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Cosmological constraints on the sum of the neutrino masses can be relaxed if the number density
of active neutrinos is reduced compared to the standard scenario, while at the same time keeping
the effective number of neutrino species Neff ≈ 3 by introducing a new component of dark radiation.
We discuss a UV complete model to realise this idea, which simultaneously provides neutrino masses
via the seesaw mechanism. It is based on a U(1) symmetry in the dark sector, which can be either
gauged or global. In addition to heavy seesaw neutrinos, we need to introduce O(10) generations of
massless sterile neutrinos providing the dark radiation. Then we can accommodate active neutrino
masses with

∑
mν ∼ 1 eV, in the sensitivity range of the KATRIN experiment. We discuss the

phenomenology of the model and identify the allowed parameter space. We argue that the gauged
version of the model is preferred, and in this case the typical energy scale of the model is in the
10 MeV to few GeV range.
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1. INTRODUCTION

Neutrinos play a crucial role during various stages of
the cosmological evolution, see e.g., [1, 2] for reviews. In
particular, non-zero neutrino masses will influence cos-
mological structure formation. Indeed, within the stan-
dard ΛCDM model, cosmology provides a tight bound on
the sum of neutrino masses. From combined CMB and
BAO observations, the Planck collaboration obtains [3]:

∑
mν ≡

3∑

i=1

mi < 0.12 eV (95% CL) , (1.1)

where mi are the masses of the three neutrino mass
states. Depending on the specific cosmological data used,
even stronger limits can be obtained, see e.g. [4]. With
data from ongoing/upcoming large-scale structure sur-
veys by DESI [5] and Euclid [6], sensitivities to

∑
mν

of 0.02 eV could be achieved in the very near future, see
e.g. [7, 8]. From neutrino oscillation data, a minimal
value of

∑
mν ≈ 0.06 eV for the normal neutrino mass

ordering and 0.1 eV for inverted ordering is predicted for
mlightest = 0. Hence, we can expect a positive detection
of non-zero neutrino mass from cosmology in ΛCDM in
the next 5–7 years.

On the other hand, the search for the absolute neu-
trino mass scale is also one of the top priorities in terres-
trial experimental physics. The best limit on the kine-
matical mass relevant for beta decay comes currently
from the KATRIN experiment [9, 10] and reads

mβ ≡
(

3∑

i=1

|Uei|2m2
i

)1/2

< 0.8 eV (90% CL) , (1.2)

where Uei is the mixing matrix element of the mass state
i with the electron neutrino. The final sensitivity goal
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of KATRIN is 0.2 eV for mβ . For these mass ranges,
neutrinos are quasi-degenerate and the quoted current
limit and sensitivity correspond to

∑
mν ≈ 2.4 eV and

0.6 eV, respectively, already excluded by the cosmological
bound from eq. (1.1).

If neutrinos are Majorana particles, they will induce
neutrinoless double-beta decay, see Ref. [11] for a re-
view. In the absence of cancellations due to other exotic
physics, the corresponding decay rate is proportional to
an effective Majorana mass:

mββ =

∣∣∣∣∣
3∑

i=1

miU
2
ei

∣∣∣∣∣ . (1.3)

The current constraint from the KamLAND-Zen experi-
ment [12] reads

mββ < 0.061− 0.165 eV (90% CL) , (1.4)

where the indicated range corresponds to the uncer-
tainty from nuclear matrix elements. Comparable lim-
its are obtained in [13–15], and there is strong ongo-
ing experimental effort to reach sensitivities in the range
mββ ≈ 0.01 − 0.02 eV [11, 16]. Depending the assumed
nuclear matrix element and the unknown complex Majo-
rana phases in Uei, the bound in eq. (1.4) corresponds to
values of

∑
mν & 0.6 eV, largely excluded by the cosmo-

logical bound eq. (1.1).
Hence, if the ΛCDM bound is taken at face value, ter-

restrial neutrino mass experiments are expected to ob-
tain only upper limits for the neutrino mass, and de-
tection prospects for neutrino-less double beta decay are
challenging (depending on the neutrino mass ordering,
see [11, 17]). In view of this situation, several non-
standard scenarios have been considered in the literature,
to relax cosmological neutrino mass bounds and make
cosmology consistent with “large” (i.e., observable) neu-
trino masses. Such scenarios include neutrino decays [18–
24], neutrinos with a time-varying mass [25–29], neutri-
nos with a temperature much lower than the thermal one
supplemented with dark radiation [30, 31], and neutri-
nos with a momentum distribution function that deviates
from the canonical Fermi-Dirac distribution [32–34]. For
a discussion of phenomenological consequences of some
of these scenarios, see [35].

In this paper we focus on a mechanism similar to the
one introduced by Farzan and Hannestad in [30], where
the number density of massive (active) neutrinos is re-
duced while simultaneously populating a new compo-
nent of dark radiation, see also [31, 36]. The goal of
our work is to realise this mechanism within a UV com-
plete model which simultaneously provides a model for
neutrino masses. The model is based on a variant of the
type-I seesaw mechanism and is sometimes called Mini-
mal Extended Seesaw [19, 37–43].

The outline of our paper is as follows. In section 2
we review the mechanism of Ref. [30] and highlight some
differences in our realisation compared to the original pa-
per. In section 3 we introduce the model and the relevant

parameters, where we discuss two versions, based either
on a global or a local U(1) symmetry. The phenomenol-
ogy is worked out in section 4, where we study various
cosmological and astrophysical constraints and derive the
available parameter space of the model. In section 5 we
provide further discussions of the viable parameter space
and mention various phenomenological and cosmological
consequences and predictions. We draw our conclusions
in section 6. The interested reader can find supplemen-
tary material in the appendices: in App. A we comment
on the possibility that the mechanism is active after re-
combination; in App. B we consider in detail the effec-
tive number of neutrino species within this mechanism;
in App. C we collect a few useful formulae.

2. REVIEW OF THE MECHANISM

Cosmological observations are not directly sensitive to
the neutrino mass, but rather to the energy density in
neutrinos and its evolution, Ων(z). As usual, Ων denotes
the energy density relative to the critical density. Once
a cosmological model is specified there is a direct con-
nection between Ων(z) and

∑
mν and a bound on the

neutrino mass can be placed. The energy density in neu-
trinos is ρν =

∑ 〈Eν〉nν , where nν denotes number den-
sity and the sum is over the three neutrino mass states.
The sensitivity to the energy density in neutrinos in cos-
mology appears in two regimes, when they are relativis-
tic and when they are non-relativistic. When neutrinos
are ultrarelativistic 〈Eν〉 ' 〈pν〉, and the contribution of
neutrinos to the energy density is parameterised by the
number of effective ultrarelativistic neutrino species:

Neff ≡
8

7

[
11

4

]4/3 [
ρrad − ργ

ργ

]
, (2.1)

where ρrad is the energy density in relativistic species. We
can clearly see that when only neutrinos and photons are
present Neff ∝ 〈pν〉nν [2]. This quantity, at the time of
recombination is measured to be [3]:

Neff = 2.99± 0.17 , (2.2)

which is in good agreement with the Standard Model
prediction of NSM

eff = 3.044(1) [44–47].
When neutrinos become non-relativistic, which hap-

pens when 〈pν〉 ' mν , neutrinos start contributing to the
expansion rate as dark matter and their energy density
is given by ρν =

∑
mνnν . It has been explicitly shown

that current cosmological observations are insensitive to
the exact distribution function of neutrinos [34]. This
means that CMB observations can only place a bound
on the energy density in non-relativistic neutrinos which
Planck CMB data constrains to be [3, 34]:

Ωνh
2 < 1.3× 10−3 [95% CL] . (2.3)

Since Ωνh
2 ≡ ∑mνn

0
νh

2/ρcrit this bound can be seen
as a bound on the product of the neutrino mass and the
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neutrino number density today:

∑
mν ×

[
n0
ν

56 cm−3

]
< 0.12 eV [95% CL] , (2.4)

where n0
ν refers to the background number density of neu-

trinos today per helicity state, which in the Standard
Model is n0

ν ' 56 cm−3 [2].
Eq. (2.4) highlights a way to relax the cosmological

neutrino mass bound. Since what is constrained is a
product of number density and mass, reducing the num-
ber density of neutrinos would relax the neutrino mass
bound accordingly. Importantly, since Neff ∝ 〈pν〉nν , if
one reduces the number density of neutrinos Neff will de-
crease, but from eq. (2.2) we see that Neff measurements
are compatible with the Standard Model prediction. This
means that if one wants to reduce the neutrino number
density before recombination one should also add new
light or massless species beyond the Standard Model to
compensate for the decrease of Neff due to the decrease
of nν . This was precisely the idea of Farzan and Hannes-
tad in [30]. For this mechanism to work, both the re-
duction of the neutrino number density and the addition
of new massless dark radiation should happen before re-
combination1. In addition, this should certainly happen
after proton to neutron conversions have frozen out in
the early Universe (around Tγ ∼ 0.7 MeV), because oth-
erwise the successful predictions of Big Bang Nucleosyn-
thesis (BBN) will be spoiled. Nevertheless, since CMB
observations are only sensitive to the Universe’s evolution
at z . 2 × 105, see e.g. [48], or equivalently Tγ . 10 eV,
there is plenty of time for this to happen.

Farzan and Hannestad [30] pointed out a way to
achieve the two requirements outlined above: have a
large number, Nχ, of massless particles that thermalise
with neutrinos after BBN but before recombination, at
10 eV . Tγ . 100 keV. Since after neutrino decoupling
at Tγ . 2 MeV neutrinos do not interact with the Stan-
dard Model plasma, neutrinos cannot be produced any-
more and therefore the production of new particles will
be at the expense of neutrinos. In this case, the number
of effective relativistic neutrino species in the early Uni-
verse is almost unchanged from its SM value Neff ' 32,
but the number density decreases and the current cos-
mological neutrino mass bound becomes:

∑
mν < 0.12 eV (1 + gχNχ/6) [95% CL] . (2.5)

1 In Appendix A we study the possibility of actually realizing the
mechanism after recombination. We show that while it is in prin-
ciple possible the regions of parameter space is significantly more
restricted than if the mechanism operates before recombination.

2 In [30] it was mentioned that Neff does not change in this mech-
anism. However, the production of particles out of equilibrium
always leads to some entropy generation which does indeed make
Neff slightly larger than 3.044. The small difference is however
negligible for practical purposes, see Appendix B for more de-
tails.
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FIG. 1. Number of massless fermions χ with gχ = 4 degrees
of freedom needed to make the standard cosmological bound
(shown on the horizontal axis) consistent with different val-
ues of the sum of the neutrino masses

∑
mν . The vertical

dashed lines indicate the current cosmological bound from
Planck+BAO data, eq. (1.1), and the prospect for future cos-
mological observations (0.02 eV).

Here gχ corresponds to the number of internal degrees
of freedom of the massless BSM particle χ per species
and Nχ is the number of species. Fig. 1 explicitly shows
the number of new massless species needed to relax the
cosmological neutrino mass bound as a function of the
true neutrino mass for gχ = 4, as this is the case for
the most relevant model of the two we will present later.
We see that for example, for the case of

∑
mν = 0.6 eV

(which is the sensitivity limit of KATRIN), Nχ ∼ 6 would
be needed to avoid the current Planck bound.

An important question in this mechanism is how can
neutrinos thermalise with a large number of new massless
BSM species between BBN and recombination. Ref. [30]
considers resonantly enhanced scattering between neu-
trinos and these new species, mediated by a new boson
X with a mass 10 eV . mX . 100 keV via the process
ν̄ν → (X)→ χχ where χ here represents one of the mass-
less states. This requirement can actually be relaxed and
what is really minimally required is that the new boson
thermalises with neutrinos and that it interacts efficiently
with a large number of massless species beyond the Stan-
dard Model (SM). Thus, the two requirements for this to
work are:

1) 〈Γ(ν̄ν → X)〉 > H , (2.6)

and

2) 〈Γ(X → χi + anything)〉 > H , (2.7)

both for 10 eV . T . 100 keV. To illustrate the mecha-
nism and its main ingredients we show in fig. 2 the evo-
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FIG. 2. Illustration of the mechanism of Farzan and Hannestad [30] to reduce the neutrino number density between BBN
and recombination. We show the relative number densities of active neutrinos (red), Nχ = 10 generations of massless sterile
fermions (blue), and the mediator boson X with mass mX = 1 keV (purple). For reference we show relevant events taking
place in the early Universe, see e.g. [49], as well as the region of temperatures at which neutrinos (or other relativistic species)
should be freestreaming [50].

lution of neutrino and dark-sector particle densities as a
function of photon temperature. For the parameters cho-
sen in the plot, the bound on the sum of neutrino masses
can be relaxed to 0.9 eV.

3. A SEESAW MODEL FOR LARGE
NEUTRINO MASSES AND DARK RADIATION

In this section we discuss a specific model realisation of
the mechanism described in the previous section, which
in addition provides a framework to generate neutrino
masses, following closely the discussion of Ref. [19], sec-
tion 4. The beyond-SM ingredients of the model are:

• three fermion singlets NR (“right-handed neutri-
nos”) which play the usual role to generate active
neutrino masses as in the type-I seesaw,

• a new abelian symmetry U(1)X which can be either
global or local,

• a scalar Φ with U(1)X charge +1, and

• a set of Nχ fermions χ with U(1)X charge −1.

With these assignments we can write the following BSM
terms in the Lagrangian:

−L = NR Yν `L H̃
†+

1

2
NRMRN

c
R +NRYΦ χL Φ + h.c. .

(3.1)

Here H and `L are the SM Higgs and lepton doublets,

respectively, and H̃ = i τ2H
∗, MR is the 3× 3 Majorana

mass matrix for NR, and Yν and YΦ are 3×3 and 3×Nχ
Yukawa matrices, respectively. As we are interested in
“large” neutrino masses, possibly in the quasi-degenerate
regime, we need 3 right-handed neutrinos NR

3. Here
and in the following we keep SU(2)L and flavour indices
contractions implicit. The scalar potential is

V = µ2
HH

†H + λH
(
H†H

)2

+ µ2
Φ|Φ|2 + λΦ|Φ|4 + λHΦ|Φ|2H†H , (3.2)

with µ2 and µ2
Φ parameters with dimensions of [mass]2

and λH , λΦ, λHΦ dimensionless. We assume λHΦ = 0,
i.e., no mixing between the two scalar fields. With this
assumption we avoid that Φ gets thermalised in the early
Universe due to its interactions with the SM Higgs. Elec-
troweak symmetry breaking takes place in the usual way,
with

〈H〉 =
1√
2

(
0

vEW

)
, (3.3)

with vEW ' 246 GeV denoting the SM Higgs vacuum ex-
pectation value (VEV). The breaking of the U(1)X takes

3 We note that the mixing pattern of very degenerate neutrinos is
particularly sensitive to radiative corrections [51–53]. In specific
flavor models this poses constraints on the scale of the origin of
neutrino masses, see e.g. for some constructions [54, 55].
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place when Φ develops a VEV

〈Φ〉 =
vΦ√

2
, (3.4)

with v2
Φ = −µ2

Φ/λΦ.

3.1. Neutrino mixing

After symmetry breaking, several terms in the Yukawa
Lagrangian in eq. (3.1) induce mixing in the neutral lep-
ton sector. In the basis n = (νcL, NR, χ

c
L), the fermion

mass terms can be written as

− Lm =
1

2
ncMn n+ h.c. , (3.5)

with the (6 +Nχ)× (6 +Nχ) mass matrix given by

Mn =




0 mD 0
mT
D MR Λ

0 ΛT 0


 , (3.6)

where mD = vEW√
2
Yν and Λ = vΦ√

2
YΦ. We assume the fol-

lowing hierarchy between the entries of the mass matrix:

Λ� mD �MR , (3.7)

where these relations are understood for the typical scales
relevant for the matrices.

The block-diagonalisation of the mass matrix leads to
the masses of the 3 active neutrinos, the 3 heavy neutri-
nos and the Nχ massless sterile neutrinos

MD
n =



mactive 0 0

0 mheavy 0
0 0 msterile


 , (3.8)

with

mactive ≈ mDM
−1
R mT

D + Λ ΛT M−1
R ≈ mDM

−1
R mT

D,

mheavy ≈MR +mDM
−1
R mT

D + Λ ΛT M−1
R ≈MR,

msterile = 0, (3.9)

where mactive = U∗ν m̂ν U
†
ν . Adopting the diagonal mass

basis for charged lepton, Uν is the PMNS mixing matrix,
given in terms of 3 mixing angles and 3 CP-violating
phases (including Majorana phases), while m̂ν is a diag-
onal matrix containing the physical neutrino mass eigen-
values mi. There are Nχ states which are exactly mass-
less at tree level, due to the rank of the matrix (3.6).
Loop contributions to msterile are small enough to con-
sider the Nχ states effectively massless [19].

The mass basis is obtained by rotating the fields with
the unitary matrix W which induces a mixing between
the different states:



ν̃

Ñ
χ̃


 = W †



νcL
NR
χcL


 , (3.10)

where we have introduced the notation ν̃, Ñ , χ̃ to de-
note the active neutrinos, heavy neutrinos, massless ster-
ile neutrino in the mass basis, respectively. Following
e.g., [56] one can find the mixing matrix at leading or-
der, taking into account the hierarchy in eq. (3.7):

W =

 1 m∗D (M−1
R )† −(m−1

D )T Λ
−M−1

R mT
D 1 0

Λ† (m−1
D )∗ 0 1

Uν 0 0
0 1 0
0 0 1

 .

(3.11)

Without loss of generality, we have adopted a basis where
the right-handed neutrino mass matrix MR is diagonal.

In order to simplify the discussion, we will adopt below
the one-flavour approximation for the active and heavy
neutrinos and introduce mixing angles

θνN =
mD

MR
, θνχ =

Λ

mD
, (3.12)

describing the mixing between active neutrinos and the
heavy and massless states, respectively. With our as-
sumption eq. (3.7), both angles are small. We need to
keep Nχ flavors of massless sterile states and θνχ rep-
resents the mixing between each of them and the ac-
tive neutrinos. Finally, using the seesaw relation mν =
m2
D/MR = θ2

νNMR we will eliminate mD (or θνN ) and
Λ and consider mν , MR and θνχ as independent param-
eters.

In the following we discuss the relevant interaction
terms and distinguish the particularities of the global and
gauged versions of the model.

3.2. Global U(1)X

Let us decompose the complex scalar Φ into two real

fields as Φ =
1√
2

(vΦ + ρ+ iφ), where we take vΦ real

without loss of generality. The real part ρ has a mass
mρ of order |µΦ|, while φ corresponds to the Gold-
stone boson. We assume that in addition to the spon-
taneously breaking of the U(1)X global symmetry also
explicit breaking terms are present, e.g. arising from
higher-dimensional terms of the scalar potential, induc-
ing a mass term for the imaginary part φ. Hence, the
pseudo-Goldstone mass mφ is an additional independent
parameter in the global version of the model.

The relevant processes for our mechanism are X ↔ ν ν
and X ↔ ν χ, where for the global case X can be the
scalar ρ or the pseudoscalar φ. These interactions arise
from the third term in eq. (3.1) through the mixing of the
neutral particles νL, NR and χL. In the mass basis and
after Spontaneous Symmetry Breaking (SSB) we have for
the interaction of the scalars with two active neutrinos

NRYΦ χL Φ + h.c. ⊃ −ν̃ λννρ/φ
1√
2

(ρ− iγ5φ) ν̃c + h.c.

(3.13)
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with the coupling

λννρ/φ =
1√
2
U†ν m

∗
D

(
M−1
R

)†
YΦ ΛTm−1

D U∗ν

=
1

vΦ
m̂ν U

T
ν

(
m−1
D

)†
Λ ΛTm−1

D U∗ν

→ mν

vΦ
θ2
νχ . (3.14)

We have used that m̂ν = UTν mDM
−1
R mT

D Uν and Λ =

YΦ vΦ/
√

2. The last line holds in the one-flavour ap-
proximation. An analogous calculation for the coupling
ρ/φ↔ ν χ leads to (again in the one-flavour approxima-
tion) λνχρ/φ = θνχmν/vΦ, whereas there is no direct vertex

for ρ/φ↔ χχ, as at leading order there is no mixing be-
tween NR and χL. Summarizing, in the global realisation
of the model we have:

λννρ/φ =
mν

vΦ
θ2
νχ , (3.15a)

λνχρ/φ =
mν

vΦ
θνχ , (3.15b)

λχχρ/φ = 0 . (3.15c)

We observe that the couplings λνχρ/φ and λννρ/φ are sup-

pressed by the ratio mν/vΦ as well as one or two powers
of the active-sterile mixing θνχ, respectively.

3.3. Gauged U(1)X

Let us now consider the case of U(1)X being a gauge
symmetry. In this case, besides the particle content of
the global case above we have to add another set of Nχ
fermions charged under the new symmetry with the same
charge but opposite chirality, χR, in order to cancel the
gauge anomaly introduced by the χL. With the intro-
duction of χR, two new terms arise in the Lagrangian,
an interaction with the singlet NR and the scalar Φ anal-
ogous to the last term of eq. (3.1), and a vector-like mass
term for the χ field. These terms would change the pic-
ture of the neutrino mass generation. These terms can
be forbidden by postulating a discrete Z2 symmetry un-
der which all particles are even except χR. Hence, in the
following we will assume that these terms are absent.

The breaking of the U(1)X will give mass to the as-
sociated gauge boson, Z ′, and the would-be Goldstone
boson φ becomes the longitudinal polarisation of the Z ′.
We assume no tree-level mixing between the SM U(1)em

and the U(1)X gauge fields; there will still be loop con-
tributions [57, 58] though negligible for phenomenology
in our case as there is no particle content charged simul-
taneously under U(1)Y or SU(2)L and U(1)X .

The interactions of fermions with the new gauge boson
are described by

L =
∑

f=χL,χR

Qf gX Z
′
µ f̄ γ

µ f, (3.16)

where gX is the U(1)X gauge coupling and f are the Nχ
fermions charged under the U(1)X with charges QχL =
QχR = −1. For the interaction of active neutrinos with
the Z ′ we have

gX Z
′
µ χL γ

µ χL + h.c. ⊃ (3.17)
mZ′

vΦ
Z ′µ ν̃

c UTν
(
m−1
D

)†
Λ∗γµ ΛT

(
m−1
D

)
U∗ν ν̃

c + h.c.,

where we have used mZ′ = gX vΦ. In analogy to
the global case we introduce couplings for the Z ′ ↔
ν ν/ν χ/χχ interactions in the one-flavour approxima-
tion:

λννZ′ =
mZ′

vΦ
θ2
νχ , (3.18a)

λνχZ′ =
mZ′

vΦ
θνχ , (3.18b)

λχχZ′ =
mZ′

vΦ
. (3.18c)

In comparison to eq. (3.15), here also a Z ′ ↔ χχ ver-
tex is present. Note that these interactions cannot be
induced by the χR gauge interaction, since there is no
mixing between these particles and the active neutrinos
under our assumption of a Z2 symmetry. However, χR
will contribute to the mechanism described in sec. 2 as
relativistic species in thermal equilibrium with the neu-
trinos through the process ν ν ↔ Z ′ ↔ χR χR. That
means that in this case gχ = 4 in eq. (2.5), and there-
fore requiring a smaller Nχ compared to the global case.
Note that while the interaction φ/ρ → ν χ is crucial for
the mechanism in the global case to create the new light
species, in the gauge case the Z ′ → χχ interaction will
be more efficient to do so than the analogous with Z ′ due
to the suppression with θνχ, see eqs. (3.18).

The real scalar ρ is also present in the gauged ver-
sion and will induce scalar-mediated interactions with
λννρ , λνχρ according to eqs. (3.15a), (3.15b). In fact, it
thermalises, however, for values in the parameter space
that are ruled out by other constraints on the interaction
ν ν ↔ Z ′ as we will discuss later.

3.4. Parameter summary

Let us now summarise the discussion above and list
the independent parameters of the model, adopting the
one-flavour approximation. As discussed in sec. 3.1, the
neutrino sector can be parameterised by the three pa-
rameters

mν , MR, θνχ , (3.19)

being the active neutrino mass, the heavy right-handed
neutrino mass, and the mixing between active and mass-
less sterile neutrinos, respectively. For numerical esti-
mates we fix mν = 0.2 eV, at the final KATRIN sensitiv-
ity. As we will see below the value of MR is irrelevant for
the phenomenology of the mechanism itself. However,
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the value of MR can be constrained by perturbativity
requirements and we will be able to make predictions
for the required range of MR, which can in turn lead
to cosmological consequences in the very early Universe.
Regarding θνχ, we work within the one-flavor approxi-
mation and thus consider that the mixing between all
the χL states and νa is comparable in size. As we will
see, this parameter is constrained mainly by BBN ob-
servations and we will place constraints that take into
account the number of χL states, Nχ.

In the scalar and interaction sector we take as inde-
pendent parameters

vΦ, mρ, mX =

{
mφ (global)
mZ′ (gauge)

. (3.20)

We use the VEV and the real-scalar mass mρ as inde-
pendent parameters of the scalar potential. In the global
U(1)X case, the pseudo-Goldstone boson mass mφ is an-
other independent parameter, whereas in the gauge ver-
sion, we trade the gauge coupling constant gX by taking
the VEV and the Z ′ mass as independent.

In summary, the most relevant parameters to be de-
termined by phenomenology are θνχ, vΦ and mX , where
X = φ/ρ (Z ′) in the global (gauge) symmetry case. As
outlined in sections 3.2 and 3.3, all the relevant interac-
tion rates can be expressed in terms of these few param-
eters. In what follows we study the available parameter
space in terms of these parameters.

4. VIABLE PARAMETER SPACE OF THE
MODEL

In this section we consider all relevant phenomenologi-
cal and cosmological constraints in order to narrow down
the parameter space to a region in which the mechanism
can be fully realised and the bounds on the neutrino mass
significantly relaxed. Figs. 3 and 4 show the results for
the global and gauge cases, respectively, in terms of the
mass of the new boson, mX , and the vacuum expectation
value of the Φ field, vΦ, for two representative values of
the mixing between active and sterile states θνχ = 10−3

and 10−4. Below we elaborate upon all of these con-
straints and considerations.

••• Thermalisation: As discussed in sec. 2 the mech-
anism requires the X boson to thermalise with neutrinos
and χ states after proton-neutron freeze-out and before
recombination at 10 eV . Tγ . 0.7 MeV. Calculating the
thermally averaged decay rate and comparing it to the ex-
pansion rate of the Universe allows us to narrow down the
range of couplings for which this happens (see appendix C
for formulae). In our models, the rate Γ(X → νχ) is al-
ways larger than Γ(X → νν) due to the mixing angle
suppression, see eqs. (3.15) and (3.18). However, we as-
sume that initially no χs are present in the plasma, and
therefore the thermalisation requirement applies to the
process X ↔ νν, controlled by the coupling λννX . Since

the thermally average decay rate peaks at T ∼ mX/3 we
demand 〈Γ(X ↔ νν)〉 & H(T = mX/3), which approxi-
mately implies

λννX & 4× 10−12

√
mX

keV
. (4.1)

In figs. 3 and 4 we highlight in red the region of pa-
rameter space for mX and vΦ for which the X boson
will not reach thermal equilibrium with active neutrinos
in the early Universe. The thermalisation requirement
leads to an upper bound on the scalar VEV, where the
dependence on mX follows from combining eq. (4.1) with
either (3.15a) or (3.18a).

••• BBN Constraints on X–ν interactions: The new
boson X cannot be in thermal equilibrium at tempera-
tures above Tγ > 0.7 MeV for two reasons: 1) It would
reduce the number density of neutrinos which in turn par-
ticipate in p↔ n conversions, and 2) it would contribute
by itself and with the new χ states to the expansion rate
at the time of BBN since neutrino decoupling happened
at a very similar temperature T ∼ 2 MeV. In order to
ensure that the X boson does not spoil the success of
BBN we can place a bound again on the interaction rate
between the X boson and active neutrinos:

〈Γ(νν → X)〉 . H(T = 0.7 MeV) , (4.2)

which in terms of the relevant coupling approximately
reads:

λννX . 10−7 keV

mX
. (4.3)

This constraint is shown in blue in figs. 3 and 4. In
passing, we note that the coupling λννX is also bounded by
possible νν → XX processes occurring before neutrino
decoupling and leading to a large ∆Neff . For this not to
happen, then λννX . 10−5 [20]. However, we never probe
such large couplings in the parameter space of interest in
our study.

••• CMB Constraints on X–ν interactions: The in-
teraction between X particles and neutrinos and sterile
massless states can leave an imprint on CMB observa-
tions if it occurs sufficiently close to recombination as
this would alter neutrino freestreaming and distort the
CMB power spectra. A recent model-independent anal-
ysis of Planck legacy data has shown that provided that
the ν–X interactions are not efficient at z < 105 there are
no CMB constraints [50]. We will use this as a constraint
on the parameter space, requiring that

〈Γ(νν → X)〉 < H at z < 105 . (4.4)

In addition, since in our scenario a large fraction of the
energy density in relativistic particles is in the form of
massless sterile states χ we will also require

〈Γ(X ↔ χ+ χ/ν)〉 < H at z < 105 . (4.5)
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FIG. 3. Regions of the parameter space of the global U(1)X model excluded by several cosmological bounds for a value of
the mixing between active and massless sterile neutrinos, θνχ = 10−3 (left) and 10−4 (right). The white region is allowed.
Vertical dashed black lines correspond to the maximum MR value in GeV given by the requirement of perturbativity for YΦ,
see eq. (5.3) or by the requirement of λHΦ ≤ 10−6 when stronger. The purple line indicates the region where mφ > vΦ, where
the explicit breaking (ESB) of the U(1)X symmetry by the scalar mass would dominate over the spontaneous breaking. The
vertical green line highlights parameter space excluded from neutrino freestreaming in the specific case mφ = 0.
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FIG. 4. Regions of the parameter space of the gauge U(1)X model excluded by several cosmological bounds for a value of the
mixing between active and massless sterile neutrinos, θνχ = 10−3 (left) and 10−4 (right). The white region is allowed. Dotted
black lines correspond to the maximum MR value in GeV given by the requirement of perturbativity for YΦ, see eq. (5.3), or by
the requirement of λHΦ ≤ 10−6 when stronger. The grey dotted lines indicate regions of constant value of the gauge coupling
constant gX = mZ′/vΦ. We also indicate the region where standard thermal leptogenesis can work (purple shading).

The combination of these bounds is shown in light green
in figs. 3 and 4 and essentially implies mX & 1 keV.

Furthermore, there are constraints coming from neu-
trino freestreaming from possible 2 → 2 processes. In
particular, one needs to make sure that χχ ↔ χχ in-
teractions as mediated by a Z ′ or φ are not efficient at

z < 105. For the scalar case this is automatically fulfilled
because λχχφ = 0. However, for the gauge case it is not

since λχχZ′ = mZ′/vΦ = gX . By enforcing:

〈Γ(χχ↔ χχ)〉 < H at z < 105 , (4.6)
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we find a constraint on vΦ:

vΦ > 3× 104 keV , (4.7)

for the gauge case. This bound is shown with a darker
green colour in fig. 4 and restricts or even close the al-
lowed parameter space for smaller values of θνχ.

For the scalar case we still should consider the process
χν ↔ χν. By demanding the same requirement on this
process we find a small region of parameter space to be
excluded which is highlighted in green in the left corner of
the available parameter space and that follows a diagonal
shape in fig. 3.

••• Astrophysical considerations: Since our X boson
interacts with neutrinos it can be subject to constraints
from astrophysical considerations, in particular from core
collapse supernova. Supernova cores have temperatures
T ∼ 30 MeV and release almost all their binding energy
in the form of neutrinos on a timescale of t ∼ O(10) s.
The observed neutrino spectrum of SN1987A is in broad
agreement with that expected from standard core col-
lapse supernova simulations, see e.g. for a review [59]. In
this context, there are two bounds one can place. Firstly,
the X particle should not be copiously produced and es-
cape on a timescale shorter than t ∼ O(10) s, otherwise
the supernova will cool much faster than what has been
observed in SN1987A [60]. Requiring that the luminosity
in X states is smaller than the one from neutrinos in the
standard scenario rules out couplings in the range [61]:

4× 10−6 keV

mX
. λννX . 10−4 keV

mX
, (4.8)

for keV scale bosons. Secondly, it has been very recently
pointed out [61] that even if the luminosity of X par-
ticles emitted by the supernova is substantially smaller
than that of active neutrinos there could still be con-
straints due to the lack of high energy events in the time
window where the SN1987A signal was observed. For
mX < MeV, the reported exclusion range corresponds to

3× 10−7 keV

mX
. λννX . 10−4 keV

mX
. (4.9)

As such, we find that these constraints are weaker than
the one we impose from BBN consistency in our scenario.
However, a future galactic supernova could push further
these limits. A galactic supernova at a distance of 10 kpc
detected by Hyper-Kamiokande detector would test val-
ues of the coupling down to λννX ∼ 3× 10−9 keV

mX
[62].

••• BBN Constraints on the mixing between active
and sterile neutrinos: The massless sterile neutrinos we
consider are subject to BBN constraints on their own be-
cause they mix with active neutrinos and therefore can
be produced via collisions and oscillations in the early
Universe. In addition, since these states are lighter than
active neutrinos they feature an enhanced resonant pro-
duction [63]. The production rate for these sterile neutri-
nos peaks at T ' 10 MeV(|∆m2|/0.1eV2)1/6 [1], which is

well above neutrino decoupling and BBN. The main ef-
fect of these additional states will then be to contribute
to the energy density in the Universe both at the time of
BBN and recombination. Here we take the production
rate of sterile neutrinos from [64] and integrate it up to
the time of neutrino decoupling, T dec

ν ' 2 MeV, in order
to obtain this contribution to the number of ultrarela-
tivistic neutrino species in the early Universe:

∆Neff |χ ' 0.014

Nχ∑

χ=1

|θeχ|2 + 0.8(|θµχ|2 + |θτχ|2)

10−6

( mν

0.1 eV

)
.

(4.10)

Note that for simplicity to obtain this expression we have
neglected destruction of sterile neutrinos in the collision
rates. By solving the relevant Boltzmann equations we
have explicitly checked that this is a good approximation
provided that ∆Neff . 0.3 for a given new species.

Assuming that the mixing is similar for each species
and applying a bound of ∆Neff < 0.3 which is representa-
tive of both Planck data [3] and global BBN analyses [65],
we can find a bound on θνχ and Nχ which reads:

|θνχ| . 10−3

√
10

Nχ

√
0.2 eV

mν
, (4.11)

where here mν refers to the mass of an individual and
almost degenerate active neutrino. In terms of the pa-
rameters of interest in our study this means that:

θνχ =
Λ

mD
. 10−4 − 10−3 , (4.12)

where the ranges are taken by varying 0.1 eV < mν <
1 eV and Nχ . 50 as relevant for a range of scenarios
as seen in fig. 1. This explains why in Figures 3 and 4
we take as benchmarks |θνχ| = 10−3 and |θνχ| = 10−4.
Choosing smaller values of θνχ would move the allowed
regions to smaller values of vΦ, as a seen from eqs. (3.15),
(3.18). This would lead to non-perturbative gauge cou-
plings or similar inconsistencies in the global case (see
discussion below). For the gauged version, for mixing
angles significantly below 10−4 the allowed region above
the free streaming bound on vΦ, eq. (4.7), would disap-
pear. Therefore, the preferred parameter region is close
to the upper bounds for θνχ discussed above.

With active neutrinos close to the eV scale and mass-
less sterile neutrinos, we obtain a mass-squared difference
∆m2 ∼ 1 eV2, potentially relevant for short-baseline os-
cillation experiments [66, 67]. However, mixing angles
in the range indicated in eq. (4.12) are too small to be
tested in oscillation experiments.

5. DISCUSSION

Let us summarise the main results from the various
constraints discussed in the previous section, referring
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to figs. 3 and 4. We find a closed region of parameter
space for the mediator mass mX and scalar VEV vΦ,
where the mechanism can work. The mediator mass is
restricted roughly to the range 1 keV . mX . 1 MeV,
both in the global and gauged version of the model. For
the global case, the scalar VEV is roughly in the range
1 eV . vΦ . 10 keV for θνχ = 10−3, and roughly one or-
der of magnitude smaller for θνχ = 10−4. In the gauged
version, we obtain larger scales for vΦ, ranging roughly
from 10 MeV to few GeV for the case θνχ = 10−3, but
only viable for 20–200 MeV for θνχ = 10−4 as a result
of the vΦ dependence of the neutrino freestreaming con-
straint on χ self-interactions.

The different scales for the VEV in the global and
gauged versions, as well as the dependence on the mix-
ing angle follow from the parametric dependence of the
coupling constants shown in eqs. (3.15) and (3.18), being
proportional to mν/vΦ (mZ′/vΦ) in the global (gauged)
version. For the global case, a shift in the neutrino mass
would have a similar effect as changing θνχ, with lower
masses moving the excluded regions to smaller vΦ. This
follows directly from eqs. (3.15).

Let us now discuss in some more detail the parameter
region for the global U(1)X version. In the scalar sector,
the parameters of the model are the scalar VEV vΦ, the
mass of the real scalar, mρ, and the mass of the pseudo-
Goldstone boson mφ, which we consider as an indepen-
dent parameter responsible for the explicit breaking of
the U(1)X symmetry. The diagonal line in fig. 3 indicates
the condition mX = vΦ. Considering the case X = φ,
we see that in large regions of the parameter space (for
θνχ = 10−4 even all of the viable parameter space), we
have mφ > vΦ. This means actually that the explicit
symmetry breaking (ESB) happens at scales higher than
the spontaneous breaking, which in some sense contra-
dicts the notion of the global symmetry. We consider this
configuration as theoretically inconsistent, and we remain
only with the small triangle to the right of the diagonal
line labelled ESB in fig. 3 (left), which however, still im-
plies a mass for the pseudo-Goldstone not too far from
the VEV, and also requires “large” mixing angles θνχ,
saturating the bound from BBN. Furthermore, we note
that there is another cosmological element that makes
the region where mρ/φ > vΦ theoretically unappealing.
The reason is that in such regions of parameter space the
U(1)X symmetry would only be spontaneously broken in
the early Universe at T ∼ vΦ. That in turn means that
actually the scalars may not have gotten their masses
until T � mρ/φ which would prevent them from actu-
ally thermalising with the neutrino sector of the plasma
because of the strong dependence of the interaction rate
with mρ/φ.

Alternatively, we can consider the situation X = ρ,
i.e., the real part of the complex scalar plays the role of
the mediator particle. In this case we can avoid explicit
symmetry breaking at all and keep φ to be a massless
Goldstone. Note that ρ and φ have the same couplings to
the fermions, eqs. (3.15), and therefore, the phenomeno-

logical discussion from sec. 4 applies equally to ρ and φ.
For the mass of ρ we have mρ =

√
2λΦvΦ. Therefore,

the perturbativity requirement for the quartic coupling,
λΦ <

√
4π, implies that mρ cannot be much larger than

the VEV: mρ . 2.7vΦ. Hence, we see that again we are
restricted to the small region to the right of the diagonal
line in fig. 3. In addition, in this case there is an addi-
tional constraint related to the presence of the massless
pseudo-scalar φ, which now can lead to 2-to-2 processes
such as χχ→ φφ and νν → φφ, which can suppress neu-
trino freestreaming. For this not to happen, these pro-
cesses cannot be in thermal equilibrium at z < 105 [50].
Explicit calculations show that the coupling mediating
this process then should be λ . 7× 10−7 [68]. In partic-
ular, this bound will apply to λνχφ , see eq. (3.15b), and
can be interpreted as a lower bound on the scalar VEV
that reads:

vΦ > 0.3 keV
|θνχ|
10−3

( mν

0.2 eV

)
. (5.1)

This constraint is shown as a vertical green line in fig. 3
and we see that this bound, together with the pertur-
bativity requirement for the quartic coupling, puts also
severe restrictions to the parameter space in the case
of global U(1)X with no explicit symmetry breaking
(mφ = 0).

We conclude that the global symmetry version of the
model is severely constrained by perturbativity and the-
oretical consistency arguments. This is not the case for
the gauged version: we indicate in fig. 4 by diagonal lines
the values of the gauge coupling gX = mZ′/vΦ, and we
can see that the allowed region does not have any pertur-
bativity problem since the couplings are sufficiently small
(unless θνχ is not chosen much smaller than the values
adopted in the figure, see also the discussion in sec. 4).
In addition, since gX � 1, we note that the U(1)X sym-
metry will be spontaneously broken in the early Universe
at T ∼ vΦ � mX . Since the interactions between Z ′ and
fermions are most efficient at T ∼ mZ′/3 we conclude
that the U(1)X symmetry is broken and Z ′ is massive
by the time the mechanism we describe to reduced the
neutrino number density is active.

In the following subsections we discuss further cosmo-
logical consequences of the model.

5.1. Heavy right-handed neutrinos, ∆Neff , and
leptogenesis

The mass of the heavy neutrinos MR is essentially
unconstrained, as for given mν , vΦ and θνχ we still can
choose the Yukawa couplings YΦ. However, we can de-
rive an upper bound on MR from two arguments. First,
by requiring perturbativity for YΦ, i.e. that YΦ has to be
smaller than

√
4π. In the one flavour approximation this

reads

YΦ =

√
mνMR

vΦ
θνχ ≤

√
4π , (5.2)
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which gives an upper bound on MR:

MR ≤ 4π
v2

Φ

mν θ2
νχ

. (5.3)

Second, although we set λHΦ = 0 at the electroweak
scale, it can get a sizeable value via radiative corrections.
In particular, a box diagram with ν, χ and NR in the
loop can generate this mixing between the two scalar
fields. Thus, we require that this contribution has to
be smaller than 10−6 to avoid Φ thermalisation before
BBN [69]. Using SARAH [70, 71] we find that the one
loop contribution to the λHΦ coupling reads as follows:

λloop
HΦ '

Y 2
ν Y

2
Φ

4π2
=
θ2
νχm

2
νM

2
R

4π2 v2
Φ v

2
EW

. (5.4)

The requirement λloop
HΦ < 10−6 gives an upper bound on

MR:

MR ≤ 2π
vΦ vEW
mν θνχ

10−6 . (5.5)

These bounds are shown in figs. 3 and 4 as vertical dashed
lines. For values of vΦ . 102 keV, the bound coming
from perturbativity dominates while for vΦ & 102 keV
the scalar mixing sets an stronger bound. We see that in
the global case the heavy neutrinos are relatively light,
with masses below the TeV scale in a large fraction of
the parameter space. However, the mixing between ac-
tive and heavy neutrinos given by eq. (3.12) is too small
to be tested in collider searches, see e.g. [72]. In the gauge
case we have upper bounds on MR in the range between
109 GeV and 1014 GeV. In general the heavy neutrinos
are not going to interfere with the mechanism altering
the neutrino number density before recombination, but
nevertheless we can wonder about other cosmological im-
plications they can lead to.

Right handed neutrinos that give masses to the active
neutrinos are expected to thermalise in the early Uni-
verse with the SM plasma via inverse decays of the form
H L → N , see e.g. [73]. That means that if the reheat-
ing temperature of the Universe was TRH > MR then we
expect these sterile neutrinos to have cosmological impli-
cations. Perhaps the most widely studied consequence of
them is baryogenesis via leptogenesis, see e.g. [74]. In ad-
dition, in our scenario these states interact with a large
number of very light species, which can lead to a primor-
dial ∆Neff that is effective both at the time of BBN and
recombination and would therefore exclude the model.
The key parameter controlling the contribution to ∆Neff

and also the possible effect on the generation of a lepton
asymmetry is the branching ratio into the dark sector:

BR(N → φχ) =
2Nχ θ

2
νχ v

2
EW

2Nχ θ2
νχ v

2
EW + v2

Φ

. (5.6)

The interaction rate of heavy sterile neutrinos with
the SM plasma is directly determined by the Yukawa

coupling Yν which in the type-I seesaw mechanism is inti-
mately related to the neutrino mass, mν ' Y 2

ν v
2
EW/2MR.

We thus expect the sterile neutrinos to reach thermal
equilibrium in the early Universe for KSM & 1, where

KSM ≡
Γ(N → HL)

H(T 'MR)
' 200

( mν

0.2 eV

)
. (5.7)

Clearly, if these states have efficient interactions with χL
and φ then they will generate a large number density
of massless states that will contribute to ∆Neff . In ad-
dition, these new interactions, if efficient, can make the
distribution function of heavy sterile neutrinos very close
to thermal and therefore suppress the generation of a
primordial lepton asymmetry.

∆Neff can be written as

∆Neff ≡
8

7

(
11

4

)4/3 [
ρDS

ργ

]
, (5.8)

where ρDS refers to the energy density in the dark sector,
i.e. χL and φ. This contribution is bounded from above
because the maximum temperature the φ−χ population
could have obtained is the SM one, in which case we can
use entropy conservation to find:

∆Neff ≤
8

7

(
11

4

)4/3 [gχ 7
8Nχ + gφ

2

] [
gSM
?S (Ttoday)

gSM
?S (T 'MR)

]4/3

.

Using gSM
?S (Ttoday) ' 3.9 and gSM

?S (T ' MR) ' 105, this
yields a maximum contribution to ∆Neff of

∆Neff |max ' 0.027

[
1 +

7

8
gχNχ

]
. (5.9)

For instance, for typical values we have ∆Neff |max(Nχ =
10, gχ = 2) ' 0.5, which is already excluded.

By solving explicitly the Boltzmann equations for the
number density of heavy sterile neutrinos in the early
Universe allowing them to decay into these new very light
species we find that in order to satisfy the CMB and BBN
bound ∆Neff . 0.3 we require:

KSM × BR(N → φχ) . 1 , (5.10)

where this expression is rather insensitive to Nχ provided
that Nχ & 5.4 From eq. (5.7) we obtain 10 < KSM < 800,

where the limits come from taking
√
|∆m2

sol| < mν <
0.8 eV. Putting this together, we see that the branching
ratio of sterile neutrinos is bounded to be

BR(N → φχ) . (10−3 − 0.1) . (5.11)

Using eq. (5.6), we find that for the global version of
the model the full viable parameter space is incompatible

4 This simply means that the rate of interactions of sterile neu-
trinos with the dark sector should be slower than the expansion
rate at T 'MR: 〈Γ(N → φχ)〉 . H(T 'MR).
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with this condition. Therefore in the global case we need
to require TRH < MR, such that the heavy neutrinos can-
not thermalise. Since in the global case the right handed
neutrinos could have masses MR < 100 GeV this means
that one would need to invoke a mechanism that explains
the baryon asymmetry of the Universe without the help
of sphalerons processes. This argument again makes the
global version of the model less attractive compared to
the gauged case, in addition to the discussion above.

For the gauge case there is some parameter space ful-
filling eq. (5.11) which is displayed as a vertical band in
purple labelled “Leptogenesis” in fig. 4. For these values
of vΦ the contribution to ∆Neff remains small and we can
be confident that the usual thermal leptogenesis mecha-
nism will not be distorted because the interactions with
the new dark sector will always be slower than the expan-
sion rate of the Universe and therefore will not impact the
potential generation of a primordial lepton asymmetry.
Of course, for the standard thermal leptogenesis mecha-
nism to be successful the sterile neutrino mass cannot be
arbitrarily low and should be MR & 108 GeV [75]. For
the rest of the parameter space (to the left of the pur-
ple band), in order to be in agreement with BBN and
CMB bounds on ∆Neff , we need to require TRH < MR

and the usual thermal leptogenesis will not be operative.
However, this parameter space is compatible with having
TRH large enough to allow for sphaleron processes.

5.2. Active neutrino decay

The existence of interacting fermions lighter than ac-
tive neutrinos allow neutrinos to decay. Furthermore,
if active neutrinos were to decay on a cosmological
timescale this will diminishing their density today, see
e.g. [19]. Two body decays ν → χ φ/ρ/Z ′ are forbidden
in our scenario because the φ/ρ/Z ′ bosons are heavier
than active neutrinos. As such, the only possible decay
channels at tree-level are ν → 3χ and νi → νjχχ. The
first cannot happen in the global case because λχχφρ = 0,

see eq. (3.15). The rate for the second is very small spe-
cially for the region of degenerate active neutrino masses
we are interested in.

However, the ν → 3χ decay is possible for the gauge
mediated case through the gauge interactions λνχZ′ νγµχ
and gX Z

′
µ χγ

µ χ. Assuming the mixing between ac-
tive and sterile neutrinos is similar for all the Nχ ster-
ile species, we get 2N2

χ possible decay channels and
therefore the total active neutrino decay rate will be
Γνtot = 2N2

χ Γν→3χ. Taking the decay rate calculated
in [19] we can compute the lifetime of the active neutri-
nos with the parameters of our model in terms of the age
of the universe, tU ' 13.8 Gyr, and the number of new

sterile species, which reads:

τν = 4× 103 tU

( vΦ

1 MeV

)4

(
Nχ
6

)2 ( mν

0.2 eV

)5
( |θνχ|

10−3

)2 . (5.12)

Given this equation it can be seen from fig. 4 that neutri-
nos do not decay on cosmological timescales in the regions
of parameter space in which the mechanism is viable.

6. CONCLUSIONS

We have discussed a UV complete model to realise a
mechanism to relax cosmological neutrino mass bounds
to the level that the neutrino mass becomes observable in
terrestrial experiments such as KATRIN and/or neutri-
noless double-beta decay. The mechanism is based on an
idea put forward by Farzan and Hannestad in Ref. [30].
The main ingredient is the depletion of the cosmological
abundance of active neutrinos by populating instead a
sufficient number of massless species, see eq. (2.5) and
figs. 1 and 2.

Our model realisation is based on a version of the see-
saw mechanism sometimes called “minimal extended see-
saw” with the following main features: we have 3 heavy
right-handed neutrinos, responsible for generating active
neutrino masses via the type-I seesaw. In addition we
introduce a large number of additional sterile neutrino
species, which remain massless and provide the dark ra-
diation. In order to achieve the required relaxation of
the neutrino mass bound to ' 1 eV for the sum of neu-
trino masses, we need O(10) species of massless sterile
neutrinos. To realise the conversion of active to sterile
neutrinos we introduce a U(1)X symmetry, which can
be either global or gauged and is spontaneously broken
by a complex scalar field. The (pseudo-)scalar or vector
bosons act as mediators between active neutrinos and the
dark sector.

The depletion of active neutrinos should happen be-
tween BBN and recombination. This restricts the mass
of the mediator particle to the range between 1 keV and
1 MeV. We provide a detailed discussion of the relevant
phenomenology and cosmological constraints in sec. 4
and find that the mechanism can work only in a closed
region of parameter space. The version with the global
symmetry is severely constrained by theoretical consis-
tency arguments and perturbativity requirements. Fur-
thermore, it is incompatible with thermal leptogenesis
and requires a reheating temperature below the electro-
weak scale. In contrast, the gauged version of the model
is safely in the perturbative regime, is partially compat-
ible with thermal leptogenesis and allows for reheating
temperatures above the electro-weak scale. In the gauged
version of the model, the VEV breaking the U(1)X sym-
metry can be between 10 MeV and a few GeV when the
mixing |θνχ| = 10−3 while for |θνχ| = 10−4 only a narrow
window of VEVs is allowed 20 MeV . vΦ . 100 MeV.
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In conclusion, we have presented a relatively simple ex-
tension of the Standard Model, explaining active neutrino
masses close to the eV scale, featuring a non-standard
neutrino cosmology. The main signature of the model is
the possibility of observing a non-zero neutrino mass in
KATRIN and/or a signal in neutrinoless double-beta de-
cay, which would be excluded within the standard ΛCDM
cosmology. The model requires the presence of O(10)
species of massless sterile neutrinos, whose theoretical
motivation remains to be identified, see however [76–78]
for extensions of the Standard Model with large number
of sterile neutrinos or BSM species.

Looking forward, in this scenario the number density
of active neutrinos forming the cosmic neutrino back-
ground (CNB) is smaller than in ΛCDM. However, these
neutrinos have a smaller temperature and therefore can
cluster much more efficiently in the solar system. This
in turn enhances the direct detection prospects of the
CNB within this cosmology [35]. In addition, while in
this work we have focused on relaxing the current cos-
mological neutrino mass bound, the essence of the model
remains relatively unchanged and will be relevant for the
interpretation of upcoming cosmological neutrino mass
measurements from DESI/Euclid, see Fig 1.
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Appendix A: The Mechanism after recombination

In the main text we have considered the possibility of
decreasing the number density of neutrinos before recom-
bination in order to relax the cosmological neutrino mass
bound. However, a priori it is not really needed that the
depletion of the neutrino number density happens before
recombination, it can also happen after. In this appendix
we comment on this possibility.

First, let us note that the mean momentum of a neu-
trino at the time of recombination is 〈pν〉 ' 3Tν ' 0.6 eV.
As such, the primary CMB spectra can only be af-
fected by neutrinos that are mν & 0.6 eV. Indeed, the

WMAP bound on the neutrino mass within ΛCDM was∑
mν < 1.3 eV at 95% CL [79], very close to the es-

timate given above. Nevertheless, the CMB is indi-
rectly sensitive to less massive neutrinos via their effect
on the growth of the large scale structures in the Uni-
verse. This sensitivity steams from the fact that such
large scale structures can lens the CMB photons emit-
ted at the surface of last scattering and detected today,
see e.g. [80]. The energy density in non-relativistic neu-
trinos suppresses this growth and CMB observations are
therefore sensitive to significantly lighter neutrinos, e.g.∑
mν < 0.24 eV at 95% CL is the bound from Planck

CMB observations alone [3]. Importantly, the main con-
tribution to the lensing of CMB photons happens only
at moderately low redshifts, z . 6, and this means that
provided that mν < 0.5 eV Planck CMB observations are
really sensitive to Ωνh

2 at z . 6. Similar considerations
apply for data from Baryon Acoustic Oscillations. Put
together, this means that in principle the mechanism de-
scribed in the main text could work equally well provided
that the neutrino number density is reduced at z & 10.

To concretely see how this could work we first
note that neutrinos become non-relativistic at znr '
200mν/0.1 eV. In the scenario we considered in the main
text we need a particle X that can decay to neutrinos
and therefore should have a mass mX > 2mν . That
means that the mass of this particle would need to be in
a rather narrow range 0.1 eV . mX . 1 eV. In addition,
this particle should interact efficiently with neutrinos at
z . 103 but not at z & 103. This is simply because other-
wise this new state will suppress neutrino freestreaming
and distort the CMB [50]. Thus, we can appreciate the
three requirements are that the interactions are not ef-
fective until z . 103, that the mediator is in the right
mass window 0.1 eV . mX . 1 eV, and that the inter-
actions occur rapidly as compared with the timescale for
expansion. We believe that these three conditions can
be met although we think that this will only occur in a
very limited region of parameter space for mν and mX

and for the interactions between X and neutrinos. To
confidently study the viable parameter space in this case
a solution of the relevant Boltzmann equations would be
needed which is beyond the scope of this study.

Finally, one can consider the possibility of depleting
the neutrino number density by neutrino annihilations
into massless states, νν̄ → χχ̄. This in fact was con-
sidered a long time ago [36], but was shown indeed not
to be possible because of the suppression of neutrino
freestreaming from these interactions [81].

Appendix B: Entropy production and the value
of Neff

The thermodynamic processes discussed in the main
text that depletes the number density of neutrinos in
the early Universe leads to entropy production. This in
particular means that we do not expect Neff to be exactly
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3.044. However, for large Nχ we expect the difference
not to be significant. The reason that Neff 6= 3.044 is
because the production and decay of a massive particle,
X, always leads to some extra energy density production
stored in its decay products. Of course, the more χ states
there are the less significant will be this release of energy
because the fractional number density of X states will
be small. Since we are working in a regime where the
relevant processes are very efficient with respect to the
characteristic expansion timescale tU ∼ 1/H, we can use
equilibrium thermodynamics to elucidate this matter.

We should split the discussion in two events that we
consider happen instantaneously. First, we consider that
at T � mX the X bosons and the χ fermions thermalise
instantaneously generating a coupled system with tem-
perature Teq and chemical potential µeq

i . Since all the
particles are massless energy conservation implies:

ρν(Tν , 0) = ρν(Teq, µ
eq
ν ) + ρχ(Teq, µ

eq
χ ) + ρX(Teq, µ

eq
X ) .

(B.1)

In addition, since we are considering processes X ↔ νν
and X ↔ χχ we know the chemical potentials of these
species are related to be 2µeq

ν = 2µeq
χ = µeq

X
5.

In addition to energy conservation, we know that the
processes we consider respect a conservation law for the
number density of the various species:

nν(Tν , 0) = nν(Teq, µ
eq
ν ) + nχ(Teq, µ

eq
χ ) + 2nX(Teq, µ

eq
X ) ,

(B.2)

where here the 2 comes from the fact that a pair of neu-
trinos or χ particles can be interchanged by an X state.
Solving these two equations simultaneously provides Teq

and µeq
ν from a given Tν .

After thermalisation happens the Universe expands
and eventually the X boson decays away at T � mX .
Since we are in thermal equilibrium, in this system en-
tropy density is conserved and number density is also
conserved as before. This explicitly means:

a3(sν(T, µ) + sχ(T, µ) + sX(T, 2µ)) = constant , (B.3)

a3(nν(T, µ) + nχ(T, µ) + 2nX(T, 2µ)) = constant . (B.4)

Thus, solving eqs. (B.3) and (B.4) simultaneously using
as initial condition Teq and µeq allows one to find Tf and
µf . Namely, the final temperature and chemical potential
of both neutrinos and massless χ species as relevant for
CMB observations once the X particle has disappeared
from the plasma.

It is important to highlight that in order to obtain the
decrease in the neutrino number density after this pro-
cess one does not actually need to solve these equations

5 Note that in the global case considered in the main text the
relevant processes are X ↔ νν and X ↔ νχ. Although they
are different they also lead to the condition 2µeq

ν = 2µeq
χ = µeq

X .
Similarly, while the relevant processes in the gauge case are X ↔
χχ, X ↔ νχ, and X ↔ χχ, we end up having the same result.
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FIG. 5. Neff as relevant for CMB observations as a function
of the number of massless species that eventually thermalise
with neutrinos Nχ. In blue when the mediator is a vector
boson with gX = 3 and in red when we have a scalar mediator
with gX = 1. Dashed lines correspond to the case of χ being
bosons and solid lines to the case of χ being bosons. The
black dotted line shows the SM prediction of Neff = 3.044.

explicitly. The number density conservation in eq. (B.2)
and in eq. (B.4) imply

nν(Tν , 0) = nν(Tf , µf ) + nχ(Tf , µf ) . (B.5)

Since the χ particles are fermions we can easily see that6:

nν(Tf , µf ) = nSM
ν

1

1 + gχNχ/6
, (B.6)

as highlighted by eq. (2.5).
Obtaining Neff , however, does require solving explic-

itly for these four equations simultaneously. In fig. 5 we
show its value as a function of Nχ. We can appreciate
that unless Nχ is small, Nχ . 3 the contribution to Neff

at the time of recombination should be undetectable even
with an ultrasensitive Stage-IV CMB experiment.

Finally, we note that actually the processes we con-
sider lead to a significant production of entropy because
a large number of new relativistic species are produced.
Importantly this does not change the number density of
photons and therefore have not relevant impact on what
the number density of baryons or dark matter particles
should be. For completeness, however we report an ap-
proximate fitting function of g?S which reads:

g?S ' 3.5 +
6

10
log(N7/10

χ ) , (B.7)

6 While in the main text we consider ultralight fermions the same
consideration can be done for bosons. In such a case a com-
pact formula cannot be obtained. A numerical fit to the result
is: nν(Tf , µf ) = nSM

ν / (1 + gχNχ/6 + 0.07) which is accurate to
better than 0.5% for any Nχ.
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and that we see depends only logarithmically upon Nχ.

Appendix C: Decay Rates

Here we outline relevant formulas used to compute the
various of the constraints in the main text. The thermally
averaged rate of the process a + b ↔ X with X being
either a scalar, pseudoscalar or a vector boson and a, b
being two light fermions is given by [44] :

〈Γ〉 = ΓX
gX
4

(
mX

Ta

)2

K1

(
mX

Ta

)
, (C.1)

where ΓX is the decay rate of X in vacuum, gX is
the number of degrees of freedom of X (1 for the
scalar/pseudoscalar and 3 for the Z ′), mX is the mass
of X, Ta is the temperature of the fermions (in case of
neutrinos, after decoupling we will approximate Tγ/Tν '
1.4) and K1 is a modified Bessel function of the first kind.
The decay rate in vacuum for the scalar and pseudoscalar

is

ΓX =
λ2

16π
mX , (C.2)

and for the vector boson

ΓX =
λ2

8π
mX , (C.3)

with λ the corresponding coupling, see eqs. (3.15)
and (3.18). For the cross sections of 2 to 2 processes with
interaction coupling g and mediator X we have used

σ ∼ g4

16π2

1

m4
X

T 2, (C.4)

when they are mediated by a massive (mX & T ) mediator
and

σ ∼ g4

16π2

1

T 2
, (C.5)

when the mediator is light (mX � T ).
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