KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine Learning in Manufacturing towards Industry 4.0: From ‘For Now’ to ‘Four-Know’

Chen, Tingting ; Sampath, Vignesh; May, Marvin Carl ORCID iD icon 1; Shan, Shuo; Jorg, Oliver Jonas; Aguilar Martín, Juan José; Stamer, Florian ORCID iD icon 1; Fantoni, Gualtiero; Tosello, Guido; Calaon, Matteo
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

While attracting increasing research attention in science and technology, Machine Learning (ML) is playing a critical role in the digitalization of manufacturing operations towards Industry 4.0. Recently, ML has been applied in several fields of production engineering to solve a variety of tasks with different levels of complexity and performance. However, in spite of the enormous number of ML use cases, there is no guidance or standard for developing ML solutions from ideation to deployment. This paper aims to address this problem by proposing an ML application roadmap for the manufacturing industry based on the state-of-the-art published research on the topic. First, this paper presents two dimensions for formulating ML tasks, namely, ’Four-Know’ (Know-what, Know-why, Know-when, Know-how) and ’Four-Level’ (Product, Process, Machine, System). These are used to analyze ML development trends in manufacturing. Then, the paper provides an implementation pipeline starting from the very early stages of ML solution development and summarizes the available ML methods, including supervised learning methods, semi-supervised methods, unsupervised methods, and reinforcement methods, along with their typical applications. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000156346
Veröffentlicht am 02.03.2023
Originalveröffentlichung
DOI: 10.3390/app13031903
Scopus
Zitationen: 34
Web of Science
Zitationen: 15
Dimensions
Zitationen: 34
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2023
Sprache Englisch
Identifikator ISSN: 2076-3417
KITopen-ID: 1000156346
Erschienen in Applied Sciences (Switzerland)
Verlag MDPI
Band 13
Heft 3
Seiten Art.-Nr.: 1903
Vorab online veröffentlicht am 01.02.2023
Schlagwörter machine learning, Industry 4.0, manufacturing, artificial intelligence, smart manufacturing, digitization
Nachgewiesen in Scopus
Web of Science
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page