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Kurzzusammenfassung

Beilangen horizontalen Ausbreitungswegen in Bodennihe ist die Atmospha-
re und nicht die Qualitdt moderner bildgebender Systeme ausschlaggebend
fiir die Qualitdt aufgenommener Bilddaten. Besonders wird die Bildqualitat
durch atmosphdrische Turbulenz beeintrichtigt, die je nach Schweregrad
zeitlich und rdumlich variierende Unschirfe, (scheinbare) Bildbewegungen
und geometrische Deformationen, sowie Intensitdtsfluktuationen (Szintilla-
tion), verringerten (Farb-)Kontrast und Rauschen verursacht.

Korrekturverfahren haben entsprechend die Aufgabe, einen, mehrere oder
ggfs. alle dieser Turbulenzeffekte in Bilddaten zu reduzieren und diese best-
moglich zu rekonstruieren. Im Idealfall wére eine solche Rekonstruktion
identisch mit einer Aufnahme am Diffraktionslimit ohne Turbulenz. Diverse
Anwendungsgebiete, die mit der Akquisition von Bilddaten tiber ausgedehn-
te (horizontale) Wegstrecken unter potenziell turbulenten Bedingungen
befasst sind, konnen von einer effizienten Turbulenzkorrektur deutlich pro-
fitieren. Neben speziellen Formen optischer Kommunikation betrifft dies
insbesondere klassische Fernerkundungsaufgaben, wie z. B. militdrische
Aufkldrung oder (Grenz-)Uberwachung. Wihrend fiir Beobachtungen punkt-
formiger, (anndhernd) statischer Objekte tiber vertikalen Ausbreitungswe-
gen bereits etablierte Korrekturmethoden existieren (z. B. Adaptive Optik
fiir astronomische Anwendungen oder optische Freiraumkommunikation),
handelt es sich bei der Turbulenzkorrektur fiir horizontale Bilderfassung
ausgedehnter und u. U. bewegter Objekte hingegen nach wie vor um ein
aktives Forschungsfeld. Hierfiir bieten sich vor allem softwarebasierte Ver-
fahren an, deren Hauptvorteile gegeniiber Hardware-Lésungen nicht nur in
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den vergleichsweise geringen Materialkosten liegen, die zur Herstellung und
Nutzung erforderlich sind, sondern hauptséchlich in ihrer Flexibilitét (inkl.
Mobilitédt) und Vielzahl von Anwendungsmoglichkeiten, wie insbesondere
fiir den Fall ausgedehnter und ggfs. bewegter Objekte.

Diese Arbeit beschiéftigt sich vor allem mit den praktischen Aspekten der
Frage, wie genau (d. h. mit welchen Methoden) man solche Turbulenzbe-
eintrdchtigungen am besten (oder ggfs. am schnellsten) abmildern und die
Qualitit der Bilddaten mit Hilfe von problemspezifisch selektierten Rekon-
struktionsverfahren gezielt verbessern kann. Ein besonderer Fokus liegt
dabei auf Bildsequenzen, die insbesondere auch (gerichtete) Objektbewe-
gung enthalten, sowie auf einer potenziellen Echtzeitfahigkeit der einzelnen
Methoden. In dieser Arbeit werden verschiedene Verfahren zur Korrektur der
am stirksten ausgepragten Turbulenzeffekte untersucht. Dies umfasst die
Auswahl und Implementierung geeigneter Algorithmen, sowie eine bewer-
tende Diskussion ihrer Leistungsfahigkeit im Vergleich. Neben Entfaltungs-
methoden zur Rekonstruktion hoher Frequenzanteile und Verbesserung
der Bildschérfe ist dabei die Kompensation globaler und speziell lokaler
Bildbewegungen mithilfe von “Block Matching”-Algorithmen und Schitz-
verfahren fiir den Optischen Fluss ein zentrales Thema. Insbesondere wird
eine gerichtete lokale Bildstapelung zur Kompensation von Objektbewe-
gungen und Reduktion von Bewegungsunschirfe konzipiert und umgesetzt,
wobei es sich um eine innovative Kombination aus Bewegungsschitzung
und modifizierter Bildstapelung handelt. Ein grundlegender Aspekt ist dabei
die Differenzierung von eigenstédndiger Objektbewegung und Bewegung,
die durch Turbulenz verursacht wird. Des Weiteren wird eine modifizierte
mehrstufige Form der iterativen blinden Entfaltung nach Ayers und Dain-
ty mit spezieller Gewichtung der Kanten im Bild vorgestellt, womit sich
“Ringing”-Effekte in homogenen Bildregionen reduzieren lassen.

Einen weiteren Kernpunkt der Arbeit bildet zudem die Entwicklung einer
Methodik zum Vergleich derartiger Rekonstruktionsverfahren unter Bertick-
sichtigung anwendungsspezifischer Prioritdten bei der Bewertung. Zwar
existiert eine Vielzahl an Qualitdtsmetriken, die zu Vergleichen herange-
zogen werden kdnnen, jedoch ist eine objektive Ergebnisevaluation ohne
verfiigbare “Ground Truth”’-Daten eine nicht-triviale Aufgabe. Es wird daher
ein tabellarischer Losungsansatz vorgeschlagen, anhand dessen sich dhnli-
che Voraussetzungen zusammenfassen lassen, um Algorithmen fiir typische
Anwendungsszenarien besser miteinander vergleichbar zu machen.



Abstract

In the case of long horizontal propagation paths near the ground, the atmo-
sphere and not the quality of modern imaging systems is the determining
factor for the quality of acquired image data. Image quality is particular-
ly affected by atmospheric turbulence, which, depending on its severity,
causes temporally and spatially varying blurring, (apparent) image motion
and geometric deformations, as well as intensity fluctuations (scintillation),
reduced (colour) contrast and noise. Accordingly, correction methods are
tasked with reducing one, several or possibly all of these turbulence effects
in image data and reconstructing them in the best possible way. Ideally,
such a reconstruction would be identical to an image at the diffraction limit
without turbulence.

Various application areas that are concerned with the acquisition of image
data over extended (horizontal) distances under potentially turbulent condi-
tions can benefit significantly from efficient turbulence correction methods.
In addition to special forms of optical communication, this applies in par-
ticular to classic remote sensing tasks, such as military reconnaissance or
(border) surveillance. While established correction methods exist for ob-
servations of point-like, (approximately) static objects over (near) vertical
propagation paths (e.g. adaptive optics for astronomical applications or
optical free-space communication), turbulence correction for horizontal
imaging of extended and possibly moving targets is still an area of active
research. For this purpose, software-based methods are particularly well
suited, since their main advantages over hardware solutions include not
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only the comparatively low costs of materials required for their production
as well as their utilisation, but also their flexibility (incl. mobility) and the
large number of possible applications, especially in the case of extended
and potentially moving objects.

This thesis is primarily concerned with the practical aspects of the question
of how exactly (i. e. with which methods) such turbulence impairments can
be mitigated most effectively (or most rapidly, as the case may be) and how
the quality of the image data can be specifically improved by employing
problem-specific reconstruction methods. A special focus is placed on image
sequences that also contain (directional) object motion in particular, as well
as on a potential real-time capability of the individual methods. In this work,
different methods for the correction of the most pronounced turbulence
effects are investigated. This includes the selection and implementation of
suitable algorithms, as well as an evaluative discussion of their performance
by comparison.

A central topic here, in addition to deconvolution methods for reconstruc-
ting high frequency components and improving image sharpness, is the
compensation of global and especially local image movements with the
aid of block matching algorithms and estimation methods for the optical
flow. More specifically, directional local image stacking is proposed and
implemented to compensate for object motion and reduce motion blur,
involving an innovative combination of motion estimation and modified
image stacking. A fundamental aspect is the differentiation of independent
object motion and motion caused by turbulence. Furthermore, a modified
multi-stage form of iterative blind deconvolution according to Ayers and
Dainty with special weighting of the edges in the image is presented, with
which ringing effects in homogeneous image regions can be substantially
reduced.

Another key point of the work is the development of a methodology for
comparing such reconstruction methods, taking into account priorities in
the evaluation that are specific to the application. Although there is a wide
range of quality metrics that can be used for such comparisons, an objective
evaluation of results is a non-trivial task without available ground truth data.
Therefore, a tabular solution approach is proposed, which can be used to
summarise similar prerequisites in order to make algorithms for typical
application scenarios easier to compare with each other.



Inhaltsverzeichnis

Kurzzusammenfassung
Abstract
Symbolverzeichnis

1 Einleitung
1.1 Motivation . . .. ... ... ..
1.2 Problemstellung . . .. ... .. ... .. ... .. ... .. ...
1.3 Losungsansatz. . . . . ... ... . ... e
1.4 Wissenschaftliche Beitrdge ... ... ... ............
1.5 Gliederung . . . . . . . . ..

2 Stand der Forschung und Technik
2.1 AdaptiveOptik. . . .. ... ... L
2.1.1 Wellenfrontsensoren . . . . . ... .............
2.1.2 Deformierbare Spiegel . . . ... ... .. ... .....
2.1.3 Zernike-Polynome . ... ..................
2.2 Softwarebasierte Verfahren . . ... ... .............
2.2.1 “Speckle Interferometry” . ... ..............
2.2.2 “LuckyImaging” . ...... ... ... ... ... ...
2.2.3 Bildbewegung - Bildstabilisierung . . . .. ... ... ..
2.2.4 Bildverzerrung - Bewegungskompensation . . . . . . ..
2.2.5 Bildunschirfe - Entfaltung . . ... ............



vi Inhaltsverzeichnis

2.2.6 Objektbewegung - Detektion und Tracking . . . . . . .. 35
2.2.7 “Superresolution” . . . . ... ... ... oL 38
2.2.8 “DeeplLlearning” . ........... .. ... ... 39

23 Hybrid-Ansatz . . . .. ... ... ... 42
24 Diskussion . . .. ... o 43
2.4.1 Hardwarebasierte Ansédtze . . . . .. ... ......... 43
2.4.2 Softwarebasierte Ansdtze . ................. 44

3 Theoretische Grundlagen 47
3.1 Definitionen ausder Statistik . . . ... ... ... .. ... ... 48
3.1.1 Stationdre stochastische Prozesse . ... ......... 48
3.1.2 MOomente i . « v v v v v i e e e 49
3.1.3 Erwartungswert p und Standardabweichungo . . . . . 49
3.1.4 DieGaull-Funktion . . ... ................. 50
3.1.5 Die Strukturfunktion . . . .. ... ... . . Lo 50
3.1.6 Die Kovarianzfunktion . . . . . ... ... .. ....... 50
3.1.7 Das Wiener-Khinchin Theorem . ............. 51

3.2 Turbulenzin der Fluiddynamik . . . .. ... .. ... ...... 52
3.2.1 Fluide mit turbulenter Strémung . . . . . .. ... .. .. 52
3.2.2 DieReynoldszahlRe . . ... ... ............. 52
3.2.3 Die Navier-Stokes Gleichungen . . . . . ... ... .... 53
3.2.4 Das Turbulenzmodell von Kolmogorov . . ... ... .. 54
3.2.5 DerBrechungsindexn . ................... 56
3.2.6 Die Strukturfunktionen fiir Kolmogorov-Turbulenz . . . 57
3.2.7 Powerspektren fiir Kolmogorov-Turbulenz . . . . .. .. 59

3.3 Isoplanasie und Anisoplanasie . .. ................ 60
3.3.1 Derisoplanatische Winkel 8y . . . . ... ......... 61
3.3.2 DerFried-Parameterry . ... ... ... .. ... .... 62
3.3.3 Der Strukturparameter C2 . . . . .. ... ......... 62
3.3.4 DieTaylor-Hypothese . ... ................ 65
3.3.5 DieKohidrenzzeitty . .................... 66

3.4 GrundlagenausderOptik . . ... ... ... ........... 66
3.4.1 Lichtwellen und Wellenfronten . . . . ... ... ... .. 67
342 Wellenfront W. .. ... ... ... . ... ..... 67
343 Phasoren . ... ........ ... ... . ... .. 68

3.4.4 Elektrische Feldstarke E . . . . ... ............ 69



Inhaltsverzeichnis vii

3.4.5 Bildentstehung . ... ... ... .. ... .. .. ... 69
34.6 PSEOTFundMTF . ........... ... ...... 70
3.4.7 DiePupillenfunktionP . .................. 71
3.4.8 OptischeAuflésung. . . . ... ............... 72
3.4.9 Limitierende Einflisse . . . . ... ... ... ....... i3
3.4.10 Systembedingte Einfliisse auf die Bildqualitdt . . . . . . 74

4 Bewegungskompensation 81
4.1 Situationsabhidngige Bewegung. . . ... ... ... ... .... 82
4.1.1 Bewegungsdetektion . . . ... ... ... .. ...... 83
4.1.2 Bewegungsschitzung . ................... 85
4.1.3 Abhédngigkeit vom Szeneninhalt . . .. ... .. ... .. 86

4.2 “Block Matching”-Algorithmen . . . . . ... .. ... .. .... 89
4.2.1 VollstindigeSuche . .. ... ... ... ... ...... 91
4.2.2 “Adaptive Rood” Suchmuster . ... ............ 93
4.2.3 Kreuzkorrelation .. ..... ... ... .. .. ...... 94

4.3 OptischerFluss . ... ... .. ... ... .. . .. .. ... 96
4.3.1 Grundprinzip ... .. .. ... ... e 96
432 Horn-Schunk ............ .. ... .. ...... 98
433 Lucas-Kanade . .. ...................... 101
434 Farnebdck .. .... ... ... .. ... . . 103

4.4 Evaluierung . ... .. ... ... .. 106
441 Testdaten. .. ............... ... ... ... 107
4.4.2 Bildhomogenitiat . ... ................... 109
4.4.3 Qualitative Evaluation . . . ... .............. 110
4.4.4 Laufzeit-Evaluierung . . . . ... ... ........... 113
4.45 AnwendungaufTurbulenz . ................ 115

5 Deblurring 119
5.1 BlindeEntfaltung . .. ... ... ... ... ... ..... 120
5.1.1 Inverser WienerFilter . .. ... .............. 121
5.1.2 Richardson-Lucy Entfaltung . ............... 124
5.1.3 Tterative blinde Entfaltung . . . . . . ... ... .. .... 126
5.1.4 Entfaltung mittels Hauptkomponentenanalyse . . . . . 128

52 Resultate . . ... ...... ... ... ... . ... . ... 132

5.2.1 Spezifikation der Testdaten und Instrumente . . .. .. 132



viii Inhaltsverzeichnis
5.2.2 Entfaltungsergebnisse im Vergleich . . ... ... .. .. 136
5.2.3 Spezialfall: stark anisoplanatische Turbulenz . . . . .. 140

5.3 Evaluierung . ........ ... ... .. .. 142
5.3.1 Diskussion: IWELRDundIBD ............... 142
5.3.2 PCA: Multiple Observation und Single Observation . . . 143

5.4 Zusammenfassung und Diskussion . .. ............. 146
5.4.1 Vor- und Nachteile der Algorithmus-Typen . . . . . . .. 146
5.4.2 Uberblick tiber die Algorithmen . . . ........... 147
54.3 Anmerkungen . .. ... ... ... .. ... oL 149

6 Turbulenzkorrektur 151

6.1 Testsequenzen . . . . ... . ... ... ... 152
6.1.1 “Chinalake’-Sequenz . ... ................ 153
6.1.2 “Dayton”-Sequenzen . . .. ... .............. 155

6.2 TheoretischePSFs . .. ... ................. ... 160
6.2.1 GauB-formigePSF . ... ... ... ... ... ... ... 161
6.2.2 BeugungsbegrenztePSF . . ... ... .. ......... 162
6.2.3 Frieds “short” und “long exposure” PSFs . . .. ... .. 164

6.3 Turbulenzschdtzung aus Videodaten . ... ........... 165
6.3.1 Schitzverfahrenfirrg . ... ... ... ... .. ..... 165
6.3.2 Homogenitdtskarten . . . ... ... ... ......... 168

6.4 Bildvorverarbeitung bei Turbulenz . . . . ... ... ... .... 177
6.4.1 Kontrastverbesserung . .. ... ... ........... 177
6.4.2 Rauschreduktion . ...................... 178
6.4.3 Einzelframe-Deblurring . . .. ... ... ... ... ... 178
6.4.4 Bewegungund Turbulenz . ... .............. 179

6.5 “Motion Compensated Averaging” . . .. ............. 181
6.5.1 Referenzbild-Selektion. ... ... ... .......... 181
6.5.2 MCA mit “Block Matching” . .. .............. 183
6.5.3 LokaleBildstapelung . . . . ... ... ........... 184

6.6 Mehrstufige gewichteteIBD . . . . .. .. ... .......... 191

6.7 Korrekturbeispiele . ............. ... .. .. ... 194

6.7.1 Schwache Turbulenz, statische Szene, groe Entfernung195

6.7.2 Moderate Turbulenz, statische Szene, mittlere Entfernung196

6.7.3 Starke Turbulenz, moderate Objektbewegung, mittlere
Entfernung. . . ... .. ... .. ... .. ... .. .. .. 198



Inhaltsverzeichnis ix

6.7.4 Extreme Turbulenz, statische Sequenz, Nahbereich, ak-

tive llumination . ... ................... 200

6.8 Farbbilddaten . ........... ... .. .. .. ... ... 202
6.8.1 Demosaicing . ........... ... .. ... ... 203

6.8.2 Verwendung des LAB-Farbraumes . . . .. ... ... .. 204

6.9 Turbulenzsimulation . ... ..................... 208
6.9.1 Simulationsprinzip . . .. ... ... ... ... ... ... 208

6.9.2 Parametereinstellungen und Implementierung . . . . . 209

6.9.3 Simulationsergebnisse . . . . ... ... ... ... ... 210

6.9.4 Tiefenkarten . . ... .. ... ... ... .. ... ..... 211

6.9.5 Synthetische “Ground Truth” mit Objektbewegung . . . 214

6.9.6 Videosimulation ....................... 216

6.9.7 Korrekturresultate . .. ... ................ 217

7 Methodik zur Evaluierung 221
7.1 Bildqualitdt . ... ... ... . .. ... . 222
7.1.1 Qualitatsmetriken . . ... ... ... .. ... ...... 223

7.1.2 “Full Reference”-Metriken . . . . ... .. ... .. .... 223

7.1.3 “No Reference’-Metriken . . ................ 225

7.2 Qualitative Beurteilung durch Beobachter . .. ... ... ... 227
7.2.1 TOD-Testmethode . ..................... 228

7.2.2 Merkmalsorientierte Bewertung . . ... ......... 229

7.3 Evaluierungskonzept fiir Algorithmen zur Turbulenzkorrektur 230
7.3.1 Auswahl- und Bewertungskriterien . .. ......... 230

7.3.2 Hauptaspekte und Einflussfaktoren . ... ... ... .. 233

7.3.3 Anwendungs- und Algorithmusprofile . . ... ... .. 236

7.4 Zusammenfassung . . ... ... ... 241

8 Abschlussbemerkungen 243
8.1 Zusammenfassung . . . . .. .. .. ... 243
8.2 Ausblick . .... ... ... ... 244
Eigene Publikationen 247
Verwendete Literatur 249

Abbildungsverzeichnis 265



X Inhaltsverzeichnis

Tabellenverzeichnis 275

Abkiirzungsverzeichnis 277



Symbolverzeichnis

Allgemeine Notation

a,p,... Winkel (Griechische Kleinbuchstaben)
auch: skalare Parameter

A B,... Matrizen (Grolbuchstaben, kursiv)
kontextabhéngig auch: Konstanten oder (ganzzahlige) Varia-
blen

CJZC Strukturparameter (z. B. Cfl, C%, L)

Dy Strukturfunktionen (z.B. Dy, Dr, ...)

f(),g(),... Funktionen

f 8- Mittelwert eines Pixelblocks

D, Powerspektren (z.B. ®y, @y, ...)

X, Y, Vektorfelder

X7,.. (Orts-)Vektoren in kartesischen Koordinaten

XY Parameter (Kleinbuchstaben, kursiv)

T,. (Orts-)Vektoren in Polarkoordinaten

xi



xii Symbolverzeichnis
Mengen

C Menge der komplexen Zahlen

Ny Menge der natiirlichen Zahlen einschlieBlich Null

N Menge der natiirlichen Zahlen

R4 d-dimensionaler Raum der reellen Zahlen

RS Menge der positiven reellen Zahlen einschlief}lich Null

R Menge der reellen Zahlen

Z Menge der ganzen Zahlen

Operatoren und Funktionen

[
l-l
*
Vx
n!

A

df
dx

of
0x

J_.'
f*
fT

Absolutbetrag einer reellen oder komplexen Grof3e
Euklidische Norm eines Vektors

Faltungsoperator

Allquantor, Aussage gilt fiir alle definierten x
Fakultit der Zahl n, (n € N)

Laplace-Operator, dient hier i. A. zur Kennzeichnung einer
Differenz

Ableitung der Funktion f nach der Variablen x

Partielle Ableitung der Funktion f nach der Variablen x
Erwartungswert

Fouriertransformation

Komplex Konjugierte von f

Transponierte von f



Symbolverzeichnis xiii

vAQ) Imagindrteil einer komplexen Zahl

max Maximum einer Funktion oder Menge

argmin Argument des Minimums

min Minimum einer Funktion oder Menge

v Nabla-Operator, Vektor der partiellen Ableitungsoperatoren

(@) Landau-Symbol (auch: O-Kalkiil), asymptotische obere Schran-
ke fiir die Rechnenkomplexitit eines Algorithmus

Prob {} Die Wahrscheinlichkeit eines Ereignisses

R() Realteil einer komplexen Zahl

Griechische Symbole

0x (Kleine) Verschiebung in x-Richtung

n Dynamische Viskositét

K Ortsfrequenz

A Wellenldnge des Lichts (sofern nicht anders angegeben)

u Erwartungswert

Wi k-tes Moment

v Kinematische Viskositit

) Kreisfrequenz

Dy Powerspektrum der Phasenfluktuationen

0] Phase

D, Powerspektrum der Fluktuationen im Brechungsindex



xiv Symbolverzeichnis

0 Dichte
z Summenzeichen
o Standardabweichung
a? Varianz
To Kohirenzzeit
(C] Phasendnderungen
Phase
6o Isoplanatischer Winkel
v Mittlere Stromungsgeschwindigkeit
Lateinische Symbole
A Amplitude
Ay Numerische Apertur
o Lichtgeschwindigkeit im Vakuum
(o4 Strukturparameter der Brechungsindexfluktuationen
C% Strukturparameter der Temperaturfluktuationen
D Aperturdurchmesser
d Auflésungsgrenze
Dy Strukturfunktion der Phasenfluktuationen
Dy Strukturfunktion der Temperaturfluktuationen
E Elektrische Feldstiarke

f Schitzung fiir f



Symbolverzeichnis XV

fxy

F

g(x,y)
h(x,y)
I

i,j

Loy

lo

n(x,y)

nr

nw

Ps
pXx

o

2-dimensionale Funktion f der (Orts-)Koordinaten x und y,
hier i. A. : ungestortes, ideales Bild)

Fouriertransformierte von f
kontextbezogen auch: Blendenzahl

Funktion f
kontextbezogen auch: Brennweite

hier i. A. : durch Turbulenz gestortes, reales Bild
hieri. A. : (atmosphérische) Filterfunktion
hieri. A.: i-tes Bild einer Bildsequenz

Imaginére Einheit, d. h. die Wurzel aus (-1)
kontextbezogen hier auch als Laufindex verwendet

Polarisierungsausrichtung
AuBere Skalenldnge

Innere Skalenldnge

Optische Weglidnge

hieri. A. : Noise-Komponente
Brechungsindex
Brechungsindex von Luft
Brechungsindex von Wasser
Pupillenfunktion

Pixelgrofle auf dem Sensor (in Radians)
Pixel

Kohérenzldnge (Fried-Parameter)



XVi Symbolverzeichnis

Re Reynoldszahl
R; hier i. A. : i-tes Referenzbild zu einer Bildsequenz

w Wellenfront



Einleitung

Atmosphiérische Turbulenz und ihre negativen Auswirkungen auf elektroop-
tische (EQ) Systeme spielen vornehmlich in der Fernerkundung eine grof3e
Rolle. Dies gilt insbesondere fiir militdrische Aufklarungsaufgaben, aber
es gibt zunehmend auch in Anwendungen der zivilen Sicherheit Bedarf
an der Korrektur bzw. Abmilderung von Turbulenzeffekten, z.B. bei der
Grenziiberwachung in ariden Gebieten oder der Personenerkennung in der
Strafverfolgung.

Im Allgemeinen gilt, je groBer die Entfernung ist, desto starker wirkt sich
Turbulenz auf die Bildqualitét bei der Datenerfassung aus. Dennoch gibt
es auch auf kleinem Raum Anwendungsmaoglichkeiten fiir Verfahren zur
Turbulenzkorrektur. So ist in der medizinischen Bildverarbeitung z. B. die
Beeintriachtigung der Bildqualitdt von MRT Aufnahmen aufgrund von Turbu-
lenz innerhalb von MRT Geriten durchaus ein Thema, ebenso wie entspre-
chende Verfahren zur Bildverbesserung. Daneben ist in der Zukunft auch
fiir Sportiibertragungen die Anwendung von Turbulenzkorrektur in Echtzeit
vorstellbar, insbesondere z. B. bei Autorennen, bei denen sich hadufig ein
Flimmern in der Luft iiber dem aufgeheizten Asphalt beobachten lasst.



2 1 Einleitung

Anmerkungen

Leider gibt es fiir einige wiederkehrende Begriffe und Konzepte keine ad-
dquate deutsche Ubersetzung, weshalb die englischen Begriffe verstirkt
auch in deutschen Texten verwendet werden. Dies betrifft insbesondere
atmosphdrisches “Blurring”, das sich auf die Weichzeichner-Wirkung und
den Tiefpass-Filter-Effekt der Atmosphére bezieht, wodurch ein beobach-
tetes Objekt unscharf erscheint. Ein weiterer solcher Begriff ist “Noise”, der
zwar als “Rauschen” sinnvoll iibersetzt werden kann, welches aber nicht den
vollen Umfang der Bedeutung widerspiegelt. Aus diesem Grund werden in
dieser Arbeit die englischen Begriffe verwendet, sofern dies angebracht ist.

1.1 Motivation

Dank der technologischen Fortschritte der letzten Jahre bei der Entwicklung
moderner hochwertiger elektrooptischer Systeme sind es inzwischen ldngst
nicht mehr Qualitidt und Design, die deren Leistungsfahigkeit limitieren.
Stattdessen sind es vielmehr die Atmosphire, sowie die vorherrschenden me-
teorologischen Bedingungen, die der Performanz derartiger bildgebender
Sensoren eine obere Grenze setzen. Speziell auf langen Ausbreitungswegen
zwischen Beobachter und beobachtetem Objekt in warmen Klimaregionen,
wie z. B. hdufig bei Aufklarungsaufgaben in der Fernerkundung der Fall,
machen sich atmosphérische Effekte bei der Erfassung von Bilddaten ne-
gativ bemerkbar. Die Abbildung 1.1 zeigt ein Beispiel fiir die Auswirkungen
atmosphérischer Turbulenz- und Refraktionseffekte.

Abbildung 1.1: Beispiel fiir atmosphérische Turbulenz- und Refraktionseffek-
te (St. Peter Ording, Foto: M. Hebel)
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Die Ursache dafiir sind die vorherrschenden kontinuierlichen und rapiden
Anderungen von Temperatur und Druck innerhalb der Atmosphire. Hier-
durch entsteht ein turbulenter Fluss von Luftzellen, welcher sich mit Hilfe
der Gesetze der Fluiddynamik beschreiben ldsst [Kol41]. Die Folge sind zu-
fallige zeitliche und raumliche Variationen im optischen Brechungsindex
entlang des Ausbreitungswegs. Die daraus resultierenden Effekte werden
gemeinhin unter dem Begriff “optische Turbulenz” zusammengefasst. Beson-
ders ausgeprigt ist Turbulenz innerhalb der “Troposphére”, der untersten
Schicht der Erdatmosphére, wobei hierin die “Peplosphire”, die atmosphari-
sche Grenzschicht nahe der Erdoberflache (engl. “Atmospheric Boundary
Layer”, ABL), deutlich am stirksten betroffen ist.

Die Abbildung 1.2 visualisiert das inhomogene Gemisch aus unterschiedlich
groflen Zellen kélterer und warmerer Luft, die wie Linsen mit unterschiedli-
chem Brechungsindex agieren. Eine einfallende ebene (Licht-)Wellenfront
(wie sie von einer punktférmigen Lichtquelle in grofer Entfernung ausgeht,
z.B. von einem Stern), die sich durch dieses turbulente Gemisch ausbreitet,
wird aufgrund dessen sukzessive immer weiter abgelenkt und deformiert.
Es sind in erster Linie Turbulenzen in der Nidhe der Optik fiir die Phasen-
verzerrungen der eintreffenden Wellenfronten verantwortlich, welche den
Gehalt an Raumfrequenzen eines Bildes determinieren, wihrend Volumen-
turbulenzen tiber eine groflere Entfernung wiederum Phasenverzerrungen

Atmosphérische
Einfallende ebene Turbulenzen Gestérte
Wellenfront Wellenfront

Abbildung 1.2: Auswirkung atmosphérischer Turbulenz auf eine ebene Wel-
lenfront
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in Amplitudenverteilungen umwandeln, was allgemein als Szintillation be-
zeichnet wird ([Rog96]). In der Astronomie beschreibt Szintillation zuféllige
Fluktuationen in der Helligkeit von Sternen, wodurch der Anschein erweckt
wird, dass diese funkeln. Szintillation tritt vor allem bei langen Ausbreitungs-
wegen des Lichts durch die Atmosphére auf, weshalb sie sich bei Sternen am
starksten in der Ndhe des Horizonts bemerkbar macht. Unterschiedliche De-
formationen der Wellenfront, verursacht durch atmosphérische Turbulenz,
konnen bei der Ausbreitung zu konstruktiver oder destruktiver Interferenz
fithren. Die resultierenden Amplitudenschwankungen lassen sich vor allem
mit Optiken wahrnehmen, die kleine Aperturen haben, wie z. B. auch die
Pupille des menschlichen Auges. Die entstehenden Interferenzmuster sind
sehr gut an den beiden Beispielen in der Abbildung 1.3 zu erkennen.

Abbildung 1.3: Szintillationseffekte bei starker Turbulenz. Links: reale Mes-
sung eines Laserspots; rechts: simulierte PSE

Die dominantesten zu beobachtenden Turbulenzeffekte bei der Aufnahme
von Bildern sind jeweils zeitlich und rdumlich variierende Unschérfe (“Image
Blurring”), scheinbare Bewegungen des ganzen Bildes (“Image Dancing”)
und geometrische Deformationen (“Image Warping”), sowie die oben be-
schriebenen Intensititsfluktuationen, d. h. Szintillation. In den Abbildungen
1.4 und 1.5 sind Beispiele fiir derartige turbulenzbedingte Bildunschérfe
bzw. Bilddeformationen zu sehen.

Bei der Erfassung von Bilddaten durch Turbulenz spielt insbesondere die
Belichtungs- bzw. Integrationszeit eine wichtige Rolle. Bei lingeren Belich-
tungszeiten, d. h. wenn die Belichtungszeit die Dauer der Turbulenz tiber-
steigt, werden Turbulenzzellen aller Gré8enordnungen gemittelt. Dabei
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Abbildung 1.4: Beispiel fiir turbulenzbedingte Bildunschirfe. Links: Original-
bild, rechts: Ausschnittsvergrolerung.

Abbildung 1.5: Beispiel fiir turbulenzbedingte Bilddeformationen. Links:
Originalbild, Mitte u. rechts: AusschnittsvergrofSerung zwei weiterer Frames
mit jeweils unterschiedlichen Deformationen.

sind es die grofiten Zellen, welche groBer sind als der Durchmesser der
verwendeten Optik, die tiberwiegend fiir den “Image Dancing” Effekt ver-
antwortlich sind, wihrend sie sich iiber die Offnung der Optik bewegen. Bei
kurzen Belichtungszeiten hingegen werden diese grol3en Zellen gleichsam
“eingefroren” und nur die kleinen Turbulenzzellen, die fiir die Unschéarfe ver-
antwortlich sind, bewegen sich so schnell, dass sie sich im Bild bemerkbar
machen. Im Wesentlichen bedeutet dies, dass die Geometrie einer Szene
erhalten bleibt, d. h. Linien bleiben gerade, wihrend Details verschwimmen.
Dieser Umstand wird in Abschnitt 5.2 in der Abbildung 5.2 demonstriert.
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Bilddeformationen werden wiederum von Turbulenzzellen verursacht, wel-
che einerseits kleiner sind als die Apertur, andererseits aber groer (auf der
Bildebene) als die Objektstrukturen.

Kontrastreduktion und chromatischer Verlust zéhlen ebenfalls zu den nach-
teiligen Effekten atmosphérischer Turbulenz, wie beispielhaft in der Ab-
bildung 1.6 gezeigt. Die Abbildung verdeutlicht insbesondere auch den
verstirkenden Effekt von Rekonstruktionsmethoden auf (Farb-)Rauschen.

Abbildung 1.6: Beispiel fiir turbulenzbedingten Verlust von (Farb-)Kontrast.
Links: Originalbild, Mitte: Rekonstruktion mit Rauschverstarkung, rechts:
Detailvergroferung.

Die Abbildung 1.7 zeigt {iberdies, dass atmosphérische Turbulenz im in-
fraroten Wellenldngenbereich (IR) grundsitzlich die gleichen negativen
Turbulenzeffekte verursacht wie im visuellen Spektrum (VIS), auch wenn de-
ren Auspragung etwas geringer ausféllt aufgrund der groleren Wellenldnge.
Zusdtzlich lassen sich Luftspiegelungen {iber dem (durch Sonneneinstrah-
lung) aufgeheizten Rollfeld beobachten, ein Effekt, welcher im VIS ebenfalls
auftritt. Insbesondere illustriert die Abbildung 1.7 wie sich ldngere Ausbrei-
tungswege durch die turbulente Atmosphére in Bildaufnahmen auswirken.
Hier sollte angemerkt werden, dass alle vier Sequenzen mit demselben
EO-System akquiriert wurden, mit einer Originalauflésung von 640 x 480 Pi-
xeln. Die Bildausschnitte wurden absichtlich so gewéhlt, dass der Jet tiberall
(nahezu) gleich groR ist. Zwar wird dadurch die relative Bildauflosung mit
zunehmender Distanz geringer, dennoch ldsst sich erkennen, dass es die
Turbulenzeinfliisse sind, die in den Aufnahmen dominieren.
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Distanz: 1,3 km

Distanz: 1,8 km Distanz: 2,3 km

Abbildung 1.7: Infrarot-Aufnahmen eines Jets in unterschiedlichen Entfer-
nungen zur Kamera unter vergleichbaren Turbulenzbedingungen.

Turbulenz ist naturgemal$ nicht auf atmosphérische Turbulenzen beschrénkt.
Optische Turbulenz kann in jedem fliissigen und transparenten Medium
beobachtet werden. Und obwohl sich der Grof3teil der Forschung in der
Fachliteratur mit atmosphérischen Turbulenzeffekten befasst, hat die Zahl
der Studien {iber Unterwasserturbulenzen in den letzten Jahren zugenom-
men. Dennoch sind Anwendungen fiir atmosphérische Korrekturen nach
wie vor weitaus hédufiger als fiir Unterwasser. Dies liegt vor allem an der
vergleichsweise kurzen Sichtweite von nur wenigen Metern, wihrend Sonar-
systeme bis zu Hunderte von Metern (abhédngig von der Betriebsfrequenz)
durchdringen kénnen. Obwohl der Schwerpunkt hier also auf Luft und nicht
auf Wasser liegt, gelten die in diesem Abschnitt beschriebenen atmosphéri-
schen Effekte auch fiir Wasser. Allerdings sind die optischen Turbulenzen
unter Wasser aufgrund der unterschiedlichen Brechungseigenschaften des
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Wassers, die je nach Salzgehalt und Verschmutzung variieren, viel starker
ausgepragt. Da sich Turbulenz tiber den Strukturparameter der Fluktuatio-
nen im Brechungsindex des Ausbreitungsmediums charakterisieren l4sst,
spielen naturgemél} die Eigenschaften dieses Mediums eine entscheiden-
de Rolle in der Auspragung der optischen Turbulenz. So hat Wasser einen
deutlich héheren refraktiven Index als Luft (ny = 1.3330, n; = 1.000292).
StandardméRig wird der Brechungsindex 7 fiir Fliissigkeiten bei T =20 °C
angegeben, wihrend bei Gasen T =0 °C, P = 1 atm als Standardwerte gelten.
Turbulenz unter Wasser wie im Beispiel in Abbildung 1.8 kann mithilfe von
Heizplatten an den Seiten eines Wassertanks erzeugt werden.

l|| Iﬂ

Abbildung 1.8: Beispiel fiir Unterwasserturbulenz. Oben: Wasser im Ruhezu-
stand; unten: mithilfe von Heizplatten kiinstlich erzeugte Turbulenz.

Die Abbildung 1.9 veranschaulicht am einfachen Beispiel eines bindren
zeitabhédngigen Signals wie sehr sich bereits Szintillation (dargestellt als
griine Sinuskurve) allein in Verbindung mit Rauschen (violett eingezeichnet)
auf die Signalintensitdt auswirken kann. Das Ausgangssignal (schwarze Linie
ganz oben in der Grafik) wird aufgrund der durch Szintillation verursachten
Amplitudenschwankungen teilweise vollig ausgelscht bzw. verfilscht wie
die letztlich gemessenen Daten (schwarze Linie ganz unten in der Grafik)
erkennen lassen. In welchem Ausma@ dieser Effekt durch das vorliegende
Rauschen weiter verstirkt wird, hdngt dabei sowohl vom durchschnittlichen
Rauschpegel ab, als auch vom eingestellten Detektionsschwellwert. Das
Beispiel unterstreicht die Bedeutung und die Notwendigkeit entsprechender
Korrekturmethoden, insbesondere fiir die optische Kommunikation.
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Abbildung 1.9: Wirkung von Szintillation und Rauschen auf ein binéres
Signal (x-Achse: Zeit ¢, y-Achse: Intensitat, skaliert auf [0,1]).

Es gibt eine ganze Reihe von Anwendungsbereichen, die aufgrund von at-
mosphérischer Turbulenz signifikant beeintrachtigt werden kénnen. Dies
betrifft vor allem die nachfolgend aufgelisteten Anwendungen:

Bilderfassung (“Imaging”) iiber ausgedehnte Wegstrecken

Fernerkundung (“Remote Sensing”), z.B. Aufklirung (“Reconnais-
sance”) oder (Grenz-)Uberwachung (“Surveillance”)

Astronomische Beobachtungen
LIDAR (optische Entfernungsmessung)

Optische Freiraumdatentibertragung (“Free-Space Optical communi-
cation”, FSO)

Satelliten-Laserkommunikation (Uplink und Downlink)
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1.2 Problemstellung

Verfahren zur Turbulenzkompensation haben die Aufgabe, einen, mehrere
oder ggfs. sogar alle der zuvor beschriebenen Turbulenzeffekte in erfassten
Bilddaten (oder anderen optischen Signalen) zu reduzieren und diese so gut
wie moglich zu rekonstruieren. Im Idealfall wire eine solche Rekonstruktion
identisch mit einer Aufnahme am Diffraktionslimit, ohne jede (optische)
Turbulenz.

In diesem Zusammenhang stellt sich auch die Frage nach der Evaluierung
solcher Rekonstruktionsergebnisse. Aufgrund der Diversitét aktueller Korrek-
turverfahren ist es nahezu unmaéglich, die Korrekturresultate unterschiedli-
cher Verfahren tatsichlich objektiv zu beurteilen und miteinander zu verglei-
chen. Zum einen ist bei Bilddaten, die durch reale Turbulenz beeintréchtigt
sind, davon auszugehen, dass keine zugehorigen “Ground Truth”-Daten
vorliegen und somit eine (weitgehend) objektive Beurteilung {iber einen
direkten Vergleich entfillt. Zum anderen unterscheiden sich die Zielstellun-
gen und Leistungsparameter dieser Verfahren z. T. signifikant voneinander,
so wie ihrerseits auch die Anforderungen und Prioritédten verschiedener
Anwendungen stark variieren kénnen. Aufgrund dessen wire ein einheit-
liches Konzept sehr von Nutzen, welches eine methodische Evaluierung
solch heterogener Verfahren ermoglicht, ohne dabei die problemspezifi-
schen Vorgaben und Ziele unterschiedlicher Anwendungen aus dem Auge
zu verlieren.

Die Bildbeeintrdchtigungen aufgrund von Turbulenz bei der Erfassung eines
realen Bildes g lassen sich vereinfacht als Faltung (“Convolution”) des idea-
len, d. h. nicht durch Turbulenz gestorten Bildes f mit der atmosphdirischen
Punkitspreizfunktion h beschreiben, wie in der Abbildung 1.10 veranschau-
licht, zuziiglich einer additiven Noise-Komponente n. Diese vereinfachte
Darstellung ist in der Literatur weit verbreitet und wird entsprechend hédufig
verwendet.

Dabei ist zu beachten, dass es sich um eine Momentaufnahme fiir einen
bestimmten Zeitpunkt ¢ = #p handelt, und dass %, f und n nicht nur von
den Ortskoordinaten (x,y) abhdngen, sondern auch zeitlich verdanderliche
Funktionen darstellen (und dementsprechend auch g).
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Abbildung 1.10: Modellierung des turbulenzbedingten Degradationsprozes-
ses von Bilddaten in Form einer Faltung mit der atmosphérischen Filterfunk-
tion.

Die Gleichung aus der Abbildung 1.10 lautet dann entsprechend:
g(x,y,0 = h(x,y,0) * f(x,3,0) + n(x,y,1) (1.1

Ob sich das zugrundeliegende ideale Bild f tatsdchlich mit der Zeit verdn-
dert, ist zwar vom Inhalt der abgebildeten Szene abhéngig, die Annahme
der zeitlichen Verdnderlichkeit von f stellt jedoch keine Einschrdnkung dar.
Streng genommen miisste die Filterfunktion & auch nicht nur die genannten
Turbulenzeffekte beinhalten, sondern ebenso die Storeinfliisse des verwen-
deten optischen Systems. In der Praxis werden fiir Forschungsarbeiten (wie
die vorliegende) mit besonderem Fokus auf die negative Auswirkung at-
mosphdérischer (bzw. optischer) Turbulenz nahezu ausschlieBlich qualitativ
hochwertige elektrooptische Systeme zur Erfassung entsprechender Bildda-
ten eingesetzt. Die Turbulenzeffekte (sofern vorhanden) iiberwiegen daher
im Normalfall deutlich gegeniiber Beeintrachtigungen, wie sie z. B. durch
eine minderwertige Optik verursacht werden. Somit ist es durchaus gerecht-
fertigt, letztere in dem abgebildeten Turbulenzmodell zu vernachlédssigen
und etwaige Abbildungsfehler als Teil der atmosphérischen Stérungen zu
behandeln.

Es sollte dazu angemerkt werden, dass die Parameter des jeweils verwen-
deten optischen Systems sehr wohl in zahlreiche Korrekturverfahren mit
einflieBen, entweder direkt oder indirekt. Ebenso werden haufig weitere
(oder ggfs. andere) Turbulenzeffekte beriicksichtigt, insbesondere der Ver-
lust von (Farb-)Kontrast.



12 1 Einleitung

1.3 Losungsansatz

Zielsetzung dieser Arbeit ist die methodische Evaluierung verschiedener
Verfahren zur Korrektur atmosphérischer Turbulenz mit Hinblick auf die
praktischen Aspekte bei der Anwendung auf Bilddaten mit realen Beein-
trachtigungen aufgrund von Turbulenzeinfliissen. Dies umfasst die Auswahl
und Implementierung geeigneter Algorithmen, sowie eine bewertende Dis-
kussion ihrer Leistungsfdhigkeit im Vergleich. Ein besonderes Augenmerk
liegt jeweils auf Bildsequenzen, die insbesondere auch gerichtete Objektbe-
wegung enthalten.

Die Turbulenzeinfliisse lassen sich als eine Reihe von Turbulenzeffekten
interpretieren, die voneinander (mehr oder weniger) unabhéngig sind. Ins-
besondere lassen sich Bildbewegungen und Bildunschirfe sehr effektiv von-
einander getrennt betrachten und behandeln, ebenso wie z. B. auch der
Bildkontrast. Es liegt daher nahe, ein Verfahren zur Turbulenzkorrektur mo-
dular aufzubauen, so dass diese Turbulenzeffekte mithilfe entsprechender
Methoden jeweils einzeln, nacheinander korrigiert werden (in einer geeig-
neten Reihenfolge). In der Abbildung 1.11 sind die generell am stérksten
ausgeprigten Turbulenzeffekte mit Auflistungen méglicher Korrekturan-
sdtze verkniipft, die sich eignen, um den jeweiligen Effekt zu korrigieren

Deblurring Turbulenzeffekte Glolt:ale Bewetg.ungs-
ompensation

"Blurring” "Best Match"
Optischer Fluss

Unscharf-Maskierung

Scharfungsfilter

"Image dancing"

Entfaltung
Blinde Entfaltung

Kreuzkorrelation

"Warping"

Kontrastverlust

Farbverlust

Kontrastverbesserung lﬂll((ale Bewegil-ll'lgs-
ompensation

Gamma-Korrekiur

: . Farbkorrekturen "Block Matching”
Histogramm-Ausgleich Wellenlangenabhangige Optischer Fluss
CLAHE Korrekturen

Kreuzkorrelation
“Dehazing” Nutzung von Farbraumen

"Demosaicing " (Bayer-Filter)

Abbildung 1.11: Typische Turbulenzeffekte und zugehorige Korrekturansitze



1.3 Losungsansatz 13

bzw. abzumildern. Durch die Punkte “...” soll hier angedeutet werden, dass
es sich um beliebig erweiterbare Listen handelt und kein Anspruch auf
Vollstdndigkeit besteht.

Die Problematik der Turbulenzkorrektur wird hier in vier Hauptaufgaben
eingeteilt:

1. “Bewegungskompensation” (Kapitel 4)
2. “Deblurring” (Kapitel 5)

3. “Turbulenzkorrektur” (Kapitel 6)

4. “Methodik zur Evaluierung” (Kapitel 7)

Zu 1. “Bewegungskompensation”:

“Block Matching”-Algorithmen und Methoden zur Bestimmung des opti-
schen Flusses kdnnen ebenso wie eine Kreuzkorrelation zur Bewegungsde-
tektion und Bewegungsschitzung eingesetzt werden. Anhand dieser Infor-
mationen lassen sich globale und lokale Bildbewegungen kompensieren,
wobei ein bewegungskompensierender gleitender Mittelwert bestimmt und
als Referenz zur Registrierung verwendet wird. Dadurch wird im Video eine
bildstabilisierende Wirkung und Reduktion von Bildverformungen erzielt.
Uberdies werden Bewegungen, die gewisse Kriterien erfiillen, als Objekt-
bewegungen kategorisiert, z. B. wenn sie einen bestimmten Schwellwert
tiberschreiten. Eine Unterscheidung zwischen bewegten und statischen
Bildregionen ermdglicht eine separate Behandlung von bewegten Objekten
im Vordergrund und dem (zumindest tempordr) statischen Hintergrund.
Dadurch kann die Anzahl gemittelter Frames im Vordergrund gezielt redu-
ziert und im Hintergrund erh6ht werden, ohne Bewegungsunschérfe dabei
zu verstdrken.

Zu 2. “Deblurring”:

Wie der Gleichung (1.1) zu entnehmen ist, liegt der Turbulenzkorrekturaufga-
be im Prinzip ein inverses Problem zugrunde, das im mathematischen Sinn
schlecht gestellt ist. Bei einem inversen Problem wird zu einer Abbildung
f:X—Y,y= f(x) die zugehorige Umkehrabbildung f~! gesucht, wobei
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nur Beobachtungen y aus dem Bildbereich Y vorliegen, wihrend die zuge-
horigen Elemente x des Definitionsbereichs X unbekannt sind ([Bey12]). Ge-
mil Hadamard ist ein Problem im mathematischem Sinn schlecht gestellt,
wenn keine eindeutige Losung existiert, die zudem stabil ist, also stetig von
den gegebenen Eingangsdaten abhéngt. Speziell fiir ein inverses Problem
bedeutet dies dann, dass keine bijektive und stetige Umkehrabbildung f~!
existiert. Losungsansitze fiir das Problem der Entfaltung (“Deconvolution”)
stiitzen sich daher auf Zusatzinformationen, wie etwa Vorwissen und Rand-
bedingungen, die z. B. nur fiir ganz bestimmte Situationen Gtiltigkeit haben.
Vorwissen kann z. B. aus fritheren Schleifendurchldufen stammen oder fiir
eine gegebene Position aus einer lokalen Umgebung extrapoliert werden.
Es konnen zusitzlich auch (hdufig vereinfachende) Annahmen getroffen
werden, oder bestimmte Eigenschaften der Losung gefordert werden (wie
z. B. Glattheit), so dass Ausreiller unterdriickt werden.

Der gesamte Vorgang von der durch Turbulenz verursachten Bildverschlech-
terung bis hin zur naherungsweisen Bildrekonstruktion f des idealen Bildes
ist schematisch in der Abbildung 1.12 dargestellt.

Noise n(x,y)

Fxy) -Fffterfunkﬁan - o — Korrektur- -— f“(x’y)

| h(x, y) I 20y Filter

Abbildung 1.12: Schematische Darstellung turbulenzbedingter Bildbeein-
trachtigung und Bildrekonstruktion mittels inverser Filterung

Bildbewegungen sind in dieser Darstellung zwar nicht explizit berticksich-
tigt, aber falls eine effiziente Bewegungskompensation durchgefiihrt wird,
kdonnen (nahezu) isoplanatische Bedingungen angenommen werden, so
dass die atmosphdrische Filterfunktion / (ndherungsweise) als raumlich
invariant betrachtet werden kann.

Zu 3. “Turbulenzkorrektur”

In diesem Aufgabenblock wird thematisch alles zusammengefiihrt, das zu-
sdtzlich zu Algorithmen zur Bewegungskompensation und Entfaltung mit
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zum Themenfeld Turbulenzkorrektur gehort. Neben Schitzmethoden fiir
die Turbulenzstdrke und Moglichkeiten zur PSE-Approximation werden hier
vor allem eigene Arbeiten und Ergebnisse vorgestellt, insbesondere die MCA
und LIS Korrekturprinzipien zur Bewegungskompensation, sowie auch die
WIBD Modifikation fiir eine abschliefende blinde Entfaltung.

Des Weiteren werden praktische Aspekte beleuchtet, wie z. B. sinnvolle Mog-
lichkeiten zur Vorverarbeitung der Bilddaten unter verschiedenen Bedin-
gungen, um die Rekonstruktion zu unterstiitzen. Eine besonders hohe Fra-
merate kann beispielsweise zusétzliche Maffnahmen erfordern, um Objekt-
bewegung zwischen Frames detektieren zu konnen. Gleiches gilt auch bei
ausgepragten lokalen Bildbewegungen infolge starker Turbulenz, die u. U.
gegeniiber Objektbewegungen tiberwiegen konnen.

Die Abbildung 1.13 zeigt die verschiedenen Stufen im hier vorgestellten
Losungsansatz zur Turbulenzkompensation, angefangen mit einer optiona-
len Vorverarbeitung der Eingabedaten iiber eine Bewegungsdetektion und
Bewegungsschidtzung zur Bewegungskompensation mit abschlieSendem
Deblurring.

Wihrend der Bewegungsdetektion/-schitzung wird zunéchst entschieden,
ob eine Kamerabewegung vorliegt, die sich mithilfe entsprechender Ma@3-
nahmen ausgleichen lédsst. Bei einer gleichm@Rigen Schwenkbewegung kann
z.B. “Stitching” eingesetzt werden. Andernfalls, d. h. bei schnellen nicht pra-
dizierbaren Bewegungen, muss auf eine Bewegungskompensation (zeitwei-
lig) verzichtet werden. Dies gilt im Ubrigen auch fiir abrupte Szenenwechsel
oder Anderungen des Zoomfaktors seitens der Optik.

Des Weiteren wird ermittelt, ob bewegte Objekte enthalten sind und ggfs.
eine Segmentierung in Vorder- und Hintergrund, d. h. bewegte und statische
Bildregionen, vorgenommen. Bei der Bewegungskompensation werden die
ermittelten Informationen zur Bildstabilisierung mittels bewegungskom-
pensierender Bildstapelung (MCA) eingesetzt, wobei eine separate Korrektur
des Vordergrunds mittels gerichteter lokaler Bildstapelung (LIS) durchge-
fiithrt wird.

Das Resultat der Bewegungskompensation kann im Idealfall als (weitge-
hend) unverzerrtes Bild betrachtet werden, welches allerdings noch eine
Unschérfe in der gleichen Groenordnung aufweist wie die zugehorige sta-
tistische “short exposure”-PSEF (s. a. Gleichung (6.14)). Als abschlieRender
Schritt wird daher noch ein entsprechendes Deblurring durchgefiihrt.
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Abbildung 1.13: Prozessierungskette mit den wesentlichen Verfahrensschrit-
ten zur Turbulenzkorrektur

Dieser Ansatz zur Turbulenzkorrektur ist vergleichsweise robust, da er auch
bei starker Turbulenz noch eine deutliche Verbesserung zu erzielen kann.
Zudem ldsst er sich ohne zusitzliche Modifikationen auch auf andere Spek-
tralbereiche wie IR anwenden, inklusive aktiver Beleuchtung.

Zu 4. “Methodik zur Evaluierung”:

Im letzten Aufgabenblock geht es hingegen darum, die Rekonstruktionser-
gebnisse verschiedener Verfahren zur Turbulenzkorrektur vergleichend zu
bewerten, um daraus eine Aussage iiber die Leistungsfahigkeit der korre-
spondierenden Algorithmen ableiten zu kénnen. Zu diesem Zweck werden
die jeweiligen Vor- und Nachteile unterschiedlicher Typen von Metriken dis-
kutiert, sowie alternative Moglichkeiten zur Bewertung der Rekonstruktions-
qualitét erortert. Zur Losung wird ein tabellarischer Ansatz vorgeschlagen, in
dem eine Kombination ausgewd&hlter Metriken als Kriterien zur Bewertung
der Rekonstruktionsergebnisse herangezogen wird, wobei eine anwendungs-
bezogene Priorisierung ermoglicht wird. Zuséatzlich werden die Eingabeda-
ten kategorisiert, da unterschiedliche Ausgangsszenarien unterschiedliche
Korrekturmallnahmen erfordern. Insbesondere konnen die Prioritdten bei
der Bewertung stark von der jeweiligen Anwendung abhéngen.
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1.4 Wissenschaftliche Beitrage

Die Hauptbeitrdge dieser Arbeit zum Stand der Forschung und Technik
lassen sich zusammenfassen wie folgt:

> Entwicklung und Realisierung eines ganzheitlichen Verfahrens zur
schritthaltenden Turbulenzkorrektur (s. a. Abbildung 1.13), das auf-
grund zahlreicher optionaler Komponenten (z. B. Vorverarbeitung),
sowie etlicher Freiheitsgrade sehr flexibel nutzbar ist. In diversen Kor-
rekturbeispielen (u. a. in Abschnitt 6.7) wird die Verbesserungsleistung
spezifischer Komponenten demonstriert.

> Umfassende Untersuchung verschiedenster Algorithmen zur Bewe-
gungsdetektion und zur Bewegungsschitzung hinsichtlich ihrer An-
wendbarkeit auf turbulenzgestorte Daten zur Bewegungskompensati-
on [Huel6] (Kapitel 4).

> Konzipierung und Umsetzung einer gerichteten lokalen Bildstape-
lung (“Local Image Stacking”, LIS), einer innovativen Kombination
aus Bewegungsschétzung mittels “Block Matching” und modifizierter
Bildstapelung, zur Kompensation von gerichteten Objektbewegungen
in atmosphérisch beeintréchtigten Bildsequenzen [Huell] (Abschnitt

6.5.3).

> Qualitative und quantitative Evaluierung verschiedener Entfaltungs-
methoden in Bezug auf ihre Eignung in unterschiedlichen Turbu-
lenzbedingungen unter Bertiicksichtigung des (potenziellen) Echtzeit-
Aspekts, sowie Untersuchung des Einflusses ultra-kurzer Integrations-
zeiten auf die Bildrekonstruktion [Hue08], [Gre08].

> Entwicklung und Implementierung einer mehrstufigen Variante des
IBD-Entfaltungsalgorithmus mit besonderer Gewichtung der Kanten
im Bild [Hue09] (Abschnitt 6.6).

> Untersuchung verschiedener Qualitdtsmetriken zur Identifikation der
besten und schlechtesten Frames mit dem Ziel, bessere Frames mit
einer starkeren Gewichtung in die Korrektur einflieSen zu lassen, wéh-
rend die schlechtesten Frames verworfen werden [HuelO].
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> Entwurfund Erstellung einer synthetischen Videosequenz als “Ground
Truth”-Basis fiir Turbulenzsimulationen. Erzeugung von Videosequen-
zen mit unterschiedlicher Turbulenzstérke (isoplanatischer Simulati-
on) als Testdaten fiir diverse Korrekturverfahren [Huel2b] (Abschnitt

6.9).

> Untersuchung der Einfliisse verschiedener Farbraume auf die Kon-
trastverbesserung atmosphdirisch beeintriachtigter Farbbilddaten, mit
besonderem Fokus auf dem CIE LAB-Farbraum [Huel5].

> Modifikation und Implementierung eines Verfahrens zur Schiatzung
des Fried-Parameters ry anhand von hinreichend langen Bildsequen-
zen.

> Entwicklung und Implementierung einer auf dem Lakunaritdtsmaf3
basierenden Methode zur Erstellung von Homogenitdtskarten (Ab-
schnitt 6.3.2), womit sich die Zuverldssigkeit der geschitzten Turbu-
lenzstérke (ry) erhohen ldsst.

> Erstellung eines Konzepts zur methodischen Evaluation von Verfahren
zur Turbulenzkorrektur anhand eines tabellarischen Ansatzes unter
Berticksichtigung anwendungsspezifischer Prioritdten.

1.5 Gliederung

Dieser Einleitung schlieft sich in Kapitel 2 eine Ubersicht iiber den derzei-
tigen Stand der Forschung und Technik zum Thema Turbulenzkorrektur
an. Diese Ubersicht beginnt mit der hardwarebasierten “Adaptiven Optik”
in Abschnitt 2.1. Es folgt ein Literaturiiberblick iiber softwarebasierte Kor-
rekturansétze mit Bezug zu den hier behandelten Aufgabenstellungen in
Abschnitt 2.2. Dazu werden représentativ ausgewéhlte Verfahren vorgestellt
und diskutiert, geordnet jeweils nach Turbulenzeffekten mit geeigneten
Korrekturprinzipien. Eine abschlielende Diskussion von hardware- und
softwarebasierten Korrekturansitzen wird in Abschnitt 2.4 gegeben.

Die Einfliisse des Phanomens “Turbulenz” erstrecken sich auf eine ganze
Reihe von Forschungsgebieten. Daher sind im Kapitel 3 die fiir die weiteren
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Kapitel relevanten theoretischen Grundlagen zu diesem Themenkomplex
fachiibergreifend zusammengefasst. Dies beinhaltet zunédchst Definitionen
aus der Statistikim Abschnitt 3.1, sowie einige Grundbegriffe aus der Fluiddy-
namik im Abschnitt 3.2. Hinzu kommen wichtige Definitionen aus der Astro-
nomie, wie insbesondere Isoplanasie und Anisoplanasie im Abschnitt 3.3,
sowie einige Grundprinzipien aus der Optik im Abschnitt 3.4, einschlieflich
einer Diskussion diverser systembedingter limitierender Einfliisse.
Zahlreiche softwarebasierte Korrekturverfahren verwenden eine Bewegungs-
kompensation, um turbulenzbedingte Bildbewegungen auszugleichen oder
Eigenbewegungen von Objekten zu detektieren. Aus diesem Grund wer-
den typische Algorithmen zur Bewegungsdetektion und Bewegungsschit-
zung ausfiihrlich in Kapitel 4 beschrieben und bzgl. ihrer Eignung zur Tur-
bulenzkorrektur diskutiert. Neben einer Diskussion verschiedener Bewe-
gungstypen in Abhéngigkeit von der vorliegenden Situation in Abschnitt 4.1,
beinhaltet dies zum einen verschiedene “Block Matching”-Algorithmen
im Abschnitt 4.2 und zum anderen mehrere Methoden zur Bestimmung
des “Optischen Flusses” im Abschnitt 4.3. In Abschnitt 4.4 werden diese
Algorithmen vergleichend evaluiert und sowohl mit Hinblick auf den Ein-
satz bei Objektbewegung diskutiert, als auch hinsichtlich der praktischen
Anwendung auf turbulenzgestorte Bilddaten.

Bildunschirfe hat einen signifikanten Anteil an turbulenzbedingten Be-
eintrachtigungen der Bildqualitédt. Deshalb enthalten Verfahren zur Turbu-
lenzkorrektur in der Regel auch ein “Deblurring”, d. h. eine Methode zur
Verbesserung der Bildschérfe. In Kapitel 5 geht es speziell darum, die Eig-
nung verschiedener Entfaltungsmethoden fiir einen Einsatz bei zunehmend
starker Turbulenz zu bewerten. Dazu werden zundchst verschiedene Entfal-
tungsalgorithmen genauer beschrieben (in Abschnitt 5.1). Es handelt sich
dabei in erster Linie um etablierte Methoden, da sich auch viele neuere
Entfaltungsalgorithmen im Kern auf die ein oder andere dieser Methoden
zuriickfiihren lassen. Denn wie u. a. der Artikel von Hardie et al. [Har17] er-
kennen ldsst, haben auch etablierte Verfahren wie “Wiener Filter” und “Block
Matching” ihre Relevanz noch nicht verloren. In Abschnitt 5.2 sind einige
reprasentative Entfaltungsergebnisse (fiir eine Auswahl dieser Algorithmen)
abgebildet, die in Abschnitt 5.3 verglichen und evaluiert werden. In dem Ab-
schnitt 5.4 werden die Eigenschaften der verschiedenen Algorithmus-Typen
noch einmal vergleichend zusammengefasst und diskutiert.
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Das Kapitel 6 bildet den Schwerpunkt dieser Arbeit und befasst sich mit den
verschiedenen praktischen Aspekten, die rund um das Thema Turbulenzkor-
rektur zu beriicksichtigen sind. In Abschnitt 6.1 werden die Anforderungen
an geeignete Testsequenzen erortert und die Spezifikationen der hier bevor-
zugt verwendeten Testsequenzen angegeben. In Abschnitt 6.2 geht es um
konkrete Moglichkeiten, die atmosphdrische Filterfunktion (PSE) mithilfe
verfligbarer Informationen statistisch zu approximieren. Messwerte der hier-
zu erforderlichen Kohérenzliange (rp) stehen jedoch nur im Ausnahmefall
zur Verfligung, daher wird in Abschnitt 6.3 eine modifizierte Methode zur
zuverldssigen Abschétzung dieser Information anhand von Bildsequenzen
vorgestellt. Je nach Ausmal der turbulenzbedingten Beeintrachtigungen in
gegebenen Bilddaten, konnen entsprechende Korrekturverfahren auch von
einer angemessenen Vorverarbeitung dieser Daten profitieren, wofiir die
besten Optionen in Abschnitt 6.4 diskutiert werden. Es folgt eine Beschrei-
bung eigener Korrekturverfahren, wobei die Funktionsweise der lokalen
Bewegungskompensation (MCA) und das Prinzip der lokalen Bildstapelung
(LLS) in Abschnitt 6.5 erldutert werden. Die entwickelte Entfaltungsmethode
wird tiberdies in Abschnitt 6.6 im Detail beschrieben. Représentive Resultate
dieser Verfahren werden insbesondere in Abschnitt 6.7 gezeigt. Fiir eine ob-
jektive Bewertung von Korrekturalgorithmen liegen idealerweise ungestorte
Bilddaten vor, die mit den Rekonstruktionsergebnissen verglichen werden
konnen. Dies ist in der Regel nur bei simulierten Daten der Fall, die den
zusdtzlichen Vorteil bieten, dass der Szeneninhalt nach Bedarf ausgew&dhlt
werden kann. Maximale Flexibilitdt besteht insbesondere, wenn es sich um
eine vollstdndig synthetische Simulation handelt, wie sie in Abschnitt 6.9
beschrieben ist.

In Kapitel 7 geht es schlussendlich um die methodische Evaluierung von Tur-
bulenzkorrekturverfahren. In Abschnitt 7.1 wird der Begriff der Bildqualitit
in Zusammenhang mit der jeweiligen Anwendung gebracht, und es werden
verschiedene Metriken zur Bestimmung der Bildqualitat vorgestellt. Welche
Einflussfaktoren zu beriicksichtigen sind, wird in Abschnitt 7.3 diskutiert.
Eine abschliefende Zusammenfassung ist in Abschnitt 7.4 gegeben.



Stand der Forschung und
Technik

Generell lassen sich Verfahren zur Turbulenzkorrektur in Bilddaten in zwei
Kategorien einteilen: hardware- und softwarebasierte Losungen, wobei
durchaus auch Hybrid-Ansitze existieren, welche sowohl Hardware- als
auch Software-Elemente miteinander vereinen.

Wenn man von reinen Hardware-Systemen zur Kompensation von Turbu-
lenzeffekten spricht, handelt es sich in der Regel um Adaptive Optik-Systeme,
welche einfallendes Licht (von einer punktférmigen Quelle) durch Adap-
tierung einer Optik so modifizieren konnen, dass die Abbildungsqualitét
verbessert wird.

Das Spektrum an softwarebasierten Korrekturverfahren ist hingegen deut-
lich vielféltiger. Zu den wohl bekanntesten und verbreitetsten Prinzipien
zédhlen dabei “Lucky Imaging” und “Speckle’-Interferometrie, ebenso wie
zahlreiche Methoden zur Bewegungskompensation. Insbesondere diese be-
wegungskompensierenden Verfahren, darunter diverse “Block Matching”
und “Optical Flow” Algorithmen, werden héufig in Verbindung mit “Super-
resolution”-Algorithmen oder einer Form von “Deblurring” eingesetzt, z. B.
(mehr oder weniger) “Blinde” Entfaltung.

21
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2.1 Adaptive Optik

Adaptive Optik (AQ) dient dazu, die Leistungsfahigkeit elektrooptischer
Systeme zu erhéhen. Urspriinglich fiir Anwendungen der Astronomie ent-
wickelt, wird AO inzwischen auch fiir viele Laseranwendungen, wie z. B.
in der Laserkommunikation eingesetzt. Insbesondere in der Astronomie,
z.B. in der Sonnenphysik, kommen heutzutage zusétzlich zur Hardware-
Korrektur auch softwarebasierte Verfahren zum Einsatz, aufgrund dessen
unter giinstigen Bedingungen mitunter ein Verbesserungsgrad nahe dem
Diffraktionslimit erreicht werden kann.

Wie das Funktionsschema in Abbildung 2.1 veranschaulicht, werden bei
AO-Systemen zunéchst die Wellenfronten einfallenden Lichts mit Hilfe von
Wellenfrontsensoren gemessen und etwaige Verformungen ermittelt. Dies
geschieht in der Regel unter der Annahme, dass sich die betreffende (punkt-
férmige) Lichtquelle in hinreichend grof3er Entfernung befindet, so dass die
Wellenfront idealerweise planar sein miisste. Somit konnen Abweichungen
bestimmt und mit Hilfe eines deformierbaren Spiegels korrigiert werden.

Adaptive Optik

(Licht-) t
Input Output

Wellenfrontsensor
(A z.B. Shack-Hartmann

Korrektor
z.B. Deformier-
barer Spiegel

; .

Strahlteiler

Computer

Abbildung 2.1: Funktionsschema eines AO-Systems (Grafik: A. Zepp)
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2.1.1 Wellenfrontsensoren

Besonders verbreitet unter den Wellenfrontsensoren sind sogenannte Shack-
Hartmann Sensoren. Diese bestehen aus einem Mikrolinsenarray, welches
das einfallende Licht in kleine Subaperturen aufteilt und auf einen Bild-
sensor fokussiert, so dass jede Linse einen eigenen Fokus erzeugt. Aus den
relativen Positionen dieser Foki ldsst sich dann die (aufgrund von Turbulenz
gestorte) Form der einfallenden Wellenfront anhand von geometrischen
Betrachtungen und vermittels entsprechender Algorithmen ermitteln. Zwar
existieren auch andere Methoden zur Wellenfrontmessung, deren Einsatz-
moglichkeiten sind jedoch meist auf bestimmte Anwendungen beschrankt.
Beispielsweise ist der (noch im Entwicklungsstadium befindliche) Ansatz
eines holografischen Wellenfrontsensors, wie in [Zep13] beschrieben, durch-
aus vielversprechend, nicht zuletzt dank seiner Unempfindlichkeit gegen-
iber Szintillation. Aufgrund seiner konstruktionsbedingten Limitierung auf
einzelne Wellenldngen ist sein Einsatz jedoch nur fiir schmalbandige An-
wendungen wie die Laserkommunikation geeignet.

2.1.2 Deformierbare Spiegel

Die eigentliche Korrektur erfolgt schliefSlich mit Hilfe eines deformierbaren
Spiegels, welcher aus einer sehr diinnen spiegelnden Membran besteht.
Unterhalb dieser Membran befindet sich ein Array von Aktuatoren, welche
iiber Anlegung einer Spannung (nahezu) unabhingig voneinander gesteuert
werden kdnnen. Dies bedeutet, dass sich die Spiegeloberflidche iiber ent-
sprechende Steuersignale gezielt lokal verformen ldsst, um die (Turbulenz-
verursachten) Deformationen der Wellenfront auszugleichen und auf diese
Weise zu kompensieren.

Diese Art der Spiegel-Kontrolle {iber eine Feedback-Schleife zu einem Wel-
lenfrontsensor bezeichnet man als “Closed-Loop”. Naturgemdl miissen die
Messungen hinreichend schnell wiederholt (und in entsprechende Steu-
ersignale umgewandelt) werden, bevor sich die einfallende Wellenfront
aufgrund von Turbulenz zu stark verdndert hat. Alternativ ldasst sich der
deformierbare Spiegel aber auch in einer sogenannten “Open-Loop” ansteu-
ern. Dabei wird anstelle von aktuell gemessenen Wellenfronten eine Menge
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an vorab berechneten oder gespeicherten Wellenfront-Formen verwendet,
anhand derer iterativ nach einer moglichst optimalen Losung gesucht wird.

2.1.3 Zernike-Polynome

Fiir die Steuerung der Aktuatoren wiederum muss natiirlich eine geeignete
Beschreibung der erwiinschten Oberflichenform vorliegen, welche dann in
geeignete Steuersignale umgewandelt werden kann. Hierzu wird zumeist
eine Zerlegung in sogenannte Zernike-Polynome vorgenommen, welche in
Abhéngigkeit von Radius und Azimutwinkel ausgedriickt werden. Jeder Term
in einer solchen Zerlegung représentiert einen spezifischen Aberrationstyp.
So beschreiben Terme 1. radialer Ordnung sogenannte “Tip-Tilt” Storungen,
welche globalen Bildbewegungen entsprechen, genauer “Verkippungen” in
horizontaler bzw. in vertikaler Richtung. Analog korrespondieren Terme
2. radialer Ordnung zu den Aberrationstypen “Defocus” (in Lingsrichtung)
sowie Astigmatismus (in schréger bzw. in vertikaler Richtung), und Terme
3. radialer Ordnung korrespondieren zu den Aberrationstypen “Coma” (in
horizontaler bzw. vertikaler Richtung) sowie “Trefoil” (in schrdger bzw. in
vertikaler Richtung).

Zur Veranschaulichung zeigt Abbildung 2.2 die zugehdérigen Formen der
(orthogonalen) Zernike-Polynome 1. bis 4. (sowie eines 5.) radialer Ordnung.
Mit steigender (radialer) Ordnung lasst die Starke des Einflusses der indivi-
duellen Aberrationen deutlich nach. Demgemal kénnen bereits Korrekturen
der niedrigeren Ordnungen signifikante Verbesserungen der Bildqualitét
erzielen. Aus diesem Grund beschridnken sich zahlreiche AO-Anwendungen
nur auf die Korrektur der ersten 2 bis 3 radialen Ordnungen, nicht zuletzt
zur Laufzeitbeschleunigung bzw. zur Erhohung der Iterationsrate bei der
Spiegelkontrolle.

Es sollte angemerkt werden, dass die Zernike-Polynome zwar im mathema-
tischen Sinn “orthogonal” und demgema® voneinander unabhéngig sind,
dass physikalisch betrachtet jedoch das Vorhandensein von Aberrationen
hoherer Ordnung normalerweise auch das Vorhandensein der korrespon-
dierenden Aberrationen niederer Ordnung bedeutet (d. h. Aberrationen mit
niederer radialer Ordnung, aber von gleicher azimutaler Ordnung).
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Abbildung 2.2: Zernike-Polynome 1. bis 4. Ordnung !

2.2 Softwarebasierte Verfahren

Neben klassischen Verfahren wie der nachfolgend vorgestellten “Speckle”-
Interferometrie und dem “Lucky Imaging” gibt es noch eine Vielzahl von
anderen Algorithmen, die mit der Korrektur von einem oder mehreren der
in der Abbildung 1.11 aufgelisteten Turbulenzeffekte befasst sind. Aufgrund
der groBen Fiille an existierenden Verfahren zur Turbulenzkorrektur, die
sich in der Literatur finden lassen, wire hier eine vollstdndige Auflistung
kaum méglich und wenig zielfithrend. Stattdessen wurden einige Korrektur-
ansitze ausgewdhlt, die fiir den Themenkomplex in der vorliegenden Arbeit
besonders relevant sind. Jedem dieser Ansdtze wurden beispielhaft ein oder
mehrere reprasentative Verfahren zugeordnet und ggfs. eingehender disku-
tiert.

1 Quelle: R. J. Mathar, CC BY-SA 3.0, via Wikimedia Commons https://commons.
wikimedia.org/wiki/File:Zernike_polynomials3.pdf


https://commons.wikimedia.org/wiki/File:Zernike_polynomials3.pdf
https://commons.wikimedia.org/wiki/File:Zernike_polynomials3.pdf

26 2 Stand der Forschung und Technik

2.2.1 “Speckle Interferometry”

Statt von “Speckle”-Interferometrie (SI) spricht man oft auch von “Speck-
le Imaging”, wobei es sich um ein hochauflsendes Bildgebungsverfahren
handelt. SI geht auf Arbeiten des franzdsischen Astronoms Antoine Labeyrie
von 1970 zuriick [Lab70] und findet in erster Linie Anwendung in der Astro-
nomie, ebenso wie die Adaptive Optik. Wahrend bei der AO Storungen der
Phase (d. h. der elektrischen Feldstirke) ankommender Wellenfronten mit-
tels geeigneter Sensorik gemessen und kompensiert werden (siehe Abschnitt
2.1), werden bei der SI die Amplitude und die Phase der Fouriertransformier-
ten der Bildintensitdtswerte rekonstruiert. Genauer wird die sogenannte
Bispektrum-Methode verwendet, erstmalig beschrieben von Gerd Weigelt in
Wei75], um Schitzungen fiir die tatsdchliche Phase zu bekommen. Hierbei
wird eine moglichst grofle Anzahl von Interferogrammen (d. h. von Bildern,
deren Belichtungszeit so kurz ist, dass die Variationen in der atmosphéri-
schen Turbulenz quasi “eingefroren” sind) einer Fourier-Analyse unterzogen
und das durchschnittliche Bispektrum berechnet. Die eigentliche Rekon-
struktion erfolgt dann {iber dessen Invertierung.
Durch SI kann die Winkelauflosung bodengebundener Teleskope signifikant
erhoht werden. Allerdings ist die Anwendung normalerweise auf helle (und
idealerweise punktformige) Zielobjekte beschrankt, wodurch der Einsatz
fiir ausgedehnte Ziele nur mit viel zusétzlichem Aufwand méglich ist und
hohe Rechenleistung erfordert. In der Sonnenphysik ist speziell die Rekon-
struktion ausgedehnter Areale auf der Sonnenoberfldche ein grundlegendes
Forschungsthema (z. B. zur Beobachtung von Sonnenflecken) [Liih93]. Ver-
fahren wie die Knox-Thompson-Methode [Kno74] und die heute vorwiegend
verwendete Triplekorrelation [Liith83, Rod86] wurden speziell fiir die solare
Bilderfassung entwickelt, um die Erstellung photometrisch exakter Karten
der Intensitit von kleinmaRstablichen Strukturen auf der solaren Oberfldche
zu ermoglichen. Mithilfe dieser Techniken kénnen Sichtfelder beliebiger
GroRe rekonstruiert werden, sogar wenn diese viel grof3er sein sollten als der
isoplanatische Patch (siehe Abschnitt 3.3). Die Abbildung 2.3 zeigt am Bei-
spiel eines Sonnenfleckens auf der solaren Oberfldche ein Korrekturergebnis
der Triplekorrelationsmethode.
Fiir die Punktziel-Problematik gibt es eine relativ gut funktionierende L6-
sungsmethode, die speziell in der solaren Astronomie seit ca. 1985 im Ein-
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Abbildung 2.3: Beispielrekonstruktion eines Sonnenfleckens mittels Triple-
korrelation.?

satz ist. Diese besteht darin, dass grof3e Bilder in kleinere Kacheln unterteilt
werden, die jeweils einzeln korrigiert werden. AnschlieBend werden sie wie-
der zusammengefiigt und die Uberginge zwischen den Kacheln mithilfe
von Hamming-Windows {iberblendet. Diese Methode wurde insbesondere
von Carmen Carrano (LLNL, USA) fiir horizontale Bilderfassung eingesetzt
Car02]. Eine entsprechende Implementierung der Firma EM Photonics auf
FPGAs [Cur09] kann unter optimalen Bedingungen sogar eine Korrektur in
Echtzeit durchfiihren (abgesehen von einem zeitlichen Delay am Anfang).

2.2.2 “Lucky Imaging”

Bei dem “Lucky Imaging” (LI) Prinzip wird ausgenutzt, dass die Bildqualitét
im Verlauf einer Sequenz lokal variiert aufgrund von lokalen Schwankungen
im Brechungsindex der Atmosphdre. Es besteht sogar die Chance, dass die
turbulenten Luftschichten das einfallende Licht vom Zielobjekt stellenweise
so gut fokussieren wie es im Idealfall ohne Turbulenz méglich wire. Einzelne
Bildregionen konnen also kurzzeitig nur geringfiigig bis gar nicht durch

2 Quelle: Bildmaterial freundlicherweise von Prof. O. v. d. Lithe vom Leibniz-Institut fiir
Sonnenphysik (KIS) zur Verfiigung gestellt.
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Turbulenz beeintrachtigt sein. Die Wahrscheinlichkeit dafiir, dass dieser Fall
eintritt, lasst sich gemal [Fri78] statistisch bestimmen.

Um diese “Gliicksfille” nutzen zu k6nnen, wo und wann immer sie auftreten,
wird eine Art Qualitdtskarte zur Bewertung der lokalen Bildqualitat fiir die
Einzelbilder einer Sequenz benétigt. Hierzu konnen geeignete Qualititsme-
triken (“Image Quality Metrics”, IQM) verwendet werden (s. a. Abschnitt 7.1).
Anhand dessen kdonnen die jeweils besten Bildregionen (innerhalb eines
gegebenen Zeitraums) identifiziert und zu einem neuen, stabilisierten Bild
zusammengesetzt werden. Auf diese Weise kann unter besonders giinstigen
Bedingungen (und mit entsprechend qualitativ hochwertiger Optik) sogar
ein Verbesserungsgrad nahe dem Diffraktionslimit erreicht werden. Ange-
sichts der synthetischen Konstruktionsweise wird diese Technik hdufig auch
als “Lucky Region Fusion” oder “Synthetic Imaging” bezeichnet.

Die Abbildung 2.4 zeigt ein Beispiel fiir eine “Lucky Imaging”-Korrektur
gemdl dem in [Aub08] beschriebenen Ansatz, welcher z. T. auf den Arbeiten
in [Joh03] beruht. Die Bewegungsartefakte im unteren Bildbereich stammen
von einem Vogel, der durch das Bild fliegt. Dies geschieht aufgrund der
neuen Information, die gleich in mehreren Einzelbildern hintereinander an
unterschiedlichen Stellen auftaucht. Dadurch wird dem Algorithmus sug-
geriert, dass sich dort etwas qualitativ Hochwertiges befindet, das erhalten
werden muss. Daran ldsst sich gleich die Haupt-Problematik dieser Methode
erkennen: sie ist nicht (bzw. nicht ohne zuséitzliche Mallnahmen) fiir Szenen
geeignet, die bewegte Objekte enthalten. Uberdies ist im vorliegenden Fall
keine echte Verbesserung gegeniiber dem besten Einzelbild der Sequenz er-
kennbar, auch nicht in den Bildregionen ohne Einwirkung von Stérobjekten.
Ob die Methode letzten Endes zu einer Bildverbesserung fiihrt, kann also
tatsdchlich “Gliicksache” sein.

2.2.3 Bildbewegung - Bildstabilisierung

Anwendungen von Turbulenzkorrekturverfahren sind iiberwiegend an ei-
nem ganzheitlichen Losungsansatz interessiert. Das heif3t, idealerweise soll
eine Korrektur samtlicher Turbulenzeffekte durchgefiihrt und eine optimale

3 Quelle: M. Vorontsov, G. Carhart
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Abbildung 2.4: “Synthetic Imaging”-Korrektur einer Beispielsequenz. Links:
Mittelwert von 930 Frames, Mitte: bester Frame, rechts: Korrekturergebnis
mit Bewegungsartefakten.>

Verbesserung des Eingangsbildes erzielt werden. Spezialisierte Algorithmen
priorisieren allerdings haufig die Korrektur ganz bestimmter Turbulenzef-
fekte (ohne zwangsldufig darauf beschrénkt zu sein). Beispielsweise gibt es
Verfahren, die in erster Linie auf eine Bildstabilisierung von Videos setzen
wie z. B. beschrieben in den Arbeiten von Li [Li09] und Yifei et al. [Loul3]. Zur
Videostabilisierung wird haufig eine zeitliche Glattung der Pixelintensititen
eingesetzt, sowie insbesondere auch der QARES—Algorithmusi von G. Pot-
vin (DRDC, Kanada) [Pot14]. Speziell bei diesem Algorithmus wird sowohl
eine zeitliche als auch eine rdumliche Filterung durchgefiihrt. Dazu wer-
den die zeitlichen Intensitédtsfluktuationen der einzelnen Pixel {iber einen
vorgegebenen Zeitraum analysiert (unter Verwendung eines Bildpuffers).
Hinreichend groe Intensitdtsdnderungen, deren Dauer eine vorgegebene
Grenze nicht iiberschreitet, werden als Bewegung erkannt und beibehalten,
wihrend kleine Fluktuationen mittels Tiefpassfilterung geglédttet werden.
Genauer wird eine Zerlegung des Eingangsbild unter Verwendung einer
Laplace-Pyramide vorgenommen in mehrere Tiefpass- und Hochpass-, so-
wie auch Bandpass-Komponenten, deren Gesamtsumme wiederum das
Eingangsbild ergibt. Zuvor werden auf die jeweiligen Komponenten noch
unterschiedliche auto-regressive exponentielle Glattungsfilter (ARES-Filter)

4 CARES: “Cascaded Auto-Regressive Exponential Smoothing”
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angewendet. Das Ergebnis der folgenden Aufsummierung wird abschlie-
Bend wieder mit einem Scharfungsfilter behandelt.

Der CARES-Algorithmus tiberzeugt durchaus bei der Bildstabilisierung von
Video-Streams, ohne Zusatzmallnahmen kann er jedoch trotz Scharfungsfil-
ter keine vollig zufriedenstellende Bildqualitit erzielen. Daher bietet sich
hierfiir z. B. ein nachtrédgliches Deblurring der einzelnen Ausgabebilder an.
Die Abbildung 2.5 zeigt am Beispiel der “China Lake”-Testsequenz (fiir De-
tails siehe Abschnitt 6.1.1), wie sehr der CARES-Algorithmus mit Standar-
deinstellungen (Mitte) von einer zusétzlichen blinden Entfaltung (rechts)
profitieren kann. Hier wurde dazu der WIBD-Algorithmus aus Abschnitt 6.6
verwendet. Insbesondere ldsst die Mustertafel im Hintergrund erkennen,
dass die Bildverformungen bei so starker Turbulenz, wie sie in der Sequenz
vorliegt, nur unzureichend abgemildert werden konnen. Dazu sollte noch
erwdahnt werden, dass diese Methode fiir die zeitliche Analyse der Pixelin-
tensitdten eine Bildpufferung einsetzt, aufgrund derer sich fiir das Ausga-
bevideo ein Delay (d. h. eine zeitliche Verzégerung) von einer halben Puf-
ferldnge ergibt. Fiir anisoplanatische Turbulenzbedingungen miisste dieser
Puffer gegentiber der StandardgréRe deutlich vergroert werden, um eine
hinreichende Glattung zu erzielen. Allerdings hitte dies wiederum eine uner-
wiinschte Verstarkung der Unschérfe zur Folge, verbunden mit potenziellem
Detailverlust.

Des Weiteren wird das Thema “Bewegungskompensation” mit Hinblick
auf die Korrektur turbulenzbedingter Bildbewegungen auch eingehend in
Kapitel 4 behandelt.

2.2.4 Bildverzerrung - Bewegungskompensation

In weiteren Verfahren geht es vornehmlich um eine Korrektur geometri-
scher Bildverzerrungen wie z. B. in dem Artikel von Fraser et al. [Fra06] oder
Anantrasirichai et al. [Anal3], sowie Furhad et al. [Furl6].

Dabei besteht eine gewisse Verwandtschaft zu den Methoden zur Bildsta-
bilisierung, denn eine geschickte Bewegungskompensation (global, sowie
lokal) stellt nicht nur eine Moglichkeit zur Reduktion geometrischer Bildde-
formierungen dar, sondern hat durchaus auch eine stabilisierende Wirkung.
Neben klassischen pixelbasierten Algorithmen zur Bewegungsschitzung
(und Bewegungskompensation) so wie “Block Matching” oder der “Opti-
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Abbildung 2.5: Beispielergebnis des CARES-Algorithmus. Links: Original-
frame; Mitte: CARES-Korrekturergebnis; rechts: mit zuséatzlicher blinder
Entfaltung (mittels WIBD).

sche Fluss” existieren noch weitere Moglichkeiten fiir eine effektive (lokale)
Bildregistrierung. Beispielsweise kann eine Kreuzkorrelation zur Bildregis-
trierung eingesetzt werden oder auch eine nicht-rigide Bildregistrierung
unter Verwendung von “B-Splines” (unter zusétzlichen Symmetrievorgaben)
wie in dem Ansatz von Zhu und Milanfar [Zhul3] vorgeschlagen wird.

Ein nicht unwesentliches Problem der meisten dieser bewegungskompen-
sierenden Verfahren besteht allerdings in der Frage nach einem geeigne-
ten Referenzbild, welches sinnvollerweise als Grundlage fiir jede Art von
Bildregistrierung dienen kann. Selektiert man ein beliebiges Einzelbild ei-
ner Sequenz, wird dieses Bild ebenfalls turbulenzbedingte Verformungen
aufweisen. Verwendet man stattdessen einen Mittelwert, werden solche
Bildverzerrungen zwar reduziert, zugleich erh6ht sich aber der Unschérfe-
grad, wodurch wiederum die Registrierung erschwert wird. Von Furhad et
al. [Furl6] (UNSW, Australien) wird deshalb ein Losungsansatz vorgeschla-
gen, bei dem ein geeignetes Referenzbild nach dem “Lucky Shot”-Prinzip
konstruiert wird. Hierzu wird erst die Bildschérfe der einzelnen Frames tiber
eine Summierung der hohen Frequenzanteile des Bildes ermittelt. Dazu
lieBen sich allerdings auch andere Metriken verwenden, die den Schérfe-
bzw. Unschérfegrad eines Bildes hinreichend gut quantisieren kdnnen, wie
z.B. die “Blur”-Metrik von Dolmiere et al. [Dol07] (s. a. Abschnitt 7.1.3), die
zudem den Vorteil hat, dass die Werte auf das Intervall [0,1] normiert sind.
Anhand ihres jeweiligen Schirfegrades werden die Frames unter Verwen-
dung einer “k-Means” Clusteranalyse in Kategorien mit unterschiedlichem
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Schirfegrad eingeteilt (k = 3). Aus den beiden Gruppen mit mittlerer und
bester Bildschérfe werden mittels “Lucky Imaging”-Verfahren die “besten”
Bildregionen ausgewdhlt und fusioniert, wobei die Teilmenge mit dem ge-
ringsten Schirfegrad nicht berticksichtigt wird. Mit dem Fusionsergebnis als
Referenz wird darauthin eine lokale Bildregistrierung der gesamten Bildse-
quenz durchgefiihrt (gemal [Zhul3]) mit abschliefender blinder Entfaltung
wie es bei der Mehrzahl von Turbulenzkorrekturverfahren der Fall ist.
Dieser Ansatz hat den Nachteil, dass eine Bildsequenz erst vollstdndig analy-
siert wird, bevor eine Ausgabe erzeugt wird. Das bedeutet, dass er zunédchst
nicht fiir Echtzeitanwendungen geeignet ist. Denkbar wire allerdings die
Verwendung eines Bildpuffers, so dass es im Idealfall nur eine Verzogerung
gibe, die der Pufferldnge entspricht. Das wiirde aber voraussetzen, dass der
Rechenaufwand die Kapazititen moderner Systeme nicht tibersteigt.
Auch der Ansatz von Anantrasirichai et al. [Anal3] verwendet eine Art von
“Lucky Imaging”, wobei hier eine “Dual Tree” komplexe Wavelet-Transfor-
mation (DT-CWT) eingesetzt wird, um eine rekursive Fusion auf Merkmal-
sebene statt auf Pixelebene durchzufiihren und so auch semantische Fu-
sionsregeln bertiicksichtigen zu kénnen. Die DT-CWT verwendet zwei ver-
schiedene (reelle) diskrete Wavelet-Transformationen (DWT), eine fiir den
Realteil und die andere fiir den Imaginérteil der CWT. Von Vorteil ist hier
zum einen, dass die Phase von DT-CWT-Koeffizienten gegeniiber zeitlichen
Intensitdtsschwankungen, sowie auch Rauschen relativ robust ist, und zum
anderen, dass sie nahezu invariant gegeniiber Verschiebungen ist. Letztlich
wird dadurch eine Glattung der zeitlichen Intensitatsschwankungen fiir jede
Pixelspalte erreicht. Statt blinder Entfaltung zum Abschluss wird hier jedoch
nur eine Kontrastverbesserung mittels adaptivem Histogrammausgleich
durchgefiihrt (unter Verwendung des CLAHE-Algorithmus von Zuiderveld
Zui94]). Die Fusionsergebnisse sind etwas schirfer als es bei Verfahren
mit einer Form von Bildmittelung typischerweise der Fall ist. Diese Art der
Fusion kann auch auf bewegte Objekte angewendet werden, dazu miisste al-
lerdings zuvor eine Segmentierung der bewegten Objekte und des statischen
Hintergrunds vorgenommen werden.
Die Problematik eines geeigneten Referenzbildes wird im Ubrigen auch in
Kapitel 4 behandelt und wird noch einmal im Abschnitt 6.5.1 in Kapitel 6
aufgegriffen. Beschreibungen eigener Methoden zur lokalen Bewegungs-
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kompensation sind dariiber hinaus in [Hue09], sowie insbesondere im Ab-
schnitt 6.5 zu finden.

2.2.5 Bildunscharfe - Entfaltung

Andere Verfahren konzentrieren sich wiederum besonders auf eine Schat-
zung und Reduktion der Unschérfe wie es z. B. in den Arbeiten von Yitzhaky
et al. der Fall ist ([Yit97a],[Yit98]), sowie auch in Greco et al. [Gre08].

Fiir diese Korrekturaufgabe bieten sich insbesondere Algorithmen zur (blin-
den) Entfaltung an, u. U. in Verbindung mit einer Schédtzmethode fiir die
atmosphérische Filterfunktion wie z. B. von Molina et al. [MM15] fiir ani-
soplanatische Bedingungen beschrieben. In diesem Ansatz wird zunéchst
die Turbulenzstérke (d. h. die Kohdrenzldnge ry, siehe Abschnitt 3.3.2) direkt
aus einer Bildsequenz geschétzt anhand der “Angle of Arrival” Varianzen.
Mithilfe der Kohdrenzldnge ldsst sich eine statistische PSE konstruieren, die
anschliefend zur Entfaltung verwendet wird. Die verwendete Schatzmetho-
de fiir r( folgt dem von Gladysz et al. beschriebenen Verfahren [Glal3], das
auf den Arbeiten von Beaumont et al. [Bea98], sowie von Zamek und Yitz-
haky [Zam06] aufbaut. Aber auch neuere Ansitze wie z. B. der von McCrae
et al. [McC17] basieren in der Regel auf einer dhnlichen Grundidee.

Einen allgemeinen Uberblick tiber klassische Entfaltungsalgorithmen geben
z.B. Kundur und Hatzinakos in [Kun96b] sowie Chaudhuri et al. in ihrem
Buchkapitel [Chal4]. Levin et al. haben ihren Fokus in [Lev09] speziell auf
etwas neuere Entfaltungsalgorithmen gelegt, die sie anhand der jeweiligen
Rekonstruktionsergebnisse fiir kiinstlich erzeugte Bildstérungen evaluieren.
Bei den Testdaten handelte es sich ausschlief3lich um Simulationen von
Kamerabewegungen, die sich global auf das gesamte Bild auswirken, so wie
sie z. B. im Fall einer handgehaltenen Kamera auftreten konnen. Uber die
Leistungsfahigkeit der einzelnen Algorithmen unter realen Turbulenzbedin-
gungen kann entsprechend keine schliissige Aussage getroffen werden. Bei
der Schédtzung von Kamerabewegungen in Einzelbildern vermochte speziell
der Algorithmus von Fergus et al. aus [Fer06] zu tiberzeugen. Ob sich dieser
Erfolg ohne Weiteres auch auf turbulenzgestorte Daten tibertragen lief3e,
darf hingegen angezweifelt werden. Zum einen sorgen turbulenzbedingte
lokale Bildbewegungen nicht nur fiir eine zeitliche, sondern auch fiir eine
raumlich verdnderliche Filterfunktion, und zum anderen werden durch den
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Tiefpassfilter-Effekt der Atmosphire hoherfrequente Signalanteile entfernt
(d. h. kleine Details), die fiir die Funktionsweise dieser Methode bendotigt
werden. Es ist bedeutend leichter ein im Grunde genommen scharfes Bild
zu rekonstruieren, das global mit einer einzigen PSFE gefiltert wurde, als ei-
nes, das bereits eine gewisse Grundunschérfe aufweist und mit einer lokal
variablen Filterfunktion gefiltert wurde.

Wihrend in der Mehrheit vergleichbarer Ansdtze eine rdumliche Invarianz
der atmosphérischen Filterfunktion angenommen wird, wird in dem An-
satz von Hirsch et al. [Hir10] neben der zeitlichen Variabilitdt iiber mehrere
Bilder einer Sequenz speziell auch die rdumliche Veranderlichkeit mitbe-
riicksichtigt. Zwar liegen die potenziellen Vorteile dieser Herangehensweise
auf der Hand, das gilt allerdings auch fiir die Nachteile. Statt einer einzi-
gen Filterfunktion pro Bild miisste hier fiir jedes Teilbild eine eigene Filter-
funktion geschitzt werden, im schlimmsten Fall sogar fiir jedes einzelne
Pixel (zzgl. einer Umgebung). Dabei wichst der Rechenaufwand mit der
BildgréRe und Framerate, was u. U. extrem viel Rechenzeit in Anspruch neh-
men kann. Ohnehin ist die Annahme rdumlicher Invarianz fiir diverse Félle
durchaus zutreffend, wie z. B. in isoplanatischen Turbulenzbedingungen
(s.a. Abschnitt 3.3). Zudem kann auch in anisoplanatischen Bedingungen
eine rdumliche Invarianz ggfs. (ndherungsweise) kiinstlich erzeugt werden,
z.B. liber eine intelligente Bildmittelung und/oder mithilfe lokaler Bildregis-
trierungstechniken. Alternativ wird von Dudorov und Eremina in [Dud18]
die Verwendung eines Multi-Apertur-Systems vorgeschlagen, wobei der-
artige Systeme bislang hochstens als Spezialanfertigungen erhaltlich sind.
Daher wird mithilfe einer Simulation gezeigt, dass sich aus den kleinen Teil-
bildern, die von den Subaperturen erfasst werden, ein gro8es Gesamtbild
zusammensetzen ldsst, das selbst ebenfalls isoplanatisch ist. Um dies zu
erreichen, sollten die einzelnen Subaperturen aber nicht gréfer als die Koha-
renzlédnge ro sein (s. a. Abschnitt 3.3.2). Die synthetische Zusammensetzung
der Teilbilder zu einem Gesamtbild erfolgt nach dem gleichen Prinzip wie
die Bildformierung bei einer Lichtfeldkamera mit einer Multi-Linsen-Optik,
wenn auch in etwas vereinfachter Form, da die 3-D Informationen nicht
beriicksichtigt werden ([Ng06]). Das Potenzial zur Bildverbesserung mithilfe
dieser Art der Aufnahmetechnik ist unbestreitbar. Ob sie sich in absehba-
rer Zukunft jedoch fiir horizontale Bilderfassung durchzusetzen vermag,
bleibt abzuwarten. An dieser Stelle ist anzumerken, dass es sich bei vielen
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“neuen” Entfaltungsalgorithmen vor allem um Weiterentwicklungen oder
Optimierungen bewidhrter Verfahren handelt. Insbesondere werden hiufig
Regularisierungen zur Probleml6sung eingesetzt.

An dieser Stelle sei fiir eine weiterfithrende Behandlung des Themas auf das
Kapitel 5 verwiesen, das sich schwerpunktmifig mit der Beschreibung und
Evaluierung von Entfaltungsalgorithmen bei atmosphérischer Turbulenz
befasst.

2.2.6 Objektbewegung - Detektion und Tracking

Zu den bisherigen Verfahren kommen weitere, deren Fokus insbesonde-
re auf Szenen mit bewegten Objekten liegt wie z. B. in Carrano und Brase
Car04] oder in [Pao14], sowie in diversen Publikationen des TNO (Nieder-
lande), darunter z. B. Dijk et al. [Dij16], sowie Nieuwenhuizen et al. [Niel9].
Im GroBen und Ganzen ist die Literatur rund um das Thema Objektbewe-
gung und Turbulenz dennoch als vergleichsweise spérlich zu bezeichnen,
und erst in der jiingeren Vergangenheit ist das wissenschaftliche Interes-
se an diesem Themenkomplex enorm angestiegen. Es sollte deshalb nicht
unerwdhnt bleiben, dass eigene Arbeiten durchaus mit zu den ersten Verof-
fentlichungen auf diesem Gebiet gehoren, vor allem [Huell] und [Huel2a],
insbesondere aber auch [Huel6].
Bei [Car04] handelt es sich lediglich um eine Erweiterung des “Speckle
Imaging”-Verfahrens fiir ausgedehnte Objekte bei horizontalem Ausbrei-
tungsweg in [Car02], um auch bewegte Objekte beriicksichtigen zu kénnen.
Bei dem originalen SI-Verfahren werden fiir ein Ausgabebild u. a. jeweils
ca. 100 Kurzzeitbelichtungen registriert und gemittelt. Dabei sollten die
Aufnahmen {iiber einen Zeitraum von mindestens einer Sekunde verteilt
erfolgen mit einer Belichtungszeit im Millisekundenbereich, so dass die
atmosphérischen Stérungen weitgehend unkorreliert sind, wahrend die
Turbulenz in den Einzelbildern zugleich quasi “eingefroren” ist. Entspre-
chend bedeutet jede zusétzliche Bewegung auch eine Verstarkung der (Bewe-
gungs-)Unschérfe im Ergebnis der Bildmittelung. Aus diesem Grund funk-
tioniert die vorgeschlagene Anpassung auch nur fiir bewegte Objekte (z. B.
Fahrzeuge), die mithilfe einer (manuellen) Nachfiihrung der Kameraoptik
vergleichsweise statisch und mittig im Bild gehalten werden, wéhrend sich
stattdessen der Hintergrund zu bewegen scheint.
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Die eigentliche Modifikation besteht darin, dass der urspriingliche Algorith-
mus nur auf einen kleinen rechteckigen Bildausschnitt mit dem betreffen-
den Objekt angewendet wird (wobei die eigentliche Segmentierung vom

Hintergrund tiber ein Gaul3-Fenster erfolgt), anstelle des gesamten (geka-
chelten) Bildes wie zuvor. Das Ergebnis wird anschlieSend zuriick in die Roh-
daten eingeblendet, wobei die Uberblendung wie beim Hauptalgorithmus

wieder unter Verwendung von Hamming-Fenstern erfolgt. Es {iberrascht

demnach nicht, dass sich diese Methode besonders gut in Verbindung mit

dem Tracking von Flugkoérpern u. A. eignet, wobei der Hintergrund in der

Regel ohnehin sehr homogen ist und sich nur wenig verédndert.

In [Paol4], sowie auch in [Kell7] liegt der Fokus auf Lésungsansédtzen fiir

drei verschiedene Bewegungsszenarios (s. a. Abschnitt 4.1) im Zusammen-
hang mit einer Echtzeit-Implementierung dieses SI-Verfahrens (unter der

Bezeichnung ATCOM). Fiir Kameraschwenks wird z. B. eine dynamische

Aktualisierung des Mittelwerts vorgeschlagen, wahrend Tracking mit einem

gleitenden ROI fiir Szenarien mit Flugkdrpern oder Fahrzeugen (wie zuvor

beschrieben) vorgeschlagen wird. Fiir komplexere Szenarien mit strukturier-
ten Hintergriinden und nicht-linearen Bewegungsmustern (z. B. Personen)

wird zusétzlich ein mehrstufiges Pradiktionssystem zur Detektion von echter

Objektbewegung zur Unterscheidung von turbulenzbedingter Bewegung

vorgeschlagen. Genauer wird aus dem Verlauf vergangener Frames unter

Verwendung einer Hauptkomponentenanalyse extrapoliert wie der nach-
folgende Frame aller Wahrscheinlichkeit nach aussehen wird. Besonders

gro8e Abweichungen von dieser Vorhersage werden als Objektbewegung

gekennzeichnet.

Eine objektive Beurteilung dieser Losungsvorschldge wird dadurch erschwert,
dass die Autoren weitgehend auf die Angabe spezifischer Details verzich-
tet haben, wahrscheinlich aus proprietdren Griinden. So wird auch bzgl.
des eingesetzten Tracking keine spezielle Methode genannt, sondern nur

auf eine Ubersicht verschiedener Tracking-Verfahren verwiesen in [Yil06].
In diesem Zusammenhang ist der Artikel von Chen et al. [Chel4] deutlich

informativer, da es dort ganz konkret um die Detektion und das Tracking

von bewegten Objekten unter Turbulenzbedingungen geht, speziell in einer

Entfernung von mehreren Kilometern. Ein Ergebnisvergleich verschiedener

Methoden macht deutlich, wie sehr die Leistungsfahigkeit selbst der besten

unter den getesteten Algorithmen beeintrachtigt wird, wenn die Turbulenz-
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starke zunimmt und damit auch die Turbulenzeffekte.

Bei den am TNO entwickelten Korrekturverfahren hingegen liegt ein beson-
derer Fokus auf maritimen Anwendungen, nicht zuletzt aufgrund seiner
geographischen Nihe zur Kiiste. Unter anderem wurde dort ein Software-
System zur Bildrekonstruktion fiir die Fernerkundung bei moderater Turbu-
lenz iiber See entwickelt (je nach Version auch mit Hardware-Komponenten),
um Schiffe in groBer Entfernung besser klassifizieren und identifizieren
zu konnen. An dessen Entwicklung waren u. a. Adam van Eekeren [vE12],
Maarten Kruithof [Krul2], Klamer Schutte [Sch12] und Judith Dijk [Dij16]
mafRgeblich beteiligt.

Bei diesem Ansatz wird als erstes eine globale Bildregistrierung durchge-
fithrt, auf die eine Objekterkennung hinreichend grof3er Objekte folgt (mind.
10x 10 px). Fiir jedes detektierte Objekt wird ein ROI definiert, dessen Spur in
Relation zum Hintergrund verfolgt wird, wiahrend die Bewegung innerhalb
des ROIs kompensiert wird. Dabei ist anzumerken, dass fiir das Tracking
auch Auf- und Abwirtsbewegungen der Schiffe, sowie seitliche Neigungen
(d. h. Teilrotationen) aufgrund des Wellengangs beriicksichtigt werden. Ahn-
lich wie auch bei der Modifikation des SI-Algorithmus in [Car04] erfolgt die
eigentliche Turbulenzkorrektur, bezeichnet als “Dynamic Superresolution”
(DSR) [Sch03], nur auf den ROIs. Dabei handelt es sich im Wesentlichen um
eine lokale Bildregistrierung und Rauschreduktion in Verbindung mit einem
Schéarfungsfilter und einer adaptiven Kontrastverbesserung. Die Auswahl
(und Parametereinstellungen) der tatsdchlich durchzufiihrenden Korrektur-
schritte ist aber letztlich abhéngig von der Qualitit der Eingabedaten und
den Randbedingungen bei der Aufnahme. Bei besonders geringem Kontrast
und starkem Rauschen kann die Bildregistrierung z. B. nicht mehr sinnvoll
durchgefiihrt werden, so dass nur eine Rauschreduktion mit nachfolgender
Kontrastverstarkung durchgefiihrt wird.

Dieses Software-System wird im Ubrigen permanent iiberarbeitet und er-
weitert, wie z. B. in [Niel9] durch eine dhnliche Bildstabilisierung wie beim
CARES-Algorithmus. Dort wird die Bewegung zwischen den einzelnen Fra-
mes mithilfe des Algorithmus von Lucas und Kanade [Luc81] zur Bestim-
mung des Optischen Flusses pixelgenau bestimmt. Dann wird ein einfacher
zeitlicher autoregressiver Filter verwendet, der so eingestellt ist, dass er auch
Objektbewegung erkennen und berticksichtigen kann.
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Auf diesem Themenbereich liegt ein besonderer Schwerpunkt in dieser
Arbeit, daher sei fiir eine weiterfithrende Diskussion dieser Problematik
insbesondere auf den Abschnitt 4.1, sowie auch auf den Abschnitt 6.4.4
verwiesen.

2.2.7 “Superresolution”

Der Begriff “Superresolution” taucht sehr hdufig in Verbindung mit Algo-
rithmen zur Bildverbesserung und Rekonstruktion auf. Eine diesbeziigliche
Evaluierung verschiedener Superresolution-Algorithmen hinsichtlich ihrer
Leistungsfiahigkeit bei realen Bilddaten ist z. B. in [VEQ7] gegeben.

Es hat sich gezeigt, dass sich nur vergleichsweise selten eine echte Erh6hung
der Bildauflosung erzielen ldsst, falls die Bildqualitédt der Eingabedaten zu
stark durch Turbulenzeffekte beeintrachtigt ist. Deshalb wird unter derarti-
gen Turbulenzbedingungen z. B. bei der zuvor erwdhnten DSR-Bildkorrektur
des TNO [Sch03] auf den Versuch einer solchen Auflosungsverbesserung
sogar verzichtet.

Bei geringer bis moderater Turbulenz kénnen hingegen Algorithmen wie das
Verfahren von Kruithof et al. [Krul2] iberzeugen, welches ganz speziell auf
die Erkennung und Rekonstruktion von Schriftziigen zugeschnitten ist, wie
z. B. von Schiffskennungen oder Nummernschildern. Dabei wird ausgenutzt,
dass der Hintergrund eines Schildes normalerweise unifarben ist und sich
der zugehorige Bildausschnitt als diinn besetzte Matrix interpretieren lasst.
Die Rekonstruktion von Schriftziigen erfolgt hier unter Verwendung einer
hinreichend grollen Bibliothek von simulierten Templates, die fiir Buch-
staben (und ggfs. Zahlen) typische Teilstrukturen enthalten. Dabei ist zu
beachten, dass dieses Verfahren nicht auf beliebige Bildinhalte anwendbar
ist. Bereits fiir unterschiedliche Arten von Schildern (z. B. bei Kursivschrift)
konnen verschiedene Template-Bibliotheken erforderlich sein.

In dem Ansatz von Andrew Lambert et al. [Lam02] (UNSW, Australien) wird
wiederum postuliert, dass “Superresolution” nur unter anisoplanatischen
Bedingungen moglich ist, d. h. falls eine positionsabhingig verdnderliche
PSF der Atmosphére vorliegt. Aufgrund von Turbulenz werden einige Fre-
quenzanteile des abgebildeten Objekts so stark abgelenkt, das sie nicht mehr
von der verwendeten Optik aufgenommen werden. Die Idee besteht darin,
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diese Frequenzanteile unter Ausnutzung Fresnelscher Diffraktionseffekte
wiederherzustellen.

Dabei sollte angemerkt werden, dass es bei diesem Ansatz nicht um “Super-
resolution” durch analytische oder nicht-lineare Extrapolation geht, son-
dern um eine aktive Verdnderung des optischen Systems, vergleichbar mit
der Verschiebung von einem Gitterraster. Zwar wird durchaus ein gewisses
Potenzial bzgl. einer Erhéhung der Auflosung angedeutet, aber ein funktio-
nelles “Superresolution”-Verfahren fiir atmosphérische Turbulenz konnte
dort nicht demonstriert werden.

In der Theorie klingt “Superresolution” sehr vielversprechend und tatsich-
lich ldsst sich mithilfe solcher Algorithmen eine signifikante Bildverbesse-
rung mit echter Erhohung der Bildauflosung erreichen, sofern nur geringe
oder gar keine Turbulenz vorliegt. Fiir die im Rahmen dieser Arbeit bevor-
zugt betrachteten Anwendungsfille von moderater bis sehr starker Turbu-
lenz sind derartige Ansétze hingegen weniger gut geeignet, weshalb sie bei
der Konzeption eigener Verfahren auch nicht speziell beriicksichtigt wurden.
Fiir die Diskussion in Kapitel 7 gilt diese Einschrénkung allerdings nicht,
hier sind prinzipiell alle Arten von Verfahren zugelassen.

2.2.8 “Deep Learning”

Verfahren, in denen eine “Deep Learning”-Architektur mit kiinstlichen neu-
ronalen Netzen (insbesondere CNNs) eingesetzt werden, haben sich in den
letzten Jahren in nahezu allen wissenschaftlichen Forschungsgebieten ra-
sant ausgebreitet. Diese Art von Verfahren entstammt einem Teilgebiet des
Maschinellen Lernensund stiitzt sich vor allem auf umfangreiche Mengen an
Trainingsdaten. Am besten sind sie zur Erkennung und / oder Klassifikation
von Objekten geeignet, die denen moglichst &hnlich sind, auf die sie gezielt
trainiert wurden.

Eine sehr beliebte Anwendung fiir “Deep Learning” ist die Erkennung von
Gesichtern. Gleichzeitig gibt es inzwischen auch entsprechende Verfahren
zur Bildrekonstruktion und Bildverbesserung. Der Ansatz von Yasarla und
Patel [Yas20] ist z. B. speziell auf die Rekonstruktion von Gesichtern bei Bild-
beeintrachtigungen aufgrund von (milder) Turbulenz ausgelegt. Dadurch
werden diese beiden Anwendungsbereiche sowohl miteinander als auch mit
der Turbulenzthematik verbunden.
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Das Kernprinzip derartiger Verfahren ist im Grunde genommen immer das
Gleiche, allerdings muss die verwendete Architektur jeweils individuell an
die vorliegende Anwendung angepasst werden. Insbesondere liel3e sich
sehr wahrscheinlich auch das “Superresolution”-Verfahren in [Krul2] zur
Erkennung von Schriftziigen mithilfe einer passenden “Deep Learning”-
Architektur umsetzen.

Da die méglichen Einsatzbereiche fiir solche Algorithmen sehr weit gefa-
chert sind, werden entsprechend unterschiedliche Architekturen benétigt.
Welche Art von “Deep Learning”-Architektur sich besonders gut fiir die
Rekonstruktion turbulenzgestorter Bilddaten bei langen Ausbreitungswe-
gen eignet, wird z. B. in dem Artikel von Vint et al. [Vin20] behandelt. Dort
werden die Rekonstruktionsergebnisse fiir die Implementierungen meh-
rerer unterschiedlicher Architekturen miteinander verglichen, wobei stets
dieselben (simulierten) Trainingsdaten verwendet wurden. Rekonstruiert
wurden hier in erster Linie Bilddaten mit simulierter Turbulenz, um die Qua-
litdt und Korrektheit der Rekonstruktionsergebnisse mithilfe der “Ground
Truth” evaluieren zu kénnen. Dieselben Architekturen wurden aber auch an
Bildmaterial mit realen Turbulenzbeeintrdchtigungen getestet.

“Deep Learning”-Verfahren lassen sich im Zusammenhang mit dem The-
menkomplex “Turbulenz” nicht nur fiir die Rekonstruktion von Bilddaten,
sondern auch anderweitig zur Charakterisierung von Turbulenz einsetzen.
Von Vorontsov et al. [Vor20] wird “Deep Learning” beispielsweise zur Vorher-
sage des Strukturparameters der Fluktuationen des atmosphérischen Bre-
chungsindex bei Turbulenz (d. h. Cfl) verwendet. Als Trainingsdaten dienen
hier zahlreiche Kurzzeitaufnahmen von Laserstrahlprofilen mit turbulenz-
bedingter Szintillation, sowie die zugehérigen C2-Messwerte.

Auf den ersten Blick erscheint “Deep Learning” fast wie eine Art Wunderl6-
sung. Dennoch gibt es einige Griinde, weshalb derartige Verfahren fiir die
vorliegende Arbeit nicht ndher in Betracht gezogen wurden. Beispielsweise
ist das “Black Box”-Prinzip von “Deep Learning”-Verfahren etwas kritisch
zu sehen, da Rekonstruktionsergebnisse zwar optisch plausibel aussehen
mogen, zugleich aber nicht verifizierbar ist, ob sie tatsdchlich auch der Rea-
litdt entsprechen. Insbesondere muss alles, was spéter rekonstruiert werden
soll, zuvor entsprechend erst antrainiert werden. Dadurch besteht ein Risiko,
dass Objekte falsch erkannt werden, weil sie z. B. gar nicht in den Trainings-
daten vorkommen, oder weil sie mit sehr &4hnlichen Objekten verwechselt
wurden.
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Ein nicht unbetrédchtlicher Anteil von Turbulenzkorrekturanwendungen sind
in der Fernerkundung zu finden, darunter nicht wenige im Zusammenhang
mit militdrischer Erkundung oder Aufklarung. Entsprechend kommt es hier
weniger darauf an, ob ein Ergebnisbild “gut” aussieht, als vielmehr darauf,
dass die abgebildeten Objekte durch die Rekonstruktion nicht zusitzlich
verfélscht werden. In der Abbildung 2.6 ist z. B. eine Person zu sehen, die ein
Sprechfunkgerit in der Hand hélt. Stattdessen konnte es sich jedoch auch
um eine Waffe handeln. Es liegt auf der Hand, dass eine solche Verwechslung
nicht akzeptabel wére. Das heil3t, eine optisch gute, aber faktisch inkorrekte
Rekonstruktion kdnnte durchaus schlimmer sein als eine schlechtere oder
ggfs. gar keine Rekonstruktion.

Abbildung 2.6: Beispielbild einer Person mit Funkgerit bei starker Turbulenz

(“China Lake”-Testsequenz, Standardturbulenzkorrektur)
Ein zusétzlicher Kritikpunkt ist die Storanfilligkeit dieser Algorithmusklasse
gegeniiber sogenannten “Adversarial Attacks”, wobei bereits an Losungsan-
sdtzen hierfiir gearbeitet wird (GANs). Insbesondere werden auch bei dem
Verfahren von Gao et al. [Gaol9] GANs eingesetzt. Es handelt sich hier in
gewisser Weise um eine Weiterentwicklung von [Anal3], wobei nun “Deep
Learning” mit den zuvor entwickelten Algorithmen verkniipft werden.
Hinzu kommt eine mangelnde Flexibilitdt bzgl. der Eingabedaten, denn
diese Verfahren sind so stark spezialisiert, dass bereits relativ kleine An-
derungen der Eingangsdaten die Leistungsfdahigkeit des Verfahrens stark
einschrinken kénnen. In einem solchen Fall werden geeignete neue (oder
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modifizierte) Trainingsdaten benétigt, mit denen das System entweder zu-
sétzlich oder ggfs. sogar komplett neu trainiert werden muss. Das bedeutet,
dass jedes Mal grof3e Mengen an spezifischen Trainingsdaten benotigt wer-
den, die nur mithilfe entsprechender Simulationen sinnvoll zur Verfiigung
gestellt werden konnten. Eine Anderung des verwendeten Spektralbereichs
(z.B. von VIS nach IR) konnte dies u. U. bereits erforderlich machen oder
auch Anderungen am (Bewegungs-)Inhalt der abgebildeten Szene (wie z. B.
Objektbewegung). Selbst eine Verstarkung des Turbulenzgrades in den Ein-
gabedaten kann dies bewirken, falls die Turbulenzeffekte zu sehr von denen
in den (alten) Trainingsdaten abweichen sollten.

Im Ubrigen wurden die ersten verhiltnisméRig praktikablen Ansitze zur
Turbulenzkorrektur mit “Deep Learning” Unterstiitzung erst in den letzten
1-2 Jahren veroffentlicht, von denen sich keiner in tiberzeugender Weise
mit der Problematik bewegter Objekte auseinandersetzt. Zwar wird das
Verfahren in [Gaol9] auch an einer Sequenz mit einem Fahrzeug getestet,
aber dasich dieses frontal auf die Kamera zu bewegt, handelt es sich lediglich
um Anderungen in der GréBenskalierung.

In dieser Arbeit liegt der Fokus zwar weitgehend auf konventionellen Kor-
rekturverfahren, dennoch sind auch Verfahren, die auf “Deep Learning”
basieren, nicht von der Diskussion in Kapitel 7 ausgeschlossen.

2.3 Hybrid-Ansatz

Ein typischer Hybrid-Ansatz, so wie in [Vor96] oder [Pol99] beschrieben, be-
steht aus einem (hardwarebasierten) AQ-System, welches (softwarebasierte)
Qualitdtsmetriken verwendet anstelle eines Wellenfrontsensors, um die
Form des deformierbaren Spiegels in einem iterativen Prozess zu optimie-
ren, z. B. mittels SPGD-Algorithmus (“Stochastic Parallel Gradient Descent”)
wie in [Vor97] vorgeschlagen und eingesetzt in [Sch10].

Deutlich verbreiteter sind hingegen klassische AO-Systeme, die zusdtzlich
auch eine Software-Korrektur einsetzen, wie beispielsweise ein Deblurring.
Allerdings handelt es sich dabei nicht um Hybrid-Systeme im eigentlichen
Sinne. Unter Umstdnden lieBe sich noch die “Speckle”’-Interferometrie bei
den Hybrid-Ansétzen einordnen, da das zugrundeliegende Prinzip einige
Ahnlichkeiten mit dem AO-Prinzip aufweist. Streng genommen handelt es
sich dennoch im Wesentlichen um eine softwarebasierte Methode. Echte
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Hybrid-Systeme sind tatsidchlich vergleichsweise selten, weshalb an dieser
Stelle auch nicht ndher darauf eingegangen werden soll.

2.4 Diskussion

2.4.1 Hardwarebasierte Ansatze

In der Regel sind Hardware-Systeme mit Adaptiver Optik relativ kosteninten-
siv aufgrund der notwendigen (teuren) optischen Elemente. Uberdies sind
sie typischerweise als stationdre Aufbauten konzipiert und verhéltnisméRig
unflexibel, sowohl beziiglich ihrer Mobilitdt als auch im Hinblick auf jede
Parameterdnderung, die ggfs. mit umsténdlichen Anderungen des optischen
Aufbaus verbunden sein kann. Hinzu kommt, dass AO am besten fiir nahezu
punktférmige oder zumindest relativ klein erscheinende Objekte in groRer
Entfernung funktioniert, wie z. B. fiir Sterne oder Laserstrahlen, weshalb sie
zurzeit sicherlich die erste Wahl fiir Anwendungen in der Astronomie und
in der Laserkommunikation darstellt. Ideal ist dabei zudem eine moglichst
vertikale Ausrichtung, weil so der Weg durch die turbulente Atmosphéire
minimiert wird.

Obwohl eine Anwendung auf ausgedehnte Objekte nicht unméglich ist,
werden hierbei dennoch mehr Probleme aufgeworfen als gelost. So ist bei-
spielsweise jede Korrektur mit Hilfe von AO genau auf das Pixel im Zentrum
des Bildes ausgerichtet, und je grofer die Distanz von diesem Zentrum ist,
desto weniger ist die Korrektheit dieser “Korrektur” gewihrleistet. Im Ge-
genteil, statt einer Verbesserung kann in den dueren Regionen hierdurch
sogar eine Verschlechterung bewirkt werden. Zwar gibt es bereits Losungs-
ansétze fiir dieses Problem, wie z. B. der Einsatz eines ganzen AO-Arrays,
aber dies fiihrt wiederum zu dhnlichen Apodisationsproblemen wie sie bei
der Bispectrum-Methode (Speckle-Interferometrie) auftreten.

Sollen auch noch Bewegungen im Bild berticksichtigt werden, sei es durch
Objektbewegung oder aufgrund von Kamerabewegungen, werden abermals
neue Probleme aufgeworfen. Das Hauptaugenmerk in dieser Arbeit liegt
jedoch gerade auf der Verbesserung von Bilddaten mit ausgedehnten Ob-
jekten, inklusive der Beriicksichtigung moglicher Bewegungen. Angesichts
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der diesbeziiglich iiberwiegenden Nachteile, wurde der Hardware-Ansatz
im Rahmen dieser Arbeit nicht ndher in Betracht gezogen.

Fiir die in Abschnitt 2.3 erwdhnten Hybrid-Ansitze gelten im Ubrigen die
gleichen Beschréankungen wie fiir klassische Hardware-Systeme, weshalb
auch diese hier nicht weiter verfolgt wurden.

2.4.2 Softwarebasierte Ansatze

Softwarebasierte Korrekturverfahren sind ihrerseits i. A. nicht auf teure Kom-
ponenten angewiesen, wobei der Einsatz von Hochleistungsrechnern oder
spezieller Computer-Hardware wie z. B. GPUs oder FPGAs durchaus mit ho-
heren Kosten verbunden sein kann. Die Hauptvorteile gegeniiber Hardware-
Losungen liegen jedoch nicht nur in den vergleichsweise geringen Materi-
alkosten, die zur Herstellung und Nutzung erforderlich sind, sondern vor
allem in ihrer Flexibilitdt und Vielzahl von Anwendungsmaoglichkeiten.

Ein Nachteil der meisten Methoden ist die vergleichsweise lange Rechenzeit,
die sie benoétigen, um bestmogliche Korrekturen zu erzielen. Mithilfe einer
geeigneten Implementierung, z. B. tiber eine Parallelisierung der Algorith-
men oder eine Hardware-Implementierung, lassen sich einige Methoden
aber bereits jetzt in (oder zumindest nahe) Echtzeit ausfithren.

Wie sich in dem Uberblick iiber die verschiedenen Verfahren in Abschnitt 2.2
bereits abzeichnet, bietet sich am ehesten ein modularer Losungsansatz
an. Damit ist gemeint, dass die einzelnen Turbulenzeffekte quasi nach dem
Baukastenprinzip voneinander (relativ) getrennt betrachtet und behandelt
werden konnen, so wie es ohnehin von den meisten ganzheitlichen Turbu-
lenzkorrekturverfahren gehandhabt wird, u. a. in [Furl6], sowie in [Dij16].
Eine solche Vorgehensweise bietet die besten Optionen und ermdoglicht die
grolite Flexibilitdt, da z. B. einzelne Komponenten je nach Bedarf neu hin-
zugefiligt oder gegen modifizierte Versionen ausgetauscht werden konnen.
Dabei ist die Reihenfolge der einzelnen Komponenten zwar nicht zwingend
festgelegt, im Normalfall ist sie allerdings auch nicht vollig frei wéhlbar,
da sie zu einem gewissen Grad von dem Informationsfluss zwischen den
Komponenten abhédngt. Zum einen miissen erforderliche Informationen
rechtzeitig vorliegen, sobald sie bend6tigt werden, und zum anderen sollten
Informationen, die fiir mehrere Komponenten nutzbar sind (z. B. Bewe-
gungsvektoren) sinnvollerweise nur einmal ermittelt werden und bei Bedarf
an weitere Komponenten tibergeben werden. Die Austauschbarkeit dieser



2.4 Diskussion 45

Komponenten wird dadurch entsprechend eingeschrénkt, wobei sich insbe-
sondere eine Bildregistrierung zu Beginn und ein Deblurring zum Abschluss
bewihrt hat.

Zwar werden hier tiberwiegend konventionelle Methoden zur Bewegungs-
schitzung (siehe Kapitel 4), sowie zur Entfaltung (siehe Kapitel 5) behandelt,
dennoch betrifft diese Einschrdnkung nicht das Evaluierungskonzept in
Kapitel 7. Wie zudem der Artikel von Hardie et al. [Har17] erkennen lésst,
haben auch etablierte Verfahren wie z. B. “Block Matching” und Wiener
Filterung ihre Relevanz noch nicht verloren.

Wenngleich im Abschnitt 2.2.8 einige Argumente gegen die Verwendung von
“Deep Learning”-Architekturen in der vorliegenden Arbeit angefiihrt wurden,
ist anzunehmen, dass es in Zukunft hochstwahrscheinlich noch sehr viel
mehr dieser Verfahren geben wird. Es ist daher wahrscheinlich, dass auch
Losungen fiir derzeit noch bestehende Probleme gefunden werden konnen.






Theoretische Grundlagen

Bei der Erfassung von Bilddaten durch eine turbulente Atmosphire sind di-
verse Turbulenzeffekte zu beobachten. Einige Beispiele fiir die markantesten
Effekte (d. h. Unschérfe, Bildbewegung und Deformierung) wurden bereits
in der Einleitung in den Abbildungen 1.4 und 1.5 gezeigt. Verantwortlich
dafiir sind zuféllige Fluktuationen im Brechungsindex des Ausbreitungsme-
diums (i. A. Luft oder ggfs. Wasser), wodurch einfallende ebene Lichtwellen
kumulativ gebeugt und die Wellenfronten deformiert werden.

Will man die Effekte optischer Turbulenz in Bilddaten korrigieren, ist es
zunéchst wichtig zu verstehen wie Turbulenz {iberhaupt erst entsteht, und
wie sie sich unter bestimmten Umstdnden auf den Bilderfassungsprozess
auswirkt. Zu diesem Zweck werden entsprechende Werkzeuge benétigt. Die
notwendige Terminologie hierfiir entstammt verschiedenen ineinandergrei-
fenden Forschungsfeldern, insbesondere der Statistik, der Stromungslehre,
sowie der Astronomie und nicht zuletzt der Optik. In diesem Kapitel sind des-
halb die wichtigsten Definitionen und Konzepte zur Charakterisierung und
Modellierung von Turbulenz aus diesen Bereichen zusammengefasst, mit
besonderem Augenmerk auf den Eigenschaften atmosphérischer Turbulenz.
Die Ausbreitung von (Licht-)Wellen durch eine turbulente Atmosphére lédsst
sich ndherungsweise mithilfe theoretischer Modelle beschreiben. Weit ver-
breitet ist beispielsweise Kolmogorovs “Power Spectral Density” Modell, wel-

47
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ches nach wie vor verwendet wird. Die wegweisenden Beitrdge von Kolmo-
gorov [Kol41], Tatarskii [Tat61], [Tat71], von Kdrmén [Kar37a], [Kar37b] und
Fried [Fri66], [Fri82] bilden die theoretische Grundlage fiir fast alle nachfol-
genden Arbeiten in der atmosphirischen Optik.

3.1 Definitionen aus der Statistik

Turbulenz ist in hohem Maf3e instabil, und das chaotische Verhalten eines
turbulenten Mediums ist analytisch nicht prézise vorhersagbar. Es liegt
daher nahe, Turbulenz stattdessen anhand ihrer statistischen Eigenschaften
zu charakterisieren. Die zuféllige Natur von Turbulenz kann z. B. mithilfe
stochastischer Prozesse modelliert werden. Insbesondere ldsst sich die durch
Turbulenz verursachte Phasenverzerrung einer einfallenden Lichtwelle sehr
gut tiber eine Gaufs-Verteilung quantifizieren.

Die Wahrscheinlichkeitsdichtefunktion (“Probability Density Function”, PDF)
p(f) einer Zufallsvariablen F mit Wert f ist ganz allgemein definiert wie
folgt [Dai00]:

p(Hdf :=Prob{f<F< f+df} (3.1

Das bedeutet, dass sich keine genaue Aussage iiber den Wert f der Zufalls-
variablen F treffen ldsst. Man kann nur die Wahrscheinlichkeit (“Prob”)
angeben, mit der F (im diskreten Fall) einen bestimmten Wert annimmt bzw.
(im kontinuierlichen Fall) innerhalb eines bestimmten Intervalls liegt.

3.1.1 Stationare stochastische Prozesse

Ein stochastischer Prozess (auch: Zufallsprozess) F(x) beschreibt eine Menge
von Zufallsvariablen, die zeit- und/oder ortsabhingig sind. Die Phase einer
Lichtwelle, die eine turbulente Atmosphéare durchquert hat, entspricht z. B.
einem raumlich und zeitlich verdnderlichen Zufallsprozess.

Der Wert eines Zufallsprozesses zu einem gegebenen Punkt x ist eine Zu-
fallsvariable mit zugehoriger PDE p(f[x]), Erwartungswert p(x) und Varianz
o(x). Falls die PDF invariant ist gegeniiber Translationen bzgl. x, handelt es
sich um einen stationdiren Prozess. Das bedeutet, dass keine der Zustands-
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grollen von x abhéngig ist und die statistischen Eigenschaften (d. h. u, o und
die Autokorrelationsfunktion) iiberall konstant sind. Das trifft insbesondere
auch auf atmosphaérische Turbulenz zu, bei der es sich (in guter Ndherung)
um einen stationdren Prozess handelt.

3.1.2 Momente

In der Praxis ist es zuweilen von Vorteil, das Verhalten von Zufallsvariablen
mithilfe der sogenannten Momente p, o, ..., 1N, (N € N) zu beschreiben,
anstatt die gesamte Funktion p(f) zu bestimmen. Diese Momente sind
definiert durch:

+00
p= (1) = [prtar k=M 62)

3.1.3 Erwartungswert p und Standardabweichung o

Die beiden wichtigsten Parameter zur Beschreibung einer Zufallsvariablen
sind der Erwartungswert u und die Varianz o2, die sich {iber die ersten
beiden Momente p; und pp ausdriicken lassen wie folgt:

u = ”1 (33)
0% = U2 — ,uf (3.4)

Insbesondere wird o, d. h. die Wurzel aus der Varianz, als Standardabwei-
chung bezeichnet. Es hdngt von der jeweiligen Anwendung ab, welcher der
beiden Ausdriicke besser geeignet ist. In der AO wird z. B. bevorzugt die
Varianz eingesetzt.

Hierbei ist anzumerken, dass in dieser Arbeit sehr hdufig diskrete Messdaten
betrachtet werden. Nachfolgend sind deshalb auch die entsprechenden
Schitzungen [ und 6 fiir den diskreten Fall notiert, d. h. fiir eine Anzahl von
n € N diskreten Messwerten xi,..., X;:

n
> Xk (3.5)
k=1

.1
“_n
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n

mlr—*

(x — p (3.6)
k=1

3.1.4 Die Gauf}-Funktion

Die Wahrscheinlichkeitsdichtefunktion einer Gaufsschen Normalverteilung
wird hdufig auch Gaufs-Funktion genannt. Sie ldsst sich vollstdndig mit-
hilfe des Erwartungswertes g und der Varianz o2 beschreiben. Die GauR-
Funktion f ist definiert wie folgt:

_Gew?
e 202 (oo < X < +00) (3.7)

flx) =

1
Voo

3.1.5 Die Strukturfunktion

Die Strukturfunktion D, (r},12) einer Zufallsvariablen x entspricht dem Er-
wartungswert der Differenz der an den Stellen r1, r, gemessenen Werte von x,
d.h. D, ist definiert durch:

Dy (r1,12) := {|x(r1) — x(r2)]) (3.8

Néhere Ausfithrungen zur physikalischen Bedeutung von Strukturfunktio-
nen im Zusammenhang mit Kolmogorov-Turbulenz sind in Abschnitt 3.2.6
zu finden.

3.1.6 Die Kovarianzfunktion

Die Wahrscheinlichkeitsdichtefunktion p(f) beschreibt nur die stochasti-
schen Eigenschaften in einem einzigen Punkt x, deshalb spricht man auch
von einer PDF 1. Ordnung. Es bedarf jedoch einer PDF 2. Ordnung, um auch
die zeitliche und/oder raumliche Struktur eines Zufallsprozesses zu erfassen.
Von besonderem Interesse ist hier, wie hoch die Geschwindigkeit ist, mit der
Verdnderungen eintreten.

Auch die PDF 2. Ordnung ldsst sich wieder mithilfe ihrer Momente aus-
driicken, insbesondere anhand der wichtigen Kovarianzfunktion C(x'). Die



3.1 Definitionen aus der Statistik 51

Kovarianzfunktion C eines reellwertigen stationédren stochastischen Prozes-
ses lasst sich gemals [Dai00] folgendermalien formulieren:

Ce = ((f = () (Fx+x)=() 3.9)

Falls ( f) = 0 gilt, stimmt die Kovarianzfunktion mit der Autokorrelations-
funktion {iberein, und die Varianz o l4sst sich folgendermaBen ausdriicken:

0% = C(x'=0) = (f2) - (f)? (3.10)

Im Fall atmosphérischer Turbulenz ist die Kovarianzfunktion nicht ohne
Weiteres messbar, daher wird stattdessen die folgende Strukturfunktion D
definiert:

D) = ((F0) - fle+x))°) = 2-(CO) - C)) (3.11)

3.1.7 Das Wiener-Khinchin Theorem

Das Wiener-Khinchin Theoreml (auch: “Wiener-Chintchin-Kolmogorov”)
besagt, dass die Autokorrelationsfunktion eines stationdren stochastischen
Prozesses mit der zugehorigen spektralen Leistungsdichte (“Power Spectral
Density”) korrespondiert, die generell als auch Powerspektrum bezeichnet
wird. Anders ausgedriickt, das Powerspektrum @ eines stationdren Prozes-
ses ist fiir die Ortsfrequenz x definiert als die Fourier-Transformierte der
Kovarianzfunktion in Gleichung (3.9):

+o0
D) = f C(x')e 2T’ qx (3.12)

—00

Mit Hilfe des Powerspektrums lasst sich die Struktur eines Zufallsprozesses
im Fourier-Raum beschreiben, siehe auch Abschnitt 3.2.7.

1 So benannt nach dem amerikanischen Mathematiker Norbert Wiener (1894 bis 1964) und
dem russischen Mathematiker Aleksandr Yakovlevich Khinchin (1894 bis 1959)
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3.2 Turbulenz in der Fluiddynamik

Viele Beschreibungen atmosphirischer Turbulenz lassen sich auf Erkennt-
nisse und Begrifflichkeiten aus der Stromungslehre, speziell der Fluiddyna-
mik, zurlickfiihren. Hier wird Turbulenz als der Zustand eines physikalischen
Systems betrachtet, das von einem Gleichgewichtszustand weit entfernt ist.
Ursache dafiir ist die gegenseitige Wechselwirkung zahlreicher Einflussfak-
toren. Dieser Zustand ist instabil und irreguldr, sowohl in zeitlicher als auch
in rdumlicher Hinsicht.

3.2.1 Fluide mit turbulenter Stromung

Fluide bezeichnen sowohl Fliissigkeiten als auch Gase, somit handelt es
sich auch bei der Atmosphére um ein Fluid. Man unterscheidet Fluide nach
ihrem Stromungsverhalten. Fluide mit laminarer Strémung flielen geordnet
und in einem regelmé&Rigen, gleichbleibenden Strémungsmuster, wobei sich
benachbarte Schichten mit unterschiedlichen Flielgeschwindigkeiten nicht
gegenseitig storen. Fluide mit turbulenter Stromung verhalten sich hingegen
ungeordnet und chaotisch, wobei sich das Strémungsmuster permanent
verdndert. Besonders charakteristisch fiir eine turbulente Strémung ist dabei
die Entstehung von Verwirbelungen.

3.2.2 Die Reynoldszahl Re

Zur Unterscheidung von laminarer und turbulenter Strémung kann die
sogenannte Reynoldszahl i Re eingesetzt werden. Bei der Reynoldszahl han-
delt es sich um eine dimensionslose Kennzahl in der Stromungslehre, die
das Verhiltnis von Tragheitskraften zu viskosen Kréften innerhalb eines
Fluids beschreibt. Mit ihrer Hilfe kann jede Stromung beschrieben werden.
Liegt Re unterhalb eines kritischen Wertes handelt es sich um laminare
Stromung, und falls Re dariiber liegt, handelt es sich um turbulente Stro-
mung. In Bodennihe, wo die Atmosphére hochgradig turbulent ist, liegt die
Reynoldszahl beispielsweise in der GréRenordnung Re ~ 10°.

2 So benannt nach dem britischen Physiker Osborne Reynolds (1842-1912)
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Die Reynoldszahl Re ist definiert als:

prvd_vd
n - v

Re = (3.13)
Wihrend p die Dichte (in kg/m?), v die mittlere Stromungsgeschwindigkeit
(inm/s) und d die jeweilige Bezugsldnge (in m) bezeichnen, reprasentiert n
die dynamische Viskositdit, ein MaQ fiir die Zahfliissigkeit und das FlieBver-
halten von Fluiden. Die kinematische Viskositdt v ist insbesondere definiert
alsv=n/p.

Da die Viskositédt von Luft sehr nahe bei Null liegt, kann die zugehorige
Reynoldszahl infolgedessen extrem grof$ werden. Luft um den Gefrierpunkt
besitzt beispielsweise eine kinematische Viskositit von v = 0,132 cm?/s.

3.2.3 Die Navier-Stokes Gleichungen

Mathematisch lédsst sich das Stromungsverhalten von Fluiden (d. h. Fliis-
sigkeiten oder Gasen mit einem dhnlichen Stromungsverhalten) ganz all-
gemein mithilfe der Navier-Stokes‘i’ Differentialgleichungen beschreiben.
Darin muss zwischen kompressiblen Fluiden und inkompressiblen Fluiden
unterschieden werden. Das heil3t, bei kompressiblen Fluiden dndert sich die
Dichte bei Druckeinwirkung, wohingegen die Dichte bei inkompressiblen
Fluiden unverédndert bleibt.

Gase gehoren zur Gruppe der kompressiblen Fluide, deshalb wird zur Mo-
dellierung der Atmosphére die Navier-Stokes Differentialgleichung fiir kom-
pressible Fluide bendtigt, in der sowohl die Impulserhaltung als auch die
Energieerhaltung, sowie die Zustandsgleichung des Gases berticksichtigt
werden. Die allgemeine Form der Navier-Stokes Gleichung fiir kompressible
Fluide lautet:

~Vp+nA+pf+(A+n)V(V-D) = p=0+p(0-V)D (3.14)

3 So benannt nach dem franzosischen Mathematiker und Physiker Claude Louis Marie Henri
Navier (1785 bis 1836), sowie dem irischen Mathematiker und Physiker George Gabriel
Stokes (1819 bis 1903)
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Dabei bezeichnet p den Druck, Vp entspricht der Druckgradient und f ist
die Kraftdichte. Der Parameter A bezeichnet hier ausnahmsweise die (erste)
Lamé—Materialkonstanteﬁ (in N/m?), die den Zusammenhang zwischen
Dehnung und der daraus resultierenden Spannung beschreibt.

Die Navier-Stokes Gleichungen sind komplizierte nicht lineare Differenti-
algleichungen, die zu den sieben Millennium-Problemen der Mathematik
zdhlen. Das heil3t, es gibt bis heute keine analytische Losung fiir die Glei-
chungen (im dreidimensionalen Fall). In der Praxis werden daher nume-
rische Losungsverfahren eingesetzt, wobei die Ausgangsgleichung soweit
moglich vereinfacht wird. Insbesondere ldsst sich die Navier-Stokes Glei-
chung (3.14) zur Beschreibung des Verhaltens einer turbulenten Atmosphére
aufgrund der vernachlédssigbar geringen Viskositdt 7 von Luft (d.h. n = 0)
auf die nachfolgende Euler Gleichung (3.15) reduzieren:

o > 0. o 2o
—Vp+pf:pav+p(v-V)v (3.15)

3.2.4 Das Turbulenzmodell von Kolmogorov

Das physikalische Turbulenzmodell von Kolmogorovi (auch: Kolmogorow)
hat seinen Ursprung in der Stromungslehre und ful3t u. a. auf von Kdrméns
Arbeiten zur statistischen Theorie von isotroper Turbulenz [Kadr37a]. Es han-
delt sich um ein vergleichsweise einfaches physikalisches Modell, das zu-
nédchst zur analytischen Evaluation der Auswirkungen von Turbulenz in
turbulenten Stromungen entwickelt wurde [Kol41]. Innerhalb des Giiltig-
keitsbereichs ldsst es sich jedoch weitgehend auch auf atmosphérische Tur-
bulenz anwenden.

Grundannahme in dem Modell ist, dass dem turbulenten Medium von
aullen auf groflen raumlichen Skalen Energie zugefiihrt wird, wodurch sich
turbulente Luftwirbel (“Eddies”) bilden, die dann in einer selbstihnlichen
Kaskade in immer kleinere Wirbel zerfallen. Die Abbildung 3.1 visualisiert
die Mechanismen, die in dem Turbulenzmodell von Kolmogorov wirken.

4 So benannt nach dem franzosischen Mathematiker und Physiker Gabriel Lamé (1795 bis
1870)
5 So benannt nach dem russischen Mathematiker Andrei Kolmogorov (1903 bis 1987)
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Abbildung 3.1: Mechanisches Turbulenzmodell von Kolmogorov®

Im sogenannten Produktionsbereich befinden sich die groften und zu-
gleich energiereichsten Wirbel, wobei man hdufig auch von Turbulenzzellen
spricht. Dabei gibt die dufSere Skalenléinge Ly (“Outer Scale”) die Grollen-
ordnung an, in der kinetische Energie in das System gesteckt wird. Im Fall
atmosphaérischer Turbulenz ist dies z. B. die Erwdrmung durch Sonnenein-
strahlung in Verbindung mit Scherwinden, welche die Anfangsenergie (nicht
nur) in der dulleren Skalenldnge zufiihren. Typische Windgeschwindigkei-
ten, mit denen wihrend der Bilderfassung tiber horizontalen Ausbreitungs-
wegen in den haufigsten Anwendungsszenarien zu rechnen ist, liegen in der
GroBenordnung von 2 m/s bis 7 m/s.

Im Trdgheitsbereich (“Inertial Subrange”) befindet sich die Energiekaska-
de, innerhalb derer die grof3en Turbulenzwirbel in immer kleinere Wirbel

6 Quelle: [Hip04] www.spektrum.de/pdf/suw-2004-10-s032-pdf/8340287file
(Grafik leicht modifiziert)


www.spektrum.de/pdf/suw-2004-10-s032-pdf/834028?file

56 3 Theoretische Grundlagen

zerfallen bis schlief3lich die kinetische Energie der kleinsten Wirbel mit der
inneren Skalenlidnge (“Inner Scale”) Iy im Dissipationsbereich durch viskose
Reibung (der Luft) in Warme umgewandelt wird ([Rod81]).

Wihrend die duflere Skalenldnge L die Grenze zwischen Produktions- und
Tragheitsbereich angibt, entspricht die innere Skalenldnge [/, der Grenze
zwischen Tragheits- und Dissipationsbereich.

Typische GroBenordnungen der Skalenldngen im Fall horizontaler Bilderfas-
sung in (relativer) Bodennihe liegen fiir [y im Millimeterbereich und fiir L
in der Gr6Benordnung von wenigen Metern. In astronomischen Anwen-
dungen kann Ly u. U. aber auch 100 m iibersteigen, wobei erwdhnt werden
sollte, dass Ly generell nur schwer korrekt messbar ist [Dai00].
Insbesondere besteht die folgende Beziehung zur Reynoldszahl Re :

voLo Ly
e = f— 0= —%5 -
Vo Re3/4

(3.16)

Hier bezeichnet vy die mittlere Geschwindigkeit der Turbulenz bei der dulle-
ren Skalenldnge L. Demnach wird [y groBer, wenn sich die Geschwindigkeit
vo erhoht (unter der Annahme, dass sich die dulere Skalenldnge Ly dabei
nicht verdndert).

Fiir die Bilderfassung ist dabei relevant, dass es vor allem die grolen Turbu-
lenzzellen der GroBenordnung Ly sind, welche die Phase einfallender ebener
(Licht-)Wellenfronten am stirksten beeintrachtigen. Sie sind insbesondere
fiir die starksten Tilt-Effekte verantwortlich, wohingegen Szintillation von
den kleinsten Turbulenzzellen der Groenordnung [y verursacht wird.

3.2.5 Der Brechungsindex n

Die Geschwindigkeit ¢ von Licht der Wellenldnge A und Frequenz f im
jeweiligen Ausbreitungsmedium ist von dessen Brechungsindex n abhingig,
d.h. es gilt:
Co
=A-f=— 3.17
¢ f . (3.17)

wobei ¢y die Lichtgeschwindigkeit im Vakuum bezeichnet (¢y = 3 - 108 m/s).
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Der Brechungsindex 7 von Luft ist im Grunde genommen eine Funktion der
Temperatur T (in K), des Drucks P (in mbar) und der Wellenldnge A (in ym):

n={1+752-103 2.2 (3.18)
' A2) T '

Im vorliegenden Zusammenhang ist die Abhdngigkeit vom (Luft-)Druck al-
lerdings weitestgehend vernachldssigbar, weil sich Fluktuationen des Drucks
mit Schallgeschwindigkeit bereits wieder ausgleichen. Das Verhalten von
Temperaturschwankungen ist hingegen deutlich trdger, weshalb es die Tem-
peratur ist, welche die Statistik der Fluktuationen des Brechungsindex ent-
scheidend bestimmt. Bei den Fluktuationen des Brechungsindex n handelt
es sich insbesondere um eine Funktion der Zeit ¢ und des Orts r, wobei
sich diese zufdlligen Fluktuationen in hinreichender Ndherung als GauR3-
formiger Zufallsprozess darstellen lassen ([Dai00]). Die statistischen GréRen
Erwartungswert und Standardabweichung (bzw. Varianz) werden dabei am
haufigsten zur Charakterisierung verwendet.

3.2.6 Die Strukturfunktionen fiir Kolmogorov-Turbulenz

Homogene isotrope Turbulenz beschreibt eine idealisierte Form der Turbu-
lenz, bei der die statistischen Eigenschaften invariant sind gegentiber jeder
Art von Translation und Rotation, sowie auch Spiegelung an den Koordina-
tenachsen. In diesem Fall hdngen zugehorige Strukturfunktionen nur von
der Distanz Ar = ||/} — 72|l der Punkte 77, 7 im Raum ab.

Die Strukturfunktion der Brechungsindexfluktuationen D,

In der Literatur ist allgemein anerkannt, dass das Powerspektrum der Fluk-
tuationen im Brechungsindex mit dem Powerspektrum der Temperatur iiber-
einstimmt und dass Temperaturfluktuationen dem gleichen 2/3-Potenzgesetz
unterliegen, das auch fiir Fluktuationen der Geschwindigkeit gilt, wie von
Kolmogorov in [Kol41] mithilfe von Dimensionsanalyse (“Dimensional Ana-
lysis”) gezeigt wurde. Die Strukturfunktion D, des Brechungsindex n ist
dementsprechend gegeben durch (s. a. Abschnitt 3.1.5):

Dp(Ar) = (In(i) - n(@)I?) = C3(2)-Ar*®  (lp<Ar<Lp)  (3.19)
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Das bedeutet, dass die durchschnittliche Differenz des Brechungsindex
zwischen zwei Raumpunkten 7 und 7% innerhalb des Tragheitsbereichs
gemil dem 2/3-Potenzgesetz ansteigt, je mehr sich ihr Abstand Ar = || 7] —
72 || vergroBert. Die dufere Skalenldnge entspricht dabei einem Maf fiir die
physikalische Grenze, ab der diese mittlere Differenz nicht weiter zunimmt.
Die Abbildung 3.2 zeigt dazu noch eine andere, etwas vereinfachte Dar-
stellung des Turbulenzmodells von Kolmogorov, worin insbesondere die
Bedeutung der Distanz r (bzw. Ar) veranschaulicht wird.

l, <<r<<l,

’-
Abbildung 3.2: Darstellung des Turbulenzmodells von Kolmogorov (Grafik: K.
Weilk-Wrana)

Es sollte noch angemerkt werden, dass der Strukturparameter der Fluktua-
tionen des Brechungsindex C2(z) von der Hohe z abhéngig ist, wobei dies
vor allem fiir astronomische Beobachtungen mit (nahezu) vertikalem Be-
obachtungswinkel relevant ist. Im Fall horizontaler Bilderfassung ist die
Hohe dagegen relativ konstant, denn auch bei leichter Schrégsicht haben et-
waige Hohenunterschiede nur vernachlissigbar geringe Auswirkungen auf
C2(z). Deshalb spricht man in diesem Zusammenhang zuweilen auch von
einer Strukturkonstante. Hier wird daher bis auf weiteres auf die explizite
Nennung der Héhenabhingigkeit verzichtet.
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Speziell auf die Signifikanz von C? als MaR zur Beschreibung der Turbulenz-
stdrke wird im Folgenden noch in Abschnitt 3.3 néher eingegangen.
Die Strukturfunktion der Temperaturfluktuationen Dt

Analog zu Gleichung (3.19) ldsst sich auch eine Strukturfunktion fiir die
Temperaturfluktuationen mithilfe eines korrespondierenden Strukturpara-
meters C% formulieren:

Dr(Ar) = C3-Ar*®  (lg<Ar <L) (3.20)

Dabei unterscheiden sich C;, und Cy nur um einen Faktor, der vom Druck P
und der Temperatur T abhingt und die Dimension mbar/K? aufweist.

Die Strukturfunktion der Phasenfluktuationen Dy

Fiir Kolmogorov-Turbulenz ldsst sich auch eine Strukturfunktion Dy fiir die
Phasenfluktuationen mithilfe von ry formulieren ([Dai00]):

. 1% .
Dy(X) = 6,88 —— (lo < 1%l < Lo) (3.21)
0

Dabei bezeichnet X einen zweidimensionalen Ortsvektor in der Pupillen-
ebene. (3.39)
3.2.7 Powerspektren fiir Kolmogorov-Turbulenz

Das Powerspektrum @,

Das Powerspektrum der Fluktuationen im Brechungsindex ®,, ist definiert
fiir dreidimensionale Variablen 7 und ¥ und ergibt sich zu ([Dai00]):

D, (%) = 0,033-C2IR|™13 /Ly < K] < 1/1p) (3.22)

Hierbei ist zu beachten, dass das Spektrum gegen unendlich strebt, wenn
Kl — 0.
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Fiir endlich grofe Skalenldngen Iy und Ly gilt das modifizierte “von Kdrmdn’-
Spektrum ([Dai00]):

R 0,033-C2 112
D, (K) = 76 &P |~ (3.23)
(IR 11> +%2) m

Dabei ist kg = 27/ Ly und x,, = 5,92/ .

Das Powerspektrum @

Das Powerspektrum der Phasenfluktuationen @, ldsst sich in dhnlicher
Weise zu @, formulieren ([Dai00]):

0,023

5/3
o

Dy(K) = RN (3.24)

3.3 Isoplanasie und Anisoplanasie

Bei der Abbildung ausgedehnter Objekte (d. h. mit groer Winkelausdeh-
nung) durch ein turbulentes Medium muss Licht, das von verschiedenen
Bereichen des Objekts ausgeht, Gebiete unterschiedlicher Turbulenz durch-
queren bevor es die Optik erreicht, was zu einer rdaumlichen und zeitlichen
Dekorrelation der Wellenfront fiihrt.

Der maximale Winkel, innerhalb dessen man davon ausgehen kann, dass
einfallende Lichtwellen nahezu identische Regionen atmosphérischer St6-
rungen durchquert haben, wird allgemein als isoplanatischer Winkel be-
zeichnet, siehe Abbildung 3.3.

Fiir die Bilderfassung bedeutet dies somit, dass im Optimalfall der isoplana-
tische Winkel groRer als das Sichtfeld (“Field of View”, FOV) der verwendeten
Optik ist, da dann das gesamte Bild den gleichen Turbulenzstérungen un-
terworfen ist. Genauer, das Licht, welches die einzelnen Detektorelemente
des Bildsensors beleuchtet, hat auf seinem Weg vom Objekt zum Sensor die
gleichen atmosphirischen Turbulenzen durchquert. Man spricht in diesem
Fall von Isoplanasie. Dementsprechend tritt der ungiinstigste Fall ein, wenn
der isoplanatische Winkel genauso grol$ (oder kleiner) ist als das jeweilige
Sichtfeld der einzelnen Detektorelemente (“Instantaneous Field Of View”,
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' Isoplanatischer
/ Winkel / Patch

b \ T ) i Intensitatsfluktuation

. Kohéarenzlange

Abbildung 3.3: [llustration des isoplanatischen Winkels und der Kohédrenz-
lange ro (Grafik: E. Mauer [Mau04])

IFOV), was bedeutet, dass das Licht fiir jedes Pixel vollig andere Turbulenzge-
biete durchquert hat. Man spricht in diesem Fall von (totaler) Anisoplanasie.
Mit “lokaler Isoplanasie” wird entsprechend eine Mischung aus beidem
bezeichnet, wobei zwar nicht das gesamte Bild, aber zusammenhéngen-
de Bildregionen unter gleichen atmosphérischen Bedingungen entstanden
sind. Diese Bildregionen liegen innerhalb sogenannter isoplanatischer Pat-
ches.

3.3.1 Der isoplanatische Winkel 6,
Gemadl [Fri82] ldsst sich der isoplanatische Winkel 0 fiir eine gegebene

Wellenldnge A ausdriicken wie folgt:

0 = o,95~(7”) L85 (c2) " (3.25)

Dies gilt unter der Annahme, dass C,Zl, der Strukturparameter der Fluktuatio-
nen im Brechungsindex von Luft n, entlang des horizontalen Ausbreitungs-
pfads L konstant ist. Tatséchlich ist der Brechungsindex n eine Funktion der
Wegstrecke s, und L entspricht der optischen Wegléiinge, d. h. es gilt:

L:fn(s)ds
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Aufgrund der zufilligen Natur der Fluktuationen im Brechungsindex und
des integrierenden Messprinzips von (Laser-)Szintillometern, wie sie auch
zu Messungen von C2 fiir hier verwendete Bilddaten eingesetzt wurden, ist
die Betrachtung eines konstanten C2 Wertes durchaus sinnvoll.

3.3.2 Der Fried-Parameter rj

Mit dem isoplanatischen Winkel eng verwandt, und fiir die Charakteri-
sierung von Turbulenz ein ganz zentraler Parameter, ist der sogenannte
Fried-Parameteri 1o, der auch als atmosphérische Kohdirenzlinge bekannt
ist ([Fri66]) und tiblicherweise in der Einheit “cm” angegeben wird. Der
Fried-Parameter ist definiert als der Durchmesser (d. h. nicht der Radius,
trotz der “r” Notation) eines Teleskops, welches ohne jede Turbulenz die-
selbe optische Auflosung erzielen wiirde wie ein Teleskop mit unendlichem
Durchmesser, aber unter Turbulenzbedingungen. Fiir ein gegebenes Te-
leskop dient ry somit als MaR fiir die damit maximal erzielbare optische
Auflésungsqualitdt. Anders ausgedriickt beschreibt ry den Durchmesser
des kreisférmigen Gebiets, innerhalb dessen das quadratische Mittel des
Wellenfrontfehlers bei =1 rad liegt.

Fiir den Fall horizontaler Ausbreitung von sphérischen (Licht-)Wellen ldsst
sich die Kohidrenzldnge ry fiir eine gegebene Wellenldnge A (d. h. Wellenzahl
k =2m/1) gemal [Fri82] analog zu (3.25) ausdriicken:

—6/5
ro = 3,02- (27”) L35 (c2)%° (3.26)
3.3.3 Der Strukturparameter C2

Aus praktischen Griinden kann es u. U. zweckdienlicher sein, C% anstelle von
1o zu verwenden. Die Gleichung (3.26) lédsst sich ganz einfach diesbeziiglich
umstellen:

C% =0,16-1,°322L7! (3.27)

d.h. fiir C2 ergibt sich die Dimension m 3.

7 So benannt nach dem amerikanischen Wissenschaftler David L. Fried
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Fiir grof3e Teleskope, wie sie in der Astronomie Verwendung finden, liegt
der Fried-Parameter ry typischerweise in der Gr68enordnung von 10 cm
bis 30 cm im sichtbaren Spektralbereich und zwischen 30 cm bis 150 cm
im IR. Bei horizontaler Bilderfassung in Bodennihe, die in der Regel mit-
hilfe mobiler EO-Systeme erfolgt (mit vergleichsweise sehr viel kleineren
Optiken), wirkt sich die Beeintrdchtigung durch Turbulenz ungleich stér-
ker aus. Entsprechend liegen typische Werte fiir rp im Millimeter- (VIS) bis
Zentimeterbereich (IR).

Die Abbildung 3.4 zeigt, wie die Kohérenzldnge rp mit zunehmendem Aus-
breitungsweg L und ansteigender Turbulenz (v.o.n.u.) unterschiedlich im
visuellen Spektralbereich (links) und im IR (rechts) abnimmt. Hierzu wurden
Turbulenzstédrken in hiufig vorkommenden GroBenordnungen ausgewihlt:

¢ C2 =10"' m*?:leichte bis moderate Turbulenz
e C2 =107 m**: moderate bis starke Turbulenz
 C2=10""% m™?: starke bis sehr starke Turbulenz

 C2 =10"12 m*?: sehr starke bis extreme Turbulenz

Aus dem sichtbaren Spektrum, welches den Wellenldngenbereich von 380 nm
bis 780 nm abdeckt, wurden reprédsentativ die Wellenldngen A = 500 nm
(griin), A = 600 nm (gelb-orange) und A = 700 nm (rot) ausgewdhlt. Aus dem
daran anschlieBenden infraroten Spektrum, welches von 780 nm bis 1 mm
reicht, wurden reprasentativ die Wellenldngen A = 1,55 ym, A = 3,5 um und
A =8,5 um selektiert (unter Beriicksichtigung wesentlicher Wasserabsorpti-
onslinien und verbreiteter Detektoren).

Im Zuge dessen sollte noch erwdhnt werden, dass extreme Turbulenz der
GroéBenordnung C% =102 m™? (oder gréBer) normalerweise nicht allein
durch Sonneneinstrahlung erreicht wird. Hierzu sind groflere Temperatur-
unterschiede erforderlich, wie sie z. B. in der Ndhe eines Feuers oder des
Abgasstrahls eines Flugzeugtriebwerks entstehen (s. a. Abbildung 3.5).

Der modifizierte Fried-Parameter

Bei dem Verhiltnis D/ry aus dem Aperturdurchmesser D der Optik des
verwendeten EO-Systems und der Kohérenzldnge ry, welches auch als mo-
difizierter Fried-Parameter bezeichnet wird (u. a. in [Rod81]), handelt es
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R

Abbildung 3.5: Extreme Turbulenz verursacht durch den Abgasstrahl eines
Jet-Triebwerks

sich um ein verbreitetes Maf§ zur Charakterisierung der Turbulenzstéirke
in Bilddaten. Denn je kleiner ry ist in Relation zur Apertur D, desto stdrker
ist die Turbulenz, und dementsprechend grof3er ist die Beeintrdachtigung
der Bildqualitdt durch Turbulenzeffekte. Das heif3t ry dient gewissermafien
als Normierungsfaktor fiir die Apertur. Auch hier wird D/ry spéter (siehe
Abschnitt 7.3) als ein solches MalS verwendet. Insbesondere gilt der Zu-
sammenhang D = f/F, wobei f die Brennweite und F die Blendenzahl der
Optik bezeichnen. Alternativ wird auch der Kehrwert ry/D als normierter
Fried-Parameter verwendet ([Liith84]).

Die Abbildung 6.41 zeigt {iberdies einen Vergleich der aus verschiedenen
Turbulenzstérken C? resultierenden PSF-GréRen anhand von simulierten
Daten.

3.3.4 Die Taylor-Hypothese

Die Taylor-Hypothese besagt, dass man annehmen kann, dass Turbulenz-
wirbel gewissermalien “eingefroren” sind, wihrend sie sich an der verwen-
deten Optik vorbei bewegen, da die zeitliche Gr68enordnung fiir Verdnde-
rungen des “Turbulenzmusters” deutlich dartiber liegt.

Dieser Annahme liegt ein Schichtenmodell zugrunde, in dem die Turbulenz
als eine Schicht (“Layer”) mit eingefrorenem Turbulenzmuster modelliert
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wird oder auch als eine Reihe von solchen Schichten, deren Zwischenrdume
jeweils turbulenzfrei sind. Jede Schicht bewegt sich mit Windgeschwindig-
keit fort (in Windrichtung), wobei jede Schicht eine etwas andere Geschwin-
digkeit und Richtung haben kann.

3.3.5 Die Koharenzzeit 1

Zur Kohédrenzldnge ro gehort auch die Kohdirenzzeit T atmosphérischer Tur-
bulenz. Dabei handelt es sich um die Zeit, die eine Turbulenzzelle benétigt,
um sich mit der (Wind-)Geschwindigkeit v um die eigene Grof3e bzw. die
Distanz r( fortzubewegen. Dementsprechend ist 7 definiert durch:

T = fo (3.28)

v

Im Schichten-Modell des vorangegangenen Abschnitts 3.3.4 entspricht die
Geschwindigkeit v in Gleichung (3.28) dann der Geschwindigkeit der domi-
nanten Schicht.
Die raumliche Strukturfunktion Dy in Gleichung (3.21) lédsst sich mithilfe
der Kohidrenzzeit 7 auch als zeitliche Strukturfunktion ausdriicken:

5/3
Dy (1) = 6,88-(—) (3.29)
To

Insbesondere entspricht die Kohédrenzzeit dem Zeitraum, {iber den die PSE
anndhernd konstant bleibt. Das bedeutet, dass 7( eine effektive Obergrenze
fiir die Belichtungsdauer des bildgebenden Systems darstellt. Demnach
handelt es sich fiir > 7y um den “long exposure” Fall, wihrend ¢ < 7y den
“short exposure” Fall beschreibt.

3.4 Grundlagen aus der Optik

Der vielschichtige Charakter von Licht, sei es als geradlinige Lichtstrahlen,
als transversale Lichtwellen oder als Teilchen (d. h. Photonen) erfordert un-
terschiedliche Modelle zu seiner Beschreibung. Das Strahlenmodell wird
nach wie vor in der geometrischen Optik eingesetzt, wihrend das Wellen-
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modell speziell in der Wellenoptik Anwendung findet. Das Teilchenmodell
wiederum wird in der Quantenphysik verwendet und ist insbesondere beim
Einsatz von Lasern relevant, z. B. fiir die Laserkommunikation.

Im Zusammenhang mit der Lichtausbreitung durch die Atmosphére spielen
mehrere Aspekte eine signifikante Rolle. Einerseits ist das Strahlenmodell
zweckdienlich fiir die Betrachtung des Brechungsindex in den verschiede-
nen Luftschichten, andererseits wird das allgemeinere Wellenmodell und
das Konzept der Phase benotigt, um Eigenschaften wie Kohdrenz und Inter-
ferenz, sowie die atmosphérisch bedingte Verformung von Wellenfronten
sich ausbreitender Lichtwellen zu erkldren.

3.4.1 Lichtwellen und Wellenfronten

Bei elektromagnetischen Wellen im Allgemeinen und Lichtwellen im Beson-
deren handelt es sich um Transversalwellen, d.h. sie breiten sich orthogonal
zu ihrer Schwingungsrichtung aus. Punktlichtquellen im freien Raum er-
zeugen kreisformige Wellenfronten, wobei der Radius der Wellenfronten
von sehr weit entfernten Objekten wie z. B. Sternen so groR ist, dass die Wel-
lenfronten als eben angenommen werden kénnen. Entsprechend muss im
Fall horizontaler Bilderfassung in Bodennéhe von einer sphéirischen Form
der Wellenfronten ausgegangen werden, die sich radial von ihrem Ursprung
entfernen. Dies ist in Abbildung 3.6 veranschaulicht.

Die Abbildung ausgedehnter Objekte kann man sich geméall des Huygen-
schen Prinzips so vorstellen, dass jeder Punkt eines Objekts der Ausgangs-
punkt einer (halb-)kugelférmigen Elementarwelle ist. Die kombinierte Wel-
lenfront ergibt sich aus der Uberlagerung all dieser Elementarwellen.

3.4.2 Wellenfront W

Eine Wellenfront beschreibt die zusammenhéngende Menge aller Punkte,
die zeitlich die gleiche Entfernung zu ihrem Ursprung haben. Die Punkte
innerhalb einer Wellenfront befinden sich also im gleichen Schwingungszu-
stand, d. h. sie schwingen in gleicher Phase.
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Abbildung 3.6: Beipiele fiir Transversalwellen. Links: kreisformige Wellen-
front (schwarz) mit radialer Ausbreitungsrichtung (rot); rechts: gerade Wel-
lenfront (schwarz) mit geradliniger Ausbreitungsrichtung (rot).

Der Zusammenhang zwischen einer Wellenfront W (X) und der Phase ¢(X)
lasst sich fiir jeden Ort X in der (2-D) Pupillenebene folgendermafen aus-
driicken:

W(f)—i- X <= (f)—z—”'W(f) (3.30)
T 2n ¢ ¢ = A ’

3.4.3 Phasoren

Eine Sinusfunktion kann auch tiber ihren Phasor (eigentlich Phasenvektor,
auch komplexe Amplitude) beschrieben werden. Es handelt sich dabei um
eine komplexe Konstante, die von der Amplitude und der Phase abhéngig
ist. Genauer wird der Term Ae’? als Phasor einer Sinusfunktion der Form
Acos(wt+0)+i-Asin(wt+0) bezeichnet, mit Amplitude A, Kreisfrequenz w
und Phase 0. Unter Verwendung der Eulerschen Formel (e'® = cosa+i-sina)
lasst sich somit schreiben:

Acos(wt+0)+i-Asin(wt+0) = Ae!@+0) = pelf . gl0t (3.31)
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3.4.4 Elektrische Feldstarke E

Die elektrische Feldstdrke E ist definiert fiir den Ort 7 und die Zeit ¢ wie folgt:
E(.0) = a(F) -/~ (3.32)

Dabei bezeichnen a (bzw. a?) die Intensitit, w die Frequenz und k7 die
Phase, wobei k die Ausrichtung angibt, die fiir die Polarisation und die
Form der Wellenfront verantwortlich ist. Insbesondere entspricht || EII der
Wellenzahl k.

3.4.5 Bildentstehung

Der 3-D Objektraum wird mithilfe eines EO-Kamerasystems auf die 2-D
Bildebene abgebildet, wobei rdiumliche Informationen durch diese Projekti-
on verloren gehen. Genauer fillt das Licht, welches von den beobachteten
Objekten ausgeht, durch die Optik auf den in der Bildebene der Kamera
befindlichen Sensor bzw. Detektor und wird in ein 2-D digitales Signal um-
gewandelt. Hierzu werden die eintreffenden Photonen in den einzelnen
Detektorelementen erfasst und je nach ihrer Anzahl in entsprechende “Bins”
eingeordnet, die jeweils Intensitdtswerten innerhalb eines vorgegebenen
Wertebereichs (i. A. 8-Bit Kodierung mit 256 Grauwerten) entsprechen. Das
2-D Signal, das man letztlich erhilt, ist eine Matrix-Reprédsentation der be-
obachteten Szene, d. h. das eigentliche Bild.

Mathematisch kann ein solches Bild als vektorielle Funktion g : R? — R4
formuliert werden, die jeder (2-D) Position X € Qg im Bild einen Bildwert
¥ = g(X) zuordnet:

g:Q,—RY  Q cR? (3.33)
g1(%)
N 82 (55) . R X
gx) = . mit X = ( ¥ ) (3.34)
ga(®)

Die Zahl d € N gibt hier die Zahl der Farbkanéle an, d. h. im Fall von Grau-
wertbildern ist d = 1 und bei RGB-Farbbildern ist d = 3.
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3.4.6 PSF, OTF und MTF

Bislang wurde die Punktabbildungsfunktion vornehmlich als Filterfunk-
tion der Atmosphire betrachtet (siehe Abschnitt 5.1). Genau genommen
beschreibt die PSE jedoch die Systemantwort auf einen Dirac-Impuls, wobei
der Begriff “System” sehr allgemein zu verstehen ist und sowohl samtli-
che im Einsatz befindliche Sensorik als auch die aktuell vorherrschenden
atmosphérischen Eigenschaften beinhaltet.

Neben der PSF sind auch die optische Transferfunktion (OTF), und die Modu-
lationstransferfunktion (MTEF) wichtige KenngréB8en zur Beschreibung der
Abbildungsqualitit optischer Systeme. Genauer handelt es sich bei der OTF
um die Fouriertransformierte der PSE d. h. eine komplexwertige Funktion,
die das Verhalten eines abbildenden Systems als Funktion der Ortsfrequenz
beschreibt. Es gilt also:

OTF(f) = F(PSF(r)) (3.35)

Die (reellwertige) MTF ist wiederum definiert als Absolutbetrag der OTF und
entspricht der Amplitudenantwort des optischen Systems auf Sinusschwin-
gungen unterschiedlicher Ortsfrequenzen. Mithilfe der MTF lasst sich der
relative Kontrast beschreiben, d. h. die Dampfung der Modulation bei zuneh-
mender Frequenz, weshalb die MTF auch als Kontrastiibertragungsfunktion
bezeichnet wird. Der Kontrastverlust wird dabei durch das Verhiltnis von
Objekt- zu Bildmodulation beschrieben, d. h.
Bildmodulation(f)

MTE(f) = |OTF(f)| - Objektmodulation(f) (3.36)

In diesem Zusammenhang bezieht sich Modulation zunédchst nur auf die
Verdnderung eines Signals durch ein bildgebendes System. Aber auch Veran-
derungen durch atmosphirische Storeinfliisse, speziell Turbulenz, lassen
sich mithilfe ihrer zugeh6rigen MTF charakterisieren.

Das Beispiel in Abbildung 3.7 zeigt wie das Linienmuster des Objekts un-
scharf abgebildet wird und mit zunehmender Frequenz an Kontrast verliert,
so dass hohere Frequenzen gar nicht mehr aufgeldst werden konnen. Da-
durch wird aus der rechteckigen Signalform des Objekts ein sinusférmiges
Signal, dessen Amplitude immer stdrker geddmpft wird.
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Objekt: Linienraster Kontrastiibertragungsfunktion:
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Abbildung 3.7: Grafische Darstellung der MTE®

3.4.7 Die Pupillenfunktion P

Die Pupillenfunktion P ist eine komplexe Funktion, mit deren Hilfe sich
die relativen Anderungen der Amplitude und Phase einer Lichtwelle bei der
Durchquerung eines abbildenden optischen Systems beschreiben lassen.
Sie ist ganz allgemein definiert durch:

P(7) = A(F)-e'®D (3.37)

Hier bezeichnen 7 einen Vektor in der Pupillenebene, A die Amplitude der
einfallenden Lichtwelle und © die Phasendnderungen, wobei sdmtliche
Einfliisse zusammengefasst sind, die zwischen der Fokal- und der Bildebene
auf die Phase der Lichtwelle einwirken.

Mit der Gleichung (3.30) kann P auch tiber die Wellenfront W beschrieben
werden:

P(7) = e/ kWD (3.38)

Insbesondere kann die kreisf6rmige Apertur einer Optik mit Durchmesser D

8 Quelle: Wikipedia https://commons.wikimedia.org/wiki/File:MBq_MTF. jpg
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mithilfe der Pupillenfunktion eines idealen Systems Py beschrieben werden.
Die Amplitude und Phase bleiben in einem solchen System unveridndert, so
dass P nur angibt, wo Licht durchgelassen wird und wo nicht:
S 1, I7Fl=D/2
Py(7F) = . (3.39)
0, I7Il>D/2

Im Fall eines diffraktionslimitierten optischen Systems kann die Phasen-
dnderung O(7) als Zufallsvariable im Punkt 7 interpretiert werden. Wenn
1(7) die zufélligen Fluktuationen des Logarithmus der Amplitude bezeichnet
(wobei ohne Beschrdankung der Allgemeinheit angenommen werden kann,
dass die Amplitude der einfallenden Welle ohne Storeinfliisse gleich Eins ist),
dann lassen sich die Amplituden- und Phasenfluktuationen geméaR [Fri66]
in einer komplexen GréBe U zusammenfassen wie folgt:

U(;:) — P(?) 'el(7)+i®(7) (340)

3.4.8 Optische Auflésung

Die optische bzw. rdumliche Auflésung eines abbildenden Systems ent-
spricht der minimalen Distanz d, die zwei nebeneinanderliegende Punkt-
objekte voneinander haben miissen, um in einer Abbildung dieses Systems
noch als separate Objekte wahrnehmbar zu sein.

Die Auflésungsgrenze d ist gegeben durch:

A . .
d=0,61-— mit A, =n-sina (3.41)
An

A, beschreibt die sogenannte numerische Apertur, welche iiber den Bre-
chungsindex n des Materials zwischen Fokus und Linse und tiber den halben
(objektseitigen) Offnungswinkel a des Objektivs definiert ist.
Insbesondere besagt das Rayleigh-Kriterium, dass zwei punktféormige Licht-
quellen als zwei verschiedene Objekte erkannt werden konnen, wenn das
Zentrum der Airy-Disk des einen Objekts mindestens so weit vom Zentrum
der Airy-Disk des anderen Objekts entfernt ist, wie dessen erste Nullstelle.
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3.4.9 Limitierende Einfliisse

Es lassen sich grundsétzlich drei Félle unterscheiden, die einen limitieren-
den Einflul’ auf die Abbildungsqualitit eines bildgebenden Systems haben:

1. Turbulenzlimitierung
2. Beugungsbegrenzung

3. Detektorlimitierung

In den Féllen 1 und 2 lassen sich néherungsweise passende PSEs berechnen,
mit deren Hilfe sich erfasste Bilddaten korrigieren lassen (geeignete Metho-
den finden sich in den Kapiteln 5 und 6), wobei Verfahren zur Reduktion
der Turbulenzlimitierung das zentrale Thema dieser Arbeit ist.

Im Fall 3, d. h. bei einer Limitierung seitens des Detektors befindet sich die
Leistungsfdahigkeit des Systems hingegen bereits an der dulersten Grenze.
Mit herkémmlichen Methoden kénnen deshalb keine zusétzlichen Verbes-
serungen erzielt werden, da die Bildqualitdt weder durch die Optik noch
Turbulenz beeintrachtigt ist.

Die Faktoren A/D und A/ry konnen zur Fallunterscheidung eingesetzt wer-
den, um die Art der bestehenden Limitierung festzustellen. Der detektorli-
mitierte Fall tritt z. B. ein, falls die folgende Bedingung erfiillt ist:

1A 1A
I[FOV> - — und IFOV> - — (3.42)
2D 219

Der diffraktionslimitierte Fall tritt ein, falls

1A A A
[FOV< - — und —>— (3.43)
2D D" ry
Falls keine der beiden Bedingungen erfiillt ist, tritt der turbulenzlimitierte
Fall ein.
Die Abbildung 3.8 zeigt beispielhafte Simulationen fiir diese drei Félle (Ori-
ginalbild in Abbildung 6.42 im Abschnitt 6.9.3).
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Abbildung 3.8: Beispielhafte Simulation der limitierenden Einfliisse auf
die Bildgebung. Links: Beugungsbegrenzung; Mitte: Detektor-Limitierung;
rechts: Turbulenzlimitierung. (Simulationen: S. Gtadysz)

3.4.10 Systembedingte Einfliisse auf die Bildqualitat

Zusitzlich zu atmosphérischen Einfliissen konnen auch systembedingte Ab-
bildungsfehler die Qualitdt erfasster Bilddaten beeintrdchtigen. Dies betrifft
hauptséachlich Fehler in den verwendeten Optiken, vor allem durch fehler-
hafte Linsen (z. B. Unregelméligkeiten, Verzeichnungen), sowie Detektor-
bedingte Probleme, speziell aufgrund geringer GréRe (relativ zur Optik) und
hoher Pixeldichte. Aber auch die Umgebung spielt eine Rolle, da Sensor-
rauschen beispielsweise durch schlechte Lichtverhéltnisse oder auch hohe
Umgebungstemperaturen noch verstédrkt wird.

Verzeichnungen der Optik

Je nach Art und Qualitit der verwendeten Linsen kdnnen bei der Bildgewin-
nung verschiedene Verzeichnungen auftreten. Dies kann durchaus gewollt
sein, wie z. B. im Fall von Fischaugen- oder Shift-Objektiven, systembedingt
wie z. B. Vignettierung oder aber ungewollt wie im Fall von Linsenfehlern.
Die Abbildung 3.9 zeigt einige Beispiele fiir verschiedene optische Verzeich-
nungen, wie z. B. Simulationen einer Tonnen- (“barrel”) und Kissenverzeich-
nung (“pincushion”), sowie eines Fischaugenobjektivs.

Im Gegensatz zu Linsentriibungen oder Unebenheiten ldsst sich diese Art
von Verzeichnung verhiltnisméRig leicht korrigieren, wéhrend sich Abbil-
dungsfehler wie z. B. sphirische oder chromatische Aberrationen nur einge-
schrankt vermeiden lassen.
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Abbildung 3.9: Simulierte Beispiele fiir typische Optik-Verzeichnungen.
Obere Reihe (v.l.n.r.): unverzerrtes Originalbild, Vignette-Effekt, Fischaugen-
objektiv; untere Reihe (v.L.n.r.): perspektivische Verzeichnung, Tonnen- und
Kissenverzeichnung

Aus praktischen Erwédgungen wird im weiteren Verlauf angenommen, dass
die Abbildungseigenschaften der verwendeten Optiken stets einwandfrei
sind, da etwaige Linsenfehler ggfs. als Bestandteil der atmosphérischen
Filterfunktion behandelt (und korrigiert) werden kénnen.

“Interlacing”

Des weiteren konnen Effekte wie “Interlacing” oder “Rolling-Shutter” auftre-
ten. Die Abbildung 3.10 zeigt ein Beispiel dafiir, wie sich speziell die Effekte
des Zeilensprungverfahrens im Turbulenzfall noch verstdarken. Das hat auch
entsprechende Auswirkungen auf Algorithmen zur Turbulenzkorrektur wie
insbesondere in [Loul3] zu bemerken ist.
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Abbildung 3.10: Beispiel fiir “Interlacing”-Effekte. Oben: Bildausschnitt ohne
Turbulenz; unten: mit Heizgerit kiinstlich erzeugte Turbulenz.

In solchen Fillen sollte vor Anwendung einer Turbulenzkorrektur zusétzlich
noch ein Deinterlacing durchgefiihrt werden, um diese Effekte zu minimie-
ren. Haufig geschieht dies bereits anhand einer speziellen Kamera-Software
des Herstellers. So sind in den Daten, die hier verwendet wurden, keine
nennenswerten Interlacing-Effekte zu beobachten.
“Rolling-Shutter”-Effekte sind dagegen bedeutend schwieriger zu identifi-
zieren, da es im Turbulenzfall nicht ohne weiteres moglich ist, zwischen
Bildverzerrungen aufgrund von Turbulenz und Verzerrungen aufgrund der
Aufnahmetechnik zu unterscheiden. Dies ndher zu untersuchen, wiirde
den Rahmen dieser Arbeit sprengen, insbesondere, da die konkrete Ursa-
che fiir Bildverformungen fiir die hier vorgestellten Algorithmen letztlich
unerheblich ist.
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Bildrauschen

Unter dem Begriff Bildrauschen (bzw. “Image Noise”) lassen sich mehrere
technisch bedingte Effekte zusammenfassen, die Einfluss auf die elektro-
optische Bilddatengewinnung nehmen. Im Hinblick auf Turbulenz sind in
diesem Zusammenhang grundsétzlich dieselben Arten von Rauschen zu
erwarten, wie sie auch ohne Turbulenz auftreten.

Sogenanntes Schrotrauschen (“Shot Noise”) tritt z. B. durch die Messung
einzelner Photonen auf und ldsst sich tiber eine Poisson-Verteilung model-
lieren, die das Auftreten von unabhéngigen Zufallsereignissen beschreibt.
Mit zunehmender Anzahl gemessener Photonen néhert sich diese Poisson-
Verteilung einer Normalverteilung an. Sogenanntes Dunkelrauschen ist da-
gegen unabhingig von einfallendem Licht und kann auf elektronische, aber
auch auf thermische Effekte zuriickgefiihrt werden, d. h. es wird durch hohe
Detektortemperaturen noch verstérkt. Insbesondere lédsst sich diese Art Rau-
schen mithilfe einer Gaul3-Normalverteilung modellieren. Neben Schrot-
und Dunkelrauschen gibt es noch eine weitere Noise-Arten, die durch die
Aufnahme- und Auslesetechnik verursacht werden, wie z. B. zuféllige Bitfeh-
ler, die bei der Datentibertragung auftreten, oder Ausleserauschen (“Readout
Noise”), welches hauptséchlich durch den Ausleseverstirker verursacht wird.
Hinzu kommt periodisches Rauschen, welches z. B. durch elektrische oder
elektromechanische Storungen wéhrend der Bildaufnahme verursacht wird,
sowie sogenanntes “Fixed Pattern Noise”, wobei es sich um ein spezifisches
Rauschmuster des Sensor-Arrays handelt, welches aufgrund unterschied-
licher Empfindlichkeiten der einzelnen Pixel entsteht (bei identischer) Be-
leuchtung. In diesem Zusammenhang sollten auch noch Pixelfehler auf dem
Detektor erwdhnt werden, speziell tote Pixel (“dead pixel”), die immer dun-
kel sind, oder tiberempfindliche Pixel (“hot pixel”), sowie Pixel, die immer
dieselbe (maximale) Intensitédt anzeigen (“stuck pixel”).

Die Abbildung 3.11 zeigt einige Beispiele fiir besonders hiufig vorkommen-
de bzw. markante Rauscharten, wobei das jeweilige Rauschen simuliert
wurde. Die Unterschiede sind ohne VergréBerung nicht unbedingt auf den
ersten Blick erkennbar. Ein Vergleich speziell der grauen, sowie der dunklen
Bildregionen verdeutlicht die Unterschiede.

Je nach Anwendungsbereich kdnnen allerdings auch andere Rauschtypen
an Signifikanz gewinnen. So tritt Chrominanzrauschen (bzw. Farbrauschen)



78 3 Theoretische Grundlagen

Abbildung 3.11: Simulationsbeispiele hdufig vorkommender Rauschtypen.
Obere Reihe (v.l.n.r.): Gauss-verteiltes Rauschen, Salz-und-Pfeffer Rauschen,
Farbrauschen; untere Reihe (v.l.n.r.): Poisson-verteiltes Rauschen, Gauss-
verteiltes Rauschen mit lokaler Varianz, Speckle-Rauschen

nur auf, wenn mehrere Farbkanéle vorhanden sind. Zudem gibt es spezielle
Farbkameras, bei denen ein einzelner Farbkanal (z. B. der blaue Kanal) mehr
verstdrkt wird als die anderen, so dass dieser Kanal entsprechend auch mehr
Rauschen aufweisen kann. Aufgrund der Wellenldngendifferenzen zwischen
den einzelnen Kanélen, kann es insbesondere infolge von Turbulenz zu einer
Verstarkung des Farbrauschen kommen.

Des Weiteren ist die Sensorik thermischer Bildgeber, neben “normalem”
Bildrauschen, auch sehr anfillig fiir systematisches Rauschen in Form von
starker Streifenbildung, z. B. verursacht durch das mechanische Abtastsys-
tem dlterer 2-D Spiegelscanner, sowie fiir ganze Cluster von benachbarten
toten sowie heillen Pixeln. Wenngleich moderne IR-Systeme inzwischen
bereits von Herstellerseite mit entsprechenden Korrekturmethoden ausge-
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stattet sind, kann zusétzlich eine spezifische Rauschreduktion erforderlich
sein, da es ansonsten bei der Anwendung von Verfahren zur Turbulenzkor-
rektur zu einer tiberméfigen Rauschverstarkung kommen kann.

An dieser Stelle sollte noch erwdhnt werden, dass von der EMVA zur Verein-
heitlichung von Messverfahren und der Datendarstellung der Standard 12883
definiert wurde, um Vergleiche von Kameras und Bildsensoren zu erleich-
tern. Dies schlie(3t insbesondere auch die Spezifikation der Rauschcharakte-
ristiken solcher Gerite mit ein.

9 https://www.emva.org/standards-technology/emva-1288/


https://www.emva.org/standards-technology/emva-1288/




Bewegungskompensation

Die meisten der existierenden Bildverarbeitungsmethoden zur Turbulenz-
korrektur zielen nach wie vor ausschlielich auf die Verarbeitung von stati-
schen Szenen ab. Dennoch besteht ein zunehmendes Interesse daran, diese
Methoden so zu modifizieren, dass auch bewegte Objekte bertiicksichtigt
werden kénnen. Das bedeutet allerdings, dass auch Bewegungsunschérfe
auftreten und die Bildqualitit beeintréachtigen kann.

Im Umgang mit atmosphdérisch gestorten und verrauschten Daten ist es
beinahe unvermeidlich, zur Reduzierung dieser Stérungen irgendeine Form
der Mittelwertbildung anzuwenden. Infolgedessen ist die Bildstapelung zu
einem integralen Bestandteil diverser Turbulenzkompensationsverfahren
geworden. Das bedeutet allerdings auch, dass jede Bewegungsunschérfe
(real oder durch die Mittelung erzeugt) proportional zur Anzahl der gesta-
pelten Bilder verstarkt wird. Dadurch kann eine Art “Geistereffekt” auftreten
wie das Beispiel in der Abbildung 4.1 demonstriert. Darin sind das erste
und letzte Bild einer Reihe von 150 Frames abgebildet, die den Beginn und
das Ende einer Bewegung zeigen, sowie der Durchschnitt der 150 Frames,
worin die Person in Bewegung (rechts im Bild) transparent zu sein scheint.
Nicht zuletzt daran lédsst sich die besondere Bedeutung erkennen, die der
Verwendung von Bewegungsdetektion und Bewegungsschédtzung zur Bewe-
gungskompensation im Zusammenhang mit Turbulenzkorrekturverfahren
zukommt .

81
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Abbildung 4.1: Beispiel fiir den “Geistereffekt”, der durch Bewegung bei der
Mittelwertbildung entsteht. Links u. Mitte: Einzelbilder von Anfang bis Ende
des Bewegungsablaufs; rechts: zugehoriger Mittelwert (150 Frames)

4.1 Situationsabhangige Bewegung

Im Kontext turbulenzgestorter Bildaufnahmen kénnen grundsitzlich die
folgenden vier Situationen unterschieden werden:

1. Statischer Beobachter, statische Szene.
2. Dynamischer Beobachter, statische Szene.
3. Statischer Beobachter, dynamische Szene.

4. Dynamischer Beobachter, dynamische Szene.

Der “Beobachter” entspricht hier dem beobachtenden bzw. bildgebenden
Sensorsystem, z. B. einer Kamera. Entsprechend bezieht sich der “statische”
Beobachter auf eine unbewegliche Kamera, die z. B. auf einem Stativ steht,
ebenso wie sich der “dynamische” Beobachter auf eine bewegte Kamera
bezieht, die z. B. schwenkt oder von Hand gefiihrt wird.

Bei der “Szene” handelt es sich demgemé& um die vom Sensorsystem erfass-
te 2-D Projektion der real beobachteten dreidimensionalen Umgebung mit
statischem oder dynamischem Bildinhalt. Diese Szene wird als dynamisch
bezeichnet, sofern sie ein oder mehrere bewegte Objekte enthilt.
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4.1.1 Bewegungsdetektion

Bei der Bewegungsdetektion in Bilddaten geht es um die Segmentierung
von Vorder- und Hintergrund, d. h. um die grundsétzliche Unterteilung der
abgebildeten Szene in dynamische Elemente (Vordergrund) und in statische
Elemente (Hintergrund). Im Kontext der Turbulenzkorrektur bedeutet dies,
dass statische und dynamische Bildelemente separat behandelt und kor-
rigiert werden konnen, z. B. indem unterschiedliche Parameter verwendet
werden oder auch verschiedene Methoden angewendet werden.

Jede Bewegung verursacht Anderungen zwischen aufeinanderfolgenden
Bildern einer Sequenz. Bei der “Kamerabewegung” handelt es sich aus-
schlieRlich um Bewegungen auf globaler Ebene, welche zu Anderungen des
gesamten Bildes fithren. Individuelle “Objektbewegung” beschreibt dagegen
in erster Linie Bewegungen auf lokaler Ebene, so dass es nur zu Anderungen
einzelner Bildbereiche kommt. Vorausgesetzt ist hier, dass die Objektgroe
(in der Bildebene) kleiner als die Bildgrofe ist. “Turbulenzbewegung” be-
zieht sich wiederum auf die scheinbaren Bewegungen, welche aufgrund
optischer Turbulenz wahrgenommen werden. In Abhéngigkeit von der vor-
liegenden Turbulenzstirke konnen sich diese Bewegungen sowohl global
als auch lokal auswirken. Es lassen sich also drei Hauptbewegungstypen
unterscheiden:

* Kamerabewegung
* Objektbewegung

e Turbulenzbewegung

Situation 1

Die Situation 1 beschreibt den einfachsten Fall, da weder globale Szenenin-
derungen noch individuelle Objektbewegung zu erwarten sind. Stattdessen
wird jede wahrnehmbare Bewegung durch optische Turbulenzeffekte verur-
sacht, wobei das Ausmal dieser Bewegung von der vorherrschenden Stérke
der Turbulenz abhidngt. Dieser Fall wird von allen bekannten Verfahren zur
Turbulenzkorrektur abgedeckt.
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Situation 2

Zur Einschitzung des Schwierigkeitsgrades der Situation 2 kommt es auf die
Art der Kamerabewegung an. Die gleichm&Rige Translationsbewegung eines
langsam schwenkenden Systems (“Panning”) ist z. B. vergleichsweise gut-
artig. Mittels globaler Bildregistrierung aufeinanderfolgender (grof3tenteils
iiberlappender) Frames ldsst sich dieser Fall innerhalb eines Zeitfensters,
das durch die Geschwindigkeit der Schwenkbewegung limitiert ist (und
die gewihlte Pufferlinge), gewissermafen auf die Situation 1 zuriickfiihren.
Wird die Geschwindigkeit zu hoch, wird das Zeitfenster (und damit der Uber-
lappungsbereich) fiir eine effektive Turbulenzkorrektur allerdings zu klein.
In begrenztem Umfang ist eine solche Korrektur dennoch méglich, z. B. in
Form einer Einzelbildkorrektur. Kommt es auerdem auch noch zu Bewe-
gungsunschérfe aufgrund der Kamerabewegung, wird das Korrekturergebnis
zusitzlich beeintrachtigt. Handelt es sich speziell um eine regelméRige Hin-
und Herbewegung (“Swivelling”) kann mittels “Stitching” sogar ein Mosaik
des gesamten abgebildeten Bereichs zusammengesetzt und so das Problem
wiederum in die Situation 1 tiberfiihrt werden.

Im Falle unvorhersehbarer Kamerabewegungen, z. B. durch Schiitteln oder
ruckartige Bewegungen einer von Hand gefithrten Kamera, sieht es wieder
anders aus. Neben globalen Translationsbewegungen miissen auch noch
Rotation und Skalierungs- sowie Schereffeke (d. h. nicht-lineare Translation)
mit berticksichtigt werden. Hinzu kommt, dass Aufnahmen dieser Art in der
Regel von geringer Qualitidt und Aussagekraft sind und durch eine Turbu-
lenzkorrektur kaum an Informationsgehalt gewinnen wiirden. Der Aufwand
wiirde den méglichen Gewinn bei weitem tibersteigen, daher wird dieser
Spezialfall im Rahmen dieser Arbeit auch nicht explizit behandelt.

Situation 3

Ein typisches Anwendungsszenario fiir die Situation 3 entspricht einem
statischen Sensorsystem, mit dem tiber eine gréRere Entfernung ein oder
mehrere bewegte Objekte beobachtet werden, z. B. Personen oder Fahrzeuge.
Dies bedeutet, dass nur mit Bewegungen auf lokaler Ebene zu rechnen ist,
wobei die wesentliche Aufgabe darin besteht, gerichtete lokale Objektbewe-
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gungen von ungerichteten lokalen Turbulenzbewegungen zu unterscheiden.
Auf diesen Anwendungsfall richtet sich das Hauptaugenmerk dieser Arbeit.

Situation 4

Die Situation 4 ist natiirlich die komplexeste von allen, da hier drei Bewe-
gungsarten zugleich zu berticksichtigen (und insbesondere voneinander
zu trennen) sind. Wie bereits in der Situation 2 kann ein Verfahren zur Tur-
bulenzkorrektur auch hier nur dann sinnvoll eingesetzt werden, wenn es
sich bei der Kamerabewegung im Wesentlichen um eine nicht zu schnelle
Translationsbewegung handelt, so dass Kamera- und Objektbewegungen
separierbar sind.

4.1.2 Bewegungsschatzung

Bei der Bewegungsschdtzung geht es darum, Bewegungsvektoren zu extra-
hieren, mit deren Hilfe sich ein Bild in ein anderes transformieren lisst.
Ublicherweise handelt es sich dabei um aufeinanderfolgende Einzelbilder
einer Videosequenz. Diese Aufgabe ist ein im mathematischen Sinn schlecht
gestelltes Problem, da es sich bei Bildern um 2-D Projektionen der realen
3-D Welt handelt. Entsprechend lassen sich Bewegungsvektoren nie wirklich
exakt berechnen, weshalb man i. A. von Bewegungsschitzungen anstelle
von Berechnungen spricht.

Bewegungsvektoren konnen einerseits eine globale Bewegung des gesamten
Bildes beschreiben oder aber nur die lokale Bewegung einzelner Bildelemen-
te. Sogenannte “Block Matching” (BM)-Algorithmen (siehe auch Abschnitt
4.2) unterteilen Bilder beispielsweise in gleichgrofle (typischerweise quadra-
tische) Pixelblocke, wobei es theoretisch auch moglich ist, ganz willkiirliche
Formen zu verwenden oder sogar einzelne Pixel. Generell lassen sich Verfah-
ren zur Bewegungsschitzung in zwei Hauptkategorien einteilen: indirekte
merkmalsbasierte Methoden und direkte Methoden.

Beim merkmalsbasierten Ansatz wird zundchst separat fiir jedes Bild eines
Bildpaares eine Menge von charakteristischen Punkten bestimmt, z. B. unter
Verwendung des “Harris Corner”-Detektors. Korrespondenzen zwischen
den Punktmengen, und damit entsprechend auch zwischen den Bildern,
werden unter Ausnutzung der statistischen Eigenschaften der Punkte und
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ihrer lokalen Umgebung hergestellt. Ein Uberblick iiber merkmalsbasierte
Methoden findet sich in [Tor00].

Direkte Methoden zur Bewegungsdetektion stiitzen sich im Allgemeinen
auf die Unterschiede zwischen zwei oder mehreren aufeinanderfolgenden
Bildern. Hierbei werden pixelbasierte Fehlermalle eingesetzt und fiir jedes
Pixel eine Korrespondenz bestimmt. Damit eng verwandt ist das Konzept
des “Optischen Flusses” (OF), bei dem Bewegungsvektoren der wahrgenom-
menen Pixelbewegung entsprechen. Verfahren zur OF-Bestimmung kénnen
zu den direkten Methoden gezahlt werden ebenso wie BM-Verfahren. Eine
allgemeine Ubersicht {iber direkte Methoden findet sich in [Ira00], wihrend

Hor81] eine genauere Beschreibung des OF-Konzeptes bietet.

4.1.3 Abhangigkeit vom Szeneninhalt

Algorithmen zur Kompression von Videodaten, wie z. B. die im ndchsten
Abschnitt beschriebenen BM-Algorithmen, speichern nicht jedes Bild einer
Sequenz einzeln, sondern detektieren und codieren lediglich die Anderun-
gen (und speziell Bewegungen) zwischen aufeinanderfolgenden Frames.
Dazu miissen sie Verdnderungen aller Art beriicksichtigen, d.h. nicht nur
Objekte, die sich bewegen, sondern auch Kamerabewegungen und Anderun-
gen des Hintergrunds miissen einbezogen werden. Die Abbildung 4.2 zeigt
die verschiedenen Fille, die auftreten konnen mit aufsteigendem Komplexi-
titsgrad, wobei (a) der einfachste Fall ist, da keinerlei Anderungen vorliegen,
und (e) der komplexeste, da bei einem Szenenwechsel das gesamte Bild neu
codiert werden muss.

Die Bewegungsvektoren selbst sind bei diesen Algorithmen von unterge-
ordneter Bedeutung. Beim Objekttracking ist dies dagegen ganz anders,
denn hier sind es hauptséchlich die Bewegungen der einzelnen Objekte,
die interessieren. Alles andere, d.h. der Hintergrund, geringfiigige Kame-
rabewegungen ebenso wie vernachldssigbare, kleinere Bewegungen (z. B.
verursacht durch Regen, Schnee, fallende Blétter, etc., und insbesondere
auch durch atmosphirische Turbulenz) muss wie Rauschen herausgefiltert
werden. Entsprechend gibt es eine ganze Anzahl von potentiellen Schwie-
rigkeiten fiir jede Art von Bewegungsdetektions- und Trackingalgorithmen,
von denen die wesentlichen die folgenden sind:
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o) o
la)
-
- T
Keine Anderung (b) Original (d) Szenenwechsel
(c‘l’
(=] . [as) (=)
Beleuchtungsdanderung Einzelne Objektbewegung Kameraschwenk
(nach rechts) (nach links)

Abbildung 4.2: Mogliche Szenarien in Videosequenzen

e Okklusion, d.h. vollstindige oder Teilverdeckung von einem oder
mehreren Objekten (méglicherweise gegenseitig)

» Verschwindende Objekte, die sich z. B. aus dem Bild heraus bewegen
* Neue Objekte, die sich z. B. erst in das Bild hinein bewegen

* Objekte, die ihre Form verdndern, z. B. weil sich der Aspektwinkel
zwischen Objekt und Beobachter verdndert

e Objekte, die als Hintergrund erscheinen, z. B. weil sie sich nicht oder
nur wenig vom Hintergrund unterscheiden (dhnliche Farbe, Form,
etc.)

* Objekte, die als Rauschen erscheinen, z. B. wenn sie sich in dunkle
oder neblige Bildregionen bewegen, aber auch wenn sie (noch) zu
weit entfernt und zu klein im Bild sind

¢ Rauschen mit dhnlichen Charakteristiken wie echte Szenenelemente,
wie z. B. Regen oder Schnee
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¢ Globale Beleuchtungsdnderungen, z. B. dadurch, dass eine Wolke tem-
porér die Sonne verdeckt oder eine Lichtquelle in der Szene ein- oder
ausgeschaltet wird

¢ Lokale Beleuchtungsdanderungen, z. B. weil sich Lichtreflexionen an
der Oberfldche eines Objekts aufgrund von Bewegungen des Objekts
(oder der Lichtquelle) andern kénnen

* Das sogenannte Apertur-Problem tritt in homogenen Bildbereichen
auf, wenn diese groBer sind als die (Teil-)Flache (z. B. ein Block), fiir
die eine Bewegung bzw. Anderung ermittelt werden soll

Inzwischen wurden zahlreiche mehr oder weniger anspruchsvolle Verfahren
entwickelt, insbesondere in der Robotik oder fiir Uberwachungs- und Auf-
klarungsaufgaben, die eine solche Analyse des vorliegenden Szeneninhalts
einschlieen und in der Lage sind, diverse dieser limitierenden Faktoren,
wenn auch nicht alle, zu tiberwinden. Allerdings ist es solchen Algorithmen
nur dann méglich, die Anderungsinformationen in Form von (geschitzten)
Bewegungsvektoren korrekt zu interpretieren und ggfs. ein Modell der sicht-
baren Szene zu erstellen, falls einerseits hinreichendes a priori Wissen tiber
den vorliegenden Szeneninhalt verfiigbar ist und andererseits bestimmte
Annahmen getroffen werden kénnen, welche die limitierenden Faktoren
signifikant einschréanken kénnen. A priori Wissen tiber Szeneninhalt kann
beispielsweise bedeuten, dass ein Roboter sich nur innerhalb von Biirordu-
men bewegt, in denen z. B. der Boden ein bekanntes Muster aufweist, das bei
der Navigation helfen kann. In diesem Fall ist allerdings davon auszugehen,
dass atmosphérische Einfliisse weder bei der Bilddatenerfassung noch bei
der Datenauswertung eine Rolle spielen.

“Block Matching” (BM)-Algorithmen (s. Abschnitt 4.2) sind vergleichsweise
unkompliziert und benétigen tiblicherweise kein derartiges a priori Wissen.
Das ist von Vorteil vor dem Hintergrund, dass die Zielsetzung hier letzt-
endlich die Korrektur atmosphérischer Turbulenzeffekte in Bilddaten ist.
Ublicherweise kénnen fiir Daten, die eine solche Korrektur benétigen, in
der Regel nur wenige Vorannahmen gemacht werden, wobei zumeist einige
Informationen iiber das verwendete Sensorsystem vorliegen und gelegent-
lich auch Messdaten zur Schitzung der Turbulenzstédrke zum Zeitpunkt der
Aufnahme verfiigbar sind. Das bedeutet nicht, dass zusétzliche Informatio-
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nen iiber den vorliegenden Szeneninhalt (sofern verfiigbar) nicht genutzt
werden kénnen, um das Korrekturergebnis zu verbessern. Sollten also bei-
spielsweise die Groe eines beobachteten Objekts und die Entfernung vom
Objekt zum Sensor bekannt sein, ist es u. a. moglich tiber die korrespondie-
rende Grol3e des Objekts in der Bildebene auf eine geeignete Blockgrofie fiir
einen der BM-Algorithmen in Abschnitt 4.2 zu schlieSen. BM-Algorithmen
konnen auch eingesetzt werden, um ganz grundsitzlich Objektbewegungen
zu detektieren, vorausgesetzt die Eigenbewegungen der Objekte sind gréer
als die scheinbaren Bewegungen aufgrund atmosphérischer Turbulenz.

4.2 “Block Matching”-Algorithmen

“Block Matching” (BM)-Algorithmen sind Standardverfahren zur Kompres-
sion von Videodaten, bei denen Anderungen zwischen zwei Frames, und
insbesondere wahrgenommene Bewegungen, detektiert und codiert wer-
den. Hierzu wird ein Einzelframe typischerweise in gleichgrof3e quadratische
(nicht tiberlappende) Blocke der Grolle B unterteilt. Jede Bewegung bzw.
Anderung in Bezug auf den vorangegangenen Frame in der Sequenz wird
blockweise detektiert. Genauer wird jeder der Blocke {iber einen vorgegebe-
nen Suchraum (auch “Search Space” genannt) von bis zu N Pixeln in jeder
Richtung verschoben, so dass er bestmoglich mit dem korrespondierenden
Block im nachfolgenden Frame iibereinstimmt. Die jeweils resultierenden
Verschiebungen werden in Form von Verschiebungsvektoren (“Shift Vec-
tors”) bzw. Bewegungsvektoren (“Motion Vectors”) beschrieben, die aus
horizontalen und vertikalen Komponenten 6x bzw. §y bestehen. Hierbei
ist zu beachten, dass nur Verschiebungen kleiner oder gleich der halben
Blockgrolle sinnvoll bestimmt werden konnen, d. h. es muss N < B/2 sein.
Ansonsten wiren nicht mehr genug Informationen im Uberlappungsbereich
enthalten, um diese Entscheidung treffen zu kénnen.

Es muss auch erwdhnt werden, dass sich der Einsatz von BM-Algorithmen
zur Bewegungskompensation bei atmosphaérischer Turbulenz in einem klei-
nen, aber signifikanten Punkt von der Standardanwendung (Kompression
von Videodaten) unterscheidet. Es geht nicht darum, Neues mit Hilfe alter
Informationen zu codieren, sondern darum Neues mit Hilfe von Vorwissen
zu korrigieren. Statt die Bewegungen des vorherigen Bildes I;_; in Bezug auf
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das aktuelle Bild I; zu bestimmen, werden daher die Bewegungen des aktu-
ellen Bildes I; in Bezug auf ein gegebenes Referenzbild R; bestimmt. Dies
geschieht, um turbulenzbedingte lokale Bildbewegungen (“Image Dancing”)
zu kompensieren, bei denen sich einzelne Bildbereiche in verschiedene
Richtungen bewegen. In Ermangelung von “Ground Truth” Daten, die es im
Fall realer Turbulenzaufnahmen in der Regel gar nicht gibt, kann beispiels-
weise ein gleitender Mittelwert als Referenz R; dienen. Je nach Anzahl der
gemittelten Bilder (und Turbulenzstérke) liegt der Vorteil bei einem solchen
Mittelwert darin, dass sich kleine Bildwegungen statistisch ausmitteln, wo-
durch R; potenziell korrektere Informationen iiber die (statische) Geometrie
der abgebildeten Szene enthélt als das vorherige Bild I;_;. Der Nachteil liegt
in der erhdhten Unschérfe. Mittelungsbedingt gehen feine Details verloren,
so dass Ubereinstimmungen zwischen korrespondierenden Blocken u. U.
nicht korrekt gefunden werden kénnen.
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Abbildung 4.3: Illustration des “Block Matching” Grundprinzips

Abbildung 4.3 illustriert das BM-Grundprinzip mit der Neuanordnung indi-
vidueller Pixelblécke in Bezug auf ein gegebenes Referenzbild. Die Grafik
lasst Bereiche erkennen, in denen mehrere Blocke {iberlappen, ebenso wie
Liicken, in die gar kein Block eingepasst wurde. Dementsprechend ist der
Einsatz eines Interpolationsverfahren erforderlich. Um Blockstrukturen im
Endergebnis zu vermeiden, kann das BM auch als “Sliding Neighbourhood”
Operation, d. h. mit iberlappenden Bl6cken, implementiert werden. Falls
die entsprechend hohe Berechnungsdauer unerwiinscht sein sollte, besteht
auch die Moglichkeit Hamming-Windows o. A. zu verwenden, um tiberla-
gerte Blocke ineinander zu blenden.
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Die folgenden Abschnitte bieten einen Uberblick iiber die interessantesten
der untersuchten BM-Methoden, wobei die wesentlichen Unterschiede in
den Suchmustern bestehen, die zur Bestimmung der bestmoglichen Ver-
schiebung verwendet werden. Die Auswahlkriterien waren hierfiir zualler-
erst die Qualitédt der Ergebnisse gefolgt von der Geschwindigkeit bei der
Ausfiihrung der Berechnungen. Dies wird insbesondere in den Veroffentli-
chungen [Huell], [Huel2a],sowie [Huel6] detailliert.

4.2.1 Vollstandige Suche

Wie die Bezeichnung bereits nahelegt, fiihrt dieser Algorithmus eine voll-
standige Suche des kompletten Suchraums durch. Das heillt, jede mogliche
Suchrichtung wird gepriift und erst nach Abschluss des gesamten Suchvor-
gangs steht die resultierende Verschiebungsrichtung fest. Demzufolge spielt
es auch keine Rolle, in welcher Reihenfolge die einzelnen Richtungen durch-
sucht werden. Entsprechend ist dieser spezielle BM-Algorithmus zugleich
der griindlichste (und potentiell genaueste), sowie erwartungsgemal auch
der (Zeit-)aufwandigste.

Parameter

Die Hauptparameter des Basis-Algorithmus sind die BlockgréB8e B und der
Suchraum N. Jede VergréBerung des Suchraumes erhoht automatisch die
Berechnungskomplexitit gemiR (2N + 1)?, so dass nur SuchraumgréRen
von wenigen Pixeln (z. B. N =< 5) wirklich praktikabel sind, zumindest ohne
effiziente Parallelisierung des Algorithmus. Um Subpixel-Genauigkeit zu
erreichen, miisste der Algorithmus in zwei Stufen implementiert werden:
einmal, um in ganzen Pixel-Schritten die “grobe” Richtung herauszufinden,
und ein zweites Mal, um das Ergebnis auf Subpixel-Ebene zu verfeinern.
Angesichts der ohnehin sehr langen Laufzeiten und des zusétzlich erfor-
derlichen hohen Rechen- und Zeitaufwandes wurde hier jedoch darauf
verzichtet, dieses Verfahren mit Subpixel-Genauigkeit zu implementieren.
Die Wahl der Blockgrofie ist ebenfalls nicht ganz trivial. Einerseits kann
eine grolere BlockgroRe Abhilfe hinsichtlich des Apertur-Problems schaffen,
das in homogenen Bildregionen auftritt, die grofer als B x B Pixel sind.
Andererseits verbessern kleinere Blocke die Objektkonturen.
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Insbesondere hat sich in [Huel2a] gezeigt, dass bei stdrkerer Turbulenz
groBere Blocke (z. B. 32 x 32 px) zu bevorzugen sind, wodurch bessere Er-
gebnisse erzielt werden. Das liegt zum einen an der Tiefpassfilterwirkung
der Atmosphére und zum anderen an der Mittelwertbildung, denn die dar-
aus resultierende Verringerung der Bildschirfe und des Kontrastes hat eine
Ausweitung der unstrukturierten (homogenen) Bildregionen zur Folge.

Algorithmus

Nachfolgend bezeichnen I,, und I,,+; das jeweils n-te bzw. (n+1)-te Einga-
bebild, X = (x,y) T die zugehorigen Pixelkoordinaten (2-D), N die GroRe des
Suchraumes, wobei Ny, 4 = (2N + 1)? die maximale Anzahl an Suchrichtun-
gen angibt, so dass M € Z x Z, M(X) = (0x,6y) den Vektor bezeichnet, der al-
le moéglichen (ganzzahligen) Verschiebungen 6x,8y € {-N,—-(N-1),...,—1,
0,1,2,..., N} enthilt. Alle moglichen “Shift”-Varianten Sil des Eingabebildes
I,, lassen sich somit ausdriicken als:

Sh(E) =I,&+MX), (i=1...,Nnax) (4.1)

“Best Match” Kriterien

Als Entscheidungskriterium, was in diesem Kontext tatsdchlich die “beste”
oder vielmehr “genaueste” Ubereinstimmung ausmacht, kommen diverse
Ansitze in Frage. Der Vorteil einfacher Fehlersummationsmetriken, wie
z.B. dem mittleren absoluten Fehler MAE (“Mean Absolute Error”), dem
mittleren quadratischen Fehler MSE (“Mean Square Error”) oder der Wurzel
aus dem mittleren quadratischen Fehler RMSE (“Root Mean Square Error”)
liegt in ihrer vergleichsweise geringen Berechnungskomplexitdt, wodurch
sie sich relativ schnell berechnen lassen:

1 .
MAE®) = 7 % |len) - Sh)| 4.2)
JeNDh(®)
L i
MSE® = = Y |Lin(@) - Sh(7)| 4.3)
FENDh()

RMSE (X) = VMSE (4.4)
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Hierbei bezeichnen X, Y die Dimensionen der (rechteckigen) Umgebung
Nbh) (“Neighbourhood”) von %. Die beste Ubereinstimmung zwischen I,,11
und S/, erhilt man bei diesen Metriken {iber Minimierung des ausgewihlten
Fehlermalles, wie z. B. fiir RMSE:

BestMatchpyse (I, In+1) = min  (RMSE) (4.5)

i=1,...Nmax

4.2.2 “Adaptive Rood” Suchmuster

Dieser spezielle BM-Algorithmus, vorgeschlagen in [Nie02], setzt sogenann-
te “Adaptive Rood Patterns” (ARP) ein, d. h. adaptive kreuzdhnliche Suchmus-
ter. Dabei handelt es sich um reduzierte Suchmuster mit nur wenigen verteil-
ten Suchpunkten zur Detektion kleiner Bewegungen. Die Geschwindigkeit
und die Genauigkeit solcher Algorithmen hédngen zum einen stark von der
Grolle der Suchmuster ab, zum anderen sind sie mit dem AusmaR des an-
gestrebten Bewegungsvektors verkniipft. Aus diesem Grund arbeitet dieser
Algorithmus in zwei Phasen, eine Initialphase und eine Verfeinerungsphase.
In der Initialphase wird ein ARP verwendet wie z. B. in der Abbildung 4.4
dargestellt ist.

-
oy

Abbildung 4.4: Beispiel fiir AR-Suchmustertypen. Der blaue Punkt markiert
den aktuellen Block, und griin kennzeichnet die Blocke, die zur Pradiktion
verwendet werden.

Die tatsdchliche Form des ARP wird dynamisch bestimmt in Abhéngig-
keit von préddiziertem Bewegungsverhalten des aktuell betrachteten Blocks.
Diese Préddiktion basiert auf bereits verfiigbaren (d. h. geschitzten) Bewe-
gungsvektoren benachbarter Blocke und nutzt den Umstand aus, dass sich
benachbarte Blocke mit hoher Wahrscheinlichkeit in &hnlicher Weise verhal-
ten, d. h. mit vergleichbarer Geschwindigkeit in &hnlicher Richtung bewegen
werden. In der Verfeinerungsphase wird eine weitere lokale Suche auf Pi-
xelebene ausgefiihrt zur Verfeinerung der Ergebnisse aus der Initialphase.
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Hierfiir wird dieses Mal ein festes Suchmuster mit Einheitsgro3e verwendet
und vollstdndig durchsucht. Typischerweise handelt es sich dabei entweder
um die direkte 4-er oder 8-er Nachbarschaft des aktuell betrachteten Pixels.
Da der ARP-Algorithmus reduzierte Suchmuster einsetzt, arbeitet er wesent-
lich schneller als die vollstandige Suche bei vergleichbar guten Endergebnis-
sen.

4.2.3 Kreuzkorrelation

Alternativ kann z. B. eine Suche auf Basis der Kreuzkorrelation durchgefiihrt
werden. Dabei handelt es sich um ein dhnlich direktes Block-Matching wie
bei der vollstindigen Suche. Allerdings setzt man hier die normalisierte
Kreuzkorrelation als Kriterium der besten Ubereinstimmung zwischen kor-
respondierenden Blocken ein, woraus sich die resultierende Verschiebung
direkt ableiten ldsst.

Die (normalisierte) Kreuzkorrelations eines Bildes bzw. Blocks f(x,y) und
eines Templates bzw. korrespondierenden Blocks g(u,v) ldsst sich tiber die
Korrelationskoeffizienten y .., ausdriicken wie folgt:

z [, = fuu] [gx—uy—v)-g]
Y xcorr (U, V) = & (4.6)
= 2 _12
\/ny [fx) = fuv) ny [gx—uy-v)—g]

Dabei bezeichnet g den Mittelwert des Templates bzw. Blocks g und f,,,,
den Mittelwert des Areals von f, das unter dem Template bzw. Block g liegt.
Demnach kann f zwar grofer sein aber nicht kleiner als der Block g, der um
die Koordinaten (u,v) zentriert ist, welche wiederum innerhalb des (lokalen)
Koordinatenbereichs (x,y) von f liegen. Die Abweichung der Position des
Korrelationsmaximum vom Zentrum liefert die relative lokale Verschiebung
zwischen f(x,y) und g(u,v). Die Normalisierung ist wichtig fiir Robustheit
gegeniiber von Intensitdtsvariationen, z. B. infolge von Anderungen in der
[Nlumination.

Die Abbildung 4.5 visualisiert das Ergebnis einer Kreuzkorrelation am Bei-
spiel zweier Einzelframes einer Bildsequenz mit simulierter Turbulenz, wo-
bei 4.5a und 4.5b eine 2-D bzw. 3-D Ansicht zeigt, wihrend 4.5¢ einen Ein-
zelframe der Sequenz zeigt.
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(a) 2-D Ansicht (b) 3-D Ansicht (c) Einzelbild

Abbildung 4.5: Beispielhafte Visualisierung des Korrelationsergebnisses (a)
2-D und (b) 3-D fiir (c) zwei Frames einer simulierten Bildsequenz.

Die Kreuzkorrelation bietet den Vorteil, dass die erforderliche Berechnungs-
komplexitidt von der GroRe des Suchraumes unabhéangig ist und mit relativ
einfachen Mitteln (d. h. vorherige Bildvergroerung) eine hohe Subpixelge-
nauigkeit erreicht werden kann. Prinzipiell konnte immer das gesamte Bild f
nach der besten Ubereinstimmung mit dem jeweiligen Block g durchsucht
werden. Dies wiirde allerdings die Fehleranfilligkeit erh6hen, da z. B. sich
wiederholende Strukturen im Bild mehrere Korrelationsmaxima und damit
mehrere mogliche Verschiebungsvektoren erzeugen wiirden. Im Normalfall
ist diese Art der Implementierung daher wenig sinnvoll.

Auch bei der Kreuzkorrelation gilt, dass nur Verschiebungen in heterogenen
Bildregionen sinnvoll geschétzt werden kénnen. Der Korrelationskoeffizient
Y xcorr ist auf das Vorhandensein von Strukturen im Bild angewiesen, da er in
Regionen ohne Varianz (d. h. homogenen Bereichen) nicht definiert ist.
Eine mogliche Losung besteht darin, die lokale Varianz oder Standardab-
weichung einzusetzen (oder auch Lakunaritit), um homogene Bereiche zu
identifizieren und Bewegungsvektoren dort entsprechend direkt auf Null zu
setzen (s. a. Abschnitt 6.3.2). Im Kontext der Turbulenzkorrektur gewinnt dies
zunehmend an Signifikanz angesichts des Verlustes hoher Frequenzanteile
und dem damit verbundenen Informationsverlust infolge atmosphérischen
Blurrings. Der Grad an Homogenitit wachst mit zunehmender Turbulenz,
wihrend zugleich der Bildkontrast abnimmt.
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4.3 Optischer Fluss

Der Optische Fluss (OF) bezieht sich auf die augenscheinliche Bewegung,
die ein Beobachter wahrnimmt, wahrend er sich selbst durch die 3-D Welt
bewegt. Statische Objekte scheinen sich zu bewegen, obwohl es der Beob-
achter ist, der sich an ihnen vorbei bewegt. Je kleiner die Entfernung zu
den Objekten ist, desto schneller erscheint ihre Bewegung. Im Sinne der
Bildverarbeitung beschreibt OF die Bewegung zwischen aufeinanderfolgen-
den Frames einer Bildsequenz, d. h. es wird die Transformation von einem
Frame in den nichsten beschrieben.

In “Computer Vision”-Anwendungen wird OF-Schétzung oft eingesetzt, um
die Bewegung von Objekten in einem Videostream sofort quantitativ zu
beschreiben, insbesondere in der bewegungsorientierten Objektdetektion
oder fiir Trackingsysteme.

4.3.1 Grundprinzip

Wenn man Objektbewegung schétzen will, muss man unterscheiden zwi-
schen der Bewegung, die im 2-D Bild wahrgenommen wird und der theoreti-
schen Projektion der tatsdchlichen 3-D Bewegung in die Bildebene. Genauer
lasst sich die Bewegung von Objekten in der beobachteten 3-D Szene in
Bezug auf eine abbildende Optik mit Hilfe eines Vektorfeldes beschreiben.
Dieses Vektorfeld enthélt eine zugehorige Geschwindigkeit und Richtung
fiir jeden Punkt des 3-D Objektraums, der nach Projektion in die Bildebene
sichtbar ist.

Differenzielle, d. h. Gradienten-basierte Methoden, wie die von Horn und
Schunck eingefiihrte [Hor81] oder von Lucas und Kanade entwickelte [Luc81],
basieren auf Approximationen der Taylor-Reihe. Das heilt, es werden parti-
elle Ableitungen des Intensitétsbildes I verwendet, wobei I = I(x,y,t), mit
rdaumlichen Koordinaten x,y und zeitlichen Koordinaten .

Es wird die folgende Annahme getroffen: fiir ein Teilstiick eines bewegten
Objekts bleibt die Intensitdt an korrespondierenden Positionen (x,y,?) in
aufeinanderfolgenden Frames einer Bildsequenz konstant, so dass die In-
tensitédt an einer nur wenig entfernten Position und zu einem nur wenig
spdteren Zeitpunkt (x + Ax,y + Ay, t+ At) iibereinstimmen. Damit erhdlt man
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eine Bedingung fiir die Konstanz der Helligkeit, die auch als “Brightness
Constancy Constraint” bekannt ist:

I(x,y,t) = I(x+ Ax,y + Ay, t + Af) (4.7)

Die Intensitédtsverschiebung ldsst sich mittels lokaler Taylor-Approximation
folgendermaflen ausdriicken, wobei R die verbleibenden Terme hoherer
Ordnung bezeichnet:

I(x+Ax,y+ Ay, t+At) = I( t)+61Ax+0[A +aIAt+R (4.8)

X ) ) = XY S S A, .
yray PO M Ty

Nimmt man an, dass es sich um eine lineare Bewegung handelt, d.h. R=0,

ergibt sich die folgende Bedingung:

O s Oy Y pr =0 4.9

o Ty Tt T '
Teilen durch At liefert:

oI Ax oI Ay oI At

A FN TN, (4.10)

ox At 0y At Ot At

Oder anders ausgedriickt, wobei Vy und V), jeweils die Geschwindigkeit in
x- bzw. y-Richtung bezeichnen:

LVi+ LV, = —1, 4.11)

Ungliicklicherweise handelt es sich bei dieser grundlegenden OF-Gleichung
(4.11) um ein im Sinne von Hadamard schlecht gestelltes Problem. Das
bedeutet, um diese Gleichung l6sen zu kdnnen, sind zusédtzliche Bedin-
gungen bzgl. der Glattheit der Bewegung erforderlich. Aus diesem Grund
beinhalten alle OF-Algorithmen Zusatzbedingungen fiir die Schidtzung des
tatsachlichen Flusses, d. h. des Geschwindigkeitsvektorfeldes (u,v) T Eine
Leistungsevaluierung der verbreitetsten Verfahren ist gegeben in [Bar92].

Die Abbildung 4.6a zeigt einen Einzelframe der synthetisch erzeugten Yose-



98 4 Bewegungskompensation

T I I PR EN IR
e I
B I I
B N I
N R RN

R L R
N N NI N NI R
FAEATLEEL AT ST

FAL LS EEL AT
LSS
FEEASSER A

—

e
e

4
il
A
Sl

;
i - i
(a) Yosemite-Testsequenz (b) Optischer Fluss “Ground Truth”

Abbildung 4.6: Optischer Fluss am Beispiel der “Yosemite” Testsequenz.

mite-Sequenz!, bei der es sich um eine beliebte Standardtestsequenz fiir
OF-Schitzungsverfahren handelt. Als Vorlage bei der Erstellung der Sequenz
diente eine digitale topographische Karte mit Bergketten in unterschiedli-

chen Entfernungen?.

Die Sequenz ist Verg_leichsweise komplex, denn sie beinhaltet nicht nur ein
divergierendes OF-Feld, sondern auch Okklusionen, sowie Bewegungsuns-
tetigkeiten und multiple Bewegungen am Horizont. Da es sich um eine
synthetisch erzeugte Sequenz handelt, existieren “Ground Truth”-Daten,
exemplarisch gezeigt in 4.6b. Aus diesem Grund wird diese Sequenz in den
nachfolgenden Abschnitten zur evaluativen Demonstration der vorgestell-

ten Algorithmen herangezogen.

4.3.2 Horn-Schunk

Das Horn-Schunck Verfahren folgt dem bereits erwéhnten, differenziellen
Ansatz zur Schitzung des optischen Flusses. Es handelt sich dabei zudem
um eine globale Methode, die die Annahme trifft, dass der Fluss global, d. h.
iiber dem gesamten Bild glatt ist. Um das Apertur-Problem zu umgehen,

1 http://vision.middlebury.edu/flow/data (Middlebury Optical Flow Evaluation Da-
tasets)
2 http://cs.brown.edu/people/mjblack/Sequences/yosFAQ.html
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wird eine entsprechende globale Glattheitsbedingung eingefiihrt. Diese
bewirkt, dass der Algorithmus Verzerrungen im OF-Vektorfeld minimiert,
wéhrend glattere Losungen bevorzugt werden.

Das OF-Vektorfeld lédsst sich mit Hilfe eines globalen Energiefunktionals
E ausdriicken, welches fiir das Geschwindigkeitsvektorfeld (u,v)” gelost
werden kann:

E:ff[(Ixu+1yv+lt)2+a2(|Au|2+|Av|2)]dxdy (4.12)

Hierbei stehen Iy, I}, und I; jeweils fiir die partiellen Ableitungen der Inten-
sitditswerte entlang der Dimensionen x, y und ¢, d. h. 9//ax, 1/ay und 9!/a:.

Der Horn-Schunck Algorithmus liefert ein relativ dichtes OF-Vektorfeld, in
dem fehlende Informationen in homogenen Regionen anhand der Vektoren
an den Bewegungsbegrenzungen (d. h. beispielsweise an den Ubergingen

Abbildung 4.7: Schitzung des optischen Flusses mittels Horn-Schunk Algo-
rithmus
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zwischen einem Bildbereich mit Bewegung und einem statischen Bildbe-
reich) ergdnzt werden. Ungliicklicherweise bedeutet dies, dass der Algorith-
mus anfilliger ist gegeniiber Rauschen als dies bei lokalen Methoden der Fall
ist, wie z. B. bei dem nachfolgend beschriebenen Lucas-Kanade Verfahren.
Die Abbildung 4.7 zeigt ein Beispielergebnis des Horn-Schunk Verfahrens,

< v
ey

(a) OF-Betrag (b) OF-Orientierung

Abbildung 4.8: Optischer Fluss mittels Horn-Schunk Algorithmus: (a) Betrag
und (b) Orientierung der geschitzten Bewegungsvektoren.

(a) Horizontale Komponente (b) Vertikale Komponente

Abbildung 4.9: Optischer Fluss mittels Horn-Schunk Algorithmus: (a) hori-
zontale und (b) vertikale Komponenten der geschétzten Bewegungsvektoren.
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wobei die Bewegungsvektoren zur besseren Veranschaulichung vergréert,
d. h. nicht mal3stabsgerecht, eingezeichnet sind. Es muss erwahnt werden,
dass die Wahl der Parameter einen grof3en Einfluss auf die resultierende
Qualitdt und Dichte des OF-Vektorfeldes hat.

Die Abbildungen 4.8 und 4.9 visualisieren zwei verschiedene Reprdsentatio-
nen der einzelnen Komponenten des OF-Vektorfelds, wobei 4.8a den Betrag
(Magnitude) und 4.8b den Phasenwinkel (Orientierung) der Bewegungsvek-
toren im OF-Vektorfeld darstellt, wiahrend 4.9a direkt die horizontalen und
4.9b vertikalen Komponenten der Verschiebungsvektoren anzeigt.

4.3.3 Lucas-Kanade

Das dhnlich weit verbreitete Lucas-Kanade Verfahren wurde bereits 1981 in
[Luc81] vorgestellt und folgt ebenfalls einem differentiellen Ansatz. Hierbei

Abbildung 4.10: Schitzung des optischen Flusses mittels Lucas-Kanade
Algorithmus
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handelt es sich um eine lokale Methode, die die Annahme trifft, dass Bildver-
schiebungen zwischen zwei aufeinanderfolgenden Frames einer Sequenz
sehr klein sein miissen, d. h. < 1Pixel. Uberdies wird angenommen, dass
das Geschwindigkeitsfeld [u,v]” innerhalb einer lokalen Umgebung einer
gegebenen Pixelposition (x,y) ndherungsweise konstant ist. Die zugrunde
liegende Gleichung (4.11) kann somit fiir alle Pixel in dieser Umgebung mit-
tels “Least Squares” Methode (d. h. Methode der kleinsten Quadrate) gelost
werden. Das Ergebnis kann weiter verbessert werden, indem bei der Least
Squares Methode eine Gewichtung eingefiihrt wird: Pixel innerhalb der lo-
kalen Umgebung des zentralen Pixels werden in Abhéngigkeit ihrer radialen
Entfernung vom Zentrum gewichtet, wobei Pixel im ndheren Umkreis h6her
gewichtet werden.

Die Abbildung 4.10 zeigt ein Beispielergebnis des Lucas-Kanade Verfahrens,
wobei auch hier die Dichte des resultierenden Vektorfeldes von der Para-
meterwahl abhingt und die Bewegungsvektoren nicht maRstabsgerecht
eingezeichnet sind.

In den nachfolgenden Abbildungen 4.11 und 4.12 sind jeweils die beiden zu
4.8 und 4.9 korrespondierenden Visualisierungen der einzelnen Komponen-
ten des OF-Vektorfelds dargestellt (d. h. Betrag und Phasenwinkel, sowie die
horizontalen und vertikalen Anteile der Verschiebungsvektoren).

Y Ly

ot

(a) OF-Betrag (b) OF-Orientierung

Abbildung 4.11: Optischer Fluss mittels Lucas-Kanade Algorithmus: (a)
Betrag und (b) Orientierung der geschétzten Bewegungsvektoren.
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(a) Horizontale Komponente (b) Vertikale Komponente

Abbildung 4.12: Optischer Fluss mittels Lucas-Kanade Algorithmus: (a) hori-
zontale und (b) vertikale Komponenten der geschétzten Bewegungsvektoren.

Damit auch gro8ere Bewegungen bertiicksichtigt werden konnen, welche
die Annahme der kleinen Bewegungen nicht erfiillen wiirden, wird Lucas-
Kanade typischerweise iiber einen pyramidalen Ansatz implementiert. Ge-
nauer bedeutet dies, dass das Verfahren jeweils auf mehrere Versionen der
Eingabedaten mit unterschiedlicher (reduzierter) Auflésung angewendet
wird (erst grob, dann feiner werdend). Eine weitere Option besteht in ei-
ner zeitlichen und/oder rdumlichen Gaul3-Filterung der Eingabedaten, um
das geschitzte (primér globale) Bewegungsvektorfeld zu gliatten. Dies ge-
schieht allerdings auf Kosten kleinerer, abrupter Bewegungen, die dadurch
unterdriickt werden.

4.3.4 Farneback

Das etwas spéter entwickelte Farnebdck-Verfahren wurde zuerst in [Far03]
vorgestellt. Hierbei werden Bewegungen zwischen zwei Frames mit Hilfe
sogenannter polynomialer Expansion geschitzt. Nach [Far02] handelt es
sich bei polynomialer Expansion um eine Transformation, die ein Signal
an jedem Punkt in eine Menge von Koeffizienten mit Bezug auf ein polyno-
miales lokales Signalmodell iiberfiihrt. Die Expansionskoeffizienten werden
dazu mit Hilfe normalisierter Faltung (im Ortsraum) bestimmt.
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Abbildung 4.13: Schétzung des optischen Flusses mit Farnebédck Algorithmus

Bei der OF-Schidtzmethode von Farneback wird zuerst fiir jedes Pixel eine
vorher festgelegte lokale Umgebung mittels polynomialer Expansion zwei-
ten Grades approximiert. Die korrespondierenden Expansionskoeffizienten
hierfiir lassen sich mit Hilfe der Ausgleichsrechnung bestimmen, genauer
der Methode der kleinsten Quadrate, wobei ein dhnliches Gewichtungssche-
ma verwendet wird wie bereits fiir das Lucas-Kanade Verfahren umrissen.
Das Farnebick-Verfahren folgt dann einem pyramidalen Ansatz, bei dem
multiple Auflésungen zur Bestimmung des OF-Vektorfeldes eingesetzt wer-
den, zuerst grob danach immer feiner werdend. Es gilt die Annahme, dass
sich Verschiebungen nur langsam verdndern, so dass a priori Informationen
tiber die lokale Umgebung eines Pixels verwendet werden kdnnen. Dar-
tiber hinaus kann das Vektorfeld mit den Verschiebungen fiir ein lineares
Bewegungsmodell des Geschwindigkeitsvektorfelds [u,v]” parametrisiert
werden, um die Robustheit des Verfahrens zu verbessern. Im Gegensatz zu
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Horn-Schunck und Lucas-Kanade ist die hohe Dichte des resultierenden
Vektorfeldes relativ unabhéngig von der Parameterwahl.

Die Abbildung 4.13 zeigt ein reprdsentatives Ergebnis des Farnebéck-Ver-
fahrens wieder am Beispiel der Yosemite-Sequenz, wobei auch hier die
Bewegungsvektoren nicht ma3stabsgerecht eingezeichnet sind.

(a) OF-Betrag (b) OF-Orientierung

Abbildung 4.14: Optischer Fluss mittels Farnebédck Algorithmus: Visualisie-
rung (a) des Betrags und (b) der Orientierung der geschitzten Bewegungsvek-
toren.

LA s s
(a) Horizontale Komponente (b) Vertikale Komponente

Abbildung 4.15: Optischer Fluss mittels Farnebédck Algorithmus: Visualisie-
rung (a) der horizontalen und (b) der vertikalen Komponenten der geschitz-
ten Bewegungsvektoren.
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Die Abbildungen 4.14 und 4.15 zeigen wie zuvor die beiden zu 4.8 und
4.9 korrespondierenden Visualisierungen der einzelnen Komponenten des
OF-Vektorfelds (d. h. Betrag und Phasenwinkel, bzw. die horizontalen und
vertikalen Anteile der Verschiebungsvektoren).

4.4 Evaluierung

In realen Situationen kénnen sich eine ganze Anzahl von Schwierigkei-
ten ergeben, die im gleichen Malle bei der OF-Schétzung und der Evalu-
ierung von OF-Algorithmen Probleme bereiten kénnen wie bei der BM-
Bewegungsschitzung und der Evaluierung von BM-Algorithmen. Ein be-
liebtes Beispiel fiir eine solche Situation ist eine rotierende Kugel, deren
homogene, unifarbene Oberfliche Lambertsche Reflexionseigenschaften
aufweist. Bei konstanter Beleuchtung durch eine statische Lichtquelle ist es
unmoglich, die Bewegung allein aufgrund visueller Informationen in den
Bilddaten zu eruieren [Hor81]. Auf der anderen Seite wiirde eine Lichtquelle,
die um eine statische Kugel (gleicher Art) herum bewegt wird infolge sich
gleitend verdndernder Intensitdtswerte den Eindruck erzeugen, dass es die
Kugel ist, die sich in Bewegung befindet.

Wie bereits zuvor in Abschnitt 4.1.3 diskutiert, konnen noch eine ganze Reihe
anderer Probleme auftreten, verursacht z. B. durch Schatten, verdnderliche
Beleuchtung, Spiegelungen, Transparenz, komplexe Oberflichenstrukturen,
unstetige Bewegungen, Objekte, die das Blickfeld der Kamera verlassen
oder betreten, Kamera-Noise, Kamerabewegung und - nicht zu vergessen -
atmosphérische Effekte, vor allem Turbulenz.

Wiéhrend BM-Methoden Bewegung generell nur lokal erfassen kénnen, in-
dem Verschiebungen zwischen korrespondierenden Blocken zweier aufein-
anderfolgender Frames geschitzt werden, sind OF-Methoden etwas viel-
seitiger. OF kann einerseits eingesetzt werden, um eine mehr oder weniger
globale Bewegung des Beobachters zu schitzen, z. B. bei einer Kamera, die
auf einer bewegten Plattform befestigt ist und rundum oder von einer Seite
zur anderen schwenkt. Andererseits konnen auch spezifische Bewegungen
individueller Objekte geschétzt werden, z. B. Fahrzeuge oder Personen, die
mehr auf lokaler Ebene betrachtet werden miissen.
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Fiir alle OF-Verfahren gilt, dass im Vorfeld eine Entscheidung dariiber getrof-
fen werden muss, welcher Art Anwendung die hohere Prioritdt beigemessen
werden sollte, da die Parameterwahl in direktem Zusammenhang mit dem
Glattheitsgrad des OF-Vektorfeldes steht. Fiir globale Bewegung sollte die
Glattheit moglichst hoch sein, im Gegensatz zu lokaler Bewegung, bei der
stattdessen eher potenziell abrupte Bewegungen erhalten bleiben sollten.
Das Beispiel in Abbildung 4.16 verdeutlicht diesen Unterschied in der Heran-
gehensweise. Links werden die grof3en, langsamen Bewegungen der Kamera
und des Kindes in der Mitte erkannt, wiahrend rechts die kleinen, schnellen
Bewegungen des Balls und des Kindes an der rechten Seite angezeigt werden.
Welche Priorisierung zu bevorzugen ist, hdngt jeweils von der entsprechen-
den Anwendung ab. Denkbar ist auch eine Kombination der Ergebnisse
aus mehreren Durchldufen mit unterschiedlichen Parametrisierungen. Der
damit verbundene erhéhte Rechenaufwand steht dem allerdings (zurzeit
noch) entgegen.

(b) Lokale Bewegung

< = At ~
- e .

(a) Globale Bewegung

Abbildung 4.16: Optischer Fluss: (a) Globale und (b) lokale Bewegung

4.4.1 Testdaten

In Anbetracht der Tatsache, dass “Ground Truth”-Daten fiir den optischen
Fluss tiblicherweise nicht zur Verfiigung stehen (auler die Daten wurden
kiinstlich erzeugt oder von Hand erfasst und aufgezeichnet), erfolgten die
meisten der durchgefiihrten Tests auf Basis synthetischer Testsequenzen
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aus der Middlebury Datenbanki . Die dort vorliegenden “Ground Truth”-
Daten bestehen aus Geschwindigkeitsvektoren mit je zwei Komponenten
fiir jedes Pixel, d. h. jeweils der horizontalen und vertikalen Komponenten
der Verschiebungen zwischen dem aktuellen und dem vorherigen Frame
mit Subpixel-Genauigkeit. Alle OF-Schidtzmethoden generieren automatisch
dieselbe Art von Information fiir jedes Pixel. Da bei BM-Methoden pro Block
jeweils nur ein einziger Verschiebungsvektor ermittelt wird, wurde diese
Information allen im Block enthaltenen Pixeln zugewiesen, um den direkten
Vergleich von OF- und BM-Methoden zu erleichtern.

Auf den folgenden Seiten sind zum Vergleich exemplarische Ergebnisse der
hier vorgestellten BM-Methoden (vollstindige Suche, “Adaptive Rood” Such-
muster und Kreuzkorrelation) gezeigt, gefolgt von den korrespondierenden
Ergebnissen der aufgefiihrten OF-Schéitzverfahren (Horn-Schunck, Lucas-
Kanade, sowie Farnebéck). Verwendet wurde hierfiir die sogenannte “Grove”
Sequenz, bei der es sich um eine synthetischen Bildfolge handelt, die eben-
falls der Middlebury Datenbank® entstammt und fiir die “Ground Truth”
Daten verfiigbar sind. Zum besseren Verstindnis des Bewegungsinhalts
der vorliegenden Szene ist in der Abbildung 4.17a zunédchst ein Einzelbild
der Sequenz gezeigt, sowie das zugehorige Differenzbild in Bezug auf den
ndchsten Frame der Sequenz in der Abbildung 4.17b.

(a) Einzelbild (b) Differenzbild

Abbildung 4.17: Beispielsequenz “Grove”

3 http://vision.middlebury.edu/flow/data


http://vision.middlebury.edu/flow/data
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4.4.2 Bildhomogenitat

Die lokale Standardabweichung kann sehr gut zur Beurteilung der Homo-
genitdt bzw. Heterogenitdt von Bilddaten eingesetzt werden. Dies ist insbe-
sondere aufgrund des Apertur-Problems relevant, denn groRe homogene
Bereiche bereiten allen der hier vorgestellten Verfahren zur Bewegungsschét-
zung Probleme. Entsprechend liefert die “Homogenitédtskarte” in Abbildung
4.18 Hinweise darauf, wo die verschiedenen Algorithmen keine zuverldssi-
gen Werte liefern kénnen (d. h. in den dunklen Regionen). Somit kann die
Karte 4.18a gewissermafien als Indikator fiir die erreichbare Zuverlédssigkeit
eines Algorithmus dienen, die umso hoher ist, je heller die Karte ist. Die
bindrisierte Version 4.18b zeigt hauptséchlich wo es sinnvoll ist, ermittelte
Werte zu berticksichtigen (weilf) und wo nicht (schwarz).

Zur Erstellung dieser speziellen Art von Homogenitétskarte wird die Stan-
dardabweichung fiir ein Einzelbild (oder auch fiir ein Array aus mehreren
Frames) blockweise ermittelt, unter Einsatz einer ganzen Reihe von verschie-
denen Blockgréen. Anschliefend wird an jedem Pixel der Mittelwert (oder
Median) aus den Ergebnissen aller Blockgroen bestimmt und das Ergebnis
auf das Intervall [0,1] skaliert. Fiir weitere Details und Alternativen sei auf
den Abschnitt 6.3.2 verwiesen.

(a) STD-Karte (b) Binirkarte

Abbildung 4.18: Homogenitétskarte fiir die “Grove” Sequenz: (a) Karte loka-
ler Standardabweichung und (b) binarisierte Version
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4.4.3 Qualitative Evaluation

Die Ground Truth fiir die “Grove” Sequenz ist in Abbildung 4.19 zu sehen,
wie zuvor aufgeteilt in horizontale 4.19a und vertikale Verschiebungskom-
ponenten 4.19b des OF-Vektorfeldes.

(a) Horizontale Komponente (b) Vertikale Komponente

Abbildung 4.19: Ground Truth fiir “Grove” Sequenz aufgeteilt in (a) horizon-
tale und (b) vertikale Komponenten

Nachfolgend sind in der Abbildung 4.20 die Ergebnisse der drei ausgewéhl-
ten BM-Algorithmen fiir die “Grove” Sequenz dargestellt, angefangen mit der
vollstdndigen Suche (obere Reihe), gefolgt von der “Adaptive Rood Pattern”-
Suche (in der Mitte) und der Suche mittels normalisierter Kreuzkorrelation
(unten). Dabei ist links jeweils die horizontale Komponente und rechts die
vertikale Komponente abgebildet.

Es sollte angemerkt werden, dass bei den BM-Verfahren keine besondere
Behandlung der Réander erfolgt ist. Aufgrund dessen weisen die zugehorigen
Ergebnisse dort teils erratische Werte auf. Zur Erhaltung des originalen
Mafstabs und Bildformats wurde aber darauf verzichtet, diese Rédnder fiir
die Darstellung hier zu entfernen.

In analoger Weise sind in der Abbildung 4.21 die Ergebnisse der drei aus-
gewdhlten OF-Schitzverfahren dargestellt, angefangen mit dem Schétzver-
fahren nach Horn-Schunck (obere Reihe), gefolgt von dem Schétzverfahren
nach Lucas-Kanade (Mitte) und dem Schitzverfahren nach Farnebéck (un-
ten).
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Abbildung 4.20: “Block Matching”-Ergebnisse, links: horizontale Komponen-
te, rechts: vertikale Komponente. Oben: vollstdndige Suche; Mitte: “Adaptive
Rood Pattern”-Suche; unten: Korrelationsbasierte Suche
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Abbildung 4.21: “Optical Flow”-Ergebnisse, links: horizontale Komponente,
rechts: vertikale Komponente. Oben: Schitzverfahren nach Horn-Schunck;

Mitte: Schitzverfahren nach Lucas-Kanade; unten: Schitzverfahren nach
Farneback
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Ein Vergleich der vorliegenden Ergebnisse mit der Ground Truth in der
Abbildung 4.19 zeigt, dass die Qualitédt der Ergebnisse stark variiert, wobei
das OF-Schitzverfahren nach Farnebick alle anderen Methoden qualitativ
deutlich tibertrifft. Die gr68ten Abweichungen zur Ground Truth finden
sich erwartungsgemal’ in weitgehend homogenen Bildbereichen wie der
Vergleich mit der Homogenitétskarte in der Abbildung 4.18 verdeutlicht.
Weder das OF-Schitzverfahren nach Horn-Schunck noch das nach Lucas-
Kanade vermag Informationen {iber den optischen Fluss in homogene Regio-
nen hinein zu extrapolieren. Beide sind darauf beschriankt, Verschiebungen
entlang von horizontalen bzw. vertikalen Kanten zu bestimmen, was sich
entsprechend in den Ergebnissen in der Abbildung 4.21 (oben und Mitte)
niederschligt.

Unter den BM-Algorithmen schneiden die vollstdndige Suche und die “Ad-
aptive Rood Pattern” Suche vergleichbar gut ab, wobei die Auflésung der
Ergebnisse naturgemil aufgrund der inhdrenten Blockstruktur wesentlich
geringer ausfillt als die der OF-Schitzverfahren.

4.4.4 Laufzeit-Evaluierung

Bei der Auswahl bestimmter Methoden sollte grundsitzlich immer die Qua-
litdt der Ergebnisse im Vordergrund stehen. In Abhédngigkeit von der ge-
planten Anwendung konnen die Ausfiihrungszeiten der zugrundeliegenden
Algorithmen dennoch eine nicht unwesentliche Rolle spielen. So schwingt
in dieser Arbeit in Bezug auf die Turbulenzkorrektur insbesondere immer
die Frage nach der potenziellen Echtzeitfahigkeit mit. Bei vergleichbar guten
Ergebnissen wird demnach die Geschwindigkeit der entscheidende Faktor
sein bzw. im Umkehrschluss werden bei gleichen Geschwindigkeiten die
besseren Ergebnisse den Ausschlag geben.

Die Abbildungen 4.22 und 4.23 vergleichen die Ausfiihrungszeiten von BM-
Methoden und OF-Schétzverfahren. Hierfiir wurden alle Verfahren auf 8 ver-
schiedene Sequenzen aus aus der Middlebury Datenbank angewendet. Die
Sequenzen sind z. T. von unterschiedlicher Lange (meist 2 oder 7 Frames),
daher wurde pro Sequenz nur die jeweils durchschnittliche Berechnungszeit
pro Bildpaar verwendet. In den Legenden der Plots werden Abkiirzungen
der Verfahrensbezeichnungen verwendet: “ARPS” in 4.22 steht fiir “Adaptive
Rood Pattern Search”, “ES” steht fiir “Exhaustive Search” und “CS” steht fiir
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Abbildung 4.22: Geschwindigkeit von BM-Algorithmen im Vergleich
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Abbildung 4.23: Geschwindigkeit von OF-Schétzverfahren im Vergleich
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“’Correlation based Search’; “FB” in 4.23 steht fiir “Farnebdck”, “HS” steht fiir
“Horn-Schunck”, wobei “HS1” sowie “HS2” unterschiedliche Parameterein-
stellungen bedeuten, und “LK” steht fiir “’Lucas-Kanade'.

Wie zu erwarten war, ist die vollstdndige Suche zugleich die langsamste
aller getesteten Methoden und die beste bzw. genaueste unter den BM-
Methoden, wdhrend das “Adaptive Rood”-Suchmuster bei vergleichbar gu-
ten Ergebnissen am schnellsten unter den BM-Algorithmen abschneidet.
Das Lucas-Kanade Verfahren (mit minimalen Parametereinstellungen) ist
wiederum das insgesamt schnellste aller getesteten Methoden (inklusi-
ve der BM-Methoden). Obwohl das Farnebéck-Verfahren unter den OF-
Schitzverfahren das langsamste ist, liegt die durchschnittliche Ausfiihrungs-
zeit in der gleichen Groflenordnung wie der schnellste BM-Algorithmus.

Anmerkungen

Neben den vorgestellten Verfahren wurden fiir den Vergleich noch ein paar
weitere Varianten mit getestet. Bei den BM-Algorithmen wurde z. B. noch
die “Adaptive Rood Pattern”-Suche mit festem Suchmuster in Diamantform
eingesetzt (in 4.22 mit “DS” gekennzeichnet), wihrend bei den OF-Verfahren
noch das Verfahren nach Lucas-Kanade mit “Derivative of Gaussian” Kan-
tenfilter getestet wurde (in 4.23 mit “LKDoG” gekennzeichnet). Da sich diese
Varianten jedoch weder in der Funktionsweise noch in den Ergebnissen
nennenswert von den zugrundeliegenden Verfahren unterscheiden, wurde
hier darauf verzichtet, ndher auf sie einzugehen.

Es sollte noch angemerkt werden, dass die Ausfithrungszeiten der BM-
Methoden nur deshalb so hoch ausgefallen sind, weil es sich um Software-
Implementationen handelt, wihrend sie typischerweise mit Hardwareunter-
stlitzung eingesetzt werden.

4.4.5 Anwendung auf Turbulenz

Abbildung 4.24 zeigt ein Einzelbild aus einer Beispielsequenz, aufgenommen
im IR, mit simulierter Turbulenz. Fiir die Simulation wurde die GPU-basierte
Software IMOTEP [Monl4] verwendet, wobei ein Ausbreitungspfad von
L =3 km und Turbulenzbedingungen von C? = 10~ m~** angenommen
wurden.
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(a) Original (b) Simulierte Turbulenz

Abbildung 4.24: IR Beispielsequenz (a) originaler Einzelframe, (b) Frame mit
simulierter Turbulenz

Die Abbildung 4.25 verdeutlicht die Hauptproblematik, die alle bekannten
Registrierungsmethoden gleichermalien beeintrachtigt. Besonders deut-
lich wird das in den Detailausschnitten in der Abbildung 4.26. Mit zuneh-
mender Turbulenz verstarkt sich auch der atmosphérische Blurring-Effekt,
wodurch wiederum der Kontrast verringert wird und (Objekt-)Strukturen
verschmieren oder ggfs. ganz verschwinden. Zuriick bleiben (nahezu) homo-
gene Bildregionen, innerhalb denen die Schitzung von Bewegungsvektoren,
wie zuvor bereits erwdhnt, entsprechend fehleranfillig ist.
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Abbildung 4.25: Beispiel fiir OF-Schitzung nach Horn-Schunck bei simulier-
ter Turbulenz

Abbildung 4.26: Beispiel fiir OF-Schédtzung nach Horn-Schunck, Ausschnitts-
vergréflerung. Oben: Kopfdetail, unten: Fuldetail






Deblurring

“Deblurring” bedeutet so viel wie “die Entfernung von Unschérfe” und stellt
einen wesentlichen Aspekt bei den meisten Verfahren zur Turbulenzkorrek-
tur dar. Dies gilt insbesondere fiir alle der hier vorgestellten MCA-Varianten.
Deblurring-Methoden reichen von einfachen Schdérfungsfiltern tiber die Me-
thode der Unscharf-Maskierung bis hin zu (Blinden) Entfaltungsverfahren.
Jedoch bieten weder Scharfungsfilter noch Unscharf-Maskierung hinrei-
chende Losungen fiir Turbulenz-bedingte Bildunschirfe. Zudem haben
diese Methoden den Nachteil, dass vorhandenes Rauschen iibermaQig ver-
starkt wird. In dieser Arbeit liegt der Fokus daher auf Entfaltungsverfahren,
welche in dieser Hinsicht deutlich leistungsfdhiger sind. Bei den in den nach-
folgenden Abschnitten beschriebenen Entfaltungsmethoden handelt es sich
lediglich um eine reprasentative Teilmenge derartiger Methoden. Dartiber
hinaus gibt es natiirlich es noch eine Vielzahl anderer Losungsmoglichkeiten
fiir das Entfaltungsproblem. So verwendet das in [Oril0a] vorgeschlagene
Entfaltungsverfahren, die sogenannte Unsupervised Wiener-Hunt Deconvo-
lution UWH), beispielsweise ein Bayes’sches Wahrscheinlichkeitsmodell.
Die Parameterschitzung (einschlieBlich der PSF-Parameter) erfolgt hierin
mithilfe von Markov-Ketten und Monte-Carlo-Simulation (“Markov Chain
Monte Carlo”, MCMC). Einen umfassenderen Uberblick iiber die breite Fiille
existierender Verfahren zur blinden Entfaltung von Bilddaten kann man u. a.
mithilfe der Publikationen [Kun96a], [Kun96b] und [Chal4] gewinnen.

119
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5.1 Blinde Entfaltung

Bei einer Entfaltung (“Deconvolution”) handelt es sich um ein inverses Pro-
blem. Prinzipiell geht es dabei um die scheinbar einfache Aufgabe der Sepa-
rierung zweier gefalteter Funktionen f und i. Wenn & ebenfalls unbekannt
ist, spricht man speziell von Blinder Entfaltung (“Blind Deconvolution”). Im
Ortsraum nimmt diese Problemstellung die folgende Form an (s. a. Abbil-
dung 1.10):

gx,y) = h(x,y) * f(x,y) + n(x,y) (6.1

Hierbei bezeichnen g = g(x,y) das real beobachtete Bild an der Stelle (x,y)
im Koordinatenraum, # die (typischerweise) unbekannte Blurring-Filter-
funktion, f das (hypothetische) ideale Bild, * den Faltungsoperator und n
eine ebenfalls unbekannte, additive Noise-Komponente.

Die Filterfunktion h wird dabei generell als PSF, d. h. “Point Spread Functi-
on” bzw. Punktspreizfunktion bezeichnet. Es sollte noch angemerkt werden,
dass h in dieser Arbeit des 6fteren auch als atmosphdirische Filterfunktion
umschrieben wird. Tatsdchlich ist & in dieser Problemformulierung nicht
ausschlielllich durch die storenden Einfliisse der Atmosphére (zum Zeit-
punkt der Aufnahme) bestimmt, sondern beinhaltet grundsétzlich auch die
Abbildungseigenschaften des verwendeten optischen Systems. Bei vorlie-
gender Turbulenz sind die atmosphérischen Einfliisse allerdings in der Regel
so dominant, dass alles andere im Vergleich vernachléssigbar ist.

Zur Vereinfachung ldsst sich die Problemstellung (5.1) vom Ortsraum in
den Fourier-Raum transferieren, wo gemifl dem Faltungstheorem aus einer
relativ komplexen Faltungsoperation eine einfache Multiplikation wird:

G(u,v) = H(u,v) - F(u,v) + N(u,v) (5.2)

Hierbei bezeichnen G, H, F und N jeweils die zu g, h, f und n korrespondie-
renden Fourier-Transformierten (FT) an der Stelle (1,v) im Frequenzraum.
Auf den ersten Blick erscheint die Aufgabe der Entfaltung recht einfach.
Dieser Eindruck tduscht allerdings, da das Problem als solches schlecht ge-
stellt ist. Aufgrund der additiven Rauschkomponente N (bzw. n), welche
zwangsldufig unbekannt bleibt, ist es quasi unmoglich, das ungestorte Bild
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[ tatsdchlich zu 100% korrekt zu rekonstruieren, auch falls die Filterfunktion
H (bzw. h) genauestens bekannt sein sollte.

Fiir dieses Entfaltungsproblem gibt es verschiedene Losungsansétze, von
denen einige der verbreitetsten Algorithmen, wie z. B. der Inverse Wiener
Filter IWF) oder die Lucy-Richardson Dekonvolution (LRD), in den nachfol-
genden Abschnitten vorgestellt werden. Diese Algorithmen unterscheiden
sich grundlegend in zweierlei Hinsicht. Zum einen unterscheiden sie sich
darin, ob es sich jeweils um blinde oder nicht-blinde Methoden handelt,
d. h. ob die PSF dafiir bekannt sein muss oder nicht. Es sollte angemerkt
werden, dass “unbekannt” in diesem Zusammenhang bedeutet, dass nicht
die PSF als Ganzes bekannt sein muss, sehr wohl aber der Trédger (“Support”)
der Filterfunktion (d. h. die Stellen, an denen die PSF nicht Null ist bzw.
verschwindend klein wird).

Zum anderen unterscheiden sich die Algorithmen auch darin, ob es sich
dabei jeweils um iterative oder direkte (bzw. explizite) Methoden handelt,
d. h. ob die Lésung zundchst mehr oder weniger grob geschitzt wird und in
weiteren Algorithmus-Folgedurchldufen immer besser approximiert wird
oder ob die Losung bereits direkt im ersten Durchlauf gefunden werden
kann. Die nachstehende Tabelle 5.1 ordnet die hier aufgefiihrten Algorith-
men in diese grundlegenden Kategorien ein.

Typ Nicht-blinde Methoden Blinde Methoden
PSF bekannt (oder Schiatzung) | (PSF-Trager bekannt)
Iterativ | Lucy / Richardson (LRD) Iterative Blinde Entfaltung (IBD)

= Blinde Version von LRD
Direkt | Inverser Wiener Filter TWF) PCA-basierte Entfaltung

Tabelle 5.1: Ubersicht {iber Typen von Entfaltungsalgorithmen

5.1.1 Inverser Wiener Filter

Der sicherlich einfachste Ansatz zur Losung von Gleichung (5.2) besteht
in direkter inverser Filterung, wobei eine Schétzung F fiir F (die FT des
ungestorten idealen Bildes f) formuliert werden kann wie folgt [Gon08]:

. G(u,v) A N(u,v)
F(u,v) = F(u,v) = F(u,v) +

" H(u,v) = H(u,v)

(5.3)
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Dieser “naive” Ansatz fiihrt allerdings zu Problemen infolge einer Division
durch (nahezu) Null im Frequenzraum, denn typischerweise wird H (die
FT von h) zahlreiche Nullen oder zumindest verschwindend kleine Wer-
te enthalten, wodurch der Quotient auf der rechten Seite der Gleichung
(5.3) signifikante Fehler in der Schitzung F erzeugen und diese ggfs. sogar
iiberwiegend bestimmen wird. Mit zunehmenden Raumfrequenzen wird
die Ratio (IN/ H) noch weiter anwachsen, so dass bereits geringes Rauschen
tiberproportional verstédrkt wird, selbst wenn die Noise-Komponente N als
solches vernachldssigbar ist.

Ausgefeiltere inverse Filter Varianten machen sich aus diesem Grund zu-
sdtzliche Informationen zunutze, insbesondere {iber die zu erwartenden
Noise-Charakteristika. Uber geschickte Einschrinkungen der Randbedin-
gungen lassen sich u.U. dennoch sehr gute Ndherungslosungen finden.
Sogenannte pseudoinverse Filter fiihren z. B. eine gesonderte Behandlung
der Nullstellen (bzw. verschwindend kleinen Werte) von H durch. Eine an-
dere effektive Methode besteht darin, die Filterfrequenzen auf die ndhere
Umgebung ringsum den Ursprung einzugrenzen. In diesem Bereich sind
die Werte am grofSten, weshalb die Wahrscheinlichkeit fiir verschwindende
Werte dort entsprechend am geringsten ist.

Speziell beim Inversen Wiener leter (IWF) wird der folgende Fehler zwi-
schen der Schitzung f und dem idealen Bild f minimiert ([Gon08]):

er” = E{(f- H*} (5.4)
Die GréRen f und f (so wie im iibrigen auch g und h) werden dabei als
Zufallsvariablen interpretiert. Tatsdchlich beschreibt die Gleichung (5.4)
die mittlere quadratische Abweichung (MSE) als Fehlermal. Wenn R, C die
Dimensionen, d. h. die Anzahl an Zeilen und Spalten (“rows” und “columns”)
von f und f bezeichnen, ldsst sich der MSE insbesondere folgendermafen
formulieren (vgl. auch Gleichung (4.3)):

R-1C

1 -1 A
MSE= Z Y [fn - Ffey) (5.5)
=0 x=0

1 zuerst 1942 von Norbert Wiener vorgeschlagen, bekannt als Begriinder der Kybernetik
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Zur Vereinfachung des Problems werden beim IWF drei wesentliche Annah-
men getroffen (([Gon09])):

1. Das Bild f und das Rauschen 7 sind unkorreliert.
2. f oder n hat den Mittelwert Null

3. Die Intensitdtswerte der Schitzung f sind eine lineare Funktion der
Werte im real gemessenen Bild g.

Unter diesen Voraussetzungen lisst sich die Losung F, welche die Gleichung
(5.4) (bzw. (5.5)) minimiert, im Frequenzraum ausdriicken wie folgt:

. H* (u,v)S¢(u,v)
F(u,v) = 3
S¢(u,v) [ H(u,v)I* + Sp(u,v)
H*(u,v)
|H (u,0)1* + S, (u,0)/ S (u,0)
1 |H(u,v)*
H(w,v) |H(u,v)I* + N (w,v)[*/ |F(u,v)]?

G(u,v)

G(u,v) (5.6)

G(u,v)

Hierbei bezeichnet H* die Konjugierte von H, wobei insbesondere ausge-
nutzt wird, dass gilt:

H* (u,v) H(u,v) = | H(u,v)|?

Weiterhin bezeichnen Sr(u,v) = |F(u,v)|? bzw. Sn(u,v) = IN(u,v)|% das je-
weilige Powerspektrum (auch spektrale Leistungsdichte oder Autokorrelation)
des ungestorten Bildes f bzw. der Rauschkomponente n.

Der besondere Vorteil in der Formulierung von Gleichung (5.6) liegt darin,
dass hier die Probleme des direkten inversen Filters mit verschwindenden
Werten in der Filterfunktion H nicht auftreten. Insbesondere reduziert sich
der Ausdruck in Gleichung (5.6) auf den direkten inversen Filter in Glei-
chung (5.3), falls die Rauschkomponente ganz verschwindet (d. h. » = 0 und
somit |N|? = 0).

Das Verhéltnis Sy, (u,v)/S¢(u,v) (fiir S, # 0) der Powerspektren ist norma-
lerweise nicht genau bekannt und muss entsprechend approximiert bzw.
geschitzt werden. Haufig wird stattdessen auch der Kehrwert des damit
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verbundenen Signal-zu-Rausch Verhiltnisses (“Signal-to-Noise Ratio”, SNR)
bzw. ein Schétzwert dafiir eingesetzt. Im Frequenzraum ldsst sich SNR néhe-
rungsweise liber das Verhiltnis SNR = MPSy/ MPS,, der korrespondierenden
(skalarwertigen) mittleren Powerspektren MPS; und MPS,, beschreiben, wo-
bei:

M-1N-1 M-1N-1

MPS;= 3y 3 Sfwv) und MPS,= 3 ) S,(uuv).

u=0 v=0 u=0 v=0
Genauer wird der Quotient S, /S in Gleichung (5.6) in einigen Varianten
des IWF durch den Skalarwert R = 1/SNR ersetzt, wobei es im {ibrigen auch
Varianten gibt, in denen jeweils die Quadratwurzel verwendet wird. R kann
somit als Regularisierungsparameter fungieren und die Qualitit der Schét-
zung f kann iiber das Variieren von R gesteuert werden.
Die zugehorigen Powerspektren von f bzw. n sind allerdings oftmals un-
bekannt. Speziell im Zusammenhang von Turbulenz-gest6rten Bilddaten
ist dies sogar der Normalfall. Eine Moglichkeit, dennoch eine gute Losung
f zu finden, besteht darin, die Gleichung (5.6) iiber eine Konstante K zu
parametrisieren:

1 |H(u,v)?
H(u,v) |H(u,v)> +K

EF(u,v) = G(u,v) (5.7)
Tatsdchlich wiirde das Noise-Powerspektrum beispielsweise im Fall von
spektralem weillen Rauschen einer Konstante entsprechen.

5.1.2 Richardson-Lucy Entfaltung

Bei der Richardson-Lucy Entfaltungi (“Lucy-Richardson Deconvolution”,
LRD), beschrieben in [Ric72] sowie in [Luc74], handelt es sich um eine nicht-
blinde Methode ebenso wie der IWE Das bedeutet, die Filterfunktion / (oder
eine gute Schitzung dafiir) wird hier ebenfalls als bekannt vorausgesetzt,
wobei weiterhin die Bezeichnungen aus Gleichung (5.1) verwendet werden.
Im Gegensatz zum IWF handelt es sich bei der LRD allerdings auch um
einen nicht-linearen und insbesondere iterativen Algorithmus.

2 1972 von William H. Richardson und 1974 von Leon B. Lucy unabhingig voneinander
entwickelt
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Die LRD ist aus der Bayes'schen Wahrscheinlichkeitstheorie abgeleitet, d. h.
Bilddaten werden wie beim inversen Wiener Filter als Zufallsvariablen inter-
pretiert. Genauer entsteht die LRD aus der sogenannten “Maximum Like-
lihood Estimation” (MLE, auch “Schitzungsmethode der maximalen Mut-
maflichkeit”) heraus. Dabei handelt es sich um ein Verfahren zur Schidtzung
der Parameter einer Verteilungsfunktion mit dem Ziel, dass die Messda-
ten (bzw. statistischen Beobachtungen) die gr6te Wahrscheinlichkeit fiir
das zugrunde gelegte statistische Modell aufweisen. Dies geschieht {iber
iterative Maximierung einer entsprechenden Wahrscheinlichkeitsfunktion
(“Likelihood Function”). Im vorliegenden Fall wird speziell die Wahrschein-
lichkeit, dass das geschétzte Bild f nach Faltung mit der PSF £ (bis auf Noise)
identisch mit dem gemessenen Bild g ist, als eine solche Likelihood Func-
tion formuliert. Dabei gilt die Annahme, dass die Schitzung nur Poisson-
verteiltes Rauschen enthilt, wihrend etwaiges Gaul3-verteiltes Rauschen
ignoriert wird.

Ein punktférmiges Objekt in einem Bild g, das mithilfe eines EO-Systems
aufgenommen wurde, wird in dieser Aufnahme nicht mehr als Punkt er-
scheinen, sondern vielmehr die Gestalt der Punktspreizfunktion 7 selbst
annehmen. Dementsprechend kénnen ausgedehnte Objekte in die Summe
vieler einzelner Punktobjekte unterteilt werden, so dass das reale Bild g auch
als Matrixoperation mit der Filterfunktion & dargestellt werden kann, die auf
dem idealen Bild f ausgefiihrt wird. Dabei beschreiben die Matrixelemente
h(x,y),j den jeweiligen Lichtanteil, der vom Pixel (i, j) ausgeht und am
Pixel (x,y) gemessen wird, so dass die Filtermatrix h auch einfach durch den
rdaumlichen Abstand (“Offset”) zwischen dem “Quellpixel” (i,j) und dem
“Messpixel” (x,y) ausgedriickt werden kann:

h(x, )i, jy = h(x=1i,y - j) = h(Ax,Ay)

In [She82] wurde empirisch gezeigt, wenn die folgende Iterationsvorschrift
zur Schitzung von f konvergiert, dass sie gegen die Losung der maximalen
Wahrscheinlichkeit fiir f konvergiert, wobei “(k)” die jeweils k-te Iteration
kennzeichnet.

gx,y)

— o= (5.8)
h(x,y) = f® (x,y)

FE Dy = Oy | h=x, - y) *
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Hervorzuheben ist hierbei, dass es die Division durch die Schitzung f ist,
welche die nichtlinearen Eigenschaften des Algorithmus ausmacht.

So wie im Fall der meisten nicht-linearen Methoden, ldsst sich auch bei
der IBD die Frage nach der “richtigen” Anzahl von Iterationen (bzw. geeig-
neten Stopp-Kriterien) nicht allgemeingiiltig beantworten. Ansitze hierfiir
beinhalten in der Regel eine Priifung, ob die aktuelle Schitzung bestimmte
Eigenschaften erfiillt, deren Auswahl jeweils von der vorliegenden Anwen-
dung abhingig sind.

Die Ergebnisqualitdt ldsst sich u. U. noch verbessern, beispielsweise iiber die
Verwendung einer Gewichtungsmatrix, in der jedem Pixel ein Gewichtungs-
faktor zugeordnet wird, welcher dessen Qualitdt widerspiegelt. Besonders
schlechte Pixel oder sogar ganze Bereiche (z. B. an den Bildrdndern) kén-
nen somit tiber eine Gewichtung mit Faktor Null aus weiteren Iterationen
ausgenommen werden. Weitere Verbesserungen lassen sich auch tiber die
Einfithrung eines zusétzlichen Schwellwerts fiir die zuldssige Abweichung
der aktuellen Schitzung f von der vorherigen Iteration erreichen. Wenn wei-
tere Iterationen an denjenigen Stellen (bzw. Pixeln) unterdriickt werden, an
denen dieser Schwellwert tiberschritten wird, lassen sich Bilddetails besser
erhalten, wiahrend zugleich vermieden wird, dass Rauschen sowie “Ringing”
weiter verstarkt werden.

5.1.3 lIterative blinde Entfaltung

Bei der iterativen blinden Entfaltung (“Iterative Blind Deconvolution”, IBD),
wie in [Aye88] von Ayers und Dainty vorgeschlagen, handelt es sich im Prin-
zip um eine blinde Version der im vorangegangenen Abschnitt beschriebe-
nen LRD. Das heilst, es werden weiterhin die Bezeichnungen aus Gleichung
(56.1) verwendet. Entsprechend muss die (Filter-)Funktion h hierfiir auch
nicht bekannt sein, sondern lediglich der Trager von h. Uberdies wird vor-
ausgesetzt, dass f und h beide reellwertig und iiberall nicht-negativ sind.
Bei der IBD wird die iterative Maximierung der LRD-Likelihood Function
mit zusdtzlichen Nebenbedingungen durchgefiihrt, um gleichzeitig mit der
Schitzung f fiir das Bild f auch eine Schitzung / fiir die Filterfunktion /4 zu
bestimmen.

Der IBD-Algorithmus zeichnet sich durch eine Rechenkomplexitit der Gro3en-
ordnung O(Nlog N) pro Iteration aus, wobei N der Gesamtzahl der Pixel in
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einem einzelnen Frame entspricht, wihrend normalerweise mehr als eine
Iteration fiir seine Konvergenz erforderlich ist. Insbesondere wird bei der
IBD auch die Fourier-Phase mit berticksichtigt, anders als bei vergleichba-
ren iterativen Algorithmen, wie z. B. bei dem Verfahren von Lane und Bates
Lan87].

Die Abbildung 5.1 illustriert die generelle Struktur von Entfaltungsalgorith-
men wie sie auch in [Aye88] beschrieben ist. Im Wesentlichen bestehen
Entfaltungsalgorithmen aus einer vorgegebenen Anzahl von Iterationen der
acht nachfolgend beschriebenen Schritte. Der Parameter k kennzeichnet
dabei die jeweils k-te Iteration (k € Np). Zuvor wird als Input allerdings noch
eine initiale Schitzung iy € R* (d.h. k = 0) fiir die Filterfunktion benétigt.
Eine einfache Moglichkeit ist hierfiir z. B. eine Bildmatrix, die iiber dem (als
bekannt vorausgesetzten) Trager von h aus Einsen besteht.

Fourier- f Erzwinge die Bedingung f Inverse Fourier-
Transformation der Nichtnegativitiit Transformation
F F
® “ @

Schiitze H neu Schiitze F neu
aus G und F ©) @ aus G und A

@) @® )

H h h H
Inverse Fourier- Erzwinge die Bedingung Fourier-
Transformation der Nichtnegativitiit 1 Transformation

hq

Abbildung 5.1: Grundlegender Ablauf eines Entfaltungsalgorithmus

Basis-Algorithmus fiir IBD

(1) Fourier-Transformation zur Uberfiihrung des Problems in den Fourier-
Raum:
fzo(x,y) E Ho(u,v) bzw. fzk(x,y) > Hk(u,v)
(2) Inverse Filterung liefert (neue) Schatzung fiir F, d. h.
Fy=Gl/Hy bzw. F.=G/H;

(3) Inverse Fourier-Transformation zur Riickkehr in den Ortsraum:

Fo(u,v) = folx,y) bzw. Fi(u,v) = fi(x,y)
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(4) Erfiillung der Nichtnegativitit im Bildbereich, indem alle Punkte der
Schétzung fy bzw. f, die einen negativen Wert haben, auf Null gesetzt
werden. Dies ergibt eine neue, positive Schitzung fy bzw. f; fiir das
ideale Bild f.

(5) Erneute Fourier-Transformation:
fox,y) = Ey(u,v) bzw. fe(x,y) = Fe(u,v)
(6) Inverse Filterung liefert neue Schétzung fiir H, d. h.
Hy, =G/Ey bzw. Hy.q=GIE,
(7) Inverse Fourier-Transformation zur Riickkehr in den Ortsraum:
Hy (u,v) = hi(x,y) bzw. Hpi1(u,0) = hjs1(x,y)

(8) Erfiillung der Nichtnegativitit, indem alle Punkte der Schiatzung h;
bzw. hi; mit negativem Wert, sowie alle Punkte aullerhalb des Tra-
gers auf Null gesetzt werden. Dies ergibt eine neue, positive Schdtzung
fll bzw. ilk+1 fiir die Filterfunktion h.

Dabei bringt die inverse Filterung in den Schritten (2) und (6) nattirlich die
bereits in Abschnitt 5.1.1 diskutierten Probleme mit sich. Hinzu kommt,
dass Nullen bei bestimmten Raumfrequenzen in F oder H dazu fiihren,
dass in der Faltung dort keine Informationen vorhanden sind. Auch hat sich
gezeigt ([Aye88]), dass die Bedingung der Nichtnegativitdt im Bildbereich in
den Schritten (4) und (8) zu verbesserter Konvergenz fithrt, wenn zugleich
bei jeder Iteration auf die Energieerhaltung (bzgl. der Intensitédtsverteilung)
geachtet wird. Dies ldsst sich realisieren, indem die Summe der negativen
Werte gleichméRig iiber die jeweilige Schitzung umverteilt wird.

Fiir die eigentliche Bildentfaltung (des Originalbildes und der geschétzten
PSF) wird jeweils der LRD-Algorithmus verwendet.

5.1.4 Entfaltung mittels Hauptkomponentenanalyse

Wie der IWF ist auch die Entfaltung mittels Hauptkomponentenanalyse
(“Principal Component Analysis”, PCA), geméR dem Ansatz von [Li07], ein
direkter (also nicht-iterativer) Algorithmus und wird vergleichsweise schnell
ausgefiihrt. Anders als beim IWF handelt es sich hier jedoch insbesondere
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um eine blinde Methode, die je nach Variante nur minimale bzw. gar keine
Zusatzinformationen (wie die GréRe des Filter-Supports) vorab benotigt.
Dariiber hinaus ist der Algorithmus robust gegeniiber weillem Rauschen.
Die Bildunschirfe entfernt hochfrequente Komponenten aus einem Bild
oder einer Bildsequenz, was bedeutet, dass die rdumliche Varianz eines
Bildes reduziert wird. Der PCA-Algorithmus zielt darauf ab, die durch atmo-
sphérische (und systemische) Unschérfe verursachte Korrelation zwischen
Bildmatrixspalten zu de-korrelieren, um so diese hochfrequenten Kom-
ponenten aus einem Bild oder einer Sequenz wiederherzustellen. Hierfiir
werden in [Li07] gleich zwei Implementierungen des Algorithmus vorge-
schlagen, von denen die eine Version als wahrhaft blinde Entfaltung funk-
tioniert, welche auf einer Folge von mehreren Bildern desselben Motivs (als
“Multiple Observations” bezeichnet) operiert, auf Basis derer ein einzelnes
Ausgabebild berechnet wird. Die andere Version operiert direkt auf Einzel-
bildern (“Single Observations”) und benotigt ebenso wie die IBD zusitzliche
Informationen iiber die GroRe des Tréagers der Filterfunktion. In [Gre08] wird
zusétzlich noch eine Verallgemeinerung des urspriinglichen Algorithmus
vorgeschlagen.
Es wird das folgende Modell fiir die turbulenzbedingten Stérungen zugrunde
gelegt, wobei hier die Bezeichnungen (wie sie speziell auch in [Gre08] und
Hue08] verwendet wurden) etwas angepasst wurden, um die Konsistenz
mit der zuvor verwendeten Notation so gut wie méglich zu wahren:

gm(6,Y) = hy(x,y) * fe,)) +ny(xy), (m=12,...,M) (5.9)

Das bedeutet, es gibt eine Anzahl von M durch Turbulenz gestorte Beobach-
tungen (d. h. Bildaufnahmen) g,, von derselben Szene (mit der ungestorten
Abbildung f), wobei sich die Filterfunktion /& ebenso wie die Rauschkompo-
nente n mit der Zeit verdndern, so dass diese fiir jede der Beobachtungen
etwas unterschiedlich sind (d. h. & = h;;, und n = n,;,).

Hierbei sollte angemerkt werden, dass die Beobachtungen zeitlich nicht
zu weit auseinanderliegen sollten (z. B. im Millisekundenbereich), da der
Algorithmus von der Pramisse ausgeht, dass das ungestorte Bild fiir alle M
Beobachtungen identisch ist. Dies gilt vor allem, falls bewegte Objekte in
der beobachteten Szene enthalten sind (speziell hierzu sei auf Abschnitt 4
iiber Bewegungskompensation verwiesen).
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(A) PCA - “Multiple Observations”

Bei dem PCA-Ansatz fiir “Multiple Observations” (MQ) werden die M Beob-
achtungen gi,...,gm zundchst vektorisiert, d. h. in Vektoren g, ...,y der
Lange L umgeformt (L = RC, wobei R, C wieder die Bilddimensionen be-
zeichnen). Die Vektoren g, ...,8) konnen als Realisierungen voneinander
unabhéngiger Zufallsvektoren {61, 6}2, s @M} € RL mit identischen Vertei-
lungen und dem Mittelwert gz betrachtet werden.

Der Algorithmus sucht nun eine lineare Transformation 5 (5 € R™) fiir die
Zufallsvektoren G, (m = 1,...,M), welche die Varianz des Ergebnisses, d. h.
der Schitzung F, maximiert. Dazu muss die folgende Kostenfunktion K ()
maximiert werden ([Li07]):

K® = ((F-pp)" (F-pp)) (5.10)

Die Schitzung fiir das ungestorte Bild f wird dabei durch eine Realisierung
f des Zufallsvektors E repréisentiert,A wobei insbesondere gilt: py = uz. Den
korrespondierenden Zufallsvektor F gewinnt man mit Hilfe der folgenden
linearen Transformation:

FZ[él—ué, éz—ué,...,éM—ué]§+[.lé (5.11)

Unter Einfithrung der Variablen X und A lésst sich die Kostenfunktion K (3)
vereinfacht ausdriicken:

K3 =5"A3
Dabei gelten fiir die Variablen X und A die folgenden Definitionen:

X:= [él o Vel ég — U@ GM—/J@]

A:=(x"X)
Derartige Maximierungsprobleme (sowie entsprechende Losungsmetho-
den) sind in der Literatur weit verbreitet [Jen79]. Im vorliegenden Fall han-
delt es sich bei der Losung s um einen Vektor der Ldnge M. Fuir die Bestim-

mung von $ miissen zunéchst die Eigenwerte {a,,} sowie die zugehorigen
Eigenvektoren {7,,}, (m = 1,..., M) fiir die folgende Gleichung berechnet
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werden:

>

Um=am Um (5.12)

Dabei wurden die folgenden Definitionen verwendet:

T

A=3Tx

55 = [gl—ﬂé, ceey §M—ﬂé]
~ M

He ::%Zmzl 8m

Das heif3t, A ist eine (skalierungsinvariante) Stichprobenschitzung von
A, und bei fiz handelt es sich um die mittlere Stichprobenschétzung von
pe- Die Losung des Maximierungsproblems fiir M gestorte Beobachtun-
gen ergibt sich aus dem maximalen Eigenwert @; und dem zugehdorigen
Eigenvektor 7;:

K@E$=
{ f _z (5.13)
Die lineare Transformation § kann als Hochfrequenzfilterung betrachtet wer-
den, welche es ermoglicht, die maximale rdumliche Varianz innerhalb der M
gestorten Eingangsbilder (d. h. Beobachtungen) zu extrahieren. Ziel dabei
ist es, die hochfrequenten Komponenten, die zuvor durch den Blurring-
Filtereffekt der turbulenten Atmosphére entfernt wurden, so gut wie moglich
wiederherzustellen. Die Schitzung f in Gleichung (5.13) entspricht dem
Rekonstruktionsergebnis des unbekannten idealen Bilds f nach blinder
Entfaltung.

(B) PCA - “Single Observations”

Der PCA-Ansatz fiir “Single Observations” (SO) benétigt zusétzlich die In-
formation tiber die GroRe des Tragers der Filterfunktion, wobei jedoch nur
ungerade FiltergroBen berticksichtigt werden. Zwar folgt diese Algorithmus-
Variante im Grunde dem MO-Ansatz, die erforderliche Anzahl von M Beob-
achtungen wird aber kiinstlich erzeugt tiber Verschiebungen des Eingangs-
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bildes (ganzzahlige ungerade Pixel-Shifts), wobei M gleich der Pixelanzahl
im Trager der Filterfunktion ist.

5.2 Resultate

Eine ausfiihrliche Evaluation der Leistungsfahigkeit dieser Algorithmen wur-
de in [Gre08] anhand von simulierten Turbulenzdaten (d. h. mit vorliegen-
den “Ground Truth”-Daten) durchgefiihrt, wihrend in [Hue08] eine entspre-
chende Evaluierung anhand von realen Turbulenzdaten unterschiedlichen
Schweregrades (ohne “Ground Truth”’-Daten) vorgenommen wurde, von
denen hier im folgenden einige reprdsentative Ergebnisse gezeigt werden.

5.2.1 Spezifikation der Testdaten und Instrumente

Die nachfolgend als Testsequenzen verwendeten Bildsequenzen wurden un-
ter verschiedenen Turbulenzbedingungen aufgezeichnet, welche von relativ
leichter bis sehr starker Turbulenz reichen. Sie wurden aus insgesamt tiber
100 Videosequenzen ausgewdhlt, die vom damaligen FGAN—FOMiim Rah-
men einer NATO Messkampagne der RTG 40 auf der “White Sands Missile
Range” in New Mexico, USA, im Jahr 2005 aufgezeichnet wurden [Rep06].
Beispielbilder der ausgewéhlten Sequenzen sind in der Abbildung 5.2 zu
sehen.

Alle Sequenzen hatten jeweils eine Lange von 1000 Einzelbildern und eine
Bildaufl6sung von 240 x 256 Pixeln, wobei jede Sequenz ein Paneel mit
einem Testmuster zeigt, welches in einer Entfernung von 1 km von der Optik
angebracht ist. Die Sequenzen wurden jeweils paarweise ausgewihlt, so dass
jedes der insgesamt drei Sequenzpaare ein unterschiedliches Musterpaneel
zeigt. Die jeweiligen Aufnahmezeiten der Sequenzen eines solchen Paares
lagen dabei nicht mehr als max. 10 Minuten auseinander, so dass man von
nahezu identischen Turbulenz- (und Licht-)Bedingungen ausgehen kann.

3 FGAN-FOM: fritherer Name des Ettlinger Teils des heutigen Fraunhofer IOSB (EGAN: For-
schungsGesellschaft fiir Angewandte Naturwissenschaften, FOM: Forschungsinstitut fiir
Optronik und Mustererkennung)
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Oben: Seq. 1(7:15), Oben: Seq. 4(7:48), Oben: Seq. 6(8:22),
unten: Seq. 2 (7:20). unten: Seq. 3 (7:48). unten: Seq. 5 (8:12).

Abbildung 5.2: Testsequenzen (v.l.n.r.) mit leichter, mittlerer und starker
atmosphaérischer Turbulenz; oben: extrem kurze Integrationszeit (Seq. 1 u. 3:
<0,1 ms, Seq. 5: 0,045 ms), unten: 1 ms Integrationszeit.

Ein wesentliches Auswahlkriterium war insbesondere die unterschiedliche
Belichtungszeit, welche fiir eine Sequenz jeden Paares immer bei 1,0 ms
(Kurzzeit-Belichtung) lag und fiir die andere Sequenz unter 0,1 ms (extrem
kurze Belichtungszeit). Generell sind kurze Integrationszeiten von Vorteil,
weil dies bedeutet, dass die Turbulenz gewissermallen eingefroren ist. In der
Regel geht man davon aus, dass dies bereits bei Aufnahmen in der Gré3en-
ordnung von wenigen Millisekunden der Fall ist [Rog96]. Ein Vergleich der
Sequenzen mit extrem kurzer Integrationszeit (<0,1 ms, jeweils oben in der
Abbildung 5.2) zeigt, dass die Geometrie der abgebildeten Objekte korrekter
wiedergegeben wird als bei der etwas ldngeren Integrationszeit (1,0 ms),
unten in Abbildung 5.2. Dabei féllt auf, dass diese Sequenzen trotz der ver-
besserten Geometrie mehr Unschérfe aufweisen. Das liegt darin begriindet,
dass nur gréBere (und langsamere) Turbulenzzellen tatsdchlich im Bild ein-
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gefroren sind, welche insbesondere ja die Ursache fiir turbulenzbedingte
Bildverformungen sind (s. a. Abschnitt 1.1). Je kleiner die Turbulenzzellen
sind, desto schneller bewegen sie sich, insbesondere sehr kleine Turbu-
lenzzellen in der Gré6Benordnung < 1 Pixel. Das Resultat erscheint als eine
gleichférmige Unschirfe des ganzen Bildes.

Um nicht nur geometrisch rechtwinklige Muster zu beriicksichtigen, deren
Rekonstruktion u. U. leichter féllt, wurden ganz bewusst die Sequenzen
3 und 4 selektiert, in denen stattdessen eine Tafel mit einem Schriftzug
abgebildet ist, der sowohl diagonale als auch runde Strukturen beinhaltet.
Es sollte noch erwdhnt werden, dass die Nummerierung der Sequenzen 1-7
rein chronologisch gemal ihrer Aufnahmezeit vorgenommen wurde.

Zum Setup des Experiments ist zu sagen, dass der Ausbreitungsweg in einer
Hohe von ca. 1,8 m parallel zum Boden verlief. In der gleichen Hohe wurden
gleichzeitig Messungen von C,,?, dem Strukturparameter der Schwankungen
im Brechungsindex der Luft durchgefiihrt, so dass fiir jede der Sequenzen
korrespondierende Werte vorliegen. Fiir diese Messungen wurde ein Scintec
BLS900 Szintillometer verwendet. Alle Bilddaten wurden von einer Photron
Fastcam PCI-R2 Kamera mit einer Auflésung von 240 x 256 Pixeln mit ei-
nem Texas Instruments TC237B CCD-Sensor mit Progressive Scan und einer
Nikon Nikkor ED 800 Optik mit 800 mm fester Brennweite aufgezeichnet.
Fiir die Sequenzen wurde in den Fillen extrem kurzzeitiger Integrationszeit
(<0,1 ms) die (bestmogliche) Blendenskala f/5,6 verwendet und entweder
f/16 oder f/22 fiir die restlichen Sequenzen. Alle wesentlichen Daten fiir die
ausgewdhlten Sequenzen sind noch einmal in der Tabelle 5.2 zusammenge-
fasst, einschliefSlich der Daten fiir eine zusitzliche Sequenz, die wihrend der
Mittagshitze aufgezeichnet und wegen der zu diesem Zeitpunkt besonders
starken Turbulenz ausgewdhlt wurde.

Der Fried-Parameter ry in der Tabelle wurde mithilfe der Gleichung (3.26)
berechnet, wobei L der Entfernung zwischen dem abgebildeten Objekt (d. h.
der jeweiligen Mustertafel) und dem Sensor (d. h. dem Kameraobjektiv)
entspricht. Unter Verwendung der aus der Optik wohlbekannten Beziehung
for = f/D (d.h. D = f/ fi;) zwischen der Blendenzahl f,,;, der Apertur D und
der Brennweite f, wurde damit auch die Turbulenzstirke D/ry bestimmt.
Die GréBen “Kantenbreite” , “Gaull-PSF” und “Noise” in der Tabelle 5.2 be-
ziehen sich dagegen auf geschétzte Parameter, da ja sowohl fiir den IWF
als auch fiir den LRD-Algorithmus eine Schitzung der PSF als Input be-
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Uhrzeit 0715 0720 0745 0748 0812 0822 1307
Belichtung (sec) | 1/11000 le-3 le-3 1/11000 le-3 1/22000 le-3
Blendenzahl 5.6 16 22 56 22 5.6 16
Brennweite (mm) 800 800 800 800 800 800 800
Frames 1000 1000 1000 1000 1000 1000 1000
Auflésung (px) | 240x256 240x256 240%256 240x256 240x256 240x256 | 240%256
Entfernung (km) 1 1 1 1 1 1 1
€7 (ws?) de-15  236e-15 5,09e-14 4.85e-14 93e-14 1723e-13 | 7.56e-13
ro(cm) 7,02 9,64 1,52 1,57 1,06 0,89 0,3
Dlry 2,034 0,512 2,382 9,091 3,412 15,889 | 16,532
Kantenbreite (px) 3 3 5 5 5 7 9
Gaufi-PSF (o) 1.0 1.0 1.5 1.5 3.0 4.5 9.5
Noise (o) 0,0036  0,0076  0,0054  0,0052  0,0437  0,0088 | 0,0011

Tabelle 5.2: Eckdaten der Testsequenzen, zeitlich geordnet

notigt wird. In den nachfolgend gezeigten Beispielen wurde die einfachste
Approximation fiir eine solche atmosphérische Filterfunktion verwendet,
d. h. ein Gaul3-Filter. Dies ist eine durchaus sinnvolle Annahme, da die opti-
sche Turbulenz im Wesentlichen als Tiefpassfilter wirkt, welcher die hohen
Ortsfrequenzen herausfiltert, wodurch scharfe Kanten und punktférmige
Objekte verwischt werden. Das Hauptproblem besteht darin, die richtige
FiltergroRe in Bezug auf den Mittelwert p und die Standardabweichung
o zu schitzen. Wird o zu gro gewihlt, fiithrt dies zu sogenannten “Rin-
ging”-Effekten (siehe Anmerkungen in Abschnitt 5.4.3), und falls es zu klein
gewdhlt wird, bleibt zu viel Unschérfe im Ergebnis zurtick. Da bereits zuvor
in [Rep08] fiir jede der Sequenzen entsprechende Statistiken {iber die Tur-
bulenzbedingungen erstellt und mit speziellem Fokus auf die Verbreiterung
der Kanten in Abhéngigkeit von der Turbulenzstiarke ausgewertet worden
waren, konnten diese Informationen {iber die Kantenverbreiterung mit den
gemessenen C,,2-Werten korreliert werden und daraus geeignete o-Werte
abgeleitet werden. Nattirlich gibt es auch andere Moglichkeiten zur PSF-
Schitzung. Unter anderem ldsst sich die zugehorige theoretische (mittlere)
PSF bestimmen (Ndheres dazu in Abschnitt 6.2).
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5.2.2 Entfaltungsergebnisse im Vergleich

Bei der LRD wie auch der IBD besteht die Méglichkeit, Zusatzinformationen
uber die Rauschcharakteristiken der Daten einfliefen zu lassen. Hier wurde
zur Noise-Abschitzung die zeitliche Varianz einer Bildregion mit homoge-
nen Grauwerten verwendet. Zur Rauschreduktion wurde dariiber hinaus ein
gleitender Mittelwert (“Average”) von je 100 Frames als Basis fiir die Entfal-
tung verwendet. Dies ist relativ unkritisch, da es sich um statische Szenen
handelt, die zudem mit einer hohen Frequenz aufgenommen wurden. Den-
noch gehen feine Strukturen bei dieser Art der Mittelwertbildung verloren.
Zur Erhaltung solcher Details wurde daher auch ein (gleitender) temporaler
Median von je 100 Frames mit den Entfaltungsalgorithmen getestet.

o 1110 11T IR I

Seq.1, median 100

o [T A IITEA I

Seq.2. median 100 IBD median

[ 8 TR T

Seq.1, PCA single C 1234 for 100 PCA multi C 1234 for 100 Seq.2. PCA single C 1234 for 100 PCA multi C 1234 for 100

Abbildung 5.3: Beispielergebnisse fiir Seq. 1 (griin markiert) u. Seq. 2 (gelb).
1.+2. Reihe (v.l.n.r.): temp. Median von 100 Frames, Entfaltungsergebnisse fiir
IBD, LRD und IWF; unten: Ergebnisse fiir PCA-basierte Entfaltung (SO- und
MO-Version) jeweils fiir alle vier HK (1 +2+3 +4).
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Abbildung 5.4: Beispielergebnisse fiir Seq. 3 (griin markiert) u. Seq. 4 (gelb).
1.+2. Reihe (v.L.n.r.): temp. Median von 100 Frames, Entfaltungsergebnisse
fiir IBD, LRD und IWF; unten: Ergebnisse fiir PCA-basierte Entfaltung (nur
SO-Version) fiir verschiedene HK (1 +4), (2+3), (1+2+3+4).

Tatséchlich ist das Ergebnis dieses Medians ein wenig besser als das des
Mittelwerts. Aber da die Unterschiede zwischen Mittelwert und Median
visuell kaum wahrnehmbar sind (insbesondere bei den Sequenzen 1 bis
6), werden in den nachfolgenden Abbildungen 5.3, 5.4 und 5.5 nur einige
reprasentative Ergebnisse gezeigt, die aus dem Medianbild resultieren.

Die Ergebnisse sind paarweise angeordnet, d. h. die Abbildung 5.3 enthilt
reprasentative Entfaltungsergebnisse fiir die Sequenzen 1 und 2 (7.15 Uhr
und 7.20 Uhr) mit moderater Turbulenz. Die Abbildung 5.4 enthélt korre-
spondierende Ergebnisse fiir die Sequenzen 3 und 4 (7.45 Uhr und 7.48 Uhr)
mit mittlerer bis starker Turbulenz. Die Abbildung 5.5 enthilt schlieflich
Ergebnisse fiir die Sequenzen 5 und 6 (8.12 Uhr und 8.22 Uhr) mit starker
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Turbulenz. Die Bildunterschriften sind farblich entsprechend unterlegt, um
die Zuordnung der Ergebnisse zu den einzelnen Sequenzen zu erleichtern.
Jeder Satz an Entfaltungsergebnissen beinhaltet den zeitlichen Median von
100 Frames als Referenz (d. h. als Input fiir die Algorithmen), sowie die zuge-
horigen Restaurationsergebnisse fiir IWF, LRD und IBD.

Fiir die PCA-basierte Entfaltung sind in erster Linie Ergebnisse der SO-
Version abgebildet fiir verschiedene Hauptkomponenten (HK). Dabei bedeu-
tet “C 23” beispielsweise, dass speziell die Komponenten 2 und 3 ausgewertet
wurden unter Verwendung der in [Gre08] hergeleiteten Verallgemeinerung.
Hintergrund fiir die scheinbare Inkonsistenz bei der Auswahl der Haupt-

ug |l a1l = )l =a !

Seq.5, median 100 IBD median LRD median IWF median

o ([ [T e

Seq.6, median 100 IBD median LRD median IWF median

o 1T TR A

Seq.5, PCA single C 1 for 100 PCA single C 1234 for 100 Seq.6, PCA single C 2 for 100 PCA single C 1234 for 100

Abbildung 5.5: Beispielergebnisse fiir Seq. 5 (griin markiert) u. Seq. 6 (gelb).
1.+2. Reihe (v.L.n.r.): temp. Median von 100 Frames, Entfaltungsergebnisse
fiir IBD, LRD und IWF; unten: Ergebnisse fiir PCA-basierte Entfaltung (nur
SO-Version) fuir verschiedene HK (1), (2), (1+2+3+4).
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komponenten war die unterschiedliche und teilweise schlechte Qualitédt der
Ergebnisse, weshalb hier auch nur fiir die Sequenzen 1 und 2 Ergebnisse fiir
beide Versionen (d. h. SO und MO) abgebildet sind.

Zur Visualisierung des turbulenzbedingten Bewegungsinhalt in den gemes-
senen Daten, enthilt die Abbildung 5.6 die zeitliche Standardabweichung
(STD) der Sequenzen 1 bis 6, jedes Mal betrachtet iiber die gesamte Sequenz-
lange (1000 Frames). Dazu wurden die Grauwerte jeweils auf das Intervall
[0,1] skaliert, was insbesondere das etwas unterschiedliche Aussehen fiir die
STD in der Sequenz 1 erklért. Die Breite der Kanten (gemessen in Pixeln)
lasst entsprechende Riickschliisse darauf zu, wie groe turbulenzbeding-
te Bewegungen aus statistischer Sicht zu erwarten sind, und wie grof§ (in
Pixeln) der Support fiir die atmosphirische PSF folglich sein muss.

Oben: Seq. 1(7:15), Oben: Seq. 4(7:48), Oben: Seq. 6(8:22),
unten: Seq. 2 (7:20). unten: Seq. 3 (7:45). unten: Seq. 5 (8:12).

Abbildung 5.6: Standardabweichung der Testsequenzen (v.L.n.r.) mit leich-
ter, mittlerer und starker atmosphérischer Turbulenz; oben: extrem kurze
Belichtung (Seq. 1 u. 3: <0,1 ms, Seq. 5: 0,045 ms), unten: 1 ms Belichtung.



140 5 Deblurring

5.2.3 Spezialfall: stark anisoplanatische Turbulenz

Der Fokus in dieser Arbeit liegt zu einem nicht unbetrachtlichen Teil auf
starker und real gemessener Turbulenz. Aus diesem Grund wurde, wie im
Abschnitt 5.2.1 zuvor erwéhnt, zusédtzlich die Testsequenz 7 selektiert, die
in der Mittagshitze unter stark anisoplanatischen Turbulenzbedingungen
aufgenommen wurde (Aufnahmezeit 13:07 Uhr). Beispielergebnisse hierfiir
sind nachfolgend in den Abbildungen 5.7 und 5.8 abgebildet.

e I s s

o [ T T

IBD average IBD median LRD average LRD median

\

e s e 1

IWF average PCA single C1234 for average 100

Abbildung 5.7: Beispielergebnisse fiir Seq. 7, Teil 1: IBD, LRD u. IWE

Oben (v.l.n.r.): Einzelframe, Mittelwert u. Median (je 100 Fr.), MW (1000 Fr.);
Mitte: IBD- u. LRD-Ergebnisse jeweils fiir MW u. fiir Med. (je 100 Fr.); unten
(v.l.n.r.): STD o (1000 Fr.), IWF-Ergebnisse fiir MW u. Med. (100 Fr.), Ergebnis
fiir PCA (SO) fur alle vier HK (1 +2+3 +4).
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Abbildung 5.8: Beispielergebnisse fiir Seq. 7, Teil 2: Entfaltung mit PCA.
1.4+2. Reihe: SO-Version; 1. Reihe: Ergebnisse fiir jede der 4 HK fiir MW

(100 Fr.); 2. Reihe: Ergebnisse fiir 1. HK u. alle 4 HK fiir Med. (20 Fr. u. 10 Fr.).
3.+4. Reihe: MO-Version; 3. Reihe: Ergebnisse fiir 1. HK u. alle 4 HK fiir Med.
(20 Fr. u. 10 Fr.); 4. Reihe: Ergebnisse fiir HK (1), (4), (3 + 4) u. alle 4 HK.
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5.3 Evaluierung

Am Einzelbild der Sequenz 7 in der Abbildung 5.7 (1. Reihe, ganz links) fallt
besonders der scheinbare Raucheffekt (oder Wolkeneffekt) auf, der sich erst
bei mittlerer oder starker Turbulenz beobachten lédsst. Dieser Effekt macht
sich vorwiegend in den Grenzbereichen zwischen hellen und dunklen Mus-
teranteilen bemerkbar und resultiert daraus, dass das einfallende Licht
von grolleren Turbulenzzellen (d. h. > ry aber < D) abgelenkt und iiber die
(Farb-)Grenzen in benachbarte Bildregionen hinein gestreut wird. Dadurch
entsteht in eigentlich homogen schwarzen bzw. weillen Bildbereichen ein
Farbgemisch an Grauténen, und es bilden sich Strukturen, Rauchschwaden
dhnlich, mit hheren (Raum-)Frequenzanteilen und groBerer Standardab-
weichung (STD). Diese unechten, durch Turbulenz erzeugten Strukturen
stellen besondere Herausforderungen fiir Korrekturverfahren dar und kén-
nen unerwliinschte Artefakte in den Ergebnissen verursachen.
Erwartungsgemal sind die Ergebnisse fiir die Sequenzen 1, 4 und 6 mit einer
ultra-kurzen Belichtungszeit (< 0,1 ms) generell exakter hinsichtlich der zu-
grundeliegenden Geometrie der abgebildeten Szene, siehe die Abbildungen
5.3, 5.4 und 5.5. Wihrenddessen sehen die Ergebnisse der Sequenzen 2, 3,
5 und 7 mit etwas ldngerer Belichtungszeit (1 ms) entsprechend schirfer
aus, weisen einen vergleichsweise hoheren Kontrast auf und enthalten mehr
Details.

Die Ergebnisqualitdt von IBD, LRD und IWF ist weitgehend dhnlich, und
die zumeist geringfiigigen Unterschiede lassen sich in erster Linie mit der
geschitzten (GauB3-)PSF begriinden, die fiir die nicht-blinden Methoden
(IWF und LRD) verwendet wurde. Die Qualitdt der Ergebnisse fiir die PCA-
basierte Entfaltung variiert hingegen signifikant, was speziell fiir die MO-
aber auch fiir die SO-Version des Algorithmus gilt.

5.3.1 Diskussion: IWF, LRD und IBD

GroRtenteils lassen sich die Ergebnisse von IBD, LRD und IWF kaum un-
terscheiden und bieten fiir die Sequenzen 1, 2, 5 und 6 vergleichsweise
wenig Verbesserung gegentiber dem Median-Referenzbild, das als Basis fiir
die Entfaltung verwendet wurde. Dagegen sind die Unterschiede in den
Sequenzen 3 und 4 deutlicher ersichtlich. Speziell in der Sequenz 3 liefert
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der IWF die beste Auflosung insofern, dass dieser als einziger die erste Text-
zeile “A BEAR” lesbar aufzul6sen vermag. Davon abgesehen ist es allerdings
der IBD-Algorithmus, der fiir die Sequenzen 3 und 4 das schérfste Ergebnis
liefert, wihrend der LRD-Algorithmus das glatteste Ergebnis liefert (besser
erkennbar in der originalen BildgroRe), ohne zugleich unscharf wie die PCA-
Ergebnisse zu sein. Fiir alle anderen Sequenzen (einschlieBlich Sequenz 7)
sehen IBD- und LRD-Resultate im Wesentlichen gleich aus. Dies in Ver-
bindung mit den zufriedenstellenden IWF-Ergebnissen bedeutet, dass die
verwendeten (Gau3-)PSF-Schédtzungen durchaus annehmbare Ndherungen
darstellen.

Es sollte noch erwdhnt werden, dass die Anzahl an Iterationen fiir die LRD
und IBD bewusst gering (d. h. 5-10 Iterationen) gehalten wurde. Ein speziel-
ler Aspekt dieser Untersuchung war das Potential fiir Echtzeitfdhigkeit der
getesteten Algorithmen, wobei jede zusétzliche Iteration in dieser Hinsicht
wertvolle Zeit kostet. Aus diesem Grund wurde eine qualitative Untersu-
chung dariiber durchgefiihrt, wie viele Iterationen zu einem gegebenen
Datensatz mindestens erforderlich sind, um ein akzeptables Ergebnis zu er-
zielen. Hinzu kamen rein praktische Erwdgungen, denn aufgrund der hohen
Framerate, mit der die Sequenzen aufgezeichnet wurden, lag insgesamt eine
verhiltnismalig grolle Menge an Rohdaten vor, die mit mehreren verschie-
denen Parametersitzen verarbeitet werden musste.

Beziiglich des verwendeten Rauschparameters konnte weder eine Verbes-
serung noch eine Verschlechterung festgestellt werden gegeniiber den Er-
gebnissen, in denen das Rauschen zu Null angenommen wurde. Dies liegt
aller Wahrscheinlichkeit nach daran, dass der Rauschparameter in den un-
tersuchten Féllen ohnehin sehr gering ausfiel (s. a. Tabelle 5.2) weil als Basis
fiir die Entfaltung der Mittelwert (bzw. Median) einer relativ grolen Anzahl
an Frames (z. B. 100 Frames) verwendet wurde, wodurch das urspriinglich
enthaltene Rauschen in den Daten entsprechend reduziert wurde.

5.3.2 PCA: Multiple Observation und Single Observation

Wie eingangs bereits erwdhnt, kann der durch Turbulenz bedingte Wolkenef-
fekt eine beeintrachtigende Wirkung auf Korrekturverfahren haben, speziell
auf die hier vorgestellten Entfaltungsverfahren. Die PCA-basierte Entfaltung
ist hierfiir besonders anfillig, wie die entsprechenden Ergebnisse in den



144 5 Deblurring

Abbildungen 5.3 bis 5.8 zeigen, wobei die MO-Version des Algorithmus deut-
lich stdrker beeintrdchtigt wird als die SO-Version. Dies liegt u. a. daran, dass
hierin, anders als bei allen anderen Methoden, die unverdnderten Rohdaten
verwendet wurden. Das heif3t, es wurde keine temporale Mittelwert- oder
Median-Filterung zur Glattung der Daten durchgefiihrt (mit entsprechender
Reduktion des Raucheffekts). Stattdessen wurden bestehende Varianzen
zwischen den Einzelbildern maximiert.

Die PCA-basierte Entfaltung (in beiden Varianten) gehort zu denjenigen
Algorithmen, die den Kontrast eines Bildes anhebt und hohere Frequenzan-
teile (z. T. extrem) verstdrkt. Dadurch wird sie anféllig fiir die Verstarkung
von Rauschen, was zu unnatiirlichen Hochfrequenzkomponenten und ho-
hem Kontrast fiihrt. Die Ergebnisse in den beiden untersten Reihen von
Abbildung 5.8 verdeutlichen, dass sich dies nicht notwendigerweise positiv
auswirkt. Insbesondere werden starker Kontrast und hohe Frequenzanteile
von zahlreichen (Bild-)Qualitdtsmetriken als positiv bewertet.

Wie das letzte Bild (d. h. ganz unten rechts) in der Abbildung 5.3 mit mo-
derater Turbulenz bereits anmuten l&sst, ist die originale MO-Version fiir
anisoplanatische Bedingungen eher ungeeignet. Zwar erscheint das Ergeb-
nis durchaus scharf, und einige Details sind tatsdchlich besser erkennbar
(z.B. das Seil rechts unten im Bild, Objekte im Hintergrund), dennoch sind
es die falschlich erhaltenen Deformationen, die das Endergebnis dominie-
ren. Wie sehr zunehmende Turbulenz diesen Effekt noch negativ verstarkt
verdeutlicht die Abbildung 5.8. Dabei kann die MO-Version bei schwacher
Turbulenz durchaus gute Ergebnisse liefern, wie unter anderem in [Li07]
und [Gre08] gezeigt. Betrachtet man vor allem die zugrundeliegende Geome-
trie der abgebildeten Mustertafeln, stellt sich allerdings heraus, dass sich die
Ergebnisse mit zunehmender Turbulenzstirke immer mehr verschlechtern.
Wie die Abbildung 5.3 erkennen lésst, wirkt sich dies bereits bei moderater
Turbulenz signifikant aus. Bei starker Turbulenz wie in Sequenz 7 versagt
die MO-Variante des Algorithmus bei 100 Eingabebildern sogar vollig, wie
speziell die unterste (4.) Bildreihe in der Abbildung 5.8 demonstriert. Die
entsprechenden Ergebnisse (in der 3. Reihe) mit reduzierter Anzahl an Ein-
gabebildern, d. h. nur 10 oder 20, fallen etwas besser aus. Deren Qualitét
reicht dennoch nicht an die der anderen Entfaltungsalgorithmen heran oder
auch nur an die des einfachen temporalen Medians oder Mittelwert (bei
gleicher Anzahl an Eingabebildern).
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Die Ergebnisse der SO-Version des PCA-Algorithmus schneiden dagegen
verhiltnismélig gut ab. Bei schwacher Turbulenz wurden damit sogar die
besten Ergebnisse erzielt, z. B. fiir die Sequenzen 1 und 2 (siehe Abbildung
5.3, unterste Reihe). Besonders {iberzeugt die Fahigkeit des Algorithmus,
horizontale und vertikale Linien gut aufzuldsen. Dies ist auch bei modera-
ten und sogar bei starken Turbulenzbedingungen der Fall, wie die Ergeb-
nisse fiir die Sequenzen 5 bis 7 belegen (siehe Abbildungen 5.5, 5.7 und
5.8). Interessanterweise funktioniert diese Methode nicht so gut fiir die fei-
neren, teilweise organischen Strukturen und runden Konturen, wie sie in
den Sequenzen 3 und 4 enthalten sind (siehe Abbildung 5.4). Dies liegt vor
allem an einer horizontalen bzw. vertikalen Verstarkung, die den ersten
Hauptkomponenten (HK) inhdrent ist. Die 1. Bildreihe in der Abbildung
5.8 veranschaulicht die charakteristische Gestalt der vier einzelnen HK am
Beispiel von Sequenz 7. Daran lasst sich erkennen, dass die 1. HK eine be-
sonders starke vertikale Auspragung aufweist, wiahrend die 2. HK deutlich
horizontal ausgerichtet ist. Die 3. und 4. HK weisen ebenfalls vertikale und
horizontale Strukturen auf, allerdings in einer kleineren GréRenordnung.
Dem PCA Prinzip nach sollte grundsétzlich die 1. HK das beste Ergebnis
liefern. Die Anwendung hat allerdings gezeigt, dass es in der Realitdt zumeist
Kombinationen mehrerer Komponenten waren, die zu einem gegebenen
Testdatensatz tatsdchlich die besten Ergebnisse liefern konnten.

Auffallig ist bei der SO-Version zudem ein scheinbarer 3-D Eindruck. Be-
trachtet man z. B. das letzte Ergebnis fiir die Sequenz 6 in der Abbildung
5.5, ldsst sich eine gerichtete Kontrastverstdrkung an den Kanten im Bild
erkennen. Die weilen Quadrate und Streifen des Schachbrettmusters auf
der Mustertafel erscheinen in der Hauptsache hellgrau, wobei die Kanten
oben und links (fast) weild sind, wihrend die Kanten unten und rechts (fast)
schwarz sind. Dies vermittelt fidlschlicherweise den optischen Eindruck,
dass die weillen Areale nach vorne aus der Mustertafel herausragen. Die-
ser unerwiinschte 3-D Effekt hdngt zum einen mit der horizontalen bzw.
vertikalen Auspragung der Hauptkomponenten zusammen, und zum ande-
ren damit, dass die erforderliche Anzahl von Beobachtungen anhand von
Verschiebungen des Eingangsbildes kiinstlich erzeugt wurde. Die Stérke die-
ses Effekts ist insbesondere von der (geschétzten) GréRe des PSF-Supports
(entspricht der Kantenbreite” in der Tabelle 5.2) abhéngig, weshalb er sich
mit zunehmender Turbulenz verstarkt. Dies ist bei leichter Turbulenz (mit
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kleiner PSF) relativ unkritisch, wie die Ergebnisse fiir die Sequenzen 1 und 2
in Abbildung 5.3 belegen. Mit zunehmender und insbesondere bei starker
Turbulenz wie im Fall von Sequenz 7 (siehe Abbildung 5.8) dominiert dieser
Effekt die Ergebnisse und verfilscht z. T. den tatsdchlichen Bildinhalt.

Wie sich speziell fiir die Verarbeitung von ganzen Videosequenzen als pro-
blematisch herausgestellt hat, kann es des 6fteren zu kiinstlichen Verschie-
bungen zwischen den Entfaltungsergebnissen aufeinander folgender Einzel-
bilder kommen. Die Groe der Verschiebungen (in Pixeln) entspricht dabei
maximal der GroBe der PSE Werden diese Ausgabebilder zu einem Video zu-
sammengefiigt, erscheinen diese Verschiebungen wie Spriinge bzw. Ruckeln
im Video. Dieser Effekt ldsst sich nicht mithilfe einer einfachen Bildregis-
trierung beseitigen, da der unechte 3-D Effekt auch quasi “umkippen” kann.
Das heil3t, es sind nicht nur positionelle, sondern auch (Bild-)inhaltliche
Unstetigkeiten moglich.

5.4 Zusammenfassung und Diskussion

Bei den eingangs beschriebenen Entfaltungsmethoden handelt es sich ledig-
lich um eine représentative Teilmenge an Entfaltungsmethoden. Dartiber
hinaus gibt es nattirlich es noch eine Vielzahl anderer Losungsmoglichkeiten
fiir das Entfaltungsproblem. Ziel der Auswahl hier war es, fiir jeden der in
Tabelle 5.1 aufgelisteten Algorithmus-Typen speziell ein typisches Verfahren
herauszugreifen und vorzustellen. Die Auswahlkriterien hierfiir waren in ers-
ter Linie auf den Bekanntheitsgrad der jeweiligen Algorithmen beschréankt
und darauf, wie weit diese verbreitet sind und tatséchlich eingesetzt werden.

5.4.1 Vor- und Nachteile der Algorithmus-Typen

Direkte vs. iterative Entfaltungsmethoden

Der grote Vorteil direkter Entfaltungsmethoden gegentiber iterativen Me-
thoden im Hinblick auf Turbulenzkorrekturverfahren liegt auf der Hand.
Algorithmen, welche die gesuchte Losung innerhalb eines einzigen Pro-
grammdurchlaufs liefern kdnnen, bieten (potenziell) eine hohere Geschwin-
digkeit und u. U. sogar Echtzeitfdhigkeit. Dies gilt speziell fiir den IWE der
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selbst fiir grol3e Bilder Ergebnisse mit ausreichender Bildrate fiir Echtzeitwie-
dergabe liefern kann. Bei der ebenfalls direkten PCA-basierten Entfaltung
sieht das ein wenig anders aus. Obwohl es sich hierbei um eine direkte und
tatsdchlich relativ schnelle Methode handelt, benétigt die Ausfithrung in der
Regel dennoch deutlich mehr Zeit als dies beim reinen IWF der Fall ist, bei
dem die PSF-Schétzung separat erfolgen muss.

Blinde vs. nicht-blinde Entfaltungsmethoden

Entsprechend offensichtlich ist auch der diesbeziiglich grof3te Nachteil von
nicht-blinden Entfaltungsverfahren gegeniiber blinden Verfahren, welcher
in der im Normalfall (d. h. fiir den vorliegenden Turbulenz-Kontext “nor-
mal”) unbekannten PSF begriindet liegt. Das bedeutet, dass vor der eigentli-
chen Dekonvolution erst noch die Filterfunktion / mit Hilfe einer geeigneten
Methode bestimmt (bzw. geschétzt) werden muss. Hierfiir miissen somit
zusdtzliche Ressourcen eingesetzt werden. Tatsdchlich ist die Schitzung
derartiger Blurring-Funktionen eines der schwierigsten Probleme bei der
Bildrekonstruktion iiberhaupt. Entsprechend kann jede Art von Vorwissen
iiber die Natur der aktuell vorliegenden Stérungen bei der Rekonstruktion
von Vorteil sein. Speziell bei bekannten Rahmenbedingungen, wie z. B. bei
Anwendungen in der medizinischen Bildverarbeitung haufig der Fall, kon-
nen blinde Entfaltungsverfahren auch zu kurzsichtigen (“myopic”) Verfahren
werden.

5.4.2 Uberblick iiber die Algorithmen

IWF-Algorithmus

Der IWF zdhlt zu den direkten Entfaltungsmethoden, wiahrend er zugleich
auch zu den nicht-blinden Methoden gehort, inklusive aller im vorangegan-
genen Abschnitt aufgefiihrten Vor- (Echtzeitfdhigkeit) und Nachteile (PSF
unbekannt). Dariiber hinaus ist insbesondere seine extreme Sensibilitit
bereits gegeniiber minimalem Rauschen negativ hervorzuheben. Ebenso
nachteilig ist der erforderliche hohe Aufwand, um sinnvolle Parametrisie-
rungen zu finden, die speziell auf die jeweilige Anwendung angepasst sind.
Wiirde man darauf verzichten, hitte dies im Regelfall signifikante Beein-
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trachtigungen in der Ergebnisqualitét zur Folge.
Nichtsdestoweniger werden spezialisierte Versionen des IWF in zahlreichen
Verfahren zur Korrektur optischer Turbulenz eingesetzt.

LRD-Algorithmus

Bei dem relativ robusten LRD-Algorithmus handelt es sich um eine iterative,
aber nicht-blinde Entfaltungsmethode. Das bedeutet, es miissen Abbruch-
kriterien gefunden werden, welche dartiber entscheiden, wann bzw. ob eine
hinreichende Konvergenz der Schitzung f des ungestorten Bildes f erreicht
wurde. Zudem muss eine méglichst gute PSF-Schitzung h gefunden wer-
den. An dieser Stelle sei auf den nachfolgend diskutierten IBD-Algorithmus
verwiesen, welcher dieses Problem I§st.

Der LRD-Algorithmus dient im {ibrigen haufig als qualitativer Vergleichs-
malfstab fiir reine (d. h. nicht-blinde) Entfaltungsalgorithmen. Seine Ge-
schwindigkeit hdngt insbesondere von der Bildgr68e und der Anzahl von
Iterationen ab. Je nachdem konnen die Berechnungen mehrere Sekunden
bis hin zu mehreren Tagen in Anspruch nehmen.

IBD-Algorithmus

Der IBD-Algorithmus z&hlt zu den iterativen, sowie blinden Entfaltungs-
methoden und ist im Grunde genommen, wie zuvor erwahnt, eine blinde
LRD-Variante. Auch der IBD-Algorithmus dient haufig als eine Art Refe-
renzverfahren, allerdings speziell fiir blinde Entfaltungsalgorithmen. Seine
Geschwindigkeit héngt ebenfalls von der Bildgrof3e und der Anzahl von
Iterationen ab. Genauer zeichnet sich dieser Algorithmus durch eine Re-
chenkomplexitit der GroRenordnung O(Nlog, N) pro Iteration aus, wobei
N der Gesamtzahl der Pixel in einem einzelnen Frame entspricht, wahrend
normalerweise mehr als eine Iteration fiir seine Konvergenz erforderlich ist.

PCA-Algorithmus

Als sowohl blinde wie auch direkte Entfaltungsmethode gehort der PCA-
Algorithmus zu der sicherlich am seltensten vorkommenden Algorithmus-
Kategorie und vereinigt in sich somit die (potenziellen) Vorteile beider Arten.
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Das heil3t, fiir die MO Variante (mit mehreren Engabebildern) ist tatsdchlich
keinerlei Vorwissen iiber die PSF erforderlich, wiahrend fiir die SO-Version
(mit nur einem einzigen Engabebild), ebenso wie im Fall der meisten blin-
den Entfaltungsmethoden, nur die Grof3e des Trégers der PSF bekannt sein
muss. Die Bildrekonstruktion erfolgt direkt, d. h. in einem einzigen Schritt,
wodurch das Rekonstruktionsergebnis vergleichsweise schnell vorliegt. Da-
bei erhoht sich zwar die Komplexitdt mit der Filtergroe, die BildgroBe wirkt
sich dafiir aber deutlich weniger auf die Geschwindigkeit aus als dies bei
den anderen der hier vorgestellten Methoden der Fall war. Im Hinblick auf
(potenzielle) Echtzeit-Anwendungen stellt dies einen enormen Vorteil dar.
Ein zusitzlicher Vorteil liegt in der Robustheit des Algorithmus gegeniiber
weillem Rauschen. Nachteilig ist dagegen die {iberproportionale Kontrastan-
hebung, sowie auch die Verstarkung hoher Frequenzanteile, einschlief§lich
hochfrequentem Rauschen. Je nach Anwendung kann es {iberdies auch von
Nachteil sein, dass der Algorithmus keine explizite Bestimmung der Filter-
funktion zuldsst.

Aus den im vorangegangenen Abschnitt 5.3 diskutierten Ergebnissen aus
Abschnitt 5.2 geht hervor, dass beide Versionen des Algorithmus am besten
fiir schwache, insbesondere isoplanatische Turbulenz geeignet sind. Mit
zunehmender Turbulenzstérke steigt auch die Rauschanfilligkeit der MO-
Version an, sowie der unechte 3-D Effekt der SO-Version. Daher ist diese
Entfaltungsmethode fiir stirkere, insbesondere anisoplanatische Turbulenz
nicht empfehlenswert. Aufgrund der guten Auflésungsfahigkeit der SO Vari-
ante, speziell von vertikalen und horizontalen Mustern, ist deren Einsatz je
nach Anwendungsgebiet dennoch auch bei starker Turbulenz vorstellbar. So
sind z. B. Applikationen im Bereich Maschinelles Sehen denkbar, bei denen
die Aufl6sung geometrischer Muster den héchsten Stellenwert hat. Sobald es
hingegen um Objekterkennung bzw. -klassifizierung geht oder auch (visuell)
dsthetische Gesichtspunkte im Vordergrund stehen, sind im Regelfall andere
Methoden besser geeignet.

5.4.3 Anmerkungen
“Padding” zur Randbehandlung

Aufgrunddessen, dass die meisten Entfaltungsverfahren Fourier-Transfor-
mationen einsetzen, sollte noch angemerkt werden, dass diese in der Regel
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bessere Ergebnisse liefern, wenn die Eingangsdaten an den Randbereichen
entsprechend optimiert werden. Weit verbreitet ist hierfiir der Einsatz soge-
nannter “Padding”-Methoden, bei denen die Bilder {iber den eigentlichen
Bildrand hinaus erweitert werden. Am einfachsten ist die Erweiterung mit
Nullen (bekannt als “Zero-Padding”), wobei das Kopieren oder die Spiege-
lung des Bildinhalts am Bildrand (auch bekannt als einfache oder symmetri-
sche Replikation) ebenfalls weit verbreitet sind.

“Ringing”-Effekte

Unter “Ringing” in (Bild-)Signalen versteht man Stérungen bzw. Artefakte im
Bild, die in der Umgebung scharfer Kanten auftreten. Das Bildsignal oszilliert
scheinbar um die Kanten herum, wodurch Phantom-Kanten als eine Art
Echo der echten Kanten erzeugt werden. Dekonvolutionsalgorithmen sind
sehr anfillig fiir solche “Ringing”-Effekte, speziell inverse Filtertechniken
wie das Wiener Filter.

Zur Reduktion solcher “Ringing”-Effekte wird hdufig sogenanntes “Edge
tapering” eingesetzt, wobei Diskontinuitdten an den Bildkanten mithilfe
gradueller Kontrastreduktion vermindert werden.

Fiir zusétzliche Moglichkeiten der sinnvollen Bildvorverarbeitung im Fall
Turbulenz-gestorter Bilddaten sei insbesondere auf den Abschnitt 6.4 ver-
wiesen.



Turbulenzkorrektur

Der Themenkomplex Turbulenzkorrektur in diesem Kapitel befasst sich vor
allem damit, Korrekturmethoden ganz konkret an Turbulenzbedingungen
anzupassen. Algorithmen zur Bewegungskompensation und Deblurring,
die wesentliche Bestandteile gdngiger Korrekturverfahren bilden, wurden
bereits in den vorangegangenen Kapiteln 4) und 5) behandelt. Jedoch ist
die Anwendbarkeit dieser Algorithmen auf turbulenzgestérte Daten nicht
immer ohne Weiteres gewéhrleistet. In Abschnitt 6.4 ist daher beschrie-
ben, inwieweit eine entsprechende Vorverarbeitung der Eingangsdaten die
Performanz diverser Verfahren verbessern kann.

Fiir eine gegebene Turbulenzstérke ldsst sich gemall [Fri82] eine theoreti-
sche durchschnittliche PSE berechnen, sofern alle relevanten Informationen
tiber das abbildende System und die abgebildete Szene vorliegen (siehe
Abschnitt 6.2). Die resultierende PSF kann anschlie8end fiir ein effektives
Deblurring einzelner Frames eingesetzt werden, insbesondere auch als Teil
der Vorverarbeitungskette.

Wihrend Informationen wie die Spezifikationen des eingesetzten Kamera-
systems zumeist verfiigbar sind, liegen in der Praxis hingegen nur vergleichs-
weise selten Informationen {iber die Stérke der vorherrschenden Turbulenz
(in Form von aktuellen Messdaten fiir ry bzw. C2) zu einem gegebenen
Datensatz vor. Daher liegen die Vorteile einer funktionsfahigen und hinrei-
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chend genauen Methode zur automatischen Schédtzung der Turbulenzstérke
anhand eines solchen Bilddatensatzes auf der Hand. Ein entsprechendes
Verfahren wird in Abschnitt 6.3 erldutert.

Des weiteren kénnen auch die Testdaten eine Rolle spielen, deshalb gibt der
nachfolgende Abschnitt 6.1 zunéchst eine detaillierte Beschreibung der in
dieser Arbeit am hdufigsten verwendeten Testsequenzen.

6.1 Testsequenzen

Um die Leistungsfdhigkeit von Korrekturverfahren addquat beurteilen zu
konnen, sind zunéchst entsprechend geeignete Daten unerlésslich. Dabei
ist die Fragestellung nach der Eignung einer gegebenen Bildsequenz fiir
einen bestimmten Algorithmus eng verkniipft mit der Zielsetzung der zu-
grundeliegenden Anwendung.

Grundsitzlich gilt fiir Testdaten, dass im Idealfall mehrere méglichst unter-
schiedlich geartete Objekte in der abgebildeten Szene vorkommen sollten,
um die ganze Bandbreite der Leitungsfahigkeit eines Korrekturverfahrens
testen zu konnen. Dazu gehoren insbesondere die folgenden Szenenelemen-
te:

¢ Geradlinige (meist kiinstliche) Strukturen, d. h. Linien und Kanten, so-
wohl mit horizontaler als auch vertikaler und diagonaler Ausrichtung
(z. B. eine Testmustertafel, ein Haus oder ein Strommast)

e Statische (unbewegliche) Elemente und bewegte Elemente

¢ Organische Strukturen, d. h. Formen mit Rundungen, sowohl nattir-
lichen Ursprungs (wie z. B. Personen, Tiere oder Pflanzen) als auch
kiinstlich (z. B. ein Schriftzug oder eine spezielle Mustertafel)

¢ Bereiche mit hohem Kontrast und mit geringem Kontrast
¢ Feine Strukturen und grobe Strukturen

Das bedeutet nicht, dass gleich all diese Elemente in einer einzigen Sequenz
vorkommen miissen. Nicht selten sollen ganz spezifische Fahigkeiten eines
gegebenen Algorithmus getestet werden, so dass Daten benotigt werden,
die vor allem solche Objekte bzw. Objektarten beinhalten, welche die ent-
sprechenden Strukturen aufweisen.
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Weiterhin sollten die {iblichen Anforderungen an die Aufnahmequalitdt
erfiillt sein (d. h. qualitativ hochwertiges Equipment, hohe Bildauflosung,
kurze Integrationszeit etc.)

Ein zusétzlicher Aspekt ist die allgemeine Verfiigbarkeit spezieller Datensit-
ze. In der Regel ist sinnvoll, neu entwickelte oder verbesserte Algorithmen
an Daten zu testen, die auch von anderen verwendet werden diirfen, um
eine bessere Vergleichsmoglichkeit verschiedener Methoden untereinander
zu haben.

Nachfolgend werden die in der vorliegenden Arbeit hdufiger vorkommenden
Testsequenzen genauer beschrieben.

6.1.1 “China Lake™-Sequenz

Die hier als “China Lake” bezeichnete Sequenz wurde am 18. Juli 2001 um
13:18 Uhr vom FGAN-FOM wéhrend einer Messkampagne der TG11 (NATO
RTG SET) auf der “Naval Air Weapons Station China Lake”, am westlichen
Rand der Mojave-Wiiste in Kalifornien (USA) aufgenommen. Die Informa-
tionen tiber die Erfassung dieser Testsequenz (Spezifikationen, C%, etc.)
wurden aus [Sei01] iibernommen.

Die Sequenz umfasst 4096 Frames mit einer Auflésung von 256 x 256 Pixeln
bei einer Bildrate von 300 fps. Der Ausbreitungsweg zwischen Referenzziel
und Kamerasystem verlief parallel zum Boden in einer Héhe von ca. 1,5 m
und mit einer Weglidnge von ca. 1,3 km.

Fiir die Erfassung der Daten wurde eine “RETICON MD4256C” Hochge-
schwindigkeitskamera mit Siliziumdetektor verwendet. Thre Spezifikationen
und die der verwendeten Optiken sind in der Tabelle 6.1 zusammengefasst.

RETICON MD4256C von EG&G OPTIK

High-Speed Kamera mit Si-Detektor Apertur D=125mm
Empfindlichkeit max. L= 800 nm Brennweite f=1250mm
Bit pro Pixel 8 bpp Blendenzahl 10
Framerate max. 1000 fps FOV 0.19° (3.28 mrad)
Bildauflisung 256 x 256 pixels IFOV 11.2 prad x 12.8 urad (H x B)
Eff. Pixelgrifie 14 um x 16 pm (H x B) . . dp=1.221D

N Winkelanflisung ~ _

Pixelabstand 16 um x 16 pm - do=7.8 urad (A=800nm)

Tabelle 6.1: Geritespezifikationen de RETICON MD4256C Kamera
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Das linke Bild in der Abbildung 6.1 zeigt die Mustertafel, die fiir die Sequenz
verwendet wurde und vermittelt einen Eindruck von dem Standort. Die
vollstindigen Abmessungen der Mustertafel sind noch einmal in der Abbil-
dung 6.2 rechts im Detail zu sehen. Rechts in der Abbildung 6.1 ist auf einem
Beispielbild der Sequenz die Anzahl der Pixel gekennzeichnet, die der Breite
des Tafel entsprechen. Daraus ergibt sich eine Auflésung von ca. 70 Pixeln
pro Meter, d. h. 1 Pixel im Bild entspricht ungefdhr 1,4 cm in der realen
Szene.

Abbildung 6.1: Links: Referenzziel am Standort; rechts: Beispielbild aus der
Testsequenz mit Abmessungen.

Wihrend des gesamten Tages wurden durchgéngig C2 Messungen mit einem
“Boundary Layer Scintillometer” BLS900 der Scintec AG durchgefiihrt. In
der Abbildung 6.2 ist der komplette C2 Tagesgang fiir den Aufnahmetag
zu sehen (links). Da die Sequenz wéihrend der Mittagshitze aufgenommen
wurde, ist die Turbulenz zu diesem Zeitpunkt mit C% =13-108 m™3
als sehr starke Turbulenz einzustufen. Das bedeutet insbesondere, dass
es sich trotz der sehr kurzen Belichtungszeit von = 3,3 ms (300 fps) um
einen Langzeitbelichtungsfall handelt, da die zugehorige Kohdrenzzeit 7
tiberschritten wird.

Unter Zuhilfenahme der vorliegenden Informationen ergibt sich aus der
Gleichung (3.26) fiir A = 800 nm eine Kohérenzldnge ry = 1,17 cm und fiir
A =550 nm ergibt sich ry = 0,75 cm. Analog ergeben sich aus der Glei-
chung (3.25) fiir A = 800 nm ein isoplanatischer Winkel 8y = 2,84 urad, sowie
6o = 1,81 prad fiir A = 550 nm.



6.1 Testsequenzen 155

Da das IFQV des optischen Systems deutlich grof3er ist als die so berechneten
isoplanatischen Winkel, miissen die Bedingungen wihrend der Bildaufnah-
me als vollig anisoplanatisch eingestuft werden.
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Abbildung 6.2: Links: Tagesgang von C2 am 18. Juli 2001; rechts: MaRe des
Referenzziels.

Im iibrigen ist noch zu erwdhnen, dass nicht nur die statische Mustertafel in
der abgebildeten Szene zu sehen ist, sondern auch drei Personen, von denen
sich eine Person tiberhaupt nicht bewegt, die zweite nur geringfiigig und
die dritte etwas mehr, indem sie sich einige Schritte vor der Tafel bewegt.
Dies war die erste verfiigbare Testsequenz mit gut dokumentierten Rah-
menbedingungen, die {iberhaupt Objekte mit Eigenbewegung enthielt. Aus
diesem Grund wurden viele der in dieser Arbeit beschriebenen Methoden
und Effekte speziell an dieser Sequenz demonstriert.

6.1.2 “Dayton”-Sequenzen

Im Rahmen einer Messkampagne der NATO RTO SET 165 Gruppe wurde im
Zeitraum vom 8. bis zum 13. Oktober 2011 auf dem Geldnde der Universitét
in Dayton (Ohio, USA) eine ganze Serie von Bildsequenzen aufgezeichnet
([Vel12]). Darunter wurden von den Teilnehmern drei repriasentative Se-
quenzen ausgewdhlt, die nachfolgend genauer beschrieben werden, um
daran Algorithmen zur Turbulenzkorrektur zu testen.
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Insbesondere wurden diese Sequenzen auch in [van14] verwendet, um die
Ergebnisse des TNO und die im Rahmen dieser Arbeit erhaltenen Ergebnisse
miteinander zu vergleichen.

Der Aufnahmestandort befand sich auf dem Universitidtsgeldnde, genauer
im “Intelligent Optics Laboratory” oben auf dem “College Park Center” in
einer Hohe von ca. 15 m. Von dort aus wurden alle drei dieser Sequenzen am
12. Oktober nachmittags (zwischen 15:30 Uhr und 16:20 Uhr) aufgezeichnet.
Bei der verwendeten Kamera handelte es sich um eine monochrome “AVT Stin-
gray F-080B” mit einer maximalen Bildauflésung von 1032 x 778 Pixeln und
einer Bit-Tiefe von 14 Bit-pro-Pixel. Dazu wurde eine “Celestron C8” Optik
eingesetzt.

Eine Ubersicht der weiteren Eckdaten zu den Sequenzen ist (soweit vorhan-
den) in der Tabelle 6.2 gegeben.

Sequenz NATO/Mannequin Antenne Stadium Lamps
Datum 12.10.2011 12.10.2011 12.10.2011
Uhrzeit 15h34m37s 16h14m51s 16h19m46s
Turbulenz C,;2 5-10-16 m23 10-5 m23 10-5 m23
Entfernung ca.7 km 6-7 km 2-3 km
Apertur @ 66 mm 66 mm 200 mm
Auflssung 1032 = 264 px 552 = 776 px 776 = 776 px
Framerate 69,0 fps 31,6 fps 31,6 fps
Framezahl 500 500 300
Dynamikumfang | 16,19 dB 22,72dB 7,90 dB

Tabelle 6.2: Eckdaten der Dayton-Sequenzen.

Die Abbildungen 6.3, 6.4, sowie 6.5 zeigen Beispielbilder der einzelnen Se-
quenzen. Um einen Eindruck von den Qualitdtsschwankungen innerhalb
des Aufnahmezeitraums zu vermitteln, sind hier jeweils der beste und der
schlechtester Frame jeder Sequenz abgebildet. Dabei erfolgte die Bewertung
der Bildqualitdt mithilfe der in [Dol07] vorgeschlagenen Blur-Metrik.
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“NATO / Mannequin”-Sequenz

Abbildung 6.3: Oben: bester Frame der “NATO / Mannequin”-Sequenz;
unten: schlechtester Frame.

Die in der “NATO / Mannequin”-Sequenz aufgenommene Szene befand sich
auf dem Dach des “Dayton VA Medical Center” in einer Hohe von ca. 40 m
und in einer Entfernung von ca. 7 km Luftlinie vom Aufnahmeort. Dabei
wurden gleich mehrere verschiedene Testobjekte erfasst:

e Eine Ubungspuppe (“Mannequin”) zur Beurteilung der Beeintréichti-
gung von Personendetektion durch Turbulenz.

e Ein Schachbrettmuster aus Metall mit quadratischen Offnungen an-
stelle von weiflen Quadraten, um die Stdrke der Bildverformungen
einschitzen zu kénnen.

e Zwei Signallaser (“Beacon”), u. a. zur Bestimmung der (lokalen) PSE.

e Ein Schild mit der Aufschrift “NATO” (an einem Schuppen ange-
bracht), um die Performanz von Korrekturverfahren beurteilen zu
konnen, z. B. indem bewertet wird, ob und wie gut die Schrift vor und
nach Anwendung der Korrektur lesbar ist.
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¢ Ein Dreieck, an dem sich im Fall von starker Turbulenz zeigt, ob die
Ausrichtung der Spitze noch erkennbar ist.

Diese Sequenz eignet sich gerade aufgrund der Unterschiedlichkeit dieser
Testobjekte als Testsequenz fiir Algorithmen zur Turbulenzkorrektur.

Die gemessene Turbulenzstirke zum Aufnahmezeitpunkt (ca. 15:35 Uhr
Ortszeit) war mit C2 = 5-107'6 m™*? vergleichsweise schwach. Aufgrund des
relativlangen Ausbreitungswegs waren die atmosphérischen Beeintrachti-
gungen dennoch zeitweise stark ausgeprégt.

“Antenne”-Sequenz

Abbildung 6.4: Links: bester Frame der “Antenne”-Sequenz; rechts: schlech-
tester Frame.

Diese Sequenz wurde ca. 40 min spéter aufgezeichnet als die “NATO /
Mannequin”-Sequenz. Bei der “Antenne” handelt es sich um einen Funk-
mast der “Greater Dayton Public Television” Sendestation, welcher sich mit
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geschétzten 6-7 km in vergleichbarer Entfernung von der Universitdt Dayton
befindet. Die Turbulenzstérke hatte sich in der Zwischenzeit allerdings auf
C2 = 1075 m™ erhoht.

Da die Metallkonstruktion des Funkmasts ausschlieBlich aus geraden Linien
besteht, lassen sich Verformungen daran besonders gut erkennen wie bereits
in Abbildung 1.5 in der Einleitung demonstriert wurde. Diese Sequenz eignet
sich vor allem fiir Rekonstruktionsmethoden, die auf statischen Szenen
operieren, insbesondere aber auch fiir Methoden, die darauf basieren gerade
Linien zu detektieren und wiederherzustellen, wie z. B. in [Hof19].

“Stadium Lamps”

&3

Abbildung 6.5: Beispielframe der “Stadium Lamps”-Sequenz

In dieser Sequenz wurden die Stadionlampen im “Welcome Stadium” er-
fasst, welches sich in geschitzten 2-3 km Entfernung (Luftlinie) zum Aufnah-
meort befindet. Der Aufnahmezeitpunkt hier war gegen 16:20 Uhr, d. h. nur
ca. 5 min spéter als die “Antenne”-Sequenz, so dass die Turbulenz immer
noch in der gleichen GréBenordnung lag, d.h. bei C2 = 107!> m™*?. Den-
noch waren die Turbulenzauswirkungen aufgrund der verringerten Distanz
etwas geringer. Im Hintergrund der Lampen ist etwas schemenhaft noch
ein Strommast zu erkennen, der sich offensichtlich in groerer Entfernung
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befindet. Bereits in den Einzelbildern in Abbildung 6.5 und mehr noch im
laufenden Video fallen die Doppelkonturen auf, die dieser Strommast zu
haben scheint. Ahnlich wie im Fall von Refraktionseffekten lassen sich dear-
artige Doppelkonturen allerdings normalerweise nicht mithilfe verbreiteter
Turbulenzkorrekturverfahren beseitigen. Das bedeutet, wéhrend sich die
Lampen selbst vergleichsweise gut korrigieren lassen ([van14]), funktioniert
dieselbe Korrektur fiir diese zweite Distanzebene nicht so iiberzeugend.

6.2 Theoretische PSFs

Wie im vorangegangenen Kapitel 5 bereits anhand von Methoden zur Blin-
den Entfaltung erdrtert, beinhalten Ansétze zur Bildrekonstruktion stets
eine ndherungsweise Bestimmung der PSE. Dabei gibt es mehrere theoreti-
sche Approximationen fiir die Filterfunktion der Atmosphére. Beispielsweise
kann in erster Ndherung eine Gaul3-Form der PSF angenommen werden,
oder es kdnnen die statistischen Eigenschaften der Atmosphére ausgenutzt
werden, um eine durchschnittliche PSF zu gegebenen Umgebungsbedin-
gungen zu formulieren ([Fri66]).

Fiir alle nachfolgend aufgefiihrten Ansétze sind neben der Kohédrenzlan-
ge 1o (oder C2) diverse Kamera- und Sensorspezifikationen erforderlich.
Genauer werden iiber das abbildende System die folgenden Kamera- und
Sensordaten benotigt:

¢ der Aperturdurchmesser D (in Meter)
¢ die Wellenldnge A (in Meter)
e die Pixelgrolle auf dem Detektor p; (IFQV) (in Radians)

Die Spezifikationen des eingesetzten Kamerasystems liegen in der Regel vor,
so dass dies kein Problem darstellt. Zwar ist der Offnungswinkel pro Pixel
nicht immer bekannt, jedoch ldsst sich das IEQV hinreichend gut iiber die
Pixelauflosung und die Sensorgrof3e abschitzen.

Des weiteren werden noch verschiedene inhaltliche Informationen tiber die
abgebildete Szene bendtigt:

e die Objektentfernung L (in Meter)
* die Objektgrolle Os (FOV) (in Pixeln)
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Insbesondere ldsst sich die Grof3e der abgebildeten Szene iiber das IFOV
und die Pixelauflosung im Zusammenhang mit der Entfernung bestimmen,
wobei die Objektentfernung nicht immer ohne Weiteres verfiigbar ist. Sofern
erforderlich, kénnen jedoch ggfs. digitale Messungen in “Google Earth”, so-
wie Erfahrungswerte und gutes Augenmal3 bei der Abschitzung von Nutzen
sein.

6.2.1 Gauf}-formige PSF

Die einfachste Ndherung an eine atmosphaérische Filterfunktion ist eine
Gaul3-férmige PSE da die optischen Turbulenzen im Grunde wie ein Tief-
passfilter wirken, indem sie die hohen Ortsfrequenzen herausfiltern, wo-
durch scharfe Kanten und punktférmige Objekte verwischt werden.

Zur Bestimmung der 2-D Gaul3-Funktion muss in erster Linie die zugehorige
Standardabweichung o abgeschitzt werden (u = 0). Fiir die entsprechende
Halbwertsbreite (“Full Width Half Maximum”, FWHM) einer Punktquelle
(visualisiert in der Abbildung 6.6) gilt bei Turbulenz, dass FWHM ~ A/rq.

flx)
FWHM
- ——
fmax T
1/2* fmax T
} t
Xy Xy x

Abbildung 6.6: “Full Width Half Maximum” einer GauR-Glocke.!

Zwischen der Halbwertsbreite und o besteht die folgende Beziehung:

1
o= -FWHM (6.1)
2,355

1 Quelle: https://www.abs.uni-wuppertal.de/fileadmin/site/abs/
Lehrunterlagen/2018_05_07_Versuchsanleitung_GC.pdf (S.11)


https://www.abs.uni-wuppertal.de/fileadmin/site/abs/Lehrunterlagen/2018_05_07_Versuchsanleitung_GC.pdf
https://www.abs.uni-wuppertal.de/fileadmin/site/abs/Lehrunterlagen/2018_05_07_Versuchsanleitung_GC.pdf
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Der FWHM-Wert lésst sich mithilfe des “Tilt”-Winkels a; (j steht fiir “Jitter”)
bestimmen:

FWHM = \/(1,22- i
D

wobei sich @ (in einer Achsenrichtung) unter Verwendung des Fried-Para-
meters 1o berechnen ldsst wie folgt:

D 5/3 1
aj = 0,182-(7) = 6.3)
0

6.2.2 Beugungsbegrenzte PSF

Ps

Befindet sich ein bildgebendes System am Diffraktionslimit, dann nimmt
die zugehorige beugungsbegrenzte PSE einfach die Form einer ‘Airy-Disk™
(auch: “Airy”-Scheibchen) an. Die Abbildung 6.7 zeigt ein Beispiel fiir eine
solche beugungsbegrenzte PSE Das symmetrische “Airy”-Beugungsmuster
besteht aus einer Reihe abwechselnd schmaler dunkler und breiterer heller

.- \

o
-200 -150 -100 -50 o
Pixel

Diffraktionslimitierte PSF

sqrt
Airy

=}
=]

=}
=}

=}
=

Intensitét (normiert)

=}
(¥}

Abbildung 6.7: Beispiel einer theoretischen diffraktionslimitierten PSE Links:
“Airy”-Beugungsmuster flir A = 4 - 1076, D =20 cm, IFOV= 1075, L = 20 km;
Mitte: Quadratwurzel des Airy-Patterns; rechts: Querschnittsvergleich (Inten-
sitdten auf 1 normiert)

2 So benannt nach dem britischen Mathematiker und Astronom George Biddell Airy (1801-
1892)
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Ringe. Es entsteht durch Fraunhofer Diffraktion an einer kreisférmigen
Blende, d. h. im (zentralen) Querschnitt entspricht es dem Beugungsmuster
an einem Spalt mit der gleichen Breite wie der Blendendurchmesser.

Im Grunde genommen entspricht das “Airy”-Beugungsmuster dem Betrags-
quadrat der 2-D Fourier-Transformation der Pupillenfunktion eines idealen
Systems aus Gleichung (3.39) (skaliert bzgl. 1/p;-A/D), d.h. I ~ | F(Py)|?.
Auf diese Weise wurde auch die PSF in der Abbildung 6.7 generiert.
Mathematisch lassen sich die Intensitdtswerte I des “Airy-Patterns” mithilfe
der Bessel-Funktion 1. Ordnung J; beschreiben:

2J1 (%2 sin6) 2J1(x)
=1

nD

10) = I - .
= sinf X

D
(mit x = ”T sinf)  (6.4)

Dabei bezeichnet I die maximale Amplitude des zentralen Airy-Scheibchens
und 8 den Beobachtungswinkel zwischen der Zentrallinie und dem Beob-
achtungspunkt in der Bildebene (siehe dazu Abbildung 6.8).

Abbildung 6.8: Beugung an einer kreisformigen Blende. Links: ohne Linse;
rechts mit Linse

Die Bessel-Funktion 1. Ordnung ist wiederum mithilfe der Eulerschen Gamma-
funktionT definiert:

h(x)=§ (-Dk (g)2k+l

— 6.5
= KT (k+2) ©-5

wobei I fiir die Menge der natiirlichen Zahlen definiert ist als:

I'n) =(m-1! (VneN) (6.6)
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Die zentrale “Airy-Disk” enthélt ca. 86% der Gesamtenergie des “Airy”-Musters.
Bei einem Radius von p = 0,514 A/ D sinkt die Energie auf ca. 50% mit zuge-
horiger Halbwertsbreite FWHM = 1,028 A/ D.
Das innere “Airy”-Scheibchen kann auch mithilfe einer 2-D Gaul3-Funktion
approximiert werden:

o2

1(p) = Iy-e3? 6.7)

wobei p die radiale Entfernung vom Mittelpunkt der “Airy”-Disk bezeichnet.
Fiir die zugehorige Standardabweichung o ergibt sich ein Ndherungswert
von o = 0,42Af/D (bzw. 0 = 0,451 f/ D, falls die Approximation die gleiche
Gesamtintensitédt aufweisen soll wie das gesamte “Airy”-Muster).

6.2.3 Frieds “short” und “long exposure” PSFs

Im Fall einer Turbulenzlimitierung kénnen die Definitionen der statisti-
schen mittleren atmosphérischen PSFs gemaR Fried ([Fri66]) verwendet
werden. Dabei wird zwischen den Fillen “short exposure” und “long expos-
ure” unterschieden. Die von Fried gepragte Bezeichnung “short exposure”
PSF ist allerdings etwas irrefiihrend, da es sich nicht um eine tatsdchliche
Kurzzeitbelichtung handelt, sondern um eine “long exposure” PSF ohne
Bildbewegung. Deshalb weist die zugehorige Gaullglocke auch eine etwas
schmalere Form auf als die der “long exposure” PSE

PSF g, die PSF fiir den “long exposure” Fall, und PSFgg, die PSF fiir den
“short exposure” Fall, erhilt man mithilfe der jeweiligen OTF, wobei OTF g
und OTFgg folgendermaRen definiert sind ([Fri66]):

OTFg(v) = OTFy(v) -e~2PLE™) 68)
OTFsp(v) = OTFy(v)-e~/2Pse®) 69)

Dabei bezeichnet OTF hier die OTF eines optischen Systems am Diffrakti-
onslimit (d. h. ohne Turbulenz), die als normalisierte Autokorrelationsfunk-
tion der Teleskoppupille formuliert werden kann. Die Raumfrequenzen v
hédngen von der radialen Entfernung zum Mittelpunkt der Bildebene ab und
sind bzgl. der Bild- und PixelgréBe skaliert.
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Unter Verwendung der Parametersubstitution f = vA/D ldsst sich OTF,
vereinfacht schreiben als:

OTFo(f) = %arccos(f) - (f 1 —fz) (6.10)

Die zugehorigen Strukturfunktionen Dy g und Dgg sind gegeben durch:

D 5/3
Die(f) = 6,88-(fr—0) (6.11)
Dse(f) = Die(f)- (1 - f13) 6.12)

Die gesuchten PSFs resultieren dann aus den OTFs iiber Invertierung der
Gleichung (3.35):

PSF1£(r) = FH(OTF (V) (6.13)
PSFsg(r) = F~H(OTFsg(v) (6.14)

6.3 Turbulenzschatzung aus Videodaten

In der Literatur existieren verschiedene Ansdtze zur Bestimmung der Ko-
hirenzldnge ry (bzw. C2) anhand von einer Bildsequenz. Hier und insbe-
sondere in [Huel5] wurde der in [MM15] beschriebene Ansatz gewahlt, der
weitgehend auf den Arbeiten [Yit97a], [Bea98] und [Zam06] beruht. Auswahl-
kriterium war einerseits eine hinreichende Genauigkeit der Schédtzung, und
andererseits ein akzeptabler Rechenaufwand im Interesse eine potenziellen
Echtzeitanwendbarkeit.

6.3.1 Schatzverfahren fiir rg

Genauer werden hierbei die Bewegungsvektoren zwischen aufeinanderfol-
genden Einzelbildern der Sequenz berechnet, z. B. mittels “Block Matching”
oder einer der anderen in Kapitel 4 vorgestellten Methoden, und deren Vari-
anz ausgewertet. Dabei geht es in diesem Zusammenhang ausschlie@lich
um turbulenzbedingte Bewegung, d. h. diese Form der ry-Schitzung kann
ausschlielllich auf statischem Bildinhalt von Bildsequenzen durchgefiihrt
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werden. Jede Eigenbewegung von Objekten wiirde die Schitzungen verfal-
schen, wobei dies neben naheliegenden Bewegtobjekten, wie Fahrzeugen
oder Lebewesen, beispielsweise auch ziehende Wolken und Rauchschwaden
mit einschlieBt oder durch Windbden verursachte Bewegung von Pflanzen,
Windhosen etc. Leichter kontinuierlicher Wind, der z. B. das Blattwerk von
Baumen bewegt, ist vergleichsweise unkritisch, da der Wind die Turbulenz
ohnehin beeinflusst. Optimalerweise sollte der Szeneninhalt fiir die Dauer
der ry-Schétzung jedoch vorwiegend aus unbeweglichen oder unbewegten
Elementen bestehen.

Ahnliches gilt fiir unstrukturierte Bereiche, da dort eine zuverldssige Bewe-
gungsschitzung kaum mdoglich ist, wie in Abschnitt 4.4 diskutiert wurde. Fiir
spezielle Moglichkeiten zur Identifikation der strukturierten Bereiche, und
insbesondere zur Erstellung von geeigneten Homogenititskarten fiir das
vorliegende Bildmaterial (siehe z. B. Abbildung 6.15), sei im folgenden auf
den Abschnitt 6.3.2 verwiesen.

Zusitzlich zu den Bilddaten sind wiedereinige Sensorik- und auf die zu-
grundeliegende Szene bezogene Informationen fiir die Bestimmung von ry
erforderlich, genauer der Aperturdurchmesser D, die Wellenldnge A und das
IFOV p;. Ebenfalls werden einige Informationen tiber die zugrundeliegende
Szene bendtigt, ndmlich die Objektentfernung L, sowie die Objektgrée O;.
Die “Tip” und “Tilt” Neigungswinkel & und § in x- und y-Richtung lassen
sich gemdal [Dai00] als partielle Ableitungen der Wellenfront W oder der
Phase ¢ definieren (s. a. Gleichung (3.30)):

a(x,y) = iW(x,y) = i . i¢>(x,y) (6.15)
0x 21 0x

B(x,y) = iW(x,y) = i-iqb(x,y) (6.16)
oy 2w 0y

Das bedeutet, wenn es sich bei ¢) um eine Gaul3-Funktion handelt, trifft
dies auch auf a und f zu. In [Bea98] wurde gezeigt, dass entsprechend auch
die Bildbewegungen in der Bildebene GauR-verteilt sind (unter isotropen
Bedingungen).

Die “Angle of Arrival”-Fluktuationen «; aus der Gleichung (6.3) kénnen
ndherungsweise auch tiber die durchschnittlichen Varianz der Bildbewegun-
gen abgeschétzt werden. Dazu werden die Bewegungsvektoren zwischen
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mehreren aufeinanderfolgenden Frames ermittelt und jeweils die durch-
schnittliche Varianz der horizontalen und der vertikalen Vektorkomponen-
ten bestimmt, d. h. o2 und oi. Damit lsst sich a ; abschétzen zu:

aj = (ai +0’§,) - p? (6.17)

1
2
Tatsdchlich ist die Varianz in horizontaler Richtung hdufig etwas gréer als in
vertikaler Richtung (d. h. 02 = Uf,), da die Luftbewegung in dieser Richtung
infolge von Windeinwirkung zumeist etwas stérker ist.

Einsetzen in die linke Seite der Gleichung (6.3) und Umstellen nach r liefert:

% =0,182-D P rg®P2? (6.18)
5/3 -1/3 A 2
= = 0182-07( = (6.19)
j

Daraus ergibt sich die folgende Schitzung fiir die Kohdrenzldange ry:

3/5

2 2 H 6/5
ro = (0,182-D_”3(—) ) =0,36-D'3 (—) (6.20)
aj; a;

Daraus folgt insbesondere fiir C2:

C2=016-1r,°3 2% L7}

Anmerkungen

Die Zuverldssigkeit der Schatzungen nimmt mit der Lange der Sequenz zu,
die ausgewertet wird. Normalerweise erhilt man bereits mit ca. 10 Frames
mittlerer Grof3e (z. B. 640 x 480 px) verhdltnismélig gute Werte, dennoch
sollten mindestens 20 Frames verwendet werden, um eine hinreichende
Genauigkeit der Schiatzung gewihrleisten zu konnen. Wie der Graph in
der Abbildung 6.9 fiir das Beispiel der “NATO/Mannequin”-Sequenz an-
deutet (s.a. Abbildung 6.15 in Abschnitt 6.3.2), konvergiert das Verfahren
in der Regel bei ca. 100 Frames. Dabei spielt allerdings auch die tatsdch-
liche Anzahl effektiv ausgewerteter Bewegungsvektoren eine signifikante
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Rolle. Diese Zahl hdngt zum einen von der Bildgr68e und der gewé#hlten
Blockgrofle ab (z.B. 16 x 16 px), zum anderen aber auch vom Bildinhalt.
Vektoren, die in tiberwiegend homogenen Bildregionen bestimmt wurden,
sollten sicherheitshalber verworfen werden, um die Berechnungen von ry
nicht zu beeintrdchtigen (s. a. Abschnitt 6.3.2). Die “NATO/Mannequin”-
Testsequenz enthilt beispielsweise viele und grol3e Bildanteile, die bis auf
Rauschen (nahezu) vollighomogen sind,d. h. unstrukturiert und unifarben.
Entsprechend bedeutet es gegeniiber der maximal mdéglichen Anzahl von
Bewegungsvektoren einen erheblichen Informationsverlust, wenn lediglich
Verschiebungsvektoren in der Néhe von Kanten im Bild (s. a. Abbildung 6.15)
fiir die Berechnung von ry verwendet werden kénnen. Dementsprechend
kann die fiir eine Konvergenz erforderliche Frameanzahl in solchen Féllen
also durchaus die genannten 100 Frames tiberschreiten.

Fo Schétzungen
0.013 T T T T

r

1]
— cubic fit

‘= 0.0129 mean

0.0128

0.0127

Kohdrenzlange My {inm

0.0126

. . A .
0 20 40 60 80 100
Anzahl Frames

Abbildung 6.9: Schitzwerte fiir ry bei ansteigender Framezahl

6.3.2 Homogenitatskarten

In Kapitel 4 wurde bereits erwédhnt, dass die Berechnung von Bewegungs-
vektoren in homogenen Bildregionen kein sinnvolles Ergebnis liefern kann.
Aus diesem Grund diirfen nur Bewegungsvektoren aus hinreichend hete-
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rogenen, d. h. strukturierten Regionen in die Berechnung der Varianz mit
einfliefen. Hierzu ist ein entsprechendes Mal$ zur Bewertung der Bildhomo-
genitét erforderlich, wobei eine naheliegende Mdglichkeit darin besteht, die
lokale Grauwertvarianz (bzw. die Standardabweichung) zu verwenden wie
bereits in Abschnitt 4.4.2 vorgeschlagen.

Die oberste Prioritédt bei der Erstellung und Verwendung von Homogenitits-
karten ist dafiir zu sorgen, dass potenziell fehlerbehaftete Bewegungsvekto-
ren nicht in die Berechnungen von C? mit einflieRen konnen, um moglichst
gute Schatzungen zu bekommen. Die Genauigkeit der Karten spielt dabei
eine eher untergeordnete Rolle, wobei die Maxime gilt, dass eher zu viele
Bewegungsvektoren verworfen werden sollten als zu wenige.

Lokale STD als Homogenititsmaf3

Zur Erstellung einer Homogenitdtskarte mithilfe eines geeigneten Malles
wie der lokalen Standardabweichung gibt es mehrere Moglichkeiten, wobei
eine blockweise Implementierung mit fester Blockgrof3e naheliegt. Idealer-
weise sollte die Berechnung in Echtzeit oder nahezu Echtzeit moglich sein,
wobei dies nicht zwingend erforderlich ist, da die Turbulenzschitzung nicht
fortlaufend durchgefiihrt werden muss, sondern lediglich in bestimmten
Intervallen oder bei Bedarf. Dennoch sollte die Rechenzeit in {iberschau-
barem Rahmen bleiben (d. h. <1 sec), weshalb hier auf eine rechenintensive
Implementierung in Form einer gleitenden Nachbarschaftsoperation fiir
jedes einzelne Pixel verzichtet wurde. Stattdessen wird eine Blockverarbei-
tung ohne Uberlappung der Blocke fiir eine Anzahl k verschiedener (jeweils
fester) Blockgréfen by, ..., by durchgefiihrt. In der Abbildung 6.10 sind bei-
spielsweise die jeweiligen Ergebnisse fiir die BlockgréBen 4 x 4 px, 8 x 8 px,
12 x 12 px, 16 x 16 px abgebildet, wobei das “Kameramann”-Bild als Testbild
verwendet wurde. Die Gesamtheit dieser einzelnen Resultate wird dann
mithilfe einer geeigneten Funktion zusammengefasst, z. B. durch einfache
Mittelwertbildung oder den Median wie in der Abbildung 6.11 gezeigt. Dies
hat den Vorteil, dass die Konturen der Strukturen im Bild gegentiiber der
einfachen Blockprozessierung verfeinert werden, wodurch nicht zu viele
grof3e Bildregionen verworfen werden.

Fiir die eigentliche Homogenitétskarte ist indes nur eine binédre Informa-
tion von Interesse, um entscheiden zu kdénnen, ob ein Bewegungsvektor
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Abbildung 6.10: Lokale Standardabweichung mittels Blockverarbeitung und
verschiedene Blockgroflen (v.l.n.r.): 4 x 4 px, 8 x 8 px, 12 x 12 px, 16 x 16 px

Abbildung 6.11: Vergleich von Mittelwert (links) und Median (rechts) zu
Abb. 6.10 mit jeweils korrespondierendem Schwellwertbild.

akzeptiert werden soll oder nicht. Deshalb muss noch eine Binarisierung
mit einem geeigneten Schwellwert vorgenommen werden. Hier wurde der
Einfachheit halber der Mittelwert als globaler Schwellwert gesetzt, da die-
ser einfach und schnell zu berechnen ist und in den meisten Fillen zu-
friedenstellende Ergebnisse liefert. Es konnen dazu jedoch auch andere,
ausgefeiltere Methoden verwendet werden, die z. B. adaptiv lokal variieren-
de Schwellwerte bestimmen. In der Abbildung 6.12 sind einige Beispiele
solcher Homogenitédtskarten mit verschiedenen (maximalen) BlockgroRen
gezeigt.

Es sollte noch erwdhnt werden, dass die Binarisierung hauptsachlich der
Vereinfachung dient. Es ist auch vorstellbar, die (nicht bindre) Homogeni-
tatskarte als eine Art Zuverldssigkeitskarte zu interpretieren und in eine
Form der Gewichtung umzuwandeln. Diese Idee wurde hier jedoch aus
Zeitgriinden nicht weiter verfolgt.
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Abbildung 6.12: Standardabweichung fiir verschiedene maximale Blockgro-
Ben (v.l.n.r.): 8 px, 16 px, 32 px, 64 px. Oben: Falschfarbendarstellung; unten:
korrespondierende Homogenitdtskarten, Mittelwert als Schwellwert.

Die Lakunaritat L

Eine interessante Alternative bietet die sogenannte Lakunaritdt (“Lacu-
narity”) einsetzen, die sich bereits fiir dhnliche Aufgaben in anderen For-
schungsgebieten als erfolgreich erwiesen hat. Beispielsweise wird in der
Sonardatenauswertung inzwischen ein modifiziertes Lakunaritdtsmal zur
Bestimmung und Bewertung der Komplexitédt des Meeresbodens genutzt,
um anhand dessen die Schwierigkeit der Minenjagd in diesem Gebiet zu
bewerten ([Huel8]).

Urspriinglich wurde Lakunaritat als Mal? fiir die Liickenhaftigkeit (“Gap-
piness”) von Fraktalen entwickelt [Man83]. Obwohl zun&chst nur fiir Bi-
nérbilder konzipiert, ldsst sich das Prinzip mittels kleiner Modifikationen
verallgemeinern, so dass es auch fiir Grauwertbilder nutzbar ist ([Plo96]).
Genauer quantifiziert Lakunaritédt die Liickenhaftigkeit von Texturen, so
dass Muster mit mehr Liicken oder auch mit gréBeren Liicken héhere La-
kunaritdtswerte erhalten als Muster mit weniger Liicken bzw. mit kleineren
Liicken.
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Nach [Will5] ist die Lakunaritédt L einer abzdhlbaren Menge N von 7 (Pixel-)
Intensitdtswerten x; € N, (i = 1,...n) definiert als der Quotient der Vari-
anz o2 und des Quadrats des Mittelwerts der Intensititswerte ,uz, d.h.

=2 (6.21)

unter Verwendung der zugehorigen Definitionen in den Gleichungen (3.5)
und (3.6). Durch Umformungen unter Beriicksichtigung der Rechenregeln
bei Summen kann man zeigen, dass gilt:

n n
Yi-w?= )Y xF—n-y (6.22)
i=1 i=1

Damit ldsst sich die Lakunaritét in Gleichung (6.21) dann folgendermafien
ausdriicken:

nox2
L=n—2l - (6.23)
(X7, xi)
Die Lakunaritét ist zwar grundsétzlich fiir vollig beliebige (Pixel-)Mengen N
definiert, ldsst sich aber am besten fiir ganze (Grauwert-)Bilder berechnen.
Dabei ist von Vorteil, dass es im Fall von rechteckigen Pixelbl6cken mog-
lich ist, Integralbilder zu nutzen, um die Berechnungen zu beschleunigen.
Zu diesem Zweck ist das Integralbild ] eines Bildes I an der Stelle (r,¢) in

Anlehnung an [Will5] definiert wie folgt:

Jey= Y 1) (6.24)

r'src'sc
Dies ldsst sich auch als rekursive Berechnungsvorschrift formulieren:
J(r,e) = I(r,o)+J(r,e-1)+J(r=1,¢0)-J(r—-1,¢c-1) (6.25)

Aufgrund der beiden Summen in Gleichung (6.23) werden auch zwei In-
tegralbilder benotigt. Das zu I gehorige Integralbild sei J;, wiahrend zu I?
entsprechend J» gehort, wobei hier mit I? die elementweise Quadrierung
der Bildmatrix I gemeint ist. Dann ldsst sich die Summe der Pixel in ei-
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ner rechteckigen Bildregion um ein zentrales Pixel an der Stelle (r,c) relativ
schnell berechnen tber S, (p =1,2):

Sp(r,e) = Jp(r=r,c=C0)—J(r—r,c+0)—J(r+7,c—¢)+J(r+7,c+c) (6.26)

Dabei bezeichnen 7, ¢ die halben Seitenldngen der aktuellen Boxgrofle,
d.h. n =47¢ entspricht der Anzahl der Pixel eines Bildausschnitts in dieser

Boxgrofie.
Die Lakunaritét 1dsst sich dann berechnen mittels:
S»
L=n- S_ -1 (6.27)

1

Statt von Blockgrofen spricht man in diesem Zusammenhang normaler-
weise von “Boxgrofen” (der Begriff stammt aus der fraktalen Geometrie),
zum einen weil die Boxen nicht quadratisch sein miissen, zum anderen weil
auch die Vorgehensweise bei der Berechnung etwas anders ist als bei einer
Standard-Blockverarbeitung. Die jeweilige Boxgrolle korrespondiert zu der
GrofSe der Strukturen, die das Lakunaritatsmalfd erfassen kann. Daher ist es
iblich, die Lakunaritat eines Bildes fiir samtliche méglichen Boxgrofen zu
bestimmen, d.h. angefangen mit den kleinsten 2 x 2 Pixelblocken bis hin
zur kompletten BildgroQe.

Um letztendlich eine Art Homogenitétskarte der Bilddaten zu erhalten, bie-
tet sich somit wieder eine blockweise Implementierung bei jeweils fester
Blockgré3e an wie im Fall der Standardabweichung in Abschnitt 4.4.2, z. B.
als gleitende Nachbarschaftsoperation, um so Informationen iiber die lokale
Lakunaritdt zu gewinnen.

In der Abbildung 6.13 ist die lokale Lakunaritdt am Beispiel des “Kamera-
mann”’-Bildes dargestellt wie sie beispielsweise auch zur Ermittlung von
Auffalligkeiten (z. B. zur Detektion Seeminen in Verbindung mit ATR-Algo-
r1thmen3) in Sonarbildern eingesetzt werden kann. Die Abbildung 6.14 zeigt
zusitzlich einen Vergleich der lokalen Lakunaritét fiir verschiedene (maxi-
male) Boxgroflen in Falschfarbendarstellung (obere Reihe), sowie der daraus
resultierenden (bindren) Homogenitdtskarten, um deren unterschiedliche
Wirkung zu verdeutlichen. Die Binarisierung erfolgt wieder mithilfe eines
geeigneten Schwellwerts.

3 ATR (“Automatic Target Recognition”): Verfahren zur automatischen Zielerkennung
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(
W

Abbildung 6.13: Lakunaritdt als Homogenitdtsmalf. Links: Falschfarbendar-
stellung; Mitte: Grauwertbild; rechts: binarisiertes Bild.

1\

Abbildung 6.14: Lakunaritét bei verschiedenen maximalen Boxgroen
(vl.n.r): 1 px, 4 px, 8 px, 16 px. Oben: Falschfarbendarstellung; unten: kor-
respondierende Homogenititskarten (Mittelwert als Schwellwert).

In der praktischen Anwendung auf reale Bilddaten, die unter Turbulenz-
bedingungen aufgenommen wurden, ist damit zu rechnen, dass die Bilder
unscharf und méglicherweise verrauscht sind. In der Abbildung 6.15 ist
ein Beispiel dazu gezeigt anhand der “NATO/Mannequin”-Sequenz aus Ab-
schnitt 6.1.2.
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Abbildung 6.15: Anwendung auf Bilddaten mit realer Turbulenz. Oben: Mit-
telwert von 100 Frames der “NATO/Mannequin’-Testsequenz; Mitte: lokale
Lakunaritit in Falschfarbendarstellung; unten: resultierende bindre Homoge-
nitdtskarte.

Da die ry-Schétzungen fiir hinreichend lange Bildsequenzen konzipiert sind,
ist es von Vorteil (zur Zeitersparnis) nur eine einzige Homogenitdtskarte fiir
die gesamte Sequenz zu bestimmen. Dazu bietet sich wieder der zeitliche
Mittelwert (oder Median) an, da dieser im Rahmen einer Turbulenzkorrektur
u. U. ohnehin berechnet wird.

Reduziert man die Boxgroe bis zu 1 oder 2 Pixel, fungiert diese Lakunari-
tdtsberechnung wie ein Kantenfilter, wie das linke Bild in der Abbildung 6.14
leicht erkennen lédsst. Einfache Kantenfilter wie Sobel oder Canny wiren
allerdings ungeeignet, denn einerseits konnen Einzelframes u. U. sehr ver-
rauscht sein, wodurch die Kantenerkennung gestort wiirde, und andererseits
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haben Kantenfilter Probleme, Kanten in allzu verschwommenen Bildern zu
detektieren (z. B. infolge starker Turbulenz) wie ein Vergleich der Kantenbil-
der zur “NATO / Mannequin”-Testsequenz in der Abbildung 6.16 verdeut-
licht, bei dem die Kanten im Mittelwertbild stdrker ausgeprégt sind.

Abbildung 6.16: Kantenbilder fiir die “NATO/Mannequin”-Testsequenz.
Oben: Kantenbild des Mittelwerts von 100 Frames; unten: Kantenbild eines
Einzelbildes (5. Frame).

Es sollte noch angemerkt werden, dass die Berechnungen von Homoge-
nitdtskarten mittels Standardabweichung u. U. sehr viel Zeit in Anspruch
nehmen konnen, vor allem fiir kleine BlockgroRen. Fiir Bilder derselben
Grofle (256 x 256 Pixel) wie das Testbild in Abbildung 6.12 (links) wurden
durchschnittlich tiber ca. 2 sec pro Bild zur Berechnung auf einem normalen
Laptop bendtigt, wihrend zur Berechnung der Lakunaritét in Abbildung 6.14
(links) lediglich ca. 0,7 sec erforderlich waren. Dabei ist es durchaus moglich,
dass eine optimierte Implementierung diesen zeitlichen Unterschied stark
reduzieren konnte. Im Hinblick auf Echtzeitszenarios sind allerdings auch
0,7 sec immer noch sehr viel Zeit. Da dieser Schritt jedoch nur in gewissen
zeitlichen Abstdnden oder bei Bedarf wiederholt werden muss, z. B. wenn
sich die Umweltbedingungen wahrnehmbar gedndert haben oder falls die
letzten Messungen nicht zufriedenstellend gewesen sein sollten, spielt der
Zeitfaktor nur eine untergeordnete Rolle.



6.4 Bildvorverarbeitung bei Turbulenz 177

6.4 Bildvorverarbeitung bei Turbulenz

Die Vorverarbeitung von Einzelbildern kann einen groflen Unterschied zum
Gesamtergebnis eines jeden Algorithmus zur Bildverbesserung in Videoda-
ten beitragen, abhédngig von der Beschaffenheit und Qualitédt der betreffen-
den Rohdaten. Auch im Fall von Turbulenzkorrekturverfahren hat es sich als
vorteilhaft erwiesen, turbulenzgestorte Daten zunédchst einigen Vorverarbei-
tungsschritten zu unterziehen, um die Korrekturergebnisse zu optimieren.
Dazu gehort insbesondere eine Kontrastverbesserung, die sich nicht zuletzt
auch bei der Bewegungsschitzung positiv auswirken kann, da die Kanten-
detektion dadurch unterstiitzt wird. Bei stark verrauschten Daten ist es
iiberdies von Vorteil, wenn zuvor eine Form von Mittelwertbildung durch-
gefiihrt werden kann (ggfs. mit Bildregistrierung), da sich dadurch das SNR
verbessern ldsst. Weiterhin kann auch ein direktes Deblurring der Eingangs-
daten das finale Rekonstruktionsergebnis positiv beeinflussen. Dabei ist
die Reihenfolge dieser Vorverarbeitungsschritte, die jeweils optional sind
und nicht zuletzt von der Qualitédt der Eingabedaten abhédngen, nicht fest
vorgeschrieben und kann je nach Bedarf abgedndert werden.

6.4.1 Kontrastverbesserung

Hinsichtlich des Bildkontrasts gilt, je starker die Turbulenz ist, desto grofer
ist auch der Kontrastverlust in Relation zu dem gleichen Bild unter Idealbe-
dingungen (d. h. ohne Turbulenz). Sdamtliche in dieser Arbeit diskutierten
Methoden benétigen deutliche Strukturen in den Bilddaten, um funktio-
nieren zu kénnen. Das trifft auf Entfaltungsverfahren ebenso zu wie auf
Algorithmen zur Bewegungsschiatzung. Eine Kontrastverbesserung ist daher
in vielen Fillen angebracht, um die weitere Verarbeitung zu erleichtern.

Es gibt verschieden Méglichkeiten zur Kontrastanhebung, angefangen mit
einfacher Spreizung der tatsdchlich in den Daten vorhandenen Intensitéts-
werte auf den vollen Dynamikbereich tiber ausgleichende Histogramm-
Modifikationen bis hin zu komplexeren “Dehazing”-Methoden fiir Szenen
mit unterschiedlichen Entfernungsbereichen (z. B. weiter entfernte Gebirgs-
ziige etc.). Hier wurde bevorzugt eine Kontrastverbesserung mittels adapti-
vem Histogramm-Ausgleich durchgefiihrt, genauer mittels CLAHE (“Con-
trast Limited Adaptive Histogram Equalization”) gemal$ [Zui94], wobei ein
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gegebenes Bild in Kacheln unterteilt wird, fiir die der lokale Kontrast be-
stimmt und verstérkt wird.

6.4.2 Rauschreduktion

Bei atmosphdrisch gestdrten und verrauschten Daten ist es oft nahezu unver-
meidlich, zumindest irgendeine Form von Mittelwertbildung anzuwenden.
Da unter Turbulenzbedingungen der Informationsgehalt eines Einzelbildes
nicht notwendigerweise groler ist als der eines Kurzzeitmittelwertes, spezi-
ell bei einer kurzen Integrationszeit mit hoher Datenrate, tiberwiegen die
Vorteile (z. B. verbessertes SNR, sowie glattere und geometrisch korrektere
Strukturen) in der Regel die Nachteile eines solchen Vorgehens.

Generell gilt bei der Erfassung von Bilddaten durch atmosphéarische Tur-
bulenz, dass die Integrationszeit idealerweise < 7 sein sollte. Gerade bei
starker Turbulenz kann dies extrem kurze Belichtungszeiten bedeuten, wo-
durch sich der Rauschpegel in Abhéngigkeit von den aktuellen Lichtverhalt-
nissen signifikant erhthen kann. In solchen Féllen kann u. U. der Einsatz
zusétzlicher rauschreduzierender MaBnahmen erforderlich werden. Hierzu
konnen 2-D Rauschfilter fiir Bilddaten eingesetzt werden, so wie z. B. ein
2-D Median oder Wiener Filter.

6.4.3 Einzelframe-Deblurring

Die optionale Vorverarbeitungskette aus Kontrastanhebung und Rausch-
reduktion kann zusétzlich um ein Einzelbild-Deblurring ergédnzt werden,
bei dem Einzelbilder einer Sequenz mit einer geeigneten theoretischen PSE
entfaltet und so geschirft werden (siehe Abschnitt 6.2 und insbesondere Ab-
schnitt 6.2.3). Die Wahl dieser theoretischen PSF erfolgt je nach vorliegender
Limitierung und héngt von den jeweiligen Systemparametern (Wellenldnge,
Teleskopdurchmesser, IFOV), den physikalischen Gegebenheiten der beob-
achteten Szene (Objekt-Entfernung, tatsdchliche Objektgrof3e), sowie der
gemessenen oder geschitzten Turbulenzstérke C? ab.

Da jede Form der Bildstapelung die Gefahr birgt, dass Unschirfe entsteht
oder verstédrkt wird, sollte dennoch nicht auf eine abschliefende Entfaltung
verzichtet werden, wenn das Ziel eine bestmdgliche Bildrekonstruktion ist.
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6.4.4 Bewegung und Turbulenz

Wenn eine Sequenz mit hoher Framerate aufgezeichnet wurde und die abge-
bildete Szene bewegte Objekte enthilt, ldsst sich diese Eigenbewegung zwi-
schen zwei Einzelbildern u. U. nicht detektieren und insbesondere nicht von
Turbulenzbewegungen unterscheiden. Eine Moglichkeit, die Bewegungs-
detektion in solchen Fillen zu erleichtern und zugleich den Rauschpegel
zu senken, besteht darin, einige (wenige) Einzelbilder zu ihrem Mittelwert
zusammenzufassen, ggfs. nach entsprechender Registrierung. Bereits durch
eine Bildmittelung von nur einigen wenigen Frames ldsst sich das SNR
deutlich verbessern. Dies trifft insbesondere auch im Fall der “China Lake”-
Sequenz zu. Die Abbildung 6.17 vermittelt einen Eindruck vom Bewegungs-
inhalt der Sequenz und zeigt die durchschnittliche Differenz zwischen den
Einzelbildern (links) als eine Art Bewegungskarte (“Motion Map”), sowie
die durchschnittliche Betragsgrofe der Bewegungsvektoren (rechts), wobei
hierfiir eine Blockgrée von 8 x 8 Pixeln gewéhlt wurde.

Abbildung 6.17: Bewegungsinhalt der “China Lake”-Sequenz. Links: durch-
schnittliche Differenz zwischen den Bildern als Bewegungskarte; rechts:
durchschnittlicher Betrag der Bewegungsvektoren.

Dass die Bewegungskarte die Eigenschaften eines Kantenbildes aufweist,
resultiert aus dem Apertur-Problem, da das Schachbrettmuster auf der Tafel
im Bild aus gleichmilig gefarbten Bereichen besteht, die gréBer sind als
die gewdhlte Blockgrée. Zudem wird das von benachbarten Bereichen
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ausgehende Licht aufgrund der Turbulenz {iber die Rdnder hinaus verteilt,
was zu einer scheinbaren Bewegung fiihrt.

Angesichts der groRen Bildrate (4097 Bilder, 300 fps) in Verbindung mit
den relativ kleinen Bewegungen, die in der beobachteten Szene enthalten
sind, ist es ein logischer Schritt, die Anzahl der Bilder geschickt zu redu-
zieren. Daher wurde zunéchst ein Abschnitt mit 1250 Frames gewahlt, in
dem die meisten Bewegungen auftreten. Wenn man nur eines von fiinf Bil-
dern nimmt, d. h. die Sequenzlidnge effektiv auf 250 Bilder reduziert, wird
die Bewegung ausreichend beschleunigt, um eine Bewegungsdetektion zu
ermoglichen. Speziell im Fall von Beeintrachtigungen durch Turbulenz lasst
sich die Genauigkeit der Bewegungsdetektion noch etwas erhéhen, wenn
jeweils der Durchschnitt aller fiinf Einzelbilder genommen wird, anstatt nur
eines von je fiinf Bildern auszuwihlen. Das hdngt damit zusammen, dass
Kanten im Mittelwertbild etwas gerader und glatter erscheinen, weniger
“aufgebrochen” und “zerrissen” als in den Einzelbildern. Zusitzlich kann
auch die Verwendung einer kleinen Kontrastverbesserung die Ergebnisse
weiter verbessern. Die Abbildung 6.18 zeigt ein Beispielergebnis fiir eine
solche Bildvorverarbeitung von einem Einzelbild (links) zu dem Mittelwert
von 5 Frames mit zusétzlicher CLAHE-Kontrastverstarkung.

Abbildung 6.18: Beispiel fiir Bildvorverarbeitung bei Turbulenz. Links: ori-
ginales Einzelbild aus der “China Lake”-Sequenz (300 fps); rechts: Ergebnis
einer Kontrastverbesserung mittels CLAHE.
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6.5 “Motion Compensated Averaging”

Die bewegungskompensierende Bildmittelung (“Motion Compensated Ave-
raging”, MCA) wie sie u. a. in [Hue08] vorgestellt wurde, entspricht im We-
sentlichen normaler Bildintegration. Der Hauptunterschied besteht darin,
dass das nédchste Bild der Eingangssequenz vor der Integration innerhalb
eines vorgegebenen Suchraums um eine bestimmte Anzahl von Pixeln in
jeder Richtung leicht verschoben wird, so dass das Eingangsbild am besten
mit einem vorgegebenen Referenzbild tibereinstimmt. Es sollte angemerkt
werden, dass sich dies mit Subpixelgenauigkeit implementieren lasst.

Das Ergebnis dieser bzgl. globaler Bewegungen kompensierter Bildmittelung
entspricht idealerweise einem Bild am Diffraktionslimit, welches wiederum
mit der entsprechenden theoretischen PSE fiir den “Short Exposure” Fall
(Gl (6.9)) gefaltet wurde. Aus diesem Grund sollte an dieser Stelle noch ein
abschlieRendes Deblurring erfolgen, z. B. unter Verwendung einer der Entfal-
tungsalgorithmen aus Abschnitt 5 bzw. der in Abschnitt 6.6 beschriebenen
mehrstufigen gewichteten IBD.

Es existieren zahlreiche Varianten dieser Methode, die im Zusammenhang
mit Speckle-Imaging auch als “Shift & Add” bezeichnet wird ([Car02]). Die
Hauptunterschiede liegen in der Wahl der “Matching”-Methoden und -Kri-
terien begriindet. Einige solcher Methoden wurden in Abschnitt 4.2 vorge-
stellt und diskutiert.

6.5.1 Referenzbild-Selektion

Im Idealfall ist dieses Referenzbild ein Bild, das durch die Atmosphére und
das optische System nicht beeintrdchtigt wird. Da ein solches Idealbild
normalerweise nicht zur Verfiigung steht, stellt ein gleitender Mittelwert
einen einfachen und sinnvollen Ersatz dar. Alternativen sind der zeitliche
Median oder der zeitliche Modalwert der Sequenz, wie insbesondere in
Huel0] im Detail untersucht wurde.

Temporaler Median

Ein Medianfilter wird im Gegensatz zum Mittelwert nicht von Ausreilern in
einem Datensatz beeinflusst, was bedeutet, dass er potenziell den Verlust
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von Details reduzieren kann. Der Preis fiir diese hthere Auflésung ist jedoch
die Einfiihrung von Artefakten, wenn Bewegungen auftreten, die langsam
genug sind, um in das (gleitende) Medianbild aufgenommen zu werden. Da
es sich dabei auch um Bewegung durch Turbulenz handeln kann, kénnen
fiir den Median bei starken Turbulenzbedingungen ggfs. doppelt so viele
Frames erforderlich sein, um die gleiche Art von geometrischer Korrektheit
des Hintergrunds zu erhalten wie es beim Mittelwert der Fall ist. Hinzu
kommt, dass sdmtliche Artefakte durch die abschlieBende Entfaltung noch
verstarkt werden, so dass selbst minimale Artefakte deutlich erkannbar
werden.

Temporaler Modalwert

Ein verwandtes Konzept in der Statistik ist der zeitliche Modalwert (auch
“Modus”), wobei der Modalwert einer diskreten Wahrscheinlichkeitsvertei-
lung dem Wert mit der héchsten Wahrscheinlichkeit entspricht. Bezogen
auf Bildsequenzen bedeutet dies, dass jedes Pixel des modalen Bildes denje-
nigen Intensitdtswert annimmt, der im Laufe der Zeit an dieser Position am
héufigsten aufgetreten ist.

Diskussion

Um die visuellen Unterschiede {iber einen hinreichend langen Zeitraum zu
veranschaulichen, werden in der Abbildung 6.19 der zeitliche Mittelwert,
Median und Modalwert fiir jeweils dieselben 250 sequentiellen Bilder mit-
einander verglichen. Dabei wurde bewusst ein Zeitabschnitt gewéhlt, der
auch einige Bewegungen enthalt.

Abbildung 6.19: Vergleich von Mittelwert (links), Median (Mitte) und Modal-
bild (rechts), jeweils fiir 250 Frames der Sequenz
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Bildschérfe und Kontrast sind beim modalen Bild eindeutig am besten. Aber
wihrend der Modus offensichtlich sehr gut innerhalb homogener Bildregio-
nen funktioniert, sind die Kanten ziemlich stark verrauscht. So grenzen die
schwarz und weill kontrastierenden Felder nicht unmittelbar aneinander,
sondern sind durch graue (Mischfarbe) Bereiche getrennt, deren Breite der
der GréBe der Turbulenzbewegungen (in Pixeln) entspricht. Das heil3t, Be-
wegungen haben einen stirkeren Einfluss auf den Modalwert als auf den
Median, insbesondere auch abrupte und schnelle Bewegungen. Der Mit-
telwert verhalt sich etwas “nachsichtiger” gegentiber solchen “Ausreillern”
durch bewegte Objekte ebenso wie durch starke Turbulenzbewegungen.
Hinzu kommt, dass er sich wesentlich schneller berechnen ldsst als die
beiden anderen Werte. Es sollte dennoch erwdahnt werden, dass in [Pot10
eine Moglichkeit zur Reduktion dieser Ubergangseffekte beim Modalwert
vorgeschlagen wird.

Eine weitere gebrduchliche Alternative besteht darin, einfach das erste Bild
der Sequenz zu verwenden und in regelmélligen Abstdnden durch eine
aktuelle Version zu ersetzen. Der Vorteil dieser Methode liegt auf der Hand,
da keine gesonderten Berechnungen durchgefiihrt werden miissen. Der
Nachteil ist, dass etwaige Bildverformungen in diesem Referenzframe als
korrekt betrachtet werden und daher im Rekonstruktionsprozess erhalten
bleiben. Bei isoplanatischen Bedingungen ist dies eine durchaus praktische
und sinnvolle Losung. Bei anisoplanatischen Bedingungen wire hingegen
eine der anderen Losungen (d. h. Mittelwert oder Median) zu empfehlen.

6.5.2 MCA mit “Block Matching”

Unter anisoplanatischen bzw. lokal isoplanatischen Bedingungen fiihren tur-
bulenzbedingte Bildbewegungen nicht nur zu globalen Bildverschiebungen,
sondern auch zu lokalen Verschiebungen zwischen aufeinanderfolgenden
Frames. Zur Beriicksichtigung dieser Verschiebungen wurde speziell der
MCA-Algorithmus in [Hue09] zusétzlich um ein “Block Matching” gemaR
[Gya03] erweitert, um gleichmallig verschobene Bildteile zu identifizieren
und neu anzuordnen (s. a. Abschnitt 4.2 fiir weitere BM-Algorithmen). Ge-
nauer wird ein “Block Matching” auf Pixelebene durchgefiihrt, wobei die
Pixel des aktuellen Bildes blockweise mit denen eines Referenzbildes vergli-

chen und fiir optimale Ubereinstimmung verschoben werden.
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Anmerkungen zur Implementierung

Zur Laufzeitbeschleunigung kann der pixelbasierte BM-Algorithmus durch
ein FFT-basiertes Verfahren ersetzt werden, welches die beste Ubereinstim-
mung anhand von Korrelationsberechnungen zwischen den Blécken er-
mittelt. Hierdurch kann eine signifikante Beschleunigung (ca. 20-30 fach)
erzielt werden, da die Geschwindigkeit nicht mehr von der Gro3e des gewihl-
ten Suchraumes abhéngig ist. Als problematisch hat sich hierbei allerdings
herausgestellt, dass die Genauigkeit der berechneten Verschiebungsvekto-
ren umso mehr abnimmt, je kleiner die Blockgrof3e gewahlt wird (ab ca.
16 x 16 Pixel). Dies hidngt u. a. mit dem Apertur-Problem zusammen, denn
je kleiner die Bildbl6cke sind, desto groller ist die Wahrscheinlichkeit, dass
der Bildinhalt nur wenige oder gar keine Strukturen enthélt zwischen de-
nen sich sinnvolle Korrelationen berechnen lassen (z. B. Bildausschnitte,
die nur Himmel oder Asphalt zeigen). Ein moglicher Lésungsansatz besteht
darin, das korrelationsbasierte Verfahren {iber einen pyramidalen Ansatz
zu implementieren, d. h. mehrstufige Ausfiihrung mit sukzessive halbierten
BlockgroBen, um so Ausreiller unter den errechneten Vektoren besser erken-
nen zu konnen. Eine denkbare, wenn auch eher unpraktische Alternative
wére eine Kombination beider Verfahren, bei der das pixelbasierte Verfahren
gleichsam als Kontrollinstanz fungiert.

6.5.3 Lokale Bildstapelung

Der MCA-Algorithmus mit “Block Matching” funktioniert am besten fiir
statische Szenen bzw. fiir Szenen, in denen die Bewegung vernachléssigbar
ist. Denn im Fall von Objektbewegung hat der Einsatz von Bildmittelung zur
Folge, dass auftretende Bewegungsunschéirfen proportional zur Anzahl der
gestapelten Bilder verstdrkt werden. Dabei spielt es keine Rolle, ob es sich
tatsdchlich um reale Bewegungsunschirfe handelt oder ob diese erst durch
die Mittelung erzeugt wird.

Eine Losungsmoglichkeit, die zuerst in [Huell] vorgestellt wurde, besteht
in einer gerichteten lokalen Bildstapelung (“Local Image Stacking”, LIS)
ausschliellich fiir die bewegten Objekte in der Szene. Hierbei wird “Block
Matching” dazu verwendet, gerichtete Bewegung von Objekten zu detektie-
ren und von turbulenzbedingter, ungerichteter Bewegung zu unterscheiden.
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Sofern die Objektbewegung gegeniiber der Turbulenzbewegung deutlich
iiberwiegt, ermdglicht dies eine Segmentierung von statischen Szenenele-
menten und bewegten Objekten, so dass Vorder- und Hintergrund getrennt
voneinander verarbeitet werden konnen.

Zugrundeliegende Idee

Die Abbildung 6.20 vermittelt einen Eindruck von der Effektivitédt der loka-
len Bildstapelung, indem hier das “Stacking” zu Demonstrationszwecken
global ausgefiihrt wurde. Das heil3t, in der turbulenzfreien “Ettlinger Tor”-
Testsequenz i(links) ist die Bewegungskompensation auf die Korrektur der
Bewegung des Busses ausgerichtet, wobei eine Stapeltiefe von 6 Bildern ver-
wendet und eine konstante Verschiebung von 1 Pixel in beide Richtungen
angenommen wurde. Wahrenddessen ist sie in der “China Lake”-Sequenz
(rechts) auf die horizontale Personenbewegung ausgerichtet, wobei eine
durchschnittliche horizontale Verschiebung von 0,666 Pixeln zwischen den
Frames angenommen und eine Stapeltiefe von 8 Bildern verwendet wurde.
Die “Ettlinger Tor”-Sequenz mit Objektbewegung, aber ohne Turbulenz,
war bewusst gewdhlt worden, um zunéchst einen “Proof of Concept” fiir das
Funktionsprinzip zu erhalten. Wie die Nahaufnahme in der Abbildung 6.21
(links) verdeutlicht, funktioniert das Verfahren bei linearen Bewegungen
tatsdchlich sehr gut, denn das Heck des Busses ist ebenso klar definiert wie
im Einzelbild (Mitte). Die leicht erhthte Unschérfe an seiner Vorderseite
zeigt, dass der Bus nicht ganz gerade, sondern eine leichte Kurve fahrt. Die
Verbesserung im Vergleich zu dem gewohnlichen Durchschnitt von 6 Bildern
(rechts), ist dennoch deutlich zu erkennen.
Bei den durch Turbulenz gestorten Daten wirkt der Fokussierungseffekt weit
weniger ausgeprégt, wie in der Abbildung 6.20 (rechts) zu sehen ist. Zum
einen liegt dies daran, dass Gehbewegungen von Personen in der Realitédt
nicht vollig linear in horizontaler Richtung verlaufen. Arm- und Beinbewe-
gungen haben z. B. immer auch eine kleine vertikale Komponente, deren
Korrektur hier vernachlédssigt wurde. Zum anderen sorgt die ungerichtete

4 Quelle: KOGS/IAKS Universitdt Karlsruhe, verfligbar unter: http://i21www.ira.uka.de/
image_sequences/; Aufnahme der “Ettlinger Tor”-Sequenz: Henner Kollnig
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Turbulenzbewegung infolge der starken Turbulenz in der Sequenz ohne-
hin fiir einen hohen Grundpegel an Unschérfe. Hinzu kommt, dass einem
menschlichen Beobachter der optische Unterschied zwischen einem gesto-
chen scharfen Bild und einem etwas unscharfen Bild unverhaltnismaflig
viel starker aufféllt als der Unterschied zwischen dem etwas unscharfen Bild
und einem doppelt so unscharfen Bild.

Abbildung 6.20: Demonstration des gerichteten Stapeleffekts. Links: Bildsta-
pel auf die Bewegung des Busses ausgerichtet, Stapeltiefe: 6 Frames; rechts:
Bildstapel fiir horizontale Bewegung, Stapeltiefe: 8 Frames.

Abbildung 6.21: Bildausschnitt zur Veranschaulichung des Effekts der loka-
len Bildstapelung; Links: Bildstapel auf die Bewegung des Busses ausgerich-
tet; Mitte: Einzelbild; rechts: normaler Durchschnitt von 6 Bildern.
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Das LIS-Prinzip

Die Abbildung 6.22 veranschaulicht das Grundprinzip des LIS, welches es
ermoglicht, die Vorteile der Bildstapelung beizubehalten ohne den Nachteil
erhohter Unschirfe in Kauf nehmen zu miissen. Es wird dabei eine riickwir-
kende gerichtete lokale Bildstapelung fiir die bewegten Elemente durchge-
fiihrt, wodurch die Bewegungsunschirfe, die sonst durch Mittelwertbildung
entstehen wiirde, effektiv reduziert wird und das finale Rekonstruktionser-
gebnis insgesamt verbessert.

Sequenz mit Bewegtobjekt Mittelwert

1 2 3 4
Gerichtete lokale

[ g ™
A= 9

Abbildung 6.22: Prinzip der lokalen Bildstapelung

Bewegungsvektoren

Die Umsetzung erfordert ein paar zusétzliche Modifikationen des MCA-
Grundalgorithmus. Fiir die Bilder sowie fiir die zugeh6rigen Bewegungs-
vektoren, die fiir jedes Paar aufeinanderfolgender Bilder berechnet werden,
wird ein Kurzzeitpuffer verwendet (z. B. der Lange n =5 oder n = 10, je nach
Umfang der Bewegung) zusétzlich zu dem bereits vorhandenen Langzeit-
puffer, der nach wie vor fiir die statischen Bildregionen benétigt wird. Die
Bilder IV, ..., 1" dieses Kurzzeitpuffers werden in umgekehrter Reihenfol-
ge gestapelt. Das heift, jeder Pixelblock des Bildes I wird entsprechend
den Verschiebungen, die durch den korrespondierenden Bewegungsvektor
gegeben sind, verschoben und zu dem passenden (nicht verschobenen)
Block im vorherigen Bild """ hinzugefiigt. Das resultierende Ergebnis
wird wiederum so verschoben, dass er mit dem Bild aus dem Schritt zuvor
{ibereinstimmt, d. h. 1"~ Dies wird fiir die gesamte Linge des Puffers wie-
derholt, bis das erste Element im Puffer erreicht ist. Das Endergebnis muss
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noch durch die Anzahl der aufsummierten Blocke geteilt werden. Da diese
Anzahl je nach Position variiert, muss ein pixelgenauer Zédhler mitgefiihrt
werden.

Unterscheidung zwischen Turbulenz- und Objektbewegung

Obwohl die durch atmosphérische Turbulenzen verursachte Bewegung po-
tenziell omnidirektional ist, wie links in der Abbildung 6.23 angedeutet, ist
sie in der Realitédt nicht vollig zufillig. Sie ist vor allem vom vorherrschenden
Seitenwind abhingig, d. h. von der Windgeschwindigkeit und dem Winkel
in Bezug auf die Sensorposition. Aullerdem ist es statistisch betrachtet sehr
wahrscheinlich, dass gerade bei hohen Bildraten und entsprechend kurzen
Belichtungszeiten (< 7¢) eine gewisse Korrelation zwischen aufeinander-
folgenden Bildern besteht, weshalb auch turbulenzbedingte Bewegungen
nicht zwangsldufig allzu schnell oder drastisch die Richtung &ndern. Daher
ist zu erwarten, dass die Trennung zwischen derartiger halb ungerichteter
Bewegung von realer Objektbewegung nur dann effektiv funktionieren kann,
wenn die GrolBenordnung der Objektbewegung die der Turbulenz {ibersteigt.
Nachdem die Bewegungsvektoren fiir eine bestimmte Anzahl von Frames
geschétzt wurden, muss entschieden werden, ob die berechnete Verschie-
bung als Teil einer gerichteten Objektbewegung betrachtet werden kann

&° 3

Abbildung 6.23: Akzeptabler Bereich der Vektorwinkel (grau) fiir gerichte-
te Bewegung und resultierende Hauptrichtung (roter Pfeil), abweichende
Vektoren sind gestrichelt dargestellt.
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oder nicht. Zur Reduktion von Falsch-Detektionen werden nur Verschie-
bungsvektoren als “Bewegung” akzeptiert, falls der durchschnittliche Betrag
der berechneten Vektoren iiber einem vorgegebenen Schwellwert liegt. Alle
anderen werden unterdriickt.

Als weiteres Entscheidungskriterium bietet sich der Winkel zwischen be-
nachbarten Vektoren an. Da eine maximale Abweichung innerhalb eines
90°-Winkels leicht durch die Uberpriifung des Skalarprodukts zwischen den
Vektoren tiberpriift werden kann (wenn das Skalarprodukt = 0 ist, ist der
Winkel zwischen den Vektoren < 90°), wurde dieser als akzeptabler Winkel
gewdhlt. Das rechte Bild in der Abbildung 6.23 veranschaulicht die Situation,
in der die Mehrheit der Vektoren innerhalb des akzeptablen 90°-Winkels
liegt, wahrend die anderen als Ausreiller betrachtet werden.

Die Abbildung 6.24 zeigt die geschétzten lokalen Bildverschiebungen {iber
den Verlauf der “China Lake”-Sequenz exemplarisch fiir die im Bild mar-
kierte Position. Der linke Plot enthilt die Orientierungen und Langen der
auftretenden Verschiebungsvektoren und der rechte Plot enthélt die zuge-
horige Haufigkeitsverteilung.

Abbildung 6.24: Lokale Bildverschiebungen (in Pixeln) an markierter Positi-
on im linken Bild. Mitte: wéhrend der Sequenz auftretende Verschiebungs-
vektoren; rechts: Haufigkeitsverteilung der Verschiebungen.

Die Abbildung 6.25 zeigt einen Vergleich des Ergebnisses lokaler Bildstape-
lung, fiir das insgesamt 40 Bilder verwendet wurden, mit dem normalen
Mittelwert von 20 Bildern. Obwohl doppelt soviel Frames gemittelt wurden,
ist das LIS-Endergebnis dennoch sichtlich scharfer und klarer definiert als
der einfache Mittelwert.
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Abbildung 6.25: Vergleich lokaler und normaler Bildstapelung. Links: Mit-
telwert aus 8 vorverarbeiten Bildern (d. h. Mittelwert aus je 5 Frames) bei
lokaler Bildstapelung mit Blockgrée 32, d. h. entspricht dem Mittelwert aus
40 Bildern; rechts: normaler Mittelwert aus jeweils 20 Bildern.

Vorschlage zur Optimierung

Besteht das Ziel in einer bestmoglichen Bildrekonstruktion, die z. B. offline
ohne zeitliche Einschrankungen (und nicht schritthaltend) durchgefiihrt
werden kann, ldsst sich das Rekonstruktionsergebnis noch etwas optimie-
ren, indem sowohl eine raumliche als auch eine zeitliche Nachbarschaft der
geschitzten Verschiebungsvektoren einer Art Plausibilitdtspriifung unterzo-
gen wird. Idealerweise werden dazu zunéchst die Bewegungsvektoren iiber
den gesamten Verlauf der Sequenz bestimmt, analysiert und ggfs. korrigiert,
wobei Ausreiler z. B. durch einen (gewichteten) Mittelwert der rdumlich
und/oder zeitlich benachbarten Vektoren ersetzt werden kénnen.

Speziell fiir das LIS-Ergebnis in Abbildung 6.25 wurden jeweils die beiden
zeitlich vorhergehenden Bewegungsvektoren und die beiden nachfolgenden
Vektoren an der gleichen lokalen Position tiberpriift (insgesamt 4 Vektoren),
wéhrend rdumlich insgesamt 24 umgebende Bewegungsvektoren (zum glei-
chen Zeitpunkt) mithilfe des Skalarprodukts hinsichtlich ihrer jeweiligen
Winkel zueinander analysiert wurden. Zwar ist es denkbar, gré3ere Nachbar-
schaften zu verwenden, der zusitzliche Informationsgewinn nimmt aber
mit zunehmendem Abstand zur Position des zu tiberpriifenden Vektors
schnell ab, wobei auch die gewihlte Blockgroe eine Rolle spielt. Abhilfe
schafft ein ergdnzendes Gewichtungssystem, welches die Nachbarvektoren
entsprechend ihrer Entfernung zu dem aktuell zu priifenden Vektor gewich-
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tet, so dass die unmittelbaren Nachbarn die gro$tmdogliche Gewichtung
bekommen. Sollte der Vektor als Ausreiler identifiziert worden sein, wird
der betreffende Vektor durch die (jeweils gewichteten) mittleren Verschie-
bungen in vertikaler und horizontaler Richtung ersetzt.

6.6 Mehrstufige gewichtete IBD

Bei geringer Turbulenz kann Einzelframe-Deblurring durchaus ausreichend
sein. Fiir ein optimales Rekonstruktionsergebnis ist jedoch bei starkerer
Turbulenz in der Regel zusitzliches Deblurring erforderlich, z. B. mithilfe
blinder Entfaltung (siehe Kapitel 5).

Zu diesem Zweck wurde in [Hue09] eine mehrstufige gewichtete iterative
blinde Entfaltung (“Weighted Iterative Blind Deconvolution”, WIBD) vorge-
schlagen, zur Verbesserung der Ergebnisqualitédt speziell des klassischen
IBD-Algorithmus. Es handelt sich dabei um eine Erweiterung des IBD-
Algorithmus, die im Wesentlichen aus einer Verkettung mehrerer gewhnli-
cher Entfaltungsschritte besteht, jeweils mit variierender Tragergré3e der
Filterfunktion und unterschiedlicher Anzahl zugehoriger Iterationen. Der
Hauptunterschied zum Standardalgorithmus liegt dabei in der Verwendung
einer Gewichtungsfunktion, mit deren Hilfe die schiarfende Wirkung der
Entfaltung lokal an den Kanten verstédrkt wird, wiahrend gleichzeitig Ringing-
Effekte in unstrukturierten Bildregionen reduziert werden.

Genauer lasst sich der mehrstufige Entfaltungsprozess in die folgenden drei
Phasen unterteilen:

1. fU™ = IBD des Eingabebildes g mit den Filterfunktionen hy,..., h,
und zugehorigen Iterationen iy, ..., Iy

2. f® = IBD des Zwischenergebnisses f™ mit den Filterfunktionen
hm+1,...,hg und zugehorigen Iterationen iy, 41, ... ik

3. f = mittels Kantenbild M gewichtete Summe aus f " und f k

Das heil’t, sowohl in der ersten als auch in der zweiten Phase wird das beob-
achtete Eingabebild g unter Verwendung des klassischen IBD-Algorithmus
iterativ in insgesamt k Wiederholungen entfaltet, wobei in jedem Schritt
eine andere Filterfunktion /; mit unterschiedlicher TragergrofSe und An-
zahl Iterationen i; eingesetzt wird. Das Zwischenergebnis im m-ten Schritt
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f ") wird dabei separat abgespeichert, da es spiter noch benétigt wird. Die
generelle Iterationsvorschrift ldsst sich folgendermaf3en formulieren:

fP=BD{FY Y by, ijm) (=200 (6.28)

Die Reihenfolge der h; spielt dabei keine Rolle, wobei es aus praktischer
Sicht naheliegt, fiir beide Phasen jeweils auf- oder absteigende Trégergro-
RBen zu wiéhlen. Diese gestaffelte Vorgehensweise ist durchaus sinnvoll, da
Turbulenzzellen unterschiedlicher GréBe vor der Optik vorbeiziehen und so
Bildstérungen und Bildbewegungen verursachen, welche unterschiedlichen
PSF-GroBen entsprechen. Es hat sich in der Praxis als erfolgreich erwiesen,
diese Art von Stérungen getrennt in mehreren Schritte zu korrigieren.

In der dritten Phase dient das Sobel-gefilterte Referenzbild (d. h. der glei-
tende Mittelwert oder temporale Median) als Gewichtungsfunktion, wobei
ebenso andere Kantenfilter, wie z.B. der Canny- oder der Laplace-Filter,
eingesetzt werden konnten.

Genauer fungiert das resultierende Kantenbild als Maske M (d.h. M(x,y) €
[0,1] ¥ (x,y)), mit deren Hilfe sich die Schitzung f fiir alle Pixel (x,y) als
gewichtete Summe aus der m-ten und der k-ten Iterationsstufe bei der
Entfaltung ausdriicken lasst, d. h. f M) und f OF

fy = Mx,y) - F™ )+ 0= Mx,p) - F P,y (6.29)

Das heil3t insbesondere, dass die Bildbereiche auf und in der Ndhe von
Kanten iitberwiegend Anteile der spiteren Iteration f enthalten, wihrend
homogene Bildbereiche weiter weg von den Kanten hauptsédchlich aus der
fritheren Iteration f (") pestehen. Dadurch erscheinen die Kanten deutlich
schérfer, wihrend sich zugleich Ringing-Effekte (siehe Abschnitt 5.4.3) an
Kanten erfolgreich reduzieren lassen.

Die Abbildung 6.26 (mittlere Reihe) zeigt einen Vergleich der Ergebnisse der
mehrstufigen gewichteten Entfaltung (WIBD) mit Ergebnissen der klassi-
schen IBD, sowie mit einem Einzelbild der Sequenz und dem einfachen Mit-
telwert. Das Bild unten links in der Abbildung zeigt zusitzlich die zugehorige
Gewichtungsfunktion. Im Vergleich mit dem entsprechenden Kantenbild
des Resultats der WIBD-Entfaltung (unten rechts) sind insbesondere die
besser definierten Kanten infolge verbesserter Bildschérfe klar ersichtlich.
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Abbildung 6.26: Oben: Original (links) u. Mittelwert 100 Frames mit globaler
Registrierung (rechts); Mitte: Turbulenzkorrektur mit IBD (links) u. mit mehr-
stufiger WIBD (rechts) im Vergleich; unten: Sobel-gefiltertes Mittelwertbild
als Gewichtungsfunktion u. Sobel-gefiltertes Resultat der WIBD (rechts).
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Anmerkungen

Es sollte noch angemerkt werden, dass dieses mehrstufige Prinzip einschlie3-
lich einer Gewichtungsfunktion fiir Bildkanten ggfs. auch unter Verwendung
anderer Entfaltungsverfahren durchgefiihrt werden kann.

Ebenfalls sollte erwdhnt werden, dass durch die Verkettung von blinden
Entfaltungsschritten unter Verwendung unterschiedlicher Filtergr68en u. U.
Artefakte erzeugt werden kénnen, die wie Schraffuren erscheinen. In der
Abbildung 6.27 ist dazu ein Beispiel zu sehen, worin die Schraffuren in einem
Detailausschnitt mithilfe von Kontrastverstarkung sichtbar gemacht wurden.
Diese Artefakte lassen sich jedoch mithilfe einer Kantengewichtung wieder
reduzieren.

Abbildung 6.27: Schraffur-Artefakte infolge mehrstufiger Entfaltung mit
unterschiedlichen FiltergroBen. Links: Beispielbild; rechts: Ausschnittsvergo-
Berung, zur Verdeutlichung mit Scharfungsfilter und Kontrastverstarkung.

6.7 Korrekturbeispiele

In diesem Abschnitt sind einige weitere Korrekturergebnisse fiir die verschie-
denen Verfahren aus den vorangegangenen Abschnitten zusammengestellt.
Die Beispiele sind inhaltlich gemi zunehmenden Schwierigkeitsgrades
sortiert, d. h. entsprechend den vorherrschenden Turbulenzbedingungen
und den damit verbundenen zu erwartenden Einschrankungen bzgl. der
moglichen Rekonstruktionsqualitét. In die Sortierung wird zusétzlich der
Bewegungsinhalt (sofern vorhanden), sowie die Entfernung miteinbezogen.
Sofern nicht explizit etwas anderes angegeben ist, handelt es sich um Auf-
nahmen im visuellen Spektrum.
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6.7.1 Schwache Turbulenz, statische Szene, grofle
Entfernung

Die Abbildung 6.28 zeigt ein Korrekturergebnis fiir eine statische Szene in
sehr groler Entfernung (der Funkturm am Fremersberg in Baden-Baden,
Distanz ca. 27 km). Die Daten wurden morgens (ca. 9:00 Uhr) bei verhalt-
nismilig schwacher Turbulenz (trotz Sonneneinstrahlung) mithilfe einer
Hochgeschwindigkeitskamera aufgezeichnet. Als Grundlage fiir die Kor-
rektur dienten die zwei besten Frames der aufgenommenen Sequenz. Sie
wurden zunéchst registriert und gemittelt, bevor ein Deblurring mittels
mehrstufiger WIBD-Entfaltung durchgefiihrt wurde. Die erhohte Bildqua-
litdt des Rekonstruktionsergebnisses ist offensichtlich, insbesondere die
verbesserte Erkennbarkeit der Details, wie z. B. der am Turm angebrach-
ten Aufbauten. Dies liegt einerseits daran, dass die Umweltbedingungen
zu diesem Zeitpunkt verhéltnisméBig gut waren (d. h. geringe Turbulenz,
gute Lichtverhiltnisse, geringe Luftfeuchtigkeit etc.), und andererseits auch
daran, dass die Integrationszeit sehr kurz gewédhlt wurde (< 1 ms), um die
Kohérenzzeit nicht zu tiberschreiten.

Es sollte auch erwdhnt werden, dass sich der Vignettierungseffekt in den
Bilddaten ggfs. noch zusétzlich korrigieren lieRe.

Abbildung 6.28: Beispiel fiir Turbulenzkorrektur. Links: Originalaufnahme,
Objektentfernung ca. 27 km, bei schwacher Turbulenz; rechts: Korrekturer-
gebnis, mehrstufige blinde Entfaltung, aus zwei registrierten Einzelbildern.
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6.7.2 Moderate Turbulenz, statische Szene, mittlere
Entfernung

Das Beispiel in Abbildung 6.29 stammt aus der “Stadium Lamps”-Sequenz
(s.a. Abschnitt 6.1.2). Da es sich um ein rein statisches Objekt handelt, wur-
de keine explizite Bewegungskompensation durchgefiihrt. Unter den ge-
gebenen Bedingungen wiére der Informationsgewinn nur minimal, wohin-
gegen der zusitzliche Rechenaufwand signifikant ansteigen wiirde (spezi-
ell in Verbindung mit LIS). Stattdessen wurde nur eine globale Registrie-
rung der Frames durchgefiihrt bevor der gleitende Mittelwert von je 100
(registrierten) Frames einem WIBD-Deblurring und einer leichten CLAHE-
Kontrastanhebung unterzogen wurde.

Abbildung 6.29: Turbulenzkorrektur statischer Objekte am Beispiel der “Sta-
dium Lamps”-Sequenz. Links: unverdndertes Einzelbild, Objektentfernung
ca. 2-3 km, moderate Turbulenz; rechts: Deblurring des global registrier-
ten Mittelwerts (100 Frames) mittels mehrstufiger blinder Entfaltung zzgl.
minimaler CLAHE-Kontrastverstarkung.

Dies trifft weitgehend auch auf die anderen beiden in Dayton aufgenom-
menen Sequenzen zu, insbesondere auf die “NATO / Mannequin”-Sequenz
(s. a. Abschnitt 6.1.2) in der Abbildung 6.30. Mit Cfl =5-10"10 m™* war die
Turbulenz zum Aufnahmezeitpunkt relativ schwach, weshalb sich trotz der
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groferen Entfernung (ca. 7-8 km) die gleiche Art von Korrektur ohne all-
zu viele Modifikationen einsetzen lie8. Auch konnte auf eine zusitzliche
Kontrastverstdarkung verzichtet werden.

Abbildung 6.30: Turbulenzkorrektur statischer Objekte am Beispiel der “NA-
TO / Mannequin”-Sequenz. Oben: unverdndertes Einzelbild, Objektentfer-
nung ca. 7-8 km, moderate Turbulenz; unten: Deblurring mittels mehrstufi-
ger blinder Entfaltung.

Der Funkmast in der “Antenne”-Sequenz (s. a. Abschnitt 6.1.2) befand sich
ebenfalls in ca. 7 km Entfernung. Allerdings herrschte wéhrend der Erfas-
sung die gleiche erhéhte Turbulenzstédrke wie zuvor in der “Stadium Lamps”-
Sequenz. Um der schlechteren Bildqualitit entgegen zu wirken, wurden
deshalb fiir das Ergebnis in der Abbildung 6.31 nur die besten 250 Frames
(von 500) ausgewdhlt, wobei die “Blur”’-Metrik aus [Dol07] als Selektions-
kriterium verwendet wurde. Anschlief3end wurde wieder eine globale Re-
gistrierung durchgefiihrt und der resultierende gleitende Mittelwert einem
WIBD-Deblurring unterzogen (ohne zusitzliche Kontrastverbesserung).
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Abbildung 6.31: Beispiel fiir Turbulenzkorrektur statischer Objekte. Links:
unverdndertes Einzelbild, Objektentfernung ca. 7 km, moderate Turbulenz;
Mitte: Mittelwert der besten 250 Frames (von 500) nach globaler Registrie-
rung; rechts: Deblurring mittels mehrstufiger blinder Entfaltung.

6.7.3 Starke Turbulenz, moderate Objektbewegung,
mittlere Entfernung

Der Schwierigkeitsgrad der Rekonstruktionsaufgabe erhoht sich im Fall der
“China Lake”-Sequenz (s. a. Abschnitt 6.1.1) noch einmal deutlich. Sowohl
die stiarkere Turbulenz (C,zl =1,3-10713 m™3). als auch die zusitzliche Ob-
jektbewegung machen zusétzliche MaBnahmen erforderlich, vor allem eine
lokale Bewegungskompensation.

Das mittlere Bild in der Abbildung 6.32 zeigt ein Beispielergebnis der mittels
“Block Matching” erweiterten lokalen MCA-Bewegungskompensation (siehe
Abschnitt 6.5.2). Genauer handelt es sich um das Durchschnittsbild aus
100 aufeinander folgenden Einzelbildern, die sowohl global als auch lokal
registriert wurden. Das zugehorige Resultat einer mehrstufigen gewichteten
blinden Entfaltung ist rechts in der Abbildung zu sehen. Zum Vergleich ist
links auch eines der verwendeten unverdnderten Einzelbilder abgebildet.
Das Beispiel in der Abbildung 6.33 enthilt hingegen deutlich mehr Objekt-
bewegung, so dass die Rekonstruktion basierend auf dem Mittelwert von
150 bewegungskompensierten Frames (links) entsprechende Bewegungs-
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unschérfe aufweist. Das mittlere Bild zeigt das Ergebnis der lokalen Bildsta-
pelung gemald LIS-Prinzip (siehe Abschnitt 6.5.3), wobei eine Blockgrofie
von 32 x 32 px verwendet wurde und eine Stapeltiefe von 8 vorverarbeiteten
Frames (je Mittelwert von 5 Frames, d. h. 40 Frames insgesamt).

Abbildung 6.32: Beispiel fiir MCA mit lokaler Bewegungskompensation.
Links: unverédndertes Einzelbild, Entfernung ca. 1 km, starke Turbulenz; Mit-
te: MCA mit BM, d. h. Mittelwert von jeweils 100 global u. lokal registrierten
Frames; rechts: MCA mit BM und abschlieBendem WIBD-Deblurring.

Abbildung 6.33: Beispiel fiir LIS-Turbulenzkorrektur. Links: WIBD-Ergebnis
fiir den Mittelwert von 150 Frames (10 Iterationen); Mitte: LIS und WIBD
(BlockgréRe 32, Stapeltiefe 8); rechts: LIS und WIBD mit separater Korrektur
des Hintergrunds.

Eine zusitzliche Verbesserung lisst sich noch tiber eine Separierung und un-
terschiedliche Korrektur von Vorder- und Hintergrund erzielen, wie am rech-
ten Bild in der Abbildung 6.33 zu erkennen. Hier wurden nur die bewegten
Objekte im Vordergrund der Szene einer LIS-Bewegungskompensation un-
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terzogen, so dass der kiirzere Zeitrahmen (40 Frames) Bewegungsunschérfe
minimieren kann. Wahrenddessen sind solche zeitlichen Beschrankungen
weniger fiir die statischen Szenenelemente im Hintergrund erforderlich.
Aus diesem Grund wurde hier ein Langzeitmittelwert (150 Frames) als Ba-
sis verwendet, wobei die normale MCA mit BM Bewegungskompensation
durchgefiihrt wurde.

Wenngleich die Kanten der Mustertafel im mittleren Bild auf den ersten
Blick ein wenig schérfer erscheinen mégen als in dem rechten Bild, weisen
sie nicht die gleiche geometrische Korrektheit auf. Zudem fillt die stabili-
sierende Wirkung geringer aus, was sich allerdings besser in einem Video
beobachten ldsst.

Es sollte noch erwdhnt werden, dass die fiir die einzelnen Rekonstruktionen
verwendeten Entfaltungsparameter (PSF-GréBen, Anzahl der Iterationen)
nicht alle identisch gewdhlt wurden, sondern individuell fiir ein moglichst
optimales Ergebnis im Rahmen der Méglichkeiten.

6.7.4 Extreme Turbulenz, statische Sequenz, Nahbereich,
aktive lllumination

Wie das Beispiel in der Abbildung 6.36 demonstriert, lassen sich die gleichen
Verfahren nicht nur fiir Kamerasysteme einsetzen, die im VIS- oder im IR-
Spektrum operieren, sondern auch fiir bildgebende Lasersysteme.

Im vorliegenden Fall handelt es sich um eine mit einem VIS-Laser beleuch-
tete Mustertafel (1 = 532 nm). Die extrem starke Turbulenz zwischen Sen-
sorik und Objekt wurde mithilfe eines im Ma@stab 1 : 3 herunter skalierten
Jet-Triebwerks erzeugt. Die Messungen fanden auf dem Gelénde der Fir-
ma “VOLVO Aero” in Trollhdttan, Schweden statt. Innerhalb der Abgasfah-
ne (oder auch: “Plume”) wurden C,%-Werte zwischen 6,3-1071% m™3 und
2,5-1071 m™? gemessen, in Abhingigkeit vom Durchmesser der Abgas-
fahne. Eine Skizze des experimentellen Aufbaus ist in der Abbildung 6.34
dargestellt.

Die Abbildung 6.35 zeigt {iberdies einen Vergleich der Aufnahmen bei aus-
geschaltetem Triebwerk (d. h. ohne Turbulenz) und mit eingeschalteten
Triebwerk bei unterschiedlich langer Betriebsdauer. Es ist deutlich zu erken-
nen, wie die Turbulenz mit der Zeit zunimmt und sich die Gr68enordnung
der Speckle-Muster entsprechend verdndert.



6.7 Korrekturbeispiele

201
Jet-Triebwerk
(MaBstab 1:3) Mustertafel
—

——— Abgass

Laser / Receiver

Abbildung 6.34: Experimenteller Aufbau der Messungen bei “VOLVO Aero”
entlang des Abgasstrahls eines Jet-Triebwerks (Mal$stab 1: 3)

Abbildung 6.35: Beispiel fiir aktive Beleuchtung bei extremer Turbulenz.
Links: bei ausgeschaltetem Triebwerk; Mitte: Triebwerk vor kurzem einge-
schaltet; rechts: nach langerer Betriebsdauer des Triebwerks

Abbildung 6.36: Beispiel fiir Turbulenzkorrektur im Fall aktiver Beleuchtung.
Links: unveriandertes Einzelbild, starke Turbulenz in der Nihe eines laufen-

den Jet-Triebwerks; rechts: PCA-basierte blinde Entfaltung eines gleitenden
Mittelwerts (40 Frames)
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Dazu sollte angemerkt werden, dass auch im laufenden Original-Video nicht
mehr Details zu erkennen sind als in dem hier abgebildeten Einzelbild
(Abb. 6.35 links), da die Speckle-Muster infolge der extremen Turbulenz sehr
stark ausgeprégt sind und permanent variieren.

An dieser Sequenz wurden die meisten der Entfaltungsmethoden in Kapi-
tel 5 getestet, wobei die PCA-basierte Methode (aus Abschnitt 5.1.4) in der
Abbildung 6.36 die insgesamt liberzeugendsten Ergebnisse liefern konnte.

6.8 Farbbilddaten

Bei der Erfassung von Bilddaten durch eine turbulente Atmosphéire werden
nur vergleichsweise selten Farbbildkameras eingesetzt. In der Regel kom-
men monochrome EO-Systeme zur Anwendung, hdufig auch IR-Kameras,
da grof3ere Wellenldngen weniger stark durch die Turbulenz beeintrachtigt
werden.

Es gibt mehrere Griinde, die gegen den Einsatz von Farbbildkameras spre-
chen, z. B. gehen Farbinformationen aufgrund von atmosphérischer Streu-
ung und Absorption verloren und die Anzahl der wahrnehmbaren Farben
nimmt mit zunehmender Entfernung exponentiell ab ([LG14]). Entspre-
chend sehen Farbbilder, die iiber mehrere Kilometer hinweg aufgenommen
wurden, verwaschen aus mit entséttigten Farben, die moglicherweise an
den Objektkonturen “ausbluten” oder ineinander laufen.

Ein weiterer Grund ist in der zugrundeliegenden Sensortechnologie zu fin-
den. Zur Erfassung von Farbinformationen, benétigt eine Kamera entweder
(mindestens) drei verschiedene Sensorchips, d. h. einen pro Farbkanal (ty-
pischerweise: Rot, Griin, Blau; in selteneren Fillen: Gelb, Magenta, Cyan),
jeweils mit einer entsprechenden Elektronik, was eine prézise Registrierung
erfordert, oder einen einzelnen Sensorchip, der mit einem Farbfilter-Array
(“Color Filter Array”, CFA) abgedeckt ist, so dass nur eine Farbe an jedem
Pixel gemessen werden kann. Das bedeutet allerdings, dass die fehlenden
zwei Farbwerte an jeder Pixelposition geschitzt werden miissen, wodurch
die Gesamtbildauflosung effektiv reduziert wird. Es liegt auf der Hand, dass
eine Ein-Sensor-Losung mit CFA trotz ihrer Nachteile hinsichtlich der gerin-
geren Bildauflosung giinstiger zu realisieren und daher verbreiteter ist als
ein Drei-Chip-Kamerasystem.



6.8 Farbbilddaten 203

6.8.1 Demosaicing

Der Interpolationsprozess, der im Fall eines CFA zur Schitzung der jeweili-
gen Farbwerte an jeder Pixelposition erforderlich ist, wird allgemein als “De-
mosaicing” (oder “Demosaicking”) bezeichnet. Das gebrduchlichste Filter-
Array hat die Form eines “Bayer-Pattern”, wie es in der Abbildung 6.37 dar-
gestellt ist. In einem CFA mit Bayer-Pattern enthélt jeder 2 x 2-Pixel-Block
ein rotes Pixel, ein blaues Pixel und zwei diagonal gegeniiberliegende griine
Pixel, wobei unterschiedliche Kombinationen gebrauchlich sind.

Lichteinfall
Farbfilter
CCD Matrix

Ergebnis

Abbildung 6.37: CFA mit Bayer-Pattern. Links: Die Farbfilter auf dem Farbfil-
terarray des Bayer-Sensors; rechts: Querschnitte der Farbfilter.?

Da die in der griinen Wellenldnge enthaltene Information tiber die Leucht-
dichte (auch: Luminanz) hoher ist, wird der griine Kanal im Vergleich zu
den anderen beiden Kanilen mit doppelter Rate abgetastet. In der Abbil-
dung 6.38 ist exemplarisch eine Simulation der Bilddaten eines Sensors mit
einem Bayer-CFA dargestellt, wobei die Farbdarstellung (rechts) nur zur
Identifizierung dient, welches Pixel welche Farbinformation beinhaltet.

Es gibt mehrere Moglichkeiten, die Farbinformationen aus den in einem
Bayer-Pattern gespeicherten Rohdaten zu extrahieren und drei separate
Farbkanile (RGB) zu erzeugen. Der “naive” Ansatz wire, die roten und blau-
en Pixelwerte unverdndert als Farbwert fiir ihren jeweiligen Kanal zu setzen
und den Mittelwert der beiden griinen Pixel fiir den griinen Kanal zu neh-

5 Quelle: Cburnett, CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.
0/>, via Wikimedia Commons


<http://creativecommons.org/licenses/by-sa/3.0/>
<http://creativecommons.org/licenses/by-sa/3.0/>
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Abbildung 6.38: Simulation eines Bayer-CFA. Links: hochaufgelostes
Original-Farbbild “Peppers” (Quelle: MATLAB), das weif3e Rechteck markiert
den im folgenden verwendeten Bildausschnitt; Mitte u. rechts: Bayer-CFA-
Simulation mit “RGGB”-Muster in Graustufen- (Mitte) und entsprechender
Farbdarstellung (rechts).

men. Davon ist jedoch abzuraten, denn die gewéhlten Farbwerte stammen
von unterschiedlichen Pixelpositionen, so dass die einzelnen Farbkanile
R, G und B nicht iibereinstimmend ausgerichtet sind. Entsprechend wiére
das Ergebnis ein unnétig unscharfes Bild. Zudem wiirde dies eine deutliche
Reduzierung der Auflosung auf ein Viertel der urspriinglichen Sensorgré3e
bedeuten, wie die Abbildung 6.39 demonstriert (2. Bild von links). Bereits
eine bilineare oder bikubische Interpolation der einzelnen Kanéle erzielt
eine signifikante Verbesserung (2. Bild von rechts). Allerdings kénnen da-
durch auch Farbartefakte, &hnlich Moiré-Effekten, entstehen. Infolgedessen
wurden im Laufe der Jahre eine Reihe von ausgefeilteren Algorithmen zur
Schitzung der fehlenden Farbwerte fiir jedes Pixel entwickelt wie z. B. das
Verfahren von Malvar et al. [Mal04] (Abbildung 6.39 ganz rechts). Einen
einfiihrenden Uberblick iiber die gebrauchlichsten und gut etablierten Me-
thoden ist in [Gun05] gegeben.

6.8.2 Verwendung des LAB-Farbraumes

Im wissenschaftlichen Kontext haben Genauigkeit und eine hohe Auflésung
der erfassten Bilddaten normalerweise einen hoheren Stellenwert als chro-
matische Informationen, die tiberdies durch Turbulenz gestort sind. Den-
noch wichst das Interesse an der Verarbeitung von Farbvideodaten, denn
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Abbildung 6.39: Vergleich von Interpolationsmethoden fiir CFA. V. 1. n. 1.:

Ausschnitt des hochaufgeldsten Originalbildes; skaliertes Ergebnis des “nai-
ven Ansatzes”; bilineare Interpolation; Demosaicing geméaf [Mal04].

Bilder im sichtbaren Spektrum, insbesondere Farbbilder, sind fiir einen
ungeschulten menschlichen Beobachter oft leichter zu interpretieren als
z.B. thermische Infrarotdaten. Da VIS stérker als IR durch Turbulenz be-
einflusst wird, bedeutet dies eine entsprechend stidrkere Beeintrdchtigung
der Bildqualitét (d. h. Bildunschirfe, reduzierter Kontrast und Farbverlust)
die mit der Entfernung zunimmt. Aus diesem Grund ist in Verfahren zur
Turbulenzkorrektur neben einem Deblurring in der Regel auch eine Kon-
trastverstarkung integriert. Wahrend die meisten Verfahren zur Kontrastver-
besserung, wie z. B. ein CLAHE-Histogrammausgleich, bei monochromen
Daten oder einzelnen Farbbildern recht gut funktionieren, neigen sie dazu,
das Rauschen in einem Farbvideostrom tiberproportional zu verstérken,
insbesondere in Szenen mit geringem Kontrast.

Eine Losungsmoglichkeit besteht darin, wie in [Huel5] vorgeschlagen und
ausgefiihrt, die Bilddaten zunéchst in einen andere Farbraum zu konver-
tieren, genauer den CIE LAB-Farbraum (auch LAB- oder CIE L*a*b). Die
eigentliche Farbinformation ist sowohl fiir das Deblurring als auch fiir die
Kontrastverstarkung nur von sekundérer Bedeutung. Es ist daher nahelie-
gend, das gegebene Problem in eine geeigneten Farbraumdarstellung zu
transformieren, die es erlaubt, diese Operationen nur auf dem Bildteil durch-
zufiihren, der die relevanten Informationen enthlt.

Der LAB-Farbraum ist gerdteunabhingig und ermdglicht eine sehr genaue
Darstellung von Farben. Die zugrundeliegende Idee war, die Nichtlinearitét
des menschlichen Sehens durch dhnlich nichtlineare Beziehungen Lx*, ax
und b#* zu approximieren und alle Farben im sichtbaren Spektrum so zu
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beschreiben, dass der wahrnehmbare Unterschied zwischen zwei Farben
proportional zu ihrem euklidischen Abstand im LAB-Raum ist.

Die L+ Komponente kommt der empfundenen Ahnlichkeit relativ nahe,
wobei sich L auf die psychometrische Helligkeit bezieht und nicht auf die
Luminanz. Die moglichen Werte fiir L+ liegen zwischen 0 und 100.

Die Farbkomponenten a* und b+ sind auf Basis der Gegenfarbtheorie kon-
struiert, d. h. die Komponente a* beschreibt die Achse zwischen den Gegen-
farben Rot und Griin, wéhrend b* in gleicher Weise die Gelb-Blau-Achse
beschreibt. Die Werte fiir a* liegen ungefdhr zwischen —170 und +100, wih-
rend die Werte fiir b* ungefdhr zwischen —100 und +150 liegen, wobei die
extremen Werte nur fiir bestimmte Farbtone mit mittlerer Helligkeit ange-
nommen werden kénnen.

In diesem Zusammenhang ist anzumerken, dass Konvertierungen vom RGB-
in den LAB-Farbraum verlustfrei sind, allerdings nicht umgekehrt. Auch
gibt es hierfiir keine direkte Transformation, sondern jede Konvertierung
erfolgt notwendigerweise tiber den CIE XYZ-Farbraum. Alle erforderlichen
Umrechnungsformeln sind in [Huel5] zusammengestellt.

Die eigentliche Kontrastverstarkung erfolgt mit einer beliebigen Methode
auf der L+ Komponente, z. B. ein Spreizen auf den vollen Dynamikumfang in
Verbindung mit einem adaptiven Histogramm-Ausgleich (CLAHE). Das Bei-
spielergebnis in der Abbildung 6.40 zeigt, wie der schwache (Farb-)Kontrast
im Originalbild mithilfe einer Kontrastverstarkung im LAB-Farbraum deut-
lich verbessert werden kann.

Dies hat im tibrigen keine groeren Auswirkung auf die Farben im Bild, d. h.
die Farbtemperatur, Sattigung etc. , sondern nur auf den Kontrast. Der Vorteil
dabei ist, dass Farbverfdalschungen und Farbrauschen auf diese Weise ver-
mieden werden. Geht es dagegen auch um eine Erh6hung der Farbsittigung,
kann eine solche Kontrastverstarkung stattdessen im HSV-Farbraum an der
V- (“Value”, Helligkeit) und der S-Komponente (“Saturation”) durchgefiihrt
werden.
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Abbildung 6.40: Beispiel fiir Bildvorverarbeitung in Farbbilddaten. Linke
Spalte (v.o.n.u.): Originalfarbbild (Entfernung ca. 23 km), Resultat der Bild-
vorverarbeitungskette (Farbkontrastanhebung und Einzelbild-Deblurring),

zusitzliche Rauschreduktion; rechte Spalte: korrespondierende Kantenbil-
der.
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6.9 Turbulenzsimulation

Eine unvoreingenommene qualitative Bewertung der jeweiligen Restaurati-
onsergebnisse verschiedener Korrekturmethoden erweist sich generell als
schwierig, wenn wenig oder keine zusétzlichen Informationen iiber das
“wahre Bild” verfiigbar sind. Vor allem Entfaltungsalgorithmen, wie sie in Ka-
pitel 5 vorgestellt und diskutiert wurden, weisen eine Reihe von unerwiinsch-
ten Nebeneffekten auf. Dazu gehéren u. a. Rauschverstarkung (z. B. Wiener
Filter), so wie eine tiberproportionale Kontrastverstarkung und Verstarkung
hoher Frequenzanteile (z. B. PCA). Die Leistungsfdhigkeit so genannter “No
Reference”-Qualitdtsmetriken (siehe Abschnitt 7.1.3) wird dadurch entspre-
chend eingeschriankt. Aufgrund dessen sind simulierte Turbulenzdaten ein
sinnvolles Werkzeug zur Beurteilung der Ergebnisqualitét eines gegebenen
Algorithmus. Dies gilt umso mehr fiir Szenen mit bewegten Objekten, deren
Verhalten in der Regel nur bedingt vorhersagbar ist.

6.9.1 Simulationsprinzip

Es existieren prinzipiell zwei unterschiedliche Ansétze zur bildhaften Simu-
lation von Turbulenzeffekten. Dies ist zum einen eine reine Simulation der
auftretenden Effekte in den resultierenden Bilddaten, d. h. Unschirfe, Bild-
bewegung etc. Zum anderen ist dies eine physikalisch méglichst korrekte
Simulation der Ausbreitung durch die Atmosphire unter Verwendung von
Phasenschirmen (“phase screens”) zur Implementierung des Schichtenmo-
dells in Abschnitt 3.3.4.

Die Vorteile hoherer Genauigkeit des zweiten Ansatzes, d. h. einer physikali-
schen Simulation, liegen auf der Hand. Je genauer eine solche Simulation
durchgefiihrt wird, desto groer ist allerdings auch der damit verbundene
Rechenaufwand. Aus praktischen Erwdgungen wurde daher in [Huel2b]
eine atmosphérische Ausbreitungssimulation erster Ordnung eingesetzti,
wobei fiir jede Wellenldnge ein Phasenschirm verwendet wurde. In dieser
Simulation wurden isoplanatische Bedingungen angenommen (d. h. nur
globale Bildbewegungen), und Szintillationseffekte wurden vernachldssigt.

6 erstellt von S. Gladysz
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Genauer wurden mit der klassischen FFT-basierten Methode von McGlame-
ry [McG76] unabhingige Phasenschirme erzeugt, d. h. ein Array von Zufalls-
zahlen wurde gemdR dem von-Karman-Spektrum gefiltert und dann invers
Fourier-transformiert.

Es handelt sich um eine polychromatische Simulation im VIS-Spektrum, d. h.
fiir insgesamt zehn separate Wellenldngen A im Bereich zwischen 500 nm
und 700 nm wurde jeweils eine eigene PSF erzeugt. Dabei entspricht eine
monochromatische PSF jeweils einem Phasenschirm. Man kann deshalb
davon ausgehen, dass die Bilder nur Speckles von “eingefrorenen” Wellen-
fronten enthalten und daher sehr kurzen Integrationszeiten in der Gréen-
ordnung von 5 ms entsprechen.

Da diese Methode den Nachteil hat, dass niederfrequente Aberrationen
nur unzureichend gut reprasentiert werden, wurde zusétzlich eine Subhar-
monischen-Korrektur geméal3 [Lan92] implementiert, mit acht Stufen von
Subharmonischen. Ein Vergleich der simulierten und theoretischen Phasen-
strukturfunktionen ergab eine hinreichend gute Ubereinstimmung.

6.9.2 Parametereinstellungen und Implementierung

Die Simulation wurde fiir zwei verschiedene duflere Skalenldngen Ly durch-
gefiihrt, einmal fiir Ly = 1 m und einmal fiir Ly = 10 m, wobei die Apertur
des Teleskops jedes Mal auf D =10 cm gesetzt wurde.

Die Turbulenzstérke wurde in der GréRenordnung zwischen C2 = 10~ m
und C2 = 107'2 m~? gewihlt.

Speziell fiir die Phasenschirme wurden (Pixel-)Arrays der Gro3e 256 x 256
verwendet, wodurch sich eine Pupillenabtastung von 0,4 mm pro Pixel
ergibt.

Die Phasenraster wurden zunéchst in Phasoren umgewandelt und mit einer
entsprechenden kreisformigen Apertur-Funktion multipliziert. Das Ergebnis
wurde zur Erh6hung der Genauigkeit in ein Array von Nullen der Groe 512 x

512 Pixel eingebettet (“zero padding”) bevor eine Fourier-Transformation
durchgefiihrt wurde.

Die PSF ergibt sich aus dem Quadrat des Betrags des Ergebnisses der FT,
wobei wiederum nur der zentrale Teil der Bilder in der AusgangsgréQe, d. h.
256 x 256 Pixel, gespeichert wird. Das (urspriingliche) IEQOV der PSFs betrédgt

—2/3
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dabei 2,44 prad, was der Nyquist-Abtastung bei der kiirzesten Wellenlidnge
entspricht.

Damit die Simulation polychromatisch ist, werden wie bereits erwéahnt, PSFs
fiir zehn Wellenldngen zwischen 500 nm und 700 nm erzeugt, wobei eine
lineare Skalierung der Wellenfronten angenommen wird. Die resultierenden
zehn PSFs werden aufsummiert, und das Ergebnis bildet die eigentliche
rauschfreie PSE die abschliefend noch normiert wird, so dass ihre Gesamt-
energie gleich eins ist.

6.9.3 Simulationsergebnisse

Die Abbildung 6.41 zeigt einige reprédsentative Beispiele der mit dieser Si-
mulation erzeugten PSEs, wobei insbesondere die unterschiedlichen PSF-
GroBen bei einem Vergleich der verschiedenen Turbulenzstédrken auffallen.
Um einen Eindruck vom Langzeitverhalten zu erhalten, wurden zusétzlich
jeweils 20 PSFs integriert und in der rechten Spalte neben den Beispiel-PSFs
dargestellt. Da sich zwischen den mittleren PSFs beider Skalenldngen mit
bloBem Auge keine nennenswerten Unterschiede erkennen lassen, sind hier
nur die Mittelwerte fiir Ly =1 m dargestellt.

Die duRere Skalenlédnge beeinflusst hauptsédchlich die Bildbewegung, daher
sehen die PSFs mit Ly = 1 m und Ly = 10 m recht dhnlich aus. Wahrenddes-
sen hingt die Bildauflosung und -qualitit am stiarksten von den jeweiligen
C2-Werten ab.

Fiir die eigentliche Turbulenzsimulation miissen die Bilddaten, die idea-
lerweise moglichst hoch aufgel6st sind, noch iiber eine Faltung mit den
simulierten PSFs verkniipft werden. Fiir alle drei RGB-Farbkandle wurde
die gleiche PSF verwendet, da die Wellenldngenunterschiede zwischen Rot,
Blau und Griin vergleichsweise gering sind.

Aufgrund des erforderlichen Oversamplings der PSF-Filterfunktionen wur-
den die synthetischen Bilder vor der Filterung unter Verwendung der “Nea-
rest Neighbour”-Vergroerungsmethode um den Faktor 2 hochskaliert .
AuBlerdem wurde ein “Padding” mittels symmetrischer Replikation durchge-
fiihrt, einerseits um die Groflenunterschiede zwischen zu filternden Bildern
und Filterfunktionen auszugleichen und andererseits, um die Randeffekte
infolge der Faltung abzuschwéchen. Anschliefend wurde das Filterergebnis
(ohne “Padding”) entsprechend um den Faktor 4 herunterskaliert.
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Falls gewtiinscht, kann dem gefilterten Bild zusitzlich noch eine (additive)
Rauschkomponente hinzugefiigt werden (s. a. Abschnitt 3.4.10). Poisson-
verteiltes Rauschen ist z. B. geeignet, um elektronisches Schrotrauschen zu
simulieren, wiahrend sich Rauschen, das wihrend der Aufnahme entsteht,
mithilfe von Gaul3-verteiltem Rauschen imitieren l4sst.

Das Ergebnis einer solchen Simulation fiir Wellenldngen im IR in der Abbil-
dung 6.42 verdeutlicht, wie stark sich unterschiedliche Entfernungen (5 km
und 10 km) und Turbulenzstirken (C2 = 10~ m~** und C2 = 10713 m~*?)
in den Bilddaten auswirken. Dabei ist zu beachten, dass die Originalauf-
nahme der Stadt Heidelberg (oben in der Abbildung), die als Grundlage fiir
die Simulationen dient (sowie fiir Abbildung 3.8), im sichtbaren Spektrum
aufgenommen wurde. Das bedeutet, dass die Reflektivitdten in den Simu-
lationen nicht dem tatsidchlichen IR-Spektrum entsprechen, wobei “hell”
gleichbedeutend ist mit “warm” und “dunkel” mit “kalt”.

6.9.4 Tiefenkarten

In der Simulation wurden diverse vereinfachende Annahmen getroffen. Da-
zu gehort u. a. auch die Annahme, dass alle Objekte in der abgebildeten Sze-
ne dieselbe Entfernung zur Kamera haben. In der Praxis ist dies nicht immer
der Fall, insbesondere konnen Objekte im Hintergrund (z. B. landschaftliche
Merkmale wie Berge) deutlich weiter entfernt sein. Dementsprechend ist in
der Realitdt auch das Volumen an Turbulenz wesentlich gréRer, welches das
von dort kommende Licht durchqueren muss.

Eine Moglichkeit zur Erh6hung der Genauigkeit besteht in der Verwendung
von (synthetischen) Entfernungs- bzw. Tiefenkarten mit einer begrenzten
Anzahl von m Entfernungs- bzw. Tiefenebenen in Verbindung mit entspre-
chend fiir die verschiedenen Entfernungen berechneten PSFs h;.

Sofern vorhanden, kann eine solche Tiefenkarte M als Maske eingesetzt wer-
den bzw. als Linearkombination einer Reihe von Masken M; (i = 1,...,m), so
dass sich das Simulationsergebnis g (d. h. das beobachtete Bild) beschreiben
lasst wie folgt (mit den Bezeichnungen aus Abschnitt 5.1):

g=> M;-(hixf) (6.30)

s

i=1
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Lo=1m Ly=10m

© 20 PSFs

Abbildung 6.41: PSF-Simulationen im VIS-Spektrum mit dulleren Skalen-
langen Ly = 1 m, Ly = 1 m fiir ausgewdhlte Turbulenzstirken C,Zl in den
GroBenordnungen zwischen 10714 und 10712 (in m_2/3) im Vergleich mit
dem jeweiligen Mittelwert von 20 PSFs (Quelle: [Huel2b]).
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Abbildung 6.42: Turbulenzsimulationen fiir die Wellenlédnge A = 10 ym (im
IR) bei dullerer Skalenlédnge Ly = 1 m und mit Aperturdurchmesser D =9 cm.
Oben: originales Farbbild (links) und zugehoriges Grauwertbild (rechts);
Mitte: Turbulenzstirke C2 = 10714 m~?, unten: C% = 10713 m~*3; links:
Entfernung L = 5 km, rechts: L = 10 km (Foto u. Simulation: S. Gladysz).
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In der Abbildung 6.43 ist eine solche Tiefenkarte M skizziert, definiert durch:

m m
M=Yi-M; wobei Y Mjxy=1 Yxy (6.31)
i=1 i=1

Eine solche Vorgehensweise ist allerdings nur dann wirklich sinnvoll, wenn
die Entfernungsunterschiede in der Szene so grof§ sind, dass sich die erzeug-
ten PSFs auch gentigend voneinander unterscheiden. Hinzu kommt, dass
die tatsdchlichen Entfernungen (z.B. zu einem Gebirge im Hintergrund)
hiufig nicht bekannt sind und bestenfalls grob abgeschitzt werden kénnen.

Abbildung 6.43: Beispielhafte Skizze einer Tiefenkarte. Links: Originalbild;
rechts: Tiefenkarte mit 10 Tiefenebenen (Farbwahl willkiirlich, unabhéngig
vom Entfernungswert).

6.9.5 Synthetische “Ground Truth” mit Objektbewegung

Statische Einzelbilder wie das zuvor verwendete Foto von Heidelberg in Ab-
bildung 6.42 reichen nicht aus, um auch die Problematik bewegter Objekte
zu berticksichtigen, die eine zentrale Rolle dieser Arbeit spielt. Aus diesem
Grund wurde speziell eine Turbulenzsimulation mit bewegten Objekten
erstellt. Dabei wurden rein synthetisch erzeugte Daten verwendet, genau-
er ein 3-D POV—RayZ Modell, um sicherzustellen, dass die “Ground-Truth”
tatsdchlich vollstdndig bekannt ist.

7 POV-Ray: “Persistence of Vision”, ein 3-D “Ray Tracing”-Programm
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Das Modell besteht aus einem generischen Militdrlager in einem leicht
unebenen Geldnde und enthilt zwei sich bewegende LKWs, die sich in
entgegengesetzten Richtungen bewegen. Aus dem 3-D Modell wurde eine
RGB-Bildsequenz von 2000 Frames im BMP-Format mit einer Auflésung von
1024 x 768 Pixeln gerendertﬁ. Die Bewegung der beiden Fahrzeuge erstreckt
sich iiber die kompletten 2000 Frames, um eine Hochgeschwindigkeitska-
mera zu imitieren. Die Abbildung 6.44 zeigt das erste und letzte Bild der
erzeugten Sequenz, wobei die Bewegungsspuren beider Fahrzeuge mithilfe
farbiger Pfeile dargestellt sind.

Abbildung 6.44: Erster (links) und letzter Frame (rechts) der synthetischen
GT-Sequenz mit Fahrzeugen, wobei die jeweilige Bewegungsrichtung gelb
bzw. griin markiert ist.

Dieses 3-D-Modell wurde vor allem wegen seiner groflen Flexibilitdt im
Hinblick auf zukiinftige Anwendungen gewéhlt. In einem solchen Modell
koénnen z. B. problemlos Sequenzen mit héherer Auflésung erzeugt werden,
wobei jedoch zu beachten ist, dass auch die fiir das Rendering erforderliche
Rechenzeit entsprechend mit der Bildauflosung ansteigt. So dauerte das
Rendering aller 2000 Bilder der hier verwendeten Sequenz bei einer Auf-
l6sung von 1024 x 768 auf einem herkémmlichen PC etwa 2 Stunden und
20 Minuten.

Ein weiterer offensichtlicher Vorteil ist, dass Objekte entfernt oder hinzuge-
fiigt werden kénnen. Auch der Kamerawinkel oder die Beleuchtung lassen
sich ohne grofleren Aufwand verdndern.

8 gerendert von M. Hebel
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6.9.6 Videosimulation

Zur Erhohung des Realitdtsgrades einer simulierten Videosequenz wurden
je 8 Frames integriert, um so eine Langzeitbelichtung zu imitieren mit stan-
dardmaéRiger Video-Framerate (30 Hz). Die Anzahl der synthetischen Fra-
mes war bewusst so gro gewdhlt worden, dass ein einzelner Frame als
kurz belichtetes Bild angesehen werden kann, wéhrend der Mittelwert einer
Langzeitaufnahme entspricht.

Dartiber hinaus wurde, zur Berlicksichtigung von elektronischem Schro-
trauschen, Poisson-Rauschen aus den Bildern selbst erzeugt, indem jedes
Pixel als Mittelwert einer Poisson-Verteilung interpretiert wurde. Um auch
das additive Sensorausleserauschen zu berticksichtigen, wurde Gau8sches
weilles Rauschen mit Mittelwert Null und Varianz 0,001 hinzugefiigt.

Die Abbildung 6.45 zeigt ein Beispiel fiir eine Simulation mit solchem additi-
ven Rauschen, sowohl als Kurzzeitaufnahme (links) als auch als Langzeit-
aufnahme (rechts), fiir die 8 (PSF-gefilterte) Einzelbilder integriert wurden.
Die Unterschiede lassen sich am besten in der Ausschnittsvergrof$erung
erkennen, wie z. B. an der Flagge oder den Zeltspitzen, die in der Langzeit-
aufnahme erkennbar verschwommener sind.

Abbildung 6.45: Simulationsbeispiel fiir C2 =5-10713 m~3, Ly = 10 m, mit
additivem Rauschen. Links: Kurzzeitaufnahme, d. h. Einzelframe mit Poisson-
und GauB-verteiltem Rauschen; rechts: Langzeitaufnahme, d. h. Mittelwert
von 8 gefilterten Frames; unten: korrespondierende Detailansichten.



6.9 Turbulenzsimulation 217

6.9.7 Korrekturresultate

Nachfolgend sind einige Korrekturresultate abgebildet fiir diverse Entfal-
tungsmethoden, die in Kapitel 5 vorgestellt wurden. Die Abbildung 6.46
zeigt ein Einzelbild der im vorangegangenen Abschnitt beschriebenen Si-
mulation (Langzeitaufnahme) und ein zugehoriges Korrekturergebnis. Als
Korrekturverfahren wurde dabei der registrierte gleitende Mittelwert von
20 Einzelbildern mit abschlieBender mehrstufiger gewichteter blinder Ent-
faltung (WIBD) eingesetzt. Da es sich um eine rein isoplanatische Simulation
handelt, wurde auf eine lokale Registrierung verzichtet und lediglich eine
globale Bildregistrierung durchgefiihrt.

Abbildung 6.46: Links: Beispielframe der Turbulenzsimulation mit Poisson-
Rauschen; rechts: Korrekturergebnis bei globaler Bildregistrierung und
WIBD-Deblurring.

In der Abbildung 6.47 sind einige reprdsentative Resultate der getesteten
Entfaltungsmethoden zusammengefasst, die im folgenden ndher erldutert
werden. Zum besseren Vergleich der Ergebnisse untereinander, sowie auch
mit der zugehorigen “Ground Truth” (GT) und der Turbulenzsimulation (TS),
wurde ein aussagekréftiger Detailausschnitt gewéhlt. Die Abbildung 6.48
zeigt die dazu korrespondierenden Kantenbilder, anhand derer sich die Un-
terschiede zwischen den einzelnen Korrekturergebnissen leichter erkennen
lassen.

Zunichst wurden einige nicht-blinde Entfaltungsmethoden getestet (sie-
he linke Spalte in der Abbildung 6.47), wobei hierfiir stets die zugehorige
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simulierte (d. h. exakt bekannte) PSF verwendet wurde. Darunter befinden
sich die Richardson-Lucy-Entfaltung (LRD, siehe Abschnitt 5.1.2) mit unter-
schiedlicher Anzahl von Iterationen, sowie inverse Wiener-Filterung (IWE
siehe Abschnitt 5.1.1) und iiberdies auch die “Unsupervised Wiener-Hunt”
Entfaltungsmethode (UWH [Oril0a]), deren Ergebnisqualitdt sich mit der
von LRD vergleichen ldsst, wobei UWH zugleich etwas weniger anfallig ist
fiir Ringing-Effekte als LRD.

GT TS (C,2 = 1e-13, Lo= 10m)

LRD (GauR-PSF)

UWH

Abbildung 6.47: Turbulenzsimulation (mit C2 = 10713 m~*3 und Ly = 10 m)
und beispielhafte Korrekturresultate verschiedener Verfahren im Vergleich
(Ausschnittsvergroflerung). Links: nicht-blinde Entfaltungmethoden (exakte
PSE); rechts: blinde Entfaltung.
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TS (C,2=1e-13, Lp= 10 m)
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Abbildung 6.48: Kantenbilder zu Abb. 6.47 zur besseren Erkennbarkeit der
Unterschiede in den Korrekturergebnissen.

AnschlieBend wurden auch verschiedene blinde Entfaltungsverfahren an
dieser synthetischen Sequenz getestet (siehe rechte Spalte in der Abbil-
dung 6.47 und Abbildung 6.48). Bei allen Entfaltungsmethoden im Test han-
delt es sich im Grunde genommen um blinde LRD-Varianten. Das schlief3t
auch die klassische LRD mit ein, fiir die hier eine gauBférmige PSF ange-
nommen wurde. Des weiteren wurden die iterative blinde Entfaltung (IBD,
siehe Abschnitt 5.1.3), sowie die mehrstufige gewichtete iterative blinde
Entfaltung (WIBD, siehe Abschnitt 6.6) angewendet.
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Alle diese Methoden produzieren mehr oder weniger stark ausgeprégte
Ringing-Effekte, wobei die Anzahl an Iterationen eine wesentliche Rolle
spielt. Nicht zuletzt aus diesem Grund wurde die Anzahl an Iterationen
bewusst niedrig gehalten (d. h. < 20), wobei diese speziell im Fall der WIBD
ohnehin zumeist einstellig ist.

Die Ergebnisqualitét aller nicht-blinden Methoden ist erwartungsgemal
hoch, da alle Stérungen bekannt sind und somit optimale Bedingungen fiir
eine Rekonstruktion vorliegen. Die Inklusion dieser nicht-blinden Metho-
den dient vor allem als Mal3stab fiir die bestmdéglich erreichbare Ergebnis-
qualitédt, mit der die Ergebnisse der blinden Methoden verglichen werden
konnen. Indirekt handelt es sich somit auch um ein Mak fiir die Giite der
PSF-Schitzungen.

Es tiberrascht nicht, dass die Ergebnisqualitét der blinden Methoden nicht
ganz die hohe Qualitit der nicht-blinden Methoden erreicht. Immerhin
lassen alle blinden Methoden eine deutliche Verbesserung erkennen gegen-
tiber dem simulierten Original, wobei auch die vereinfachende Annahme
einer GauR-PSF eine signifikante Verbesserung erzielt. Insgesamt schneidet
die mehrstufige WIBD hier am besten ab, wobei die 3-stufige etwas schlech-
ter gegeniiber der 4-stufigen abschneidet hinsichtlich der Bildschérfe, da
das Resultat weniger scharf und klar definiert erscheint. Andererseits lasst
sich bei der 3-stufigen im Gegensatz zu der 4-stufigen kaum Ringing erken-
nen und es kommt zu weniger starken (Kontrast-)Uberschwingern an den
Kanten.
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So unterschiedlich die méglicherweise vorherrschenden Umwelt- und Tur-
bulenzbedingungen sind, so vielfdltig sind auch die Ansdtze zur Korrektur
von Turbulenzeffekten in Bilddaten, ebenso wie die Faktoren, die fiir (tur-
bulenzbedingte) Beeintrachtigungen der Bildqualitit verantwortlich sind.
Hinzu kommen diverse denkbare Anwendungsgebiete fiir derartige Korrek-
turverfahren. Entsprechend schwierig gestaltet sich die Bestimmung einer
geeigneten Taxonomie, die tatsdchlich allen Anwendungsféllen gerecht wer-
den kann.

Die Starke der Turbulenz, sowie auch die Lange und der Winkel des Aus-
breitungsweges durch das turbulente Medium (i. A. Luft oder ggfs. Wasser)
spielen erwartungsgemall eine entscheidende Rolle dabei, welche Ergebnis-
qualitét ein gegebener Algorithmus innerhalb seiner (Leistungs-)Parameter
tiberhaupt maximal erzielen kann. Dabei wirken sich nicht nur Tempera-
turunterschiede (z. B. aufgrund von Sonneneinstrahlung) auf die Fluktua-
tionen im Brechungsindex aus, sondern u. a. auch die Luftfeuchtigkeit und
Aerosolteilchenkonzentration, ebenso wie die Windstédrke, Windrichtung
und Windgeschwindigkeit. Nicht zuletzt spielen auch die Qualitit und die
Menge der Bilddaten eine wesentliche Rolle, wobei sowohl die Lichtver-
haltnisse (bzgl. Belichtungszeit, Bilddynamikkontrast) zum Zeitpunkt der
Datenerfassung, als auch die Eigenschaften des verwendeten EQ-Systems

221
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(bzgl. Bildauflosung, Framerate etc.) von Bedeutung sind. Unterschiedliche
Ausgangsszenarien, wie sie in Kapitel 4 diskutiert wurden, erfordern wieder-
um unterschiedliche Korrekturmafnahmen. Zudem kénnen die Prioritdten
bei der Bewertung je nach gegebenem Anwendungsgebiet individuell stark
variieren.

Aus all diesen Griinden wird es woméglich niemals ein einziges, allumfas-
sendes Werkzeug fiir die objektive Bewertung der Gesamtheit an Korrektur-
verfahren fiir jede Form von optischer Turbulenz geben. Stattdessen wird
in dieser Arbeit deshalb ein tabellarischer Ansatz vorgeschlagen, anhand
dessen sich dhnliche Voraussetzungen zusammenfassen lassen, um Algorith-
men fiir typische Szenarien miteinander vergleichbar zu machen. Genauer
wird hierfiir ein Bewertungssystem mit Priorisierung eingefiihrt, welches
in Abschnitt 7.3 und insbesondere in Abschnitt 7.3.3 néher ausgefiihrt wird.
Hierbei werden einer (erweiterbaren) Auswahl an Kriterien Werte zugeord-
net, gemal ihrer jeweiligen Prioritéit in einem gegebenen Kontext. Diesem
Bewertungssystem kommt eine duale Funktion zu, denn einerseits kann
damit eine gegebene Applikation hinsichtlich ihrer Anforderungen syste-
matisch beschrieben werden, und andererseits kann damit ein gegebener
Algorithmus hinsichtlich seiner Leistungsparameter charakterisiert werden.
So erhédlt man entsprechende (Bewertungs-)Profile fiir Anwendungen eben-
so wie fiir Korrekturverfahren, die entsprechend miteinander verglichen
werden kénnen.

Dabei sollte angemerkt werden, dass es wenig sinnvoll wire, ein Anwen-
dungsprofil zu erstellen, welches allen Kategorien héchste Prioritdt zuord-
nen wiirde, da zurzeit kein Algorithmus existiert, der dies erfiillen kdnnte.

7.1 Bildqualitat

Im vorliegenden Zusammenhang stellt sich zunéchst die Frage nach einer
sinnvollen Definition des Begriffes Bildqualitiit bzw. danach, was gute Bild-
qualitdt im vorliegenden Zusammenhang bedeutet. Je nach Anwendung
kann das Verstdndnis dieses Begriffes etwas variieren. Im Rahmen dieser
Arbeit kann “gute” Bildqualitédt im Prinzip als gleichbedeutend mit hohem
Kontrast bei feinen Details verstanden werden, ebenso wie auch als eine ho-
he Auflosung von nahe (in der Bildebene) beieinander liegenden Objekten.
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In der Literatur existieren zahlreiche verschiedene Methoden, mit deren
Hilfe sich die Bildqualitdt entweder global oder auch lokal beschreiben
(und quantifizieren) ldsst. Hierzu zdhlen u. a. die (Bild-)Schdirfe, definiert
als (normierte) Quadratwurzel aus der Summe der quadrierten (Grauwert-)
Gradienten in horizontaler und vertikaler Richtung, Kanten-basierte Male,
wie z. B. die Summe oder Varianz der Kanten im Bild, die Fisher-Information,
Fourier-Spektralanalyse, “Total Variation” oder die Shannon-Entropie. Eine
detailliertere Ubersicht iiber die verbreitetsten solcher Methoden ist z. B. in
[Hof19], sowie in [Rio13] gegeben.

7.1.1 Qualitatsmetriken

Die qualitative Charakterisierung eines gegebenen Bildes mit Hilfe entspre-
chender Metriken (“Image Quality Metrics”, 1IQM) kann im Zusammenhang
mit Turbulenzkorrektur gleich in mehrfacher Hinsicht von Nutzen sein. Im
offensichtlichsten und zugleich kompliziertesten Anwendungsfall dient sie
der Beurteilung der Ergebnisqualitédt eines gegebenen Korrekturverfahrens,
beispielsweise um die Resultate verschiedener Verfahren miteinander ver-
gleichen zu kénnen. Kompliziert ist dieser Fall vor allem deshalb, weil bei
realen Turbulenzdaten in der Regel keine “Ground Truth”-Daten (GT) als
Referenz vorliegen, um zum Vergleich herangezogen werden zu kénnen.
Aus diesem Grund ist hierfiir vor allem eine spezifische Klasse von IQM von
Interesse, und zwar sogenannte “No Reference”-Metriken.

Etwas einfacher gestaltet sich die Aufgabe, den Ahnlichkeitsgrad bzw. die
qualitativen Unterschiede zwischen zwei gegebenen Bildern zu bewerten.
So ist es z. B. bei der Bild- oder Videokompression vergleichsweise einfach,
die Qualitét eines Bildes zu bestimmen, denn hierbei korrespondiert eine
hohere Kompressionsrate mit einer geringeren Bildqualitdt. Entsprechend
konnen “Full Reference”-Metriken eingesetzt werden, um das perfekte, d. h.
unkomprimierte Referenzbild mit dem komprimierten Bild zu vergleichen.
Ohne geeignete Referenzdaten ist dies nicht bzw. nur bedingt moglich.

7.1.2 “Full Reference”-Metriken

Gemail ihrer Bezeichnung erfordern “Full Reference”-Metriken entsprechen-
de (GT) Referenzdaten als Vergleichsbasis. Solche Metriken werden haufig
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als qualitatives MalR fiir den Ahnlichkeitsgrad zwischen zwei gegebenen Bil-
dern eingesetzt. Eine weit verbreitete Metrik ist insbesondere auch der maxi-
male Signal-Rausch-Abstand (“Peak Signal-to-Noise Ratio”, PSNR). Letztlich
hingt aber die Entscheidung dariiber, was beste Ubereinstimmung in ei-
nem bestimmten Kontext genau bedeutet und welche Kriterien am besten
geeignet sind, um diese Entscheidung zu treffen, stark von der jeweiligen
Anwendung ab und auch davon, welche Informationen verfiigbar sind.

Im vorliegenden Turbulenz-Kontext tritt u. a. der Anwendungsfall auf, der
bereits in Kapitel 4 im Unterabschnitt 4.2.1 diskutiert wurde. Dort ging
es speziell um die Reglstrlerung von Bildern innerhalb einer Sequenz mit
dem Ziel der Bewegungskompensation. Genauer wurde fiir ein gegebenes
Referenzbild (bzw. fiir ein Teilbild) dasjenige Bild aus einer Menge an zu-
gehorigen Shift-Bildern (bzw. Bildblocken) gesucht, welches die optimale
Ubereinstimmung mit der Referenz aufweist. Zu diesem Zweck wurde der
Einsatz einfacher Fehlersummationsmetriken, wie z. B. der “Mean Absolute
Error”: der mittlere absolute Fehler (MAE), der “Mean Square Error”: der
mittlere quadratische Fehler (MSE) oder der “Root Mean Square Error”: die
Wurzel aus dem mittleren quadratischen Fehler (RMSE)vorgeschlagen. Der-
artige Metriken haben zwar den Vorteil, dass sie sich effizient berechnen
lassen, aber auch den Nachteil, dass sie generell nicht sehr zuverlédssig zur
Bewertung von Bildqualitét sind, wie in [Wan09] {iberzeugend nachgewie-
sen. Dort wird stattdessen der universeller einsetzbare “Structural SIMilarity
Index” (SSIM) propagiert, fiir den zunehmend komplexere Versionen exis-
tieren, die in [Wan02], [Wan04], sowie in [Sam09] detailliert sind, inklusive
des “Complex Wavelet-Structural SIMilarity Index” (CW-SSIM). Hierbei wer-
den die statistischen Eigenschaften zweier Bilder x und y ausgenutzt, um
anstelle der Fehlerenergie bevorzugt strukturelle Verformungen zu messen.
Aus diesem Grund wurde u. a. auch der SSIM (in der einfacheren Version)
in [Hue08] und [Gre08] zum Vergleich von Korrekturergebnissen (aus simu-
lierten Daten) mit den zugehorigen GT-Referenzdaten eingesetzt, wobei
die folgende Definition verwendet wurde (mit den Bezeichnungen aus Ab-
schnitt 3.1.3 (d. h. py, 4y bezeichnen jeweils die Mittelwerte von x bzw. y
und o x,mie jeweiligen Standardabweichungen, sowie o, die zugehorige
Kreuzkovarianz):

2y by Oxy 2050y
(,ux)2+(l~ly)2 Ox0y Ui U'?,

SSIM (x, y) = (7.1)
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Die Grundidee des komplexen CW-SSIM besteht darin, dass bestimmte Bild-
verzerrungen zu konsistenten Phasendnderungen in den lokalen Wavelet-
Koeffizienten fiihren, und dass eine konsistente Phasenverschiebung der
Koeffizienten den strukturellen Inhalt des Bildes nicht verdndert. Zu den Vor-
teilen des CW-SSIM-Index gehort seine Robustheit gegeniiber geringfiigigen
Rotationen und Translationen. Das ermdoglicht den direkten Vergleich zweier
Bilder ohne eine vorherige Bildregistrierung, welche fiir viele andere Metri-
ken erforderlich wire. Ein weiterer Vorteil besteht in dem vergleichsweise
giinstigen Rechenaufwand.

Im Zusammenhang mit optischer Turbulenz ist der Einsatz von “Full Refe-
rence”’-Metriken in der Regel nur bei simulierten Daten sinnvoll, da echte
GT-Daten sonst nur im Ausnahmefall verfiigbar sind. Allerdings sollte die
Verwendung simulierter Daten immer unter einigem Vorbehalt erfolgen, da
eine hinreichende Realitdtsnidhe der Simulationsergebnisse nicht so ohne
Weiteres gewihrleistet werden kann. In Abhéngigkeit von dem verwende-
ten Algorithmus, kdnnten verschiedene Bildinformationen u. U. durch die
Simulation so verdndert werden, dass dies die Performanz von Bildquali-
tatsmetriken beeinflussen kann. Dabei ist es durchaus moglich, dass diese
Anderungen fiir das bloRe Auge nicht einmal wahrnehmbar sind. Als ein zu-
sétzliches Kriterium in der Bewertung von Verfahren zur Turbulenzkorrektur
sind sie aber durchaus geeignet.

Mit gewissen Einschrankungen kénnen dennoch auch “Full Reference”-
Metriken zur qualitativen Bewertung der Ergebnisse verschiedener Turbu-
lenzkorrekturverfahren eingesetzt werden, sofern eine hinreichend gute
Schétzung fiir die “Ground Truth” vorliegt und als Referenz dienen kann. In
dieser Arbeit wurde hierfiir in einigen Féllen beispielsweise ein temporaler
Mittelwert oder Median (mit globaler Bewegungskompensation) ausgewdahlt.
Alternativ ist ebenfalls die Verwendung eines besonders guten Rekonstrukti-
onsergebnisses als Vergleichsmuster moglich, z. B. unter Einsatz von “Lucky
Imaging” (s. a. Abschnitt 2.2.2).

7.1.3 “No Reference”-Metriken

Im gegebenen Kontext wird vor allem eine Metrik benétigt, die geeignet
ist, die Qualitét von Bildsequenzen oder Daten aus einem Live-Videostrom
unabhéngig von einem zusétzlichen Referenzbild zu bewerten. Sogenannte
“No Reference”-Metriken machen sich bestimmte Merkmale von Bilddaten
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zunutze, um den Schérfegrad in einem Bild zu beurteilen. Es kénnen z. B.
die hohen Frequenzanteile oder der Rauschanteil im Bild ermittelt und mit
Standardwerten verglichen werden. Andere Metriken werten die Kanten
im Bild aus, wobei generell die Assoziation einer Verbreiterung der Kanten
mit einer Verstdrkung der Unschiérfe gilt. Gleichzeitig nimmt die Hohe der
Kanten mit zunehmender Unschérfe immer weiter ab bis sie schlieflich
ganz verschwinden. Demnach lédsst sich die Schirfe eines Bildes auch tiber
die Anzahl (und Lingen) der vorhandenen Kanten charakterisieren.

Die von [Dol07] vorgeschlagene “Blur”-Metrik nutzt dies z. B. ganz geschickt
aus, indem sie anstelle des Schérfegrades eines Bildes dessen “Unschérfe-
grad” misst. Genauer wird hierbei die Luminanz des originalen Bildes einer
wiederholten Tiefpassfilterung unterzogen. Anschliefend werden die loka-
len Varianzen des Originals mit denjenigen der verschiedenen Iterationen
verglichen. Die Idee dahinter ist, je schérfer das Ausgangsbild ist, desto stér-
ker wirkt sich ein Tiefpassfilter aus, d. h. desto gréer sind die Unterschiede
zwischen dem urspriinglichen und dem gefilterten Bild. Iteriert man die-
sen Prozess der Tiefpassfilterung, verringert sich diese Varianz mit jeder
zusidtzlichen Iteration weiter.

Die Wirksamkeit dieser Metrik zeigt sich z. B. in der Abbildung 6.4 (siehe
Abschnitt 6.1.2), wofiir aus einer Testsequenz (500 Frames) mithilfe der
Metrik der jeweils beste und der schlechteste Frame selektiert wurde.

Eine solche Bewertung kann insbesondere zur Selektion der besten Frames
ebenso wie der Aussonderung der schlechtesten Frames innerhalb einer
Sequenz verwendet werden. Dies ist insofern relevant, wenn ein Verfahren ir-
gendeine Form der Mittelwertbildung enthilt. Dies illustriert die Abbildung
7.1 am Beispiel derselben Videosequenz wie zuvor. Links ist der Mittelwert
der kompletten Sequenz abgebildet, wihrend fiir das Bild rechts nur die bes-
ten 250 Frames gemittelt wurden. Es sollte allerdings erwdhnt werden, dass
hier zusitzlich eine globale Bildregistrierung durchgefiihrt wurde (in beiden
Fillen), wodurch ein Teil der Bewegungsunschérfe bereits kompensiert wird.
Der Vergleich mit der Abbildung 6.4 verdeutlicht insbesondere auch den
rauschmindernden Effekt, den die Bildmittelung hat. Der erhhte Kontrast
istim Ubrigen eine Konsequenz der resultierenden Verbesserung des PSNR.
Speziell in [Hue08] wurde zudem noch eine weitere Metrik zur Bewertung
der Qualitédt von Korrekturergebnissen untersucht, welche urspriinglich in
[Vor96] vorgeschlagen wurde, wéahrend in [HuelO] Metriken aus [Yan09]
eingesetzt wurden.
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Abbildung 7.1: Links: MW aller 500 Einzelbilder der Testsequenz, rechts: MW
der besten 250 Frames (gemaR Blur-Metrik)

7.2 Qualitative Beurteilung durch Beobachter

Grundsétzlich gibt es zwei mogliche Herangehensweisen, um die Qualitét
von Bilddaten zu beurteilen, speziell die Qualitit der jeweiligen Resultate
unterschiedlicher Verfahren zur Turbulenzkorrektur. Einerseits kann eine
Bewertung durch menschliche Beobachter vorgenommen werden, indem
diese die Bilder visuell begutachten, und andererseits kann sie computer-
gestiitzt erfolgen, indem geeignete Bewertungsmafle implementiert und
ausgewertet werden, wie z. B. die Metriken aus Abschnitt 7.1. Der Einsatz
menschlicher Beobachter bedeutet naturgeméR, dass deren subjektive Ein-
driicke mit in die Bewertung einflieBen. Fiir eine statistische Belastbarkeit
solcher Bewertungsergebnisse wiren daher im Grunde genommen hin-
reichend viele Stichproben erforderlich, d. h. eine Anzahl von Probanden
in der Groflenordnung von ca. 40 Personen. Der damit verbundene hohe
Organisationsaufwand ist im Regelfall jedoch nicht praktikabel.
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7.2.1 TOD-Testmethode

Eine sehr spezielle, aber effektive Methode zur (relativ) objektiven Bewer-
tung durch menschliche Beobachter, auch bei einer kleineren Anzahl von
Testpersonen, ist der sogenannte TOD-Test (“Triangle Orientation Discrimi-
nation”) gemil} der Beschreibung in [Bij98]. Der TOD-Test wurde urspriing-
lich zur Leistungsbewertung von bildgebenden EQ-Systemen entwickelt,
kann aber (mit kleineren Anpassungen) auch generell zur Beurteilung der
Auflosungsqualitédt gegebener Bilddaten verwendet werden.

Mithilfe dieser Methode lésst sich die kleinste Dreiecksgrof3e in einem Bild
bestimmen, bei der die Orientierung noch zuverldssig erkennbar ist. Ge-
nauer geht es um gleichseitige Dreiecke vor einem neutralen Hintergrund,
die jeweils eine von vier méglichen Ausrichtungen annehmen kénnen, d. h.
mit der Spitze nach oben, nach unten, nach links oder nach rechts (s. a.
Abbildung 7.2).

| _NdAD>Y

Abbildung 7.2: Beispiele fiir TOD-Testmuster mit den vier moglichen Orien-
tierungen

Die Aufgabe fiir Beobachter besteht darin, die jeweilige Ausrichtung der
Dreiecke zu erkennen, wobei sowohl die Grof3e als auch der Kontrast der
Dreiecke variieren. Die Wahrscheinlichkeit einer korrekten Beobachterant-
wort steigt entsprechend zusammen mit der Grof3e des Dreiecks.

Da solche Testmuster {iblicherweise nicht in erfassten Bilddaten enthalten
sind, liegt auf der Hand, dass die TOD-Methode nur eingeschrankt (d. h. zu
Testzwecken) zur Bewertung von Turbulenzkorrekturresultaten einsetzbar
ist. Am ehesten ldsst sich diese Methode daher fiir simulierte Daten verwen-
den, wobei auch echte Mustertafeln in vorgegebener Entfernung aufgestellt
und unter Turbulenzbedingungen aufgenommen werden konnen. In [VEQ7]
wurden beide Vorgehensweisen getestet und miteinander verglichen, um
die Zuverldssigkeit der Simulationen als Grundlage zur Bewertung eines
speziellen Korrekturalgorithmus einschédtzen (und bestédtigen) zu kénnen.
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7.2.2 Merkmalsorientierte Bewertung

Speziell im Fall von Turbulenzkorrekturergebnissen ist die Bildverbesserung
zumeist offensichtlich, die gegeniiber den originalen Eingabedaten erzielt
wurde. So lassen sich beispielsweise schirfere, klarer definierte Struktu-
ren am besten an Kanten im Bild erkennen, wihrend eine Reduktion von
Verzerrungen besonders an geraden Linien auffdllt. Entsprechend kann ei-
ne visuelle Evaluierung, wie sie u. a. in Abschnitt 5.3 durchgefiihrt wurde,
durchaus zweckdienlich und ausreichend sein.

Anders sieht es dagegen aus, wenn es darum geht, relativ dhnliche Ergebnis-
se verschiedener Verfahren miteinander zu vergleichen. Eine Moglichkeit
besteht hier darin, die wichtigsten Merkmale fiir eine Charakterisierung der
Bildqualitat zur Bewertung der Ergebnisse heranzuziehen (d. h. Bildschérfe,
Kontrast, Verzerrungen, Stabilisierung etc.) und durch Beobachter gemald
ihrer (subjektiven) Wahrnehmung bewerten zu lassen. (Dazu sollte ggfs.
angemerkt werden, dass hiermit nicht Klassifikationsmerkmale gemeint
sind). Die Ergebnisse lassen sich iiber alle Testpersonen mitteln und in einer
Tabelle erfassen entsprechend der ( erweiterbaren) Beispieltabelle 7.1. Je
nach Auspriagung konnen wahrgenommene Verbesserungen z. B. mittels
(+) oder mit (++) bewertet werden, und Verschlechterungen analog dazu
mittels (—) bzw. (—-). Falls keine wesentliche Anderung erkennbar ist, kann
auch dies gekennzeichnet werden, z. B. mittels (). Hierbei ist zu beachten,
dass die Teilnehmer eine Bewertungsgrundlage benétigen, anhand derer

Algorithmus
Alg. 1 Alg. 2
Merkmal

Bildscharfe + ++ -
Verzerrungen o - 0
Stabilisierung - + -
Bildkontrast ++ + o
Noise ++ - +
Objektbewegung — o +

Tabelle 7.1: Beispieltabelle fiir eine merkmalsorientierte Bewertung
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entschieden werden kann, was “kleine” und was “grof3e” Verdnderungen im
gegebenen Zusammenhang genau bedeuten sollen. Alternativ kann auch
eine numerische Skala verwendet werden, wie z. B. {-2, - 1,0, + 1, + 2}. Die
Anzahl der Abstufungen sollte nicht grofer sein, da diese Art von Beobach-
tertests nicht fiir eine feinere Abstufung geeignet sind.

7.3 Evaluierungskonzept fiir Algorithmen zur
Turbulenzkorrektur

Der merkmalsbasierte Ansatz aus Abschnitt 7.2.2 l14sst sich auch fiir eine
computergestiitzte Bewertung mithilfe diverser Metriken (s.a. Abschnitt
7.1.1) adaptieren und um zusétzliche Auswahl- und Bewertungskriterien
erweitern, die im Nachfolgenden nédher beleuchtet werden.

7.3.1 Auswahl- und Bewertungskriterien

Fiir die Auswahl eines geeigneten Verfahrens gibt es grundsétzlich 6 Bewer-
tungskriterien zu beriicksichtigen, wobei in Abhéngigkeit von der betrach-
teten Anwendung hinter jedem dieser Punkte wiederum eine ganze Reihe
von weiteren Fragestellungen steckt, die es im Vorfeld abzukldren gilt. Die
wesentlichsten sind im Nachfolgenden aufgelistet:

1. Echtzeit-Fihigkeit vs. Qualitdit

Wie schnell miissen die Ergebnisse vorliegen? Muss die Korrektur
in Echtzeit oder Nahe-Echtzeit erfolgen? Oder hat die Qualitdt der
Ergebnisse hohere Prioritdt oder sogar hochste Prioritédt?

2. Anforderungen an Computer-Architektur

Gibt es spezielle Anforderungen an die Computer-Hardware (z. B. CU-
DA-fahige Hochleistungs-GPUl, Multikernprozessor etc. )? Gibt es
spezifische Anforderungen seitens der Software (z. B. Betriebssystem,
Compiler, Bibliotheken etc. )?

1 “CUDA (frither auch Compute Unified Device Architectur genannt) ist eine von Nvidia
entwickelte Programmier-Technik, mit der Programmteile durch den Grafikprozessor (GPU)
abgearbeitet werden konnen.” (Quelle: Wikipedia)
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3. Unabhdngigkeitsgrad

Wie unabhéngig von dulleren Eingaben soll das Verfahren operieren?
Soll es vollautomatisch gesteuert werden? Soll es teil-automatisch
funktionieren? Welche Parameter sollen einem (un-)geschulten Opera-
tor liberlassen werden? Welche Parameter sollen automatisch anhand
der vorliegenden Daten bestimmt werden? Und welche Parameter
lassen sich tiberhaupt sinnvoll abschétzen?

4. Inhalt: Technische Aspekte

Wie sehen typische Szenen aus, die korrigiert werden sollen? Han-
delt es sich um Lang- oder Kurzstreckenaufnahmen? Wie grol$ ist das
Sichtfeld (FOV) im Verhiltnis dazu? Wie strukturiert (kontrastreich)
erscheint die abgebildete Szene in den erfassten Bilddaten? Ist eine
Vorverarbeitung der Daten erforderlich (z. B. Kontrastverbesserung,
Rauschreduktion, Einzelframe-Deblurring, globale Bewegungskom-
pensation)?

5. Bewegungsinhalt

Handelt es sich um eine statische Szene oder gibt es Bewegungen in
der Szene (welche nicht durch Turbulenz verursacht wurden)? Falls
Bewegung enthalten ist, welche der Situationen aus Abschnitt 4.1 sol-
len dann primér beriicksichtigt werden? Welche der Bewegungstypen
in der Auflistung 4.1.1 sollen abgedeckt sein?

6. Objektive und subjektive Ergebnisevaluation

Nach welchen objektiven und subjektiven Kriterien soll die Beurtei-
lung der Ergebnisqualitét erfolgen? Sollen Bildqualitdtsmetriken ein-
gesetzt werden? Falls ja, welche Art von Bildqualitdtsmetriken (siehe
Abschnitt 7.1.1)? Liegt eine “Ground Truth” vor fiir eine objektive Be-
wertung? Welche Merkmale sind dabei wichtig und sollen als “gut”
erkannt werden?

Diese Auflistung erhebt nicht den Anspruch auf Vollstdndigkeit. Die Be-
schrankung auf diese sechs Aspekte erfolgte vielmehr aufgrund der objek-
tiven Tatsache, dass es sich um eine sehr weitgefasste Aufgabenstellung
handelt, die es sowohl in der Breite zu tiberblicken als auch gesondert zu
vertiefen galt. Die vorliegende Selektion erfolgte daher in dem Bestreben, ei-
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ne sehr inhomogene Menge an Methoden in so wenige und klare Kategorien
einzuteilen wie moglich.

Im Idealfall wiren die genannten Auswahlkriterien vollig unabhéngig von-
einander. Tatsdchlich bestehen allerdings einige (zumeist indirekte) Zusam-
menhinge der Punkte untereinander. Wenn z. B. ein Verfahren moglichst
unabhingig operieren soll, kann die Ergebnisqualitédt u. U. signifikante Ein-
buBlen erleiden. Oder ein bestimmter Algorithmus kann ohne spezielle Hard-
ware seine Echtzeitfdahigkeit verlieren, um nur zwei Beispiele zu nennen.

Anmerkungen

Zu Punkt 1 sollte angemerkt werden, dass die Geschwindigkeit und die
Ergebnisqualitédt insofern miteinander gekoppelt sind, als dass die zu er-
wartende Ergebnisqualitdt umso geringer ist, je schneller die Ergebnisse
vorliegen sollen. Denkbar ist, eine Skala zur Bewertung der Wichtigkeit ein-
zufiihren (z. B. eine Skala von 1 bis 5 oder tiber das Intervall [0,1]).

Der Punkt 2 kann u. U. fiir die potenzielle Portabilitdt eines Verfahrens von
Bedeutung sein, zum einen wortwortlich im Hinblick auf Auleneinsétze vor
Ortund zum anderen hinsichtlich der Ubertragbarkeit auf andere Computer-
Systeme. Uberdies spielt die verfiigbare Hardware-/Software-Architektur
eine grof3e Rolle fiir die Geschwindigkeit mit der ein bestimmter Algorith-
mus eine gegebene Datenmenge prozessieren kann. Aber auch finanzielle
Aspekte konnen von Belang sein und ggfs. die Anschaffung teurer Hardware
verhindern.

Der Punkt 3 deckt sehr viele Teilaspekte ab, die z.T. groBen Einfluss auf
andere Kriterien haben. Welcher Grad an Unabhéngigkeit von dulleren Ein-
gaben tiberhaupt méglich ist, hdngt insbesondere von der Anwendung ab.
So unterscheidet sich z. B. der Fall einer Kamera, die tiber einem bestimm-
ten Gebiet hin und her schwenkt, sehr stark von dem eines Teleskops, das
Sterne beobachtet. Je nachdem wie die Prioritdten in den anderen Kategori-
en gesetzt sind, variieren die Parameter, die sich automatisch bestimmen
lassen.

Der Punkt 4 ist fiir diverse Korrekturverfahren von Bedeutung. Je mehr tiber
den voraussichtlichen Inhalt der Daten bekannt ist, desto besser kénnen
Algorithmen dafiir angepasst werden. Das bedeutet auch, dass sich abschit-
zen lasst, welche Art von Korrekturmalinahmen tatsidchlich sinnvoll ist. Bei-
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spielsweise ist im Fall einer Langstreckenaufnahme durch starke Turbulenz
damit zu rechnen, dass Strukturen und Kontrast stark reduziert werden. Das
bedeutet wiederum, dass die Anwendung von lokaler Bewegungskompen-
sation u. U. keine positive Wirkung haben wird und nicht bzw. nur unter
Vorbehalt durchgefiihrt werden sollte.

Der Punkt 5 hdngt stark von der jeweiligen Anwendung ab wie bereits aus-
fihrlich in Abschnitt 4.1 diskutiert.

Der letzte Punkt 6 unterscheidet sich von den iibrigen Kriterien insofern,
dass die Bewertung zunéchst hauptsachlich von den verfiigbaren Eingabe-
daten (d. h. den korrigierten Bilddaten, ggfs. mit zugehoériger Ground Truth)
abzuhingen scheint und weniger von dem spezifischen Algorithmus, mit
dem die Ergebnisse erzeugt wurden. Wie bereits in Abschnitt 7.1 erortert,
spielen die “Eigenarten” diverser Algorithmen durchaus eine Rolle, und soll-
ten daher mit berticksichtigt werden. Entsprechend sollte diesem Kriterium
nicht zu grolle Bedeutung bei der Auswahl eines Verfahrens beigemessen
werden. Stattdessen empfiehlt es sich, die Qualitdtsevalution an das ausge-
wihlte Verfahren anzupassen.

7.3.2 Hauptaspekte und Einflussfaktoren

Die Auswahl- und Bewertungskriterien aus dem vorangegangenen Abschnitt
7.3.1 lassen sich fiir das Evaluierungskonzept im Wesentlichen auf die nach-
folgenden vier Hauptaspekte kondensieren:

1. Applikation

Die zugrundeliegende Anwendung bestimmt was die Hauptzielset-
zung ist, welche Anforderungen an einen Algorithmus gestellt werden,
und wo die Prioritdten liegen.

2. Bedingungen bei der Erfassung

Die verwendete Sensorik und die Umweltbedingungen wihrend der
Datenerfassung limitieren die Bildqualitdt und somit die maximale
Leistungsfihigkeit eines Algorithmus.

3. Einschdtzung der Situation

Die Versuchsanordnung beschreibt eine gegebene Situation, d. h. das
vorliegende Szenario und den voraussichtlichen Szenen- und Bewe-
gungsinhalt, die ein Algorithmus beriicksichtigen muss.



234

7 Methodik zur Evaluierung

4. Algorithmus

Die Eigenschaften und Fahigkeiten eines Algorithmus limitieren fiir
welche Applikationen er geeignet ist, und beeinflussen welche Metho-
de zur Evaluation eingesetzt werden kann bzw. sollte.

Die Abbildung 7.3 zeigt einen Uberblick iiber diese vier Hauptaspekte, die in
dem hier vorgeschlagenen Bewertungsmodell zu beriicksichtigen sind. Die
jeweiligen Unterpunkte, auf die hier Bezug genommen wird, wurden bereits
im vorangegangenen Abschnitt 7.3.1 diskutiert bzw. werden nachfolgend

niher beleuchtet.

Applikation

Anforderungen

¢ Hard- / Software

* Mobilitat des
Equipments

® Medium (Luft,
Wasser)

Prioritaten

¢ Geschwindigkeit /
Ergebnisqualitat

® Automationsgrad

Zielsetzung /
Fokus
* Ausgedehnte

Ziele / punkt-
férmige Quellen

® Statische Szene /
bewegte Objekte

Bedingungen bei
der Erfassung

Bildgebendes
System
 Spezifikationen

* Wellenldngen-
bereich

® Experimenteller
Aufbau

2 Winkel & Lange
des Ausbrei-
tungswegs

Umwelt-
bedingungen

* Meteorologie

* Turbulenzstarke

e Lichtverhaltnisse /
Beleuchtung

Einschatzung der
Situation

Szeneninhalt
® Szenario
> Statische /
bewegte Kamera
> Statische /
bewegte Objekte
¢ Abgebildete
Objekte

® Strukturen vorwie-
gend naturlich /
kunstlich

Bewegungs-
inhalt
* Kamerabewegung

* Objektbewegung

* Turbulenz-
bewegung

Algorithmus

Fahigkeiten

* Einzelbildverarbei-
tung / Bildsequen-
zen / Livestream

* Bewegungs-
kompensation

¢ Deblurring

e Kontrastanhebung

Evaluation

¢ Eingabedaten

= Simuliert / Mess-
daten

> Datenmenge &
Datenqualitat

® Qualitatsmetriken

> Mit Referenz
> Ohne Referenz

Abbildung 7.3: Ubersicht tiber die vier Hauptaspekte, die im vorgeschlage-
nen Bewertungsmodell zu berticksichtigen sind.

Angesichts der sehr weit gefassten Aufgabenstellung muss bei dem hier ver-
folgten Ansatz das Anwendungsspektrum etwas eingegrenzt werden. Dar-
iiber hinaus miissen die Anforderungen und erwiinschten Ergebnisse einer
bestimmten Anwendung bertiicksichtigt werden. Insbesondere, da diese den
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zu erwartenden Szeneninhalt einschrianken kénnen und unterschiedliche
Szenarien unterschiedliche Korrekturmafnahmen erfordern.

Zundchst gilt es, die einflussreichsten Faktoren zu betrachten. Wie eingangs
bereits erwdhnt, sind bei vorhandener Turbulenz in der Regel die Umge-
bungsbedingungen zum Zeitpunkt der Bildaufnahme ausschlaggebend fiir
die Bildqualitdt. Dementsprechend steht eine Charakterisierung der Turbu-
lenzbedingungen an vorderster Stelle, wobei der Strukturparameter C2 (bzw.
ro) hierfiir besonders zweckdienlich ist (s. a. Abschnitt 3).

Daneben sollten auch die Eigenschaften der verwendeten Sensorausriis-
tung, sowie der jeweilige Messaufbau (d. h. das zugrundeliegende Szenario
gemdl Abschnitt 4.1) bei der Wahl eines Algorithmus fiir eine konkrete An-
wendung mitberiicksichtigt werden. Die Spezifikationen des verwendeten
EO-Systems und die interne Struktur der Sensorik bestimmen zum einen Pa-
rameter wie die Bildauflosung, das FOV und insbesondere das IFOV, sowie
auch die Framerate und die Datenmenge, und zum anderen die Empfind-
lichkeit des Detektors in den verschiedenen Spektralbereichen (z. B. VIS, IR
oder aktive Beleuchtung), d. h. die (Haupt-)Wellenldnge A, und auch die
Rauschanfilligkeit (s. a. Abschnitt 3.4.10).

Wesentliche Parameter der verwendeten Optik umfassen zudem die Brenn-
weite f (bzw. die Blendenzahl), sowie den Durchmesser D der Apertur, u. a.
weil sich der Schweregrad der Turbulenzbeeintrachtigungen gut iiber das
Verhiltnis D/ (s. a. Abschnitt 3.3.3) quantifizieren l&sst. Es sollte erwdhnt
werden, dass die Abbildungsqualitdt des Objektives u. U. ebenfalls eine Rolle
spielen kann. Da die Verwendung minderwertiger Optiken in den hier be-
trachteten Féllen jedoch wenig zielfithrend wére, wird auf eine gesonderte
Beriicksichtigung verzichtet. Uberdies konnen etwaige Abbildungsfehler
auch separat von der Turbulenzthematik behandelt werden.

Des Weiteren bestimmt der Messaufbau zur Datenerfassung indirekt mit,
welche Anforderungen an einen gegebenen Algorithmus gestellt werden.
Genauer, welches Szenario dieser Algorithmus verarbeiten kénnen muss,
um bei den so erfassten Daten ausreichend gute Erfolgsaussichten zu haben.
Dabei spielt die Pfadldnge L zwischen Kamera und beobachtetem Objekt
eine entscheidende Rolle aufgrund der kumulativen Auswirkung von Turbu-
lenzeffekten entlang des Ausbreitungsweges.

Die Abbildung 7.4 zeigt ein schematisches Szenario, wie es typischerweise
in militdrischen Fernerkundungsanwendungen (z. B. bei Aufklarungsein-
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Pfadlange L

Abbildung 7.4: Typisches Anwendungsszenario in der Fernerkundung

sdtzen) vorkommen kann. Zwischen dem beobachtenden Sensor und dem
beobachteten Objekt erstreckt sich ein ausgedehnter Ausbreitungsweg, der
eine turbulente Atmosphére durchquert, angedeutet durch rote und blaue
Wolkchen, die ein Gemisch aus wiarmeren und kilteren Luftregionen mit
jeweils unterschiedlichem Brechungsindex darstellen. Aufgrund der kumu-
lativen Auswirkungen von Turbulenzeffekten auf langen Ausbreitungswegen,
verdeutlicht dies indirekt den Zusammenhang zwischen der Pfadlédnge L und
C2 mit dem AusmaR an Beeintrichtigung der Bildqualitit (s. a. Abschnitt 3).

7.3.3 Anwendungs- und Algorithmusprofile

Nach Diskussion der diversen Faktoren, die das Leistungsvermdégen von Ver-
fahren zur Turbulenzkorrektur beeinflussen, sind aus praktischen Erwédgun-
gen einige Vereinfachungen erforderlich. Dazu bietet sich eine Reduktion
auf die folgenden Hauptanwendungsgebiete an, wobei eine nachtragliche
Ausweitung auf weitere Anwendungen jederzeit moglich ist:

o Fernerkundung (zivil und militdrisch) = statische Kamera, horizon-
taler Blickwinkel (ggfs. leichte Schrédgsicht nach oben), langer Ausbrei-
tungsweg (ca. 1-30 km)

* (Grenz-)Uberwachung (Surveillance) = statische oder schwenken-
de Kamera, horizontaler Blickwinkel (ggfs. leichte Schrégsicht nach
unten), relativ kurzer Ausbreitungsweg (ca. 0-1 km)

o Astronomie (stellar und solar) = statische Kamera (mit Nachfiihrein-
richtung), vertikaler Blickwinkel oder steile Schragsicht, maximaler
Ausbreitungsweg
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Uberdies ist eine realistische Priorisierung der Leistungsanforderungen fiir
eine gegebene Anwendung notwendig, d. h. absolute “must have” Leistungs-
merkmale miissen gegen solche abgewogen werden, die lediglich “nice to
have” wéren. Eine Priorisierung bzgl. “Qualitédt vs. Geschwindigkeit” kann
beispielsweise Werte im Intervall [0,1] annehmen oder in eine gegebene
Anzahl an Kategorien eingeteilt werden, z.B. in 0 (“ohne / unwichtig”), 1
(“gering / nicht sehr wichtig”), 2 (“mittel / wichtig”), 3 (“hoch / sehr wichtig”).
Diese Kategorisierung hat den Vorteil, dass sie sich auf eine Vielzahl von
Faktoren anwenden ldsst.

Die (erweiterbare) Tabelle 7.2 gibt fiir die ausgewdhlten Anwendungsbe-
reiche einen Uberblick {iber typischerweise zu erwartenden Bedingungen,
wobei diese vier Kategorien verwendet werden, u.a. um die Stdarke von
Bewegungen und den Unschérfegrad einzuordnen. In einigen Fillen (z. B.
Distanzen) sind auch konkrete GréBenordnungen angegeben, wie sie hdufig
vorkommen. Die grof3e Variationsspanne fiir Hochgeschwindigkeitskameras
und Bildaufl6sungen lésst sich hingegen fiir manche Anwendungsbereiche
nicht ohne Weiteres eingrenzen, weshalb hierfiir auf die bereits in Tabelle 7.1
verwendete Wertung (— —/ —/ o/ + / + +) zuriickgegriffen wurde.

In der (ebenfalls erweiterbaren) Tabelle 7.3 werden entsprechend die Anfor-
derungen dieser Anwendungen an potenzielle Korrekturalgorithmen in vier
Prioritédtskategorien, 1 bis 4, eingeteilt.

Es sollte angemerkt werden, dass diese Einteilung teils zwar etwas willkiir-
lich scheint, dennoch weitestgehend auf Erfahrungswerten beruht. Zudem
geht es hier weniger um eine prazise Quantifizierung, als vielmehr um die
prinzipielle Erstellung von Anwendungs- und Algorithmusprofilen.

In der (erweiterbaren) Tabelle 7.4 werden die Korrekturféhigkeiten einer An-
zahl beispielhaft ausgewédhlter Korrekturmethoden vergleichend bewertet.
Die Leistungseinschitzung der einzelnen Algorithmen erfolgt dabei wie-
der unter Verwendung der (— -/ —/o/+/+ +) Wertung. Die aufgelisteten
Bewertungsmerkmale bzw. (Wunsch-)Fahigkeiten entsprechen im Grunde
genommen denen in der Abbildung 1.11.

Fiir den Vergleich wurden sowohl drei eigene Algorithmen herangezogen als
auch drei fremde. Eine genauere Beschreibung der eigenen Verfahren findet
sich in Kapitel 6, fiir Details zu CARES, AO und SI sei auf die Abschnitte
2.2.3, 2.1 und 2.2.1 verwiesen. Da es sich speziell bei AO und SI um ganz
generelle Ansitze handelt, féllt streng genommen jedoch nur der softwareba-
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A:;::dm;::g erlfl‘: Slll;ng Surveillance | Astronomie
Kamerabewegung 0 0-1 0*
Objektbewegung 0-2 0-2 0-2
Turbulenzbewegung 1-3 0-2 1-2
Unschirfe 1-3 0-1 1-2
Verzerrungen 0-3 0-1 0-2
Blickwinkel 0°-30° 0° 50°-90°
Ausbreitungsweg 1-30 km 0-2 km 50 km - oo
Teleskop @ 10-30 cm 3-12 cm 0,5-10 m
Daten Frames Videostream Frames
Hochgeschwindigkeit ++ o ++
Framerate 100-2000 Hz 30Hz =>1000 Hz
Bildauflgsung ++ o+ ++

Tabelle 7.2: Beispieltabelle fiir eine merkmalsorientierte Profilierung typi-
scher Anwendungsgebiete fiir Turbulenzkorrekturverfahren. (*: mit Nach-
fiihreinrichtung)

sierte CARES-Algorithmus in dieselbe Verfahrenskategorie wie die eigenen
Algorithmen.

Wie aus der Tabelle 7.4 ersichtlich, kann grundsétzlich von allen selektierten
Methoden eine gute (+) bis sehr gute (++) Qualitdtsverbesserung erwartet
werden. Die Geschwindigkeit der softwarebasierten Methoden ist generell
eher gering, und nur die hardwarebasierte AO vermag sehr gute Qualitét
bereits in Echtzeit zu liefern. Von grolem Nachteil ist bei AO indessen die
Beschrankung auf punktférmige Objekte. Mit geeigneter Hardwareimple-
mentierung kann u. U. auch SI Ergebnisse in (nahezu) Echtzeit produzieren,
wie bereits in Abschnitt 2.2.1 erwdhnt, und das beschriankte FOV ldsst sich
mittels Kachelung erweitern.

Diejenigen Verfahren, die eine Form der Mittelwertwertbildung einsetzen,
haben eine relativ gute bildstabilisierende Wirkung und vermogen auch Ver-
zerrungen und Rauschen hinreichend abzumildern. Die Vor- und Nachteile
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Anwendung

Priorisierung

Fern-
erkundung

Surveillance

Astronomie

Qualitit
Geschwindigkeit
Stabilisierung
Verzerrungen
Bildschirfe
Bildkontrast

Noise

[ R I T )
W= = B = Wb
S N W WO W

Autonomie

Tabelle 7.3: Beispieltabelle fiir eine prioritdtsorientierte Profilierung typi-
scher Anwendungen.

des CARES-Algorithmus (gute Stabilisierung, weniger gut gegen Unschirfe,
Verzerrungen etc.) wurden bereits in Abschnitt 2.2.3 erdrtert und spiegeln
sich entsprechend in den Bewertungen wider.

Algorithmen mit Entfaltungsverfahren (z. B. WIBD) kénnen indes die Bild-
schirfe signifikant verbessern, wenngleich nicht auf dem gleichen Niveau
wie AO oder SI, dafiir ohne Einschréankung des Sichtfeldes.

Speziell bei “TurKom” handelt es sich um eine Modulsammlung der in die-
ser Arbei vorgestellten und diskutierten Techniken, gemaR der Grafik in
Abbildung 1.13. Je nach Parameterwahl schlieBt dies eine automatische
Turbulenzschédtzung anhand der gegebenen Bilddaten mit ein. Mit geeigne-
ten Voreinstellungen kann dieses Programm bis zu einem gewissen Grad
unabhingig von weiteren Benutzereingaben funktionieren. Einige etwas
widerspriichliche Bewertungen (z. B. Geschwindigkeit oder Verzerrungen)
liegen darin begriindet, dass sich die Laufzeit beschleunigen ldsst (i. A. auf
Kosten der Ergebnisqualitit), indem z. B. verschiedene Schritte ausgelassen
werden oder auf andere, schnellere Methoden umgeschaltet werden. Das
heiBt, die Ergebnisqualitdt hdngt (ebenso wie die Geschwindigkeit) stark von
den gewédhlten Korrekturmodulen, sowie von den Parametereinstellungen
ab. Aufgrund des ganzheitlichen Ansatzes verfiigt TurKom (als einziges) tiber
diverse sehr spezielle Funktionalitdten, wie z. B. eine gesonderte Korrektur
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Algorithmus | yca | wcamss | o o Speckle | Adaptive
Priorisierung | TWIBD | +WIBD Imaging=* | Optik=*

Qualitat + ++ + + ++ ++
Geschwindigkeit —/o —/o -+ + ol+ +
Stabilisierung ++ + + + o/+ ++
Verzerrungen + + o/t of+ o+ +

Bildschiirfe + ++ o ++ ++

Bildkontrast + + o + o/+

Noise + + o ol+ o+

Autonomie <] <] o/+ o o o/+
e I R I R
FOV ++ ++ ++ ++ o+ o

Tabelle 7.4: Beispieltabelle fiir eine merkmalsorientierte Evaluierung ver-
schiedener Turbulenzkorrekturalgorithmen. Linke Seite: eigene Verfahren,
rechte Seite: * CARES-Algorithmus [Pot14], sowie **SLu. AO als generelle
Ansétze.

des Farbkontrasts (s. a. Abschnitt 6.8) oder die automatische Detektion von
Szenenwechseln, wodurch eine Neuinitialisierung der Turbulenzkorrektur
erfolgt.

Anmerkung

Es sollte erwdhnt werden, dass hier nur eine limitierte Anzahl fremder Al-
gorithmen zur Evaluation herangezogen werden konnte. Zum einen ist
entsprechende Software nur im Ausnahmefall verfiigbar und zum ande-
ren sind eigene Nachimplementierungen anhand von (oft unvollstindigen
oder ungenauen) Autorenbeschreibungen in der Regel zu zeitaufwindig,
um praktikabel zu sein. Ein direkter Datenaustausch mit den Autoren wire
zwar eine sinnvolle Alternative, die sich nicht zuletzt aufgrund von Sicher-
heitsauflagen auf beiden Seiten jedoch nur selten realisieren l&sst.
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7.4 Zusammenfassung

In diesem Kapitel wurden die verschiedenen Méglichkeiten zur qualitativen
Bewertung von Bildqualitit ausfiihrlich diskutiert im Hinblick auf die Er-
gebnisqualitdt von Turbulenzkorrekturverfahren. Dazu gehdren zum einen
die numerische Bewertung anhand geeigneter Qualitdtsmetriken und zum
anderen die merkmalsbasierte Beurteilung durch geschulte Beobachter.

Des Weiteren wurde ein Konzept zur Erstellung von Algorithmus- und An-
wendungsprofilen vorgestellt. Diese Art der Profilierung ermdoglicht den
Abgleich zwischen dem (Anwendungs-)Bedarf auf der einen Seite und den
Féhigkeiten zur Verfligung stehender Algorithmen auf der anderen Seite.
Im Idealfall hdtte man eine hinreichend gro8e Datenbank, gefiillt mit den
entsprechenden Profilen von Turbulenzkorrektur-Algorithmen, welche iiber-
dies passend zu typischen Anwendungsszenarien geordnet werden kénnten.






Abschlussbemerkungen

8.1 Zusammenfassung

In der vorliegenden Arbeit wurde das Thema Turbulenzkorrektur umfassend
von allen Seiten beleuchtet. Zunédchst wurden die physikalischen Mecha-
nismen betrachtet, die zur Entstehung von atmosphérischer Turbulenz
beitragen und die optischen Effekte beschrieben, die in Bildaufnahmen
zu Qualitdtsbeeintrachtigungen fithren (u. a. Unschirfe, Verzerrungen,...).
Anschliefend wurden fiir die einzelnen Turbulenzeffekte spezielle Korrek-
turmethoden vorgestellt, darunter diverse etablierte Methoden, sowie Wei-
terentwicklungen und eigene Verfahren.

Ein besonderer Schwerpunkt lag dabei auf Verfahren zur Bewegungskom-
pensation, einerseits zur Bildstabilisierung, und andererseits zur Detektion
und gesonderten Korrektur von bewegten Objekten. Ein weiterer Schwer-
punkt lag auf Entfaltungsverfahren zur Verbesserung der Bildschérfe und
des Kontrastes.

Des Weiteren wurden die praktischen Aspekte intensiv beleuchtet, die bei
einer Implementierung von Turbulenzkorrekturverfahren zu berticksich-
tigen sind, angefangen bei einer geeigneten Datenvorverarbeitung (inkl.
spezieller Beriicksichtigung von Farbbilddaten), tiber eine automatisierte
Turbulenzschédtzung aus gegebenen Bilddaten mit Generierung einer kor-
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respondierenden statistischen PSE fiir ein Einzelbilddeblurring, sowie eine
Turbulenzsimulation mit synthetischer GT, bis hin zu eigenen Korrekturver-
fahren (z. B. MCA, LIS-Prinzip) mit reprasentativen Korrekturbeispielen fiir
Szenarien mit unterschiedlicher Turbulenzstérke.

Uberdies wurden geeignete Werkzeuge fiir eine methodische Evaluierung
der Qualitdt von Korrekturergebnissen ermittelt, insbesondere spezielle
Bildqualitdtsmetriken (z. B. “Full Reference” / “No-Reference”-Metriken),
anhand derer man eine numerische Bewertung bestimmter Bildmerkmale
(z. B. Bildschirfe, Kantenanzahl, hohe Frequenzanteile etc.) erhilt, sowie
auch geeignete Kriterien zur Beurteilung derartiger Bildmerkmale durch
menschliche Beobachter (z. B. TOD-Methode).

Im Zuge dessen wurde insbesondere ein Konzept zur Erstellung von Anwen-
dungs- und Algorithmusprofilen entwickelt, um die Anforderungen spezi-
eller Anwendungen leichter mit den Fahigkeiten zur Verfiigung stehender
Algorithmen vergleichen zu konnen, und so den fiir diese Anwendung am
besten geeigneten Algorithmus zu identifizieren.

8.2 Ausblick

Fiir zukiinftige Arbeiten ist es denkbar “Deep Learning” Methoden mit Kiinst-
lichen Neuronalen Netzen (KNN), insbesondere “Convolutional Neural Net-
works” (CNN), einzusetzen. Hierzu miissten hinreichend groffe Datenmen-
gen fiir die verschiedensten Turbulenzbedingungen vorliegen und sowohl
annotiert als auch ausgewertet werden. Gegeniiber Standard-Anwendungen,
wie z. B. Objekterkennung, miisste die Datenmenge hierfiir h6chstwahr-
scheinlich um ein Vielfaches grofer sein. Dasselbe Objekt kann in dersel-
ben Entfernung unter demselben Winkel bei identischer Beleuchtung je
nach vorherrschenden Turbulenzbedingungen vollig unterschiedlich ausse-
hen, insbesondere aufgrund mehr oder weniger stark deformierter Kontu-
ren. Dementsprechend wiren fiir jedes solche Objekt wiederum zahlreiche
Daten-Samples (“Templates”) erforderlich.

Verfahren zur Turbulenzkorrektur liefern generell die besten Ergebnisse,
wenn die Eingangsdaten bereits qualitativ so gut wie moglich sind. Ein we-
sentlicher Vorteil liegt z. B. in der Verwendung von Hochgeschwindigkeitska-
meras, welche kurze Belichtungszeiten und hohe Frameraten erméglichen.
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Hierdurch entstehen allerdings entsprechend grof3e Datenmengen, deren
Verarbeitung in Echtzeit (bzw. nahe daran) je nach Komplexitat der ausge-
wihlten Algorithmen weitere Herausforderungen aufwirft. Es ist denkbar,
dass Methoden aus dem Forschungsgebiet zur Verarbeitung von “Big Data”
auch fiir Anwendungen im Bereich der Turbulenzkorrektur nutzbar gemacht
werden konnen.
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TurKom “TurbulenzKompensation”: softwarebasierte modulare
Turbulenzkorrektur

TS TurbulenzSimulation

UWH “Unsupervised Wiener-Hunt”: spezielle Wiener-Hunt
Entfaltungsmethode

VIS Visuelles Spektrum

WIBD “Weighted Iterative Blind Deconvolution”: IBD mit stiarkerer
Gewichtung der Kanten

Einrichtungen

CIE “Commission internationale de I'éclairage”: Internationale
Beleuchtungskommission

DRDC “Defence Research and Development Canada”: staatliche
Forschungsbehorde des kanadischen
Verteidigungsministeriums

EMVA “European Machine Vision Association”

FGAN ForschungsGesellschaft fiir Angewandte Naturwissenschaften

FhG Fraunhofer Gesellschaft

FOM Forschungsinstitut fiir Optronik und Mustererkennung

I0SB Institut fiir Optronik, Systemtechnik und Bildauswertung
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KIS Leibniz-Institut fiir Sonnenphysik

LLNL “Lawrence Livermore National Laboratory”:
US-amerikanische Forschungseinrichtung

NATO “North Atlantic Treaty Organization”: Organisation des
Nordatlantikvertrags

RTG “Research Task Group”: NATO Forschungsgruppe

RTO “Research and Technology Organization”: NATO Organisation

SET “Sensors Electronics Technology”: NATO Panel

TNO “Nederlandse Organisatie voor
toegepast-natuurwetenschappelijk onderzoek”:
Niederldandische Organisation fiir Angewandte
Naturwissenschaftliche Forschung

UNSW “University of New South Wales”: Universitdt in Canberra,
Australien

WTD Wehrtechnische Dienststelle
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