
J
H
E
P
0
2
(
2
0
2
3
)
0
7
3

Published for SISSA by Springer

Received: November 15, 2022
Accepted: January 13, 2023
Published: February 7, 2023

Beam functions for N -jettiness at N3LO in
perturbative QCD

Daniel Baranowski,a,b Arnd Behring,a,c Kirill Melnikov,a Lorenzo Tancredid
and Christopher Weverd,e
aInstitute for Theoretical Particle Physics, KIT,
76128 Karlsruhe, Germany
bPhysik Institut, Universität Zürich,
Winterthurerstrasse 190, 8057 Zürich, Switzerland
cTheoretical Physics Department, CERN,
1211 Geneva 23, Switzerland
dPhysics Department, Technical University of Munich,
James-Franck-Straße 1, 85748 Garching, Germany
eCorporate Sector Research and Advanced Engineering, Robert Bosch GmbH,
Robert-Bosch-Campus 1, 71272 Renningen, Germany
E-mail: daniel.baranowski@physik.uzh.ch, arnd.behring@cern.ch,
kirill.melnikov@kit.edu, lorenzo.tancredi@tum.de,
christopher.wever@tum.de

Abstract: We present a calculation of all matching coefficients for N -jettiness beam
functions at next-to-next-to-next-to-leading order (N3LO) in perturbative quantum chro-
modynamics (QCD). Our computation is performed starting from the respective collinear
splitting kernels, which we integrate using the axial gauge. We use reverse unitarity to map
the relevant phase-space integrals to loop integrals, which allows us to employ multi-loop
techniques including integration-by-parts identities and differential equations. We find a
canonical basis and use an algorithm to establish non-trivial partial fraction relations among
the resulting master integrals, which allows us to reduce their number substantially. By
use of regularity conditions, we express all necessary boundary constants in terms of an
independent set, which we compute by direct integration of the corresponding integrals in
the soft limit. In this way, we provide an entirely independent calculation of the matching
coefficients which were previously computed in ref. [1].

Keywords: Higher-Order Perturbative Calculations, Effective Field Theories of QCD,
Factorization, Renormalization Group

ArXiv ePrint: 2211.05722

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2023)073

mailto:daniel.baranowski@physik.uzh.ch
mailto:arnd.behring@cern.ch
mailto:kirill.melnikov@kit.edu
mailto:lorenzo.tancredi@tum.de
mailto:christopher.wever@tum.de
https://arxiv.org/abs/2211.05722
https://doi.org/10.1007/JHEP02(2023)073


J
H
E
P
0
2
(
2
0
2
3
)
0
7
3

Contents

1 Introduction 1

2 Calculation 4
2.1 Differential equations for master integrals 11
2.2 Boundary constants 15
2.3 Assembly of the bare beam functions 22

3 Matching coefficients 25

4 Results 29

5 Conclusions 33

A Example of deriving partial fraction relations 35

B Leading-singularity analysis: an example 39

C Building blocks for the beam-function renormalisation 43

1 Introduction

The high energy and luminosity of the Large Hadron Collider, as well as the excellent per-
formance of the ATLAS and CMS detectors allow one to conduct high-precision studies of
a large number of processes with the goal to stress-test the Standard Model and to search
for possible deviations from its predictions. Perturbative QCD enables an accurate de-
scription of hadron collisions through a systematically improvable computation of partonic
cross sections and kinematic distributions, and plays a central role in this endeavour.

However, making theoretical predictions for partonic QCD processes is complicated.
One reason for that are the infra-red and collinear divergences which have to be carefully
extracted and cancelled between elastic and inelastic contributions to the final result in
any fixed-order perturbative computation. While such divergences naturally appear as
poles in the dimensional regularisation parameter ε when elastic contributions to a given
process are computed, the situation is more complex for inelastic ones, where additional
partons appear in the final state. In such cases, the singularities arise when these partons
become either soft or collinear to other partons, but they only turn into poles in ε once
an integration over the energies and angles of these additional partons is performed. Since
such integrations are not suitable for computations that aim at describing arbitrary infra-
red safe distributions of final state particles, special methods have to be designed to allow
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the extraction of soft and collinear singularities without the integration over the kinematic
variables of the resolved partons.

Two distinct methods to do this have been proposed and developed since the early days
of perturbative computations; one is called subtraction and the other one is called slicing.
The idea of the subtraction method is to subtract and add back an approximate expression
of the product of the relevant matrix elements squared and the multi-particle phase space.
The difference between the exact and approximate expressions should be integrable in
four dimensions. The integral of the subtraction term over the unresolved phase space
of final state particles should be performed in d = 4 − 2ε dimensions either numerically
or analytically. Several subtraction methods for generic hadron collider processes have
been worked out at next-to-leading order (NLO) [2, 3] and at next-to-next-to-leading order
(NNLO) in perturbative QCD [4–9] but their extension to next-next-to-next-to-leading
order (N3LO) in QCD is not available.

The slicing method seeks to split the phase space of final state particles into the (most)
singular and non-singular (or less singular) parts. The most singular contributions typically
arise when all particles in the final state, beyond those present in the Born process, become
soft or collinear. The less singular parts correspond to processes which contain resolved
partons in addition to the Born ones; such processes can be dealt with by computing lower-
order perturbative corrections to higher-multiplicity processes. Hence, if one is interested
in computing N3LO QCD corrections to the partonic process pp → X using the slicing
method, one needs to know NNLO QCD corrections to the process pp → X + jet and
N3LO QCD contribution to pp → X which comes from the fully-unresolved region of
phase space.

The exact definition of resolved and unresolved phase-space regions requires the intro-
duction of a slicing variable. The choice of the slicing variable can be arbitrary but recently
two such variables have been used for several NNLO and N3LO QCD computations. For
processes where colour-singlet (e.g., H, Z, W , ZZ, WW etc.) or heavy colour-charged
(e.g., tt̄ etc.) particles are produced in hadron collisions at the Born level, one can use
their total transverse momentum q⊥ [10] to distinguish elastic and inelastic contributions.
Another option is to use the N -jettiness variable [11, 12], first introduced in the context of
Soft Collinear Effective Theory (SCET) [13–17], to distinguish processes with a different
number of jets. The advantage of using N -jettiness for slicing stems from the fact that
it can be employed for processes with jets at leading order, whereas dealing with such
processes remains a challenge for q⊥-slicing.

The construction of a slicing scheme that uses the N -jettiness variable benefits from the
existence of a factorisation theorem that describes the behaviour of relevant cross sections
at small values of the N -jettiness variable. To present this theorem, we consider the case
of colour-singlet production in proton-proton collision. Since the Born process in this case
contains no final-state jets, the generic N -jettiness variable becomes zero-jettiness. It is
defined as

T0 =
N∑
j=1

min
i∈{1,2}

[2pi · kj
Qi

]
. (1.1)
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In eq. (1.1) the sum runs over all final state QCD partons. For each final state parton j,
the smallest scalar product of its momentum kj and the momenta of the incoming partons
p1,2 contributes to the value of T0. The Qi are the so-called hardness variables; they can
be chosen in different ways and are of no relevance for the computations described in this
paper.

Schematically, the cross section of the process pp→ V +X, where V is a colour-singlet
system, at small values of zero-jettiness can be written as [11, 12, 18]

lim
T0→0

dσN3LO
pp→V+X ≈ B ⊗B ⊗ S0 ⊗H ⊗ dσLO

pp→V . (1.2)

In eq. (1.2), the summation over different partonic species is implied and ⊗ stands for
the convolutions. Furthermore, H is a process-specific hard function which, essentially,
accounts for loop corrections to the Born process, S0 is the zero-jettiness soft function and
B is the beam function that accounts for the effects of the collinear QCD radiation off the
incoming partons.

We note that in contrast to the soft and hard functions, the beam function in eq. (1.2)
is universal in that it does not depend on the process and on the number of jets in the final
state. Eq. (1.2) suggests that, in order to calculate the cross section for small values of
T0 through, say, N3LO in perturbative QCD, one has to compute the beam function, the
soft function and the hard function to third perturbative order and then combine them to
obtain the unresolved contribution to pp→ V +X cross section.

We note that, in principle, beam functions are non-perturbative objects. However, at
leading power in ΛQCD/T , their non-perturbative parts are related to parton distribution
functions (PDFs) fj through the following formula

Bi =
∑

partons j
Iij ⊗ fj , where i, j ∈ {g, u, ū, d, d̄, . . . } . (1.3)

The quantities Iij are the so-called matching coefficients; they can be computed in pertur-
bative QCD and used to describe fixed-order cross sections at small values of N -jettiness.

The calculation of the matching coefficients Iij has a long history. The NLO and
NNLO results for the matching coefficients were obtained in refs. [19–21]. The N3LO
QCD computations were initiated in refs. [22, 23] and first physics results for Iqq in the
generalised large-Nc approximation were presented in ref. [24]. In ref. [1] the matching
coefficients for all partonic channels were computed through N3LO in perturbative QCD
using the method described in ref. [25].

The goal of this paper is to complete the calculation described in ref. [24]. We do
this by going beyond the generalised large-Nc approximation and by computing beam-
function matching coefficients for all partonic channels. As explained in the next section,
we perform this calculation by utilising the connection between partonic beam functions
and integrals of the collinear splitting kernels pointed out in ref. [26] (see also ref. [27] for
a recent discussion). We note that this method of computing the matching coefficients is
very different from the method used in refs. [1, 25]. Thus, our calculation provides a fully
independent check of the results reported in ref. [1] and demonstrates the practical utility
of working in a ghost-free physical gauge.
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The rest of the paper is organised as follows. In section 2, we discuss the calculation
of the matching coefficients. We begin with the description of the computational setup.
Then, we discuss the derivation of the differential equations for master integrals and their
solutions, the computation of the boundary conditions and the assembly of the partonic
beam functions. In section 3, we describe the renormalisation of the beam function and
the extraction of the matching coefficients. We present the results of the computation
in section 4 and conclude in section 5. Additional discussion of particular aspects of the
calculation can be found in the appendices.

2 Calculation

Beam functions were originally defined in SCET as matrix elements of particular operators
calculated with respect to external hadronic states [11, 18]. The matching relation in
eq. (1.3) arises from an operator product expansion (OPE) in the limit ΛQCD/T � 1.
Since the OPE is independent of the external states, the matching coefficients Iij remain
the same if we replace the hadronic external states by the partonic ones. The matching
relation between partonic beam functions Bij and partonic PDFs fij reads

Bij =
∑

k∈{g,u,ū,d,d̄,... }

Iik ⊗ fkj . (2.1)

In comparison to hadronic quantities, the partonic ones carry an additional index j which
specifies the flavour of the external parton. Thus, one possibility to compute the matching
coefficients is to directly calculate the matrix elements of SCET operators on both sides of
the matching relation with external partonic states.

However, we find it more practical to forgo the SCET-based definition and to calculate
the matching coefficients directly by integrating collinear splitting functions over momenta
of the collinear partons subject to certain phase-space constraints [26]. The advantage of
this procedure is that it allows us to work with familiar objects such as Feynman diagrams
and QCD scattering amplitudes.

Let us sketch the computation of the matching coefficient Iij . According to eqs. (1.2)
and (1.3), the matching coefficient is related to the behaviour of the cross section at small
values of zero-jettiness. Zero-jettiness becomes small if final state partons are soft or
collinear to incoming partons. By forcing the final state partons to be in the collinear
limit to one of the incoming ones, we effectively project the differential cross section onto
beam functions. As explained above, replacing the external hadronic states by partonic
states introduces partonic beam functions. The partonic beam function describes a process
where a parton j in the initial state emits collinear partons, loses some of its original
momentum, goes slightly off-shell, changes its identity to a parton i and continues into the
hard process. The final state kinematics of this collinear-splitting process is subject to a
constraint on the zero-jettiness variable. According to eq. (2.1), the matching coefficients
are then obtained by removing contributions, that have to be associated with partonic
PDFs, from the partonic beam functions. In the rest of this section, we describe how to
calculate the fully unrenormalised, bare partonic beam functions Bbare

ij from phase-space
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j(p)

V

f3(k3)

f2(k2)

f1(k1)

f̄(p̄)

i∗(pi)

Figure 1. Sketch of a triple-real contribution to the process j(p) + f̄(p̄)→ V + f1(k1) + f2(k2) +
f3(k3), for j = q, f̄ = q̄ and f1,2,3 = g, to illustrate the notation for the momenta and flavours.

integrals over splitting functions. We will explain how to use these results to derive the
matching coefficients in section 3.

In total, there are five independent flavour combinations to consider for i and j and,
therefore, also five different matching coefficients, (ij) ∈ {qiqj , qg, gq, gg, qiq̄j}. In addition,
depending on the order of QCD perturbation theory, there are contributions with different
numbers of final-state partons. To compute the N3LO contribution to the matching coef-
ficient, we need to consider final states with up to three additional partons, depending on
how many virtual loops appear in a particular amplitude. We will refer to these different
processes as triple-real (RRR), double-real virtual (RRV) and real double-virtual (RVV)
contributions.

For the sake of concreteness, we consider a triple-real contribution to a partonic beam
function. To compute it, we study the partonic process

j(p) + f̄(p̄)→ V + f1(k1) + f2(k2) + f3(k3) (2.2)

for a colour-singlet state V , and investigate its squared matrix element in the collinear
limit k1||k2||k3||p. We illustrate our notations in figure 1. It is well-known [28] that in this
limit the squared matrix element factorises into a product of the splitting function that
describes a transition of a parton j to a parton i along with three collinear partons f1,2,3,
and the hard matrix element of the process i+ f̄(p̄)→ V . We write

lim
k1||k2||k3||p

|M(j(p), f̄(p̄); f1, f2, f3)|2 ∼ Pij(p, p̄, {k1, k2, k3})
s2

123
|M(i(zp), f̄(p̄))|2 , (2.3)

where s123 = (p− k1− k2− k3)2 is the off-shell propagator of the parton i which enters the
hard process and Pij is the corresponding splitting function. In principle, the factorisation
formula shown in eq. (2.3) is not exact because of spin correlations but since, eventually,
we integrate over momenta of collinear partons, the spin correlations average out.

To define the variable z in eq. (2.3), we use the Sudakov decomposition of the momen-
tum pi = p− k1 − k2 − k3 and write

pi = zp+ yp̄+ k⊥ , (2.4)
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where p · k⊥ = p̄ · k⊥ = 0. Thanks to momentum conservation, we find

k123 = k1 + k2 + k3 = (1− z)p− yp̄− k⊥ . (2.5)

Multiplying this equation with p̄ and using p̄2 = 0, we obtain

1− z = p̄ · k123
p̄ · p

. (2.6)

In the collinear limit where k1,2,3||p, the zero-jettiness defined in eq. (1.1) simplifies
and becomes1

T0 ≈
2p · k123
Qp

. (2.7)

To compute the matching coefficient at fixed zero-jettiness, we introduce a new variable,
the so-called transverse virtuality t, defined as

t = 2zp · k123 . (2.8)

Once the matching coefficients at fixed t are available, it is straightforward to change
variables from t to T0 using eq. (2.7), if needed.

To compute the partonic beam functions, we need to integrate over energies and angles
of the emitted partons, keeping z and t fixed. To account for these constraints, we follow the
common practice and introduce two delta functions into the phase-space integral, writing
the triple-real contribution to the partonic beam function as follows

Bbare
ij ∼

∫
dΦ(3,0)

B

Pij(k1, k2, k3)
s2

123
. (2.9)

In eq. (2.9) dΦ(3,0)
B is defined as

dΦ(3,0)
B =

3∏
m=1

[dkm]δ
(

2p · k123 −
t

z

)
δ

(2p̄ · k123
s

− (1− z)
)
, (2.10)

with s = 2p · p̄ and

[dkm] = ddkm
(2π)d−1 δ

+(k2
m), (2.11)

is the phase-space element for the parton fm with the momentum km. We note that contri-
butions of lower-multiplicity final states can also be computed using eq. (2.9) except that
the corresponding splitting functions should include loop contributions, and the number of
final-state partons should be reduced accordingly.

Since NLO and NNLO QCD splitting functions are known [28–30], one can integrate
them directly to compute the partonic beam functions. In principle, many ingredients
required for an N3LO QCD computation are also known [31–36] but the results at this

1We note that this formula applies to an arbitrary N -jettiness variable T , not only to the zero-jettiness,
in the limit where unresolved final state partons are collinear to the incoming parton with momentum p.
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H

=⇒

Figure 2. Sketch of a squared diagram from the RRR contribution of qq̄ → V + ggg (left-hand
side) and the same contribution to the partonic beam function where the hard process (H) has
been replaced by a projector denoted by the crossed dots (right-hand side). The dashed vertical
line represents the final state cut. The Feynman rules used for the projector are explained in the
main text.

order are so complex that using them for our purposes does not appear to be beneficial.
We thus decided to compute the collinear projections of the relevant matrix elements and
their contributions to the various N3LO QCD splitting functions on our own, to have full
control over their possible simplifications.

To do that, we follow ref. [28] where it is explained how to extract the splitting func-
tions by applying collinear projections to parton scattering amplitudes. To perform the
calculation in a process-independent way, we need to use the axial gauge for real and virtual
gluons since, if such a gauge is used, collinear singularities only appear in diagrams where
virtual and real gluons are emitted and absorbed by the same external parton j. Hence,
when computing the sum over polarisations for a gluon with the momentum k, we use the
following formula ∑

λ

ελ
µ(k)ε∗λ

ν(k) = −gµν + kµp̄ν + kν p̄µ

k · p̄
, (2.12)

where have chosen p̄ as the auxiliary light-like vector required to define the axial gauge.
We note that this formula also defines the numerator of the gluon propagator which we
use to compute the virtual corrections and also, since we use the axial gauge, no ghost
particles need to be included.

The next step in constructing the splitting functions consists in choosing the “hard
process” in a smart way. As explained in ref. [28], one has to distinguish between cases
where a quark or a gluon enters the hard scattering. In the quark case, i = q, we obtain
the splitting functions by simply replacing the hard scattering kernel defined in figure 2
with ˆ̄p/(4 pi · p̄) = ˆ̄p/(4z p · p̄) where ˆ̄p = p̄µγµ. Hence, the matrix element becomes

Tr [. . . p̂iH p̂i . . . ]→
Tr
[
. . . p̂i ˆ̄p p̂i . . .

]
4z p · p̄ , (2.13)

where ellipses stand for other contributions stemming from the Feynman diagrams that
describe the j → i∗ + f1 + f2 + f3 transition. The trace originates from the summation
over polarisation states of initial or final state quarks. Thanks to the universal nature of
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the splitting functions and to the properties of the collinear limit, this procedure projects
the relevant amplitudes onto singular contributions which arise when the emitted partons
become collinear to the incoming ones [28]. Finally, we note that in order to compute
partonic beam functions which describe processes where gluons enter the hard process, i.e.
Bgq and Bgg, we simply use −gµν/(d− 2) as a proxy for the hard matrix element.

This procedure allows us to compute the contributions to the splitting functions from
individual Feynman diagrams which describe a process where partons are emitted by an
incoming parton j with momentum p, and an off-shell parton i with momentum zp enters
the hard process. Once these contributions to the splitting functions are computed, they
need to be integrated over the unresolved phase space of all final state partons while keeping
the transverse virtuality t and the z-parameter fixed, cf. eqs. (2.9), (2.10). We perform
this integration by employing the method of reverse unitarity [37]. The main idea behind
this method is to map all delta functions that appear in a given integrand, for example
the on-shell conditions for final state partons δ(k2) or the kinematic constraints such as
δ(2p · k123 − t/z), onto propagator-like structures using the identity

δ(X) = 1
2πi

[ 1
X − i0 −

1
X + i0

]
. (2.14)

This mapping is beneficial because it turns constrained phase-space integrals into
“loop-like” integrals, enabling the use of standard multi-loop technologies, such as the
integration-by-parts method (IBPs) [38, 39] and differential equations technique [40–43],
to compute them.

The rest of the calculation proceeds in a relatively standard way. We use QGRAF [44]
to generate diagrams that describe the various partonic processes, e.g., j(p) → i∗(pi) +
f1(k1) + f2(k2) + f3(k3). We note that since the parton i is off-shell, we have to account
for self-energy corrections on this leg. We use FORM [45–48] to deal with the Dirac and
Lorentz algebra and color.h [49] for the colour algebra. For each partonic process and
final state multiplicity we define suitable integral families which close under IBPs. We
use Reduze2 [50] and Kira [51–54] to solve the system of IBP identities and express all
integrals in terms of a (relatively) small number of master integrals.

Since the Laporta algorithm requires the propagators of each integral family to be
linearly independent, we have to apply a partial fraction decomposition to integrals where
linearly dependent propagators appear. In our calculation, linear dependencies between
propagators arise because of the phase-space delta functions and the axial-gauge propa-
gators. For example, the delta functions in the RRV contributions imply the following
constraint

2(k1 + k2) · p̄ = s(1− z) , (2.15)

and it gives rise to partial fraction identities such as

δ(2k12 · p̄/s− (1− z))
(k1 · p̄)(k2 · p̄)

= 2 δ(2k12 · p̄/s− (1− z))
s(1− z)

[ 1
k1 · p̄

+ 1
k2 · p̄

]
. (2.16)

Moreover, the propagator of a gluon with momentum k in the axial gauge features
a term proportional to (k · p̄)−1. As every integral has to contain the cut propagator
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corresponding to δ(2k1...nR · p̄/s− (1− z)), where k1...nR =
nR∑
i=1

ki is the total momentum of

final state partons, and since at N3LO there are at most three linearly independent scalar
products ki · p̄, i = 1, 2, 3, diagrams with sufficiently many gluon propagators will contain
linearly dependent propagators. We remove such linear dependencies by systematically
applying partial fraction relations using polynomial reduction over Gröbner bases. The
algorithm that we use has been described in refs. [55, 56] (see also refs. [57–59] for related
work). We discuss an example of the application of this algorithm in appendix A.

The above discussion applies to the mapping of integrals that appear in the transition
amplitudes onto the integral families. However, it turns out to be important to identify
linearly-dependent master integrals which belong to different families. This step reduces
the number of integrals that need to be computed and it contributes towards significant
simplifications of systems of differential equations that the master integrals satisfy. An
example of such a relation between three RRR master integrals is

=IT29
3391︷ ︸︸ ︷∫ dΦ(3,0)
B

(k1 − p)2(k13 − p)2(k3 · p̄)(k13 · p̄)

=
∫ dΦ(3,0)

B

(k1 − p)2(k12 − p)2(k1 · p̄)(k2 · p̄)︸ ︷︷ ︸
=IT1

3263

−
∫ dΦ(3,0)

B

(k1 − p)2(k13 − p)2(k1 · p̄)(k13 · p̄)︸ ︷︷ ︸
=IT28

3291

, (2.17)

where Ifs denotes an integral from family f and sector s and dΦ(3,0)
B is the phase-space

measure, cf. eq. (2.10). This relation becomes obvious after relabeling k2 ↔ k3 in the first
integral on the right hand side of eq. (2.17); it arises because the propagators 1/(k1 · p̄),
1/(k3 · p̄) and 1/(k13 · p̄) are linearly dependent.

To construct partial fraction relations between master integrals we generate a list of
seed integrals from all sectors of all integral families. We then calculate a Gröbner basis
for the overcomplete set of all propagators obtained by joining all integral families. After
polynomial reduction of the seed integrals with respect to this Gröbner basis, we map the
integrals to integral families and apply IBP reduction to all integrals. This yields a large
system of linear equations which involve integrals that are identified as master integrals
by the Laporta algorithm. Finally, we solve the system taking into account the Laporta
ordering of the integrals. The non-trivial solutions of this system give us linear relations
between master integrals. By applying these relations, we observe a significant reduction
in the number of master integrals that are required to express the transition amplitude.

Nevertheless, the question whether all linear relations are found in this way remains
open. As we explained earlier, this is an important question because eliminating linear
dependencies is crucial for achieving the simplest possible form of the differential equations
for the master integrals. Unfortunately, some of these linear dependencies only become
apparent after relabeling and shifting real and virtual momenta. Since the Gröbner basis
is calculated for one particular choice of the integration momenta, it is conceivable that
some partial dependencies are not captured by the procedure described above. Extending
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it in a way that avoids loopholes related to choices of integration momenta and symmetry
transformations of the integrals is an interesting question worthy of further investigation.

We note here that, as a matter of fact, we do find further relations between master
integrals but only a posteriori, by looking for linear combinations of master integrals that
fulfil purely homogeneous differential equations, see section 2.1. More details are given in
ref. [22].

To simplify the computation of master integrals, we remark that their dependence on
the variables t and s is homogeneous; this allows us to treat the integrals as functions of
the single variable z. To see this, we note that, for example, a triple-real integral can be
schematically written as follows

I(s, t, z) =
∫ 3∏

m=1
[dkm]δ

(
2p · k123 −

t

z

)
δ

(2p̄ · k123
s

− (1− z)
)
F (p, p̄, {ki}) , (2.18)

where F is given by a product of propagators constructed from inverse powers of

(p− lA)2 and p̄ · lA , where lA ∈ {k1, k2, k3, k12, k13, k23, k123} , (2.19)

and

l2A , with lA ∈ {k12, k13, k23, k123} . (2.20)

It is now easy to see that eq. (2.18) simplifies if we introduce new (tilded) momenta ac-
cording to

ki =
√
t

z
k̃i , p =

√
t

z
p̃ , p̄ = s

√
z

t
˜̄p . (2.21)

Using the tilded momenta in eq. (2.18), we obtain

I(s, t, z) = sns
(
t

z

)nt−3ε ∫
dΦ̃BF (p̃, ˜̄p, {k̃i})

= sns
(
t

z

)nt−3ε
I(1, 1, z) , (2.22)

where dΦ̃B can be obtained from eq. (2.10) by substituting t→ 1, s→ 1, p→ p̃ and p̄→ ˜̄p
there. Also, ns,t are integral-dependent integers and the last step in eq. (2.22) follows from
the fact that p̃ · ˜̄p = 1/2. By a slight abuse of notation, we will occasionally use p and p̄
instead of p̃ and ˜̄p; it should be clear from the context which normalisation is used in a
particular part of the calculation. Note that an analogous discussion also holds for RRV
integrals.

To derive the differential equations for the master integrals with respect to the variable
z, we follow the standard procedure. We differentiate the integrands with respect to z and
use IBP identities and partial fraction relations to express the derivatives through the
master integrals. For solving the differential equations, we need to supply the boundary
conditions; to do that, we compute the required master integrals in the z → 1 limit where
all emitted partons become soft. In the next sections we first describe how we choose
the basis of master integrals to simplify the solution of the differential equations and then
elaborate on the details of the computation of the relevant boundary conditions.

– 10 –



J
H
E
P
0
2
(
2
0
2
3
)
0
7
3

2.1 Differential equations for master integrals

We use differential equations [40–43] to compute the master integrals. As the integrals
depend non-trivially on a single variable z, we have to deal with the following system of
differential equations

∂z~I(z, ε) = A(z, ε)~I(z, ε) . (2.23)

In eq. (2.23) ~I(z, ε) is the vector of master integrals and A(z, ε) is a matrix of (rational)
functions of z and of the dimensional regularisation parameter ε.

It is well known that different choices of master integrals can significantly impact the
form of the matrix A(z, ε) and the complexity of the system of differential equations. When
it exists, a canonical basis of master integrals [60] is a particularly convenient choice.

For integrals in a canonical basis the differential equations assume the especially simple
form

∂z~Ic(z, ε) = εAc(z)~Ic(z, ε) , where Ac(z) =
∑
i

fi(z)Ac,i . (2.24)

A further crucial property of a canonical basis is that the matrix Ac(z) must be in the
so-called dlog form. This means that in eq. (2.24) fi(z) = d log gi(z)/dz for some algebraic
functions gi(z), and the entries of the z-independent matrices Ac,i are just numbers.

Since the ε-dependence of the right-hand side in eq. (2.24) is completely factorised, the
solutions of the homogeneous equation at each order in ε are just constants, and one can
construct an iterative solution of this equation in a straightforward manner. Inserting a
Laurent-series ansatz in ε for the integrals ~Ic(z, ε) =

∑
k=0

εk~I
(k)
c (z), we obtain the solutions

~I(k)
c (z) = ~B(k) +

∑
i

Ac,i

z∫
dz′ fi(z′)~I(k−1)

c (z′) . (2.25)

Here, ~B(k) are the vectors of integration constants which need to be determined by comput-
ing the integrals for a particular value of z. The z-dependence of the solution is calculated
through iterated integration over z. The kernels of such iterated integrals are specified by
the logarithmic differential forms in Ac(z). A famous result [61] in the theory of iterated
integrals guarantees that, as long as the logarithmic forms are independent, the resulting
iterated integrals will also be linearly independent of each other. Besides the simplicity of
the differential equations, another benefit of having a canonical basis is that the cancel-
lation of spurious poles in ε in the amplitude is made explicit so that we do not have to
compute the master integrals to higher orders in ε than strictly necessary.

Finding a canonical basis for master integrals is a non-trivial task. Starting from a
generic choice of master integrals, one performs a basis transformation

~Ic(z, ε) = T(z, ε)~I(z, ε) . (2.26)

The differential equation for ~Ic(z, ε) becomes

∂z~Ic(z, ε) = Ã(z, ε)~Ic(z, ε) , (2.27)
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where

Ã(z, ε) = T(z, ε)A(z, ε)T−1(z, ε) + (∂zT(z, ε))T−1(z, ε) . (2.28)

If one is able to find a matrix T(z, ε) such that Ã(z, ε) = εAc(z), one arrives at a canonical
basis.

Various semi-automated methods have been developed to find the transformation to a
canonical basis. Iterative approaches to constructing the matrix T starting from a general
matrix A(z, ε), have been discussed in refs. [57, 62–68]. An alternative procedure based on
constructing candidates for the canonical basis through the analysis of the so-called leading
singularities was suggested in refs. [60, 69, 70]. Other approaches to finding canonical bases
were discussed in refs. [71–74].

While the advantage of having canonical bases is clear and significant progress in
developing algorithms to determine them has been achieved, their application to non-
trivial problems, such as the calculation of the N3LO QCD contributions to beam functions,
remains a difficult task. In fact, upon inspecting the differential equations for our problem,
we observe that their solutions involve rational functions of z and three different square
roots

√
z
√

4− z ,
√
z
√

4 + z , and
√

4 + z2 . (2.29)

The presence of algebraic functions renders the application of the majority of automated
algorithms for finding a canonical basis either impossible or highly non-trivial. Hence, we
have decided to adopt a pragmatic approach to finding the canonical basis for our system
of differential equations. It is based on the following steps:

1. As a starting point, we choose a basis of integrals whose differential equations do not
contain denominators which mix the kinematic variable z with the dimensional reg-
ularisation parameter ε. Such denominators unnecessarily complicate the calculation
and can be avoided by choosing the master integrals appropriately (see refs. [75–77]
for related discussions). Here, we encountered such denominators only for a handful
of integrals so that we searched for appropriate replacements on a case-by-case basis.
It was sufficient to replace integrals for which this occurs either by other integrals
from the same sector2 or, in a small number of cases, by integrals from a supersector
which does not contain any master integrals.3

2. To make use of the automated packages for the determination of a canonical basis,
it was beneficial to rationalise square roots. We note that according to eq. (2.29)
all square roots involve second-degree polynomials in the variable z. Hence, each of
them can be easily rationalised by a particular variable transformation. On the other

2As usual, the term sector denotes the set of propagators that is present in the denominator of an
integral. We call a sector S′ a subsector of another sector S if the set of denominators of S′ is a subset of
those present in S and a supersector if the set of denominators in S′ is a superset of those present in S.

3A heuristic for choosing candidates for the replacement integrals was whether or not the reductions of
the candidate integrals to the original master integrals contain the offending factors in the denominator.
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hand, we could not find a transformation that rationalises all three square roots at
the same time.

To take full advantage of the possibility to rationalise individual roots, we split up
the differential equations for the master integrals into subsystems which close and
contain at most one square root. It turns out that this can be achieved for the
majority of the relevant integrals. For the sake of completeness, we present the
variable transformations which rationalise three square roots in eq. (2.29)

√
z
√

4− z : z → z = (1 + x)2

x
, (2.30)

√
z
√

4 + z : z → z = (1− y)2

y
, (2.31)

√
4 + z2 : z → z = w2 − 1

w
. (2.32)

The last transformation is a generalisation of the Landau transformation introduced
in the first two.

While the process of rationalisation can make previously simple linear letters more
complicated, once the equations are rationalised, we can use Fuchsia [65] and
CANONICA [57, 66] to algorithmically construct a canonical basis.

3. For a relatively small number of equations where multiple square roots appear simul-
taneously, we constructed a canonical basis without rationalising the square roots.
To achieve this, we employed a heuristic strategy based on the analysis of some of the
leading singularities of the corresponding integrals, combined with the procedure de-
scribed in ref. [62] that allows the simplification of possible remaining non-canonical
entries in the differential equations. We performed the analysis of the leading singu-
larities for both triple-real and double-real virtual integrals using the Baikov repre-
sentation [78, 79]. For completeness, we present an example of such a construction
in appendix B.

4. Once canonical systems of differential equations are constructed, we switch back to
the original variable z even if the canonical basis was calculated using x, y or w
variables. This allows us to integrate all master integrals in a uniform way, as we
explain below.

Once the equations are written in canonical form, we can easily solve them in terms of
iterated integrals. As already hinted to above, a general result from the theory of iterated
integrals ensures that, as long as the dlog forms that we integrate over are independent,
also the corresponding iterated integrals are linearly independent of each other. We stress
for clarity that this is only true once all products of different iterated integrals evaluated
at the same argument have been removed using the standard shuffle product relations,
which hold for any (properly regulated) iterated integral. This implies that our integration
procedure is literally as simple as in the well-known case of multiple polylogarithms [80–83],
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being entirely reduced to the iterative addition of a new “index” to the iterated integrals
for each differential form. We define iterated integrals as follows

L
a,~b

(x) =
x∫

0

fa(t)L~b(t) dt , La(x) =
x∫

0

fa(t) dt , L0, . . . , 0︸ ︷︷ ︸
n

(x) = 1
n! logn x , (2.33)

where the functions fa(t) are differentials of logarithms, as discussed right after eq. (2.24).
Note that this definition makes sense since, in our problem there is only one function f(t)
that diverges at zero, cf. eq. (2.34) below.

Of course, as already mentioned earlier, to completely determine the integrals from
their system of differential equations, we need to know their values at a certain point
in order to fix all the relevant boundary conditions. For all the integrals considered, it is
convenient to choose their soft (z → 1) limit as a reference point. To simplify the evaluation
of the iterated integrals close to the soft limit, we rewrite the differential equations using
the auxiliary variable z̄ = 1 − z. In fact, when using z̄ we find that we need to consider
iterated integrals defined over the following alphabet

fi(z̄) ∈
{ 1
z̄ − 1 ,

1
z̄
,

1
z̄ + 1 ,

1
z̄ − 2 ,

1
z̄ − 3 ,

1
z̄ + 3 ,

1
z̄ − 5 ,

2z̄ − 3
z̄2 − 3z̄ + 3 ,

2z̄ − 2
z̄2 − 2z̄ + 5 ,

1√
1− z̄

√
5− z̄

,
1√

1− z̄
√

3 + z̄
,

1√
z̄2 − 2z̄ + 5

,
1

(z̄ − 1)
√
z̄2 − 2z̄ + 5

}
. (2.34)

We note here that iterated integrals of rational functions and square roots of polynomials
up to degree two have been studied extensively in the literature [84–89].

Since we defined the iterated integrals by integrating from 0 to z̄, cf. eq. (2.33), their
z̄ → 0 limits either vanish or behave as logn(z̄) for some n ∈ N. Moreover, the fact that
the only letter in eq. (2.34) that diverges in the soft z̄ → 0 limit is 1/z̄, guarantees that
all logarithmic logn(z̄) singularities can be systematically extracted by un-shuffling all the
occurrences of this letter, similar to what is done for standard multiple polylogarithms.

In this way, we obtain the canonical master integrals as expansions in ε through O(ε5),
i.e. including I(5)

c (z̄), as functions of z̄. We note that, although the rational letters with
quadratic denominators can be further factorised at the expense of introducing complex
numbers, we keep the quadratic forms to achieve a more compact representation. To
manipulate iterated integrals we make extensive use of the packages HarmonicSums [81,
86, 90–98], HPL [99, 100] and PolyLogTools [101], as well as GiNaC [82, 102] for the
numerical evaluation of multiple polylogarithms.

Since the soft (z̄ → 0) singularities of the beam functions are regularised dimensionally,
we have to solve the differential equations for the master integrals in this limit in closed
form in ε, but as generalised power series expansions in z̄. Due to spurious poles in 1/z̄
in the amplitudes, in some cases we need the expansions through z̄2 terms. Since we work
with a canonical basis, obtaining a solution in the limit z̄ → 0 is particularly simple. The
leading behaviour of the canonical integrals in this limit can be obtained by solving

∂z̄~I
(0)
c (z̄, ε) = ε

Ac,0
z̄

~I(0)
c (z̄, ε) , (2.35)
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where Ac,0 is the coefficient matrix of the letter f0(z̄) = 1/z̄. The solution of eq. (2.35) is
expressed through the matrix exponential

~I(0)
c = Φ(z̄, ε) ~Bsoft(ε) , where Φ = exp (ε log(z̄)Ac,0) = z̄εAc,0 . (2.36)

The matrix Φ(z̄, ε) contains the fundamental system of the solutions to eq. (2.35). The
subleading terms are then obtained by expanding the coefficient matrix Ac(z̄) around z̄ = 0
as Ac(z̄) =

∑∞
n=0 z̄

n−1A(n)
c and then solving the differential equations

∂z~I
(n)
c (z̄, ε) = ε

n∑
k=0

z̄k−1A(k)
c
~I(n−k)
c (z̄, ε)

= ε

[
n∑
k=1

z̄k−1A(k)
c
~I(n−k)
c (z̄, ε)︸ ︷︷ ︸

≡~R(n)(z̄,ε)

+Ac,0
z̄

~I(n)
c (z̄, ε)

]
. (2.37)

It is obvious that, for n = 0, eq. (2.37) simplifies to eq. (2.35).
We note that we require solutions ~I(n)

c (z̄, ε) of eq. (2.37) that behave asymptotically
as z̄n in the limit z̄ → 0. This implies that for n > 0 we only need to consider the inhomo-
geneous solutions of the above equation. We obtain them using the method of variation
of constants. We note that the fundamental system of the homogeneous equation that is
needed to construct the inhomogeneous solution is always Φ(z̄, ε) defined in eq. (2.36). We
find

I(n)
c (z̄, ε) = Φ(z̄, ε)

z̄∫
0

dz̄′Φ−1(z̄′, ε)~R(n)(z̄′, ε) , (2.38)

where ~R(n)(z̄, ε) is defined in eq. (2.37). Having computed the boundary constants, we find
that the soft limit of the master integrals can be written as

~Ic,soft(z̄, ε) =
∞∑
n=0

[
~Bsoft,3,n(ε)z̄n−3ε + ~Bsoft,2,n(ε)z̄n−2ε

]
. (2.39)

In the triple-real case we observe that ~Bsoft,2,n(ε) = ~0 for all n. Finally, we merge the
solutions in the soft limit with those expanded order by order in ε via

~Ic(z̄, ε) =
[∑

i

εk~I(k)
c (z̄)− ~Ic,soft(z̄, ε)

]
ε−exp

+ ~Ic,soft(z̄, ε) . (2.40)

This way, the soft singularity stays dimensionally regulated, which is important for com-
puting convolution integrals over z.

2.2 Boundary constants

The calculation of the boundary conditions is one of the most demanding parts of this
computation and we have used different methods to derive them. We have discussed the
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computation of some of these constants in refs. [22, 23] which the interested reader should
consult. Here we address the problem from a slightly different perspective.

We start with the discussion of the triple-real integrals which appear in the calculation.
We will show that their soft, z → 1, limits can be related to integrals which appear in the
calculation of the Higgs cross section in the threshold limit. A generic triple-real integral
I can be written as

I =
∫ 3∏

i=1
[dki] δ

(
2p · k123 −

t

z

)
δ

(2p̄ · k123
s

− (1− z)
)
F (p, p̄, {ki}) , (2.41)

where the function F (p, p̄, {ki}) describes the collection of propagators that are displayed
in eqs. (2.19) and (2.20).

The boundary constant C for the integral I is defined as follows

lim
z→1

I = Csn1tn2−3ε(1− z)n3−3ε {1 +O(1− z)} , (2.42)

where n1,...,3 are integers that depend on the exact definition of the integral I. As explained
in ref. [22], the constant C can be computed by replacing all propagators that appear in
eq. (2.41) with their eikonal counterparts. For example,

1
(p− k123)2 →

1
−2p · k123

,
1

(p− k12)2 →
1

−2p · k12
, etc. (2.43)

Once these simplifications are performed, the integral becomes a homogeneous function
of (1− z) in addition to being a homogeneous function of s and t/z. Hence, we can write

Ieik =
∫ 3∏

i=1
[dki] δ

(
2p · k123 −

t

z

)
δ

(2p̄ · k123
s

− (1− z)
)
F (p, p̄, {ki})|eik

= C sn1

(
t

z

)n2−3ε
(1− z)n3−3ε . (2.44)

We emphasise that the constant C in eq. (2.44) is the same as in eq. (2.42) and that the
dependence of Ieik on z, as displayed in the second line of eq. (2.44), is exact.

We now explain how to make use of this fact to simplify the computation of the
integration constant. To this end, we take t = sz2 in eq. (2.44) and integrate that equation
over z. We find

Ī =
∫ 1

0
dz Ieik =

∫ 3∏
i=1

[dki] δ (2P · k123 − s) F (p, p̄, {ki})|eik

= C sn1+n2−3εΓ(n2 + 1− 3ε)Γ(n3 + 1− 3ε)
Γ(n2 + n3 + 2− 6ε) , (2.45)

where P = p+ p̄.
Eq. (2.45) is useful because the integral there can be related to the triple-real soft

integrals calculated for the Higgs boson production in gluon fusion in refs. [103–106]. Hence,
many of the boundary constants required for the calculation of the N3LO N -jettiness
beam functions can be compared with the boundary constants computed in refs. [103–106].
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Moreover, we can use the integration-by-parts identities for triple-real soft Higgs integrals
to relate the various boundary constants required in our case.

In fact, we have checked that our computation of the boundary constants for triple-real
integrals covers all of the ten integrals described in ref. [103] as well as the 13 inclusive
RRR integrals calculated recently in ref. [106]. We checked that our results agree with
those references up to the ε-order required for our calculation. We note that whereas
refs. [103, 106] heavily relied on using the Mellin-Barnes representation to compute the
triple-real soft integrals, in ref. [22] we calculated most of them by a direct integration over
Sudakov parameters. Hence, in addition to serving its original purpose, our computation
of the boundary constants provides an independent confirmation of the triple-real soft
integrals for Higgs boson production calculated in ref. [103].

The absolute majority of the RRV boundary constants can be computed by a direct
integration over Feynman and Sudakov parameters following the discussion in ref. [23].
We used a convenient Feynman parameter representation of the one-loop integrals and
calculated the relevant4 (1− z)-branches by making suitable approximations. Most of the
required boundary conditions are discussed in ref. [23]; however, we discovered that a few
additional boundary constants are needed.

All but one of these additional constants can be computed following the discussion in
ref. [23]. The RRV integral for which this approach fails reads

I =
∫ 2∏

i=1
[dki] δ

(
2p · k12 −

t

z

)
δ

(2p̄ · k12
s

− (1− z)
) 1

(k1 − p)2
1

k2 · p̄

×
∫ ddk3

(2π)d
1

k2
3k

2
13k

2
123 (k123 − p)2 (k3 · p̄)

, (2.46)

where k13 = k1 + k3 and k123 = k1 + k2 + k3. Similar to the triple-real case, this integral
is a homogeneous function of t/z and s. Hence, in what follows we will set t/z → 1, s→ 1
and p · p̄→ 1/2 when discussing the RRV integral in eq. (2.46).5

To determine the boundary constant, we need to know the coefficient of the (1−z)−2−3ε

branch of this integral, i.e.

lim
z→1

I ≈ C(1− z)−2−3ε + . . . (2.47)

One can show that, in the z → 1 limit, this branch can be calculated from a simplified
integral that is obtained by using the soft approximation for both real and virtual-loop
momenta (the soft region in the terminology of the method of expansion by regions [107]).
This amounts to the replacement 1/(k123−p)2 → 1/(−2p ·k123) in eq. (2.46). Denoting the
approximate integral by Is, and making use of the fact that it is a homogeneous function

4We have found empirically that only the branches (1 − z)m1−2ε and (1 − z)m2−3ε with m1,m2 ∈ Z
appear in RRV integrals. If the homogeneous part of the differential equation for a RRV integral allows a
different branch, its coefficient can be immediately set to zero.

5This corresponds to using the rescaled momenta, called p̃, ˜̄p and k̃i in eq. (2.21), where, in addition, we
take the limit z → 1. In order to improve readability, we suppress the tilde below.
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of (1− z) we can write

Is = C(1− z)−2−3ε . (2.48)

To proceed further, we write the soft approximation for the integral shown in eq. (2.46)
in the following way

Is =
∫

ddq δ (2p · q − 1) δ (2p̄ · q − (1− z)) Fs(p · q, p̄ · q, q2) , (2.49)

where

Fs(p · q, p̄ · q, q2) =
∫ 2∏

i=1
[dki] δ(d) (q − k1 − k2) 1

(−2k1 · p)
1

k2 · p̄

×
∫ ddk3

(2π)d
1

k2
3k

2
13k

2
123 (−2p · k123) (p̄ · k3)

. (2.50)

To integrate over q in eq. (2.49), we introduce the Sudakov decomposition

qµ = αq pµ + βq p̄µ + q⊥,µ , (2.51)

and write

ddq = 1
2dαq dβq dd−2q⊥ = 1

4 dq2 dαq dβq dΩ(d−2) (αqβq − q2)−ε , (2.52)

where in the last step we traded the integration over q2
⊥ for the integration over q2. Using

the fact that the function Fs in eq. (2.49) is independent of the directions of the vector q⊥,
we integrate over directions of the vector q⊥ and the variables αq and βq, and obtain

Is = Ω(d−2)

4

∫ 1−z

0
dq2

(
(1− z)− q2

)−ε
Fs(p · q, p̄ · q, q2)

∣∣∣
p·q=1/2, p̄·q=(1−z)/2

. (2.53)

We now discuss how this integral can be computed. We note that, in spite of its
appearance, the function Fs in eq. (2.50) is a non-trivial function of a single variable
x = q2/(4(p · q) (p̄ · q)); the remaining dependences on the other two variables, say p · q and
p̄ · q, follow from dimensional analysis and are homogeneous. Hence, we can write

Fs(p · q, p̄ · q, q2) = (2p · q)ω1(2p̄ · q)ω2 F̃s

(
q2

4(p · q) (p̄ · q)

)
, (2.54)

where ω1,2 are two, potentially ε-dependent, constants.
Using this representation in eq. (2.53) and observing that the factor (2p̄ · q)ω2 provides

the only source of the (1− z)-dependence in the function Fs, we find

Is = Ω(d−2)

4 (1− z)−2−3ε
∫ 1

0
dx (1− x)−ε F̃s(x) . (2.55)

Hence, to compute the boundary constant C we need to determine the function F̃s(x) and
integrate it over x from zero to one with the weight shown in eq. (2.55).
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It is quite challenging to compute the function F̃s(x) by directly integrating eq. (2.50).
A more elegant way to do this is to use the definition of the function F̃s to construct a
differential equation that this function satisfies; we do this by using integration-by-parts
identities. Of course, closing the system of differential equations requires the introduction of
many more integrals in addition to the one in eq. (2.50), but these integrals are simpler. We
find that 22 integrals, including F̃s, are needed to close the system of differential equations
with respect to the variable x.

To solve these differential equations we require boundary constants; we determine them
by considering the x → 1 limit. Physically, this limit corresponds to vanishing transverse
momentum q⊥. We will now discuss a few examples of integrals that need to be calculated
to determine the boundary conditions.

The simplest integral reads

I1 =
∫

[dk1][dk2](2π)d−1δ(d)(q − k1 − k2)
∫ ddk3

(2π)d
1

k2
3(k3 + q)2 . (2.56)

In contrast to other cases considered below, this integral can be computed exactly. We
begin by integrating over the loop momentum k3 and find∫ ddk3

(2π)d
1

k2
3(k3 + q)2 = i

(4π)d/2
Γ2(1− ε)Γ(ε)

Γ(2− 2ε)
(
−q2

)−ε
. (2.57)

The remaining integrations over k1,2 are also elementary. Performing them, we obtain

I1 = iΓ2(1 + ε)
(4π)d eiπε Γ3(1− ε)

εΓ2(2− 2ε)Γ(1 + ε) x
−2ε (4(p · q) (p̄ · q))−2ε . (2.58)

A slightly more complicated integral reads

I2 =
∫

[dk1][dk2](2π)d−1δ(d)(q − k1 − k2)
∫ ddk3

(2π)d
1

k2
13 (p̄ · k3) (p · k123)

. (2.59)

To compute it, we calculate the loop integral and find∫ ddk3
(2π)d

1
k2

13 (p̄ · k3) (p · k123)
= − i

(4π)d/2
4 eiπε Γ2(1 + ε)Γ(1− ε)

ε2
(2p · k2)−ε (2k1 · p̄)−ε .

(2.60)

To integrate over k1,2, we consider the rest frame of the vector q and determine the
energies of the two partons with momenta k1,2 by removing the delta function δ(d)(q−k1−
k2). We obtain

I2 = − iΓ2(1 + ε)
(4π)d eiπε 4Γ2(1− ε)

ε2Γ(2− 2ε) ((q · p) (q · p̄))2ε (4x)−εIΩ , (2.61)

where

IΩ = 1
Ω(d−1)

∫ dΩ(d−1)
~n

(1 + ~a · ~n)ε(1−~b · ~n)ε
. (2.62)
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In eq. (2.62), ~n, ~a and~b are (d−1)-dimensional6 unit vectors which describe the directions of
vectors k1, p and p̄ in the rest frame of the vector q. Furthermore, when writing eq. (2.62),
we have used the fact that in this frame ~k1 and ~k2 are back-to-back.

It follows from eq. (2.61) that, in order to determine the boundary condition for the
integral I2, we need to analyse the behaviour of IΩ in the x → 1 limit. This can be done
by noticing that, since ~a2 = ~b2 = 1, IΩ is a function of the scalar product ~a ·~b. To relate
this scalar product to the variable x, we compute the scalar product p · p̄ in the rest frame
of q. We find

1− ~a ·~b = p · p̄
p0p̄0 = (p · p̄)q2

(p · q)(p̄ · q) = 2x . (2.63)

Hence, we conclude that the limit x→ 1 corresponds to vectors ~a and ~b being back-to-back.
Therefore, computation of the boundary conditions for the integral I2 requires extracting
relevant branches from IΩ in the limit ~a→ −~b.

The relevant branches can be analysed by introducing a Feynman parameter to combine
the two denominators which appear in the integrand in eq. (2.62). We write

1
(1 + ~a · ~n)ε(1−~b · ~n)ε

= Γ(2ε)
Γ2(ε)

∫ 1

0
dy y

ε−1(1− y)ε−1

(1− ~η · ~n)2ε , (2.64)

where ~η = ~b(1 − y) − ~ay. We use this representation in eq. (2.62) and integrate over the
directions of ~n choosing the z-axis along the vector ~η. We find

IΩ = Γ(2ε)
Γ2(ε)

∫ 1

0
dy y

ε−1(1− y)ε−1

(1 + η)2ε 2F1

(
2ε, 1− ε, 2− 2ε, 2η

1 + η

)
, (2.65)

where η = |~η| =
√

1− 2y(1− y)(1 + ~a ·~b) =
√

1− 4(1− x)y(1− y). Hence, η = 1 at
x = 1.

Although eq. (2.65) has no explicit x → 1 or η → 1 branches, implicit branches are
hidden in the hypergeometric function. To expose them and to extract the relevant x→ 1
branches, it is sufficient to rewrite the hypergeometric function in eq. (2.65) as follows

2F1

(
2ε, 1− ε, 2− 2ε, 2η

1 + η

)
= Γ(1− 3ε)Γ(2− 2ε)

Γ(2− 4ε)Γ(1− ε) 2F1

(
2ε, 1− ε, 3ε, 1− η

1 + η

)
+
(1− η

1 + η

)1−3ε Γ(2− 2ε)Γ(−1 + 3ε)
Γ(1− ε)Γ(2ε) 2F1

(
2− 4ε, 1− ε, 2− 3ε, 1− η

1 + η

)
. (2.66)

Both hypergeometric functions in eq. (2.66) can be expanded in Taylor series around η = 1
which corresponds to x = 1. Furthermore, the two terms in eq. (2.66) provide two distinct
branches that arise in the x→ 1 limit, i.e. O((1− x)0) and O((1− x)1−3ε).

It follows from the system of differential equations, that coefficients of both of these
branches can be used to fix some of the boundary constants. Hence, we require the two
coefficients C1,2 defined through the following equation

lim
x→1

I2 ∼ C1 + C2(1− x)1−3ε + . . . , (2.67)

6As indicated by the arrow.
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These two constants can be readily computed using eqs. (2.65) and (2.66). Indeed,
to compute C1 we can simply set x = 1 in these equations. Since we work at fixed ε,
(1− x)1−3ε = 0 at x = 1 and we obtain

IΩ|x=1 = 2−2εΓ(1− 3ε)Γ(2− 2ε)
Γ(2− 4ε)Γ(1− ε) , (2.68)

from where C1 is easily determined.
For C2, we need to consider the second term in eq. (2.66). To extract the (1− x)1−3ε

branch, we write

(1− η
1 + η

)1−3ε
=
(

1− η2

(1 + η)2

)1−3ε

≈ (1− x)1−3ε (y(1− y))1−3ε . (2.69)

Hence, by taking the second term in eq. (2.66), setting the hypergeometric function that
appears there to one, and using the simplifications indicated in eq. (2.69), we obtain

IΩ|O((1−x)1−3ε) = 2−2εΓ(2ε)
Γ2(ε)

Γ(2− 2ε)Γ(−1 + 3ε)
Γ(1− ε)Γ(2ε) (1− x)1−3ε

∫ 1

0
dy y−2ε (1− y)−2ε

= 2−2εΓ(2− 2ε)Γ(−1 + 3ε)
Γ(1− ε)Γ2(ε)

Γ2(1− 2ε)
Γ(2− 4ε) (1− x)1−3ε , (2.70)

The required boundary conditions are then obtained by combining eqs. (2.68) and (2.70)
with eq. (2.61).

Finally, we note that a similar analysis of boundary conditions can be performed for
all integrals needed for the computation of the original integral F̃s shown in eq. (2.50).
However, since F̃s itself needs to be determined from the system of differential equations,
it could have required a calculation of its own boundary constant. Luckily, this is not the
case. Indeed, the analysis of the homogeneous part of the differential equations for F̃s
shows that

F̃s = Cs
x−1−ε

1− x + . . . , (2.71)

where the ellipses stand for the integral of the inhomogeneous contributions to the dif-
ferential equation for F̃s. The striking feature of the homogeneous contribution is that it
predicts an ε-unregulated singularity in the x→ 1 limit and one can use an integral repre-
sentation for F̃s to show that such a singularity does not occur. In fact, in the x→ 1 limit,
F̃s is described by two branches (1 − x)−1−3ε and (1 − x)−1−ε whose coefficients can be
computed but are not needed to construct the solution of the differential equation for F̃s.

The result for F̃s(x) is written in terms of harmonic polylogarithms. To compute the
required boundary condition for the original integral I, we need to substitute F̃s(x) into
eq. (2.55) and integrate over x. In principle, this procedure is straightforward but it is
made complicated by the fact that, after expansion in ε, F̃s(x) develops non-integrable
singularities at x = 0. Hence, before the integration can be completed, one has to re-sum
singular x→ 0 terms in the expression for F̃s(x). We achieve this using the x 6= 0 solution
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as well as the differential equation which predicts the structure of branches of F̃s(x) at
small values of x.

After integrating over x, we obtain the following result for the soft limit of the integral

Is = i
( eεγE

(4π)ε 4π
2
)−3

(1− z)−2−3ε
[
− 25

64ε4 −
23

32ε3 +
11
4 + 533π2

768
ε2

+ 1
ε

(
−85

8 + 139π2

128 + 853ζ3
64

)
+
(331

8 − 4π2 + 361ζ3
32 + 997π4

30720

)
+ ε

(
−1297

8 + 479π2

32 − 157ζ3
4 − 7157π4

15360 −
15025π2ζ3

768 + 13015ζ5
64

)
(2.72)

+ ε2
(5107

8 − 1817π2

32 + 1115ζ3
8 + 3401π4

1920 + 5739ζ5
160 − 2069π2ζ3

128

+ 416141π6

1548288 −
14289ζ2

3
128

)
+O

(
ε3
)]
.

According to the above discussion, this result provides the required boundary condition for
the integral I defined in eq. (2.46).

Overall, the RRV master integrals require explicit calculation for eight boundary con-
stants in addition to those discussed in ref. [23]. The method for relating boundary con-
stants of RRR integrals to integrals for Higgs production in gluon fusion at threshold,
discussed at the beginning of this section, can also be applied to the soft region of RRV
integrals. This allows us to map these integrals onto those for Higgs production computed
in ref. [108]. We have not systematically employed this connection to calculate the RRV
boundary constants, but we did use it to cross-check our results for some of the boundary
constants, including the one for Is in eq. (2.72) which can be mapped on to the most
complicated integralMS

13 from ref. [108]. More recently, results up to weight 8 for the soft
RRV integrals have been published in ref. [106].

Once the boundary constants are computed and incorporated into the solutions of the
differential equations following the steps outlined in the previous section, we obtain the
final results for the master integrals that are used to compute the bare beam function. We
discuss how this is done in the next section. Before proceeding with this discussion, we note
that the results for master integrals can be checked numerically as described in refs. [22, 23].
We performed this check for many master integrals to ensure their correctness.

2.3 Assembly of the bare beam functions

Having discussed the computation of the amplitudes and the integrals required for the cal-
culation of the beam function, we explain how the different contributions are put together.
The expansion of the fully unrenormalised, bare partonic beam functions in the strong
coupling constant reads

Bbare
ij (t, z) =

∞∑
k=0

(
α

(0)
s

4π

)k
B

bare,(k)
ij (t, z) . (2.73)
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In eq. (2.73) α(0)
s denotes the unrenormalised strong coupling constant and the expansion

coefficients through N3LO read

B
bare,(0)
ij (t, z) = δijδ(t)δ(1− z) , (2.74)

B
bare,(1)
ij (t, z) =

∫
dΦ(1,0)

B |AR
ij |2 , (2.75)

B
bare,(2)
ij (t, z) =

∫
dΦ(2,0)

B

∑
f

|ARR
ij,f |2 +

∫
dΦ(1,1)

B 2 Re
[
ARV
ij (AR

ij)∗
]
, (2.76)

B
bare,(3)
ij (t, z) =

∫
dΦ(3,0)

B

∑
f

|ARRR
ij,f |2 +

∫
dΦ(2,1)

B

∑
f

2 Re
[
ARRV
ij,f (ARR

ij,f )∗
]

+
∫

dΦ(1,2)
B 2 Re

[
ARVV
ij (AR

ij)∗
]

+
∫

dΦ(1,2)
B |ARV

ij |2 . (2.77)

The sums over f run over different partonic final states. For example, the term
∑
f
|ARRR

qiqj ,f
|2

includes the processes qj → q∗i + ggg and qj → q∗i + gq̄kqk. The squared amplitudes for the
splitting functions can be generated from diagrams for the partonic process j → i∗ + f as
explained in the beginning of this section. Finally, the integration measure is defined as

dΦ(nR,nV )
B =

nR∏
i=1

[dki]
nV∏
j=1

ddlj
(2π)d δ

(
2p · k1...nR −

t

z

)
δ

(2p̄ · k1...nR
s

− (1− z)
)
, (2.78)

where k1...nR =
nR∑
i=1

ki, nR is the number of final state partons and nV is the number of
virtual loops that appear in the particular contribution.

While we calculate the RRR and RRV contributions in the way we described in the
previous sections, we use a different approach to compute the RVV contribution. As we
previously described in ref. [24], we can bypass a two-loop calculation in a physical gauge
by making use of the fact that the splitting functions are gauge invariant and that for
the single-collinear limit at two-loop order they have been calculated from limits of 2→ 2
scattering matrix elements in refs. [29, 30, 109]. We use the expressions for the two-loop
single-collinear splitting functions Pa∗→a1a2(z) from ref. [109] together with the soft current
from ref. [110] and cross them to the case of initial state splitting a1 → a∗a2 via

Pa1→a∗a2(z) = (−1)2sa+2sa1
na
na1

z Pa∗→a1a2

(1
z

)
. (2.79)

In eq. (2.79) a∗, a1 and a2 are the flavours of the partons involved in the splitting and
sa and sa1 are the respective spin quantum numbers. The factors na and na1 are the
corresponding spin and colour averaging factors, i.e. nq = 2Nc and ng = (d − 2)(N2

c − 1).
Finally, we integrate them over the constrained single-emission phase space∫

dΦ(1,2)
B 2 Re

[
ARVV
ij (AR

ij)∗
]

=
∫

[ddk] δ
(

2k · p− t

z

)
δ

(2k · p̄
s
− (1− z)

)

× (64π2) 2
s̃12

(
− s̃12
µ2

)−2ε 2 Re[P (2)
j→i∗f (z)]
z

, (2.80)
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Contrib. Process Diagram comb. Scalar int. MIs before PF MIs after PF

RRR q → q∗ + ggg 16× 16 = 256 126255 139 91
q → q∗ + gqq̄ 10× 10 = 100 33700 241 200
q̄ → q∗ + gq̄q̄ 10× 10 = 100 3649 207 175
g → q∗ + q̄gg 16× 16 = 256 212882 329 214
g → q∗ + q̄qq̄ 10× 10 = 100 25707 136 123
q → g∗ + qgg 16× 16 = 256 146630 335 222
q → g∗ + qqq̄ 10× 10 = 100 18151 73 65
g → g∗ + ggg 25× 25 = 625 394415 399 219
g → g∗ + gqq̄ 16× 16 = 256 49468 169 153
overall 404086 431 278

RRV q → q∗ + gg 30× 3 = 90 97801 271 115
q → q∗ + qq̄ 18× 2 = 36 24029 178 119
q̄ → q∗ + q̄q̄ 18× 2 = 36 5056 184 110
g → q∗ + q̄g 30× 3 = 90 131856 367 166
q → g∗ + qg 33× 3 = 99 112301 363 152
g → g∗ + gg 68× 4 = 272 282894 365 149
g → g∗ + qq̄ 33× 3 = 99 23796 72 63
overall 290843 420 195

Table 1. We show, for individual partonic processes, the number of combinations of relevant
diagrams, the number of scalar integrals before IBP reduction, as well as the number of master
integrals before and after eliminating partial fraction (PF) relations between master integrals.

where s̃12 = (p − k)2 = −t/z. The phase-space integration is trivial because of the delta
functions.

For the RV2 contribution, which contains the square of one-loop amplitudes, we gen-
erate the relevant amplitudes while keeping track of which propagators belong to ARV

ij

and which to (ARV
ij )∗. It turns out that we can re-use the master integrals calculated in

ref. [111] provided that we do not use symmetries of integrals which mix propagators with
their complex conjugate counterparts.

For the RRR and RRV contributions we generate the amplitudes for the splitting func-
tions using the setup described above. The number of combinations of relevant diagrams,
as well as the number of scalar integrals before IBP reduction, and the number of master
integrals before and after applying partial fraction relations are collected in table 1. Once
the master integrals are known, we first rewrite the fully unrenormalised, bare partonic
beam function in terms of canonical master integrals

Bbare
ij =

∑
n

cnIn =
∑
n,m

cn(T−1)nmIc,m , (2.81)

which makes cancellations of spurious poles in ε explicit. Next, we insert the solutions
for the canonical master integrals in terms of iterated integrals of the variable z̄. As we
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explained earlier, the z̄ → 0 as well as the t→ 0 singularities are regulated dimensionally.
To construct their expansions in ε, we have to use the distributional identities

z̄−1+bε = δ(z̄)
bε

+
∞∑
k=0

bkεk

k! Dk(z̄) , (2.82)

1
µ2

(
t

µ2

)−1+bε
= δ(t)

bε
+
∞∑
k=0

bkεk

k! Lk
(
t

µ2

)
, (2.83)

where we use the notation

Dk(z̄) =
[

logk(z̄)
z̄

]
+
, Lk

(
t

µ2

)
= 1
µ2

[
logk(t/µ2)
t/µ2

]
+
. (2.84)

In eq. (2.84) [. . . ]+ denotes standard plus-distributions which regulate limits when their
arguments become infinite.7

The highest possible pole of the amplitude is ε−6 so that, in principle, the canonical
master integrals have to be known up to weight six, i.e. including ~I(6)

c (z). However, if we
express the amplitude in terms of canonical master integrals, the highest pole that appears
there is ε−4. The additional poles can only arise from the terms proportional to delta
functions in eqs. (2.82) and (2.83). Therefore, the weight six terms ~I(6)

c (z) of the canonical
master integrals are only needed for z̄ = 0, i.e. for terms proportional to δ(z̄). As such,
they can be obtained from the soft limit of the amplitudes and master integrals.

3 Matching coefficients

Having computed the fully unrenormalised, bare partonic beam functions, we discuss the
extraction of the matching coefficients. As explained in ref. [11], this is done by absorbing
certain collinear 1/ε-poles of the partonic beam functions into the corresponding parton
distribution functions and by removing the remaining 1/ε-poles through an appropriate
renormalisation. A detailed discussion of this procedure was provided in our earlier pa-
per [24], but we repeat it here for completeness. A schematic overview of the required steps
is shown in figure 3.

As the first step, we replace the bare QCD coupling constant with the renormalised
one. We use

α(0)
s = R(µ2)Zαsαs(µ2) , (3.1)

where R(µ2) =
(
µ2eγE/(4π)

)ε and
Zαs = 1− αs

4π
β0
ε

+
(
αs
4π

)2
(
β2

0
ε2
− β1

2ε

)
+O(α3

s) . (3.2)

7The exact definitions are
1∫

0

dz̄Dk(z̄)f(z̄) =
1∫

0

dz̄
z̄

logk z̄ (f(z̄)− f(0)) ,
∞∫

0

dtLk
(
t

µ2

)
f(t) =

∞∫
0

dt
t

logk
(
t

µ2

)
(f(t)− f(0)) .
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Bbare
ij (t, z)

B̄bare
ij (t, z) = Zi(t, µ)⊗

t
Bij(t, z, µ)

Bij(t, z, µ) =
∑
k

Iik(t, z, µ)⊗
z
fkj(z, µ)

Iij(t, z, µ)

α
(0)
s = R(µ2)Zαsαs

dZi(t, µ)
d logµ = −Zi(t, µ)⊗

t
γi(t, µ)

γi(t, µ) = γiBδ(t)− 2ΓicuspL0

(
t

µ2

)

dfij(z)
d logµ2 = αs

2π
∑
k

Pik(z)⊗
z
fkj(z)

Figure 3. Steps required for the extraction of the matching coefficients Iij(t, z, µ) from the fully
unrenormalised, bare partonic beam functions Bbare

ij (t, z, µ), whose calculation is described in the
previous section. For a detailed description of the steps see the main text.

Once this is done, we obtain the bare partonic beam functions B̄bare
ij from the original fully

unrenormalised bare partonic beam functions Bbare
ij .

Expanding B̄bare
ij in the renormalised strong coupling yields

B̄bare
ij =

∞∑
k=0

(
αs
4π

)k
B̄

bare,(k)
ij , (3.3)

where the expansion coefficients read

B̄
bare,(0)
ij = B

bare,(0)
ij , (3.4)

B̄
bare,(1)
ij =

[
R(µ2)Bbare,(1)

ij

]
, (3.5)

B̄
bare,(2)
ij =

[
R(µ2)2B

bare,(2)
ij

]
− β0

ε

[
R(µ2)Bbare,(1)

ij

]
, (3.6)

B̄
bare,(3)
ij =

[
R(µ2)3B

bare,(3)
ij

]
− 2β0

ε

[
R(µ2)2B

bare,(2)
ij

]
+
(
β2

0
ε2
− β1

2ε

)[
R(µ2)Bbare,(1)

ij

]
. (3.7)

The bare partonic beam function is related to the partonic beam function by a renor-
malisation [11]

B̄bare
ij (t, z) = Zi(t, µ)⊗

t
Bij(t, z, µ) . (3.8)
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In the above equation the convolution with respect to t is defined through the following
equation

f1(t)⊗
t
f2(t) =

∞∫
0

dt1 dt2 f(t1)f(t2) δ(t− t1 − t2) . (3.9)

We write expansions for the partonic beam function and the renormalisation constant
in αs

Bij(t, z, µ) =
∞∑
k=0

(
αs
4π

)k
B

(k)
ij (t, z, µ) , (3.10)

Zi(t, µ) =
∞∑
k=0

(
αs
4π

)n
Z

(k)
i (t, µ) , (3.11)

make use of the fact that the leading-order coefficients are given by

B̄
bare,(0)
ij (t, z) = B

(0)
ij (t, z, µ) = δijδ(t)δ(1− z) , Z

(0)
i (t, µ) = δ(t) , (3.12)

insert those expansions into eq. (3.8) and obtain the expansion coefficients of the beam
function in terms of those of the bare beam function,

B
(1)
ij (t, z, µ) = B̄

bare,(1)
ij (t, z)− δijδ(1− z)Z(1)

i (t, µ) , (3.13)

B
(2)
ij (t, z, µ) = B̄

bare,(2)
ij (t, z)− δijδ(1− z)Z(2)

i (t, µ)−B(1)
ij (t, z, µ)⊗

t
Z

(1)
i (t, µ) , (3.14)

B
(3)
ij (t, z, µ) = B̄

bare,(3)
ij (t, z)− δijδ(1− z)Z(3)

i (t, µ)−B(2)
ij (t, z, µ)⊗

t
Z

(1)
i (t, µ)

−B(1)
ij (t, z, µ)⊗

t
Z

(2)
i (t, µ) . (3.15)

To compute the matching coefficients Iij , we use the matching relation for the partonic
beam function

Bij(t, z, µ) =
∑

k∈{g,u,ū,d,d̄,... }

Iik(t, z, µ)⊗
z
fkj(z, µ) . (3.16)

In eq. (3.16), ⊗
z

stands for the Mellin convolution with respect to the variable z. It is
defined as follows

f1(z)⊗
z
f2(z) =

1∫
0

dz1dz2 f1(z1)f2(z2)δ(z − z1z2) . (3.17)

We again expand all quantities in the strong coupling

Iij(t, z, µ) =
∑
n

(
αs
4π

)n
I(n)
ij (t, z, µ) , fij(z, µ) =

∑
n

(
αs
2π

)n
f

(n)
ij (z) , (3.18)

use the leading-order coefficients

I(0)
ij = δijδ(t)δ(1− z) , f

(0)
ij = δijδ(1− z) , (3.19)
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insert these expansions in eq. (3.16), and obtain

I(1)
ij (t, z, µ) = B

(1)
ij (t, z, µ)− 2δ(t)f (1)

ij (z) , (3.20)

I(2)
ij (t, z, µ) = B

(2)
ij (t, z, µ)− 4δ(t)f (2)

ij (z)− 2
∑
k

I(1)
ik (t, z, µ)⊗

z
f

(1)
kj (z) , (3.21)

I(3)
ij (t, z, µ) = B

(3)
ij (t, z, µ)− 8δ(t)f (3)

ij (z)− 4
∑
k

I(1)
ik (t, z, µ)⊗

z
f

(2)
kj (z)

− 2
∑
k

I(2)
ik (t, z, µ)⊗

z
f

(1)
kj (z) . (3.22)

Finally, we combine eqs. (3.13), (3.14), (3.15) with eqs. (3.20), (3.21), (3.22), and obtain
the expressions for the matching coefficients in terms of the bare beam function

I(1)
ij (t, z, µ) = B̄

bare,(1)
ij (t, z)− δijδ(1− z)Z(1)

i (t, µ)− 2 δ(t) f (1)
ij (z) , (3.23)

I(2)
ij (t, z, µ) = B̄

bare,(2)
ij (t, z)− δijδ(1− z)Z(2)

i (t, µ)− 2Z(1)
i (t, µ) f (1)

ij (z)

− 4 δ(t) f (2)
ij (z)− Z(1)

i (t, µ)⊗
t
I(1)
ij (t, z, µ)

− 2
∑
k

I(1)
ik (t, z, µ)⊗

z
f

(1)
kj (z) , (3.24)

I(3)
ij (t, z, µ) = B̄

bare,(3)
ij (t, z)− δijδ(1− z)Z(3)

i (t, µ)− 2Z(2)
i (t, µ) f (1)

ij (z)

− 4Z(1)
i (t, µ) f (2)

ij (z)− Z(2)
i (t, µ)⊗

t
I(1)
ij (t, z, µ)− 8 δ(t) f (3)

ij (z)

− 2
∑
k

Z
(1)
i (t, µ)⊗

t
I(1)
ik (t, z, µ)⊗

z
f

(1)
kj (z)

− Z(1)
i (t, µ)⊗

t
I(2)
ij (t, z, µ)− 4

∑
k

I(1)
ik (t, z, µ)⊗

z
f

(2)
kj (z)

− 2
∑
k

I(2)
ik (t, z, µ)⊗

z
f

(1)
kj (z). (3.25)

As eqs. (3.23), (3.24), (3.25) demonstrate, we have to compute convolutions of the
renormalisation constants and divergent partonic distribution functions with lower-order
matching coefficients. For this reason, both NLO and NNLO partonic beam functions are
required to higher orders in the expansion in the dimensional regularisation parameter ε.
The corresponding computations for all relevant partonic beam functions were performed
in ref. [111] and we use the results of that reference in the current calculation.

It remains to explain how to compute the expansion coefficients of the renormalisation
constants and of partonic distribution functions. We begin with the renormalisation con-
stants Zi. It is known [11] that these constants satisfy the renormalisation group equation

µ
dZi
dµ = −Zi(t, µ)⊗

t
γi(t, µ) , (3.26)

where the anomalous dimensions read

γi(t, µ) = γiBδ(t)− 2Γicusp L0

(
t

µ2

)
. (3.27)
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The anomalous dimensions Γcusp and γiB are known through O(α4
s) [18, 106, 112–129]. In

eq. (3.27), L0(t/µ2) is a plus-distribution defined in eq. (2.84). We integrate eq. (3.27) to
determine the renormalisation constants Zq,g. The analytic expressions for these constants
through O(α3

s) are provided in appendix C and as supplementary material file.
The perturbative expansion of the partonic distribution functions is obtained by solving

the Altarelli-Parisi equation

µ2 dfij(z, µ2)
dµ2 = αs(µ2)

2π
∑
k

Pik(z)⊗
z
fkj(z, µ2) , (3.28)

order by order in αs and using the boundary conditions in eq. (3.19). Since the parton
distribution functions in eq. (3.16) are defined in the MS scheme, the perturbative parton
distribution functions should only contain poles in ε. Explicit results for the functions
f

(n)
kj (z), with n = 1, 2, 3, in terms of Altarelli-Parisi splitting functions are given in ref. [24];
we present them in appendix C for completeness.

We note in passing that the cancellation of infra-red poles that occurs once the renor-
malisation procedure described in this section is performed, provides a direct cross-check
on the three-loop Altarelli-Parisi splitting functions computed in refs. [113, 114, 130–134].

4 Results

We used the procedure described in sections 2 and 3 to compute the N3LO matching
coefficients I(3)

ij (t, z, µ) for all partonic combinations (ij) ∈ {qiqj , qg, gq, gg, qiq̄j}.
We observe a significant simplification of the alphabet of the iterated integrals that

appear in the final result for the matching coefficients compared to the alphabet for the
individual master integrals given in eq. (2.34). Already when inserting the master integrals
into the RRR and RRV squared amplitudes some letters cancel completely. In particular,
the square root

√
z
√

4 + z =
√

1− z̄
√

5− z̄ only appears in integrals entering the RRR
contribution and cancels at the level of squared amplitudes. Moreover, upon combining the
RRR and RRV contributions, the two letters with the square root

√
4 + z2 =

√
z̄2 − 2z̄ + 5

drop out. The iterated integrals in the final results for the matching coefficients depend
only on the following letters

fi(z̄) ∈
{ 1
z̄ − 1 ,

1
z̄
,

1
z̄ + 1 ,

1
z̄ − 2 ,

1√
1− z̄

√
3 + z̄

}
. (4.1)

The remaining square root corresponds to
√
z
√

4− z when written in terms of the variable
z̄. We note that in total only twelve different iterated integrals that depend on square roots
appear in the results and that they only occur in four distinct combinations. We illustrate
this below.

It is instructive to discuss the general structure of the matching coefficients. For all
partonic channels the n-th order matching coefficient can be written as

I(n)
ij =

2n−1∑
k=0
Lk
(
t

µ2

)
F

(n,k)
ij,+ (z) + δ(t)F (n)

ij,δ (z) . (4.2)

– 29 –



J
H
E
P
0
2
(
2
0
2
3
)
0
7
3

The function F (n)
ij,δ can be further decomposed as

F
(n)
ij,δ = C

(n)
ij,−1δ(1− z) +

2n−1∑
k=0

C
(n)
ij,kDk(z) + F

(n)
ij,δ,h(z) . (4.3)

The above decomposition is important because it isolates all the contributions to N3LO
matching coefficients which can be predicted without explicit computation. Indeed, the
functions F (n,k)

ij,+ (z) can be obtained from the renormalisation group equation for the beam
function [11]. Similarly, the coefficients C(n)

ij,k for k = −1, . . . , 5, can be derived by analysing
soft contributions to the beam function [135]. The genuinely new result that cannot be
obtained without a dedicated calculation is the hard contribution F

(n)
ij,δ,h(z). Clearly, the

above predictions for certain contributions to the matching coefficients are important since
they allow us to check our calculation in a non-trivial way. Finally, we note that our results
for the matching coefficients agree with the results published in ref. [1].

Unfortunately, the results for the matching coefficients are quite sizeable. Because of
that, we refrain from displaying them in the paper and, instead, provide them in electron-
ically readable form as supplementary material file. However, to illustrate their structure,
we will describe a particular contribution to the matching coefficient Iqiqj .

In addition to being a function of the energy fraction z, the hard contribution F (3)
qiqj ,δ,h

is also a function of the number of colours Nc and the number of fermion species nf .
Explicitly, this dependence reads8

F
(3)
qiqj ,δ,h

(z) = δij

[
n2
f

(
NcFn2

f
Nc +

Fn2
f
N−1
c

Nc

)
+ nf

(
N2
c FnfN2

c
+ Fnf +

FnfN−2
c

N2
c

)

+N3
c FN3

c
+NcFNc +

FN−1
c

Nc
+
FN−3

c

N3
c

]
+ nf

(
NcFnfNc +

FnfN−1
c

Nc

)

+N2
c FN2

c
+ F1 +

FN−2
c

N2
c

. (4.4)

In writing this decomposition we have used TF = 1
2 . The coefficients FN3

c
, FnfN2

c
and

Fn2
f
Nc were published in ref. [24]. To illustrate the structure of the new results, we show

the coefficient FN−3
c

, which only contributes for equal flavours, i = j, below.
The function FN−3

c
features iterated integrals with square-root-valued letters as well

as square roots in the coefficients of the iterated integrals. We use the notation

L
a,~b

(z̄) =
z̄∫

0

dt fa(t)L~b(t) , La(z̄) =
z̄∫

0

dt fa(t) , L0, . . . , 0︸ ︷︷ ︸
n

(z̄) = 1
n! logn(z̄) (4.5)

for the iterated integrals and the letters

f−1(z̄) = 1
z̄ + 1 , f0(z̄) = 1

z̄
, f1(z̄) = 1

z̄ − 1 ,

f2(z̄) = 1
z̄ − 2 , fr(z̄) = 1√

1− z̄
√

3 + z̄
. (4.6)

8For better readability, we suppress flavour- and order-related indices and the argument z on the right-
hand side in eq. (4.4).
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Following the standard practice, we suppress the argument z̄ of the iterated integrals for
brevity. We note that the iterated integrals that depend on square roots only occur in four
distinct combinations throughout all matching coefficients. They are given by

R1 = Lr,0,1 + 2
3Lr,1,1 −

π2

6 Lr , (4.7)

R2 = Lr,r,0,1 + 2
3Lr,r,1,1 −

π2

6 Lr,r , (4.8)

R3 = L0,r,r,0,1 + 2
3L0,r,r,1,1 −

π2

6 L0,r,r , (4.9)

R4 = L1,r,r,0,1 + 2
3L1,r,r,1,1 −

π2

6 L1,r,r . (4.10)

With these abbreviations the coefficient FN−3
c

reads

FN−3
c

= 1
12
(
− 2116z̄ + 15

)
+ 1

12
(
1344z̄ + 31

)
L0 + 1

48
(
− 947z̄ − 2390

)
L1

+ 1
3
(
5z̄ − 12

)
L0,0 + 1

6
(
143z̄ − 68

)
L0,1 + 1

6
(
− 253z̄ + 569

)
L1,0

+ 1
24
(
16z̄2 − 1147z̄ + 482

)
L1,1 + 3

(
9z̄ + 1

)
L0,0,0 + 1

6
(
− 113z̄ + 34

)
L0,0,1

+ 1
2
(
− 61z̄ − 26

)
L0,1,0 + 1

6
(
95z̄ − 6

)
L0,1,1 −

19
6
(
19z̄ − 14

)
L1,0,0

+ 1
2
(
60z̄ − 31

)
L1,0,1 + 1

12
(
1307z̄ − 936

)
L1,1,0 + 1

6
(
118z̄ − 197

)
L1,1,1

− 2
3
(
24z̄ − 17

)
L1,2,1 + 12z̄L0,0,0,0 + 1

3
(
− 41z̄ + 2

)
L0,0,0,1

+ 1
3
(
− 57z̄ + 26

)
L0,0,1,0 + 4

3
(
10z̄ + 3

)
L0,0,1,1 −

2
3
(
11z̄ + 2

)
L0,1,0,0

+ 1
3
(
47z̄ − 2

)
L0,1,0,1 + 2

3
(
3z̄ − 10

)
L0,1,1,0 −

4
3
(
41z̄ − 6

)
L0,1,1,1

+ 4
3
(
7z̄ − 2

)
L0,1,2,1 − 3

(
13z̄ − 14

)
L1,0,0,0 + 1

6
(
143z̄ − 150

)
L1,0,0,1

+ 1
2
(
99z̄ − 130

)
L1,0,1,0 + 1

2
(
− 83z̄ + 108

)
L1,0,1,1 + 1

6
(
409z̄ − 442

)
L1,1,0,0

+ 1
3
(
− 101z̄ + 113

)
L1,1,0,1 + 1

6
(
− 463z̄ + 568

)
L1,1,1,0 −

1
2
(
z̄ + 9

)
L1,1,1,1

+ 4
(
13z̄ − 14

)
L1,1,2,1 − 4

(
5z̄ − 4

)
L1,2,1,0 + 4

3
(
42z̄ − 37

)
L1,2,1,1

− 4
3
(
53z̄ − 54

)
L1,2,2,1 +

(
1 + z̄

)(1
3
(
2z̄ − 11

)
L2,1 −

8
3L2,1,0 + 94

3 L2,1,1

− 44
3 L2,2,1 + 16L2,1,0,1 + 28

3 L2,1,1,0 − 24L2,1,1,1 + 40L2,1,2,1 −
56
3 L2,2,1,0

+ 32L2,2,1,1 −
152
3 L2,2,2,1 + 60L0,0,0,0,0 − 12L1,0,0,0,0 + 16L1,0,0,0,1

+ 14L1,0,0,1,0 −
55
3 L1,0,0,1,1 + 12L1,0,1,0,0 −

50
3 L1,0,1,0,1 − 27L1,0,1,1,0

+ 29L1,0,1,1,1 + 24L1,1,0,0,0 − 28L1,1,0,0,1 −
64
3 L1,1,0,1,0 + 70

3 L1,1,0,1,1
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− 73
3 L1,1,1,0,0 + 58

3 L1,1,1,0,1 + 97
6 L1,1,1,1,0 + 5

2L1,1,1,1,1 + 28
3 L1,1,1,2,1

− 4L1,1,2,1,0 + 20
3 L1,1,2,1,1 − 4L1,1,2,2,1 +

(
−22

9 L2,1 − 9L0,0,0 + 11
6 L1,0,0

− 35
18L1,0,1 −

29
9 L1,1,0 + 31

12L1,1,1

)
π2 +

(
40L0,0 − 8L1,0 + 11L1,1

)
ζ3

+
(25

72L0 −
13
180L1

)
π4 − 6π2ζ3 + 24ζ5

)
+ z̄2 − 2z̄ + 2

z̄

(
83
48L1 + L0,1

− 1
3L1,0 −

29
24L1,1 − 4L0,0,1 −

11
3 L0,1,0 + 14L0,1,1 −

13
3 L1,0,0 + 15L1,0,1

− 9
4L1,1,0 + 11

3 L1,1,1 + 5
3L1,2,1 + 3L0,0,1,0 −

9
2L0,0,1,1 + 6L0,1,0,0

− 8L0,1,0,1 −
41
2 L0,1,1,0 + 63

2 L0,1,1,1 + 9L1,0,0,0 −
27
2 L1,0,0,1 −

23
2 L1,0,1,0

+ 23L1,0,1,1 −
23
2 L1,1,0,0 + 18L1,1,0,1 + 7

2L1,1,1,0 + 4L1,2,1,1 + 84L0,0,0,0,1

+ 72L0,0,0,1,0 − 114L0,0,0,1,1 + 66L0,0,1,0,0 − 80L0,0,1,0,1 − 68L0,0,1,1,0

+ 296
3 L0,0,1,1,1 + 32

3 L0,0,1,2,1 + 66L0,1,0,0,0 −
236
3 L0,1,0,0,1 − 68L0,1,0,1,0

+ 226
3 L0,1,0,1,1 −

248
3 L0,1,1,0,0 + 164

3 L0,1,1,0,1 + 74L0,1,1,1,0 + 14L0,1,1,1,1

− 128
3 L0,1,1,2,1 + 24L0,1,2,1,0 −

140
3 L0,1,2,1,1 + 112

3 L0,1,2,2,1 + 4L1,0,−1,0,1

+ 72L1,0,0,0,0 − 82L1,0,0,0,1 −
206
3 L1,0,0,1,0 + 220

3 L1,0,0,1,1 −
208
3 L1,0,1,0,0

+ 212
3 L1,0,1,0,1 + 182

3 L1,0,1,1,0 − 50L1,0,1,1,1 −
32
3 L1,0,1,2,1 − 74L1,1,0,0,0

+ 68L1,1,0,0,1 + 152
3 L1,1,0,1,0 −

58
3 L1,1,0,1,1 + 170

3 L1,1,1,0,0 − 44L1,1,1,0,1

− 4L1,1,1,1,0 − 4L1,1,1,1,1 −
40
3 L1,1,1,2,1 −

16
3 L1,1,2,1,0 − 10L1,1,2,1,1

+ 28L1,1,2,2,1 + 16L1,2,1,0,1 + 28
3 L1,2,1,1,0 − 24L1,2,1,1,1 + 40L1,2,1,2,1

− 56
3 L1,2,2,1,0 + 32L1,2,2,1,1 −

152
3 L1,2,2,2,1 +

(35
36L1 −

5
6L0,1 −

17
12L1,0

+ 21
8 L1,1 −

28
3 L0,0,1 −

82
9 L0,1,0 + 21

2 L0,1,1 −
1
3L1,0,−1 −

59
6 L1,0,0

+ 64
9 L1,0,1 + 73

9 L1,1,0 −
14
3 L1,1,1 −

22
9 L1,2,1

)
π2 +

(
13L1 + 34L0,1

+ 42L1,0 −
76
3 L1,1

)
ζ3 + 371

1080L1π
4
)

+
( 1

18
(
− z̄2 − 22z̄ + 26

)
+ 1

36
(
− 108z̄ + 11

)
L0 + 1

18
(
55z̄ − 47

)
L1 −

16
9 z̄L0,0 + 1

9
(
18z̄ − 1

)
L0,1

+ 1
12
(
55z̄ − 52

)
L1,0 + 1

72
(
− 553z̄ + 586

)
L1,1

)
π2 +

(1
6
(
235z̄ − 18

)
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− 2
3
(
29z̄ − 64

)
L1

)
ζ3 + 1

1080
(
187z̄ + 92

)
π4 −

3
√

1− z̄
(
5z̄ + 14

)
√

3 + z̄
R1

− 15z̄R2 + 6
(
z̄ − 2

)
R4 + z̄2 − 2z̄ + 2

z̄
(18R3 − 6R4) . (4.11)

We note that the expressions that contain square roots either as coefficients or as letters
of the iterated integrals are confined to the last four terms of the above formula and are
very compact. The structure of the results for other colour factors and also for the other
matching coefficients is quite similar to what is shown in eq. (4.11).

It is obvious that, for practical computations, it is important to be able to evaluate
the matching coefficients numerically. From this perspective, the result shown above is not
optimal as the numerical evaluation of iterated integrals with square-root-valued letters is
complicated. It is possible to get around this problem by providing the expansion of the
matching coefficient in powers of z and/or z̄ as was done in ref. [1].

Here, we note that it is also possible to obtain an expression for the matching coefficient
which is suitable for numerical evaluation, by rationalising the only square-root-valued
letter that appears in the final result. Indeed, since the matching coefficients only depend
on a single square root, we express those iterated integrals which actually depend on this
square root in terms of Goncharov polylograrithms (GPLs) using the rationalising variable
transformation from eq. (2.30). These GPLs are then evaluated at the argument

x =
√
z + i

√
4− z

√
z − i

√
4− z

. (4.12)

The remaining iterated integrals only depend on linear letters and therefore also fall into the
class of GPLs, but they are still evaluated at the argument z̄. Also the algebraic coefficients
in front of the integrals are expressed in terms of z̄. The use of these mixed arguments in the
iterated integrals allows for a relatively compact representation of the matching coefficients
which is straightforward to evaluate numerically. The corresponding expressions for the
matching coefficients are also included in the supplementary material file.

5 Conclusions

In this paper, we have described the computation of the matching coefficients for N -jettiness
beam functions through third order in perturbative QCD. This computation extends our
previous results reported in ref. [24], where only the generalised leading-colour contribution
to the q → q matching coefficient was presented.

Although beam functions were originally defined in soft-collinear effective theory, we
benefited from the observation made in ref. [26] that matching coefficients can be computed
by integrating collinear splitting functions over the N -jettiness phase space simplified in
the collinear limits. This observation together with the known fact that collinear splitting
functions can be calculated in a process-independent way if physical gauges are used, opened
up a way to compute the matching coefficients as described in this paper.

To simplify the actual computation, we made use of reverse unitarity which allowed
us to map the various real emission integrals onto loop-like integrals. We then employed
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the (by now) standard machinery for computing loop integrals, such as integration by
parts, differential equations, canonical bases etc. to make the computation manageable.
It is worth noting that, although we were able to construct a canonical basis for all the
master integrals involved in the computation, this could not be always done with publicly-
available programs because multiple square roots appeared in an alphabet associated with
the differential equations. Because of this, we had to resort to a manual construction of
candidate integrals for the canonical basis by studying their leading singularities in the
Baikov representation.

Another non-trivial aspect of the calculation involves the computation of the boundary
conditions for the master integrals. We calculated the required boundary conditions by
studying the soft z → 1 limit of the master integrals. Interestingly, it turns out that many
boundary constants that we require for this computation are related to the boundary
constants which appear in the calculation of the N3LO QCD corrections to Higgs boson
production cross section obtained in refs. [103]. This relation allows us to compare the
boundary constants that we computed in this and earlier papers [22, 23] with the results
of refs. [103], offering a welcome cross-check at the intermediate stages of the calculation.

We computed the matching coefficients for the qiqj , qg, gq, gg and qiq̄j partonic chan-
nels. The results are written as linear combinations of plus-distributions and regular func-
tions given by linear combinations of iterated integrals with mostly rational z-dependent
coefficients. As we pointed out in section 2, the differential equations for individual master
integrals involve various square roots of second degree z-polynomials. It is interesting that
many of these square roots disappear from the final answer, when all the master integrals
are combined. In fact, all such square roots should disappear in the divergent parts of the
partonic beam functions since these divergences are removed, e.g., by collinear counter-
terms that involve Altarelli-Parisi splitting functions. These functions were first calculated
through N3LO in refs. [113, 114] and are known to contain no square roots of z-polynomials.

The matching coefficients computed in this paper have been already calculated in
ref. [1]. Our calculation agrees with these results and provides a completely independent
check of the matching coefficients reported in that reference. It goes without saying that
for computations of such a complexity, an independent confirmation is always welcome.

The application of the N -jettiness slicing scheme to collider processes requires calcula-
tion of beam functions, jet functions and soft functions. The beam functions are universal
in that they do not depend on the number of jets in the final state; the same applies to
jet functions and, by now, both are known through N3LO in perturbative QCD.9 The soft
functions, on the other hand, are not known at that perturbative order even for the simplest
zero-jettiness case, in spite of the interesting progress in recent years [138–140]. Hence, to
fully unlock the potential of the N -jettiness slicing scheme for N3LO QCD computations,
further progress with computing N -jettiness soft-functions at N3LO is needed.

9The N3LO QCD contributions to jet functions were computed in refs. [136, 137].
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A Example of deriving partial fraction relations

In this appendix, we discuss an example to illustrate the algorithm that was used to find
partial fraction relations between different integrals. This algorithm was first proposed in
ref. [55]; a clear and concise description was provided in ref. [56]. More details about the
relevant mathematical concepts can be found in standard textbooks on the subject (see,
for example, ref. [142]).

We consider the following problem. Suppose that there exists a number of integral
families constructed in some way starting from relevant Feynman diagrams. An example is
given in table 2 where four families are displayed. The integrals described by these families
read

Ifa1...a12 = 1
(2π)3d

∫ ddk1 ddk2 ddk3[
Df

1
]a1
c
. . .
[
Df

5
]a5
c

(
Df

6
)a6 . . .

(
Df

12
)a12

, (A.1)

where [. . . ]c denotes a cut propagator which implements a delta-function constraint via
reverse unitarity. We would like to find if all integrals that belong to these four families
are independent, and to derive linear relations between them if they are not.

Since each family contains enough inverse propagators to describe all independent
scalar products between p, p̄ and k1,2,3, there exist linear relations between inverse propa-
gators of different families shown in table 2, and it is these linear relations that, potentially,
lead to useful partial fraction relations. To find these relations, the first step is to combine
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f T1 T28 T29 T30

Df
1 k2

1

Df
2 k2

2

Df
3 k2

3

Df
4 2k123 · p− t

z

Df
5

2k123·p̄
s − (1− z)

Df
6 (k1 − p)2 (k1 − p)2 (k1 − p)2 k2

12

Df
7 (k2 − p)2 (k2 − p)2 (k2 − p)2 (k1 − p)2

Df
8 (k12 − p)2 (k12 − p)2 (k12 − p)2 (k12 − p)2

Df
9 (k13 − p)2 (k13 − p)2 (k13 − p)2 (k13 − p)2

Df
10 (k123 − p)2 (k123 − p)2 (k123 − p)2 (k123 − p)2

Df
11 k1 · p̄ k1 · p̄ k13 · p̄ k1 · p̄

Df
12 k2 · p̄ k13 · p̄ k3 · p̄ k12 · p̄

Table 2. Integral family definitions for the example on partial fraction relations.

all inverse propagators that belong to different families into an overcomplete set. For the
sake of simplicity, we consider the topology T1 and add DT30

12 to its inverse propagators,
so that a toy version of the overcomplete set reads{

DT1
1 , . . . , DT1

12 , D
T30
12

}
. (A.2)

Since there are twelve independent scalar products and thirteen inverse propagators, there
is one linear relation between elements of the list in eq. (A.2); it reads

0 = DT1
11 +DT11

12 −DT30
12 . (A.3)

To find a partial fraction relation, we divide eq. (A.3) by the product of the three propa-
gators and obtain

0 = 1
DT1

12 D
T30
12

+ 1
DT1

11 D
T30
12
− 1
DT1

11 D
T1
12
. (A.4)

Our goal is to treat both linear relations for the numerators and partial fraction relations
for the denominators on the same footing and systematically apply them to integrands
of Feynman integrals. To unify the description of numerator and denominator relations,
we describe the integrands not as rational functions of the Df

i , but as polynomials in Df
i

and D̃f
i = 1/Df

i . We treat the Df
i and D̃f

i as a priori independent variables which are
then subject to the relations Df

i D̃
f
i − 1 = 0, that describe cancelling numerators against

denominators. Moreover, in the example at hand the variables are also subject to the linear
relation in eq. (A.3) and the partial fraction relation in eq. (A.4) which becomes

0 = D̃T1
12 D̃

T30
12 + D̃T1

11 D̃
T30
12 − D̃T1

11 D̃
T1
12 . (A.5)
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In this language, the relations between the variables Df
i and D̃f

i are encoded by polynomials
that we equate to zero and applying one of these relations can be thought of as extracting
one of the polynomials, setting it to zero and keeping the remainder. A trivial example
would be a cancellation of some factors in a numerator and a denominator using

DT1
7 D̃T1

7 D̃T1
8 D̃T1

9 =
(
DT1

7 D̃T1
7 − 1

)
︸ ︷︷ ︸

=0

D̃T1
8 D̃T1

9 + D̃T1
8 D̃T1

9 = D̃T1
8 D̃T1

9 . (A.6)

Similarly, extractingDT1
11 +DT11

12 −DT30
12 corresponds to eliminating a linear relation between

numerators in eq. (A.3), and extracting D̃T1
12 D̃

T30
12 + D̃T1

11 D̃
T30
12 − D̃T1

11 D̃
T1
12 corresponds to

eliminating a partial fraction relation in eq. (A.4).
To phrase this more generally, given an integrand of a Feynman integral ID written

as a polynomial in the variables Df
i and D̃f

i and a set of polynomials {pi} that encode
relations between the variables, we would like to systematically construct a decomposition

ID =
∑
i

cD,i pi + rD , (A.7)

where the coefficients cD,i and the remainder rD are also polynomials in Df
i and D̃f

i .
The remainder rD is equivalent to ID because if we consider the case where all relations
encoded by the polynomials pi hold, i.e. where all the pi’s vanish simultaneously, then
eq. (A.7) becomes

ID|{pi=0} = rD . (A.8)

Moreover, the remainder should be unique so that if we decompose two or more integrands
in this way and find that their remainders are linearly independent over functions of the
kinematic variables, the integrands have to be independent. Thus, such a procedure allows
us to remove all linear and partial fraction relations between integrands.

In order to make this approach systematic, we have to specify which monomials are
preferred over others. For example, in eq. (A.6) we preferred terms with a lower total
degree, i.e. we preferred the term 1 over DT1

7 D̃T1
7 . Intuitively, this ensures that numerators

are cancelled against denominators whenever possible. For the linear and partial fraction
relations in eqs. (A.3) and (A.5) all terms have same total degree, so we must use other
additional criteria to specify preferred terms. In general, this is done by specifying a
monomial ordering, which defines an ordering of the exponents of the variables.10

The problem we just described is a classic problem in the field of algebraic geometry and
corresponds to finding a canonical representative modulo polynomial ideal. The set of all
linear combinations 〈{pi}〉 =

∑
i cD,i pi, where the cD,i are polynomials in the Df

i and D̃f
i ,

is called the polynomial ideal spanned by the polynomials pi. Decomposing a polynomial
ID into an element of the ideal 〈{pi}〉 and a remainder r can be achieved using a procedure

10We follow the suggestion from refs. [55, 56] and use a monomial ordering where we first compare
the total degree of two monomials for the variables {D̃f

1 , . . . , D̃
f
12, D

f
1 , . . . , D

f
12}. If that is the same, we

successively compare the total degrees considering fewer variables, i.e. {D̃f
2 , . . . , D̃

f
12, D

f
1 , . . . , D

f
12}, then

{D̃f
3 , . . . , D̃

f
12, D

f
1 , . . . , D

f
12}, etc.
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called polynomial reduction. In general, this decomposition is not unique for an arbitrary
set of polynomials {pi}. However, what is important for us is the set of simultaneous zeros
of the polynomials {pi}. Therefore, we can choose different sets of polynomials {p̃i} which
have the same set of simultaneous zeros and generate the same polynomial ideal. For each
given set of polynomials there exists a particular choice of polynomials, called a Gröbner
basis, for which the remainder rD becomes unique. Here, we will not go into detail of
how to construct a Gröbner basis and only note that the construction of Gröbner bases
is implemented in many computer algebra systems. We have used the implementations in
Mathematica and Singular [143] for our calculation.

To apply this method to find relations between integrands of Feynman integrals, the
idea is to start from the polynomials that encode cancellations between numerators Df

i and
denominators D̃f

i , i.e. D
f
i D̃

f
i − 1, as well as the linear relations between the numerators.

The partial fraction relations between denominators automatically arise as a consequence
of the numerator relations.11 For the toy overcomplete set from eq. (A.2) we start with

LD = {DT1
1 D̃T1

1 − 1, . . . , DT1
12 D̃

T1
12 − 1, DT30

12 D̃T30
12 − 1, DT1

11 +DT1
12 −DT30

12 } . (A.9)

We now compute the Gröbner basis for this set and find

LGD =
{
DT1

1 D̃T1
1 − 1, . . . , DT1

12 D̃
T1
12 − 1, (DT1

12 +DT1
11 )D̃T30

12 − 1,

DT30
12 −DT1

12 −DT1
11 , D̃

T1
12 D̃

T30
12 + D̃T1

11 D̃
T30
12 − D̃T1

11 D̃
T1
12

}
. (A.10)

Compared to eq. (A.9), the next-to-last polynomial in eq. (A.9) war reexpressed and the
last polynomial in eq. (A.10) was added. Finally, this Gröbner basis can be used to compute
the remainders of the integrands of Feynman integrals via polynomial reduction.

We illustrate this procedure by considering an integral from the topology T1 defined
by the integrand

IT1
11111;1010011 = D̃T1

1 . . . D̃T1
5 D̃T1

6 D̃T1
8 D̃T1

11 D̃
T1
12 . (A.11)

Decomposing IT1
11111;1010011 with respect to the Gröbner basis LGD in eq. (A.10) yields

IT1
11111;1010011 =

[
D̃T1

11 D̃
T1
12 − D̃T1

11 D̃
T30
12 − D̃T1

12 D̃
T30
12

]
D̃T1

1 . . . D̃T1
5 D̃T1

6 D̃T1
8

+ D̃T1
1 . . . D̃T1

5 D̃T1
6 D̃T1

8 D̃T1
11 D̃

T30
12 + D̃T1

1 . . . D̃T1
5 D̃T1

6 D̃T1
8 D̃T1

12 D̃
T30
12 .

(A.12)

The first term on the right hand side of eq. (A.12) is proportional to the last element of the
Gröbner basis and therefore vanishes; the last two terms represent the remainder. Hence,
we obtain

IT1
11111;1010011 = D̃T1

1 . . . D̃T1
5 D̃T1

6 D̃T1
8 D̃T1

11 D̃
T30
12 + D̃T1

1 . . . D̃T1
5 D̃T1

6 D̃T1
8 D̃T1

12 D̃
T30
12 . (A.13)

11As pointed out in refs. [58, 59] it is also possible to directly use the independent scalar products as the
variables for the numerators. In that case one does not even have to specify the linear relations between
numerators since they will automatically be found though the construction of the Gröbner basis.
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Upon inspecting the two integrals on the right hand side of eq. (A.13), we find that
we can map them to the integral families shown in table 2 provided that we redefine the
loop momenta k2 ↔ k3. We obtain

IT1
11111;1010011 = IT28

11111;1001011 + IT29
11111;1001011 . (A.14)

This is the partial fraction relation that was displayed in eq. (2.17). We note that, although
we added the linearly-dependent propagator from a family T30 to the twelve propagators
of the family T1, the linear relation that we found involves integrals from the families T1,
T28, T29. As a final comment we note that, in general, it may still be necessary to reduce
integrals found in the last step to master integrals using the IBP relations.

B Leading-singularity analysis: an example

In this appendix, we give an explicit example of finding a candidate for a canonical integral
based on the analysis of the leading singularities in the Baikov representation [78, 79]. For
this example, we consider a family of RRV integrals defined by the inverse propagators12

D1 = k2
1 , D2 = k2

2 , D3 = 2k12 · p−
t

z
, D4 = 2k12 · p

s
− z̄ ,

D5 = k2
3 , D6 = k2

12 , D7 = k2
13 , D8 = k2

123 ,

D9 = (k1 − p)2 , D10 = (k123 − p)2 , D11 = k2 · p̄ , D12 = k3 · p̄ .

(B.1)

We focus on the following integral

IA3
1111;10111111 = 1

(2π)3d

∫ ddk1 ddk2 ddk3
[D1]c[D2]2[D3]c[D4]cD5D7D8D9D10D11D12

. (B.2)

In eq. (B.2) [. . . ]c denotes a cut propagator introduced via reverse unitarity. Note that
the propagator D6 is absent in the integrand in eq. (B.2). We assume that s = 2p · p̄ = 1
and t = 1 since, as we explained in the main text of the paper, the dependence of all
integrals on s and t is uniform and can be easily restored. The differential equation in z,
that IA3

1111;10111111 satisfies, is not in canonical form. Hence, our goal is to find a new master
integral which is directly related to IA3

1111;10111111 and is canonical.
To proceed, we start by employing the Baikov representation [78, 79] to render the

integrand into a convenient form where the propagators Di take the role of the integration
variables. Up to an irrelevant overall prefactor, we therefore write

IA3
1111;10111111 ∼ Cut

D1,D2,D3,D4

∫ dD1 . . . dD12
D1 . . . D5D7 . . . D12

P (D1, . . . , D12)(d−6)/2 . (B.3)

In eq. (B.3) P (D1, . . . , D12) = G(k1, k2, k3, p, p̄)|pi·pj=
∑

k
ckDk

is the so-called Baikov poly-
nomial, i.e. the Gram determinant of the momenta k1,2,3 and external momenta p and p̄

where all scalar products have been expressed in terms of inverse propagators. The advan-
tage of the Baikov representation for the problem at hand is that it allows us to derive a

12The first four propagators correspond to delta-function constraints re-written as propagators using
reverse unitarity.
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convenient starting point for the analysis of the cut integrals. Indeed, cutting propagators
corresponds to taking residues at Di = 0, i = 1, 2, 3, 4, in eq. (B.3) which, in turn, amounts
to simply evaluating the Baikov polynomial at the point D1 = D2 = D3 = D4 = 0.

For the cut integral in eq. (B.3), the Baikov polynomial reads

P (0, 0, 0, 0, D5, . . . , D12)

= 1
16z2

(
D5z̄

2 −D6z̄
2 −D7z̄

2 +D8z̄
2 −D5,6zz̄ +D2

6zz̄ +D5,7zz̄ −D2
7zz̄

−D5,8zz̄ −D6,8z
2z̄ +D7,8(2− z)zz̄ −D2

8zz̄
2 + 2D5,9zz̄

2 −D6,9zz̄
2 −D7,9zz̄

2

+D8,9zz̄
2 −D6,10zz̄

2 −D7,10zz̄
2 +D8,10zz̄

2 − 2D5,11z̄ + 2D6,11z̄ + 2D7,11z̄

− 4D8,11z̄ + 2D5,12z̄ − 2D6,12z̄ − 2D7,12z̄ −D5,6,7z
2 +D2

6D7z
2 +D6D

2
7z

2

+D5,6,8z
2 −D2

6D8z
2z̄ −D6,7,8(2− z)z2 +D6D

2
8z

2z̄ −D5,6,9z
2z̄ +D2

6D9z
2z̄

+D5,7,9z
2z̄ +D6,7,9z

2z̄ −D5,8,9z
2z̄ −D6,8,9z

2(z + 1)z̄ −D7,8,9z
3z̄ +D2

8D9z
3z̄

+D5D
2
9z

2z̄2 +D2
6D10z

2z̄ +D6,7,10z
2z̄ −D6,8,10z

2z̄ −D6,9,10z
2z̄2 −D7,9,10z

2z̄2

+D8,9,10z
2z̄2 − 2D2

5D11z + 4D5,6,11z − 2D2
6D11z + 2D5,7,11z − 2D6,7,11z

+ 2D5,8,11z
2 + 2D6,8,11z − 2D7,8,11(2− z)z + 4D2

8D11zz̄ − 2D5,9,11zz̄

+ 2D6,9,11zz̄ − 2D8,9,11zz̄ + 2D5,10,11zz̄ + 2D7,10,11zz̄ − 4D8,10,11zz̄ − 2D5,6,12z

+ 2D2
6D12z + 2D6,7,12z +D8D

2
114 + 2D6,8,12zz̄ + 4D5,9,12zz̄ − 2D7,9,12zz̄

− 2D8,9,12zz̄ − 2D6,10,12zz̄ +D5,11,12 − 4 +D6,11,124 +D7,11,124− 2D5,6,8,11z
2

+ 2D2
6D8,11z

2 + 4D6,7,8,11z
2 − 2D2

8D6,11(2− z)z2 − 2D2
5D9,11z

2 + 4D5,6,9,11z
2

− 2D2
6D9,11z

2 + 2D5,8,9,11z
2(z + 1) + 2D6,8,9,11z

2(z + 1)− 2D2
8D9,11z

3

+ 2D5,6,10,11z
2 − 2D2

6D10,11z
2 − 4D6,7,10,11z

2 + 2D6,8,10,11(3− 2z)z2

+ 2D5,9,10,11z
2z̄ + 2D6,9,10,11z

2z̄ − 2D8,9,10,11z
2z̄ − 2D2

10D6,11z
2z̄ + 4D2

11D5,8z

− 4D2
11D6,8z − 2D2

6D8,12z
2 − 4D2

8,11z − 2D5,6,9,12z
2 + 2D2

6D9,12z
2 + 4D6,7,9,12z

2

− 2D6,8,9,12z
3 − 4D2

11D5,10z + 2D2
9D5,12z

2z̄ + 4D2
11D6,10z + 2D2

9D6,12z
2z̄

+ 2D2
6D10,12z

2 + 4D2
11D8,10z − 2D2

9D8,12z
2z̄ − 2D6,9,10,12z

2z̄ − 4D6,8,11,12z

− 4D5,9,11,12z + 4D6,9,11,12z + 4D8,9,11,12z + 4D6,10,11,12z + 4D2
12D6,9z

+ 4D6D
2
8,11z

2 − 8D2
11D6,8,10z

2 + 4D6D
2
10,11z

2 − 8D6,8,9,11,12z
2 + 8D6,9,10,11,12z

2

+ 4D6D
2
9,12z

2) , (B.4)

where we have used the abbreviations Da,b,c,... = DaDbDc . . . .
Calculation of the leading singularities requires us to compute (iterated) residues in

all integration variables at all possible locations of the poles, eventually including those
induced by the Baikov polynomial P (D1, . . . , D12). Conjecturally [70], this analysis allows
us to determine candidates for canonical integrals by searching for linear combinations of
integrals

1. which are ultra-violet (UV) finite;

2. which do not have any double poles in any of the integration variables;
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3. whose leading singularities, i.e. the maximally iterated residues at all single poles,
are constant in the sense that they do not depend on the kinematic variable z.

To find candidate integrals, we work in d = 4 dimensions. As we already mentioned,
the integral in eq. (B.2) is not canonical and has to be modified appropriately. Hence, we
make a general ansatz for the numerator and write

Ican ∼ Cut
D1,D2,D3,D4

∫ dD1 . . . dD12
D1 . . . D5D7 . . . D12

Ncan(D1, . . . , D12)
P (D1, . . . , D12)2 , (B.5)

Ncan(D1, . . . , D12) = a0 +
12∑
k=5

akDk +
12∑
k=5

k∑
l=5

ak,lDkDl , (B.6)

where the degree of Ncan(D1, . . . , D12) is bounded by the requirement of UV finiteness.13

This formula implies that the candidate integral is a linear combination of IA3
1111;10111111 and

simpler integrals that belong to the same integral family. Our goal is to find the coefficients
a0, ak and ak,l that make Ican satisfy the three requirements listed above.

We note that the analysis of the leading singularities of the full integral, which nec-
essarily involves studying the pole structure of the Baikov polynomial P (D1, . . . , D12), is
quite demanding. To simplify it, we organise the analysis iteratively, starting with the
computation of simplest residues, and then moving to more complex ones. Experience
shows that we do not need to carry this analysis to the very end and that after several
iterations a clear candidate for a canonical integral emerges. Below we illustrate how this
is done in practice.

A glance at eq. (B.5) reveals that the simplest residue to compute (the maximal cut)
is the one at Di = 0, with i = 1, . . . , 5, 7, . . . , 12. Computing this residue, we find

Cut
D1,...,D̂6,...,D12

[Ican] ∼ 16z2

1− z

∫
dD6

a0 + a6D6 + a6,6D
2
6

D6(zD6 − (1− z)) , (B.7)

where D̂6 means that no residue in D6 has been calculated. The denominator of the
integrand in eq. (B.7) comes from the Baikov polynomial which simplifies once all the
other propagators are set to zero.

For the maximal-cut computation we need to analyse residues in D6 in eq. (B.7). We
note that absence of double poles at infinity immediately implies a6,6 = 0. It is then
clear that there are two simple poles in eq. (B.7), one at D6 = 0 and another one at
D6 = (1− z)/z. Computing the two residues we obtain

Cut
D1,...,D6,...,D12

[Ican] ∼
{
− 16z2

(1− z)2a0 ,
16z2

(1− z)2

(
a0 + 1− z

z
a6

)}
. (B.8)

These residues are called the “leading singularities”. According to the third requirement
mentioned above, a candidate for a canonical master integral should have constant (i.e.
z-independent) leading singularities. We accomplish this by choosing

a0 = (1− z)2

16z2 , a6 = 0 . (B.9)

13This requirement can be relaxed in some cases allowing for logarithmic UV divergences.
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Computing the maximal cut allows us to determine some, but not all coefficients in
the general ansatz shown in eq. (B.6). To fix more coefficients, we need to inspect the
next-to-maximal cuts. This means that, instead of computing the residues at Di = 0 for
all i = 5, 7, 8, . . . , 12, we do this for all but one of them. It is clear that the number of
next-to-maximal cuts that need to be considered is seven in this case.

As an example, we consider the next-to-maximal cut where we do not take the residue
at D7 = 0. The corresponding integrand reads

Cut
D1,...,D̂6,D̂7,...,D12

Ican ∼ 16z2
∫

dD6 dD7

(1−z)2

16z2 + a7D7 + a7,6D6D7 + a7,7D
2
7

D7(D6 +D7)((1− z) + zD7)(zD6 − (1− z)) .

(B.10)

To avoid poles at D7 →∞, we set a7,7 = 0. Computing the remaining poles in D7, we find
that this induces double poles in D6 at D6 = (1− z)/z unless we choose

a7,6 = 0 , a7 = 1− z
16z . (B.11)

Calculating all the remaining residues in D6 and D7 in eq. (B.10), we find that with this
choice of constants the leading singularities are {−1, 1}.

As another example, we consider the next-to-maximal cut where the D8 = 0 residue
is not taken. We then find

Cut
D1,...,D̂6,D7,D̂8,...,D12

Ican ∼
16z2

1− z

∫
dD6 dD8

(1−z)2

16z2 + a8D8 + a8,6D6D8 + a8,8D
2
8

D8(D6 −D8)(1− zD8)(zD6 − (1− z)) ,

(B.12)

We can again set a8,8 = 0 to avoid poles at infinity. Computing residues at D8, we find
that the result does not have double poles in the variable D6. However, since our goal
is to find candidates for canonical integrals, we can choose the simplest option whenever
possible. Thus, we choose a8,6 = 0 and find the following leading singularities{

±1,±
(1
z

+ 16a8
1− z

)
,±
(

1− 1
z

+ 16a8
1− z

)}
. (B.13)

They become z-independent if we choose

a8 = −(1− z)2

16z . (B.14)

We perform the analysis of all next-to-maximal and next-to-next-to-maximal cuts and
find that with the choice of the following numerator polynomial

Ncan(D1, . . . , D12) = 1− z
16z

(1− z
z

+D7 − (1− z)D8 + 2
z
D12 + 2D10D11

)
, (B.15)

all requirements mentioned above are satisfied.
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The presence of the integration variables Di in the numerator of the integrand removes
the corresponding propagators in the original integral. Therefore, the candidate for a
canonical integral to replace IA3

1111;10111111 reads

Ican = 1− z
16z

(1− z
z

IA3
1111;10111111 + IA3

1111;10011111 − (1− z)IA3
1111;10101111

+ 2
z
IA3

1111;10111110 + 2IA3
1111;10111001

)
. (B.16)

We can easily check whether or not this candidate integral is indeed canonical since
we know the differential equations for all integrals that appear in eq. (B.16). Although in
this particular case Ican turns out to be canonical, in general this does not happen since
we terminated the cut analysis once the next-to-next-to-maximal cut was computed.

Nevertheless, even if the candidate integral turns out to be not fully canonical after
the next-to-leading cut analysis, knowing a good candidate is extremely helpful. Indeed,
we note that once the differential equations for the integrals that Ican couples to have
been brought to a canonical form, also the differential equation that Ican satisfies becomes
partially canonical. Since the integral we started from has eleven propagators and we
analysed the leading singularities up to the next-to-next-to-maximal cuts, all blocks in the
differential equation corresponding to sectors with at least nine propagators are canonical.
To deal with the rest, we resorted to methods described in ref. [62] where a bottom-up
construction of the canonical basis is described. As a final remark we note that an analysis
of leading singularities combined with the methods of ref. [62] allowed us to find canonical
bases for all integrals that appear in the computation of the beam function at N3LO in
perturbative QCD.

C Building blocks for the beam-function renormalisation

In this appendix, we collect formulas that are needed for the extraction of the matching
coefficients from the bare partonic beam functions.

First, we describe how to construct the MS parton distribution functions in pertur-
bation theory. The starting point is the Altarelli-Parisi equation, eq. (3.28), and the
perturbative expansion of the splitting functions

Pij(z) =
∞∑
n=0

(
αs
2π

)n
P

(n)
ij (z) . (C.1)

To construct the parton distribution functions fij , we integrate the Altarelli-Parisi equation
with the boundary condition f (0)

ij (z) = δ(1− z). We employ the evolution equation for the
strong coupling constant

µ2 d
dµ2αs(µ

2) = β(αs)− ε αs(µ2) , (C.2)

where

β(αs) = −α
2
s

4πβ0 −
α3
s

(4π)2β1 +O(α4
s) , (C.3)
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and

β0 = 11
3 CA −

4
3TFNf , β1 = 34

3 C
2
A −

(20
3 CA + 4CF

)
TFNf , (C.4)

are the well-known expansion coefficients of the beta function. We write the result for the
partonic PDFs as

f
(1)
ij = − 1

ε
P

(0)
ij , (C.5)

f
(2)
ij = 1

2ε2
∑
k

P
(0)
ik ⊗z P

(0)
kj + β0

4ε2P
(0)
ij −

1
2εP

(1)
ij , (C.6)

f
(3)
ij = − 1

6ε3
∑
k,`

P
(0)
ik ⊗z P

(0)
k` ⊗z P

(0)
`j −

β0
4ε3

∑
k

P
(0)
ik ⊗z P

(0)
kj −

β2
0

12ε3P
(0)
ij

+ 1
3ε2

∑
k

P
(1)
ik ⊗z P

(0)
kj + β0

6ε2P
(1)
ij + 1

6ε2
∑
k

P
(0)
ik ⊗z P

(1)
kj

+ β1
12ε2P

(0)
ij −

1
3εP

(2)
ij , (C.7)

where the dependence of fij ’s and Pij ’s on z has been suppressed.
The expansion coefficients of the renormalisation constants for the quark case (i = q)

read

Z(1)
q = CF

[
−L0

(
t

µ2

) 4
ε

+ δ(t)
[ 4
ε2

+ 3
ε

]]
, (C.8)

Z(2)
q = CACF

[
L0

(
t

µ2

)[ 22
3ε2 + 1

ε

(
−134

9 + 2
3π

2
)]

+ δ(t)
[
−11
ε3

+ 1
ε2

(35
18 −

1
3π

2
)

+ 1
ε

(1769
108 + 11

18π
2 − 20ζ3

)]]
+ C2

F

[
L1

(
t

µ2

) 16
ε2

+ L0

(
t

µ2

)[
−16
ε3
− 12
ε2

]
+ δ(t)

[ 8
ε4

+ 12
ε3

+ 1
ε2

(9
2 −

4
3π

2
)

+ 1
ε

(3
4 − π

2

+ 12ζ3

)]]
+ CFNFTF

[
L0

(
t

µ2

)[
− 1
ε2

8
3 + 1

ε

40
9

]
+ δ(t)

[ 4
ε3
− 2

9ε2

+ 1
ε

(
−121

27 −
2
9π

2
)]]

, (C.9)

and

Z(3)
q = C2

ACF

[
L0

(
t

µ2

)[
− 484

27ε3 + 1
ε2

(4172
81 − 44

27π
2
)

+ 1
ε

(
−490

9 + 536
81 π

2

− 88
9 ζ3 −

44
135π

4
)]

+ δ(t)
[2662

81ε4 + 1
ε3

(
−8999

243 + 110
81 π

2
)

+ 1
ε2

(
−16147

486 − 899
243π

2 + 1408
27 ζ3 + 44

405π
4
)

+ 1
ε

(412907
8748 + 419

729π
2
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− 5500
27 ζ3 + 19

30π
4 + 88

27π
2ζ3 + 232

3 ζ5

)]]

+ CAC
2
F

[
L1

(
t

µ2

)[
− 1
ε3

176
3 + 1

ε2

(1072
9 − 16

3 π
2
)]

+ L0

(
t

µ2

)[220
3ε4 + 1

ε3

(
−136

3 + 4π2
)
− 1
ε2

(2975
27 + 4

9π
2

− 80ζ3

)]
+ δ(t)

[
−44
ε5
− 1
ε4

(227
9 + 4

3π
2
)

+ 1
ε3

(3853
54 + 19

3 π
2

− 80ζ3

)
+ 1
ε2

(1703
36 − 305

54 π
2 − 268

3 ζ3 + 4
9π

4
)

+ 1
ε

(151
12 −

205
27 π

2

+ 844
9 ζ3 −

247
405π

4 + 8
9π

2ζ3 + 40ζ5

)]]
+ C3

F

[
−L2

(
t

µ2

) 32
ε3

+ L1

(
t

µ2

)[64
ε4

+ 48
ε3

]
+ L0

(
t

µ2

)[
−32
ε5
− 48
ε4
− 1
ε3

(
18− 16

3 π
2
)

− 1
ε2

(
3− 4π2 + 48ζ3

)]
+ δ(t)

[ 32
3ε6 + 24

ε5
+ 1
ε4

(
18− 16

3 π
2
)

+ 1
ε3

(15
2 − 8π2 + 80

3 ζ3

)
+ 1
ε2

(9
4 − 3π2 + 36ζ3

)
+ 1
ε

(29
6 + π2

+ 68
3 ζ3 + 8

15π
4 − 16

9 π
2ζ3 − 80ζ5

)]]

+ CACFTFNF

[
L0

(
t

µ2

)[ 352
27ε3 −

1
ε2

(2672
81 − 16

27π
2
)

+ 1
ε

(1672
81

− 160
81 π

2 + 224
9 ζ3

)]
+ δ(t)

[
− 1
ε4

1936
81 + 1

ε3

(5384
243 −

40
81π

2
)

+ 1
ε2

(6148
243 + 424

243π
2 − 704

27 ζ3

)
+ 1
ε

(5476
2187 −

1180
729 π

2 + 2656
81 ζ3

− 46
135π

4
)]]

+ C2
FTFNF

[
L1

(
t

µ2

)[ 64
3ε3 −

1
ε2

320
9

]

+ L0

(
t

µ2

)[
− 80

3ε4 + 32
3ε3 + 1

ε2

(700
27 + 8

9π
2
)

+ 1
ε

(220
9 − 64

3 ζ3

)]
+ δ(t)

[16
ε5

+ 100
9ε4 −

1
ε3

(310
27 + 8

3π
2
)
− 1
ε2

(457
27 −

38
27π

2 − 160
9 ζ3

)

− 1
ε

(4664
81 − 32

27π
2 + 208

27 ζ3 −
164
405π

4
)]]

+ CFT
2
FN

2
F

[
L0

(
t

µ2

)[
− 64

27ε3 + 320
81ε2 + 64

81ε

]
+ δ(t)

[ 352
81ε4

− 368
243ε3 −

1
ε2

(344
81 + 16

81π
2
)
− 1
ε

(13828
2187 −

80
243π

2 − 256
81 ζ3

)]]
. (C.10)
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For gluons (i = g) we find

Z(1)
g = CA

[
−L0

(
t

µ2

) 4
ε

+ δ(t)
[ 4
ε2

+ 11
3ε

]]
−NFTF δ(t)

4
3ε , (C.11)

Z(2)
g = C2

A

[
L1

(
t

µ2

) 16
ε2

+ L0

(
t

µ2

)[
−16
ε3
− 22

3ε2 + 1
ε

(
−134

9 + 2
3π

2
)]

+ δ(t)
[ 8
ε4

+ 11
3ε3 + 1

ε2

(67
9 −

5
3π

2
)

+ 1
ε

(548
27 −

11
18π

2 − 8ζ3

)]]

+ CANFTF

[
L0

(
t

µ2

)[ 8
3ε2 + 40

9ε

]
+ δ(t)

[
− 4

3ε3 −
20
9ε2

+ 1
ε

(
−184

27 + 2
9π

2
)]]
− CFNFTF δ(t)

2
ε
, (C.12)

and

Z(3)
g = C3

A

[
−L2

(
t

µ2

) 32
ε3

+ L1

(
t

µ2

)[64
ε4

+ 1
ε2

(1072
9 − 16

3 π
2
)]

+ L0

(
t

µ2

)[
−32
ε5

+ 44
3ε4 −

1
ε3

(2170
27 − 28

3 π
2
)
− 1
ε2

(6826
81

− 88
27π

2 − 32ζ3

)
+ 1
ε

(
−490

9 + 536
81 π

2 − 88
9 ζ3 −

44
135π

4
)]

+ δ(t)
[ 32

3ε6 −
44
3ε5 + 1

ε4

(1807
81 − 20

3 π
2
)

+ 1
ε3

(14095
243 − 187

81 π
2

− 160
3 ζ3

)
+ 1
ε2

(7072
243 −

6259
486 π

2 − 176
27 ζ3 + 224

405π
4
)

+ 1
ε

(331153
4374 − 6217

729 π
2 − 260

3 ζ3 + 583
810π

4 + 64
27π

2ζ3 + 112
3 ζ5

)]]

+ C2
ATFNF

[
−L1

(
t

µ2

) 320
9ε2 + L0

(
t

µ2

)[
− 16

3ε4 + 544
27ε3

+ 1
ε2

(2464
81 − 32

27π
2
)

+ 1
ε

(1672
81 − 160

81 π
2 + 224

9 ζ3

)]
+ δ(t)

[ 16
3ε5 −

280
81ε4 + 1

ε3

(
−3256

243 + 68
81π

2
)
− 1
ε2

(2684
243

− 1012
243 π

2 + 128
27 ζ3

)
+ 1
ε

(
−42557

2187 + 2612
729 π

2 + 16
81ζ3 −

154
405π

4
)]]

+ CACFTFNF

[
L0

(
t

µ2

)[ 8
3ε2 + 1

ε

(220
9 − 64

3 ζ3

)]
+ δ(t)

[
− 1
ε3

8
9

+ 1
ε2

(
−154

27 + 64
9 ζ3

)
+ 1
ε

(
−4145

81 + 4
9π

2 + 608
27 ζ3 + 16

135π
4
)]]
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+ C2
FTFNF δ(t)

1
ε

2
3 + CAT

2
FN

2
F

[
L0

(
t

µ2

)[ 32
27ε3 −

160
81ε2 + 64

81ε

]

+ δ(t)
[
− 80

81ε4 −
80

243ε3 −
1
ε2

(16
81 + 8

81π
2
)
− 1
ε

(3622
2187 + 80

243π
2

− 448
81 ζ3

)]]
+ CFN

2
FT

2
F δ(t)

[
− 8

9ε2 + 44
27ε

]
. (C.13)

The NLO and NNLO coefficients agree with ref. [26].
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