Gesamtzahl der Pixel in einem einzelnen Frame entspricht, während
normalerweise mehr als eine Iteration für seine Konvergenz erforderlich ist.

PCA-Algorithmus

Als sowohl blinde wie auch direkte Entfaltungsmethode gehört der PCA-
Algorithmus zu der sicherlich am seltensten vorkommenden Algorithmus-
Kategorie und vereinigt in sich somit die (potenziellen) Vorteile beider Arten.
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Das heißt, für die MO Variante (mit mehreren Engabebildern) ist tatsächlich
keinerlei Vorwissen über die PSF erforderlich, während für die SO-Version
(mit nur einem einzigen Engabebild), ebenso wie im Fall der meisten blin-
den Entfaltungsmethoden, nur die Größe des Trägers der PSF bekannt sein
muss. Die Bildrekonstruktion erfolgt direkt, d. h. in einem einzigen Schritt,
wodurch das Rekonstruktionsergebnis vergleichsweise schnell vorliegt. Da-
bei erhöht sich zwar die Komplexität mit der Filtergröße, die Bildgröße wirkt
sich dafür aber deutlich weniger auf die Geschwindigkeit aus als dies bei
den anderen der hier vorgestellten Methoden der Fall war. Im Hinblick auf
(potenzielle) Echtzeit-Anwendungen stellt dies einen enormen Vorteil dar.
Ein zusätzlicher Vorteil liegt in der Robustheit des Algorithmus gegenüber
weißem Rauschen. Nachteilig ist dagegen die überproportionale Kontrastan-
hebung, sowie auch die Verstärkung hoher Frequenzanteile, einschließlich
hochfrequentem Rauschen. Je nach Anwendung kann es überdies auch von
Nachteil sein, dass der Algorithmus keine explizite Bestimmung der Filter-
funktion zulässt.
Aus den im vorangegangenen Abschnitt 5.3 diskutierten Ergebnissen aus
Abschnitt 5.2 geht hervor, dass beide Versionen des Algorithmus am besten
für schwache, insbesondere isoplanatische Turbulenz geeignet sind. Mit
zunehmender Turbulenzstärke steigt auch die Rauschanfälligkeit der MO-
Version an, sowie der unechte 3-D Effekt der SO-Version. Daher ist diese
Entfaltungsmethode für stärkere, insbesondere anisoplanatische Turbulenz
nicht empfehlenswert. Aufgrund der guten Auflösungsfähigkeit der SO Vari-
ante, speziell von vertikalen und horizontalen Mustern, ist deren Einsatz je
nach Anwendungsgebiet dennoch auch bei starker Turbulenz vorstellbar. So
sind z. B. Applikationen im Bereich Maschinelles Sehen denkbar, bei denen
die Auflösung geometrischer Muster den höchsten Stellenwert hat. Sobald es
hingegen um Objekterkennung bzw. -klassifizierung geht oder auch (visuell)
ästhetische Gesichtspunkte im Vordergrund stehen, sind im Regelfall andere
Methoden besser geeignet.

5.4.3 Anmerkungen

“Padding” zur Randbehandlung

Aufgrunddessen, dass die meisten Entfaltungsverfahren Fourier-Transfor-
mationen einsetzen, sollte noch angemerkt werden, dass diese in der Regel
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bessere Ergebnisse liefern, wenn die Eingangsdaten an den Randbereichen
entsprechend optimiert werden. Weit verbreitet ist hierfür der Einsatz soge-
nannter “Padding”-Methoden, bei denen die Bilder über den eigentlichen
Bildrand hinaus erweitert werden. Am einfachsten ist die Erweiterung mit
Nullen (bekannt als “Zero-Padding”), wobei das Kopieren oder die Spiege-
lung des Bildinhalts am Bildrand (auch bekannt als einfache oder symmetri-
sche Replikation) ebenfalls weit verbreitet sind.

“Ringing”-E�ekte

Unter “Ringing” in (Bild-)Signalen versteht man Störungen bzw. Artefakte im
Bild, die in der Umgebung scharfer Kanten auftreten. Das Bildsignal oszilliert
scheinbar um die Kanten herum, wodurch Phantom-Kanten als eine Art
Echo der echten Kanten erzeugt werden. Dekonvolutionsalgorithmen sind
sehr anfällig für solche “Ringing”-Effekte, speziell inverse Filtertechniken
wie das Wiener Filter.
Zur Reduktion solcher “Ringing”-Effekte wird häufig sogenanntes “Edge
tapering” eingesetzt, wobei Diskontinuitäten an den Bildkanten mithilfe
gradueller Kontrastreduktion vermindert werden.
Für zusätzliche Möglichkeiten der sinnvollen Bildvorverarbeitung im Fall
Turbulenz-gestörter Bilddaten sei insbesondere auf den Abschnitt 6.4 ver-
wiesen.



6
Turbulenzkorrektur

Der Themenkomplex Turbulenzkorrektur in diesem Kapitel befasst sich vor
allem damit, Korrekturmethoden ganz konkret an Turbulenzbedingungen
anzupassen. Algorithmen zur Bewegungskompensation und Deblurring,
die wesentliche Bestandteile gängiger Korrekturverfahren bilden, wurden
bereits in den vorangegangenen Kapiteln 4) und 5) behandelt. Jedoch ist
die Anwendbarkeit dieser Algorithmen auf turbulenzgestörte Daten nicht
immer ohne Weiteres gewährleistet. In Abschnitt 6.4 ist daher beschrie-
ben, inwieweit eine entsprechende Vorverarbeitung der Eingangsdaten die
Performanz diverser Verfahren verbessern kann.
Für eine gegebene Turbulenzstärke lässt sich gemäß [Fri82] eine theoreti-
sche durchschnittliche PSF berechnen, sofern alle relevanten Informationen
über das abbildende System und die abgebildete Szene vorliegen (siehe
Abschnitt 6.2). Die resultierende PSF kann anschließend für ein effektives
Deblurring einzelner Frames eingesetzt werden, insbesondere auch als Teil
der Vorverarbeitungskette.
Während Informationen wie die Spezifikationen des eingesetzten Kamera-
systems zumeist verfügbar sind, liegen in der Praxis hingegen nur vergleichs-
weise selten Informationen über die Stärke der vorherrschenden Turbulenz
(in Form von aktuellen Messdaten für r0 bzw. C 2

n) zu einem gegebenen
Datensatz vor. Daher liegen die Vorteile einer funktionsfähigen und hinrei-
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chend genauen Methode zur automatischen Schätzung der Turbulenzstärke
anhand eines solchen Bilddatensatzes auf der Hand. Ein entsprechendes
Verfahren wird in Abschnitt 6.3 erläutert.
Des weiteren können auch die Testdaten eine Rolle spielen, deshalb gibt der
nachfolgende Abschnitt 6.1 zunächst eine detaillierte Beschreibung der in
dieser Arbeit am häufigsten verwendeten Testsequenzen.

6.1 Testsequenzen
Um die Leistungsfähigkeit von Korrekturverfahren adäquat beurteilen zu
können, sind zunächst entsprechend geeignete Daten unerlässlich. Dabei
ist die Fragestellung nach der Eignung einer gegebenen Bildsequenz für
einen bestimmten Algorithmus eng verknüpft mit der Zielsetzung der zu-
grundeliegenden Anwendung.
Grundsätzlich gilt für Testdaten, dass im Idealfall mehrere möglichst unter-
schiedlich geartete Objekte in der abgebildeten Szene vorkommen sollten,
um die ganze Bandbreite der Leitungsfähigkeit eines Korrekturverfahrens
testen zu können. Dazu gehören insbesondere die folgenden Szenenelemen-
te:

• Geradlinige (meist künstliche) Strukturen, d. h. Linien und Kanten, so-
wohl mit horizontaler als auch vertikaler und diagonaler Ausrichtung
(z. B. eine Testmustertafel, ein Haus oder ein Strommast)

• Statische (unbewegliche) Elemente und bewegte Elemente

• Organische Strukturen, d. h. Formen mit Rundungen, sowohl natür-
lichen Ursprungs (wie z. B. Personen, Tiere oder Pflanzen) als auch
künstlich (z. B. ein Schriftzug oder eine spezielle Mustertafel)

• Bereiche mit hohem Kontrast und mit geringem Kontrast

• Feine Strukturen und grobe Strukturen

Das bedeutet nicht, dass gleich all diese Elemente in einer einzigen Sequenz
vorkommen müssen. Nicht selten sollen ganz spezifische Fähigkeiten eines
gegebenen Algorithmus getestet werden, so dass Daten benötigt werden,
die vor allem solche Objekte bzw. Objektarten beinhalten, welche die ent-
sprechenden Strukturen aufweisen.
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Weiterhin sollten die üblichen Anforderungen an die Aufnahmequalität
erfüllt sein (d. h. qualitativ hochwertiges Equipment, hohe Bildauflösung,
kurze Integrationszeit etc.)
Ein zusätzlicher Aspekt ist die allgemeine Verfügbarkeit spezieller Datensät-
ze. In der Regel ist sinnvoll, neu entwickelte oder verbesserte Algorithmen
an Daten zu testen, die auch von anderen verwendet werden dürfen, um
eine bessere Vergleichsmöglichkeit verschiedener Methoden untereinander
zu haben.
Nachfolgend werden die in der vorliegenden Arbeit häufiger vorkommenden
Testsequenzen genauer beschrieben.

6.1.1 “China Lake”-Sequenz
Die hier als “China Lake” bezeichnete Sequenz wurde am 18. Juli 2001 um
13:18 Uhr vom FGAN-FOM während einer Messkampagne der TG11 (NATO
RTG SET) auf der “Naval Air Weapons Station China Lake”, am westlichen
Rand der Mojave-Wüste in Kalifornien (USA) aufgenommen. Die Informa-
tionen über die Erfassung dieser Testsequenz (Spezifikationen, C 2

n , etc. )
wurden aus [Sei01] übernommen.
Die Sequenz umfasst 4096 Frames mit einer Auflösung von 256×256 Pixeln
bei einer Bildrate von 300 fps. Der Ausbreitungsweg zwischen Referenzziel
und Kamerasystem verlief parallel zum Boden in einer Höhe von ca. 1,5 m
und mit einer Weglänge von ca. 1,3 km.
Für die Erfassung der Daten wurde eine “RETICON MD4256C” Hochge-
schwindigkeitskamera mit Siliziumdetektor verwendet. Ihre Spezifikationen
und die der verwendeten Optiken sind in der Tabelle 6.1 zusammengefasst.

Tabelle 6.1: Gerätespezifikationen de RETICON MD4256C Kamera
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Das linke Bild in der Abbildung 6.1 zeigt die Mustertafel, die für die Sequenz
verwendet wurde und vermittelt einen Eindruck von dem Standort. Die
vollständigen Abmessungen der Mustertafel sind noch einmal in der Abbil-
dung 6.2 rechts im Detail zu sehen. Rechts in der Abbildung 6.1 ist auf einem
Beispielbild der Sequenz die Anzahl der Pixel gekennzeichnet, die der Breite
des Tafel entsprechen. Daraus ergibt sich eine Auflösung von ca. 70 Pixeln
pro Meter, d. h. 1 Pixel im Bild entspricht ungefähr 1,4 cm in der realen
Szene.

Abbildung 6.1: Links: Referenzziel am Standort; rechts: Beispielbild aus der
Testsequenz mit Abmessungen.

Während des gesamten Tages wurden durchgängig C 2
n Messungen mit einem

“Boundary Layer Scintillometer” BLS900 der Scintec AG durchgeführt. In
der Abbildung 6.2 ist der komplette C 2

n Tagesgang für den Aufnahmetag
zu sehen (links). Da die Sequenz während der Mittagshitze aufgenommen
wurde, ist die Turbulenz zu diesem Zeitpunkt mit C 2

n = 1,3 · 10−13 m−2/3

als sehr starke Turbulenz einzustufen. Das bedeutet insbesondere, dass
es sich trotz der sehr kurzen Belichtungszeit von ≈ 3,3 ms (300 fps) um
einen Langzeitbelichtungsfall handelt, da die zugehörige Kohärenzzeit τ0

überschritten wird.
Unter Zuhilfenahme der vorliegenden Informationen ergibt sich aus der
Gleichung (3.26) für λ= 800 nm eine Kohärenzlänge r0 = 1,17 cm und für
λ = 550 nm ergibt sich r0 = 0,75 cm. Analog ergeben sich aus der Glei-
chung (3.25) für λ= 800 nm ein isoplanatischer Winkel θ0 = 2,84 µrad, sowie
θ0 = 1,81 µrad für λ= 550 nm.
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Da das IFOV des optischen Systems deutlich größer ist als die so berechneten
isoplanatischen Winkel, müssen die Bedingungen während der Bildaufnah-
me als völlig anisoplanatisch eingestuft werden.

Abbildung 6.2: Links: Tagesgang von C 2
n am 18. Juli 2001; rechts: Maße des

Referenzziels.

Im übrigen ist noch zu erwähnen, dass nicht nur die statische Mustertafel in
der abgebildeten Szene zu sehen ist, sondern auch drei Personen, von denen
sich eine Person überhaupt nicht bewegt, die zweite nur geringfügig und
die dritte etwas mehr, indem sie sich einige Schritte vor der Tafel bewegt.
Dies war die erste verfügbare Testsequenz mit gut dokumentierten Rah-
menbedingungen, die überhaupt Objekte mit Eigenbewegung enthielt. Aus
diesem Grund wurden viele der in dieser Arbeit beschriebenen Methoden
und Effekte speziell an dieser Sequenz demonstriert.

6.1.2 “Dayton”-Sequenzen
Im Rahmen einer Messkampagne der NATO RTO SET 165 Gruppe wurde im
Zeitraum vom 8. bis zum 13. Oktober 2011 auf dem Gelände der Universität
in Dayton (Ohio, USA) eine ganze Serie von Bildsequenzen aufgezeichnet
([Vel12]). Darunter wurden von den Teilnehmern drei repräsentative Se-
quenzen ausgewählt, die nachfolgend genauer beschrieben werden, um
daran Algorithmen zur Turbulenzkorrektur zu testen.
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Insbesondere wurden diese Sequenzen auch in [van14] verwendet, um die
Ergebnisse des TNO und die im Rahmen dieser Arbeit erhaltenen Ergebnisse
miteinander zu vergleichen.
Der Aufnahmestandort befand sich auf dem Universitätsgelände, genauer
im “Intelligent Optics Laboratory” oben auf dem “College Park Center” in
einer Höhe von ca. 15 m. Von dort aus wurden alle drei dieser Sequenzen am
12. Oktober nachmittags (zwischen 15:30 Uhr und 16:20 Uhr) aufgezeichnet.
Bei der verwendeten Kamera handelte es sich um eine monochrome “AVT Stin-
gray F-080B” mit einer maximalen Bildauflösung von 1032×778 Pixeln und
einer Bit-Tiefe von 14 Bit-pro-Pixel. Dazu wurde eine “Celestron C8” Optik
eingesetzt.
Eine Übersicht der weiteren Eckdaten zu den Sequenzen ist (soweit vorhan-
den) in der Tabelle 6.2 gegeben.

Tabelle 6.2: Eckdaten der Dayton-Sequenzen.

Die Abbildungen 6.3, 6.4, sowie 6.5 zeigen Beispielbilder der einzelnen Se-
quenzen. Um einen Eindruck von den Qualitätsschwankungen innerhalb
des Aufnahmezeitraums zu vermitteln, sind hier jeweils der beste und der
schlechtester Frame jeder Sequenz abgebildet. Dabei erfolgte die Bewertung
der Bildqualität mithilfe der in [Dol07] vorgeschlagenen Blur-Metrik.
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“NATO / Mannequin”-Sequenz

Abbildung 6.3: Oben: bester Frame der “NATO / Mannequin”-Sequenz;
unten: schlechtester Frame.

Die in der “NATO / Mannequin”-Sequenz aufgenommene Szene befand sich
auf dem Dach des “Dayton VA Medical Center” in einer Höhe von ca. 40 m
und in einer Entfernung von ca. 7 km Luftlinie vom Aufnahmeort. Dabei
wurden gleich mehrere verschiedene Testobjekte erfasst:

• Eine Übungspuppe (“Mannequin”) zur Beurteilung der Beeinträchti-
gung von Personendetektion durch Turbulenz.

• Ein Schachbrettmuster aus Metall mit quadratischen Öffnungen an-
stelle von weißen Quadraten, um die Stärke der Bildverformungen
einschätzen zu können.

• Zwei Signallaser (“Beacon”), u. a. zur Bestimmung der (lokalen) PSF.

• Ein Schild mit der Aufschrift “NATO” (an einem Schuppen ange-
bracht), um die Performanz von Korrekturverfahren beurteilen zu
können, z. B. indem bewertet wird, ob und wie gut die Schrift vor und
nach Anwendung der Korrektur lesbar ist.
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• Ein Dreieck, an dem sich im Fall von starker Turbulenz zeigt, ob die
Ausrichtung der Spitze noch erkennbar ist.

Diese Sequenz eignet sich gerade aufgrund der Unterschiedlichkeit dieser
Testobjekte als Testsequenz für Algorithmen zur Turbulenzkorrektur.
Die gemessene Turbulenzstärke zum Aufnahmezeitpunkt (ca. 15:35 Uhr
Ortszeit) war mit C 2

n ≈ 5 ·10−16 m−2/3 vergleichsweise schwach. Aufgrund des
relativ langen Ausbreitungswegs waren die atmosphärischen Beeinträchti-
gungen dennoch zeitweise stark ausgeprägt.

“Antenne”-Sequenz

Abbildung 6.4: Links: bester Frame der “Antenne”-Sequenz; rechts: schlech-
tester Frame.

Diese Sequenz wurde ca. 40 min später aufgezeichnet als die “NATO /
Mannequin”-Sequenz. Bei der “Antenne” handelt es sich um einen Funk-
mast der “Greater Dayton Public Television” Sendestation, welcher sich mit
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geschätzten 6-7 km in vergleichbarer Entfernung von der Universität Dayton
befindet. Die Turbulenzstärke hatte sich in der Zwischenzeit allerdings auf
C 2

n ≈ 10−15 m−2/3 erhöht.
Da die Metallkonstruktion des Funkmasts ausschließlich aus geraden Linien
besteht, lassen sich Verformungen daran besonders gut erkennen wie bereits
in Abbildung 1.5 in der Einleitung demonstriert wurde. Diese Sequenz eignet
sich vor allem für Rekonstruktionsmethoden, die auf statischen Szenen
operieren, insbesondere aber auch für Methoden, die darauf basieren gerade
Linien zu detektieren und wiederherzustellen, wie z. B. in [Hof19].

“Stadium Lamps”

Abbildung 6.5: Beispielframe der “Stadium Lamps”-Sequenz

In dieser Sequenz wurden die Stadionlampen im “Welcome Stadium” er-
fasst, welches sich in geschätzten 2-3 km Entfernung (Luftlinie) zum Aufnah-
meort befindet. Der Aufnahmezeitpunkt hier war gegen 16:20 Uhr, d. h. nur
ca. 5 min später als die “Antenne”-Sequenz, so dass die Turbulenz immer
noch in der gleichen Größenordnung lag, d. h. bei C 2

n ≈ 10−15 m−2/3. Den-
noch waren die Turbulenzauswirkungen aufgrund der verringerten Distanz
etwas geringer. Im Hintergrund der Lampen ist etwas schemenhaft noch
ein Strommast zu erkennen, der sich offensichtlich in größerer Entfernung
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befindet. Bereits in den Einzelbildern in Abbildung 6.5 und mehr noch im
laufenden Video fallen die Doppelkonturen auf, die dieser Strommast zu
haben scheint. Ähnlich wie im Fall von Refraktionseffekten lassen sich dear-
artige Doppelkonturen allerdings normalerweise nicht mithilfe verbreiteter
Turbulenzkorrekturverfahren beseitigen. Das bedeutet, während sich die
Lampen selbst vergleichsweise gut korrigieren lassen ([van14]), funktioniert
dieselbe Korrektur für diese zweite Distanzebene nicht so überzeugend.

6.2 Theoretische PSFs
Wie im vorangegangenen Kapitel 5 bereits anhand von Methoden zur Blin-
den Entfaltung erörtert, beinhalten Ansätze zur Bildrekonstruktion stets
eine näherungsweise Bestimmung der PSF. Dabei gibt es mehrere theoreti-
sche Approximationen für die Filterfunktion der Atmosphäre. Beispielsweise
kann in erster Näherung eine Gauß-Form der PSF angenommen werden,
oder es können die statistischen Eigenschaften der Atmosphäre ausgenutzt
werden, um eine durchschnittliche PSF zu gegebenen Umgebungsbedin-
gungen zu formulieren ([Fri66]).
Für alle nachfolgend aufgeführten Ansätze sind neben der Kohärenzlän-
ge r0 (oder C 2

n) diverse Kamera- und Sensorspezifikationen erforderlich.
Genauer werden über das abbildende System die folgenden Kamera- und
Sensordaten benötigt:

• der Aperturdurchmesser D (in Meter)

• die Wellenlänge λ (in Meter)

• die Pixelgröße auf dem Detektor ps (IFOV) (in Radians)

Die Spezifikationen des eingesetzten Kamerasystems liegen in der Regel vor,
so dass dies kein Problem darstellt. Zwar ist der Öffnungswinkel pro Pixel
nicht immer bekannt, jedoch lässt sich das IFOV hinreichend gut über die
Pixelauflösung und die Sensorgröße abschätzen.
Des weiteren werden noch verschiedene inhaltliche Informationen über die
abgebildete Szene benötigt:

• die Objektentfernung L (in Meter)

• die Objektgröße Os (FOV) (in Pixeln)
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Insbesondere lässt sich die Größe der abgebildeten Szene über das IFOV
und die Pixelauflösung im Zusammenhang mit der Entfernung bestimmen,
wobei die Objektentfernung nicht immer ohne Weiteres verfügbar ist. Sofern
erforderlich, können jedoch ggfs. digitale Messungen in “Google Earth”, so-
wie Erfahrungswerte und gutes Augenmaß bei der Abschätzung von Nutzen
sein.

6.2.1 Gauß-förmige PSF
Die einfachste Näherung an eine atmosphärische Filterfunktion ist eine
Gauß-förmige PSF, da die optischen Turbulenzen im Grunde wie ein Tief-
passfilter wirken, indem sie die hohen Ortsfrequenzen herausfiltern, wo-
durch scharfe Kanten und punktförmige Objekte verwischt werden.
Zur Bestimmung der 2-D Gauß-Funktion muss in erster Linie die zugehörige
Standardabweichung σ abgeschätzt werden (µ= 0). Für die entsprechende
Halbwertsbreite (“Full Width Half Maximum”, FWHM) einer Punktquelle
(visualisiert in der Abbildung 6.6) gilt bei Turbulenz, dass FWHM ∼λ/r0.

Abbildung 6.6: “Full Width Half Maximum” einer Gauß-Glocke.1

Zwischen der Halbwertsbreite und σ besteht die folgende Beziehung:

σ ≈ 1

2,355
·FWHM (6.1)

1 Quelle: https://www.abs.uni-wuppertal.de/fileadmin/site/abs/
Lehrunterlagen/2018_05_07_Versuchsanleitung_GC.pdf (S.11)

https://www.abs.uni-wuppertal.de/fileadmin/site/abs/Lehrunterlagen/2018_05_07_Versuchsanleitung_GC.pdf
https://www.abs.uni-wuppertal.de/fileadmin/site/abs/Lehrunterlagen/2018_05_07_Versuchsanleitung_GC.pdf
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Der FWHM-Wert lässt sich mithilfe des “Tilt”-Winkels α j ( j steht für “Jitter”)
bestimmen:

FWHM =
√(

1,22 · λ
D

)2

+ (
2,7 ·α j

)2 · 1

ps
(6.2)

wobei sich α j (in einer Achsenrichtung) unter Verwendung des Fried-Para-
meters r0 berechnen lässt wie folgt:

α j =
√

0,182 ·
(

D

r0

)5/3

· λ
D

(6.3)

6.2.2 Beugungsbegrenzte PSF
Befindet sich ein bildgebendes System am Diffraktionslimit, dann nimmt
die zugehörige beugungsbegrenzte PSF einfach die Form einer “Airy-Disk”2

(auch: “Airy”-Scheibchen) an. Die Abbildung 6.7 zeigt ein Beispiel für eine
solche beugungsbegrenzte PSF. Das symmetrische “Airy”-Beugungsmuster
besteht aus einer Reihe abwechselnd schmaler dunkler und breiterer heller

Abbildung 6.7: Beispiel einer theoretischen diffraktionslimitierten PSF. Links:
“Airy”-Beugungsmuster für λ = 4 ·10−6, D = 20 cm, IFOV= 10−6, L = 20 km;
Mitte: Quadratwurzel des Airy-Patterns; rechts: Querschnittsvergleich (Inten-
sitäten auf 1 normiert)

2 So benannt nach dem britischen Mathematiker und Astronom George Biddell Airy (1801-
1892)
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Ringe. Es entsteht durch Fraunhofer Diffraktion an einer kreisförmigen
Blende, d. h. im (zentralen) Querschnitt entspricht es dem Beugungsmuster
an einem Spalt mit der gleichen Breite wie der Blendendurchmesser.
Im Grunde genommen entspricht das “Airy”-Beugungsmuster dem Betrags-
quadrat der 2-D Fourier-Transformation der Pupillenfunktion eines idealen
Systems aus Gleichung (3.39) (skaliert bzgl. 1/ps ·λ/D), d. h. I ∼ |F (P0)|2.
Auf diese Weise wurde auch die PSF in der Abbildung 6.7 generiert.
Mathematisch lassen sich die Intensitätswerte I des “Airy-Patterns” mithilfe
der Bessel-Funktion 1. Ordnung J1 beschreiben:

I (θ) = I0 ·
2 J1(πD

λ sinθ)
πD
λ sinθ

= I0 · 2 J1(x)

x
(mit x = πD

λ
sinθ) (6.4)

Dabei bezeichnet I0 die maximale Amplitude des zentralen Airy-Scheibchens
und θ den Beobachtungswinkel zwischen der Zentrallinie und dem Beob-
achtungspunkt in der Bildebene (siehe dazu Abbildung 6.8).

Abbildung 6.8: Beugung an einer kreisförmigen Blende. Links: ohne Linse;
rechts mit Linse

Die Bessel-Funktion 1. Ordnung ist wiederum mithilfe der Eulerschen Gamma-
funktion Γ definiert:

J1(x) =
∞∑

k=0

(−1)k

k !Γ(k +2)

( x

2

)2k+1
(6.5)

wobei Γ für die Menge der natürlichen Zahlen definiert ist als:

Γ(n) = (n −1)! (∀n ∈N) (6.6)
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Die zentrale “Airy-Disk” enthält ca. 86% der Gesamtenergie des “Airy”-Musters.
Bei einem Radius von ρ = 0,514λ/D sinkt die Energie auf ca. 50% mit zuge-
höriger Halbwertsbreite FWHM = 1,028λ/D .
Das innere “Airy”-Scheibchen kann auch mithilfe einer 2-D Gauß-Funktion
approximiert werden:

I (ρ) = I0 ·e
−ρ2

2σ2 (6.7)

wobei ρ die radiale Entfernung vom Mittelpunkt der “Airy”-Disk bezeichnet.
Für die zugehörige Standardabweichung σ ergibt sich ein Näherungswert
von σ≈ 0,42λ f /D (bzw. σ≈ 0,45λ f /D , falls die Approximation die gleiche
Gesamtintensität aufweisen soll wie das gesamte “Airy”-Muster).

6.2.3 Frieds “short” und “long exposure” PSFs
Im Fall einer Turbulenzlimitierung können die Definitionen der statisti-
schen mittleren atmosphärischen PSFs gemäß Fried ([Fri66]) verwendet
werden. Dabei wird zwischen den Fällen “short exposure” und “long expos-
ure” unterschieden. Die von Fried geprägte Bezeichnung “short exposure”
PSF ist allerdings etwas irreführend, da es sich nicht um eine tatsächliche
Kurzzeitbelichtung handelt, sondern um eine “long exposure” PSF ohne
Bildbewegung. Deshalb weist die zugehörige Gaußglocke auch eine etwas
schmalere Form auf als die der “long exposure” PSF.
PSFLE , die PSF für den “long exposure” Fall, und PSFSE , die PSF für den
“short exposure” Fall, erhält man mithilfe der jeweiligen OTF, wobei OTFLE

und OTFSE folgendermaßen definiert sind ([Fri66]):

OTFLE (ν) = OTF0(ν) ·e−1/2 DLE (ν) (6.8)

OTFSE (ν) = OTF0(ν) ·e−1/2 DSE (ν) (6.9)

Dabei bezeichnet OTF0 hier die OTF eines optischen Systems am Diffrakti-
onslimit (d. h. ohne Turbulenz), die als normalisierte Autokorrelationsfunk-
tion der Teleskoppupille formuliert werden kann. Die Raumfrequenzen ν

hängen von der radialen Entfernung zum Mittelpunkt der Bildebene ab und
sind bzgl. der Bild- und Pixelgröße skaliert.
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Unter Verwendung der Parametersubstitution f = νλ/D lässt sich OTF0

vereinfacht schreiben als:

OTF0( f ) = 2

π
arccos( f ) −

(
f
√

1− f 2

)
(6.10)

Die zugehörigen Strukturfunktionen DLE und DSE sind gegeben durch:

DLE ( f ) = 6,88 ·
(

f
D

r0

)5/3

(6.11)

DSE ( f ) = DLE ( f ) · (1 − f 1/3) (6.12)

Die gesuchten PSFs resultieren dann aus den OTFs über Invertierung der
Gleichung (3.35):

PSFLE (r ) = F−1(OTFLE (ν)) (6.13)

PSFSE (r ) = F−1(OTFSE (ν)) (6.14)

6.3 Turbulenzschätzung aus Videodaten
In der Literatur existieren verschiedene Ansätze zur Bestimmung der Ko-
härenzlänge r0 (bzw. C 2

n) anhand von einer Bildsequenz. Hier und insbe-
sondere in [Hue15] wurde der in [MM15] beschriebene Ansatz gewählt, der
weitgehend auf den Arbeiten [Yit97a], [Bea98] und [Zam06] beruht. Auswahl-
kriterium war einerseits eine hinreichende Genauigkeit der Schätzung, und
andererseits ein akzeptabler Rechenaufwand im Interesse eine potenziellen
Echtzeitanwendbarkeit.

6.3.1 Schätzverfahren für r0

Genauer werden hierbei die Bewegungsvektoren zwischen aufeinanderfol-
genden Einzelbildern der Sequenz berechnet, z. B. mittels “Block Matching”
oder einer der anderen in Kapitel 4 vorgestellten Methoden, und deren Vari-
anz ausgewertet. Dabei geht es in diesem Zusammenhang ausschließlich
um turbulenzbedingte Bewegung, d. h. diese Form der r0-Schätzung kann
ausschließlich auf statischem Bildinhalt von Bildsequenzen durchgeführt
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werden. Jede Eigenbewegung von Objekten würde die Schätzungen verfäl-
schen, wobei dies neben naheliegenden Bewegtobjekten, wie Fahrzeugen
oder Lebewesen, beispielsweise auch ziehende Wolken und Rauchschwaden
mit einschließt oder durch Windböen verursachte Bewegung von Pflanzen,
Windhosen etc. Leichter kontinuierlicher Wind, der z. B. das Blattwerk von
Bäumen bewegt, ist vergleichsweise unkritisch, da der Wind die Turbulenz
ohnehin beeinflusst. Optimalerweise sollte der Szeneninhalt für die Dauer
der r0-Schätzung jedoch vorwiegend aus unbeweglichen oder unbewegten
Elementen bestehen.
Ähnliches gilt für unstrukturierte Bereiche, da dort eine zuverlässige Bewe-
gungsschätzung kaum möglich ist, wie in Abschnitt 4.4 diskutiert wurde. Für
spezielle Möglichkeiten zur Identifikation der strukturierten Bereiche, und
insbesondere zur Erstellung von geeigneten Homogenitätskarten für das
vorliegende Bildmaterial (siehe z. B. Abbildung 6.15), sei im folgenden auf
den Abschnitt 6.3.2 verwiesen.
Zusätzlich zu den Bilddaten sind wiedereinige Sensorik- und auf die zu-
grundeliegende Szene bezogene Informationen für die Bestimmung von r0

erforderlich, genauer der Aperturdurchmesser D , die Wellenlänge λ und das
IFOV ps . Ebenfalls werden einige Informationen über die zugrundeliegende
Szene benötigt, nämlich die Objektentfernung L, sowie die Objektgröße Os .
Die “Tip” und “Tilt” Neigungswinkel α und β in x- und y-Richtung lassen
sich gemäß [Dai00] als partielle Ableitungen der Wellenfront W oder der
Phase φ definieren (s. a. Gleichung (3.30)):

α(x,y) = ∂

∂x
W (x,y) = λ

2π
· ∂
∂x

φ(x,y) (6.15)

β(x,y) = ∂

∂y
W (x,y) = λ

2π
· ∂
∂y

φ(x,y) (6.16)

Das bedeutet, wenn es sich bei φ um eine Gauß-Funktion handelt, trifft
dies auch auf α und β zu. In [Bea98] wurde gezeigt, dass entsprechend auch
die Bildbewegungen in der Bildebene Gauß-verteilt sind (unter isotropen
Bedingungen).
Die “Angle of Arrival”-Fluktuationen α j aus der Gleichung (6.3) können
näherungsweise auch über die durchschnittlichen Varianz der Bildbewegun-
gen abgeschätzt werden. Dazu werden die Bewegungsvektoren zwischen
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mehreren aufeinanderfolgenden Frames ermittelt und jeweils die durch-
schnittliche Varianz der horizontalen und der vertikalen Vektorkomponen-
ten bestimmt, d. h. σ2

x und σ2
y . Damit lässt sich α j abschätzen zu:

α j ≈ 1

2

(
σ2

x +σ2
y

)
·p2

s (6.17)

Tatsächlich ist die Varianz in horizontaler Richtung häufig etwas größer als in
vertikaler Richtung (d. h. σ2

x ≥σ2
y ), da die Luftbewegung in dieser Richtung

infolge von Windeinwirkung zumeist etwas stärker ist.
Einsetzen in die linke Seite der Gleichung (6.3) und Umstellen nach r0 liefert:

α2
j = 0,182 ·D−1/3r−5/3

0 λ2 (6.18)

⇒ r 5/3
0 = 0,182 ·D−1/3

(
λ

α j

)2

(6.19)

Daraus ergibt sich die folgende Schätzung für die Kohärenzlänge r0:

r0 =
(
0,182 ·D−1/3

(
λ

α j

)2)3/5

= 0,36 ·D1/3
(
λ

α j

)6/5

(6.20)

Daraus folgt insbesondere für C 2
n :

C 2
n = 0,16 · r−5/3

0 λ2 L−1

Anmerkungen

Die Zuverlässigkeit der Schätzungen nimmt mit der Länge der Sequenz zu,
die ausgewertet wird. Normalerweise erhält man bereits mit ca. 10 Frames
mittlerer Größe (z. B. 640×480 px) verhältnismäßig gute Werte, dennoch
sollten mindestens 20 Frames verwendet werden, um eine hinreichende
Genauigkeit der Schätzung gewährleisten zu können. Wie der Graph in
der Abbildung 6.9 für das Beispiel der “NATO/Mannequin”-Sequenz an-
deutet (s. a. Abbildung 6.15 in Abschnitt 6.3.2), konvergiert das Verfahren
in der Regel bei ca. 100 Frames. Dabei spielt allerdings auch die tatsäch-
liche Anzahl effektiv ausgewerteter Bewegungsvektoren eine signifikante
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Rolle. Diese Zahl hängt zum einen von der Bildgröße und der gewählten
Blockgröße ab (z. B. 16× 16 px), zum anderen aber auch vom Bildinhalt.
Vektoren, die in überwiegend homogenen Bildregionen bestimmt wurden,
sollten sicherheitshalber verworfen werden, um die Berechnungen von r0

nicht zu beeinträchtigen (s. a. Abschnitt 6.3.2). Die “NATO/Mannequin”-
Testsequenz enthält beispielsweise viele und große Bildanteile, die bis auf
Rauschen (nahezu) völlig homogen sind,d. h. unstrukturiert und unifarben.
Entsprechend bedeutet es gegenüber der maximal möglichen Anzahl von
Bewegungsvektoren einen erheblichen Informationsverlust, wenn lediglich
Verschiebungsvektoren in der Nähe von Kanten im Bild (s. a. Abbildung 6.15)
für die Berechnung von r0 verwendet werden können. Dementsprechend
kann die für eine Konvergenz erforderliche Frameanzahl in solchen Fällen
also durchaus die genannten 100 Frames überschreiten.

Abbildung 6.9: Schätzwerte für r0 bei ansteigender Framezahl

6.3.2 Homogenitätskarten
In Kapitel 4 wurde bereits erwähnt, dass die Berechnung von Bewegungs-
vektoren in homogenen Bildregionen kein sinnvolles Ergebnis liefern kann.
Aus diesem Grund dürfen nur Bewegungsvektoren aus hinreichend hete-
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rogenen, d. h. strukturierten Regionen in die Berechnung der Varianz mit
einfließen. Hierzu ist ein entsprechendes Maß zur Bewertung der Bildhomo-
genität erforderlich, wobei eine naheliegende Möglichkeit darin besteht, die
lokale Grauwertvarianz (bzw. die Standardabweichung) zu verwenden wie
bereits in Abschnitt 4.4.2 vorgeschlagen.
Die oberste Priorität bei der Erstellung und Verwendung von Homogenitäts-
karten ist dafür zu sorgen, dass potenziell fehlerbehaftete Bewegungsvekto-
ren nicht in die Berechnungen von C 2

n mit einfließen können, um möglichst
gute Schätzungen zu bekommen. Die Genauigkeit der Karten spielt dabei
eine eher untergeordnete Rolle, wobei die Maxime gilt, dass eher zu viele
Bewegungsvektoren verworfen werden sollten als zu wenige.

Lokale STD als Homogenitätsmaß

Zur Erstellung einer Homogenitätskarte mithilfe eines geeigneten Maßes
wie der lokalen Standardabweichung gibt es mehrere Möglichkeiten, wobei
eine blockweise Implementierung mit fester Blockgröße naheliegt. Idealer-
weise sollte die Berechnung in Echtzeit oder nahezu Echtzeit möglich sein,
wobei dies nicht zwingend erforderlich ist, da die Turbulenzschätzung nicht
fortlaufend durchgeführt werden muss, sondern lediglich in bestimmten
Intervallen oder bei Bedarf. Dennoch sollte die Rechenzeit in überschau-
barem Rahmen bleiben (d. h. <1 sec), weshalb hier auf eine rechenintensive
Implementierung in Form einer gleitenden Nachbarschaftsoperation für
jedes einzelne Pixel verzichtet wurde. Stattdessen wird eine Blockverarbei-
tung ohne Überlappung der Blöcke für eine Anzahl k verschiedener (jeweils
fester) Blockgrößen b1, . . . ,bk durchgeführt. In der Abbildung 6.10 sind bei-
spielsweise die jeweiligen Ergebnisse für die Blockgrößen 4×4 px, 8×8 px,
12×12 px, 16×16 px abgebildet, wobei das “Kameramann”-Bild als Testbild
verwendet wurde. Die Gesamtheit dieser einzelnen Resultate wird dann
mithilfe einer geeigneten Funktion zusammengefasst, z. B. durch einfache
Mittelwertbildung oder den Median wie in der Abbildung 6.11 gezeigt. Dies
hat den Vorteil, dass die Konturen der Strukturen im Bild gegenüber der
einfachen Blockprozessierung verfeinert werden, wodurch nicht zu viele
große Bildregionen verworfen werden.
Für die eigentliche Homogenitätskarte ist indes nur eine binäre Informa-
tion von Interesse, um entscheiden zu können, ob ein Bewegungsvektor
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Abbildung 6.10: Lokale Standardabweichung mittels Blockverarbeitung und
verschiedene Blockgrößen (v.l.n.r.): 4×4 px, 8×8 px, 12×12 px, 16×16 px

Abbildung 6.11: Vergleich von Mittelwert (links) und Median (rechts) zu
Abb. 6.10 mit jeweils korrespondierendem Schwellwertbild.

akzeptiert werden soll oder nicht. Deshalb muss noch eine Binarisierung
mit einem geeigneten Schwellwert vorgenommen werden. Hier wurde der
Einfachheit halber der Mittelwert als globaler Schwellwert gesetzt, da die-
ser einfach und schnell zu berechnen ist und in den meisten Fällen zu-
friedenstellende Ergebnisse liefert. Es können dazu jedoch auch andere,
ausgefeiltere Methoden verwendet werden, die z. B. adaptiv lokal variieren-
de Schwellwerte bestimmen. In der Abbildung 6.12 sind einige Beispiele
solcher Homogenitätskarten mit verschiedenen (maximalen) Blockgrößen
gezeigt.
Es sollte noch erwähnt werden, dass die Binarisierung hauptsächlich der
Vereinfachung dient. Es ist auch vorstellbar, die (nicht binäre) Homogeni-
tätskarte als eine Art Zuverlässigkeitskarte zu interpretieren und in eine
Form der Gewichtung umzuwandeln. Diese Idee wurde hier jedoch aus
Zeitgründen nicht weiter verfolgt.
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Abbildung 6.12: Standardabweichung für verschiedene maximale Blockgrö-
ßen (v.l.n.r.): 8 px, 16 px, 32 px, 64 px. Oben: Falschfarbendarstellung; unten:
korrespondierende Homogenitätskarten, Mittelwert als Schwellwert.

Die Lakunarität L

Eine interessante Alternative bietet die sogenannte Lakunarität (“Lacu-
narity”) einsetzen, die sich bereits für ähnliche Aufgaben in anderen For-
schungsgebieten als erfolgreich erwiesen hat. Beispielsweise wird in der
Sonardatenauswertung inzwischen ein modifiziertes Lakunaritätsmaß zur
Bestimmung und Bewertung der Komplexität des Meeresbodens genutzt,
um anhand dessen die Schwierigkeit der Minenjagd in diesem Gebiet zu
bewerten ([Hue18]).
Ursprünglich wurde Lakunarität als Maß für die Lückenhaftigkeit (“Gap-
piness”) von Fraktalen entwickelt [Man83]. Obwohl zunächst nur für Bi-
närbilder konzipiert, lässt sich das Prinzip mittels kleiner Modifikationen
verallgemeinern, so dass es auch für Grauwertbilder nutzbar ist ([Plo96]).
Genauer quantifiziert Lakunarität die Lückenhaftigkeit von Texturen, so
dass Muster mit mehr Lücken oder auch mit größeren Lücken höhere La-
kunaritätswerte erhalten als Muster mit weniger Lücken bzw. mit kleineren
Lücken.
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Nach [Wil15] ist die Lakunarität L einer abzählbaren Menge N von n (Pixel-)
Intensitätswerten xi ∈ N , (i = 1, . . .n) definiert als der Quotient der Vari-
anz σ2 und des Quadrats des Mittelwerts der Intensitätswerte µ2, d. h.

L = σ2

µ2 (6.21)

unter Verwendung der zugehörigen Definitionen in den Gleichungen (3.5)
und (3.6). Durch Umformungen unter Berücksichtigung der Rechenregeln
bei Summen kann man zeigen, dass gilt:

n∑
i=1

(xi −µ)2 =
n∑

i=1
x2

i − n ·µ2 (6.22)

Damit lässt sich die Lakunarität in Gleichung (6.21) dann folgendermaßen
ausdrücken:

L = n

∑n
i=1 x2

i(∑n
i=1 xi

)2 − 1 (6.23)

Die Lakunarität ist zwar grundsätzlich für völlig beliebige (Pixel-)Mengen N
definiert, lässt sich aber am besten für ganze (Grauwert-)Bilder berechnen.
Dabei ist von Vorteil, dass es im Fall von rechteckigen Pixelblöcken mög-
lich ist, Integralbilder zu nutzen, um die Berechnungen zu beschleunigen.
Zu diesem Zweck ist das Integralbild J eines Bildes I an der Stelle (r,c) in
Anlehnung an [Wil15] definiert wie folgt:

J (r,c) = ∑
r ′≤r,c ′≤c

I (r ′,c ′) (6.24)

Dies lässt sich auch als rekursive Berechnungsvorschrift formulieren:

J (r,c) = I (r,c)+ J (r,c −1)+ J (r −1,c)− J (r −1,c −1) (6.25)

Aufgrund der beiden Summen in Gleichung (6.23) werden auch zwei In-
tegralbilder benötigt. Das zu I gehörige Integralbild sei J1, während zu I 2

entsprechend J2 gehört, wobei hier mit I 2 die elementweise Quadrierung
der Bildmatrix I gemeint ist. Dann lässt sich die Summe der Pixel in ei-
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ner rechteckigen Bildregion um ein zentrales Pixel an der Stelle (r,c) relativ
schnell berechnen über Sp , (p = 1,2):

Sp (r,c) = Jp (r − r̃ ,c−c̃)− J (r − r̃ ,c+c̃)− J (r + r̃ ,c−c̃)+ J (r + r̃ ,c+c̃) (6.26)

Dabei bezeichnen r̃ , c̃ die halben Seitenlängen der aktuellen Boxgröße,
d. h. n = 4r̃ c̃ entspricht der Anzahl der Pixel eines Bildausschnitts in dieser
Boxgröße.
Die Lakunarität lässt sich dann berechnen mittels:

L = n · S2

S2
1

− 1 (6.27)

Statt von Blockgrößen spricht man in diesem Zusammenhang normaler-
weise von “Boxgrößen” (der Begriff stammt aus der fraktalen Geometrie),
zum einen weil die Boxen nicht quadratisch sein müssen, zum anderen weil
auch die Vorgehensweise bei der Berechnung etwas anders ist als bei einer
Standard-Blockverarbeitung. Die jeweilige Boxgröße korrespondiert zu der
Größe der Strukturen, die das Lakunaritätsmaß erfassen kann. Daher ist es
üblich, die Lakunarität eines Bildes für sämtliche möglichen Boxgrößen zu
bestimmen, d. h. angefangen mit den kleinsten 2×2 Pixelblöcken bis hin
zur kompletten Bildgröße.
Um letztendlich eine Art Homogenitätskarte der Bilddaten zu erhalten, bie-
tet sich somit wieder eine blockweise Implementierung bei jeweils fester
Blockgröße an wie im Fall der Standardabweichung in Abschnitt 4.4.2, z. B.
als gleitende Nachbarschaftsoperation, um so Informationen über die lokale
Lakunarität zu gewinnen.
In der Abbildung 6.13 ist die lokale Lakunarität am Beispiel des “Kamera-
mann”-Bildes dargestellt wie sie beispielsweise auch zur Ermittlung von
Auffälligkeiten (z. B. zur Detektion Seeminen in Verbindung mit ATR-Algo-
rithmen3) in Sonarbildern eingesetzt werden kann. Die Abbildung 6.14 zeigt
zusätzlich einen Vergleich der lokalen Lakunarität für verschiedene (maxi-
male) Boxgrößen in Falschfarbendarstellung (obere Reihe), sowie der daraus
resultierenden (binären) Homogenitätskarten, um deren unterschiedliche
Wirkung zu verdeutlichen. Die Binarisierung erfolgt wieder mithilfe eines
geeigneten Schwellwerts.

3 ATR (“Automatic Target Recognition”): Verfahren zur automatischen Zielerkennung
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Abbildung 6.13: Lakunarität als Homogenitätsmaß. Links: Falschfarbendar-
stellung; Mitte: Grauwertbild; rechts: binarisiertes Bild.

Abbildung 6.14: Lakunarität bei verschiedenen maximalen Boxgrößen
(v.l.n.r.): 1 px, 4 px, 8 px, 16 px. Oben: Falschfarbendarstellung; unten: kor-
respondierende Homogenitätskarten (Mittelwert als Schwellwert).

In der praktischen Anwendung auf reale Bilddaten, die unter Turbulenz-
bedingungen aufgenommen wurden, ist damit zu rechnen, dass die Bilder
unscharf und möglicherweise verrauscht sind. In der Abbildung 6.15 ist
ein Beispiel dazu gezeigt anhand der “NATO/Mannequin”-Sequenz aus Ab-
schnitt 6.1.2.



6.3 Turbulenzschätzung aus Videodaten 175

Abbildung 6.15: Anwendung auf Bilddaten mit realer Turbulenz. Oben: Mit-
telwert von 100 Frames der “NATO/Mannequin”-Testsequenz; Mitte: lokale
Lakunarität in Falschfarbendarstellung; unten: resultierende binäre Homoge-
nitätskarte.

Da die r0-Schätzungen für hinreichend lange Bildsequenzen konzipiert sind,
ist es von Vorteil (zur Zeitersparnis) nur eine einzige Homogenitätskarte für
die gesamte Sequenz zu bestimmen. Dazu bietet sich wieder der zeitliche
Mittelwert (oder Median) an, da dieser im Rahmen einer Turbulenzkorrektur
u. U. ohnehin berechnet wird.
Reduziert man die Boxgröße bis zu 1 oder 2 Pixel, fungiert diese Lakunari-
tätsberechnung wie ein Kantenfilter, wie das linke Bild in der Abbildung 6.14
leicht erkennen lässt. Einfache Kantenfilter wie Sobel oder Canny wären
allerdings ungeeignet, denn einerseits können Einzelframes u. U. sehr ver-
rauscht sein, wodurch die Kantenerkennung gestört würde, und andererseits
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haben Kantenfilter Probleme, Kanten in allzu verschwommenen Bildern zu
detektieren (z. B. infolge starker Turbulenz) wie ein Vergleich der Kantenbil-
der zur “NATO / Mannequin”-Testsequenz in der Abbildung 6.16 verdeut-
licht, bei dem die Kanten im Mittelwertbild stärker ausgeprägt sind.

Abbildung 6.16: Kantenbilder für die “NATO/Mannequin”-Testsequenz.
Oben: Kantenbild des Mittelwerts von 100 Frames; unten: Kantenbild eines
Einzelbildes (5. Frame).

Es sollte noch angemerkt werden, dass die Berechnungen von Homoge-
nitätskarten mittels Standardabweichung u. U. sehr viel Zeit in Anspruch
nehmen können, vor allem für kleine Blockgrößen. Für Bilder derselben
Größe (256×256 Pixel) wie das Testbild in Abbildung 6.12 (links) wurden
durchschnittlich über ca. 2 sec pro Bild zur Berechnung auf einem normalen
Laptop benötigt, während zur Berechnung der Lakunarität in Abbildung 6.14
(links) lediglich ca. 0,7 sec erforderlich waren. Dabei ist es durchaus möglich,
dass eine optimierte Implementierung diesen zeitlichen Unterschied stark
reduzieren könnte. Im Hinblick auf Echtzeitszenarios sind allerdings auch
0,7 sec immer noch sehr viel Zeit. Da dieser Schritt jedoch nur in gewissen
zeitlichen Abständen oder bei Bedarf wiederholt werden muss, z. B. wenn
sich die Umweltbedingungen wahrnehmbar geändert haben oder falls die
letzten Messungen nicht zufriedenstellend gewesen sein sollten, spielt der
Zeitfaktor nur eine untergeordnete Rolle.
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6.4 Bildvorverarbeitung bei Turbulenz
Die Vorverarbeitung von Einzelbildern kann einen großen Unterschied zum
Gesamtergebnis eines jeden Algorithmus zur Bildverbesserung in Videoda-
ten beitragen, abhängig von der Beschaffenheit und Qualität der betreffen-
den Rohdaten. Auch im Fall von Turbulenzkorrekturverfahren hat es sich als
vorteilhaft erwiesen, turbulenzgestörte Daten zunächst einigen Vorverarbei-
tungsschritten zu unterziehen, um die Korrekturergebnisse zu optimieren.
Dazu gehört insbesondere eine Kontrastverbesserung, die sich nicht zuletzt
auch bei der Bewegungsschätzung positiv auswirken kann, da die Kanten-
detektion dadurch unterstützt wird. Bei stark verrauschten Daten ist es
überdies von Vorteil, wenn zuvor eine Form von Mittelwertbildung durch-
geführt werden kann (ggfs. mit Bildregistrierung), da sich dadurch das SNR
verbessern lässt. Weiterhin kann auch ein direktes Deblurring der Eingangs-
daten das finale Rekonstruktionsergebnis positiv beeinflussen. Dabei ist
die Reihenfolge dieser Vorverarbeitungsschritte, die jeweils optional sind
und nicht zuletzt von der Qualität der Eingabedaten abhängen, nicht fest
vorgeschrieben und kann je nach Bedarf abgeändert werden.

6.4.1 Kontrastverbesserung
Hinsichtlich des Bildkontrasts gilt, je stärker die Turbulenz ist, desto größer
ist auch der Kontrastverlust in Relation zu dem gleichen Bild unter Idealbe-
dingungen (d. h. ohne Turbulenz). Sämtliche in dieser Arbeit diskutierten
Methoden benötigen deutliche Strukturen in den Bilddaten, um funktio-
nieren zu können. Das trifft auf Entfaltungsverfahren ebenso zu wie auf
Algorithmen zur Bewegungsschätzung. Eine Kontrastverbesserung ist daher
in vielen Fällen angebracht, um die weitere Verarbeitung zu erleichtern.
Es gibt verschieden Möglichkeiten zur Kontrastanhebung, angefangen mit
einfacher Spreizung der tatsächlich in den Daten vorhandenen Intensitäts-
werte auf den vollen Dynamikbereich über ausgleichende Histogramm-
Modifikationen bis hin zu komplexeren “Dehazing”-Methoden für Szenen
mit unterschiedlichen Entfernungsbereichen (z. B. weiter entfernte Gebirgs-
züge etc.). Hier wurde bevorzugt eine Kontrastverbesserung mittels adapti-
vem Histogramm-Ausgleich durchgeführt, genauer mittels CLAHE (“Con-
trast Limited Adaptive Histogram Equalization”) gemäß [Zui94], wobei ein
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gegebenes Bild in Kacheln unterteilt wird, für die der lokale Kontrast be-
stimmt und verstärkt wird.

6.4.2 Rauschreduktion
Bei atmosphärisch gestörten und verrauschten Daten ist es oft nahezu unver-
meidlich, zumindest irgendeine Form von Mittelwertbildung anzuwenden.
Da unter Turbulenzbedingungen der Informationsgehalt eines Einzelbildes
nicht notwendigerweise größer ist als der eines Kurzzeitmittelwertes, spezi-
ell bei einer kurzen Integrationszeit mit hoher Datenrate, überwiegen die
Vorteile (z. B. verbessertes SNR, sowie glattere und geometrisch korrektere
Strukturen) in der Regel die Nachteile eines solchen Vorgehens.
Generell gilt bei der Erfassung von Bilddaten durch atmosphärische Tur-
bulenz, dass die Integrationszeit idealerweise ≤ τ0 sein sollte. Gerade bei
starker Turbulenz kann dies extrem kurze Belichtungszeiten bedeuten, wo-
durch sich der Rauschpegel in Abhängigkeit von den aktuellen Lichtverhält-
nissen signifikant erhöhen kann. In solchen Fällen kann u. U. der Einsatz
zusätzlicher rauschreduzierender Maßnahmen erforderlich werden. Hierzu
können 2-D Rauschfilter für Bilddaten eingesetzt werden, so wie z. B. ein
2-D Median oder Wiener Filter.

6.4.3 Einzelframe-Deblurring
Die optionale Vorverarbeitungskette aus Kontrastanhebung und Rausch-
reduktion kann zusätzlich um ein Einzelbild-Deblurring ergänzt werden,
bei dem Einzelbilder einer Sequenz mit einer geeigneten theoretischen PSF
entfaltet und so geschärft werden (siehe Abschnitt 6.2 und insbesondere Ab-
schnitt 6.2.3). Die Wahl dieser theoretischen PSF erfolgt je nach vorliegender
Limitierung und hängt von den jeweiligen Systemparametern (Wellenlänge,
Teleskopdurchmesser, IFOV), den physikalischen Gegebenheiten der beob-
achteten Szene (Objekt-Entfernung, tatsächliche Objektgröße), sowie der
gemessenen oder geschätzten Turbulenzstärke C 2

n ab.
Da jede Form der Bildstapelung die Gefahr birgt, dass Unschärfe entsteht
oder verstärkt wird, sollte dennoch nicht auf eine abschließende Entfaltung
verzichtet werden, wenn das Ziel eine bestmögliche Bildrekonstruktion ist.



6.4 Bildvorverarbeitung bei Turbulenz 179

6.4.4 Bewegung und Turbulenz
Wenn eine Sequenz mit hoher Framerate aufgezeichnet wurde und die abge-
bildete Szene bewegte Objekte enthält, lässt sich diese Eigenbewegung zwi-
schen zwei Einzelbildern u. U. nicht detektieren und insbesondere nicht von
Turbulenzbewegungen unterscheiden. Eine Möglichkeit, die Bewegungs-
detektion in solchen Fällen zu erleichtern und zugleich den Rauschpegel
zu senken, besteht darin, einige (wenige) Einzelbilder zu ihrem Mittelwert
zusammenzufassen, ggfs. nach entsprechender Registrierung. Bereits durch
eine Bildmittelung von nur einigen wenigen Frames lässt sich das SNR
deutlich verbessern. Dies trifft insbesondere auch im Fall der “China Lake”-
Sequenz zu. Die Abbildung 6.17 vermittelt einen Eindruck vom Bewegungs-
inhalt der Sequenz und zeigt die durchschnittliche Differenz zwischen den
Einzelbildern (links) als eine Art Bewegungskarte (“Motion Map”), sowie
die durchschnittliche Betragsgröße der Bewegungsvektoren (rechts), wobei
hierfür eine Blockgröße von 8×8 Pixeln gewählt wurde.

Abbildung 6.17: Bewegungsinhalt der “China Lake”-Sequenz. Links: durch-
schnittliche Differenz zwischen den Bildern als Bewegungskarte; rechts:
durchschnittlicher Betrag der Bewegungsvektoren.

Dass die Bewegungskarte die Eigenschaften eines Kantenbildes aufweist,
resultiert aus dem Apertur-Problem, da das Schachbrettmuster auf der Tafel
im Bild aus gleichmäßig gefärbten Bereichen besteht, die größer sind als
die gewählte Blockgröße. Zudem wird das von benachbarten Bereichen
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ausgehende Licht aufgrund der Turbulenz über die Ränder hinaus verteilt,
was zu einer scheinbaren Bewegung führt.
Angesichts der großen Bildrate (4097 Bilder, 300 fps) in Verbindung mit
den relativ kleinen Bewegungen, die in der beobachteten Szene enthalten
sind, ist es ein logischer Schritt, die Anzahl der Bilder geschickt zu redu-
zieren. Daher wurde zunächst ein Abschnitt mit 1250 Frames gewählt, in
dem die meisten Bewegungen auftreten. Wenn man nur eines von fünf Bil-
dern nimmt, d. h. die Sequenzlänge effektiv auf 250 Bilder reduziert, wird
die Bewegung ausreichend beschleunigt, um eine Bewegungsdetektion zu
ermöglichen. Speziell im Fall von Beeinträchtigungen durch Turbulenz lässt
sich die Genauigkeit der Bewegungsdetektion noch etwas erhöhen, wenn
jeweils der Durchschnitt aller fünf Einzelbilder genommen wird, anstatt nur
eines von je fünf Bildern auszuwählen. Das hängt damit zusammen, dass
Kanten im Mittelwertbild etwas gerader und glatter erscheinen, weniger
“aufgebrochen” und “zerrissen” als in den Einzelbildern. Zusätzlich kann
auch die Verwendung einer kleinen Kontrastverbesserung die Ergebnisse
weiter verbessern. Die Abbildung 6.18 zeigt ein Beispielergebnis für eine
solche Bildvorverarbeitung von einem Einzelbild (links) zu dem Mittelwert
von 5 Frames mit zusätzlicher CLAHE-Kontrastverstärkung.

Abbildung 6.18: Beispiel für Bildvorverarbeitung bei Turbulenz. Links: ori-
ginales Einzelbild aus der “China Lake”-Sequenz (300 fps); rechts: Ergebnis
einer Kontrastverbesserung mittels CLAHE.
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6.5 “Motion Compensated Averaging”
Die bewegungskompensierende Bildmittelung (“Motion Compensated Ave-
raging”, MCA) wie sie u. a. in [Hue08] vorgestellt wurde, entspricht im We-
sentlichen normaler Bildintegration. Der Hauptunterschied besteht darin,
dass das nächste Bild der Eingangssequenz vor der Integration innerhalb
eines vorgegebenen Suchraums um eine bestimmte Anzahl von Pixeln in
jeder Richtung leicht verschoben wird, so dass das Eingangsbild am besten
mit einem vorgegebenen Referenzbild übereinstimmt. Es sollte angemerkt
werden, dass sich dies mit Subpixelgenauigkeit implementieren lässt.
Das Ergebnis dieser bzgl. globaler Bewegungen kompensierter Bildmittelung
entspricht idealerweise einem Bild am Diffraktionslimit, welches wiederum
mit der entsprechenden theoretischen PSF für den “Short Exposure” Fall
(Gl. (6.9)) gefaltet wurde. Aus diesem Grund sollte an dieser Stelle noch ein
abschließendes Deblurring erfolgen, z. B. unter Verwendung einer der Entfal-
tungsalgorithmen aus Abschnitt 5 bzw. der in Abschnitt 6.6 beschriebenen
mehrstufigen gewichteten IBD.
Es existieren zahlreiche Varianten dieser Methode, die im Zusammenhang
mit Speckle-Imaging auch als “Shift & Add” bezeichnet wird ([Car02]). Die
Hauptunterschiede liegen in der Wahl der “Matching”-Methoden und -Kri-
terien begründet. Einige solcher Methoden wurden in Abschnitt 4.2 vorge-
stellt und diskutiert.

6.5.1 Referenzbild-Selektion
Im Idealfall ist dieses Referenzbild ein Bild, das durch die Atmosphäre und
das optische System nicht beeinträchtigt wird. Da ein solches Idealbild
normalerweise nicht zur Verfügung steht, stellt ein gleitender Mittelwert
einen einfachen und sinnvollen Ersatz dar. Alternativen sind der zeitliche
Median oder der zeitliche Modalwert der Sequenz, wie insbesondere in
[Hue10] im Detail untersucht wurde.

Temporaler Median

Ein Medianfilter wird im Gegensatz zum Mittelwert nicht von Ausreißern in
einem Datensatz beeinflusst, was bedeutet, dass er potenziell den Verlust
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von Details reduzieren kann. Der Preis für diese höhere Auflösung ist jedoch
die Einführung von Artefakten, wenn Bewegungen auftreten, die langsam
genug sind, um in das (gleitende) Medianbild aufgenommen zu werden. Da
es sich dabei auch um Bewegung durch Turbulenz handeln kann, können
für den Median bei starken Turbulenzbedingungen ggfs. doppelt so viele
Frames erforderlich sein, um die gleiche Art von geometrischer Korrektheit
des Hintergrunds zu erhalten wie es beim Mittelwert der Fall ist. Hinzu
kommt, dass sämtliche Artefakte durch die abschließende Entfaltung noch
verstärkt werden, so dass selbst minimale Artefakte deutlich erkannbar
werden.

Temporaler Modalwert

Ein verwandtes Konzept in der Statistik ist der zeitliche Modalwert (auch
“Modus”), wobei der Modalwert einer diskreten Wahrscheinlichkeitsvertei-
lung dem Wert mit der höchsten Wahrscheinlichkeit entspricht. Bezogen
auf Bildsequenzen bedeutet dies, dass jedes Pixel des modalen Bildes denje-
nigen Intensitätswert annimmt, der im Laufe der Zeit an dieser Position am
häufigsten aufgetreten ist.

Diskussion

Um die visuellen Unterschiede über einen hinreichend langen Zeitraum zu
veranschaulichen, werden in der Abbildung 6.19 der zeitliche Mittelwert,
Median und Modalwert für jeweils dieselben 250 sequentiellen Bilder mit-
einander verglichen. Dabei wurde bewusst ein Zeitabschnitt gewählt, der
auch einige Bewegungen enthält.

Abbildung 6.19: Vergleich von Mittelwert (links), Median (Mitte) und Modal-
bild (rechts), jeweils für 250 Frames der Sequenz
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Bildschärfe und Kontrast sind beim modalen Bild eindeutig am besten. Aber
während der Modus offensichtlich sehr gut innerhalb homogener Bildregio-
nen funktioniert, sind die Kanten ziemlich stark verrauscht. So grenzen die
schwarz und weiß kontrastierenden Felder nicht unmittelbar aneinander,
sondern sind durch graue (Mischfarbe) Bereiche getrennt, deren Breite der
der Größe der Turbulenzbewegungen (in Pixeln) entspricht. Das heißt, Be-
wegungen haben einen stärkeren Einfluss auf den Modalwert als auf den
Median, insbesondere auch abrupte und schnelle Bewegungen. Der Mit-
telwert verhält sich etwas “nachsichtiger” gegenüber solchen “Ausreißern”
durch bewegte Objekte ebenso wie durch starke Turbulenzbewegungen.
Hinzu kommt, dass er sich wesentlich schneller berechnen lässt als die
beiden anderen Werte. Es sollte dennoch erwähnt werden, dass in [Pot10]
eine Möglichkeit zur Reduktion dieser Übergangseffekte beim Modalwert
vorgeschlagen wird.
Eine weitere gebräuchliche Alternative besteht darin, einfach das erste Bild
der Sequenz zu verwenden und in regelmäßigen Abständen durch eine
aktuelle Version zu ersetzen. Der Vorteil dieser Methode liegt auf der Hand,
da keine gesonderten Berechnungen durchgeführt werden müssen. Der
Nachteil ist, dass etwaige Bildverformungen in diesem Referenzframe als
korrekt betrachtet werden und daher im Rekonstruktionsprozess erhalten
bleiben. Bei isoplanatischen Bedingungen ist dies eine durchaus praktische
und sinnvolle Lösung. Bei anisoplanatischen Bedingungen wäre hingegen
eine der anderen Lösungen (d. h. Mittelwert oder Median) zu empfehlen.

6.5.2 MCA mit “Block Matching”
Unter anisoplanatischen bzw. lokal isoplanatischen Bedingungen führen tur-
bulenzbedingte Bildbewegungen nicht nur zu globalen Bildverschiebungen,
sondern auch zu lokalen Verschiebungen zwischen aufeinanderfolgenden
Frames. Zur Berücksichtigung dieser Verschiebungen wurde speziell der
MCA-Algorithmus in [Hue09] zusätzlich um ein “Block Matching” gemäß
[Gya03] erweitert, um gleichmäßig verschobene Bildteile zu identifizieren
und neu anzuordnen (s. a. Abschnitt 4.2 für weitere BM-Algorithmen). Ge-
nauer wird ein “Block Matching” auf Pixelebene durchgeführt, wobei die
Pixel des aktuellen Bildes blockweise mit denen eines Referenzbildes vergli-
chen und für optimale Übereinstimmung verschoben werden.
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Anmerkungen zur Implementierung

Zur Laufzeitbeschleunigung kann der pixelbasierte BM-Algorithmus durch
ein FFT-basiertes Verfahren ersetzt werden, welches die beste Übereinstim-
mung anhand von Korrelationsberechnungen zwischen den Blöcken er-
mittelt. Hierdurch kann eine signifikante Beschleunigung (ca. 20-30 fach)
erzielt werden, da die Geschwindigkeit nicht mehr von der Größe des gewähl-
ten Suchraumes abhängig ist. Als problematisch hat sich hierbei allerdings
herausgestellt, dass die Genauigkeit der berechneten Verschiebungsvekto-
ren umso mehr abnimmt, je kleiner die Blockgröße gewählt wird (ab ca.
16×16 Pixel). Dies hängt u. a. mit dem Apertur-Problem zusammen, denn
je kleiner die Bildblöcke sind, desto größer ist die Wahrscheinlichkeit, dass
der Bildinhalt nur wenige oder gar keine Strukturen enthält zwischen de-
nen sich sinnvolle Korrelationen berechnen lassen (z. B. Bildausschnitte,
die nur Himmel oder Asphalt zeigen). Ein möglicher Lösungsansatz besteht
darin, das korrelationsbasierte Verfahren über einen pyramidalen Ansatz
zu implementieren, d. h. mehrstufige Ausführung mit sukzessive halbierten
Blockgrößen, um so Ausreißer unter den errechneten Vektoren besser erken-
nen zu können. Eine denkbare, wenn auch eher unpraktische Alternative
wäre eine Kombination beider Verfahren, bei der das pixelbasierte Verfahren
gleichsam als Kontrollinstanz fungiert.

6.5.3 Lokale Bildstapelung
Der MCA-Algorithmus mit “Block Matching” funktioniert am besten für
statische Szenen bzw. für Szenen, in denen die Bewegung vernachlässigbar
ist. Denn im Fall von Objektbewegung hat der Einsatz von Bildmittelung zur
Folge, dass auftretende Bewegungsunschärfen proportional zur Anzahl der
gestapelten Bilder verstärkt werden. Dabei spielt es keine Rolle, ob es sich
tatsächlich um reale Bewegungsunschärfe handelt oder ob diese erst durch
die Mittelung erzeugt wird.
Eine Lösungsmöglichkeit, die zuerst in [Hue11] vorgestellt wurde, besteht
in einer gerichteten lokalen Bildstapelung (“Local Image Stacking”, LIS)
ausschließlich für die bewegten Objekte in der Szene. Hierbei wird “Block
Matching” dazu verwendet, gerichtete Bewegung von Objekten zu detektie-
ren und von turbulenzbedingter, ungerichteter Bewegung zu unterscheiden.
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Sofern die Objektbewegung gegenüber der Turbulenzbewegung deutlich
überwiegt, ermöglicht dies eine Segmentierung von statischen Szenenele-
menten und bewegten Objekten, so dass Vorder- und Hintergrund getrennt
voneinander verarbeitet werden können.

Zugrundeliegende Idee

Die Abbildung 6.20 vermittelt einen Eindruck von der Effektivität der loka-
len Bildstapelung, indem hier das “Stacking” zu Demonstrationszwecken
global ausgeführt wurde. Das heißt, in der turbulenzfreien “Ettlinger Tor”-
Testsequenz 4(links) ist die Bewegungskompensation auf die Korrektur der
Bewegung des Busses ausgerichtet, wobei eine Stapeltiefe von 6 Bildern ver-
wendet und eine konstante Verschiebung von 1 Pixel in beide Richtungen
angenommen wurde. Währenddessen ist sie in der “China Lake”-Sequenz
(rechts) auf die horizontale Personenbewegung ausgerichtet, wobei eine
durchschnittliche horizontale Verschiebung von 0,666 Pixeln zwischen den
Frames angenommen und eine Stapeltiefe von 8 Bildern verwendet wurde.
Die “Ettlinger Tor”-Sequenz mit Objektbewegung, aber ohne Turbulenz,

war bewusst gewählt worden, um zunächst einen “Proof of Concept” für das
Funktionsprinzip zu erhalten. Wie die Nahaufnahme in der Abbildung 6.21
(links) verdeutlicht, funktioniert das Verfahren bei linearen Bewegungen
tatsächlich sehr gut, denn das Heck des Busses ist ebenso klar definiert wie
im Einzelbild (Mitte). Die leicht erhöhte Unschärfe an seiner Vorderseite
zeigt, dass der Bus nicht ganz gerade, sondern eine leichte Kurve fährt. Die
Verbesserung im Vergleich zu dem gewöhnlichen Durchschnitt von 6 Bildern
(rechts), ist dennoch deutlich zu erkennen.
Bei den durch Turbulenz gestörten Daten wirkt der Fokussierungseffekt weit
weniger ausgeprägt, wie in der Abbildung 6.20 (rechts) zu sehen ist. Zum
einen liegt dies daran, dass Gehbewegungen von Personen in der Realität
nicht völlig linear in horizontaler Richtung verlaufen. Arm- und Beinbewe-
gungen haben z. B. immer auch eine kleine vertikale Komponente, deren
Korrektur hier vernachlässigt wurde. Zum anderen sorgt die ungerichtete

4 Quelle: KOGS/IAKS Universität Karlsruhe, verfügbar unter: http://i21www.ira.uka.de/
image_sequences/; Aufnahme der “Ettlinger Tor”-Sequenz: Henner Kollnig

http://i21www.ira.uka.de/image_sequences/
http://i21www.ira.uka.de/image_sequences/
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Turbulenzbewegung infolge der starken Turbulenz in der Sequenz ohne-
hin für einen hohen Grundpegel an Unschärfe. Hinzu kommt, dass einem
menschlichen Beobachter der optische Unterschied zwischen einem gesto-
chen scharfen Bild und einem etwas unscharfen Bild unverhältnismäßig
viel stärker auffällt als der Unterschied zwischen dem etwas unscharfen Bild
und einem doppelt so unscharfen Bild.

Abbildung 6.20: Demonstration des gerichteten Stapeleffekts. Links: Bildsta-
pel auf die Bewegung des Busses ausgerichtet, Stapeltiefe: 6 Frames; rechts:
Bildstapel für horizontale Bewegung, Stapeltiefe: 8 Frames.

Abbildung 6.21: Bildausschnitt zur Veranschaulichung des Effekts der loka-
len Bildstapelung; Links: Bildstapel auf die Bewegung des Busses ausgerich-
tet; Mitte: Einzelbild; rechts: normaler Durchschnitt von 6 Bildern.
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Das LIS-Prinzip

Die Abbildung 6.22 veranschaulicht das Grundprinzip des LIS, welches es
ermöglicht, die Vorteile der Bildstapelung beizubehalten ohne den Nachteil
erhöhter Unschärfe in Kauf nehmen zu müssen. Es wird dabei eine rückwir-
kende gerichtete lokale Bildstapelung für die bewegten Elemente durchge-
führt, wodurch die Bewegungsunschärfe, die sonst durch Mittelwertbildung
entstehen würde, effektiv reduziert wird und das finale Rekonstruktionser-
gebnis insgesamt verbessert.

Abbildung 6.22: Prinzip der lokalen Bildstapelung

Die Umsetzung erfordert ein paar zusätzliche Modifikationen des MCA-
Grundalgorithmus. Für die Bilder sowie für die zugehörigen Bewegungs-
vektoren, die für jedes Paar aufeinanderfolgender Bilder berechnet werden,
wird ein Kurzzeitpuffer verwendet (z. B. der Länge n = 5 oder n = 10, je nach
Umfang der Bewegung) zusätzlich zu dem bereits vorhandenen Langzeit-
puffer, der nach wie vor für die statischen Bildregionen benötigt wird. Die
Bilder I (1), . . . , I (n) dieses Kurzzeitpuffers werden in umgekehrter Reihenfol-
ge gestapelt. Das heißt, jeder Pixelblock des Bildes I (n) wird entsprechend
den Verschiebungen, die durch den korrespondierenden Bewegungsvektor
gegeben sind, verschoben und zu dem passenden (nicht verschobenen)
Block im vorherigen Bild I (n−1) hinzugefügt. Das resultierende Ergebnis
wird wiederum so verschoben, dass er mit dem Bild aus dem Schritt zuvor
übereinstimmt, d. h. I (n−2). Dies wird für die gesamte Länge des Puffers wie-
derholt, bis das erste Element im Puffer erreicht ist. Das Endergebnis muss
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noch durch die Anzahl der aufsummierten Blöcke geteilt werden. Da diese
Anzahl je nach Position variiert, muss ein pixelgenauer Zähler mitgeführt
werden.

Unterscheidung zwischen Turbulenz- und Objektbewegung

Obwohl die durch atmosphärische Turbulenzen verursachte Bewegung po-
tenziell omnidirektional ist, wie links in der Abbildung 6.23 angedeutet, ist
sie in der Realität nicht völlig zufällig. Sie ist vor allem vom vorherrschenden
Seitenwind abhängig, d. h. von der Windgeschwindigkeit und dem Winkel
in Bezug auf die Sensorposition. Außerdem ist es statistisch betrachtet sehr
wahrscheinlich, dass gerade bei hohen Bildraten und entsprechend kurzen
Belichtungszeiten (< τ0) eine gewisse Korrelation zwischen aufeinander-
folgenden Bildern besteht, weshalb auch turbulenzbedingte Bewegungen
nicht zwangsläufig allzu schnell oder drastisch die Richtung ändern. Daher
ist zu erwarten, dass die Trennung zwischen derartiger halb ungerichteter
Bewegung von realer Objektbewegung nur dann effektiv funktionieren kann,
wenn die Größenordnung der Objektbewegung die der Turbulenz übersteigt.
Nachdem die Bewegungsvektoren für eine bestimmte Anzahl von Frames
geschätzt wurden, muss entschieden werden, ob die berechnete Verschie-
bung als Teil einer gerichteten Objektbewegung betrachtet werden kann

Abbildung 6.23: Akzeptabler Bereich der Vektorwinkel (grau) für gerichte-
te Bewegung und resultierende Hauptrichtung (roter Pfeil), abweichende
Vektoren sind gestrichelt dargestellt.
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oder nicht. Zur Reduktion von Falsch-Detektionen werden nur Verschie-
bungsvektoren als “Bewegung” akzeptiert, falls der durchschnittliche Betrag
der berechneten Vektoren über einem vorgegebenen Schwellwert liegt. Alle
anderen werden unterdrückt.
Als weiteres Entscheidungskriterium bietet sich der Winkel zwischen be-
nachbarten Vektoren an. Da eine maximale Abweichung innerhalb eines
90°-Winkels leicht durch die Überprüfung des Skalarprodukts zwischen den
Vektoren überprüft werden kann (wenn das Skalarprodukt ≥ 0 ist, ist der
Winkel zwischen den Vektoren ≤ 90◦), wurde dieser als akzeptabler Winkel
gewählt. Das rechte Bild in der Abbildung 6.23 veranschaulicht die Situation,
in der die Mehrheit der Vektoren innerhalb des akzeptablen 90°-Winkels
liegt, während die anderen als Ausreißer betrachtet werden.
Die Abbildung 6.24 zeigt die geschätzten lokalen Bildverschiebungen über
den Verlauf der “China Lake”-Sequenz exemplarisch für die im Bild mar-
kierte Position. Der linke Plot enthält die Orientierungen und Längen der
auftretenden Verschiebungsvektoren und der rechte Plot enthält die zuge-
hörige Häufigkeitsverteilung.

Abbildung 6.24: Lokale Bildverschiebungen (in Pixeln) an markierter Positi-
on im linken Bild. Mitte: während der Sequenz auftretende Verschiebungs-
vektoren; rechts: Häufigkeitsverteilung der Verschiebungen.

Die Abbildung 6.25 zeigt einen Vergleich des Ergebnisses lokaler Bildstape-
lung, für das insgesamt 40 Bilder verwendet wurden, mit dem normalen
Mittelwert von 20 Bildern. Obwohl doppelt soviel Frames gemittelt wurden,
ist das LIS-Endergebnis dennoch sichtlich schärfer und klarer definiert als
der einfache Mittelwert.
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Abbildung 6.25: Vergleich lokaler und normaler Bildstapelung. Links: Mit-
telwert aus 8 vorverarbeiten Bildern (d. h. Mittelwert aus je 5 Frames) bei
lokaler Bildstapelung mit Blockgröße 32, d. h. entspricht dem Mittelwert aus
40 Bildern; rechts: normaler Mittelwert aus jeweils 20 Bildern.

Vorschläge zur Optimierung

Besteht das Ziel in einer bestmöglichen Bildrekonstruktion, die z. B. offline
ohne zeitliche Einschränkungen (und nicht schritthaltend) durchgeführt
werden kann, lässt sich das Rekonstruktionsergebnis noch etwas optimie-
ren, indem sowohl eine räumliche als auch eine zeitliche Nachbarschaft der
geschätzten Verschiebungsvektoren einer Art Plausibilitätsprüfung unterzo-
gen wird. Idealerweise werden dazu zunächst die Bewegungsvektoren über
den gesamten Verlauf der Sequenz bestimmt, analysiert und ggfs. korrigiert,
wobei Ausreißer z. B. durch einen (gewichteten) Mittelwert der räumlich
und/oder zeitlich benachbarten Vektoren ersetzt werden können.
Speziell für das LIS-Ergebnis in Abbildung 6.25 wurden jeweils die beiden
zeitlich vorhergehenden Bewegungsvektoren und die beiden nachfolgenden
Vektoren an der gleichen lokalen Position überprüft (insgesamt 4 Vektoren),
während räumlich insgesamt 24 umgebende Bewegungsvektoren (zum glei-
chen Zeitpunkt) mithilfe des Skalarprodukts hinsichtlich ihrer jeweiligen
Winkel zueinander analysiert wurden. Zwar ist es denkbar, größere Nachbar-
schaften zu verwenden, der zusätzliche Informationsgewinn nimmt aber
mit zunehmendem Abstand zur Position des zu überprüfenden Vektors
schnell ab, wobei auch die gewählte Blockgröße eine Rolle spielt. Abhilfe
schafft ein ergänzendes Gewichtungssystem, welches die Nachbarvektoren
entsprechend ihrer Entfernung zu dem aktuell zu prüfenden Vektor gewich-
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tet, so dass die unmittelbaren Nachbarn die größtmögliche Gewichtung
bekommen. Sollte der Vektor als Ausreißer identifiziert worden sein, wird
der betreffende Vektor durch die (jeweils gewichteten) mittleren Verschie-
bungen in vertikaler und horizontaler Richtung ersetzt.

6.6 Mehrstufige gewichtete IBD
Bei geringer Turbulenz kann Einzelframe-Deblurring durchaus ausreichend
sein. Für ein optimales Rekonstruktionsergebnis ist jedoch bei stärkerer
Turbulenz in der Regel zusätzliches Deblurring erforderlich, z. B. mithilfe
blinder Entfaltung (siehe Kapitel 5).
Zu diesem Zweck wurde in [Hue09] eine mehrstufige gewichtete iterative
blinde Entfaltung (“Weighted Iterative Blind Deconvolution”, WIBD) vorge-
schlagen, zur Verbesserung der Ergebnisqualität speziell des klassischen
IBD-Algorithmus. Es handelt sich dabei um eine Erweiterung des IBD-
Algorithmus, die im Wesentlichen aus einer Verkettung mehrerer gewöhnli-
cher Entfaltungsschritte besteht, jeweils mit variierender Trägergröße der
Filterfunktion und unterschiedlicher Anzahl zugehöriger Iterationen. Der
Hauptunterschied zum Standardalgorithmus liegt dabei in der Verwendung
einer Gewichtungsfunktion, mit deren Hilfe die schärfende Wirkung der
Entfaltung lokal an den Kanten verstärkt wird, während gleichzeitig Ringing-
Effekte in unstrukturierten Bildregionen reduziert werden.
Genauer lässt sich der mehrstufige Entfaltungsprozess in die folgenden drei
Phasen unterteilen:

1. f̂ (m) = IBD des Eingabebildes g mit den Filterfunktionen h1, . . . ,hm

und zugehörigen Iterationen i1, . . . , im

2. f̂ (k) = IBD des Zwischenergebnisses f̂ (m) mit den Filterfunktionen
hm+1, . . . ,hk und zugehörigen Iterationen im+1, . . . ,ik

3. f̂ = mittels Kantenbild M gewichtete Summe aus f̂ m und f̂ k

Das heißt, sowohl in der ersten als auch in der zweiten Phase wird das beob-
achtete Eingabebild g unter Verwendung des klassischen IBD-Algorithmus
iterativ in insgesamt k Wiederholungen entfaltet, wobei in jedem Schritt
eine andere Filterfunktion h j mit unterschiedlicher Trägergröße und An-
zahl Iterationen i j eingesetzt wird. Das Zwischenergebnis im m-ten Schritt
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f̂ (m) wird dabei separat abgespeichert, da es später noch benötigt wird. Die
generelle Iterationsvorschrift lässt sich folgendermaßen formulieren:

f̂ ( j ) = IBD( f̂ ( j−1),h j−1, i j−1) ( j = 2, . . . ,k) (6.28)

Die Reihenfolge der h j spielt dabei keine Rolle, wobei es aus praktischer
Sicht naheliegt, für beide Phasen jeweils auf- oder absteigende Trägergrö-
ßen zu wählen. Diese gestaffelte Vorgehensweise ist durchaus sinnvoll, da
Turbulenzzellen unterschiedlicher Größe vor der Optik vorbeiziehen und so
Bildstörungen und Bildbewegungen verursachen, welche unterschiedlichen
PSF-Größen entsprechen. Es hat sich in der Praxis als erfolgreich erwiesen,
diese Art von Störungen getrennt in mehreren Schritte zu korrigieren.
In der dritten Phase dient das Sobel-gefilterte Referenzbild (d. h. der glei-
tende Mittelwert oder temporale Median) als Gewichtungsfunktion, wobei
ebenso andere Kantenfilter, wie z. B. der Canny- oder der Laplace-Filter,
eingesetzt werden könnten.
Genauer fungiert das resultierende Kantenbild als Maske M (d. h. M(x,y) ∈
[0,1] ∀(x,y)), mit deren Hilfe sich die Schätzung f̂ für alle Pixel (x,y) als
gewichtete Summe aus der m-ten und der k-ten Iterationsstufe bei der
Entfaltung ausdrücken lässt, d. h. f̂ (m) und f̂ (k):

f̂ (x,y) = M(x,y) · f̂ (m)(x,y)+ (1−M(x,y)) · f̂ (k)(x,y) (6.29)

Das heißt insbesondere, dass die Bildbereiche auf und in der Nähe von
Kanten überwiegend Anteile der späteren Iteration f̂ (k) enthalten, während
homogene Bildbereiche weiter weg von den Kanten hauptsächlich aus der
früheren Iteration f̂ (m) bestehen. Dadurch erscheinen die Kanten deutlich
schärfer, während sich zugleich Ringing-Effekte (siehe Abschnitt 5.4.3) an
Kanten erfolgreich reduzieren lassen.
Die Abbildung 6.26 (mittlere Reihe) zeigt einen Vergleich der Ergebnisse der
mehrstufigen gewichteten Entfaltung (WIBD) mit Ergebnissen der klassi-
schen IBD, sowie mit einem Einzelbild der Sequenz und dem einfachen Mit-
telwert. Das Bild unten links in der Abbildung zeigt zusätzlich die zugehörige
Gewichtungsfunktion. Im Vergleich mit dem entsprechenden Kantenbild
des Resultats der WIBD-Entfaltung (unten rechts) sind insbesondere die
besser definierten Kanten infolge verbesserter Bildschärfe klar ersichtlich.
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Abbildung 6.26: Oben: Original (links) u. Mittelwert 100 Frames mit globaler
Registrierung (rechts); Mitte: Turbulenzkorrektur mit IBD (links) u. mit mehr-
stufiger WIBD (rechts) im Vergleich; unten: Sobel-gefiltertes Mittelwertbild
als Gewichtungsfunktion u. Sobel-gefiltertes Resultat der WIBD (rechts).
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Anmerkungen

Es sollte noch angemerkt werden, dass dieses mehrstufige Prinzip einschließ-
lich einer Gewichtungsfunktion für Bildkanten ggfs. auch unter Verwendung
anderer Entfaltungsverfahren durchgeführt werden kann.
Ebenfalls sollte erwähnt werden, dass durch die Verkettung von blinden
Entfaltungsschritten unter Verwendung unterschiedlicher Filtergrößen u. U.
Artefakte erzeugt werden können, die wie Schraffuren erscheinen. In der
Abbildung 6.27 ist dazu ein Beispiel zu sehen, worin die Schraffuren in einem
Detailausschnitt mithilfe von Kontrastverstärkung sichtbar gemacht wurden.
Diese Artefakte lassen sich jedoch mithilfe einer Kantengewichtung wieder
reduzieren.

Abbildung 6.27: Schraffur-Artefakte infolge mehrstufiger Entfaltung mit
unterschiedlichen Filtergrößen. Links: Beispielbild; rechts: Ausschnittsvergö-
ßerung, zur Verdeutlichung mit Schärfungsfilter und Kontrastverstärkung.

6.7 Korrekturbeispiele
In diesem Abschnitt sind einige weitere Korrekturergebnisse für die verschie-
denen Verfahren aus den vorangegangenen Abschnitten zusammengestellt.
Die Beispiele sind inhaltlich gemäß zunehmenden Schwierigkeitsgrades
sortiert, d. h. entsprechend den vorherrschenden Turbulenzbedingungen
und den damit verbundenen zu erwartenden Einschränkungen bzgl. der
möglichen Rekonstruktionsqualität. In die Sortierung wird zusätzlich der
Bewegungsinhalt (sofern vorhanden), sowie die Entfernung miteinbezogen.
Sofern nicht explizit etwas anderes angegeben ist, handelt es sich um Auf-
nahmen im visuellen Spektrum.
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6.7.1 Schwache Turbulenz, statische Szene, große
Entfernung

Die Abbildung 6.28 zeigt ein Korrekturergebnis für eine statische Szene in
sehr großer Entfernung (der Funkturm am Fremersberg in Baden-Baden,
Distanz ca. 27 km). Die Daten wurden morgens (ca. 9:00 Uhr) bei verhält-
nismäßig schwacher Turbulenz (trotz Sonneneinstrahlung) mithilfe einer
Hochgeschwindigkeitskamera aufgezeichnet. Als Grundlage für die Kor-
rektur dienten die zwei besten Frames der aufgenommenen Sequenz. Sie
wurden zunächst registriert und gemittelt, bevor ein Deblurring mittels
mehrstufiger WIBD-Entfaltung durchgeführt wurde. Die erhöhte Bildqua-
lität des Rekonstruktionsergebnisses ist offensichtlich, insbesondere die
verbesserte Erkennbarkeit der Details, wie z. B. der am Turm angebrach-
ten Aufbauten. Dies liegt einerseits daran, dass die Umweltbedingungen
zu diesem Zeitpunkt verhältnismäßig gut waren (d. h. geringe Turbulenz,
gute Lichtverhältnisse, geringe Luftfeuchtigkeit etc.), und andererseits auch
daran, dass die Integrationszeit sehr kurz gewählt wurde (< 1 ms), um die
Kohärenzzeit nicht zu überschreiten.
Es sollte auch erwähnt werden, dass sich der Vignettierungseffekt in den
Bilddaten ggfs. noch zusätzlich korrigieren ließe.

Abbildung 6.28: Beispiel für Turbulenzkorrektur. Links: Originalaufnahme,
Objektentfernung ca. 27 km, bei schwacher Turbulenz; rechts: Korrekturer-
gebnis, mehrstufige blinde Entfaltung, aus zwei registrierten Einzelbildern.
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6.7.2 Moderate Turbulenz, statische Szene, mi�lere
Entfernung

Das Beispiel in Abbildung 6.29 stammt aus der “Stadium Lamps”-Sequenz
(s. a. Abschnitt 6.1.2). Da es sich um ein rein statisches Objekt handelt, wur-
de keine explizite Bewegungskompensation durchgeführt. Unter den ge-
gebenen Bedingungen wäre der Informationsgewinn nur minimal, wohin-
gegen der zusätzliche Rechenaufwand signifikant ansteigen würde (spezi-
ell in Verbindung mit LIS). Stattdessen wurde nur eine globale Registrie-
rung der Frames durchgeführt bevor der gleitende Mittelwert von je 100
(registrierten) Frames einem WIBD-Deblurring und einer leichten CLAHE-
Kontrastanhebung unterzogen wurde.

Abbildung 6.29: Turbulenzkorrektur statischer Objekte am Beispiel der “Sta-
dium Lamps”-Sequenz. Links: unverändertes Einzelbild, Objektentfernung
ca. 2-3 km, moderate Turbulenz; rechts: Deblurring des global registrier-
ten Mittelwerts (100 Frames) mittels mehrstufiger blinder Entfaltung zzgl.
minimaler CLAHE-Kontrastverstärkung.

Dies trifft weitgehend auch auf die anderen beiden in Dayton aufgenom-
menen Sequenzen zu, insbesondere auf die “NATO / Mannequin”-Sequenz
(s. a. Abschnitt 6.1.2) in der Abbildung 6.30. Mit C 2

n = 5 ·10−16 m−2/3 war die
Turbulenz zum Aufnahmezeitpunkt relativ schwach, weshalb sich trotz der
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größeren Entfernung (ca. 7-8 km) die gleiche Art von Korrektur ohne all-
zu viele Modifikationen einsetzen ließ. Auch konnte auf eine zusätzliche
Kontrastverstärkung verzichtet werden.

Abbildung 6.30: Turbulenzkorrektur statischer Objekte am Beispiel der “NA-
TO / Mannequin”-Sequenz. Oben: unverändertes Einzelbild, Objektentfer-
nung ca. 7-8 km, moderate Turbulenz; unten: Deblurring mittels mehrstufi-
ger blinder Entfaltung.

Der Funkmast in der “Antenne”-Sequenz (s. a. Abschnitt 6.1.2) befand sich
ebenfalls in ca. 7 km Entfernung. Allerdings herrschte während der Erfas-
sung die gleiche erhöhte Turbulenzstärke wie zuvor in der “Stadium Lamps”-
Sequenz. Um der schlechteren Bildqualität entgegen zu wirken, wurden
deshalb für das Ergebnis in der Abbildung 6.31 nur die besten 250 Frames
(von 500) ausgewählt, wobei die “Blur”-Metrik aus [Dol07] als Selektions-
kriterium verwendet wurde. Anschließend wurde wieder eine globale Re-
gistrierung durchgeführt und der resultierende gleitende Mittelwert einem
WIBD-Deblurring unterzogen (ohne zusätzliche Kontrastverbesserung).



198 6 Turbulenzkorrektur

Abbildung 6.31: Beispiel für Turbulenzkorrektur statischer Objekte. Links:
unverändertes Einzelbild, Objektentfernung ca. 7 km, moderate Turbulenz;
Mitte: Mittelwert der besten 250 Frames (von 500) nach globaler Registrie-
rung; rechts: Deblurring mittels mehrstufiger blinder Entfaltung.

6.7.3 Starke Turbulenz, moderate Objektbewegung,
mi�lere Entfernung

Der Schwierigkeitsgrad der Rekonstruktionsaufgabe erhöht sich im Fall der
“China Lake”-Sequenz (s. a. Abschnitt 6.1.1) noch einmal deutlich. Sowohl
die stärkere Turbulenz (C 2

n = 1,3 ·10−13 m−2/3). als auch die zusätzliche Ob-
jektbewegung machen zusätzliche Maßnahmen erforderlich, vor allem eine
lokale Bewegungskompensation.
Das mittlere Bild in der Abbildung 6.32 zeigt ein Beispielergebnis der mittels
“Block Matching” erweiterten lokalen MCA-Bewegungskompensation (siehe
Abschnitt 6.5.2). Genauer handelt es sich um das Durchschnittsbild aus
100 aufeinander folgenden Einzelbildern, die sowohl global als auch lokal
registriert wurden. Das zugehörige Resultat einer mehrstufigen gewichteten
blinden Entfaltung ist rechts in der Abbildung zu sehen. Zum Vergleich ist
links auch eines der verwendeten unveränderten Einzelbilder abgebildet.
Das Beispiel in der Abbildung 6.33 enthält hingegen deutlich mehr Objekt-
bewegung, so dass die Rekonstruktion basierend auf dem Mittelwert von
150 bewegungskompensierten Frames (links) entsprechende Bewegungs-
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unschärfe aufweist. Das mittlere Bild zeigt das Ergebnis der lokalen Bildsta-
pelung gemäß LIS-Prinzip (siehe Abschnitt 6.5.3), wobei eine Blockgröße
von 32×32 px verwendet wurde und eine Stapeltiefe von 8 vorverarbeiteten
Frames (je Mittelwert von 5 Frames, d. h. 40 Frames insgesamt).

Abbildung 6.32: Beispiel für MCA mit lokaler Bewegungskompensation.
Links: unverändertes Einzelbild, Entfernung ca. 1 km, starke Turbulenz; Mit-
te: MCA mit BM, d. h. Mittelwert von jeweils 100 global u. lokal registrierten
Frames; rechts: MCA mit BM und abschließendem WIBD-Deblurring.

Abbildung 6.33: Beispiel für LIS-Turbulenzkorrektur. Links: WIBD-Ergebnis
für den Mittelwert von 150 Frames (10 Iterationen); Mitte: LIS und WIBD
(Blockgröße 32, Stapeltiefe 8); rechts: LIS und WIBD mit separater Korrektur
des Hintergrunds.

Eine zusätzliche Verbesserung lässt sich noch über eine Separierung und un-
terschiedliche Korrektur von Vorder- und Hintergrund erzielen, wie am rech-
ten Bild in der Abbildung 6.33 zu erkennen. Hier wurden nur die bewegten
Objekte im Vordergrund der Szene einer LIS-Bewegungskompensation un-
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terzogen, so dass der kürzere Zeitrahmen (40 Frames) Bewegungsunschärfe
minimieren kann. Währenddessen sind solche zeitlichen Beschränkungen
weniger für die statischen Szenenelemente im Hintergrund erforderlich.
Aus diesem Grund wurde hier ein Langzeitmittelwert (150 Frames) als Ba-
sis verwendet, wobei die normale MCA mit BM Bewegungskompensation
durchgeführt wurde.
Wenngleich die Kanten der Mustertafel im mittleren Bild auf den ersten
Blick ein wenig schärfer erscheinen mögen als in dem rechten Bild, weisen
sie nicht die gleiche geometrische Korrektheit auf. Zudem fällt die stabili-
sierende Wirkung geringer aus, was sich allerdings besser in einem Video
beobachten lässt.
Es sollte noch erwähnt werden, dass die für die einzelnen Rekonstruktionen
verwendeten Entfaltungsparameter (PSF-Größen, Anzahl der Iterationen)
nicht alle identisch gewählt wurden, sondern individuell für ein möglichst
optimales Ergebnis im Rahmen der Möglichkeiten.

6.7.4 Extreme Turbulenz, statische Sequenz, Nahbereich,
aktive Illumination

Wie das Beispiel in der Abbildung 6.36 demonstriert, lassen sich die gleichen
Verfahren nicht nur für Kamerasysteme einsetzen, die im VIS- oder im IR-
Spektrum operieren, sondern auch für bildgebende Lasersysteme.
Im vorliegenden Fall handelt es sich um eine mit einem VIS-Laser beleuch-
tete Mustertafel (λ= 532 nm). Die extrem starke Turbulenz zwischen Sen-
sorik und Objekt wurde mithilfe eines im Maßstab 1 : 3 herunter skalierten
Jet-Triebwerks erzeugt. Die Messungen fanden auf dem Gelände der Fir-
ma “VOLVO Aero” in Trollhättan, Schweden statt. Innerhalb der Abgasfah-
ne (oder auch: “Plume”) wurden C 2

n-Werte zwischen 6,3 ·10−10 m−2/3 und
2,5 ·10−10 m−2/3 gemessen, in Abhängigkeit vom Durchmesser der Abgas-
fahne. Eine Skizze des experimentellen Aufbaus ist in der Abbildung 6.34
dargestellt.
Die Abbildung 6.35 zeigt überdies einen Vergleich der Aufnahmen bei aus-
geschaltetem Triebwerk (d. h. ohne Turbulenz) und mit eingeschalteten
Triebwerk bei unterschiedlich langer Betriebsdauer. Es ist deutlich zu erken-
nen, wie die Turbulenz mit der Zeit zunimmt und sich die Größenordnung
der Speckle-Muster entsprechend verändert.
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Abbildung 6.34: Experimenteller Aufbau der Messungen bei “VOLVO Aero”
entlang des Abgasstrahls eines Jet-Triebwerks (Maßstab 1 : 3)

Abbildung 6.35: Beispiel für aktive Beleuchtung bei extremer Turbulenz.
Links: bei ausgeschaltetem Triebwerk; Mitte: Triebwerk vor kurzem einge-
schaltet; rechts: nach längerer Betriebsdauer des Triebwerks

Abbildung 6.36: Beispiel für Turbulenzkorrektur im Fall aktiver Beleuchtung.
Links: unverändertes Einzelbild, starke Turbulenz in der Nähe eines laufen-
den Jet-Triebwerks; rechts: PCA-basierte blinde Entfaltung eines gleitenden
Mittelwerts (40 Frames)
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Dazu sollte angemerkt werden, dass auch im laufenden Original-Video nicht
mehr Details zu erkennen sind als in dem hier abgebildeten Einzelbild
(Abb. 6.35 links), da die Speckle-Muster infolge der extremen Turbulenz sehr
stark ausgeprägt sind und permanent variieren.
An dieser Sequenz wurden die meisten der Entfaltungsmethoden in Kapi-
tel 5 getestet, wobei die PCA-basierte Methode (aus Abschnitt 5.1.4) in der
Abbildung 6.36 die insgesamt überzeugendsten Ergebnisse liefern konnte.

6.8 Farbbilddaten
Bei der Erfassung von Bilddaten durch eine turbulente Atmosphäre werden
nur vergleichsweise selten Farbbildkameras eingesetzt. In der Regel kom-
men monochrome EO-Systeme zur Anwendung, häufig auch IR-Kameras,
da größere Wellenlängen weniger stark durch die Turbulenz beeinträchtigt
werden.
Es gibt mehrere Gründe, die gegen den Einsatz von Farbbildkameras spre-
chen, z. B. gehen Farbinformationen aufgrund von atmosphärischer Streu-
ung und Absorption verloren und die Anzahl der wahrnehmbaren Farben
nimmt mit zunehmender Entfernung exponentiell ab ([LG14]). Entspre-
chend sehen Farbbilder, die über mehrere Kilometer hinweg aufgenommen
wurden, verwaschen aus mit entsättigten Farben, die möglicherweise an
den Objektkonturen “ausbluten” oder ineinander laufen.
Ein weiterer Grund ist in der zugrundeliegenden Sensortechnologie zu fin-
den. Zur Erfassung von Farbinformationen, benötigt eine Kamera entweder
(mindestens) drei verschiedene Sensorchips, d. h. einen pro Farbkanal (ty-
pischerweise: Rot, Grün, Blau; in selteneren Fällen: Gelb, Magenta, Cyan),
jeweils mit einer entsprechenden Elektronik, was eine präzise Registrierung
erfordert, oder einen einzelnen Sensorchip, der mit einem Farbfilter-Array
(“Color Filter Array”, CFA) abgedeckt ist, so dass nur eine Farbe an jedem
Pixel gemessen werden kann. Das bedeutet allerdings, dass die fehlenden
zwei Farbwerte an jeder Pixelposition geschätzt werden müssen, wodurch
die Gesamtbildauflösung effektiv reduziert wird. Es liegt auf der Hand, dass
eine Ein-Sensor-Lösung mit CFA trotz ihrer Nachteile hinsichtlich der gerin-
geren Bildauflösung günstiger zu realisieren und daher verbreiteter ist als
ein Drei-Chip-Kamerasystem.
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6.8.1 Demosaicing
Der Interpolationsprozess, der im Fall eines CFA zur Schätzung der jeweili-
gen Farbwerte an jeder Pixelposition erforderlich ist, wird allgemein als “De-
mosaicing” (oder “Demosaicking”) bezeichnet. Das gebräuchlichste Filter-
Array hat die Form eines “Bayer-Pattern”, wie es in der Abbildung 6.37 dar-
gestellt ist. In einem CFA mit Bayer-Pattern enthält jeder 2×2-Pixel-Block
ein rotes Pixel, ein blaues Pixel und zwei diagonal gegenüberliegende grüne
Pixel, wobei unterschiedliche Kombinationen gebräuchlich sind.

Abbildung 6.37: CFA mit Bayer-Pattern. Links: Die Farbfilter auf dem Farbfil-
terarray des Bayer-Sensors; rechts: Querschnitte der Farbfilter.5

Da die in der grünen Wellenlänge enthaltene Information über die Leucht-
dichte (auch: Luminanz) höher ist, wird der grüne Kanal im Vergleich zu
den anderen beiden Kanälen mit doppelter Rate abgetastet. In der Abbil-
dung 6.38 ist exemplarisch eine Simulation der Bilddaten eines Sensors mit
einem Bayer-CFA dargestellt, wobei die Farbdarstellung (rechts) nur zur
Identifizierung dient, welches Pixel welche Farbinformation beinhaltet.
Es gibt mehrere Möglichkeiten, die Farbinformationen aus den in einem
Bayer-Pattern gespeicherten Rohdaten zu extrahieren und drei separate
Farbkanäle (RGB) zu erzeugen. Der “naive” Ansatz wäre, die roten und blau-
en Pixelwerte unverändert als Farbwert für ihren jeweiligen Kanal zu setzen
und den Mittelwert der beiden grünen Pixel für den grünen Kanal zu neh-

5 Quelle: Cburnett, CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.
0/>, via Wikimedia Commons

<http://creativecommons.org/licenses/by-sa/3.0/>
<http://creativecommons.org/licenses/by-sa/3.0/>
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Abbildung 6.38: Simulation eines Bayer-CFA. Links: hochaufgelöstes
Original-Farbbild “Peppers” (Quelle: MATLAB), das weiße Rechteck markiert
den im folgenden verwendeten Bildausschnitt; Mitte u. rechts: Bayer-CFA-
Simulation mit “RGGB”-Muster in Graustufen- (Mitte) und entsprechender
Farbdarstellung (rechts).

men. Davon ist jedoch abzuraten, denn die gewählten Farbwerte stammen
von unterschiedlichen Pixelpositionen, so dass die einzelnen Farbkanäle
R, G und B nicht übereinstimmend ausgerichtet sind. Entsprechend wäre
das Ergebnis ein unnötig unscharfes Bild. Zudem würde dies eine deutliche
Reduzierung der Auflösung auf ein Viertel der ursprünglichen Sensorgröße
bedeuten, wie die Abbildung 6.39 demonstriert (2. Bild von links). Bereits
eine bilineare oder bikubische Interpolation der einzelnen Kanäle erzielt
eine signifikante Verbesserung (2. Bild von rechts). Allerdings können da-
durch auch Farbartefakte, ähnlich Moiré-Effekten, entstehen. Infolgedessen
wurden im Laufe der Jahre eine Reihe von ausgefeilteren Algorithmen zur
Schätzung der fehlenden Farbwerte für jedes Pixel entwickelt wie z. B. das
Verfahren von Malvar et al. [Mal04] (Abbildung 6.39 ganz rechts). Einen
einführenden Überblick über die gebräuchlichsten und gut etablierten Me-
thoden ist in [Gun05] gegeben.

6.8.2 Verwendung des LAB-Farbraumes
Im wissenschaftlichen Kontext haben Genauigkeit und eine hohe Auflösung
der erfassten Bilddaten normalerweise einen höheren Stellenwert als chro-
matische Informationen, die überdies durch Turbulenz gestört sind. Den-
noch wächst das Interesse an der Verarbeitung von Farbvideodaten, denn
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Abbildung 6.39: Vergleich von Interpolationsmethoden für CFA. V. l. n. r.:
Ausschnitt des hochaufgelösten Originalbildes; skaliertes Ergebnis des “nai-
ven Ansatzes”; bilineare Interpolation; Demosaicing gemäß [Mal04].

Bilder im sichtbaren Spektrum, insbesondere Farbbilder, sind für einen
ungeschulten menschlichen Beobachter oft leichter zu interpretieren als
z. B. thermische Infrarotdaten. Da VIS stärker als IR durch Turbulenz be-
einflusst wird, bedeutet dies eine entsprechend stärkere Beeinträchtigung
der Bildqualität (d. h. Bildunschärfe, reduzierter Kontrast und Farbverlust)
die mit der Entfernung zunimmt. Aus diesem Grund ist in Verfahren zur
Turbulenzkorrektur neben einem Deblurring in der Regel auch eine Kon-
trastverstärkung integriert. Während die meisten Verfahren zur Kontrastver-
besserung, wie z. B. ein CLAHE-Histogrammausgleich, bei monochromen
Daten oder einzelnen Farbbildern recht gut funktionieren, neigen sie dazu,
das Rauschen in einem Farbvideostrom überproportional zu verstärken,
insbesondere in Szenen mit geringem Kontrast.
Eine Lösungsmöglichkeit besteht darin, wie in [Hue15] vorgeschlagen und
ausgeführt, die Bilddaten zunächst in einen andere Farbraum zu konver-
tieren, genauer den CIE LAB-Farbraum (auch LAB- oder CIE L*a*b). Die
eigentliche Farbinformation ist sowohl für das Deblurring als auch für die
Kontrastverstärkung nur von sekundärer Bedeutung. Es ist daher nahelie-
gend, das gegebene Problem in eine geeigneten Farbraumdarstellung zu
transformieren, die es erlaubt, diese Operationen nur auf dem Bildteil durch-
zuführen, der die relevanten Informationen enthält.
Der LAB-Farbraum ist geräteunabhängig und ermöglicht eine sehr genaue
Darstellung von Farben. Die zugrundeliegende Idee war, die Nichtlinearität
des menschlichen Sehens durch ähnlich nichtlineare Beziehungen L∗, a∗
und b∗ zu approximieren und alle Farben im sichtbaren Spektrum so zu
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beschreiben, dass der wahrnehmbare Unterschied zwischen zwei Farben
proportional zu ihrem euklidischen Abstand im LAB-Raum ist.
Die L∗ Komponente kommt der empfundenen Ähnlichkeit relativ nahe,
wobei sich L∗ auf die psychometrische Helligkeit bezieht und nicht auf die
Luminanz. Die möglichen Werte für L∗ liegen zwischen 0 und 100.
Die Farbkomponenten a∗ und b∗ sind auf Basis der Gegenfarbtheorie kon-
struiert, d. h. die Komponente a∗ beschreibt die Achse zwischen den Gegen-
farben Rot und Grün, während b∗ in gleicher Weise die Gelb-Blau-Achse
beschreibt. Die Werte für a∗ liegen ungefähr zwischen −170 und +100, wäh-
rend die Werte für b∗ ungefähr zwischen −100 und +150 liegen, wobei die
extremen Werte nur für bestimmte Farbtöne mit mittlerer Helligkeit ange-
nommen werden können.
In diesem Zusammenhang ist anzumerken, dass Konvertierungen vom RGB-
in den LAB-Farbraum verlustfrei sind, allerdings nicht umgekehrt. Auch
gibt es hierfür keine direkte Transformation, sondern jede Konvertierung
erfolgt notwendigerweise über den CIE XYZ-Farbraum. Alle erforderlichen
Umrechnungsformeln sind in [Hue15] zusammengestellt.
Die eigentliche Kontrastverstärkung erfolgt mit einer beliebigen Methode
auf der L∗ Komponente, z. B. ein Spreizen auf den vollen Dynamikumfang in
Verbindung mit einem adaptiven Histogramm-Ausgleich (CLAHE). Das Bei-
spielergebnis in der Abbildung 6.40 zeigt, wie der schwache (Farb-)Kontrast
im Originalbild mithilfe einer Kontrastverstärkung im LAB-Farbraum deut-
lich verbessert werden kann.
Dies hat im übrigen keine größeren Auswirkung auf die Farben im Bild, d. h.
die Farbtemperatur, Sättigung etc. , sondern nur auf den Kontrast. Der Vorteil
dabei ist, dass Farbverfälschungen und Farbrauschen auf diese Weise ver-
mieden werden. Geht es dagegen auch um eine Erhöhung der Farbsättigung,
kann eine solche Kontrastverstärkung stattdessen im HSV-Farbraum an der
V - (“Value”, Helligkeit) und der S-Komponente (“Saturation”) durchgeführt
werden.
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Abbildung 6.40: Beispiel für Bildvorverarbeitung in Farbbilddaten. Linke
Spalte (v.o.n.u.): Originalfarbbild (Entfernung ca. 23 km), Resultat der Bild-
vorverarbeitungskette (Farbkontrastanhebung und Einzelbild-Deblurring),
zusätzliche Rauschreduktion; rechte Spalte: korrespondierende Kantenbil-
der.
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6.9 Turbulenzsimulation
Eine unvoreingenommene qualitative Bewertung der jeweiligen Restaurati-
onsergebnisse verschiedener Korrekturmethoden erweist sich generell als
schwierig, wenn wenig oder keine zusätzlichen Informationen über das
“wahre Bild” verfügbar sind. Vor allem Entfaltungsalgorithmen, wie sie in Ka-
pitel 5 vorgestellt und diskutiert wurden, weisen eine Reihe von unerwünsch-
ten Nebeneffekten auf. Dazu gehören u. a. Rauschverstärkung (z. B. Wiener
Filter), so wie eine überproportionale Kontrastverstärkung und Verstärkung
hoher Frequenzanteile (z. B. PCA). Die Leistungsfähigkeit so genannter “No
Reference”-Qualitätsmetriken (siehe Abschnitt 7.1.3) wird dadurch entspre-
chend eingeschränkt. Aufgrund dessen sind simulierte Turbulenzdaten ein
sinnvolles Werkzeug zur Beurteilung der Ergebnisqualität eines gegebenen
Algorithmus. Dies gilt umso mehr für Szenen mit bewegten Objekten, deren
Verhalten in der Regel nur bedingt vorhersagbar ist.

6.9.1 Simulationsprinzip
Es existieren prinzipiell zwei unterschiedliche Ansätze zur bildhaften Simu-
lation von Turbulenzeffekten. Dies ist zum einen eine reine Simulation der
auftretenden Effekte in den resultierenden Bilddaten, d. h. Unschärfe, Bild-
bewegung etc. Zum anderen ist dies eine physikalisch möglichst korrekte
Simulation der Ausbreitung durch die Atmosphäre unter Verwendung von
Phasenschirmen (“phase screens”) zur Implementierung des Schichtenmo-
dells in Abschnitt 3.3.4.
Die Vorteile höherer Genauigkeit des zweiten Ansatzes, d. h. einer physikali-
schen Simulation, liegen auf der Hand. Je genauer eine solche Simulation
durchgeführt wird, desto größer ist allerdings auch der damit verbundene
Rechenaufwand. Aus praktischen Erwägungen wurde daher in [Hue12b]
eine atmosphärische Ausbreitungssimulation erster Ordnung eingesetzt6,
wobei für jede Wellenlänge ein Phasenschirm verwendet wurde. In dieser
Simulation wurden isoplanatische Bedingungen angenommen (d. h. nur
globale Bildbewegungen), und Szintillationseffekte wurden vernachlässigt.

6 erstellt von S. Gładysz
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Genauer wurden mit der klassischen FFT-basierten Methode von McGlame-
ry [McG76] unabhängige Phasenschirme erzeugt, d. h. ein Array von Zufalls-
zahlen wurde gemäß dem von-Kármán-Spektrum gefiltert und dann invers
Fourier-transformiert.
Es handelt sich um eine polychromatische Simulation im VIS-Spektrum, d. h.
für insgesamt zehn separate Wellenlängen λ im Bereich zwischen 500 nm
und 700 nm wurde jeweils eine eigene PSF erzeugt. Dabei entspricht eine
monochromatische PSF jeweils einem Phasenschirm. Man kann deshalb
davon ausgehen, dass die Bilder nur Speckles von “eingefrorenen” Wellen-
fronten enthalten und daher sehr kurzen Integrationszeiten in der Größen-
ordnung von 5 ms entsprechen.
Da diese Methode den Nachteil hat, dass niederfrequente Aberrationen
nur unzureichend gut repräsentiert werden, wurde zusätzlich eine Subhar-
monischen-Korrektur gemäß [Lan92] implementiert, mit acht Stufen von
Subharmonischen. Ein Vergleich der simulierten und theoretischen Phasen-
strukturfunktionen ergab eine hinreichend gute Übereinstimmung.

6.9.2 Parametereinstellungen und Implementierung
Die Simulation wurde für zwei verschiedene äußere Skalenlängen L0 durch-
geführt, einmal für L0 = 1 m und einmal für L0 = 10 m, wobei die Apertur
des Teleskops jedes Mal auf D =10 cm gesetzt wurde.
Die Turbulenzstärke wurde in der Größenordnung zwischen C 2

n = 10−14 m−2/3

und C 2
n = 10−12 m−2/3 gewählt.

Speziell für die Phasenschirme wurden (Pixel-)Arrays der Größe 256×256
verwendet, wodurch sich eine Pupillenabtastung von 0,4 mm pro Pixel
ergibt.
Die Phasenraster wurden zunächst in Phasoren umgewandelt und mit einer
entsprechenden kreisförmigen Apertur-Funktion multipliziert. Das Ergebnis
wurde zur Erhöhung der Genauigkeit in ein Array von Nullen der Größe 512×
512 Pixel eingebettet (“zero padding”) bevor eine Fourier-Transformation
durchgeführt wurde.
Die PSF ergibt sich aus dem Quadrat des Betrags des Ergebnisses der FT,
wobei wiederum nur der zentrale Teil der Bilder in der Ausgangsgröße, d. h.
256×256 Pixel, gespeichert wird. Das (ursprüngliche) IFOV der PSFs beträgt
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dabei 2,44 µrad, was der Nyquist-Abtastung bei der kürzesten Wellenlänge
entspricht.
Damit die Simulation polychromatisch ist, werden wie bereits erwähnt, PSFs
für zehn Wellenlängen zwischen 500 nm und 700 nm erzeugt, wobei eine
lineare Skalierung der Wellenfronten angenommen wird. Die resultierenden
zehn PSFs werden aufsummiert, und das Ergebnis bildet die eigentliche
rauschfreie PSF, die abschließend noch normiert wird, so dass ihre Gesamt-
energie gleich eins ist.

6.9.3 Simulationsergebnisse
Die Abbildung 6.41 zeigt einige repräsentative Beispiele der mit dieser Si-
mulation erzeugten PSFs, wobei insbesondere die unterschiedlichen PSF-
Größen bei einem Vergleich der verschiedenen Turbulenzstärken auffallen.
Um einen Eindruck vom Langzeitverhalten zu erhalten, wurden zusätzlich
jeweils 20 PSFs integriert und in der rechten Spalte neben den Beispiel-PSFs
dargestellt. Da sich zwischen den mittleren PSFs beider Skalenlängen mit
bloßem Auge keine nennenswerten Unterschiede erkennen lassen, sind hier
nur die Mittelwerte für L0 =1 m dargestellt.
Die äußere Skalenlänge beeinflusst hauptsächlich die Bildbewegung, daher
sehen die PSFs mit L0 = 1 m und L0 = 10 m recht ähnlich aus. Währenddes-
sen hängt die Bildauflösung und -qualität am stärksten von den jeweiligen
C 2

n-Werten ab.
Für die eigentliche Turbulenzsimulation müssen die Bilddaten, die idea-
lerweise möglichst hoch aufgelöst sind, noch über eine Faltung mit den
simulierten PSFs verknüpft werden. Für alle drei RGB-Farbkanäle wurde
die gleiche PSF verwendet, da die Wellenlängenunterschiede zwischen Rot,
Blau und Grün vergleichsweise gering sind.
Aufgrund des erforderlichen Oversamplings der PSF-Filterfunktionen wur-
den die synthetischen Bilder vor der Filterung unter Verwendung der “Nea-
rest Neighbour”-Vergrößerungsmethode um den Faktor 2 hochskaliert .
Außerdem wurde ein “Padding” mittels symmetrischer Replikation durchge-
führt, einerseits um die Größenunterschiede zwischen zu filternden Bildern
und Filterfunktionen auszugleichen und andererseits, um die Randeffekte
infolge der Faltung abzuschwächen. Anschließend wurde das Filterergebnis
(ohne “Padding”) entsprechend um den Faktor 4 herunterskaliert.
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Falls gewünscht, kann dem gefilterten Bild zusätzlich noch eine (additive)
Rauschkomponente hinzugefügt werden (s. a. Abschnitt 3.4.10). Poisson-
verteiltes Rauschen ist z. B. geeignet, um elektronisches Schrotrauschen zu
simulieren, während sich Rauschen, das während der Aufnahme entsteht,
mithilfe von Gauß-verteiltem Rauschen imitieren lässt.
Das Ergebnis einer solchen Simulation für Wellenlängen im IR in der Abbil-
dung 6.42 verdeutlicht, wie stark sich unterschiedliche Entfernungen (5 km
und 10 km) und Turbulenzstärken (C 2

n = 10−14 m−2/3 und C 2
n = 10−13 m−2/3)

in den Bilddaten auswirken. Dabei ist zu beachten, dass die Originalauf-
nahme der Stadt Heidelberg (oben in der Abbildung), die als Grundlage für
die Simulationen dient (sowie für Abbildung 3.8), im sichtbaren Spektrum
aufgenommen wurde. Das bedeutet, dass die Reflektivitäten in den Simu-
lationen nicht dem tatsächlichen IR-Spektrum entsprechen, wobei “hell”
gleichbedeutend ist mit “warm” und “dunkel” mit “kalt”.

6.9.4 Tiefenkarten
In der Simulation wurden diverse vereinfachende Annahmen getroffen. Da-
zu gehört u. a. auch die Annahme, dass alle Objekte in der abgebildeten Sze-
ne dieselbe Entfernung zur Kamera haben. In der Praxis ist dies nicht immer
der Fall, insbesondere können Objekte im Hintergrund (z. B. landschaftliche
Merkmale wie Berge) deutlich weiter entfernt sein. Dementsprechend ist in
der Realität auch das Volumen an Turbulenz wesentlich größer, welches das
von dort kommende Licht durchqueren muss.
Eine Möglichkeit zur Erhöhung der Genauigkeit besteht in der Verwendung
von (synthetischen) Entfernungs- bzw. Tiefenkarten mit einer begrenzten
Anzahl von m Entfernungs- bzw. Tiefenebenen in Verbindung mit entspre-
chend für die verschiedenen Entfernungen berechneten PSFs hi .
Sofern vorhanden, kann eine solche Tiefenkarte M als Maske eingesetzt wer-
den bzw. als Linearkombination einer Reihe von Masken Mi (i = 1, . . . ,m), so
dass sich das Simulationsergebnis g (d. h. das beobachtete Bild) beschreiben
lässt wie folgt (mit den Bezeichnungen aus Abschnitt 5.1):

g =
m∑

i=1
Mi ·

(
hi ∗ f

)
(6.30)
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Abbildung 6.41: PSF-Simulationen im VIS-Spektrum mit äußeren Skalen-
längen L0 = 1 m, L0 = 1 m für ausgewählte Turbulenzstärken C 2

n in den
Größenordnungen zwischen 10−14 und 10−12 (in m−2/3) im Vergleich mit
dem jeweiligen Mittelwert von 20 PSFs (Quelle: [Hue12b]).
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Abbildung 6.42: Turbulenzsimulationen für die Wellenlänge λ = 10 µm (im
IR) bei äußerer Skalenlänge L0 = 1 m und mit Aperturdurchmesser D = 9 cm.
Oben: originales Farbbild (links) und zugehöriges Grauwertbild (rechts);
Mitte: Turbulenzstärke C 2

n = 10−14 m−2/3, unten: C 2
n = 10−13 m−2/3; links:

Entfernung L = 5 km, rechts: L = 10 km (Foto u. Simulation: S. Gładysz).



214 6 Turbulenzkorrektur

In der Abbildung 6.43 ist eine solche Tiefenkarte M skizziert, definiert durch:

M =
m∑

i=1
i ·Mi wobei

m∑
i=1

Mi (x,y) = 1 ∀(x,y) (6.31)

Eine solche Vorgehensweise ist allerdings nur dann wirklich sinnvoll, wenn
die Entfernungsunterschiede in der Szene so groß sind, dass sich die erzeug-
ten PSFs auch genügend voneinander unterscheiden. Hinzu kommt, dass
die tatsächlichen Entfernungen (z. B. zu einem Gebirge im Hintergrund)
häufig nicht bekannt sind und bestenfalls grob abgeschätzt werden können.

Abbildung 6.43: Beispielhafte Skizze einer Tiefenkarte. Links: Originalbild;
rechts: Tiefenkarte mit 10 Tiefenebenen (Farbwahl willkürlich, unabhängig
vom Entfernungswert).

6.9.5 Synthetische “Ground Truth” mit Objektbewegung
Statische Einzelbilder wie das zuvor verwendete Foto von Heidelberg in Ab-
bildung 6.42 reichen nicht aus, um auch die Problematik bewegter Objekte
zu berücksichtigen, die eine zentrale Rolle dieser Arbeit spielt. Aus diesem
Grund wurde speziell eine Turbulenzsimulation mit bewegten Objekten
erstellt. Dabei wurden rein synthetisch erzeugte Daten verwendet, genau-
er ein 3-D POV-Ray7 Modell, um sicherzustellen, dass die “Ground-Truth”
tatsächlich vollständig bekannt ist.

7 POV-Ray: “Persistence of Vision”, ein 3-D “Ray Tracing”-Programm
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Das Modell besteht aus einem generischen Militärlager in einem leicht
unebenen Gelände und enthält zwei sich bewegende LKWs, die sich in
entgegengesetzten Richtungen bewegen. Aus dem 3-D Modell wurde eine
RGB-Bildsequenz von 2000 Frames im BMP-Format mit einer Auflösung von
1024×768 Pixeln gerendert8. Die Bewegung der beiden Fahrzeuge erstreckt
sich über die kompletten 2000 Frames, um eine Hochgeschwindigkeitska-
mera zu imitieren. Die Abbildung 6.44 zeigt das erste und letzte Bild der
erzeugten Sequenz, wobei die Bewegungsspuren beider Fahrzeuge mithilfe
farbiger Pfeile dargestellt sind.

Abbildung 6.44: Erster (links) und letzter Frame (rechts) der synthetischen
GT-Sequenz mit Fahrzeugen, wobei die jeweilige Bewegungsrichtung gelb
bzw. grün markiert ist.

Dieses 3-D-Modell wurde vor allem wegen seiner großen Flexibilität im
Hinblick auf zukünftige Anwendungen gewählt. In einem solchen Modell
können z. B. problemlos Sequenzen mit höherer Auflösung erzeugt werden,
wobei jedoch zu beachten ist, dass auch die für das Rendering erforderliche
Rechenzeit entsprechend mit der Bildauflösung ansteigt. So dauerte das
Rendering aller 2000 Bilder der hier verwendeten Sequenz bei einer Auf-
lösung von 1024×768 auf einem herkömmlichen PC etwa 2 Stunden und
20 Minuten.
Ein weiterer offensichtlicher Vorteil ist, dass Objekte entfernt oder hinzuge-
fügt werden können. Auch der Kamerawinkel oder die Beleuchtung lassen
sich ohne größeren Aufwand verändern.

8 gerendert von M. Hebel
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6.9.6 Videosimulation
Zur Erhöhung des Realitätsgrades einer simulierten Videosequenz wurden
je 8 Frames integriert, um so eine Langzeitbelichtung zu imitieren mit stan-
dardmäßiger Video-Framerate (30 Hz). Die Anzahl der synthetischen Fra-
mes war bewusst so groß gewählt worden, dass ein einzelner Frame als
kurz belichtetes Bild angesehen werden kann, während der Mittelwert einer
Langzeitaufnahme entspricht.
Darüber hinaus wurde, zur Berücksichtigung von elektronischem Schro-
trauschen, Poisson-Rauschen aus den Bildern selbst erzeugt, indem jedes
Pixel als Mittelwert einer Poisson-Verteilung interpretiert wurde. Um auch
das additive Sensorausleserauschen zu berücksichtigen, wurde Gaußsches
weißes Rauschen mit Mittelwert Null und Varianz 0,001 hinzugefügt.
Die Abbildung 6.45 zeigt ein Beispiel für eine Simulation mit solchem additi-
ven Rauschen, sowohl als Kurzzeitaufnahme (links) als auch als Langzeit-
aufnahme (rechts), für die 8 (PSF-gefilterte) Einzelbilder integriert wurden.
Die Unterschiede lassen sich am besten in der Ausschnittsvergrößerung
erkennen, wie z. B. an der Flagge oder den Zeltspitzen, die in der Langzeit-
aufnahme erkennbar verschwommener sind.

Abbildung 6.45: Simulationsbeispiel für C 2
n = 5 ·10−13 m−2/3, L0 = 10 m, mit

additivem Rauschen. Links: Kurzzeitaufnahme, d. h. Einzelframe mit Poisson-
und Gauß-verteiltem Rauschen; rechts: Langzeitaufnahme, d. h. Mittelwert
von 8 gefilterten Frames; unten: korrespondierende Detailansichten.
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6.9.7 Korrekturresultate
Nachfolgend sind einige Korrekturresultate abgebildet für diverse Entfal-
tungsmethoden, die in Kapitel 5 vorgestellt wurden. Die Abbildung 6.46
zeigt ein Einzelbild der im vorangegangenen Abschnitt beschriebenen Si-
mulation (Langzeitaufnahme) und ein zugehöriges Korrekturergebnis. Als
Korrekturverfahren wurde dabei der registrierte gleitende Mittelwert von
20 Einzelbildern mit abschließender mehrstufiger gewichteter blinder Ent-
faltung (WIBD) eingesetzt. Da es sich um eine rein isoplanatische Simulation
handelt, wurde auf eine lokale Registrierung verzichtet und lediglich eine
globale Bildregistrierung durchgeführt.

Abbildung 6.46: Links: Beispielframe der Turbulenzsimulation mit Poisson-
Rauschen; rechts: Korrekturergebnis bei globaler Bildregistrierung und
WIBD-Deblurring.

In der Abbildung 6.47 sind einige repräsentative Resultate der getesteten
Entfaltungsmethoden zusammengefasst, die im folgenden näher erläutert
werden. Zum besseren Vergleich der Ergebnisse untereinander, sowie auch
mit der zugehörigen “Ground Truth” (GT) und der Turbulenzsimulation (TS),
wurde ein aussagekräftiger Detailausschnitt gewählt. Die Abbildung 6.48
zeigt die dazu korrespondierenden Kantenbilder, anhand derer sich die Un-
terschiede zwischen den einzelnen Korrekturergebnissen leichter erkennen
lassen.
Zunächst wurden einige nicht-blinde Entfaltungsmethoden getestet (sie-
he linke Spalte in der Abbildung 6.47), wobei hierfür stets die zugehörige
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simulierte (d. h. exakt bekannte) PSF verwendet wurde. Darunter befinden
sich die Richardson-Lucy-Entfaltung (LRD, siehe Abschnitt 5.1.2) mit unter-
schiedlicher Anzahl von Iterationen, sowie inverse Wiener-Filterung (IWF,
siehe Abschnitt 5.1.1) und überdies auch die “Unsupervised Wiener-Hunt”
Entfaltungsmethode (UWH [Ori10a]), deren Ergebnisqualität sich mit der
von LRD vergleichen lässt, wobei UWH zugleich etwas weniger anfällig ist
für Ringing-Effekte als LRD.

Abbildung 6.47: Turbulenzsimulation (mit C 2
n = 10−13 m−2/3 und L0 = 10 m)

und beispielhafte Korrekturresultate verschiedener Verfahren im Vergleich
(Ausschnittsvergrößerung). Links: nicht-blinde Entfaltungmethoden (exakte
PSF); rechts: blinde Entfaltung.
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Abbildung 6.48: Kantenbilder zu Abb. 6.47 zur besseren Erkennbarkeit der
Unterschiede in den Korrekturergebnissen.

Anschließend wurden auch verschiedene blinde Entfaltungsverfahren an
dieser synthetischen Sequenz getestet (siehe rechte Spalte in der Abbil-
dung 6.47 und Abbildung 6.48). Bei allen Entfaltungsmethoden im Test han-
delt es sich im Grunde genommen um blinde LRD-Varianten. Das schließt
auch die klassische LRD mit ein, für die hier eine gaußförmige PSF ange-
nommen wurde. Des weiteren wurden die iterative blinde Entfaltung (IBD,
siehe Abschnitt 5.1.3), sowie die mehrstufige gewichtete iterative blinde
Entfaltung (WIBD, siehe Abschnitt 6.6) angewendet.
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Alle diese Methoden produzieren mehr oder weniger stark ausgeprägte
Ringing-Effekte, wobei die Anzahl an Iterationen eine wesentliche Rolle
spielt. Nicht zuletzt aus diesem Grund wurde die Anzahl an Iterationen
bewusst niedrig gehalten (d. h. ≤ 20), wobei diese speziell im Fall der WIBD
ohnehin zumeist einstellig ist.
Die Ergebnisqualität aller nicht-blinden Methoden ist erwartungsgemäß
hoch, da alle Störungen bekannt sind und somit optimale Bedingungen für
eine Rekonstruktion vorliegen. Die Inklusion dieser nicht-blinden Metho-
den dient vor allem als Maßstab für die bestmöglich erreichbare Ergebnis-
qualität, mit der die Ergebnisse der blinden Methoden verglichen werden
können. Indirekt handelt es sich somit auch um ein Maß für die Güte der
PSF-Schätzungen.
Es überrascht nicht, dass die Ergebnisqualität der blinden Methoden nicht
ganz die hohe Qualität der nicht-blinden Methoden erreicht. Immerhin
lassen alle blinden Methoden eine deutliche Verbesserung erkennen gegen-
über dem simulierten Original, wobei auch die vereinfachende Annahme
einer Gauß-PSF eine signifikante Verbesserung erzielt. Insgesamt schneidet
die mehrstufige WIBD hier am besten ab, wobei die 3-stufige etwas schlech-
ter gegenüber der 4-stufigen abschneidet hinsichtlich der Bildschärfe, da
das Resultat weniger scharf und klar definiert erscheint. Andererseits lässt
sich bei der 3-stufigen im Gegensatz zu der 4-stufigen kaum Ringing erken-
nen und es kommt zu weniger starken (Kontrast-)Überschwingern an den
Kanten.
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So unterschiedlich die möglicherweise vorherrschenden Umwelt- und Tur-
bulenzbedingungen sind, so vielfältig sind auch die Ansätze zur Korrektur
von Turbulenzeffekten in Bilddaten, ebenso wie die Faktoren, die für (tur-
bulenzbedingte) Beeinträchtigungen der Bildqualität verantwortlich sind.
Hinzu kommen diverse denkbare Anwendungsgebiete für derartige Korrek-
turverfahren. Entsprechend schwierig gestaltet sich die Bestimmung einer
geeigneten Taxonomie, die tatsächlich allen Anwendungsfällen gerecht wer-
den kann.
Die Stärke der Turbulenz, sowie auch die Länge und der Winkel des Aus-
breitungsweges durch das turbulente Medium (i. A. Luft oder ggfs. Wasser)
spielen erwartungsgemäß eine entscheidende Rolle dabei, welche Ergebnis-
qualität ein gegebener Algorithmus innerhalb seiner (Leistungs-)Parameter
überhaupt maximal erzielen kann. Dabei wirken sich nicht nur Tempera-
turunterschiede (z. B. aufgrund von Sonneneinstrahlung) auf die Fluktua-
tionen im Brechungsindex aus, sondern u. a. auch die Luftfeuchtigkeit und
Aerosolteilchenkonzentration, ebenso wie die Windstärke, Windrichtung
und Windgeschwindigkeit. Nicht zuletzt spielen auch die Qualität und die
Menge der Bilddaten eine wesentliche Rolle, wobei sowohl die Lichtver-
hältnisse (bzgl. Belichtungszeit, Bilddynamikkontrast) zum Zeitpunkt der
Datenerfassung, als auch die Eigenschaften des verwendeten EO-Systems
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(bzgl. Bildauflösung, Framerate etc.) von Bedeutung sind. Unterschiedliche
Ausgangsszenarien, wie sie in Kapitel 4 diskutiert wurden, erfordern wieder-
um unterschiedliche Korrekturmaßnahmen. Zudem können die Prioritäten
bei der Bewertung je nach gegebenem Anwendungsgebiet individuell stark
variieren.
Aus all diesen Gründen wird es womöglich niemals ein einziges, allumfas-
sendes Werkzeug für die objektive Bewertung der Gesamtheit an Korrektur-
verfahren für jede Form von optischer Turbulenz geben. Stattdessen wird
in dieser Arbeit deshalb ein tabellarischer Ansatz vorgeschlagen, anhand
dessen sich ähnliche Voraussetzungen zusammenfassen lassen, um Algorith-
men für typische Szenarien miteinander vergleichbar zu machen. Genauer
wird hierfür ein Bewertungssystem mit Priorisierung eingeführt, welches
in Abschnitt 7.3 und insbesondere in Abschnitt 7.3.3 näher ausgeführt wird.
Hierbei werden einer (erweiterbaren) Auswahl an Kriterien Werte zugeord-
net, gemäß ihrer jeweiligen Priorität in einem gegebenen Kontext. Diesem
Bewertungssystem kommt eine duale Funktion zu, denn einerseits kann
damit eine gegebene Applikation hinsichtlich ihrer Anforderungen syste-
matisch beschrieben werden, und andererseits kann damit ein gegebener
Algorithmus hinsichtlich seiner Leistungsparameter charakterisiert werden.
So erhält man entsprechende (Bewertungs-)Profile für Anwendungen eben-
so wie für Korrekturverfahren, die entsprechend miteinander verglichen
werden können.
Dabei sollte angemerkt werden, dass es wenig sinnvoll wäre, ein Anwen-
dungsprofil zu erstellen, welches allen Kategorien höchste Priorität zuord-
nen würde, da zurzeit kein Algorithmus existiert, der dies erfüllen könnte.

7.1 Bildqualität
Im vorliegenden Zusammenhang stellt sich zunächst die Frage nach einer
sinnvollen Definition des Begriffes Bildqualität bzw. danach, was gute Bild-
qualität im vorliegenden Zusammenhang bedeutet. Je nach Anwendung
kann das Verständnis dieses Begriffes etwas variieren. Im Rahmen dieser
Arbeit kann “gute” Bildqualität im Prinzip als gleichbedeutend mit hohem
Kontrast bei feinen Details verstanden werden, ebenso wie auch als eine ho-
he Auflösung von nahe (in der Bildebene) beieinander liegenden Objekten.
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In der Literatur existieren zahlreiche verschiedene Methoden, mit deren
Hilfe sich die Bildqualität entweder global oder auch lokal beschreiben
(und quantifizieren) lässt. Hierzu zählen u. a. die (Bild-)Schärfe, definiert
als (normierte) Quadratwurzel aus der Summe der quadrierten (Grauwert-)
Gradienten in horizontaler und vertikaler Richtung, Kanten-basierte Maße,
wie z. B. die Summe oder Varianz der Kanten im Bild, die Fisher-Information,
Fourier-Spektralanalyse, “Total Variation” oder die Shannon-Entropie. Eine
detailliertere Übersicht über die verbreitetsten solcher Methoden ist z. B. in
[Hof19], sowie in [Rio13] gegeben.

7.1.1 �alitätsmetriken
Die qualitative Charakterisierung eines gegebenen Bildes mit Hilfe entspre-
chender Metriken (“Image Quality Metrics”, IQM) kann im Zusammenhang
mit Turbulenzkorrektur gleich in mehrfacher Hinsicht von Nutzen sein. Im
offensichtlichsten und zugleich kompliziertesten Anwendungsfall dient sie
der Beurteilung der Ergebnisqualität eines gegebenen Korrekturverfahrens,
beispielsweise um die Resultate verschiedener Verfahren miteinander ver-
gleichen zu können. Kompliziert ist dieser Fall vor allem deshalb, weil bei
realen Turbulenzdaten in der Regel keine “Ground Truth”-Daten (GT) als
Referenz vorliegen, um zum Vergleich herangezogen werden zu können.
Aus diesem Grund ist hierfür vor allem eine spezifische Klasse von IQM von
Interesse, und zwar sogenannte “No Reference”-Metriken.
Etwas einfacher gestaltet sich die Aufgabe, den Ähnlichkeitsgrad bzw. die
qualitativen Unterschiede zwischen zwei gegebenen Bildern zu bewerten.
So ist es z. B. bei der Bild- oder Videokompression vergleichsweise einfach,
die Qualität eines Bildes zu bestimmen, denn hierbei korrespondiert eine
höhere Kompressionsrate mit einer geringeren Bildqualität. Entsprechend
können “Full Reference”-Metriken eingesetzt werden, um das perfekte, d. h.
unkomprimierte Referenzbild mit dem komprimierten Bild zu vergleichen.
Ohne geeignete Referenzdaten ist dies nicht bzw. nur bedingt möglich.

7.1.2 “Full Reference”-Metriken
Gemäß ihrer Bezeichnung erfordern “Full Reference”-Metriken entsprechen-
de (GT) Referenzdaten als Vergleichsbasis. Solche Metriken werden häufig
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als qualitatives Maß für den Ähnlichkeitsgrad zwischen zwei gegebenen Bil-
dern eingesetzt. Eine weit verbreitete Metrik ist insbesondere auch der maxi-
male Signal-Rausch-Abstand (“Peak Signal-to-Noise Ratio”, PSNR). Letztlich
hängt aber die Entscheidung darüber, was beste Übereinstimmung in ei-
nem bestimmten Kontext genau bedeutet und welche Kriterien am besten
geeignet sind, um diese Entscheidung zu treffen, stark von der jeweiligen
Anwendung ab und auch davon, welche Informationen verfügbar sind.
Im vorliegenden Turbulenz-Kontext tritt u. a. der Anwendungsfall auf, der
bereits in Kapitel 4 im Unterabschnitt 4.2.1 diskutiert wurde. Dort ging
es speziell um die Registrierung von Bildern innerhalb einer Sequenz mit
dem Ziel der Bewegungskompensation. Genauer wurde für ein gegebenes
Referenzbild (bzw. für ein Teilbild) dasjenige Bild aus einer Menge an zu-
gehörigen Shift-Bildern (bzw. Bildblöcken) gesucht, welches die optimale
Übereinstimmung mit der Referenz aufweist. Zu diesem Zweck wurde der
Einsatz einfacher Fehlersummationsmetriken, wie z. B. der “Mean Absolute
Error”: der mittlere absolute Fehler (MAE), der “Mean Square Error”: der
mittlere quadratische Fehler (MSE) oder der “Root Mean Square Error”: die
Wurzel aus dem mittleren quadratischen Fehler (RMSE)vorgeschlagen. Der-
artige Metriken haben zwar den Vorteil, dass sie sich effizient berechnen
lassen, aber auch den Nachteil, dass sie generell nicht sehr zuverlässig zur
Bewertung von Bildqualität sind, wie in [Wan09] überzeugend nachgewie-
sen. Dort wird stattdessen der universeller einsetzbare “Structural SIMilarity
Index” (SSIM) propagiert, für den zunehmend komplexere Versionen exis-
tieren, die in [Wan02], [Wan04], sowie in [Sam09] detailliert sind, inklusive
des “Complex Wavelet-Structural SIMilarity Index” (CW-SSIM). Hierbei wer-
den die statistischen Eigenschaften zweier Bilder x und y ausgenutzt, um
anstelle der Fehlerenergie bevorzugt strukturelle Verformungen zu messen.
Aus diesem Grund wurde u. a. auch der SSIM (in der einfacheren Version)
in [Hue08] und [Gre08] zum Vergleich von Korrekturergebnissen (aus simu-
lierten Daten) mit den zugehörigen GT-Referenzdaten eingesetzt, wobei
die folgende Definition verwendet wurde (mit den Bezeichnungen aus Ab-
schnitt 3.1.3 (d. h. µx , µy bezeichnen jeweils die Mittelwerte von x bzw. y
und σx , σy die jeweiligen Standardabweichungen, sowie σx y die zugehörige
Kreuzkovarianz):

SSIM (x, y) = 2µx µy

(µx )2 + (µy )2

σx y

σx σy

2σx σy

σ2
x σ

2
y

(7.1)
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Die Grundidee des komplexen CW-SSIM besteht darin, dass bestimmte Bild-
verzerrungen zu konsistenten Phasenänderungen in den lokalen Wavelet-
Koeffizienten führen, und dass eine konsistente Phasenverschiebung der
Koeffizienten den strukturellen Inhalt des Bildes nicht verändert. Zu den Vor-
teilen des CW-SSIM-Index gehört seine Robustheit gegenüber geringfügigen
Rotationen und Translationen. Das ermöglicht den direkten Vergleich zweier
Bilder ohne eine vorherige Bildregistrierung, welche für viele andere Metri-
ken erforderlich wäre. Ein weiterer Vorteil besteht in dem vergleichsweise
günstigen Rechenaufwand.
Im Zusammenhang mit optischer Turbulenz ist der Einsatz von “Full Refe-
rence”-Metriken in der Regel nur bei simulierten Daten sinnvoll, da echte
GT-Daten sonst nur im Ausnahmefall verfügbar sind. Allerdings sollte die
Verwendung simulierter Daten immer unter einigem Vorbehalt erfolgen, da
eine hinreichende Realitätsnähe der Simulationsergebnisse nicht so ohne
Weiteres gewährleistet werden kann. In Abhängigkeit von dem verwende-
ten Algorithmus, könnten verschiedene Bildinformationen u. U. durch die
Simulation so verändert werden, dass dies die Performanz von Bildquali-
tätsmetriken beeinflussen kann. Dabei ist es durchaus möglich, dass diese
Änderungen für das bloße Auge nicht einmal wahrnehmbar sind. Als ein zu-
sätzliches Kriterium in der Bewertung von Verfahren zur Turbulenzkorrektur
sind sie aber durchaus geeignet.
Mit gewissen Einschränkungen können dennoch auch “Full Reference”-
Metriken zur qualitativen Bewertung der Ergebnisse verschiedener Turbu-
lenzkorrekturverfahren eingesetzt werden, sofern eine hinreichend gute
Schätzung für die “Ground Truth” vorliegt und als Referenz dienen kann. In
dieser Arbeit wurde hierfür in einigen Fällen beispielsweise ein temporaler
Mittelwert oder Median (mit globaler Bewegungskompensation) ausgewählt.
Alternativ ist ebenfalls die Verwendung eines besonders guten Rekonstrukti-
onsergebnisses als Vergleichsmuster möglich, z. B. unter Einsatz von “Lucky
Imaging” (s. a. Abschnitt 2.2.2).

7.1.3 “No Reference”-Metriken
Im gegebenen Kontext wird vor allem eine Metrik benötigt, die geeignet
ist, die Qualität von Bildsequenzen oder Daten aus einem Live-Videostrom
unabhängig von einem zusätzlichen Referenzbild zu bewerten. Sogenannte
“No Reference”-Metriken machen sich bestimmte Merkmale von Bilddaten
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zunutze, um den Schärfegrad in einem Bild zu beurteilen. Es können z. B.
die hohen Frequenzanteile oder der Rauschanteil im Bild ermittelt und mit
Standardwerten verglichen werden. Andere Metriken werten die Kanten
im Bild aus, wobei generell die Assoziation einer Verbreiterung der Kanten
mit einer Verstärkung der Unschärfe gilt. Gleichzeitig nimmt die Höhe der
Kanten mit zunehmender Unschärfe immer weiter ab bis sie schließlich
ganz verschwinden. Demnach lässt sich die Schärfe eines Bildes auch über
die Anzahl (und Längen) der vorhandenen Kanten charakterisieren.
Die von [Dol07] vorgeschlagene “Blur”-Metrik nutzt dies z. B. ganz geschickt
aus, indem sie anstelle des Schärfegrades eines Bildes dessen “Unschärfe-
grad” misst. Genauer wird hierbei die Luminanz des originalen Bildes einer
wiederholten Tiefpassfilterung unterzogen. Anschließend werden die loka-
len Varianzen des Originals mit denjenigen der verschiedenen Iterationen
verglichen. Die Idee dahinter ist, je schärfer das Ausgangsbild ist, desto stär-
ker wirkt sich ein Tiefpassfilter aus, d. h. desto größer sind die Unterschiede
zwischen dem ursprünglichen und dem gefilterten Bild. Iteriert man die-
sen Prozess der Tiefpassfilterung, verringert sich diese Varianz mit jeder
zusätzlichen Iteration weiter.
Die Wirksamkeit dieser Metrik zeigt sich z. B. in der Abbildung 6.4 (siehe
Abschnitt 6.1.2), wofür aus einer Testsequenz (500 Frames) mithilfe der
Metrik der jeweils beste und der schlechteste Frame selektiert wurde.
Eine solche Bewertung kann insbesondere zur Selektion der besten Frames
ebenso wie der Aussonderung der schlechtesten Frames innerhalb einer
Sequenz verwendet werden. Dies ist insofern relevant, wenn ein Verfahren ir-
gendeine Form der Mittelwertbildung enthält. Dies illustriert die Abbildung
7.1 am Beispiel derselben Videosequenz wie zuvor. Links ist der Mittelwert
der kompletten Sequenz abgebildet, während für das Bild rechts nur die bes-
ten 250 Frames gemittelt wurden. Es sollte allerdings erwähnt werden, dass
hier zusätzlich eine globale Bildregistrierung durchgeführt wurde (in beiden
Fällen), wodurch ein Teil der Bewegungsunschärfe bereits kompensiert wird.
Der Vergleich mit der Abbildung 6.4 verdeutlicht insbesondere auch den
rauschmindernden Effekt, den die Bildmittelung hat. Der erhöhte Kontrast
ist im Übrigen eine Konsequenz der resultierenden Verbesserung des PSNR.
Speziell in [Hue08] wurde zudem noch eine weitere Metrik zur Bewertung
der Qualität von Korrekturergebnissen untersucht, welche ursprünglich in
[Vor96] vorgeschlagen wurde, während in [Hue10] Metriken aus [Yan09]
eingesetzt wurden.
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Abbildung 7.1: Links: MW aller 500 Einzelbilder der Testsequenz, rechts: MW
der besten 250 Frames (gemäß Blur-Metrik)

7.2 �alitative Beurteilung durch Beobachter
Grundsätzlich gibt es zwei mögliche Herangehensweisen, um die Qualität
von Bilddaten zu beurteilen, speziell die Qualität der jeweiligen Resultate
unterschiedlicher Verfahren zur Turbulenzkorrektur. Einerseits kann eine
Bewertung durch menschliche Beobachter vorgenommen werden, indem
diese die Bilder visuell begutachten, und andererseits kann sie computer-
gestützt erfolgen, indem geeignete Bewertungsmaße implementiert und
ausgewertet werden, wie z. B. die Metriken aus Abschnitt 7.1. Der Einsatz
menschlicher Beobachter bedeutet naturgemäß, dass deren subjektive Ein-
drücke mit in die Bewertung einfließen. Für eine statistische Belastbarkeit
solcher Bewertungsergebnisse wären daher im Grunde genommen hin-
reichend viele Stichproben erforderlich, d. h. eine Anzahl von Probanden
in der Größenordnung von ca. 40 Personen. Der damit verbundene hohe
Organisationsaufwand ist im Regelfall jedoch nicht praktikabel.
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7.2.1 TOD-Testmethode
Eine sehr spezielle, aber effektive Methode zur (relativ) objektiven Bewer-
tung durch menschliche Beobachter, auch bei einer kleineren Anzahl von
Testpersonen, ist der sogenannte TOD-Test (“Triangle Orientation Discrimi-
nation”) gemäß der Beschreibung in [Bij98]. Der TOD-Test wurde ursprüng-
lich zur Leistungsbewertung von bildgebenden EO-Systemen entwickelt,
kann aber (mit kleineren Anpassungen) auch generell zur Beurteilung der
Auflösungsqualität gegebener Bilddaten verwendet werden.
Mithilfe dieser Methode lässt sich die kleinste Dreiecksgröße in einem Bild
bestimmen, bei der die Orientierung noch zuverlässig erkennbar ist. Ge-
nauer geht es um gleichseitige Dreiecke vor einem neutralen Hintergrund,
die jeweils eine von vier möglichen Ausrichtungen annehmen können, d. h.
mit der Spitze nach oben, nach unten, nach links oder nach rechts (s. a.
Abbildung 7.2).

Abbildung 7.2: Beispiele für TOD-Testmuster mit den vier möglichen Orien-
tierungen

Die Aufgabe für Beobachter besteht darin, die jeweilige Ausrichtung der
Dreiecke zu erkennen, wobei sowohl die Größe als auch der Kontrast der
Dreiecke variieren. Die Wahrscheinlichkeit einer korrekten Beobachterant-
wort steigt entsprechend zusammen mit der Größe des Dreiecks.
Da solche Testmuster üblicherweise nicht in erfassten Bilddaten enthalten
sind, liegt auf der Hand, dass die TOD-Methode nur eingeschränkt (d. h. zu
Testzwecken) zur Bewertung von Turbulenzkorrekturresultaten einsetzbar
ist. Am ehesten lässt sich diese Methode daher für simulierte Daten verwen-
den, wobei auch echte Mustertafeln in vorgegebener Entfernung aufgestellt
und unter Turbulenzbedingungen aufgenommen werden können. In [vE07]
wurden beide Vorgehensweisen getestet und miteinander verglichen, um
die Zuverlässigkeit der Simulationen als Grundlage zur Bewertung eines
speziellen Korrekturalgorithmus einschätzen (und bestätigen) zu können.
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7.2.2 Merkmalsorientierte Bewertung
Speziell im Fall von Turbulenzkorrekturergebnissen ist die Bildverbesserung
zumeist offensichtlich, die gegenüber den originalen Eingabedaten erzielt
wurde. So lassen sich beispielsweise schärfere, klarer definierte Struktu-
ren am besten an Kanten im Bild erkennen, während eine Reduktion von
Verzerrungen besonders an geraden Linien auffällt. Entsprechend kann ei-
ne visuelle Evaluierung, wie sie u. a. in Abschnitt 5.3 durchgeführt wurde,
durchaus zweckdienlich und ausreichend sein.
Anders sieht es dagegen aus, wenn es darum geht, relativ ähnliche Ergebnis-
se verschiedener Verfahren miteinander zu vergleichen. Eine Möglichkeit
besteht hier darin, die wichtigsten Merkmale für eine Charakterisierung der
Bildqualität zur Bewertung der Ergebnisse heranzuziehen (d. h. Bildschärfe,
Kontrast, Verzerrungen, Stabilisierung etc.) und durch Beobachter gemäß
ihrer (subjektiven) Wahrnehmung bewerten zu lassen. (Dazu sollte ggfs.
angemerkt werden, dass hiermit nicht Klassifikationsmerkmale gemeint
sind). Die Ergebnisse lassen sich über alle Testpersonen mitteln und in einer
Tabelle erfassen entsprechend der ( erweiterbaren) Beispieltabelle 7.1. Je
nach Ausprägung können wahrgenommene Verbesserungen z. B. mittels
(+) oder mit (++) bewertet werden, und Verschlechterungen analog dazu
mittels (−) bzw. (−−). Falls keine wesentliche Änderung erkennbar ist, kann
auch dies gekennzeichnet werden, z. B. mittels (◦). Hierbei ist zu beachten,
dass die Teilnehmer eine Bewertungsgrundlage benötigen, anhand derer

Tabelle 7.1: Beispieltabelle für eine merkmalsorientierte Bewertung
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entschieden werden kann, was “kleine” und was “große” Veränderungen im
gegebenen Zusammenhang genau bedeuten sollen. Alternativ kann auch
eine numerische Skala verwendet werden, wie z. B. {−2,−1,0,+1,+2}. Die
Anzahl der Abstufungen sollte nicht größer sein, da diese Art von Beobach-
tertests nicht für eine feinere Abstufung geeignet sind.

7.3 Evaluierungskonzept für Algorithmen zur
Turbulenzkorrektur

Der merkmalsbasierte Ansatz aus Abschnitt 7.2.2 lässt sich auch für eine
computergestützte Bewertung mithilfe diverser Metriken (s. a. Abschnitt
7.1.1) adaptieren und um zusätzliche Auswahl- und Bewertungskriterien
erweitern, die im Nachfolgenden näher beleuchtet werden.

7.3.1 Auswahl- und Bewertungskriterien
Für die Auswahl eines geeigneten Verfahrens gibt es grundsätzlich 6 Bewer-
tungskriterien zu berücksichtigen, wobei in Abhängigkeit von der betrach-
teten Anwendung hinter jedem dieser Punkte wiederum eine ganze Reihe
von weiteren Fragestellungen steckt, die es im Vorfeld abzuklären gilt. Die
wesentlichsten sind im Nachfolgenden aufgelistet:

1. Echtzeit-Fähigkeit vs. Qualität

Wie schnell müssen die Ergebnisse vorliegen? Muss die Korrektur
in Echtzeit oder Nahe-Echtzeit erfolgen? Oder hat die Qualität der
Ergebnisse höhere Priorität oder sogar höchste Priorität?

2. Anforderungen an Computer-Architektur

Gibt es spezielle Anforderungen an die Computer-Hardware (z. B. CU-
DA-fähige Hochleistungs-GPU1, Multikernprozessor etc. )? Gibt es
spezifische Anforderungen seitens der Software (z. B. Betriebssystem,
Compiler, Bibliotheken etc. )?

1 “CUDA (früher auch Compute Unified Device Architectur genannt) ist eine von Nvidia
entwickelte Programmier-Technik, mit der Programmteile durch den Grafikprozessor (GPU)
abgearbeitet werden können.” (Quelle: Wikipedia)
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3. Unabhängigkeitsgrad

Wie unabhängig von äußeren Eingaben soll das Verfahren operieren?
Soll es vollautomatisch gesteuert werden? Soll es teil-automatisch
funktionieren? Welche Parameter sollen einem (un-)geschulten Opera-
tor überlassen werden? Welche Parameter sollen automatisch anhand
der vorliegenden Daten bestimmt werden? Und welche Parameter
lassen sich überhaupt sinnvoll abschätzen?

4. Inhalt: Technische Aspekte

Wie sehen typische Szenen aus, die korrigiert werden sollen? Han-
delt es sich um Lang- oder Kurzstreckenaufnahmen? Wie groß ist das
Sichtfeld (FOV) im Verhältnis dazu? Wie strukturiert (kontrastreich)
erscheint die abgebildete Szene in den erfassten Bilddaten? Ist eine
Vorverarbeitung der Daten erforderlich (z. B. Kontrastverbesserung,
Rauschreduktion, Einzelframe-Deblurring, globale Bewegungskom-
pensation)?

5. Bewegungsinhalt

Handelt es sich um eine statische Szene oder gibt es Bewegungen in
der Szene (welche nicht durch Turbulenz verursacht wurden)? Falls
Bewegung enthalten ist, welche der Situationen aus Abschnitt 4.1 sol-
len dann primär berücksichtigt werden? Welche der Bewegungstypen
in der Auflistung 4.1.1 sollen abgedeckt sein?

6. Objektive und subjektive Ergebnisevaluation

Nach welchen objektiven und subjektiven Kriterien soll die Beurtei-
lung der Ergebnisqualität erfolgen? Sollen Bildqualitätsmetriken ein-
gesetzt werden? Falls ja, welche Art von Bildqualitätsmetriken (siehe
Abschnitt 7.1.1)? Liegt eine “Ground Truth” vor für eine objektive Be-
wertung? Welche Merkmale sind dabei wichtig und sollen als “gut”
erkannt werden?

Diese Auflistung erhebt nicht den Anspruch auf Vollständigkeit. Die Be-
schränkung auf diese sechs Aspekte erfolgte vielmehr aufgrund der objek-
tiven Tatsache, dass es sich um eine sehr weitgefasste Aufgabenstellung
handelt, die es sowohl in der Breite zu überblicken als auch gesondert zu
vertiefen galt. Die vorliegende Selektion erfolgte daher in dem Bestreben, ei-
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ne sehr inhomogene Menge an Methoden in so wenige und klare Kategorien
einzuteilen wie möglich.
Im Idealfall wären die genannten Auswahlkriterien völlig unabhängig von-
einander. Tatsächlich bestehen allerdings einige (zumeist indirekte) Zusam-
menhänge der Punkte untereinander. Wenn z. B. ein Verfahren möglichst
unabhängig operieren soll, kann die Ergebnisqualität u. U. signifikante Ein-
bußen erleiden. Oder ein bestimmter Algorithmus kann ohne spezielle Hard-
ware seine Echtzeitfähigkeit verlieren, um nur zwei Beispiele zu nennen.

Anmerkungen

Zu Punkt 1 sollte angemerkt werden, dass die Geschwindigkeit und die
Ergebnisqualität insofern miteinander gekoppelt sind, als dass die zu er-
wartende Ergebnisqualität umso geringer ist, je schneller die Ergebnisse
vorliegen sollen. Denkbar ist, eine Skala zur Bewertung der Wichtigkeit ein-
zuführen (z. B. eine Skala von 1 bis 5 oder über das Intervall [0,1]).
Der Punkt 2 kann u. U. für die potenzielle Portabilität eines Verfahrens von
Bedeutung sein, zum einen wortwörtlich im Hinblick auf Außeneinsätze vor
Ort und zum anderen hinsichtlich der Übertragbarkeit auf andere Computer-
Systeme. Überdies spielt die verfügbare Hardware-/Software-Architektur
eine große Rolle für die Geschwindigkeit mit der ein bestimmter Algorith-
mus eine gegebene Datenmenge prozessieren kann. Aber auch finanzielle
Aspekte können von Belang sein und ggfs. die Anschaffung teurer Hardware
verhindern.
Der Punkt 3 deckt sehr viele Teilaspekte ab, die z. T. großen Einfluss auf
andere Kriterien haben. Welcher Grad an Unabhängigkeit von äußeren Ein-
gaben überhaupt möglich ist, hängt insbesondere von der Anwendung ab.
So unterscheidet sich z. B. der Fall einer Kamera, die über einem bestimm-
ten Gebiet hin und her schwenkt, sehr stark von dem eines Teleskops, das
Sterne beobachtet. Je nachdem wie die Prioritäten in den anderen Kategori-
en gesetzt sind, variieren die Parameter, die sich automatisch bestimmen
lassen.
Der Punkt 4 ist für diverse Korrekturverfahren von Bedeutung. Je mehr über
den voraussichtlichen Inhalt der Daten bekannt ist, desto besser können
Algorithmen dafür angepasst werden. Das bedeutet auch, dass sich abschät-
zen lässt, welche Art von Korrekturmaßnahmen tatsächlich sinnvoll ist. Bei-
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spielsweise ist im Fall einer Langstreckenaufnahme durch starke Turbulenz
damit zu rechnen, dass Strukturen und Kontrast stark reduziert werden. Das
bedeutet wiederum, dass die Anwendung von lokaler Bewegungskompen-
sation u. U. keine positive Wirkung haben wird und nicht bzw. nur unter
Vorbehalt durchgeführt werden sollte.
Der Punkt 5 hängt stark von der jeweiligen Anwendung ab wie bereits aus-
führlich in Abschnitt 4.1 diskutiert.
Der letzte Punkt 6 unterscheidet sich von den übrigen Kriterien insofern,
dass die Bewertung zunächst hauptsächlich von den verfügbaren Eingabe-
daten (d. h. den korrigierten Bilddaten, ggfs. mit zugehöriger Ground Truth)
abzuhängen scheint und weniger von dem spezifischen Algorithmus, mit
dem die Ergebnisse erzeugt wurden. Wie bereits in Abschnitt 7.1 erörtert,
spielen die “Eigenarten” diverser Algorithmen durchaus eine Rolle, und soll-
ten daher mit berücksichtigt werden. Entsprechend sollte diesem Kriterium
nicht zu große Bedeutung bei der Auswahl eines Verfahrens beigemessen
werden. Stattdessen empfiehlt es sich, die Qualitätsevalution an das ausge-
wählte Verfahren anzupassen.

7.3.2 Hauptaspekte und Einflussfaktoren
Die Auswahl- und Bewertungskriterien aus dem vorangegangenen Abschnitt
7.3.1 lassen sich für das Evaluierungskonzept im Wesentlichen auf die nach-
folgenden vier Hauptaspekte kondensieren:

1. Applikation

Die zugrundeliegende Anwendung bestimmt was die Hauptzielset-
zung ist, welche Anforderungen an einen Algorithmus gestellt werden,
und wo die Prioritäten liegen.

2. Bedingungen bei der Erfassung

Die verwendete Sensorik und die Umweltbedingungen während der
Datenerfassung limitieren die Bildqualität und somit die maximale
Leistungsfähigkeit eines Algorithmus.

3. Einschätzung der Situation

Die Versuchsanordnung beschreibt eine gegebene Situation, d. h. das
vorliegende Szenario und den voraussichtlichen Szenen- und Bewe-
gungsinhalt, die ein Algorithmus berücksichtigen muss.
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4. Algorithmus

Die Eigenschaften und Fähigkeiten eines Algorithmus limitieren für
welche Applikationen er geeignet ist, und beeinflussen welche Metho-
de zur Evaluation eingesetzt werden kann bzw. sollte.

Die Abbildung 7.3 zeigt einen Überblick über diese vier Hauptaspekte, die in
dem hier vorgeschlagenen Bewertungsmodell zu berücksichtigen sind. Die
jeweiligen Unterpunkte, auf die hier Bezug genommen wird, wurden bereits
im vorangegangenen Abschnitt 7.3.1 diskutiert bzw. werden nachfolgend
näher beleuchtet.

Abbildung 7.3: Übersicht über die vier Hauptaspekte, die im vorgeschlage-
nen Bewertungsmodell zu berücksichtigen sind.

Angesichts der sehr weit gefassten Aufgabenstellung muss bei dem hier ver-
folgten Ansatz das Anwendungsspektrum etwas eingegrenzt werden. Dar-
über hinaus müssen die Anforderungen und erwünschten Ergebnisse einer
bestimmten Anwendung berücksichtigt werden. Insbesondere, da diese den
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zu erwartenden Szeneninhalt einschränken können und unterschiedliche
Szenarien unterschiedliche Korrekturmaßnahmen erfordern.
Zunächst gilt es, die einflussreichsten Faktoren zu betrachten. Wie eingangs
bereits erwähnt, sind bei vorhandener Turbulenz in der Regel die Umge-
bungsbedingungen zum Zeitpunkt der Bildaufnahme ausschlaggebend für
die Bildqualität. Dementsprechend steht eine Charakterisierung der Turbu-
lenzbedingungen an vorderster Stelle, wobei der Strukturparameter C 2

n (bzw.
r0) hierfür besonders zweckdienlich ist (s. a. Abschnitt 3).
Daneben sollten auch die Eigenschaften der verwendeten Sensorausrüs-
tung, sowie der jeweilige Messaufbau (d. h. das zugrundeliegende Szenario
gemäß Abschnitt 4.1) bei der Wahl eines Algorithmus für eine konkrete An-
wendung mitberücksichtigt werden. Die Spezifikationen des verwendeten
EO-Systems und die interne Struktur der Sensorik bestimmen zum einen Pa-
rameter wie die Bildauflösung, das FOV und insbesondere das IFOV, sowie
auch die Framerate und die Datenmenge, und zum anderen die Empfind-
lichkeit des Detektors in den verschiedenen Spektralbereichen (z. B. VIS, IR
oder aktive Beleuchtung), d. h. die (Haupt-)Wellenlänge λ, und auch die
Rauschanfälligkeit (s. a. Abschnitt 3.4.10).
Wesentliche Parameter der verwendeten Optik umfassen zudem die Brenn-
weite f (bzw. die Blendenzahl), sowie den Durchmesser D der Apertur, u. a.
weil sich der Schweregrad der Turbulenzbeeinträchtigungen gut über das
Verhältnis D/r0 (s. a. Abschnitt 3.3.3) quantifizieren lässt. Es sollte erwähnt
werden, dass die Abbildungsqualität des Objektives u. U. ebenfalls eine Rolle
spielen kann. Da die Verwendung minderwertiger Optiken in den hier be-
trachteten Fällen jedoch wenig zielführend wäre, wird auf eine gesonderte
Berücksichtigung verzichtet. Überdies können etwaige Abbildungsfehler
auch separat von der Turbulenzthematik behandelt werden.
Des Weiteren bestimmt der Messaufbau zur Datenerfassung indirekt mit,
welche Anforderungen an einen gegebenen Algorithmus gestellt werden.
Genauer, welches Szenario dieser Algorithmus verarbeiten können muss,
um bei den so erfassten Daten ausreichend gute Erfolgsaussichten zu haben.
Dabei spielt die Pfadlänge L zwischen Kamera und beobachtetem Objekt
eine entscheidende Rolle aufgrund der kumulativen Auswirkung von Turbu-
lenzeffekten entlang des Ausbreitungsweges.
Die Abbildung 7.4 zeigt ein schematisches Szenario, wie es typischerweise
in militärischen Fernerkundungsanwendungen (z. B. bei Aufklärungsein-
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Abbildung 7.4: Typisches Anwendungsszenario in der Fernerkundung

sätzen) vorkommen kann. Zwischen dem beobachtenden Sensor und dem
beobachteten Objekt erstreckt sich ein ausgedehnter Ausbreitungsweg, der
eine turbulente Atmosphäre durchquert, angedeutet durch rote und blaue
Wölkchen, die ein Gemisch aus wärmeren und kälteren Luftregionen mit
jeweils unterschiedlichem Brechungsindex darstellen. Aufgrund der kumu-
lativen Auswirkungen von Turbulenzeffekten auf langen Ausbreitungswegen,
verdeutlicht dies indirekt den Zusammenhang zwischen der Pfadlänge L und
C 2

n mit dem Ausmaß an Beeinträchtigung der Bildqualität (s. a. Abschnitt 3).

7.3.3 Anwendungs- und Algorithmusprofile
Nach Diskussion der diversen Faktoren, die das Leistungsvermögen von Ver-
fahren zur Turbulenzkorrektur beeinflussen, sind aus praktischen Erwägun-
gen einige Vereinfachungen erforderlich. Dazu bietet sich eine Reduktion
auf die folgenden Hauptanwendungsgebiete an, wobei eine nachträgliche
Ausweitung auf weitere Anwendungen jederzeit möglich ist:

• Fernerkundung (zivil und militärisch) ⇒ statische Kamera, horizon-
taler Blickwinkel (ggfs. leichte Schrägsicht nach oben), langer Ausbrei-
tungsweg (ca. 1-30 km)

• (Grenz-)Überwachung (Surveillance) ⇒ statische oder schwenken-
de Kamera, horizontaler Blickwinkel (ggfs. leichte Schrägsicht nach
unten), relativ kurzer Ausbreitungsweg (ca. 0-1 km)

• Astronomie (stellar und solar) ⇒ statische Kamera (mit Nachführein-
richtung), vertikaler Blickwinkel oder steile Schrägsicht, maximaler
Ausbreitungsweg
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Überdies ist eine realistische Priorisierung der Leistungsanforderungen für
eine gegebene Anwendung notwendig, d. h. absolute “must have” Leistungs-
merkmale müssen gegen solche abgewogen werden, die lediglich “nice to
have” wären. Eine Priorisierung bzgl. “Qualität vs. Geschwindigkeit” kann
beispielsweise Werte im Intervall [0,1] annehmen oder in eine gegebene
Anzahl an Kategorien eingeteilt werden, z. B. in 0 (“ohne / unwichtig”), 1
(“gering / nicht sehr wichtig”), 2 (“mittel / wichtig”), 3 (“hoch / sehr wichtig”).
Diese Kategorisierung hat den Vorteil, dass sie sich auf eine Vielzahl von
Faktoren anwenden lässt.
Die (erweiterbare) Tabelle 7.2 gibt für die ausgewählten Anwendungsbe-
reiche einen Überblick über typischerweise zu erwartenden Bedingungen,
wobei diese vier Kategorien verwendet werden, u. a. um die Stärke von
Bewegungen und den Unschärfegrad einzuordnen. In einigen Fällen (z. B.
Distanzen) sind auch konkrete Größenordnungen angegeben, wie sie häufig
vorkommen. Die große Variationsspanne für Hochgeschwindigkeitskameras
und Bildauflösungen lässt sich hingegen für manche Anwendungsbereiche
nicht ohne Weiteres eingrenzen, weshalb hierfür auf die bereits in Tabelle 7.1
verwendete Wertung (−−/−/◦/+/++) zurückgegriffen wurde.
In der (ebenfalls erweiterbaren) Tabelle 7.3 werden entsprechend die Anfor-
derungen dieser Anwendungen an potenzielle Korrekturalgorithmen in vier
Prioritätskategorien, 1 bis 4, eingeteilt.
Es sollte angemerkt werden, dass diese Einteilung teils zwar etwas willkür-
lich scheint, dennoch weitestgehend auf Erfahrungswerten beruht. Zudem
geht es hier weniger um eine präzise Quantifizierung, als vielmehr um die
prinzipielle Erstellung von Anwendungs- und Algorithmusprofilen.
In der (erweiterbaren) Tabelle 7.4 werden die Korrekturfähigkeiten einer An-
zahl beispielhaft ausgewählter Korrekturmethoden vergleichend bewertet.
Die Leistungseinschätzung der einzelnen Algorithmen erfolgt dabei wie-
der unter Verwendung der (−−/−/◦/+/++) Wertung. Die aufgelisteten
Bewertungsmerkmale bzw. (Wunsch-)Fähigkeiten entsprechen im Grunde
genommen denen in der Abbildung 1.11.
Für den Vergleich wurden sowohl drei eigene Algorithmen herangezogen als
auch drei fremde. Eine genauere Beschreibung der eigenen Verfahren findet
sich in Kapitel 6, für Details zu CARES, AO und SI sei auf die Abschnitte
2.2.3, 2.1 und 2.2.1 verwiesen. Da es sich speziell bei AO und SI um ganz
generelle Ansätze handelt, fällt streng genommen jedoch nur der softwareba-
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Tabelle 7.2: Beispieltabelle für eine merkmalsorientierte Profilierung typi-
scher Anwendungsgebiete für Turbulenzkorrekturverfahren. (∗: mit Nach-
führeinrichtung)

sierte CARES-Algorithmus in dieselbe Verfahrenskategorie wie die eigenen
Algorithmen.
Wie aus der Tabelle 7.4 ersichtlich, kann grundsätzlich von allen selektierten
Methoden eine gute (+) bis sehr gute (++) Qualitätsverbesserung erwartet
werden. Die Geschwindigkeit der softwarebasierten Methoden ist generell
eher gering, und nur die hardwarebasierte AO vermag sehr gute Qualität
bereits in Echtzeit zu liefern. Von großem Nachteil ist bei AO indessen die
Beschränkung auf punktförmige Objekte. Mit geeigneter Hardwareimple-
mentierung kann u. U. auch SI Ergebnisse in (nahezu) Echtzeit produzieren,
wie bereits in Abschnitt 2.2.1 erwähnt, und das beschränkte FOV lässt sich
mittels Kachelung erweitern.
Diejenigen Verfahren, die eine Form der Mittelwertwertbildung einsetzen,
haben eine relativ gute bildstabilisierende Wirkung und vermögen auch Ver-
zerrungen und Rauschen hinreichend abzumildern. Die Vor- und Nachteile
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Tabelle 7.3: Beispieltabelle für eine prioritätsorientierte Profilierung typi-
scher Anwendungen.

des CARES-Algorithmus (gute Stabilisierung, weniger gut gegen Unschärfe,
Verzerrungen etc.) wurden bereits in Abschnitt 2.2.3 erörtert und spiegeln
sich entsprechend in den Bewertungen wider.
Algorithmen mit Entfaltungsverfahren (z. B. WIBD) können indes die Bild-
schärfe signifikant verbessern, wenngleich nicht auf dem gleichen Niveau
wie AO oder SI, dafür ohne Einschränkung des Sichtfeldes.
Speziell bei “TurKom” handelt es sich um eine Modulsammlung der in die-
ser Arbei vorgestellten und diskutierten Techniken, gemäß der Grafik in
Abbildung 1.13. Je nach Parameterwahl schließt dies eine automatische
Turbulenzschätzung anhand der gegebenen Bilddaten mit ein. Mit geeigne-
ten Voreinstellungen kann dieses Programm bis zu einem gewissen Grad
unabhängig von weiteren Benutzereingaben funktionieren. Einige etwas
widersprüchliche Bewertungen (z. B. Geschwindigkeit oder Verzerrungen)
liegen darin begründet, dass sich die Laufzeit beschleunigen lässt (i. A. auf
Kosten der Ergebnisqualität), indem z. B. verschiedene Schritte ausgelassen
werden oder auf andere, schnellere Methoden umgeschaltet werden. Das
heißt, die Ergebnisqualität hängt (ebenso wie die Geschwindigkeit) stark von
den gewählten Korrekturmodulen, sowie von den Parametereinstellungen
ab. Aufgrund des ganzheitlichen Ansatzes verfügt TurKom (als einziges) über
diverse sehr spezielle Funktionalitäten, wie z. B. eine gesonderte Korrektur
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Tabelle 7.4: Beispieltabelle für eine merkmalsorientierte Evaluierung ver-
schiedener Turbulenzkorrekturalgorithmen. Linke Seite: eigene Verfahren,
rechte Seite: ∗CARES-Algorithmus [Pot14], sowie ∗∗SI u. AO als generelle
Ansätze.

des Farbkontrasts (s. a. Abschnitt 6.8) oder die automatische Detektion von
Szenenwechseln, wodurch eine Neuinitialisierung der Turbulenzkorrektur
erfolgt.

Anmerkung

Es sollte erwähnt werden, dass hier nur eine limitierte Anzahl fremder Al-
gorithmen zur Evaluation herangezogen werden konnte. Zum einen ist
entsprechende Software nur im Ausnahmefall verfügbar und zum ande-
ren sind eigene Nachimplementierungen anhand von (oft unvollständigen
oder ungenauen) Autorenbeschreibungen in der Regel zu zeitaufwändig,
um praktikabel zu sein. Ein direkter Datenaustausch mit den Autoren wäre
zwar eine sinnvolle Alternative, die sich nicht zuletzt aufgrund von Sicher-
heitsauflagen auf beiden Seiten jedoch nur selten realisieren lässt.
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7.4 Zusammenfassung
In diesem Kapitel wurden die verschiedenen Möglichkeiten zur qualitativen
Bewertung von Bildqualität ausführlich diskutiert im Hinblick auf die Er-
gebnisqualität von Turbulenzkorrekturverfahren. Dazu gehören zum einen
die numerische Bewertung anhand geeigneter Qualitätsmetriken und zum
anderen die merkmalsbasierte Beurteilung durch geschulte Beobachter.
Des Weiteren wurde ein Konzept zur Erstellung von Algorithmus- und An-
wendungsprofilen vorgestellt. Diese Art der Profilierung ermöglicht den
Abgleich zwischen dem (Anwendungs-)Bedarf auf der einen Seite und den
Fähigkeiten zur Verfügung stehender Algorithmen auf der anderen Seite.
Im Idealfall hätte man eine hinreichend große Datenbank, gefüllt mit den
entsprechenden Profilen von Turbulenzkorrektur-Algorithmen, welche über-
dies passend zu typischen Anwendungsszenarien geordnet werden könnten.





8
Abschlussbemerkungen

8.1 Zusammenfassung
In der vorliegenden Arbeit wurde das Thema Turbulenzkorrektur umfassend
von allen Seiten beleuchtet. Zunächst wurden die physikalischen Mecha-
nismen betrachtet, die zur Entstehung von atmosphärischer Turbulenz
beitragen und die optischen Effekte beschrieben, die in Bildaufnahmen
zu Qualitätsbeeinträchtigungen führen (u. a. Unschärfe, Verzerrungen,...).
Anschließend wurden für die einzelnen Turbulenzeffekte spezielle Korrek-
turmethoden vorgestellt, darunter diverse etablierte Methoden, sowie Wei-
terentwicklungen und eigene Verfahren.
Ein besonderer Schwerpunkt lag dabei auf Verfahren zur Bewegungskom-
pensation, einerseits zur Bildstabilisierung, und andererseits zur Detektion
und gesonderten Korrektur von bewegten Objekten. Ein weiterer Schwer-
punkt lag auf Entfaltungsverfahren zur Verbesserung der Bildschärfe und
des Kontrastes.
Des Weiteren wurden die praktischen Aspekte intensiv beleuchtet, die bei
einer Implementierung von Turbulenzkorrekturverfahren zu berücksich-
tigen sind, angefangen bei einer geeigneten Datenvorverarbeitung (inkl.
spezieller Berücksichtigung von Farbbilddaten), über eine automatisierte
Turbulenzschätzung aus gegebenen Bilddaten mit Generierung einer kor-

243



244 8 Abschlussbemerkungen

respondierenden statistischen PSF für ein Einzelbilddeblurring, sowie eine
Turbulenzsimulation mit synthetischer GT, bis hin zu eigenen Korrekturver-
fahren (z. B. MCA, LIS-Prinzip) mit repräsentativen Korrekturbeispielen für
Szenarien mit unterschiedlicher Turbulenzstärke.
Überdies wurden geeignete Werkzeuge für eine methodische Evaluierung
der Qualität von Korrekturergebnissen ermittelt, insbesondere spezielle
Bildqualitätsmetriken (z. B. “Full Reference” / “No-Reference”-Metriken),
anhand derer man eine numerische Bewertung bestimmter Bildmerkmale
(z. B. Bildschärfe, Kantenanzahl, hohe Frequenzanteile etc.) erhält, sowie
auch geeignete Kriterien zur Beurteilung derartiger Bildmerkmale durch
menschliche Beobachter (z. B. TOD-Methode).
Im Zuge dessen wurde insbesondere ein Konzept zur Erstellung von Anwen-
dungs- und Algorithmusprofilen entwickelt, um die Anforderungen spezi-
eller Anwendungen leichter mit den Fähigkeiten zur Verfügung stehender
Algorithmen vergleichen zu können, und so den für diese Anwendung am
besten geeigneten Algorithmus zu identifizieren.

8.2 Ausblick
Für zukünftige Arbeiten ist es denkbar “Deep Learning” Methoden mit Künst-
lichen Neuronalen Netzen (KNN), insbesondere “Convolutional Neural Net-
works” (CNN), einzusetzen. Hierzu müssten hinreichend große Datenmen-
gen für die verschiedensten Turbulenzbedingungen vorliegen und sowohl
annotiert als auch ausgewertet werden. Gegenüber Standard-Anwendungen,
wie z. B. Objekterkennung, müsste die Datenmenge hierfür höchstwahr-
scheinlich um ein Vielfaches größer sein. Dasselbe Objekt kann in dersel-
ben Entfernung unter demselben Winkel bei identischer Beleuchtung je
nach vorherrschenden Turbulenzbedingungen völlig unterschiedlich ausse-
hen, insbesondere aufgrund mehr oder weniger stark deformierter Kontu-
ren. Dementsprechend wären für jedes solche Objekt wiederum zahlreiche
Daten-Samples (“Templates”) erforderlich.
Verfahren zur Turbulenzkorrektur liefern generell die besten Ergebnisse,
wenn die Eingangsdaten bereits qualitativ so gut wie möglich sind. Ein we-
sentlicher Vorteil liegt z. B. in der Verwendung von Hochgeschwindigkeitska-
meras, welche kurze Belichtungszeiten und hohe Frameraten ermöglichen.



8.2 Ausblick 245

Hierdurch entstehen allerdings entsprechend große Datenmengen, deren
Verarbeitung in Echtzeit (bzw. nahe daran) je nach Komplexität der ausge-
wählten Algorithmen weitere Herausforderungen aufwirft. Es ist denkbar,
dass Methoden aus dem Forschungsgebiet zur Verarbeitung von “Big Data”
auch für Anwendungen im Bereich der Turbulenzkorrektur nutzbar gemacht
werden können.
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