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A B S T R A C T

In the past decades, numerous material models have been developed to describe the forming behavior of
fabrics, allowing for modeling of complex forming processes. Especially under constrained forming conditions,
distinct multiaxial stress states can occur, which need to be captured by macroscopic material models. In this
paper, a nonlinear hyperelastic constitutive model is presented and implemented in an Abaqus/Explicit user
subroutine Vumat, considering biaxial coupling and normal-shear coupling of the interwoven fiber bundles in
a woven fabric. The couplings are formulated for positive and negative normal strains. Exemplary forming
studies on the generic double dome geometry are performed to investigate the influence of the couplings on
the forming result. The results show that the biaxial coupling should be considered under highly constrained
boundary conditions in thickness direction. The normal-shear coupling affects the forming behavior only under
very high draping angles and appears to be of less relevance in these conditions.
1. Introduction

In recent years, the issues of sustainability and climate protection
have emerged as increasingly important to society. Because carbon
dioxide emissions in the use-phase of a vehicle are proportional to its
mass, systematic lightweight design is key to improve the environmen-
tal balance, independent of future drive technologies [1]. In addition to
established light metals, composite structures, such as fiber-reinforced
polymers, are becoming increasingly important for achieving weight
reductions. Woven fabrics are often used as reinforcement due to their
ease in production and handling compared to non-crimped fabrics.
To design complex geometric structures and their associated manufac-
turing processes, a precise understanding of the material behavior is
necessary. Because experimental trials are expensive in terms of time
and resources, numerical calculations are often used [2]. The virtual
process chain models the entire manufacturing process by means of
numerical methods [3,4]. The first step is, to describe the material
behavior of the fabric during forming, when the two-dimensional textile
product is displaced into a three-dimensional geometry. Material mod-
eling requires a deep understanding of the deformation mechanisms in
fabrics.

Woven fabrics are mostly plane structures consisting of interwoven
fiber bundles. At the micro-scale, several thousand single fibers form
bundles called rovings that are often assumed to be homogeneous
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at the meso-scale. At the macro-level, the fabric is assumed to be a
homogeneous solid, and no single rovings are considered [5]. The most
common forms of fabric consist of interwoven rovings in two directions.
Fig. 1 shows the schematic structure of a plain weave fabric. Due to
the interwoven structure, interactions occur between rovings at the
meso-level, leading to geometrical changes and resulting in a biaxially
coupled, nonlinear material behavior at the macro-level. Many research
groups offer detailed discussions on the deformation mechanisms at
the meso-scale and the resulting macroscopic material behavior [5–13].
Comprehensive reviews are published in [14,15]. In free draping, com-
pressive stresses lead to extensive wrinkling, as the bending stiffness of
fabrics is low compared to their tensile stiffness. Therefore, membrane
and bending behavior of fabrics should be modeled decoupled [12,
16–22], as shown in Fig. 1. Wrinkling can be suppressed by blank
holders, grippers or, in case of fiber-metal-laminates (FML), by encasing
metal layers. Hence, combined stress zones may occur during forming.
Werner et al. [23,24] numerically investigated the influence of the not
infiltrated fabric material parameters on the forming result during FML
forming and concluded, that the bending behavior in highly constrained
conditions in thickness direction is less important compared to the
membrane behavior. Therefore, the membrane behavior influences the
forming result more significantly, than in free or close to free draping
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Fig. 1. Structure of a plain weave fabric including cross-sections (left) and highlighted unit cell for decoupled material discretization in forming simulation (right) according
to [19,22].
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conditions. To model the material behavior of fabrics in highly con-
strained conditions in thickness direction, Werner et al. [14] suggest
incorporating biaxial coupling, normal-shear coupling and in-plane
compression behavior.

For application in numerical simulations of fabrics, modeling tech-
niques on different levels are feasible. The most common approaches
are models at the mesoscopic or macroscopic levels. In meso-scale-
models, interactions between rovings are considered intrinsically, but
elaborate and detailed modeling of the weave architecture is necessary.
In macro-scale-models, however, the whole fabric is assumed to be a
continuum. Here, the complex material behavior has to be embedded
in the constitutive equations. As a consequence, established material
models of monolithic materials cannot be used to describe the behav-
ior of fabrics adequately. Thus, tailored material models need to be
developed. A pivotal selection criterion is the model’s efficiency. To
achieve acceptable computation times for numerical calculations at the
component level, macro-scale-models are particularly suitable [3,11,12,
25–30].

The two most common approaches are models based on Cauchy-
elasticity and hyperelasticity [14,15]. In Cauchy-elasticity, stresses are
direct functions of the strains. This relationship is defined via the stiff-
ness. When modeling the material behavior of fabrics, material proper-
ties need to be formulated with respect to the roving orientations and as
fabrics are prone to large shear deformation, an elaborate nonorthogo-
nal formulation of the constitutive equations is necessary [31]. Several
research groups make use of this approach [32,33], some of them con-
sidering biaxial tension coupling [34] and tension–shear coupling [35].
In hyperelasticity, however, an integral representation of the stress–
strain relationship is used, and the stresses can be calculated from
the strain energy density by differentiation with respect to a strain
measure. The strain energy density is a scalar function representing an
elastic potential and is thus a measure of the strain energy stored in a
deformed body. It can be additively decomposed into several compo-
nents attributed to different deformation mechanisms. Depending on
the choice of the stress measure and its corresponding strain measure,
a formulation of the constitutive equations in the initial configuration
can be found. To guarantee independency from the chosen basis sys-
tem, making use of invariants is recommended [29]. This approach
is pursued in several publications [36,37] and permits the possibility
to incorporate the relevant coupling phenomenon [38–40]. Also, an
extension to negative strains is viable.

For the present requirements, the authors suggest a hyperelastic,
invariant-based material model based on the work published by [29,
2

t

36–40]. A new hyperelastic material model is presented, consider-
ing biaxial coupling, normal-shear coupling for positive and negative
strains, as well as in-plane compression behavior. At first, the principles
of hyperelastic material modeling are summarized, and then a new
model is deduced to describe the material behavior. Subsequently, the
material model is fitted to data from literature and after numerical
verification, exemplary numerical calculations are performed for tensile
and bias-extension test specimens and for a double-dome geometry
according to Sargent et al. [41]. The results are analyzed and compared
to similar calculations that make use of the Abaqus/Explicit built-in
abric-model. Finally, the material model is discussed with regard to
ts scope, potential enhancements and a validation strategy.

. Methods

.1. Fundamentals of hyperelasticity

In hyperelasticity, an integral representation of the stress–strain
elationship is used, in which stresses and strains are linked via the
train energy density 𝑊 according to

= 𝜕𝑊
𝜕𝜺

. (1)

For materials with direction-dependent properties, it is beneficial to use
a material model that allows to describe the material behavior in the
initial configuration. The second Piola–Kirchhoff stresses (PKS) 𝑺 can
be expressed via

𝑺 = 2
𝜕𝑊 (𝑪)
𝜕𝑪

(2)

depending on the right Cauchy–Green (RCG) tensor 𝑪, which can
be deduced from the deformation gradient 𝑭 by means of the polar
composition

𝑪 = 𝑭 ⊤𝑭 = (𝑹𝑼 )⊤ 𝑹𝑼 = 𝑼⊤𝑹⊤ 𝑹𝑼 = 𝑼 2. (3)

The tensors 𝑹 and 𝑼 are the proper orthogonal rotation tensor and the
right stretch tensor, respectively [42]. Fig. 2 depicts the polar decom-
position of the deformation gradient and shows how the initial fiber
orientations 𝒂0 and 𝒃0 transform. The second PKS can be transformed
into Cauchy-stresses via

𝝈 = 1
𝐽
𝑭 ⋅ 𝑺 ⋅ 𝑭 ⊤, (4)

here 𝐽 is the Jacobian of 𝑭 [43].
To avoid basis-dependency, invariants are used when formulating

he constitutive equations. Based on the RCG tensor and the initial fiber
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Fig. 2. Polar decomposition of the deformation gradient applied to a fabric structure.
orientations 𝒂0 and 𝒃0, pseudo-invariants can be set up [44,45]. Aimène
et al. [29] show that it is beneficial to use physically interpretable
invariants. For this purpose

𝐼4 = 𝒂0 ⋅ 𝑪 ⋅ 𝒂0 = 𝜆2a, (5)

𝐼6 = 𝒂0 ⋅ 𝑪 ⋅ 𝒃0, (6)
𝐼8 = 𝒃0 ⋅ 𝑪 ⋅ 𝒃0 = 𝜆2b (7)

and 𝐼10 = arccos(𝒂0 ⋅ 𝒃0) − arccos

(

𝐼6
√

𝐼4𝐼8

)

= 𝛾 (8)

are introduced, where 𝐼4 and 𝐼8 are the quadratic stretches 𝜆2𝑖 along a
roving direction (𝑖 = a,b). Engineering strains are related via

𝜀𝑖𝑖 = 𝜆𝑖 − 1 =
√

𝐼𝑗 − 1 (9)

for 𝑗 = 4 for 𝑖 = a and 𝑗 = 8 for 𝑖 = b. Invariant 𝐼10 represents the shear
angle 𝛾, i.e. the change in angle between the roving directions [36].
Subsequently, based on the assumption that these three invariants
contribute to the total strain energy density, it can be formulated as

𝑊tot(𝑪) = 𝑊tot(𝐼𝑗 ) (10)

with 𝑗 = 4,8,10. Its derivation with respect to the RCG tensor results in

𝑺 = 2
(

𝜕𝑊tot
𝜕𝐼4

𝜕𝐼4
𝜕𝑪

+
𝜕𝑊tot
𝜕𝐼8

𝜕𝐼8
𝜕𝑪

+
𝜕𝑊tot
𝜕𝐼10

𝜕𝐼10
𝜕𝑪

)

. (11)

which, together with the partial derivations of the invariants [29],
yields the expression

𝑺 = 2
(

𝜕𝑊tot
𝜕𝐼4

𝒂0 ⊗ 𝒂0 +
𝜕𝑊tot
𝜕𝐼8

𝒃0 ⊗ 𝒃0
)

+
𝜕𝑊tot
𝜕𝐼10

⋅
1

√

𝐼4𝐼8 − 𝐼26

⋅
[

𝒂0 ⊗ 𝒃0 + 𝒃0 ⊗ 𝒂0 − 𝐼6

(

𝒂0 ⊗ 𝒂0
𝐼4

+
𝒃0 ⊗ 𝒃0

𝐼8

)]

. (12)

2.2. Hyperelastic material model

2.2.1. General assumptions
Due to the differences between membrane and bending stiffnesses of

woven fabrics, they are often characterized and modeled in a decoupled
way [12,15–22,46]. For membrane behavior, a M3D3 or M3D4 element
is coupled with a S3R or S4R element, respectively, with bending
idealization in section integration, as depicted in Fig. 1. The present
work focuses on the membrane behavior and the hyperelastic material
model associated to the membrane element. It is assumed that, due
to the fabric’s two-dimensional structure, a plane stress state exists.
Rate-, temperature- or degradation-induced changes in the mechanical
3

properties are not considered in this work. However, care is taken to
ensure that the model can be extended at any time to include these
effects.

Based on the above assumptions together with recommendations
stated by Werner et al. [14], a modular macroscopic material model in
the framework of hyperelasticity is developed. Here, no energy dissipa-
tion is assumed and thus, all strain energy is stored in the deformation.
This assumption is reasonable for non-cyclic deformations [36]. The
associated constitutive equations are formulated in a parameterized
way, so that they can easily be adapted for different fabrics. The
corresponding parameters can be determined by means of experimental
studies.

It is assumed that the total strain density energy 𝑊tot can be de-
composed into a tension–compression-dependent component 𝑊TC and
a shear-dependent component 𝑊S. These terms need to be functions
of the used invariants 𝐼4, 𝐼8 and 𝐼10 and are defined in the following
sections.

2.2.2. Tension–compression behavior
The first assumption made for the tension–compression-dependent

strain energy density 𝑊TC is that it can be further subdivided into two
components 𝑊TC,a and 𝑊TC,b, representing the strain energy stored in
deformation along fiber directions a and b, respectively. It is further
assumed that the strain energy density for positive strains is different
from that for negative strains. Consequently, a case differentiation is
necessary:

𝑊TC(𝐼4, 𝐼8) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑊T,a +𝑊T,b for 𝐼4 > 1 and 𝐼8 > 1
𝑊T,a +𝑊C,b for 𝐼4 > 1 and 𝐼8 ≤ 1
𝑊C,a +𝑊T,b for 𝐼4 ≤ 1 and 𝐼8 > 1
𝑊C,a +𝑊C,b for 𝐼4 ≤ 1 and 𝐼8 ≤ 1.

(13)

It is essential to incorporate the uniaxial tensile behavior of the
fabric correctly. As shown in Fig. 3(a), the typical stress–strain curve
for this load case can be divided into two zones. In the first one,
undulations along the tensile direction are reduced, while undulations
in the transverse rovings are increased. This phenomenon is referred
to as crimp interchange. In the second zone, the fibers under tension
experience longitudinal stretch.

To fit this curve, a quadratic function

𝜎T,𝑖 = 𝛼𝑖𝜀
2
𝑖𝑖 + 𝛽𝑖𝜀𝑖𝑖 (14)

with parameters 𝛼𝑖 and 𝛽𝑖 is used for uniaxial tension. After integration
over the longitudinal strain 𝜀𝑖𝑖 and with Eq. (9), the corresponding
uniaxial strain energy densities in dependence on the invariants are

𝑊 = 𝑎 (
√

𝐼 − 1)3 + 𝑏 (
√

𝐼 − 1)2 (15)
T,a a 4 a 4
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Fig. 3. Characteristic stress–strain curves of fabric structures.
and 𝑊T,b = 𝑎b(
√

𝐼8 − 1)3 + 𝑏b(
√

𝐼8 − 1)2. (16)

The parameters 𝑎𝑖 and 𝑏𝑖 can be determined by means of uniaxial tensile
test data.

Due to fiber–fiber-interactions, strain along one fiber direction in-
duces not only longitudinal but also transverse stresses. Positive trans-
verse strains hinder crimp interchange [5,10] and negative ones are
assumed to facilitate fiber stretching and thus longitudinal tensioning.
The following factors are introduced to model this behavior:

𝑘TC,a = (1 − 𝑝min,a) exp
(

𝑐𝑎(
√

𝐼8 − 1)
)

+ 𝑝min,a (17)

and 𝑘TC,b = (1 − 𝑝min,b) exp
(

𝑐𝑏(
√

𝐼4 − 1)
)

+ 𝑝min,b. (18)

The tension–compression-parameter 𝑝min,i is only allowed to attain
values between 0 and 1, representing a complete reduction of the
strain energy density for longitudinal tension at negative transverse
strains and no reduction, respectively. While the tension–compression-
parameter 𝑝min,i limits the decrease for negative strains, the biaxial
coupling coefficient 𝑐i characterizes the interaction between the two
roving directions. The exponential expression takes on positive values
smaller or greater than 1 for negative or positive strains, respectively.
Thus, the factors 𝑘TC,a and 𝑘TC,b are always positive. For negative
transverse strains, they take on values between 0 and 1, causing a
reduction of the strain energy density. For positive transverse strains,
they are greater than 1 and lead to an increase of the strain energy
density. Both parameters can be determined by experimental data of
biaxial or uniaxial tests with lateral contraction. The corresponding
strain energy densities are

𝑊T,a = 𝑊T,a ⋅ 𝑘TC,a (19)

and 𝑊T,b = 𝑊T,b ⋅ 𝑘TC,b. (20)

At the moment, there are no published studies on the material be-
havior under in-plane compressive loading. As wrinkling of the textile
may be partly hindered, e.g. by the adjacent mold or by metal layers
in FML forming, combined stress states occur, and it can be assumed
that the fabric’s in-plane compressive behavior has to be taken into
consideration. Transverse strains are assumed to have no influence
on the longitudinal compression behavior, as no crimp interchange is
expected under compression. A linear correlation between stresses and
strains

𝜎C,i = 𝛿i𝜀i (21)

is assumed. Hence, the corresponding strain energy densities along both
roving directions in dependence on the invariants from Eq. (9) are

𝑊C,a = 𝑑a(
√

𝐼4 − 1)2 (22)

and 𝑊C,b = 𝑑b(
√

𝐼8 − 1)2. (23)

The parameters 𝑑i are proportional to the compressive stiffness and
their values can be obtained from in-plane compression tests. These
4

tests have not yet been performed, because a new test setup needs to be
developed to avoid buckling of the fabric without inducing too much
friction. A possible test setup can be found in [47]. An indirect method
to determine the in-plane compressive stiffness could be the method
presented by Dangora et al. [12]. Here, the in-plane compressive stiff-
ness is calculated from the bending and tensile stiffnesses obtained by
experimental results. Naujokaityte et al. [48] examined stability exper-
iments on fabrics to calculated bending stiffnesses and the test method
could be used in future work to identify the compression stiffness of
fabrics. Selezneva et al. [49] assumed an in-plane compression stiffness
of 10% of the tensile stiffness for heated self-reinforced polypropylene.
Werner et al. [24] performed a numerical parameter study for FML
forming and found compression stiffnesses of 0.1% to 1% of the tensile
stiffness suitable for the not infiltrated fabric. The assumed material
parameters can be found in Table 1.

2.2.3. Combined normal-shear behavior
Shear allows large deformations at comparatively small fiber strains

and is therefore the dominant deformation mechanism in woven fab-
rics [9]. For the formulation of the shear-dependent strain energy
density, the correct description of the pure shear deformation is essen-
tial. Fig. 3(b) depicts the characteristic stress curve for pure shear as
a function of the shear angle 𝛾. In the first zone (I), pure rigid body
rotations of the rovings take place and the low shear stresses can be
attributed to the friction in the contact points at crossovers. As soon
as the rovings come into lateral contact with each other, they start
compacting accompanied by an increase in tension, which is visible in
zone II. The transition between zones II and III is marked by the critical
shear angle 𝛾L, which is often referred to as locking angle. In the locking
zone (III) further shear deformation induces large shear stresses [7,25].
A third-degree polynomial of type

𝜏S = 𝑠1𝛾 + 𝑠2𝛾
2 + 𝑠3𝛾

3 (24)

is chosen to describe this behavior, leading to the corresponding strain
energy density

𝑊S = 1
2
𝑠1𝐼

2
10 +

1
3
𝑠2𝐼

3
10 +

1
4
𝑠3𝐼

4
10. (25)

The shear angle has been replaced by the invariant 𝐼10 from Eq. (8) and
the parameters can be determined using picture frame or bias-extension
tests.

Experimental studies showed that membrane tensions also influence
the shear behavior of fabrics. Positive fiber strains lead to increased
shear stresses for a given shear deformation [7,9]. Negative fiber strains
are assumed to lower the necessary energy to reach a given shear
deformation as the contact forces at the crossovers are reduced. Thus,
two coupling terms are introduced for each roving direction, describing
the shear behavior under membrane tension or compression along
that direction. Depending on the present load case, the strain energy
density is adjusted accordingly. If no membrane strains are present, the
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Fig. 4. Qualitative strain energy density in dependence on the invariants 𝐼4 , 𝐼8 and 𝐼10.
terms do not influence the pure shear behavior. The parameters can be
determined by means of pre-stretched picture frame or bias-extension
tests.

For positive strains, the corresponding additional strain energy
density is expressed via

𝑊ST,a = 1
3
𝐼310 𝑠T,a(𝐼4 − 1)2 (26)

𝑊ST,b = 1
3
𝐼310 𝑠T,b(𝐼8 − 1)2. (27)

with the tension–shear-parameter 𝑠T,i. In the presence of negative
strains, the shear strain energy density is reduced by multiplication
with the exponential factors

𝑘SC,a = exp(𝑠C,a(𝐼4 − 1)3) (28)

𝑘SC,b = exp(𝑠C,b(𝐼8 − 1)3) (29)

which contain the compression-shear-parameter 𝑠C,i. A simple subtrac-
tive reduction could lead to negative strain energy densities. To ensure
a smooth asymptotic reduction of the strain energy density without
reaching a value of zero or below, a multiplication is chosen. The
exponential term guarantees that the expression only takes on values
greater than zero and less or equal to one for negative normal strains.

2.2.4. Total material behavior
The total strain energy density is composed additively by the equa-

tions described in the preceding sections:

𝑊𝑡𝑜𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑊T,a +𝑊T,b +𝑊S +𝑊ST,a +𝑊ST,b for 𝐼4 > 1 and 𝐼8 > 1
𝑊T,a +𝑊C,b +

(

𝑊S +𝑊ST,a
)

⋅ 𝑘SC,b for 𝐼4 > 1 and 𝐼8 ≤ 1
𝑊C,a +𝑊T,b +

(

𝑊S +𝑊ST,b
)

⋅ 𝑘SC,a for 𝐼4 ≤ 1 and 𝐼8 > 1
𝑊C,a +𝑊C,b +𝑊S ⋅ 𝑘SC,a ⋅ 𝑘SC,b for 𝐼4 ≤ 1 and 𝐼8 ≤ 1.

(30)

The corresponding energy surfaces are depicted qualitatively as a func-
tion of the invariants 𝐼4 and 𝐼8 in Fig. 4 for selected shear angles 𝐼10.
The bold lines 𝐼4 = 1 and 𝐼8 = 1 represent uniaxial load along roving
orientations 𝒂 and 𝒃, respectively.

2.2.5. Implementation
The hyperelastic approach including the material equations derived

in the previous sections was implemented into an Abaqus/Explicit user
subroutine VUMAT. The flowchart in Fig. 5 visualizes the setup. The
5

Fig. 5. Flowchart of the VUMAT-subroutine for Abaqus/Explicit.

right stretch tensor 𝑈 of the actual step is imported from
Abaqus/Explicit. The RCG tensor 𝐶 in Eq. (3) and the invariants are
calculated according to Eqs. (5) to (8). At the end of the subroutine, the
Cauchy-stress tensor 𝝈 in Eq. (4), the weight specific internal energy
𝑤int and the state variables for visualization, like the invariants, are
calculated and passed to Abaqus/Explicit.

The experiments to identify all parameters of the material model
are summarized in Fig. 6. A Matlab-script is used to determine the
parameters from experimental data, using nonlinear regression. In a
first step, the equations of uniaxial tension–compression and pure shear
behavior are fit to the experimental data and in a second step, the
parameters describing the coupling mechanisms are identified. In the
event that not all values can be determined experimentally, additional
assumptions can be made or mechanisms can be deactivated owing to
the modular setup of the equations. For balanced fabrics, the maximum
number of 17 independent parameters reduces to 10 as both roving
directions have identical material properties.

3. Results and discussion

3.1. Material data

To verify the presented material model and to demonstrate its
functionality, data from literature are used. The work of Komeili [50]
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Fig. 6. Experimental investigations to determine the material parameters.
Table 1
Parameter values used for validation and numerical calculations.

Material behavior Parameter Value Determined

Uniaxial tension 𝑎a = 𝑎b 4130.00 MPa 1st regression
𝑏a = 𝑏b 667.50 MPa 1st regression

Uniaxial compression 𝑑a = 𝑑b 0.65 MPa Assumption

Biaxial 𝑝min,a = 𝑝min,b 0.75 Assumption
Tension–compression 𝑐a = 𝑐b 23.67 2nd regression

Pure shear 𝑠1 25.06 × 10−3 MPa 1st regression
𝑠2 −186.79 × 10−3 MPa 1st regression
𝑠3 562.39 × 10−3 MPa 1st regression

Tension–shear 𝑠T,a = 𝑠T,b 1467.60 MPa 2nd regression
Compression-shear 𝑠C,a = 𝑠C,b 100.00 Assumption

permits direct determination of 7 out of 10 parameters for a balanced
plain-weave fabric. These parameters describe the uni- and biaxial
tension and shear behavior and are determined with the aid of the
aforementioned Matlab-script. For parameters associated with the ma-
terial’s in-plane compression behavior (𝑑i, 𝑝min,i, 𝑘SC,i), assumptions are
made which are evaluated and discussed with the aid of numerical
simulations in Section 3.4.1. Table 1 lists the set of material parameters
used in the following calculations. The material is modeled with a
thickness of 1 mm and a density of 0.75 g cm−3.

3.2. Analytical-numerical validation

The material model was validated using a single M3D4 element. The
results of numerical calculations for uniaxial, biaxial and shear load
cases were compared with those of analytical calculations to ensure
the correct implementation of the constitutive equations. In a subse-
quent step, the Abaqus/Explicit built-in Fabric-model was fit to the same
material data and identical calculations were performed. The results of
both material models are compared in Fig. 7 and show good agreement
for longitudinal tension or compression (Figs. 7(a) and 7(c)) and shear
stresses (Fig. 7(d)). Moreover, it can be found that the newly developed
material model induces stresses transverse to the tensile direction for
constrained uniaxial loading in Fig. 7(a) and shows higher longitudinal
stresses under biaxial loading compared to the Abaqus/Explicit built-
in Fabric-model in Fig. 7(b). To further investigate the consequences
on the overall deformation behavior, a tensile and bias-extension test
specimen with multiple elements is considered in Section 3.3.

3.3. Tensile and bias-extension tests to check for physically meaningful
material behavior

In the following, a fabric sample of dimensions 200mm×50mm (𝐿×
𝐵) is created with 10,000 M3D3 elements and a strain of 3% is applied
along 𝒙 for the uniaxial tensile test in Fig. 8. For the bias-extension
6

test in Fig. 9, a strain of 10% is applied along 𝒙. Rigid clampings at the
short edges hinder relative movement of the rovings. In this qualitative
analysis, no bending elements are considered, because the membrane
behavior of the two material models, Abaqus/Explicit built-in Fabric-
model and hyperelastic model, are compared. In reality, excessive
loading could lead to shear locking of the fabric and thus to bending
deformation in the fabric. For comparison with experimental data and
validation of the material model, the bending behavior has to be
considered in a decoupled manner, as shown in Fig. 1 and applied for
forming simulation in Section 3.4.

Fig. 8 depicts the resulting strains along roving directions 1 and 2
for both material models under uniaxial tension. With the Fabric-model,
no displacements occur in the 𝑦-direction, whereas the hyperelastic
material model predicts a transverse contraction of about −15% in
𝜀22 direction in Fig. 8(c). The transverse strains induce shear deforma-
tions in the hyperelastic model in the clamping regions, as shown in
Fig. 8(d). The magnitudes of the 𝜀11-components are in the same range
for both material models.

Fig. 9 depicts the resulting strains along roving directions 1 and
2 for both material models in the bias-extension test. Due to the
pure shear loading in the bias-extension test, both material models
behave identically, and no tensile strains are induced using the hy-
perelastic model, which is in good agreement with the single-element
test results in Fig. 7(d) and can be explained by Eq. (25). Inducing
tensile strains subsequent to pure shear loading would correspond to
shear–tension coupling, which is not captured by the model, because
either shear–tension or tension–shear coupling can be modeled due to
interdependence.

To identify the part of the hyperelastic material model responsible
for the transverse strain effect under tensile loading, the results of
analog calculations with modified versions of the subroutine were
examined under tensile loading. With completely deactivated coupling
mechanisms (Fig. 10(a)), the predicted material behavior corresponds
very closely to that of the Fabric-model. Lateral contractions and trans-
verse strains are only observed with the biaxial coupling (Fig. 10(b)),
which causes strains 𝜀11 in the 1-direction to induce transverse strains
𝜀22. While these strains arise along the 2-direction in the central part
of the specimen, strains close to the clampings are not possible due to
the local boundary conditions. The resulting shape of the fabric can also
be observed in experimental studies on tensile test specimens, as shown
in Fig. 10(d) qualitatively [51]. Thus, the biaxial coupling is essential
for the numerical calculation of fabric structures undergoing normal
strains.

3.4. Parameter analysis in double-dome forming

To verify the functionality of the hyperelastic material model in
more complex simulations, the deformation behavior of a flat, not
yet infiltrated FML was calculated. The FML consisted of three fabric
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Fig. 7. Numerical verification and comparison of Abaqus/Explicit built-in Fabric-model and hyperelastic material based on single element M3D4 models.

Fig. 8. Comparison of strains for uniaxial tensile test.
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Fig. 9. Comparison of strains for bias-extension test.
Fig. 10. 𝜀22-component for different modified subroutines for uniaxial tensile test.
plies, initially oriented along the global 𝑥 − 𝑦-coordinates, and two
metallic cover layers. Each fabric ply was modeled with 20,268 M3D3
elements for membrane behavior, stacked with 20,268 corresponding
S3R elements with bending idealization in section integration, to ac-
count for bending behavior of the fabric, as depicted in Fig. 11. The
fabric material properties are summarized in Table 1 for membrane
behavior of the fabric and in Table 2 for bending behavior of the fabric.
The fabric membrane data are based on literature data from Komeili
et al. [50]. Komeili does not provide any data on the bending behavior
of the material, as bending was not modeled. A previous parameter
study for dry FML forming, performed by Werner et al. [24], showed
8

little influence of the fabric bending stiffness on the forming result, due
to the encasing metal layers and high blank holder pressures of 2 MPa.
The fabric bending stiffness is therefore assumed with 100 MPa in both
roving directions. In the parametric study, the compressive stiffness has
also been evaluated and is therefore assumed to be 1.3 MPa. Every
single metal layer consists of 13,568 S3R elements and the metal be-
havior is modeled elastic–plastic with isotropic hardening, but without
damage initiation or failure, according to tensile tests performed and
described by Werner et al. [23,24]. The tools are assumed to be ideally
stiff compared to the metal and fabric plies and are therefore modeled
as rigid discrete bodies. The contact between the tools and plies is
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Fig. 11. Double dome geometry: quarter FE-model of tool and FML [24] modified geometry from [41].
Fig. 12. Shear angle distribution for disabled tension–compression coupling at 𝑝min,𝑖 = 0.
Table 2
Material and contact parameters for double-dome forming model. b∶= bending, tm∶=
tool–metal; mf∶= metal–fabric, ff∶= fabric–fabric.

Model parameter Constant Value

Steel DC04 𝐸, 𝜈, 𝑅p0.05 186.6 GPa, 0.3, 159.0 MPa

Fabric bending 𝐸b,11 = 𝐸b,22 , 𝜈12 100.0 MPa, 0.0
𝐺12 = 𝐺13 = 𝐺23 1.0 MPa

Normal contact 𝑐n 1000.0 MPa
Tangential contact 𝜇tm , 𝜇mf , 𝜇ff 0.1, 0.25, 0.334

modeled with the Abaqus/Explicit built-in general contact and specified
tangential contact pairings for tool–metal (𝜇tm), metal–fabric (𝜇mf) and
fabric–fabric (𝜇ff) contact with the parameters in Table 2. For the
normal contact, a penalty contact stiffness of 𝑐n = 1000 MPa is used to
speed up the simulation. Lower values would increase the simulation
speed, but would lead to intersection of the tools and plies. For the
membrane behavior, the hyperelastic material model and the Fabric-
model are used in the scope of this work. In the following sections, the
middle fabric layer is visualized.

3.4.1. Analysis of compression-related material parameters
The parameters 𝑝min,𝑖, 𝑑𝑖 and 𝑠C,𝑖 have been set by assumptions. To

investigate their influence on the draping, calculations are performed
for different parameter values. The tension–compression-parameter
𝑝min,𝑖 was varied in seven steps between zero and one. Values of
𝑝 below 0.25 led to erroneous formation of tension–compression
9

min,𝑖
bands as shown in Fig. 12, which cannot be observed in experimental
studies [24]. The effect was not influenced by 𝑑𝑖 and 𝑠𝐶,𝑖. To avoid
it, a value of 𝑝min,i = 0.75 was used hereafter. Additionally, shear
bands occurred in the areas of large fiber displacement outside the
metallic cover layers, but a variation of 𝑝min,𝑖 showed no influence on
their formation. The parameter 𝑑𝑖 was proportional to the compressive
stiffness 𝐸C, which was varied from 0.13MPa to the material’s initial
tensile stiffness 1300MPa in powers of ten. For low values of 𝐸C, the
shear bands vanished, accompanied by high compressive strains. As
can be seen in Fig. 13, with increasing compressive stiffness the shear
bands became more pronounced and expanded toward the center of
the part while outside the metallic cover layers, formation of wrinkles
is promoted. To avoid the occurrence of very large strains and strong
shear bands, the values 0.13MPa, 1.3MPa and 13MPa were further
considered. The compression-shear-parameter 𝑠C,𝑖 was varied between
10 and 1000 in powers of ten. Fig. 14 shows the resulting shear
angles for a compressive stiffness of 𝐸C = 1.3MPa. High values of 𝑠C,𝑖
facilitated the formation of shear bands due to the reduction of the
necessary energy to induce shear deformation at negative membrane
strains. Additional calculations were performed to further investigate
the cause of shear bands. The outcome indicated that the formation
of shear bands results from a low shear stiffness compared to the
in-plane compressive stiffness and instabilities under in-plane com-
pression [24]. High in-plane compressive stresses were relieved by
changing from in-plane compression to shear deformation, which is
more energy-efficient. As only in-plane stress states are considered, the
shear behavior in this model was not influenced by three-dimensional
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Fig. 13. Shear angle distribution for different values of the compressive stiffness 𝐸C for double dome geometry.
Fig. 14. Shear angle distribution for different values of the compression-shear parameter 𝑠C for double dome geometry.
effects. In reality, higher in-plane shear stiffnesses can be expected
due to an increase of internal friction, if out-of-plane-thickening is
hindered and compressive stresses occur in this direction. Accordingly,
an extension of the model toward three-dimensional stress states might
avoid the occurrence of shear bands. In addition to the experimental
determination of the model parameters, further investigations on the
bending behavior are indispensable to model the material behavior
fully. The bending behavior is of particular interest when it comes to
formation of wrinkles.

3.4.2. Analysis of the coupling mechanisms
Again, different configurations of the newly developed material

model were used and the results were compared to those obtained
with the Fabric-model. The subroutine allows transient element-wise
tracking of present strain states as visualized in Fig. 15. All four possible
biaxial strain states occur in the deformed component. The contour of
the metal sheets bounds the zones in which positive strains overlap with
negative transverse strains. In the center of the component, the fabric
is stretched biaxially. Comparisons of calculations with activated and
deactivated coupling mechanisms show that the biaxial coupling leads
to a slightly changed boundary between the areas of biaxial tensile
strains and tensile-compressive strains in the region of the strongest
curvature.

Fig. 16 shows the strains 𝜀11, 𝜀22 and the shear angle 𝛾12 for three
paths in x-, 45◦ and 𝑦-direction. In addition, the inner punch radius, the
outer punch radius and the metal sheet contour are shown. Each plotted
value in Figs. 16(b) to 16(j) is the average of the eight surrounding
elements of the depicted node. The Fabric-model, the Vumat-subroutine
without couplings and the Vumat-subroutine with shear coupling show
almost identical results along the paths.

Only for the 𝛾12-path in Fig. 16(d), the three models show different
values, which can be attributed to formation of shear bands due to
the metal sheet. The shear bands can be considered as numerical
10
instabilities and are therefore not equal in any of the calculated models.
The shear coupling favors the shear band formation, because the model
with shear coupling, as well as the model with complete couplings,
show largely the same curves, as well as the highest shear angles. The
models with biaxial coupling and complete coupling show very similar
strain and shear angle curves for all three paths. Compared to the
models without biaxial coupling, the models with biaxial coupling show
lower strains in the punch region and predict higher absolute strains
in the 𝜀11 and 𝜀22 directions between the two radii (higher stretching
in Figs. 16(b), 16(i) and compression in the transverse direction in
Figs. 16(c), 16(h), respectively). The maximum shear angle in 45◦-
direction in Fig. 16(g) is only slightly affected by the biaxial coupling,
while the shear coupling has no influence on the maximum shear
angle. The slight influence is attributed to a small shear angle, which is
about 20◦. The shear angle jump in Fig. 16(j) results from shear band
formation on the metal sheet contour for all models.

3.5. Discussion of the material model

The results of the preceding calculations reveal that the coupling of
strain components contributes significantly to the deformation behavior
of fabric structures and should be considered for draping processes
with constrained out-of-plane deformations, like high blank holder
pressures. For forming conditions with low longitudinal strains or low
compression forces in thickness direction, the biaxial coupling may be
neglected, as the forming process can be considered as free draping
process with pure shear deformations. In free draping processes, the
not investigated shear–tension coupling seems to be more relevant.

As all possible strain states of combined tension and compres-
sion occur in the results, it can be deduced that negative membrane
strains should not be neglected. Due to a lack of experimental data,
the in-plane compression parameters are currently estimated based
on assumptions and need to be determined with the aid of suitable
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Fig. 15. Distribution of the four possible biaxial strain states.
Fig. 16. Strains 𝜀11, 𝜀22 and 𝛾12 along x-, 45◦- and y-path for Fabric-model and hyperelastic model with different activated couplings.
experimental investigations in future. As it can be deduced from the
double-dome forming calculations, shear behavior should be modeled
as fiber-strain dependent only for large shear angles. For calculations
with high normal strains, the influence of the biaxial coupling may
11
exceed the one of the normal-shear coupling, but both contribute
noticeably to the final result. Especially, the coupling of positive and
negative normal strains enables realistic fabric material behavior, as
shown in Fig. 10 for the tensile test.
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Compared to conventional material models based on Cauchy-
elasticity, this hyperelastic approach allows formulation of the consti-
tutive equations with respect to the material’s initial configuration. An
extension to three-dimensional stress states is possible and desirable,
as experimental investigations indicate the relevance of out-of-plane-
stresses in case of high deformation forces [52,53]. The hyperelastic,
invariant-based models developed by Boisse et al. [28,54–59] use the
same set of invariants and their approach for three-dimensional stress
states could be used. Experimental studies revealed that liquid matrix
has an influence on the deformation behavior of fabrics [60]. To
model simultaneous forming and infiltration, the material model can
be extended to include viscoelastic effects [20,60].

4. Conclusion

A hyperelastic, invariant-based material model was developed to de-
scribe the deformation behavior of woven fabric structures in forming
simulations. The material model takes into account biaxial tension–
compression behavior, as well as normal strain-dependent shear behav-
ior for positive and negative strains. The modular architecture of the
constitutive equations allows for easy adaptation of the model to dif-
ferent materials and for identification of the parameters by independent
experimental investigations.

The material model is conditioned using data from literature and
assumptions concerning the compressive behavior. It was demonstrated
and further investigated in numerical calculations of a tensile test
specimen and a double-dome geometry, showing promising outcomes.
Comparisons with results obtained using the Abaqus/Explicit Fabric-
model reveal that the hyperelastic material model yields more realistic
results and that biaxial tension–compression coupling is of particular
importance. It is particularly suitable for forming processes where
high normal stresses are expected due to grippers, blank holders or
encasing layers of high stiffness. When large shear angles are expected,
consideration of the normal-shear coupling is recommended. It shows
particular influence on the shear stresses for models with low normal
stresses.

Due to the lack of experimental data in the negative strain region,
the material model is subject to uncertainties. Consequently, the next
step to enhance the model’s applicability is to experimentally examine
a complete set of material data, especially for combined strain states
and under compressive loading. Future perspectives are to extend the
material model toward three-dimensional stress states and the influence
of liquid matrix.
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