JID: EOR

[m5G;December 20, 2022;16:44]

European Journal of Operational Research xxx (XXXX) XXX

European Journal of Operational Research

=

UROPEAN OURNAL OF
PERATIONAL ' ESEARCH

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejor

Invited Review

Optimization under uncertainty and risk: Quadratic and copositive

approaches

Immanuel M. Bomze®*, Markus Gabl®

3 ISOR/VCOR/ds:UniVie, University of Vienna, Oskar-Morgenstern-Platz 1, Wien 1090, Austria
b JOR, Karlsruhe Institute of Technology, Kaiserstrafe 12, Karlsruhe 76131, Germany

ARTICLE INFO

Article history:

Received 9 February 2022
Accepted 11 November 2022
Available online xxx

Keywords:

Conic programming and interior point
methods

Quadratically constrained quadratic
problems

Two-stage stochastic standard quadratic
problems

Adjustable robust optimization
Distributionally robust optimization

ABSTRACT

Robust optimization and stochastic optimization are the two main paradigms for dealing with the uncer-
tainty inherent in almost all real-world optimization problems. The core principle of robust optimization
is the introduction of parameterized families of constraints. Sometimes, these complicated semi-infinite
constraints can be reduced to finitely many convex constraints, so that the resulting optimization prob-
lem can be solved using standard procedures. Hence flexibility of robust optimization is limited by certain
convexity requirements on various objects. However, a recent strain of literature has sought to expand ap-
plicability of robust optimization by lifting variables to a properly chosen matrix space. Doing so allows
to handle situations where convexity requirements are not met immediately, but rather intermediately.

In the domain of (possibly nonconvex) quadratic optimization, the principles of copositive optimiza-
tion act as a bridge leading to recovery of the desired convex structures. Copositive optimization has
established itself as a powerful paradigm for tackling a wide range of quadratically constrained quadratic
optimization problems, reformulating them into linear convex-conic optimization problems involving only
linear constraints and objective, plus constraints forcing membership to some matrix cones, which can be
thought of as generalizations of the positive-semidefinite matrix cone. These reformulations enable ap-
plication of powerful optimization techniques, most notably convex duality, to problems which, in their
original form, are highly nonconvex.

In this text we want to offer readers an introduction and tutorial on these principles of copositive
optimization, and to provide a review and outlook of the literature that applies these to optimization
problems involving uncertainty.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

a unified treatment of a vast array of approaches to optimization
under uncertainty, spawning countless generalizations such as

Robust optimization is one of the two main paradigms, next to
stochastic optimization, for dealing with the uncertainty inherent in
almost all real-world optimization problems. The core principle of
robust optimization is the introduction of parameterized families
of constraints, enforced for all realizations of the uncertainty
parameters belonging to a so-called uncertainty set. Using tools
from convex optimization theory, these complicated semi-infinite
constraints can often be reformulated into finitely many convex
constraints, so that the resulting optimization problem can be
solved using standard convex optimization procedures. Based on
this simple idea, the framework of robust optimization allows for
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adjustable robust optimization (ARO) and distributionally robust
optimization (DRO), yielding elaborate models, which in essence
boil down to robust optimization problems. This lends further
credence to the versatility of this framework.

Unfortunately, the flexibility of robust optimization is limited
by certain convexity requirements on various objects, such as the
parameterized constraints as well as the uncertainty set. How-
ever, a recent strain of literature has sought to expand appli-
cability of robust optimization by lifting variables to a prop-
erly chosen matrix space. Doing so allows to handle situations
where convexity requirements are not met immediately, but rather
intermediately.

As stated above, robust counterparts can often be reformulated
into a tractable, finite convex optimization problems. At the core of
the machinery enabling these reformulations lies the observation
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that a robust constraint of the form

f(x,u) >0 for allueu is equivalent to inbf({f(x, u)}>0.
Ue

In case the infimum problem admits a dual (involving dual vari-
ables A, a dual feasible set D (which typically also involves x in
some tractable manner) and an appropriate dual objective function
f(x, ), say) attaining its optimal value with zero duality gap, the
robust constraint can further be reformulated into

fx. M)l >o0,
it:Dp{f(x )} =

where finally the supremum operator can be dropped, since any
nonnegative feasible value certifies that the supremum is nonneg-
ative as well, so that the robust constraint is fulfilled.

The desired strong duality property is readily available in case
the infimum problem is a convex optimization problem: here only
mild additional regularity conditions, such as Slater’s condition,
need to be satisfied. Outside the domain of convex optimization,
such strong duality results are much more scarce.

In the domain of (possibly nonconvex) quadratic optimization,
the principles of copositive optimization act as a bridge leading to
recovery of the desired convex structures. Copositive optimization
has established itself as a powerful paradigm for tackling a wide
range of quadratically constrained quadratic optimization problems
(QCQPs). It aims at reformulating QCQPs into linear convex-conic
optimization problems involving only linear constraints and objec-
tive, plus constraints forcing membership to so-called set-copositive
matrix cones, which can be thought of as generalizations of the
positive-semidefinite matrix cone. These reformulations allow for
the application of the powerful tools of convex optimization, most
notably convex duality, to problems which, in their original form,
are highly nonconvex.

In this text we want to offer readers an introduction and tuto-
rial on these principles of copositive optimization, and to provide
a review and outlook of the literature that applies these to robust
optimization problems. We hope that the reader will acquire the
following benefits:

- gaining an overview on existing copositive optimization ap-
proaches to robust optimization as well as open questions in
this field;

+ understanding basic principles of convexifying nonconvex
QCQPs in the style of copositive optimization with a focus
to practice-oriented applications;

- being exposed to open problems and interesting research di-
rections, which hopefully inspire the pursuit of new research
in this area.

Regarding the final point we will discuss open problems
throughout the text. However, for the readers’ convenience we will
attach a dedicated “section with open problems” at the end of
each topic, where we will summarize interesting research direc-
tions point by point.

In the sequel, we will not delve into much much detail on
robust optimization theory, since there are great tutorials avail-
able, providing excellent introductions to the field and its vari-
ous sub-genres, for example Bertsimas, Brown, & Caramanis (2011);
Gorissen, Yanikoglu, & den Hertog (2015); Rahimian & Mehrotra
(2019); Wiesemann, Kuhn, & Sim (2014); Yanikoglu, Gorissen, &
den Hertog (2019). In the interest of a focused and concise pre-
sentation, we will also omit discussions on another strain of lit-
erature dealing with convexifications of QCQPs by means of the
so-called S-Lemma and its many variants. However, let us high-
light that this topic has strong ties with copositive optimization
as well as robust optimization. Most notably, copositive optimiza-
tion is sometimes referred to as an alternative to the S-Lemma
in the context of robust optimization. While we will comment on
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this circumstance sporadically throughout the text, our discussion
on the topic will be limited. The interested reader may refer to
Ben-Tal, Goryashko, Guslitzer, & Nemirovski (2004); Bomze & Gabl
(2021); Jeyakumar, Li, & Woolnough (2021); Pélik & Terlaky (2007);
Woolnough, Jeyakumar, & Li (2021).

The rest of this article is organized as follows: in Section 2 we
will give a detailed but by no means exhaustive account of copos-
itive optimization theory and related topics, concluding with a
guide through surrounding literature. After briefly introducing ba-
sic concepts of robust optimization and some of its variants in
Section 3, we will discuss in greater detail the various ways coposi-
tive optimization has been applied in robust optimization contexts.
A core technique in this regard is the reformulation of semi-infinite
constraints with quadratic index, which we will discuss extensively
in Section 4. Some of the adjustable robust models discussed there
can be tackled by an alternative approach which seeks to reformu-
late the entire problem rather than individual constraints and is
discussed in Section 5. We then review robust versions and a two-
stage stochastic version of the so-called Standard Quadratic Opti-
mization Problem in Sections 6 and 7, respectively. A copositive
approach to mixed-binary linear optimization under objective un-
certainty, that sits conceptually in-between stochastic optimization
and distributionally robust optimization, is presented in Section 8.
Finally, we discuss a conic approach to two-stage distributionally
robust optimization in Section 9.

1.1. Notation

Throughout the paper, matrices are denoted with sans-serif
capital letters, e.g., E is the matrix of all ones, I is the identity ma-
trix and O the matrix of all zeros (the matrix order will depend on
the context). Vectors will be given as boldface lower case letters,
for instance the vector of all ones (a column of E) is e, the vector
of zeros is 0 and the vector e; is the ith column of I. By T we de-
note transpose. For a square matrix M, diagM extracts its diagonal
as a column vector while Diag x produces a diagonal matrix with
diagonal x. For any x = [x;]; € R" we denote by XoX = [xl.z],- e R" its
Hadamard square. We will also use the shorthand

Y(X, X) := |:}( )§(Ti|

Sets will mostly be indicated using letters or acronyms in cap-
ital calligraphic font. Most importantly: S™ is the space of sym-
metric n x n matrices, N™ c S" those of them with no negative
entries and S} those of them with no negative eigenvalues, i.e.,
positive-semidefinite (psd) symmetric matrices of order n (some-
times the cone S is referred to as the psd-cone in short), SOC" =
{(x0.XxT)T e R": ||| < xo} is the second-order cone.

There are occasional exceptions, e.g., the n-dimensional Eu-
clidean space R", its nonnegative orthant R", or the index set
lizjl={i,i+1,...,j—1,j}, where i < j are integer numbers. For
a set A we denote cl(A), int(A), conv(A) its closure, interior, and
convex hull, respectively, and for a convex set .4 we denote by
relint(A) its relative interior, as well by ext(A) the set of its ex-
tremal points. For a cone K € R" we denote the dual cone as
K :={xeR":y"x>0 for all y e k}. For any optimization prob-
lem (P), we denote by val(P) its optimal value, regardless whether
it is attained or not.

2. Convexifying QCQPs via set-copositive optimization
2.1. Basic lifting strategies and their core ingredients

A QCQP consists of minimizing a quadratic function subject to
quadratic constraints, formally given by

inf {x"Qox +2q5x — wo : XTQX+2q/x <y, ie[1:m]} (1)
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where {Q;:ie[0:m]} cS", {q;:ie[1:m]} cR" and w; are real
numbers. £ € R" is a cone which one could choose to be any cone
representable by (finitely many) linear or quadratic inequality con-
straints without leaving the domain of QCQPs, for instance K €
{r". R, SOC"}. Note that neither the objective nor the feasible set
need be convex, the latter may even be disconnected. Indeed, gen-
eral QCQPs are NP-hard as they contain many NP-hard problems as
special cases (see e.g. Pardalos & Vavasis, 1991).

In our discussion we want to familiarize the reader with a spe-
cific type of convexification of QCQPs, that is simple, yet ultimately
very powerful. To convince even readers who are unfamiliar with
the subject of the simplicity of the approach, we will now discuss
some simple examples that nonetheless exhibit all the ingredients
that are necessary for understanding the machinery.

Example 1. Consider the following optimization problem:
min {x"Qx +2q"x : X € {a, b} c R"}. (2)
XeR"

Clearly, the problem is easily solved by just evaluating the ob-
jective at both feasible points and then choosing the minimizer.
Still, we have a (possibly) nonconvex objective that is optimized
over a nonconvex feasible set, so that the problem belongs to a
class of actually difficult problems and it is in fact a nice take-off
point for thinking about how to convexify more general problems
in this class. Firstly, observe the following equivalence: X" Qx =
Tr(x"Qx) = Tr(Qxx") = Q e xx", which holds since the trace of a
number is the identity function and the trace-operator is invariant
under cyclic permutation of matrix products. Note that the Frobe-
nius product is bilinear, so that we can achieve a linearization of
the problem via the following modifications:
; Ty - T

xeﬂg}lxllsn{Qox-i—Zq X:X=xx", x e {a b}} (3)
Further, we can eliminate the explicit relation between X and x by
pushing it into the description of the feasible set in order to obtain

; Ty - T T
XEQ&ES"{Q.X-i—Zq x: (x,X) e {(a aa"), (b,bb")}}. (4)
A convexification is now easily obtained by replacing the feasible
set with its convex hull, since the linear constraint will attain its
optimum at an extreme point of the so obtained convex feasible
set. In our case, the latter is a line segment connecting the two
points in the feasible set of (4), which also are the extreme points
of this line segment. Rather than expressing this convexification in
the space of tuples of the form (x, X), it is instructive to represent
it entirely in the space S™! in the following manner:

xe]lg'l,aneS" {Qex+2q"x:Y(x,X) € conv{Y(a aa"),Y(b,bb")}}.
(5)

Note that

V(a.aa") = [; ::T} - m MT

so that in fact, the feasible set is the convex hull of symmetric
dyadic matrices (i.e., matrices of the form xx') where the last n
components of the factors x are feasible solutions to the original
optimization problem. In addition, these dyadic matrices form the
extreme points of the feasible set and the linear function will at-
tain its minimum at one of these points. Finally, at these dyadic
extreme points the linear objective will evaluate identically to the
quadratic function at the respective feasible points, so that the
convexification enjoys zero gap.

The hitherto exemplified construction of the feasible set of the
convex reformulation is critical for the understanding of the con-
vexification strategy we want to convey to the reader. What we
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demonstrated in the above example for the case where the orig-
inal feasible set contained just two points can be generalized to
the case where the feasible set, say F, is arbitrary. In this case a
general convexification can by achieved via a lifted set given by

-
G(F) := clconv I:l} [J{} 1XeF

Characterizing G(F) for a given set F is challenging, and we will
spend a considerable part of this text discussing known strategies,
and highlighting open questions in this regard. However, irrespec-
tive of the characterization, optimizing a linear function over this
set will always yield optimal points that are dyadic matrices whose
factors contain x € F.

It is however noteworthy that not all optimal solutions to prob-
lems of the type (5) and its generalization have this quality. But
in general optimal solutions are always in the convex hull of the
optimal dyadic solutions.

We also want to highlight the fact that all dyadic matrices are
positive-semidefinite. In fact, the psd-cone is the convex hull of all
symmetric dyadic matrices, which are also the generators of the
extreme rays of that cone. This foreshadows the fact that, in prac-
tice, many characterizations of G(F) are achieved via conic inter-
sections involving suitable sub-cones of the psd-cone, namely the
so-called set-completely positive cones whose extreme rays are gen-
erated by the dyadic matrices the factors of which are elements of
certain sets. We will discuss these objects in more detail later in
the text.

At this point we want to further the intuition regarding our
convexification strategy by repeating a neat example originally
given in Burer (2015), which we will discuss in extensively in order
to highlight its connection to the rest of our exposition.

Example 2. The next example is an extended take on an exam-
ple discussed in Burer (2015). Consider the following optimization
problem:

min {Qx* +2gx : 1> x> —1}. (6)
xeR
Depending on the sign of the coefficient Q this can be a nonconvex

quadratic optimization problem, which we will now conexify in the
style discussed in this section. In some simple steps we can obtain

. 2 . _
l‘)l(‘lelﬂgl{QX +2qx:1>x> 1}

— min {QX+2qx:X=x2, 1zxz—l}

(x,X)eR?

— min {QX+2qx: 1 zX:xz}
(x,X)eR?

— min {QX+2qx: 1 zszz}
(x,X)eR?

where only the last equality merits justification. The feasible set of
the final optimization problem is the convex hull of the parabola
where X = x? that is truncated at height equal to one. Since all
extreme points of this set correspond to points at the parabola,
the relaxation is tight.

We will now give some more insight on how this geometry re-
lates to the discussion so far. Consider the fact that by Schur com-
plementation we have

X2x2©|:)1( ;]e&%.

We can again write the optimization problem in the lifted space of
2 x 2 symmetric matrices as to obtain
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min | © q_.-xo x]
(X0.x.X)eR3 |4 Q_ _X X_
1 0] [x «] _1
0 o|*|lx x|7™"
0 0] -xo x|
[0 1 x x|=h
)2) ;é €S2,

Here we explicitly write down the de-homogenizing equation xy =
1 in order to make the geometry of the feasible set as transparent
as possible. We see that the set of feasible matrices is again a sub-
set of the psd-cone. More importantly, the extreme points of the
feasible set are all boundary points of the psd-cone, which, in case
of 2 x 2 matrices, are all dyadic matrices (in higher dimensions the
psd-cone has non-dyadic boundary points). Hence, the above opti-
mization problem will attain its optimal value at a point where

T
¢ 3Jof - e

or in other words, the set of feasible matrices of the relaxation is
precisely G(F), where F is the original feasible set.

In the previous example, consider the case where Q = —1 and
q = 0, so that the original quadratic problem is a nonconvex prob-
lem with optimal value given by —1, which is attained at x ¢
{—1,1}. The convex reformulation gives the same optimal value
and indeed the points (x,X) € {(—1,1),(1,1)} are optimal solu-
tions. But so are all the points (x,X)=A(-1,1)+ (1 -1)(1,1),
A €0, 1], or, expressed in the lifted space

[f? ﬂ =A[_]1H_11T+<1 —A)MMT, relo],

which illustrates that the optimal solutions of the relaxation are in
the convex hull of its dyadic solutions. Since the latter correspond
to optimal solutions of the original problem, the x component of
the optimal solution to our relaxation are always in the convex
hull of optimal solutions to the original problem. Hence, unless the
original feasible set is already convex, the X components of a solu-
tion to the reformulation are not necessarily feasible to the original
problem.

One must however not confuse convex combinations in the
original space of variables with convex hulls in the lifted space! It
is vital to understand that G(conv(F)) is always a strictly larger set
than G(F), unless F is a singleton. Said differently: convex combi-
nations in the original space do not correspond to convex combi-
nations in the lifted space. To illustrate this point, let us revisit the
problem in Example 1 for the special casen=1, a=—-1and b= 1.
As we can see, the feasible set of the problem in Example 2 is just
the convex hull of these points. However, the feasible set of the
latter problems convexification is not just the convex hull of the
two lifted extreme points, but the convex hull of an entire curve
of points, each of which represents a lifting of a convex combina-
tion of the points {1, —1}. Merely considering the convex hull of
the lifted extreme points of the interval yields G({1, —1}), i.e., the
feasible set of the convexification problem in Example 1, which is a
much smaller lifted set. In fact, no dyadic matrix can be expressed
as the convex combination of two dyadic matrices which are not
just re-scalings of that matrix, i.e., Xx" = Ay1y] + (1 — L)y,y; im-
plies y,-yl.T = uxx", pu; >0, ie[1:2], as we prove later (see the
proof of Proposition 11 in the appendix).

With the preceding discussion in mind, the following theorem,
which is at the heart of all convexifications of QCQPs we will dis-
cuss in this text, should be easily accessible to the reader.
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Theorem 1. Let F :={xe K:X'QX+2q/x <w;, ie[l:m]} cR"
be a feasible set of a QCQP where K is a closed cone, and denote
by

.
G(F) = clconv [;}I}J ‘XeFy,

where clconv(A) stands for the closure of the convex hull of a set A.
Then for any Qo € S" and qy € R" we have

val(P) := inf (XTQox + 2q5X — o)

3 T .

= Y(x,)l(l;lefg(f) (Qo o X+2qJX — ) =: val(R).

Proof. See, e.g. Burer & Anstreicher (2013); Eichfelder & Povh
(2013). For the readers’ convenience we repeat the argument here.
We refer to the QCQP as (P) and to the reformulation as (R).
Let x be feasible for (P), then (x,xx") is feasible for (R) with
identical objective function value given by Qg e Xx" + qJx — wy =
X"QoX +2q[X — wg. Thus val(R) < val(P). For the converse, let
(x,X) be e-optimal for (R), ie, QqeX+2qlx—wy < val(R)+e.
(We need an arbitrarily small € > 0 in case that is val(R) not at-
tained.) Then by definition of G(F) as the closure we have like-

wise d((x, X), YK, k,-(x,-,x,-xf)) <8 with x;e 7, Y ;1 2;=1 and
A; >0, ie[1:k], and § > 0 so small that, by continuity,
k
|Qo e X +2q5x — Y Ai[X] Qox; + 2qx]| < €.
i=1
So, on one hand, x| QqX; + 2q{ X; — wy > val(P) for all i € [1:k] and
on the other hand,
val(R) +& > Qo e X +2q)X — wp
k
= Qoe X+ 2qu — o — Z )\.,‘[X?Qoxi + 2qui - 6()0]
i=1
k
+ Z M[X,-TQOXI‘ +2q9X; — a)o]
i=1
k
—& + Z )\.,‘[X}I—QOX,' + 2qu,- - Cl)()]
i=1

A%

%

k
—&+ Y Ajval(P) =val(P) — ¢,

i=1
which shows val(R) + 2¢ > val(P). As ¢ was arbitrarily small, we
arrive at val(R) > val(P). O

Despite the simplicity of the theorem we want to take a mo-
ment and reconsider the core ingredients that enable its valid-
ity. The first one is a linearization by lifting to matrix variables:
from a quadratic form xTQx = Tr(xTQx) = Tr(Qxx") = Q e Xxx" we
pass on to a linear form Qe X, in substituting X;; for x;x;. The
second ingredient is the set G(F). Merely requiring that (x,X) €
{(x, xxT):xe }'} would obviously render the linearization to be
exact. But linear optimization is invariant to taking the convex hull
of the feasible set, a fact often exploited in, for example, mixed in-
teger linear optimization, where one seeks to find the convex hull
of integer points.

The characterization of G(F) is the major challenge when em-
ploying the reformulation strategy depicted in Theorem 1 and a
general workable description of G(F) is not known. There are,
however, characterizations for specific instances of F.

References to important examples of such reformulations in lit-
erature will be given in the sequel and will be summarized in
Section 2.4.
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2.1.1. Lower bounds by Shor relaxation: exactness and strengthening
results

A natural starting point for the construction of G(F) is based
upon the so-called Shor relaxation introduced in Shor (1987). A
central role here is played by the set-completely positive matrix cone
defined as

CPP(K) :=conv {xx" : x € K},

for a cone K € R". The matrix cone CPP(K) is a closed cone
whenever K is closed, and with nonempty interior whenever K has
nonempty interior (see e.g., Mittal & Hanasusanto, 2021, Lemma 4
or Tuncel & Wolkowicz, 2012, Theorem 5.1). It is the convex hull
of extreme rays spanned by dyadic matrices. These are precisely
the positive-semidefinite matrices of rank equal to 1, except for
the zero matrix O = 00", which has rank equal to zero. In gen-
eral, CPP(K) is an intractable cone in that membership of a given
matrix is hard to decide (Dickinson & Gijben, 2014). Thus, when
working with this object, one is bound to use either approxima-
tions or clever tools to check membership. Since these tools are
essential when working with CPP(K), we will devote an entire
section to this matter (see Section 2.3.1). In the present section,
we will merely focus on its relation to the Shor relaxation, which
can be best explained by looking at a homogeneous QCQP:

min {X"QoX : X' QX < @;, ie[1:m]},

Xek
=mxin{QooX:Q,-oX§a),v, ie[1:m], Xe {xx" :xek}}.
zmxin{Qo.X:Q,-oXSa),-, ie[1:m], XeCPP(K)},

where we added an intermediate step for the sake of transparency.
In case additional linear terms qiTx, i € [0:m], are present, one can
always recover the homogeneous case by enriching x by an addi-
tional coordinate x, € Ry, so that (xo,xT)T € R, x K, and adding
one de-homogenizing constraint x2 = 1. Note that it is indeed im-
portant to have xy > 0 in order to secure the implication x(z) =1=
Xo = 1. The Shor relaxation then is given by adding a row and col-
umn to the data and to the matrix variables:

r{(lin{@o eY(X,X) : Qe Y(X, X)
X

<0, ie[l:m], Y(X,X) e CPP(R, x K)},
with

T > . T
o=y X e[ 4]

so that
QieY(X,X)=QeX+2q'x—w;, allie[0:m].

While G(F) is the convex hull of intersections of the halfspaces in-
duced by Q; e X +2qx < w; and {(x,xxT) : x € K}, the feasible set
of the Shor relaxation Fgp, is the intersection of said half spaces
with conv{(x, XX') X e IC}, hence the latter must be the bigger
set in general. Another way to see that in general Fg, 2 G(F) is
the simple fact that not all matrices in CPP(K) are of the form
xx'. Only the extreme matrices of CPP(K) have this property. The
following examples illustrate one case where G(F) and Fgy,, coin-
cide and another one where they differ.

Example 3. Consider the following quadratic program and its Shor
relaxation

infycpz quX? + 2q12X1X2 + 22X3
s.t.:2x3 +x5 < 12,
X3 +2x5 <12 and
4%+ x5 >4
X3 +4x5 > 4
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infycs2 quXun + 2q12X12 + q22X22
s.t.: 2Xp + X <12,
X +2Xy <12
AX1 + X > 4
Xn+4X; =4.

The feasible sets of these problems are depicted in Fig. 1. Since all
matrices at the boundary of Sﬁ are dyadic matrices, we see that
the extreme points of the lifted feasible set are also dyadic. There-
fore the relaxation has optimal solutions of the form xx' and x
is feasible for the original QCQP, hence the relaxation is exact. Of
course, there are more potentially optimal solutions to the Shor re-
laxation (depending on the objective function), but these are con-
vex combinations of dyadic optimal solutions. An example can be
seen in Fig. 1 as the line connecting the two lower vertices in the
lifted feasible set.

Algorithm 1: Solving copositive optimization problems.

Result: v*
1setk=1;
2 construct outer approximation C, 2 COP(K) ;
3 repeat
4 generate a feasible point for v(C,) to obtain (S, yi);
check S, € COP(K);
if S, ¢ COP(K) then
| obtain certificate x; € £
else
‘ Xy, =0
10 | setCrq =GN {(S,y) 1 X[ Sx =0} NCy
additional cuts via C,’(, see below)
11 until some stopping criterion is met;

© 0 N

(using

Example 4. Consider the following QCQP and its Shor relaxation:

MiNy g2 X2 + 2q12X1X2 + G22X3
S.t. :3x7 +3X3 4+ 2x1X, < 6
3X{ +3x%; —2xX1X, <6
2x5 +x3 <3

miny sz quXn + 2q12X12 + G22X22
S.t. 13X +3X55 +2X12 <6
3X11 +3X2 —2X12 <6
2X11 + X2 < 3.

and

This example gives an instance where the Shor relaxation fails
to be tight. We can see this by examining the extreme points of
its feasible set. Ignoring the psd-constraint for a moment, intersec-
tions of three halfspaces can yield an extreme points only where
the three associated hyperplanes meet. A simple calculation shows
that it is the point X;; = X5, =1, Xj =0, hence X = |, the identity
matrix. Clearly, this matrix is the interior of the psd-cone, so that
it is a feasible solution for the Shor relaxation and indeed one of
its extreme points. However, it is not a dyadic matrix as | always
has full rank. We therefore can get an optimal solution for the Shor
relaxation that has no corresponding solution in the original QCQP.
More formally, we cannot find (x;,x;) € R?> where x2 =x3 =1 and
X1x3 = 0.

Indeed, if we set the objective function coefficients g =
-8, g3 = —7 and ¢y, = 0, the optimal value of the Shor relaxation
is —15 attained at X = I, while the original QCQP attains its optimal
value of —14 at (x1,x3) = (0, v2).

Nonetheless, there are choices for the objective function coef-
ficients where the two problems give identical optimal values. To
see this, let us identify the rest of the extreme points of Fg,,. Note
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Fig. 1. (a) The feasible set F of the QCQP in Example 3. (b) The feasible set Fsp, of its Shor relaxation. As a consequence of Theorem 2 below, Fgy, coincides with G(F);
we show a projection of G(F), given by the map (x, X) — (Xi1, v2X12, X22)T from R? x 82 to R3, illustrating the intersection of four half-spaces and the psd-cone.

that the matrices in

O (Y R

are all positive-definite, so that the set Fiy 1= {X € ST : MeX =}
is nonempty, compact, conic intersections whenever M € M and
o > 0. The three linear inequalities are precisely of the form
M e X < o where M is one of the matrices in M.

Now let us examine those extreme points of the Fgp, where
none of these linear inequalities are binding. Hence, we ask for
the extreme points of the psd-cone and the only one there is the
zero matrix O = 00". If only one linear constraint is active, the ex-
treme points are those extreme points of Fy, with M € M, which
fulfill the other two inequalities in Fgp,, strictly. But Fy is a com-
pact conic intersection, so that its extreme points are points in the
intersection of the hyperplane with extreme rays of S2, i.e. rays
spanned by dyadic matrices. Therefore they are themselves dyadic
matrices. Finally, let us examine the extreme points that fulfill ex-
actly two of the linear inequalities. The points that fulfill two of
the inequalities must form either a line, a half line or a line seg-
ment that is a subset of F for M € M, but these are compact
sets, so that they form a line segment, given by the intersection
of S? and a line. The extreme points of these sets are therefore
the two points where the respective lines intersect the boundary
of S2, which is entirely comprised of dyadic matrices. (Note that
this is the case for the psd-cone Ser only, for 8% with n > 2 there
are boundary points that are not dyadic. However, we will later see
in Theorem 2 that the Shor relaxation is exact whenever only two
inequality constraints are present, so that the argument would in
fact stay valid if n > 2.)

In total, we see that all extreme points of Fgy,, are dyadic ex-
cept for the one we have identified as the identity matrix I. Thus, if
we choose the objective function coefficients such that the optimal
solution of the Shor relaxation is attained at a point other than I,
then the relaxation will be tight. As an example for the latter case,
let us consider qq; = g3 = —1 and gy; = 0. In this case, the optimal
value of the QCQP is given by —2 attained at (x;,x;) = (0, ~/2). The
Shor relaxation attains the same optimal value of —2 at X =, but
clearly this is not the only optimal point since the dyadic matrix
formed from the optimal solution of the QCQP gives a feasible so-
lution with the same optimal value, that is:

SOBRE

which is feasible and yields the optimal value of —2. Thus, there is
an optimal dyadic solution to the Shor relaxation, which is enough
to eliminate the relaxation gap.

Let us summarize our observations. The dyadic matrices are at
the boundary of S} and for n =2, this boundary is entirely com-
prised of dyadic matrices so that it is actually ext CPP(R?). How-
ever, since we consider the convex hull of the latter, ie., S2, we
produced an extreme point in the interior of $2, which thus is of
rank greater than one. For certain choices of the objective function
coefficients, there will therefore be a gap between the two opti-
mization problems. On the bright side, we also see that even if we
are far from describing G(F), the Shor relaxation can be exact for
some choices of the objective function coefficients.

The above discussion makes it apparent that the Shor relaxation
is not necessarily tight, since its feasible set Fg, can have extreme
points that are not dyadic matrices. Under additional assumptions,
one can close the gap at least for the homogeneous case. To this
end, we introduce the following geometric condition.

Condition 1. For a collection of matrices Q; € S" and real numbers
b;, ie[1:m] we say that Condition 1 holds if for any X € ST with
QjeX < w;forallie[l:m],

QreX <w, forall ke[1:m]\{i,j} whenever
QieX=w;and QjeX =w;j fori+j.

The condition requires that for any feasible X e S" at
most two constraints can be binding at the same time. If
Fshor :={X e ST :QeX<w,ie[1:m]} is bounded (as as-
sumed in Theorem 2), one can check Condition 1 by solv-
ing (m®-3m2+2m)/6 semidefinite optimization problems
of the form supx.r, {QueX-wy:QieX=w; QjeX=w;}
For Condition 1 to hold, all the optimal values must be strictly
smaller than 0. Note that X = R" here.

Theorem 2. Suppose that Condition 1 holds for the matrices Q; € S"
and real numbers w; € R, ie [1:m]. Further, suppose that the set
Fshor = {X eST:QeX=w; ie]l :m]} is bounded. Then

inf {x"Qox : X"Qix < w;, i€ [1:m]}
XeR"

=Xir}sfn{Q0oX:QioX§a)i, ie[l:m]}.

Proof. See Bomze & Gabl (2021). O
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While Theorem 1 and the results above clarify the role of
G(F) for optimization problems, explicit characterizations of the
set G(F) have been given in terms of Fg,, and additional cuts.
The respective results are summarized in the following theorem:

Theorem 3. Consider the following feasible sets of QCQPs:

o F1:={xeR":|x|| <1, Ax < b}, with A ¢ R™", where the m
hyperplanes described by Ax =b do not intersect inside the
unit ball.

- Fy:={xeR?: Ax < b} with A e R3*2, b eR> such that F
is a nondegenerate planar triangle.

« F3:={xeR?: Ax < b} with A e R*2, beR* such that F3
is a nondegenerate planar quadrangle.

Let a; be the ith row of A. Then

*cG(F) = {Y(X, X) € ™1 : trace(X) < 1,
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of the linearized inequalities, but the geometry of the convex hull
of ext(CPP(R2)), namely CPP(R?) = S? N A; that generated the
problem.

The above example demonstrates that the complex geometry of
CPP(K) may present a formidable challenge if one seeks to close
the relaxation gap. In the following section we introduce a pow-
erful machinery that meets this challenge by exploiting this very
geometry in an elegant way.

2.1.2. Burer’s convex reformulation of a large class of QCQPs

One of the most celebrated examples of an application of
Theorem 1 is Burer's completely positive reformulation of a quite
large class of QCQPs:

lbix — Xa;|| < b; —alx, ie[1:m],
biajx+bjalx —afXa; <bb;. (i, j) €[l mp? [

+ () = Y X) € S} : balx-+ bjalx - alxa; < biby. (i) < [1:31]

 G(Fy) = {Y(x, X) e 83 : balx+bjalx —alXa; < bb;. (i.j) [l :4]2}.

Proof. The characterizations are due to Anstreicher & Burer (2010);
Burer & Anstreicher (2013) respectively, the characterizations of
G(F1) with no, or just a single linear inequality, go back to Sturm
& Zhang (2003); Yakubovich (1971). O

So far we only considered examples where K = R", so that the
Shor relaxation took the form of a positive-semidefinite optimiza-
tion problem. For other choices of K, one leaves this familiar terri-
tory and is confronted with optimizing over CPP(K), a potentially
much harder task. However, conceptually much of the intuition we
garnered so far stays intact: unless the Shor relaxation produces
extreme points that are not dyadic matrices, the relaxation gap
vanishes. Such higher-rank extreme points may either arise from
the interaction of the linear constraints with each other inside the
interior of the respective matrix cone, or from the interaction of
these constraints with the boundary of the said cone. The follow-
ing example demonstrates an instance of the latter.

Example 5. Now consider another pair of QCQP and its Shor relax-
ation:

miny g2 quX} + 2q12X1X2 + q22X3
st.:3x2 +x2=6 and
X2 +3x5=6

MiNycopppz) AnXn + 2q12X12 + 422X22
st.:3Xn+Xpn=6
X11+3X,=6.

The system of quadratic equations has exactly one non-negative
T
solution which is x := [\/g \/g] . In fact the point xx7 is an ex-

treme point of the feasible set of the Shor relaxation. But unfor-
tunately there is another one. Consider the fact that CPP(R%) =

82NNy = {X eS8 : Xyp > 0}. The matrix that fulfills the equality

constraints and X;; =0, i.e. % I, is also an extreme point, and the

feasible set is in fact the convex hull of those two extreme points.

Again, it is the convexification that gives rise to this spurious,
extreme point. Indeed, had we only used ext(CPP(R?)), the ad-
ditional extreme point would not have appeared since the iden-
tity matrix | is not dyadic, and therefore does not span a ray in
ext(CPP(]Ri ) But by shifting to the convex hull of the latter
cone, i.e. CPP(R&), we gave rise to an extreme point in the fea-
sible set of the relaxation of rank 2, and therefore has no match in
the feasible set of the original quadratic problem. Note, that com-
pared to the previous example, this time it is not the constellation

Theorem 4. Let KX CR" be a closed, convex cone and let L :=
{x € K : Ax =Db} be nonempty so that L., = {x € K : AX=0} is its
recession cone. Further let Q; € S", q; € R", i € [1:1], and define B :=
{Jj - Qiej #0 or qfe; # 0 for some i e [1:1]}. Assume that

(a) X"Qix+2q[x > w; for all x e £ and i € [1:1], and
(b)deLoo=dj=0foral jeB.

Then, any feasible QCQP of the form
min {x"Qox+2q5x: Ax=b, X'Qx+q/x=w;, ie[1:l]}
is equivalent to
rgg(n QeX+q'x
st.: Ax=Db,
Diag (AXAT) =bob,
QieX+q/x=w;, ie[l:]],

.
[)1( ’;] € CPP(R; x K).

Proof. See Burer (2009) for the original proof for K =R", see
Eichfelder & Povh (2013) for the proof under the assumption
that £ is a norm-cone. Considering the results in Kim, Kojima, &
Toh (2020), which we will discuss shortly, no such assumption is
needed for the theorem to hold. O

Together, assumptions a) and b) are colloquially referred to as
the key assumption. Note, that it is met, for example, by the con-
straint x; —xi2 =0 (hence x; is a binary variable) if Xxe L= x; €
[0, 1], which can always be achieved by adding x; +s=1, s,x; €
R, to the description of the feasible set, where s acts as a slack
variable. In case x;, x; € Ry the complementarity constraint x;x; =
0 also fulfills the key assumption if both variables are bounded
over L.

The description of the linear portion of the completely positive
reformulation can be modified without changing the feasible set.
The following proposition summarizes the most important refor-
mulations, all of which will appear later in our discussion.

Proposition 5. Suppose Y =Y (X, X) € Sfr“ and define M := [b, —A]
to be the matrix containing b € R" and the columns of —A € R™*"
concatenated. Then the following are equivalent:
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(i) Ax = b and diag (AXAT) =bob;
(ii) MYMT = O;
(iii) MY = O.

Proof. See Burer (2012, Proposition 3). O

The original proof of the theorem is quite algebraic and seems
somewhat removed from the simple, geometric motivation of
Theorem 1. Fortunately (Kim et al., 2020) recently provided a
geometrical perspective on the subject. The concepts they intro-
duce are quite versatile and allow proofs for generalizations of
Theorem 4 as well as exactness proofs for relaxations of polyno-
mial optimization problems. The theorems presented in the re-
mainder of this section are simplified (and thus less powerful) ver-
sions of results in Kim et al. (2020) for presentational reasons.
Also, they will be strong enough to prove a weaker version of
Theorem 4, under the additional assumption that £ is bounded.

We start out by investigating a more general question. Let V
be a vector space of dimension n. For a (possibly nonconvex) cone
K CV, and vectors Q,Hg € V and a convex set J € conv(K), we
want to know which conditions establish the equality:

min {(Q,X) : X e KNJ, (Ho,X) =1}
XeV

=min{(Q,X) : X € J, (Ho,X) =1}.

XeV

Defining H := {X: (Hgp,X) =1} €V, we can equivalently ask for
conditions for the equality
conv(HNKNJ)=HNJ.
The following theorem gives an answer based on convex geometry.

Theorem 6. For H, K, J as above, assume that HNJ # @ is bounded
and that J is a face of conv(K). Then conv(HHNKNJ) =HNJ.

Proof. See Kim et al. (2020). O

This theorem motivates the search for a condition that lets us
identify faces of convex cones, which are provided in the following
theorem.

Theorem 7. Assume that J = {X € conv(K) : (Q;, X) =0, i e [0:m]}
and define

Jp = {X econv(K) : (Q;, X) =0, ie[0:p]},

so that Jm =17 and J_; = conv(K). If Qp € J;] for all p € [0:m]
then J is a face of conv(K).

Proof. See Kim et al. (2020). O

Before we apply this machinery to convexify QCQPs, we will
supply a small example for illustrating above theorems. The ex-
ample itself is not immediately connected to QCQPs, but the geo-
metric intuition it seeks to convey may further the understanding
of the convexification strategy as a whole.

Example 6. Consider the nonconvex cone

A

which is the union of three half-rays emanating from the origin in
three different directions, two of which form a “V” in the xz-plane
and the other one covers half of the y-axis. The intersection of K
with the hyperplane

H::{xeR3:x3=1},

which is a plane parallel to the xy-plane at height 1, are the points
in

B
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which is a nonconvex set. We now want to find a convex set J C
conv(K) so that HNJ = conv(K N H). We claim that desired set is

1 -1
J:={xeconv(K) : x, =0} = {A1|:0:|+A2|:0:| :Al,kzzo}.
1 1

(7)

To see this, let us first check that conv(H NK NJ) = conv(H NK),
which follows by merely showing that HNKNJ=HnNK. Clearly
HNKNJCHNK, but also

et 1)

which contains HN K, so that the desired equivalence is obvious.
Now we can use Theorem 6 to establish conv(HNKNJ) =HNJ.
We see that HNJ is bounded since

1 -1
(A{0:|+A2|:0:|> =th=1, A ha>0 =4 €[0,1], i=1,2,
1 1
3

(8)

so that all that is left to show is that J is a face of conv(K).
We have that x € conv(K) implies that x, > 0 so that J is such a
face by Theorem 7. Geometrically, it is the convex hull of the two
“legs” of K that point the z-direction. It is also an exposed face of
conv(K), where the exposing hyperplane is described by x; = 0.

Let us convince ourselves that the conclusion of the procedure
is actually true. It is immediate that

1 -1
conv(KNH) = {A|:O:|+(1—k)|:0:| :Ae[O,l]},
1 1

on the other hand, in this simple example, (8) already tells us that
HNJ is the same set.

We can use this simple setup to test the conditions of
Theorem 6. First let us study a failure of boundedness of H N J,
which we can construct by choosing J = conv(K). In this case J is
still a (trivial) face of conv(K) but

0
HNJ = conv(KNH) + [)»|:l:| :AzO] D conv(HNK),
0

hence, we get a strictly bigger set than the desired convex hull.
Now, let us consider a slightly enlarged version of the J defined in
(7) given by

1 -1 0
Ji=3A1[0 | +X] O | +A3]1|:A1,A2,A3>0%,
1 1 1

for which we can easily check both J € conv(K) and HNKNJ =
H N K. Also, boundedness of HNJ is immediate from an argument
analogous to (8). However, J is no longer a face of conv(K) and in
fact

1 -1 0
HNJ= ik][o} +)\.2[0:|+)\.3|:1} M tA +A3=1, )\.],)\.2,)\,320},
1 1 1

so that, again, the conclusion of the theorem is not sustained.

Finally we would like to point out that the present example is
not entirely unrelated to QCQPs. Consider again Example 1 with
a=[1,1]", b=[-1,1]T. Then the feasible set of (3) can be de-
scribed as a conic intersection given by

([ xtommvme [ 2o b3 2ol)
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The Shor relaxation is then given by
Xo X 2.
{[X Xi| €S ixo=1, Y(x,X)eCPP(IC)}, (9)

which can certainly be made exact by replacing CPP(K) with
ext (CPP(K)). However, the preceeding discussion allows us to
conclude that the Shor relaxation is tight anyways. We merely have
to consider isomorphism 7 : S — R3? given by

n"O"Hi (10)
x X Xo’

to see that m (ext (CPP(K))) is essentially K where the third leg,
which was spurious for the derivation of the convexification, got
removed. Also, the hyperplane spanned by xq =1 corresponds to
s~1(H). Finally, removing the constraint Xy =1 from the set in
(9) leaves us with 7~1(J), so that the set itself is the inverse im-
age m~1(HNJ) and therefore represents the exact convexification
of the feasible set of our underlying QCQP.

To see how this is relevant for convex reformulations of QCQPs,
consider the following simple reformulation:

min {x"Qox+2qgx —wp : Ax=b, xe K, X' QX+ ¢q/x - ; =0, ie[1:m]}
XeR!

= min {QoeY:HpeY=1, QieY =0, ic[0:m], Ye{yy :yer, xk}}
ves™

where as in Proposition 5, we have M = [b, —A] and

p— T -~
Qo:=[ “o qo], Qo 1= MTM

Qo Qo
~ . |-oi q]| . . |1 of
Ql'_|:qi Qli],ze[l.m], Hg := [o ol
The final result has the desired form with K=

{ny (yeR, ><IC}, H= {YeS”+l HpeY = 1}. We actually
have {ny yeRy x IC} = ext (CPP(R+ x K)), as explained in the
proof of Proposition 11 in the appendix. Hence, by Theorem 6 we
can show the equivalence

inn{Qo.Y:Ho.Y=1, QieY =0, ic[0:m], Yeext(CPP(R, x K))}
=min{QoeY:HoeY =1 QoY =0, ic[0:m], YeCPP[R, xK)}.
if we can show that

J={YeCPP(R, xK):QeY=0, ic[0:m]}

is a face of convK = CPP(Ry x K) and that JNH # ¢ is bounded.
Also, from conv(HNKNJ)=HNJ we see that G(F)=JNH
where F is the feasible set of the underlying QCQP.

Thus, we can describe a recipe for the characterization of G(F)
by the following steps:

Step 1: Given a feasible set F = Y:HOoY=1,6,~oY=O,
ie[0:m], Y eext(CPP(R;+ x K))}, set
K = ext (CPP(R. x K)),
J={YeCPP(R, xK):QieY =0, ic[0:m]} and
H={YeS":HypeY =1}

Step 2: Show that J N H is bounded.
Step 3: Show that, perhaps after a reordering, we have for all
pe[0:m]

QpeY >0 forallYel, (ie, Qpeli,)

with Jp := {Y e CPP(R} x K) : QieY =0, ic[0:p]. } pe
[0:m] and J_{ =CPP(R+ x K), and apply Theorem 7 to
conclude that J is a face of convK.
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Step 4: Conclude that G(F)=JNH={Y:HgeY=1, Qie
Y=0, ie[0:m], Y e CPP(R;+ x K)}, by Theorem 6.

As a reference and illustration we will prove a special case of
Theorem 4, where the feasible set is bounded, using this recipe in
the appendix.

2.1.3. Unions of feasible sets and subtractions of ellipsoids

Given a workable description of G(F;), ie[1:k] it is always
possible to derive characterizations of g(uf‘:]}‘,-) and it is also pos-
sible to give a characterization of G(F; \uf.‘:2 int 7;) in case F;, i€
[2:k] are ellipsoids that fulfill certain regularity conditions. We
summarize the respective procedures in the following two theo-
rems.

Theorem 8. Let F;, i< [1:k] be feasible sets of QCQPs and such that

G(F)={XeS":HeX=1, #(X)=0, Xe(}, ie[l:k],

where for all i € [1:m], & : S, — R™ are appropriate linear operators
and C; are appropriate convex matrix cones. Further, assume H e X > 0
whenever, for at least one i c[1:k], we have X € C; and «/(X) = o.
Then

k k
G(UK F) = [X_in:H. (in) =1, (X)) =0, X;€C, ie[l:k]}.

Proof. The statement can be derived by leveraging results from
disjunctive programming (Balas, 1979), but we give a short proof
in the appendix. O

Theorem 9. Let F; be a feasible set of a QCQP set and let
Fi={xeR":xTQx+2q]x < w;} be such that the inequalities
XTQiX + 2qiTx > w;, i€[1:m], induce non-intersecting holes into
Fi. Then G(Fy \ UL, int ) = { (X, X) € G(F1) : Qo X +2q[x > w;,
ie[l:m]}.

Proof. See Yang, Anstreicher, & Burer (2016). O

These techniques have so far not been utilized for the sake of
robust optimization, but they are simple and might be relevant for
future research, which we want to foster with this article.

2.14. Open problems

The two-trustregion-subproblem (TTRS): The TIRS is the
problem of minimizing a nonconvex quadratic function over
a feasible set, say F, described by two convex quadratic con-
straints. It is known to be solvable in polynomial time by
an algorithm described in Bienstock (2016), which is, un-
fortunately, very impractical in the same way the ellipsoid
method is impractical for solving linear problems. Recent
work by Anstreicher (2022) provides more practical ways of
solving it. However, despite substantial effort by the com-
munity (see e.g. Bomze & Overton, 2015) no description of
G(F) is known. A discussion on the difficulties in this en-
deavor can be found in Yang & Burer (2013), partial results
can be found in Bomze, Jeyakumar, & Li (2018); Jeyakumar
et al. (2021). A description of G(F) would be highly appre-
ciated by the community.

The key assumption in Burer’s reformulation: The most lim-
iting requirement in Theorem 4 is without a doubt the
so-called key assumption. In light of the discussion in
Section 2.1.2, specifically regarding the results in Kim et al.
(2020), we already introduced some tools to relax part a) of
the key assumption. It is only necessary that there is an or-
der in which one can add quadratic equations to £ so that
every new quadratic function is non-negative over the set £
intersected with the already introduced quadratic equations.
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There are also recent results by Bomze & Peng (2022) on
the relaxation of part b). In Theorem 9 we discussed the in-
troduction of holes via quadratic inequalities. However, the
question when a quadratic constraint can be added to the
description of the feasible set without losing tightness of the
set-completely positive reformulation remains, in general, an
open one.

2.2. Duality of linear optimization over CPP(K)

One of the decisive advantages of convex reformulations of QC-
QPs is that the resulting optimization problems enjoy the rich du-
ality theory that convex optimization offers. General results on
convex optimization duality, such as strong duality under Slater’s
condition, can be immediately applied to optimization problems
involving CPP(K). For the readers’ convenience we formulate a
general linear completely positive optimization problem and its
dual here, to review the conditions for full strong conic duality in
the sequel.

So let

inf Qg e X
XeSn

st.:QieX<bh;, iell:m],

X € CPP(K), (11)
then its dual is given by

m
sup — »  biA;
AeRY T4

m

s.t.: Qo+ Y AiQi € COP(K). (12)

i=1

Here we use the definition

COP(K) :=CPP(K)* ={MeS":MeX>0 forall X e CPP(K))}
= {M eS":x'Mx >0 forallxelC},

where the second equality is valid since all the extreme rays of
CPP(K) are of the form xx" with x € K. The cone COP(K) is
called the set-copositive matrix cone, and can be thought of as
a generalization of the positive-semidefinite matrix cone. It is a
central object in our discussion and we provide a more thorough
treatment of this subject in Section 2.3.1. We now state a well
known theorem on strong duality between the two optimization
problems.

Theorem 10. For (11) and (12) we always have that val(11) >
val(12). Further,

« if (11) has a feasible point X € relintCPP(K) then val(11) =
val(12) and (12) attains its optimal value,

« if (12) has a feasible point A € RT such that Qo + Y_I*1 AiQ; €
relint COP(K), then val(11) = val(12), and (11) attains its op-
timal value.

An immediate consequence of the above theorem is that, with-
out any assumptions, (12) offers a rigorous lower bound of any
QCQP (1) whose Shor-relaxation is transformed into (11). This is
of particular importance in situations where primal values are of-
fered which are claimed to be nearly optimal.

2.3. Solving copositive optimization problems

The conic reformulations discussed so far introduce many of the
comforts of convex optimization, most notably convex duality the-
ory, to an area that is, in general, highly nonconvex. However, they
do not alleviate the core difficulty of these problems in most cases:
set-copositive and set-completely positive optimization problems
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are still NP-hard in general. But this does not mean that the con-
vexification approach has no merit for solving the problems. We
will now discuss two major routes by which the convexifications
can be exploited in order to either solve the problem exactly or to
give very good bounds.

2.3.1. Characterizations and inner/outer approximations of CPP(K)
and COP(K)

As stated before, in general, certifying membership in either
CPP(K) or COP(K) is intractable save for some particular in-
stances of K. One justification for reformulating QCQPs into copos-
itive optimization problems anyway is the fact that there are
powerful approximations of these cones and in some cases even
tractable characterizations. We will now discuss some of the more
prominent and easily explained approximations and give some in-
teresting references to more involved theory on the matter. Before
we start this discussion, we want to provide some general and use-
ful properties of the two cones: Most of them seem to be com-
mon knowledge within the community, so attributing historically
correct credits is difficult. However, we believe the concise com-
pilation may be of some use here, and for completeness we will
provide a proof in the appendix.

Proposition 11. For any cones K, K1, Ky € R" we have the following
relations:

1. COP(K) = COP(-K) =COP(KU—K), which also holds if
COP is replaced with CPP,

2. If K1 €Ky, then CPP(Kq1) € CPP(Ky) with equality if and
only if Ky € K1 U—-K;q,

3. If K1 € Ky, then COP(K1) 2 COP(Ky); if in addition we as-
sume int K5 # ¢, we have COP (K1) = COP(K,) if and only if!
Ky C cl K.

4. CPP(K) € 8T C COP(K); all three sets are equal if and only
if KU—-K =R", in particular

5. COP(Ry x R™) = CPP(Ry x R™) = ST, more generally,

s
. CPP(K x RM) = H'\hf'; l\“j:;] € ST My € CPP(IC)} if
0ck,

<))

7. COP(K1 UK,) = COP(K1) NCOP(Ky),
8. CPP(/C1 0] /Cz) = CPP(/C]) + CPP(}Cz),
9. CPP(convk) 2 CPP(K) with equality if K is convex,
10. COP(convk) € COP(K) with equality if K is convex,
11. intCPP(K) = {Z,k:l X;X] :X; € intK, span{x;, ..., X} = R”}
if K is closed, convex and intk # @,
12. COP(K) = clCOP(K) = COP(clK) while CPP(clK) =

clCPP(K);
COP(K) = COP(relintk), if K is convex,
intCOP(K) = {Qe S":xTQx >0 forallxe K\ {o}}.

13.
14.

Proof. See appendix. O

For the case of K =R we have the following chain of inclu-
sions

CPPRLY) CcS}NN C ST +N CCOPRY) (13)

where A is the orthant of nonnegative matrices. The cone ST NN
is often call the doubly nonnegative matrix cone DN'N™", and S + N
is often called the nonnegative-decomposable matrix cone NND".
Despite their conceptual simplicity, these cones often turn out to
be quite powerful in practice. We will also discuss some impres-
sive theoretical guarantees that involve these simple approxima-
tions later in this and other sections (see Theorem 13 and the suc-
ceeding discussion, but also Section 5.2).

! note that K; € Ky ¢l (K; U—K;) and int K # ¢ already implies K; < ¢l Ky,
so that this criterion coincides with the criterion of 2. up to closure
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For polyhedral cones K :={xeR":Ax <o}, with A e R™",
there are simple polyhedral approximations given by

PI(K) := {ATNA: N e N} < COP(K)
PO(K) := {M eS": AMAT ¢ Nm} > CPP(K)

It is always possible to use Theorem 4 in order to character-
ize ¢PP(K), where K := {(x, S) eR" xRT : AX +5§ = 0} in order
to derive G(K) =CPP(K) so that CPP(K) is the projection on
the north-west n x n entries. The cone CPP(K) is thereby de-
scribed via linear constraints and a conic constraint involving
CPP(R™ x RT). The latter constraint can then be reformulated via
Proposition 11 point 6. where any approximation for CPP(RT) can
be inserted in order to obtain inner and outer approximations of
CPP(K). For the second-order cone case K = SOC", the celebrated
S-Lemma (Yakubovich, 1971) allows for an exact characterization
of both, the set-completely positive and the set-copositive matrix
cone in terms of psd-constraints, namely

CPP(SOC") = {Me ST :Mel <0},

COP(SOC") ={MeS":M+AJe S, A>0},

where J is the identity matrix up to the first entry in the first
row, which is flipped to —1. Due to Proposition 11 point 2. we
have CPP(SOC") = CPP(K) with K := {x € R" : x"Jx < 0}, hence
a cone described by a homogeneous quadratic inequality. For the
case where multiple such inequalities are present, only limited re-

sults are available. For example, Bomze & Gabl (2021) proved the
following theorem:

Theorem 12. Let K := {x e R" : X"Q;x <0, i e [1:m]} with Q; € S™
Assume that there is some Xy with xOTQ,-xo <0 for alli e [1:m]. Fur-
ther, suppose that for all i € [1:m)]

XeSI\ {0} and QeX=0=Qjex<0 forallje[l:m]\{i}.

(14)
Then

m
COP(K) = {M:M+ > AQ; e S for some A e RT ¢,
i1

CPP(K)={MeS!:MeQ; <0, ic[l:m]}.

The theorem does not cover the case where K is the inter-
section of (perhaps linearly transformed) second-order cones. A
respective characterization of set-copositivity/set-completely posi-
tivity would provide a long desired convex reformulation of the
multi-trustregion subproblem. So far, this remains an open prob-
lem, despite substantial effort by the community. Still, one may
study (Yang & Burer, 2013) to find inspirations for approximations
for instances of K that involve two second-order cone constraints.

In case K:={xeSOC": Ax <o} where the hyperplanes en-
coded by the linear inequalities do not intersect within the second-
order cone, one may use a homogeneous version of Theorem 3 (re-
garding F;) in order do derive a tractable characterization of
CPP(K) and COP(K). However, Xu & Hanasusanto (2018) found
an elegant way to neatly summarize approximations and exactness
results for a slightly more general instance of K.

Theorem 13. Consider
K:i={xeR"xR, : AX>0, BXxecSOC}
where A e RP*("t1) and B ¢ R™ (D) and define

We S Uen?,
M e 5 VeSSl TeRPT, LAeR;
"M=W+AS+ATUA+V
V=1J(ATTB+BTTTA), Rows(T) € SOC"

where S :=BTe;e]B— Y[ ,BTeje/B. Then SI(K) < COP(K). Fur-
ther, equality holds under one of the following conditions:

SI(K) : =
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« A = O, hence no linear inequalities are present.

. 1 : Ty . .
If x e R™! satisfies BX € SOC" and a/x = 0 for some i € [1:p],
then x € K.

Clearly the dual of SZ(K) is an outer approximation of CPP(K),
but we will not go through the effort of deriving it here. Instead,
we want to comment on the philosophy behind its construction.
Note that for any two convex cones K; and K, containing the ori-
gin we have

K1+ Ky =conv(K; UK,). (15)

Now, SZ(K) is such a sum where the components consist of S+,
an instance of PZ(K), a single ray {AS : A > 0} and the fourth cone
described in terms of V and T which differs from any of the previ-
ous inner approximations, but whose containment in COP(K) can
be easily checked. Hence, whenever a new inner approximation
is identified, one can combine it with all other inner approxima-
tions to obtain a potentially much stronger inner approximation.
We want to highlight that due to (15), even adding a single ray
may increase the size of the inner approximation substantially.

In addition, this inner approximation improves on another pop-
ular construction discussed in Ben-Tal, El Ghaoui, & Nemirovski
(2009, Theorem B.3.1) where the authors propose the so-called ap-
proximate S-Lemma, which can be used to derive an alternative in-
ner approximation of COP(K), with K as defined in Theorem 13.
However, in Xu & Hanasusanto (2018, Proposition 3) it is demon-
strated that SZ(K) gives a superset of the approximations based
on the approximate S-Lemma.

2.3.2. Algorithmic approaches via copositivity detection

Recently Badenbroek & de Klerk (2022) and Anstreicher & Gabl
(2022) proposed algorithmic approaches to solve a copositive opti-
mization problem where the ground cone is either R’} or a polyhe-
dral cone, but it seems plausible that similar approaches are fea-
sible for other ground cones K € R". We will give a high-level ab-
straction of their approaches here.

We consider a general set-copositive optimization problem
given by

m
v'=sup{bTy:C— ) yA=S, SeCOP(K) .
v:s i=1

The algorithms are based on relaxed problems:

m
v(C) :=sup{bTy:C—Y yAi =S, (Sy)eC
v i=1

where C is a convex set such that its projection on the S-
coordinate contains COP(K) and over which we can optimize effi-
ciently. If v(C) attains its optimum at a point (S,y) such that S
COP(K) then v(C) = v*, and we solved the problem. If S ¢ COP(K)
then there is a certificate X € K such that XTSx < 0. We assume
that we have an oracle that is capable of testing set-copostivity
and produces a certificate in case of negative answer. The algo-
rithm proceeds as follows:

The two papers employ different variations of this algorithm.
Both have in common that in each iteration, set-copositivity of the
iterate Sy, is tested and the approximations C, are updated via the
cut generated by the certificate x;, in case the test result is nega-
tive. The algorithms differ in the generation of the feasible points
Sy and y,, in the method by which copositivity is checked and in
a set of additional cuts C,’(. which we did not discuss so far.

In (Badenbroek & de Klerk, 2022) the authors deal with the
case where K =R'.. The feasible points are generated by finding
the analytic center of the feasible set of v(C,) and at every iter-
ation where in case S, € COP(K) they implement an optimality
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cut ¢, = {(S.y) : bTy > bTy,}. In addition, at each iteration one ei-
ther obtains a lower bound on the problem in case S, € COP(K) or
an upper bound otherwise. The algorithm stops if the relative gap
between the best lower and the best upper bound shrinks below
predetermined threshold. Also, the copositivity check is performed
by solving the standard quadratic optimization problem parameter-
ized by Sy, given by min,cgn {X"S;x : e"x = 1} via a mixed-integer
programming approach outlined in Xia, Vera, & Zuluaga (2020).

In contrast, (Anstreicher & Gabl, 2022) solve v(C;) to opti-
mality at every iteration. As long as Sy ¢ COP(K) they generate
a cut based on the certificate x;. In addition they employ var-
ious second-order cone cuts (which would take the role C,’{ in
our present notation). The algorithm stops as soon as the copos-
itivity test is positive. In addition the authors provide their own
mixed integer optimization based approach to set-copositivity test-
ing, which is able to deal with cases where K is a polyhedral cone
described by intersection of the non-negative orthant and arbitrar-
ily many hyperplanes. Their approach is of particular interest to
this text since they apply their algorithm to copositive reformu-
lations of robust optimization problems (of the kind discussed in
Section 4 below), and show that it can be used in conjunction
with the approximation-based approaches discussed in the previ-
ous section, in order to test the quality of the latter approxima-
tions.

2.4. Concise guide: convex reformulations, Shor lifting and
copositivity

In what follows we will provide the reader with a roadmap
through the literature which may assist in understanding and
further developing the theory around convex reformulations and
copositive optimization. This is by no means an exhaustive list,
nor does it imply any judgements on articles not mentioned here.
More complete accounts of the respective literature may be found
in Bomze, Schachinger, & Uchida (2012); Diir & Rendl (2021).

Historically, the idea of copositive matrices, hence matrices in
COP(R) goes back to Motzkin (1818), where the term and the
concept were introduced originally. The dual term of complete pos-
itivity can be found in the early paper (Hall & Newman, 1963).
However, the standard reference, as far as linear algebra is con-
cerned, is the classic book (Berman & Shaked-Monderer, 2003),
which mostly deals with CPP(R"). Further developments on the
analysis of COP(R}) and CPP(R") can be found in Dickinson
(2010, 2013); Diir & Still (2008), which present interesting geomet-
rical and topological insights on the two cones. For many of these
results it is still an open question, whether they can be general-
ized to cases where the ground cones differ from the non-negative
orthant. Some results for a general closed, convex ground cones
can be found in Sturm & Zhang (2003). More extensive surveys
on copositive and completely positive matrices are (Bomze, 2012;
Bomze et al., 2012; Diir, 2010).

The classical Shor relaxation where K =R" was introduced
in Shor (1987). Exactness proofs of this relaxation are regularly
achieved via the results on the rank of extreme matrices of fea-
sible sets of SDPs given in Pataki (1998), see for example Bomze
& Gabl (2021); Burer & Anstreicher (2013). The first exactness re-
sult for a convex reformulation where K =R is given in Bomze
et al. (2000), where a convex reformulation for the standard
quadratic optimization was derived. The core papers that introduce
the methodology based on G(F) are (Anstreicher & Burer, 2010;
Burer, 2009; 2012; Burer & Anstreicher, 2013; Eichfelder & Povh,
2013; Yang et al., 2016). An earlier contribution is however given
in Sturm & Zhang (2003), who laid out many fundamental ideas
of that machinery. Still, for the purposes of introduction we rather
recommend (Burer, 2015), which will prepare the reader to deal
with the more involved texts cited here. For a very recent survey
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see Diir & Rendl (2021). Finally, accounts of the strengths of convex
relaxations of this style can be found in Anstreicher (2009, 2012);
Anstreicher & Burer (2005); Bomze (2015), in which the reader
may find theoretical guarantees as well as numerical studies.

Many more approximations have been proposed in literature,
often in the form of hierarchies approximate the cones COP(K)
or CPP(K) to arbitrary good accuracy, at the cost of introducing
an exponentially increasing number of additional constraints. The
interested reader may be referred to Bomze & de Klerk (2002);
Bundfuss & Diir (2008, 2009); Dickinson & Povh (2013); de Klerk &
Pasechnik (2002); Lasserre (2001); Parrilo (2000a,b); Pefia, Vera, &
Zuluaga (2007); Sponsel, Bundfuss, & Diir (2012); Yidirim (2012).
Due to significantly higher computational cost however, these ap-
proximations have not featured prominently in the literature on
optimization under uncertainty yet, which is why we do not go
into detail here.

3. A brief account on robust optimization and some variants

As mentioned above, we trust that most readers are familiar
with the core concepts of robust optimization. Therefore, the fol-
lowing exposition is just exhaustive enough to make the subse-
quent discussion understandable.

In theory there are many types of optimization problems that
can be solved efficiently to any desired accuracy, provided the
structure of the problem, including the relevant data, is known.
However in practice the latter is often not the case and one is con-
fronted with an uncertain optimization problem:

xler%%fn {fox,u): fi(x,u) >0, ie[1:m]} where ueu. (16)
The parameters of the functions f;, i€ [0:m] are uncertain and
governed by the uncertainty parameter vector u that lives in an un-
certainty set U < RY. This set encompasses all realizations of u, for
which the decision maker takes responsibility. Examples for de-
signing appropriate uncertainty sets can be found in Ben-Tal et al.
(2009); Bertsimas & Brown (2009); Bertsimas, Gupta, & Kallus
(2018); Gorissen et al. (2015).

Under the robust optimization paradigm, one seeks to select a
decision with the best worst-case performance among all decisions
that are feasible for any realization of the uncertain data (see Ben-
Tal et al., 2009; Gorissen et al., 2015 and references therein). The
mathematical model encompassing this philosophy, the so-called
robust counterpart of an uncertain optimization problem, is given

by

ir%{f {sup{fo(x, w}: fix,u) >0, ie[1:m] for all u eu}.
XeR™ | uey
(17)

In the rest of the text we will be mainly concerned with cases
where f;, i € [0:m] are quadratic functions in u and affine or con-
cave quadratic in x. For many specifications of f; and #, the ro-
bust counterpart can be reformulated into a tractable optimization
problem, solvable via standard solutions strategies. The downside
of this framework is that it is inherently conservative due to its
pessimistic perspective on the eventual outcome of the uncertain
process.

Many approaches have been proposed to remedy this short-
coming of conservativeness. One such approach is called adjustable
robust optimization (ARO). The domain of this approach are sit-
uations where parts of the decision can be delayed until un-
certainty is revealed. These adjustable decisions are modeled as
function-valued decision variables, hence one looks for the opti-
mal policy which, conditional on the outcome of the uncertain
process, will yield a good feasible solution of the optimization
problem. Adjustable robust optimization was first introduced in
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Ben-Tal et al. (2004), for a detailed survey see Yanikoglu et al.
(2019). The adjustable robust counterpart can be written as

inf {sup {fox,y(u),w)}: fix,y(u),u) >0 forallueu, ie[l :m]}.
xeR™M y(u) | uet
(18)

Compared to a robust optimization problem, the decision vec-
tor is split into two parts: the first-stage decision vector X € R™
and the second-stage decision vector y(u) : Y — R™, where y(u)
is allowed to adapt to the uncertainty and is thus a function of
u. Since the space of all functions is intractable, so is (18), and
thus it is much harder to solve in practice than (17). However,
there are many powerful approaches to (approximately) solve it
(see Yanikoglu et al., 2019 and references therein), for example
contracting the search space to the space of affine-linear functions,
isomorphic to the tractable Euclidean vector space.

The final concept we will be interested in, as far as this text
is concerned, is distributionally robust optimization (DRO). It oper-
ates under the assumption that the uncertainty parameter vector
is a random vector @ governed by a probability distribution that
is not known entirely, but assumed to reside in a set of distri-
butions called the ambiguity set. The aim is now to optimize ex-
pected values of uncertain functions, under the assumption that
the worst-case distribution will materialize for the chosen solu-
tion. The mathematical model that captures this paradigm is the
distributionally robust counterpart given by:

i{lg {sup {Ep[fo(x, @)]} : Ep[fi(x,W)] >0 forall PeP, ie[l :m]}.
XeR™ | pep
(19)

The inner supremum is taken over all expected values of the (ran-
dom) objective function, w.r.t. all distributions P € P. The same
way, we may rephrase the constraints as

Ii)nng[fi(x, )] >0 forall ie[1:m].

Note that if all members of the ambiguity set P are distributions
with one-point support, we recover the robust counterpart. Hence,
distributionally robust optimization is a generalization of robust
optimization. However, the practicability of this approach stems
from the fact that in many interesting cases the distributionally
robust counterpart can be reduced to a robust counterpart, which
can be tackled with all the instruments known from robust opti-
mization.

3.1. Wasserstein ambiguity sets

An important way of constructing an ambiguity set involves the
so-called Wasserstein balls, which are sets of probability measures
with a Wasserstein distance to a certain reference distribution up-
per bounded by a constant ¢ > 0. The Wasserstein distance be-
tween two probability measures is a metric that can loosely be
interpreted as the cost of transporting the mass of one distribu-
tion to the other. It enjoys rich theoretical background, most im-
portantly, it gives a natural framework for data-driven optimiza-
tion: if the empirical distribution of the uncertain data is used as
reference distribution, & can be chosen large enough to include the
true distribution of the data-generating process. In fact (Esfahani &
Kuhn, 2018; Zhao & Guan, 2018) give an explicit, closed-form de-
scription for ¢(B) which guarantees a (1 — 8)-confidence that the
true distribution is contained in a Wasserstein ball of radius &(8)
around the empirical distribution.

Formally we have the following

Definition 1. For any r > 1, let M"(i/) be the set of probabil-
ity distributions P supported on ¢ that satisfy Ep[d(u,ug)]=
J,;d(u, up)P(du) < oo, where ug € U is some reference point and
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d(u,uy) is a continuous reference metric on /. The r-Wasserstein
distance between two distributions P, P, € M" (i) is defined as

Wr(P] s Pz) = inf

1
- T . Q is any joint distribution of (u;,uy)
{[/Z;z d(uy, up)" Q(duy, duZ)} ' with marginals P; and P,

Based on this notion, the ambiguity sets are often modelled as
a ball induced by W', centered around an empirical distribution:

Bi(B) = {Pe M U) :W'(P.F) <&}, (20)
where B is the en}pirical probability measure based upon a sample
{y,.... 0}, ie, B =} Y1 8g where 8 is the Dirac measure,
which centers all its probability mass at i € R,

4. Robust constraints with quadratic index

In the case of quadratic optimization, such results are often ob-
tained by invoking the so-called S-Lemma or some variants of it.
However, copositive optimization theory opens an alternative path,
which we will now review in great depth.

4.1. General strategy for finite reformulation

Assume that we are confronted with a robust constraint of the
form:

forallueu, (21)

where Q(x), q(x), w(x) are appropriate matrix-, vector- and scalar-
valued functions of the decision vector Xx. For ease of notation we
suppress the dependence on Xx. The reasoning to achieve a finite
reformulation of (21) follows these steps:

fx,u) =u"QX)u+2qx)"u+wx) >0

« We again observe that

U Qu+2q u+w >0 foralluey < l1an§ [uTQu+2un+a)] >0.
€
(22)
We will regularly refer to the optimization problem as the
inner or implied QCQP.
Next we need a convex reformulation of the inner infimum-

problem, e.g., based on the ideas outlined in Section 2. For
the sake of presentation we assume that

.
inf [u"Qu+2qu+w]= inf { [w a
ueld YeC

q Q]oY:Ginggi,ie[lzm]},

(23)
using an appropriate, convex matrix cone C and appropriate
matrices G; € "1, real numbers b; € R, i € [1:m].

If for the convex reformulation we can establish full strong

duality, i.e., zero duality gap and dual attainability, we fur-
ther have

-
Hi‘; %}.Y:Gi-Yggi,ie[lzm]},

inf
YeC

o q7 u
=sup {-g"\A: +) AGiect
AeRT [q Q} ; o
where g :=[g;.....gn]" and A :=[A1, ..., Am]".

Since dual attainability guarantees the existence of the dual
maximizers, we can enforce the semi-infinite constraint in
(22) by demanding that

T o q'
g'A <0 and |:q Q

m
:| +Y AiGjec for some A e RT.
iz1

(24)
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Readers experienced with robust optimization may have no-
ticed that the most of this general strategy is part of the standard
repertoire of techniques used in this field. Indeed, if f(x,u) were
linear in wu, the lifting and convexification step could be skipped
and the remaining steps would be the familiar way of reformu-
lating semi-infinite constraints via linear convex duality theory. Of
course the difficult part is the convexification step, which is one of
the main reasons why the techniques introduced in Section 2 are
so vital for robust optimization. Once the hurdle of providing a
convex reformulation of the inner QCQP is taken successfully, one
may once again tread on familiar territory.

We also want to highlight that if C* in (24) is replaced by an in-
ner approximation ¢, . < C*, then (24) and hence (21) is still im-
plied, so that we obtain a conservative approximation of the latter
constraint. This is important since we will mostly work with cases
of C that involve CPP(K) (so that C* involves COP(K)) in some
capacity, and the latter cone is intractable, so that approximations
are necessary, which is the major motivation behind the detailed
discussion in Sections 2.3.1 and 2.3.2.

At this point we also like to comment on a common mod-
elling choice, to construct the uncertainty set as a conic intersec-
tion U := {u : (1,u™)T e K c RI*1 . This is in fact a generic way to
construct convex sets, as discussed in Rockafellar (2015, Section 8).
The motivation behind this construction is a practical one: most
studies that apply the general strategy do so in conjunction with
Theorem 4 as workhorse which delivers the convexification step,
and this theorem talks about feasible sets that are modelled as
conic intersections. Hence, constructing ¢/ in this manner makes
the application of the theorem more straightforward.

Finally, before reviewing literature where this general strategy
has come to pass, we want to discuss the critical ingredients of
the above strategy. We already discussed extensively how to close
the relaxation gap in Section 2. The duality gap is usually easy to
close since U is a bounded set so that the conic reformulation will
also have a bounded feasible set, which is enough to guarantee a
dual Slater point and thus a zero duality gap, albeit without dual
attainability. The boundedness of ¢/ is in fact a generic property of
an adequate uncertainty set. If it were unbounded, then the fea-
sible set could be empty in case there is no x such that the con-
straint function is unbounded in u over . However, if there is a
feasible x then the infinitely many constraints that are associated
with u from the directions of recession of ¢/ are redundant. Hence,
it does not make sense to consider unbounded uncertainty sets
and in fact, to the best of our knowledge, uncertainty sets are gen-
erally assumed to be compact (see Ben-Tal et al., 2009; Gorissen
et al.,, 2015; Yanikoglu et al., 2019). As a consequence, eliminating
the duality gap is of little concern in most cases.

Howeve, dual attainability is the more elusive quality. For the
conic reformulations we discussed, a Slater point in the primal
problem, hence a feasible point in intCPP(K), guarantees dual at-
tainability. While a simple generalization of the results in Tuncel
(2001) shows that G(F) has interior whenever F has interior, for
reformulations based on Theorem 4, the most important type of
reformulations, it is well known that the feasible set never has in-
terior. However, the requirement of dual attainability can be loos-
ened quite a bit. As shown in Bomze & Gabl (2021), one loses
merely boundary points of the feasible set described by (21) when
applying our general reformulation strategy without guaranteeing
dual attainability. Hence, if the feasible set described by a col-
lection of robust constraints is not connected merely by bound-
ary points, e.g., if the sets described by the individual robust con-
straints have a common point in their respective relative interiors,
one does not not need dual attainability.
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4.2. Various applications of the general strategy for robust
optimization

We will now discuss different instances of robust optimization
that have appeared in the literature, where (21) takes a particu-
lar form, and where a reformulation into (24) is possible, given
that the requirements of our general strategy are fulfilled. We will
briefly describe the models, specify the values for (Q, q, w) in the
respective reformulation and discuss some features of their appli-
cations as stated in the original literature.

4.2.1. Linear ARO under uncertain recourse and affine decision rule
The generic linear ARO problem is given by

min {ch : (Aju +a)X + (Bju+by)y(u) + (u"Dju +du+d;) >0

XeX,y(u)

(25)

hence we have a linear optimization problem with uncertain co-
efficients, which we model as affine functions and quadratic func-
tions in u. More specifically, we model the coefficients of the first-
stage decision x in the i-th constraint as affine functions involv-
ing the matrices A; € R™>4 and vectors a; € R™, and the respective
coefficients of the second-stage decisions y(u) as affine functions
involving matrices B; € R™*7 and vectors b; := (by,...,bp,) € R".
Finally, the offsets independent of X,y are modeled as quadratic
functions involving matrices D; € 9, vectors d; € RY and numbers
d;.

If the matrices B; and D;, i € [1:k] were zero, then the above
model would coincide with the one studied in Ben-Tal et al.
(2004), the seminal paper on ARO. In that case, if one applies an
affine decision rule by specifying y(u) = Yu +yg, where the coeffi-
cients Y € R™*™ and y, € R™ take the role of the decision vector,
then linear, convex duality is readily applicable, modulo some reg-
ularity conditions on %/, in order to obtain a finite reformulation
of the robust constraints. The complication arises if one consid-
ers uncertain recourse, i.e., when B; are not zero. Then, bilinear
terms in u arise and duality of the implied, inner infimum is no
longer guaranteed. However, the general strategy allows us to pro-
ceed anyway. Focusing on a single constraint of the above model,
we are concerned with

forallueu, ie[1:k]},

(Au+a)’x+ (Bu+b)"(Yu+yy) +u'Du+d'u+d=>0 foraluel,

(26)
where an affine decision rule has already been put into place. We
omit an index indicating which of the k constraints we are con-
cerned with, since they are all structurally identical. Also, letting
D # O does not hinder the application of our techniques, which
gives some additional modelling power aside from uncertain re-
course. Applying the general strategy in a straightforward manner
allows us to achieve the following result.

Theorem 14. Assume that (26) has an exact conic reformulation of
the form (23) enjoying full strong duality. Then problem (26) is equiv-
alent to

g'L=<0,
a"x+bTyy +d 1(ATX+YTb + BTyo + d)" m
Yo 2( Yo ) +Z)\iGiEC*,
3(ATX+YTb + BTy, +d) D+3(BTY +YTB) P
A eRT.

Proof. The theorem follows immediately from our general strat-
egy. Note that in order to symmetrize the quadratic term we use
u"BTYu=tu"(BTY +Y'B)u. O

Already in Ben-Tal et al. (2004), the authors provided finite con-
vex reformulations of ARO under uncertain recourse and affine de-
cision rule, in case the uncertainty set is an ellipsoid, where the
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S-Lemma provided the necessary convexification. Apart from this
special case, the authors also provided a conservative approxima-
tion based on an approximate S-Lemma. In contrast, our general
strategy in conjunction with the results discussed in Section 2 al-
lows for a wider range of uncertainty sets to be utilized. The
first paper to apply this machinery was (Xu & Hanasusanto, 2018),
where the convexification was achieved by means of Theorem 4.
Of course the involvement of CPP(K) may again necessitate the
use of approximations, but the authors provide such approxima-
tions for interesting choices of ¢/ and prove that these perform at
least as good as the approximations based on the approximate S-
Lemma (see Xu & Hanasusanto, 2018, Proposition 3).

4.2.2. Linear ARO under fixed recourse and quadratic decision rules

We again consider (25) with the slight modification that B;, i e
[1:k] are set to zero, hence, we have fixed recourse. In this case
the introduction of an affine decision rule does not lead to bilinear
terms in u, and standard reformulation procedures can be applied.
However, we can do better than that. Utilizing our general strategy
allows us to expand the search space for the second-stage decision
from the space of affine functions to the space of quadratic func-
tions. Thus, we specify

u'Yiu+ylu+y
y(u) = e ,
u’Yn,u+yi Uty
so that the robust constraint can be written as
ny ny i
u"| > bjY;+D|u+ | by +ATX+d| ut+a'x
j=1 j=1
ny
+Y byj+d=0 forallueu.
j=1

(27)

Note, that under fixed recourse the coefficients of y(u) reduce to
the vector b € R"2, and we again suppressed the row index.

Theorem 15. Assume that (27) has an exact conic reformulation of
the form (23) enjoying full strong duality. Then (27) is equivalent to

gL <0,
.
a'x+ Y2 by +d %(2?11 by +ATx +d) +zm:A-G- e
191 l
%(Z?il b,‘yj' +ATX + d) D+ Z?i] bin i1
AeRT.

Proof. The theorem follows
strategy. O

immediately from our general

Quadratic decision rules have been applied in various articles,
usually under some restrictions regarding the uncertainty set or
the structure of the quadratic forms in y(u). For example, in case
the uncertainty set is ellipsoidal, the S-Lemma allows for a fi-
nite convex reformulation of (27), and an exhaustive list of sim-
ilar approaches can be found in Yanikoglu et al. (2019, Table 3).
The approaches often restrict the form of the quadratic decision
rule, for example to separable quadratic functions, where no bilin-
ear terms are present. However, as first shown in Xu & Hanasu-
santo (2018) and again presented here, the quadratic decision rule
is much more generally applicable if one uses the general strategy
in conjunction with Theorem 4.

4.2.3. Convex quadratic robust optimization

The model of interest here is
min {e™x: —llAix)u|? + @;(x))'u+a;(x) + u'Du+dju+d; > 0
Xe

forallued/, ic[1:k]}, (28)
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where A;(x) : R" — R¥¥4 and a;(x) : R™ — R? are affine matrix
and vector pencils, respectively, and a;(x) : R™ — R is a real-
valued, affine function of x. This case was recently addressed
by Mittal, Gokalp, & Hanasusanto (2019), in a way similar to the
approach presented here. We will slightly generalize their result,
again focusing on an arbitrary constraint in (28) given by

forallueu.
(29)

It is clear from the general strategy that we can reformulate (29) as

—lAX)u|]? + @x)) u+ax) +u'Du+du+d>0

b™A <0,

|: d+a(x) (30)

;@) +d)

The entries of the south-east diagonal block of the constraints
matrix in (30) are now quadratic functions. In case C* = COP(K)
for some closed, convex cone K < R%*! (which is the case for all
the conic reformulations of QCQPs discussed in this text), we can
linearize the constraints by employing the following lemma, which
is a straightforward generalization of Mittal et al. (2019, Lemma 4).

1 T m
@) +d) } Y uGeC
D-AX)TAX)] I

Lemma 16. Assume C* = COP(K) for some cone K € RIt1. Then a
vector X € R™ fulfills the conic constraint in (30) if and only if there
exists a matrix H € S9 such that

[ d +a(x) ;(a(x)+d)Ti|

j@x)+d) D-AX)TAX)
H AX)T +
[A(x) | ] e st

Using this lemma we can derive the following theorem

+Y %G e COP(K) and

i=1

Theorem 17. Assume that (29) has an exact conic reformulation of
the form (23), with C = CPP(K) for some appropriate cone K, enjoy-
ing full strong duality. Then (29) is equivalent to

g'A<0, AeRT,
d +a(x) lax) +d)’ .
[%(a(x) a) oo A(x)TA(x)j| + ;A,Gl € COP(K)

and [A(Hx) A(T)T] e ST,

Proof. The theorem follows immediately from our general

strategy. 0O

The setting can be transferred to the ARO case in a straightfor-
ward manner, using the tools discussed in this and the previous
section. The second-stage variables may enter linearly with fixed
or uncertain recourse, in which case the all the strategies that we
discussed apply immediately. In case the second-stage enters in a
convex quadratic manner, analogous to the vector x in this sec-
tion, one can apply an affine policy and use Lemma 16 in order
to obtain a convex conic formulation. At this point, for the sake of
brevity we leave the details to the reader and skip the respective
presentation.

4.2.4. Distributionally robust, and two-stage distributionally robust,
optimization

Two recent papers exploit reformulations of distributionally ro-
bust optimization problems into semi-infinite optimization prob-
lems in order to arrive at representations of these problems where
constraints are amenable to the general strategy. We will briefly
discuss their approach in the following paragraphs.
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The first paper in this regard (Jiang, Ryu, & Xu, 2019), deals with
appointment scheduling under data ambiguity, where the ambi-
guity set is constructed using Wasserstein balls, the construction
of which was discussed in Section 3.1. The authors investigate the
model

inf
XeX

sup {E[f(x. @]} {. (31)

PeBi(R)

where X C R" is a feasible set, not affected by uncertainty, and f
is an objective function. In addition, the metric in the definition of
the Wasserstein distance is chosen to be the p-norm with p =r so
that

Wr(Pl, Pz) = inf

1
- T . Q is any joint distribution of (uy,uy)
{[/Mz llus. w2 7 Q(dus. du2)] ' with marginals P; and P,

For this model the authors derive the following semi-infinite
representation

1 1
inf e 1 )
xeer,l,of)S P+ I ;9]

st f(x,u) —pllu—d;ll; <6; forallueu, all je[1:]]

0 >0, 0 R (32)

In case r € {1, 2} the second term in the semi-infinite constraint is
linear or quadratic in u respectively. If in addition

T
. L |ua u
fx,u) = vvaelqu(x, u,w), where q(u,w) := [w] Q(x) |:w:| ,
(33)

and hence, a pointwise maximum of quadratic functions involving
some matrix valued function Q : R" — S¥ and an index set W <
Rk, we can reformulate the semi-infinite constraint in (33) as

gx,u,w) — [u—1@;|]l < 6; forall (", wH)T et/ xW,
all je[l:1].

Since we have produced semi-infinite constraints with quadratic
index, we can apply the general strategy in order to obtain a con-
vex reformulation. Note, that as long as the dependence of Q on
X is linear or convex quadratic, we can use the strategy directly
or consecutively invoke Lemma 16 in order to obtain a problem
with only linear terms in X. The authors apply this methodology to
robust appointment scheduling, in which case f is a certain point-
wise maximum of linear functions linear in u, so that q is bilinear
in (u™,w")T and W is and appropriate polyhedron.

The second paper (Fan & Hanasusanto, 2021) deals with risk-
averse two-stage distributionally robust optimization under a the
conditional value at risk (CVaR) as risk measure. The respective
model is given by

sup CVaR§ (Z(x, u)),

infc™x +
XeX PeP

(34)
where CVaRg(.) is the conditional value at risk at level & of a risky
position whose distribution is P, u is the uncertain parameter, P
is a set of plausible distributions supported on a conic intersec-
tion ¢ := {u: (1,u")T e LRI}, X CR™ is a feasible set not
affected by uncertainty, and Z(x, u) is the recourse problem given
by

Z(x,u) := inf {u"DTy: T;(x)"u <u"W/y for all I € [1:L]},
yeR™

with appropriate matrices D, W, | € [1:L] and matrix valued func-
tions T;(x), I € [1:L]. Hence, we look for a first stage decision x so
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that the worst case CVaR of our second stage response to an un-
certain parameter is optimized. The authors show that (34) can be
reformulated as
1

) T 1

xeX,HAl'Lp(E),y(u)c X+6+ 5 il:g Ep(7(u))
st.:7t(u)>0,
T(w)>u'DTy(u) -0,
T (x)Tu<u"™W/y(u) forall I €[1:L],

forall ueu.

(35)

This reformulation should make it tangible for the reader that the
second stage decision (7 (u),y(u)) can be subjected to linear and
quadratic policies, so that the semi-infinite constraints can be tack-
led via the general strategy. However, the supremum term in the
objective still needs to be taken care of first, which would require
detailing the intricate construction of the ambiguity set used in
Fan & Hanasusanto (2021) and some extensive massaging of that
term depicted therein. But this lies beyond the scope of this text,
and we refer the reader to the original source for these details.
Nonetheless, the general strategy is a core ingredient of the au-
thors’ derivations, the results of which are eventually applied to
network inventory allocation and the multi-item newsvendor prob-
lem. We do, however, like to mention the fact, that said construc-
tion of the ambiguity sets necessitates the introduction of addi-
tional semi-infinite constraints, which are duplications of the ones
present in (35) corresponding to certain subsets of the support /.
The authors tackle the computational challenge of the potentially
large number of matrix blocks that arise from the general strategy
via a Bender’s decomposition approach, which allows for a paral-
lelization of the solution of the copositive sub-problems

4.3. Viable uncertainty sets

So far we have demonstrated how convex reformulations ex-
pand the modeling capabilities with respect to the functional form
of the robust constraints. However, the theorems that enable these
reformulations put some requirements on the feasible sets of the
inner QCQP and therefore on the uncertainty sets, while at the
same time they are allowing new modeling choices there as well.
We will now provide an overview over the uncertainty sets that
can be managed with the machinery outlined above, and discuss
their benefits and limitations.

4.3.1. Primitive uncertainty sets

A number of uncertainty sets are regularly cited as being stan-
dard or classic, among them ellipsoidal and polyhedral uncertainty
sets. We will briefly discuss how they are handled in context of
our general strategy.

Ellipsoidal uncertainty sets are easily tackled by the general
strategy via Theorem 3 (regarding F; with no linear constraints),
which in essence boils down to a roundabout way of using the
S-Lemma since the respective characterization of G(F) is based
on that result. However, the S-Lemma can be employed directly
to the infimum problem in (22) in order to obtain a dual supre-
mum problem and thus a finite reformulation. While our frame-
work does not offer anything new in this respect, it is neither re-
strictive as well.

Polyhedral uncertainty sets can be tackled using Theorem 4.
However, there is some ambiguity to which we like to draw
some attention. One way to generally represent polyhedra is
P = {x € R’ : AXx=Db} in which case Theorem 4 readily pro-
vides a description of G(P;) involving CPP(R'.). However, another
generic description is given by P, := {x € R" : Ax < b} in which
case Theorem 4 can be applied after introducing slack variables
s ¢ R™, where m the number of inequality constraints in the de-
scription of P,. The resulting characterization of G(P,) would in-
volve CPP(R" x R") which by Proposition 11 point 6. can be ex-
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pressed using only S*™ and CPP(R™). Exploiting this ambigu-
ity, one might choose the description that yields the smaller com-
pletely positive constraint, which may reduce complexity.

In (Xu & Hanasusanto, 2018) the authors study combinations
of these of ellipsoidal and polyhedral uncertainty sets, where the
facets of the polyhedron do not meet inside the ellipsoid. In that
case Theorem 13 provides an exact representation of the conic con-
straints present in G(U).

4.3.2. Mixed-integer uncertainty sets
In (Mittal et al., 2019) the authors use Theorem 4 in order to
introduce uncertainty sets with mixed-integer components, namely

u::{ueR’i:Auzb, u ez forallleﬁ} (36)

where £ C [1:k]. One can assume without loss of generality that
L :=[1:L] for some L <k. Under the additional assumption that
U is bounded we can always express any integer component of a
member of ¢/ by binary expansion as u; = Y2 21y =qTv; for
some integer Q. Hence the set

U':={mv.s)eRl x {0.1}%" xR - Au=b, y
=q'v, vi+s =e, le[l:1]}

has ¢ as its projection on the u-coordinates. Note that next to the
variables in V we also had to introduce additional constraints and
slack variables. This is done in order to meet the requirements
of Theorem 4. Hence, any robust constraint with quadratic index
in an uncertainty set &/ can be cast as a robust constraints over
U’, which can then be reformulated using the general strategy in
conjunction with Theorem 4. The resulting copositive constraint
will involve cOP(RX2), however, the authors of Mittal et al.
(2019) prove that even the simplest inner approximation based on
NNDK+2Q outperforms the classical approach based on the ap-
proximate S-Lemma introduced in (Ben-Tal et al., 2004).

Note that the convex formulation based on Theorem 4 scales
quadratically in the dimension of the original quadratic problem.
Hence, the introduction of the additional variables may come at a
potentially high cost of optimizing over a large set-copositive con-
straint. Providing reformulation strategies that do not require the
excessive lifting when changing from ¢/ to ¢/’ is therefore a desir-
able achievement to be pursued in future research.

4.3.3. Adapting the uncertainty set to piecewise affine/quadratic
decision rules

In (Xu & Hanasusanto, 2018) the authors skillfully exploited
the modeling capabilities offered by Theorem 4 in order to enable
piecewise linear and quadratic decision rules. Given that the uncer-
tainty set is defined as a compact, convex, conic intersection given
by:

U:={u:(1,u")" ek crI]
one can lift the uncertainty set to obtain
U = {uw) cu xR :w =max {0 glu—h} [e[1:1]}.

Here g; is interpreted as the folding direction of the Ith piece of
the piecewise policy and h; is its breakpoint. Clearly, a general ad-
justable robust constraint in (25) is equivalent to

(Au+a)"x+ (Bu+b)'y(u,w) +u'Du+d’u+d>0

for all (u, w) e/, (37)

since y(u) :=y'(u, max {0,gJu—hy},..., max{0,gfu—h;}) is a
function that maps ¢ into R, and vice versa any function of u
can be generated from functions of (u, w), with w defined as in ¢/’.
However, if we restrict y’ to be affine or quadratic in its arguments,
then y(u) is a piecewise affine/quadratic function in u. Hence, we
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can easily introduce piecewise policies by merely updating the un-
certainty set accordingly, albeit at the price of a having to work
with a nonconvex uncertainty set. A simple argument shows that
we have

0<W<W,
U={uw)cUxR: w=>gu-h, le[1:1],
w(w, —g +h)=0, le[l:L]
={(ww): (1L,uw) ek, ww —g+h)=0, le[l:L]},
where
v fumuw e w2 b

Note that ' is a bounded set and for all (ug,u,w)e K’ we
have w;(w; —g/u+h)) >0, I €[1:L], so that the key condition in
Theorem 4 is satisfied for any quadratic optimization problem over
U'. Hence, after replacing y’ by an affine or an quadratic policy (in
case of fixed recourse) in (u,w) we can use the general strategy
in conjunction with Theorem 4 to obtain a finite reformulation of
(38) under a piecewise affine/quadratic policy. The final result in-
volves the cone COP(K’) for which the authors of Xu & Hanasu-
santo (2018) find tractable outer, hence conservative, approxima-
tions based on SZ(K’) from Theorem 13.

4.4. Application: disjoint convex-convex quadratic optimization

Following the core idea of Zhen, Marandi, de Moor, den Hertog,
& Vandenberghe (2022), the authors of Bomze & Gabl (2021) pro-
posed a convex lower bound of special type of QCQP based on a
reformulation as an ARO problem that can be approximated, us-
ing the general strategy and the results presented in the preced-
ing sections. The following theorem presents the QCQP and its ad-
justable robust reformulation:

Theorem 18. Let Qy € S™, Qxy € RM*™2, F e R¥™ and G e R™M2,
Further, assume X € R™ is a compact set and ) :={y e Riz (Fy =
d} € R™ has a Slater point and let Z(x) = {(z,w) :F'z+G'w <
QyX}. Then

inf
XeX ye

yXTQxx+xTQxyy+ llGylI? (38)

=sup{t:Vxe X3 (zx),wX)) e Z(x) with XTQx +d"z(x)

— 3w | = 7}, (39)

where the decision variables z : R™ — R and w:R™M — R" are
functions.

In the ARO problem the variables z(x) and w(x) take the role of
the second-stage variables, the decision vector x takes the role of
the uncertainty parameter vector and its former feasible set X be-
comes the uncertainty set. If the adjustable variables are restricted
to a quadratic and affine policy respectively, i.e., (z(X)); =X"Z;x +
xsz +zj, j € [1:k], w(x) = Wx +w, then all the semi-infinite con-
straints become quadratic in X and are thus amenable to a refor-
mulation based on the general strategy. Since the application of
the policies contracts the feasible set of the supremum problem,
we generate a lower bound.

The authors test the resulting lower bound against lower
bounds based on relaxation of the completely positive refor-
mulation from Theorem 4 on random instances with X :=
{x € K : BX = ¢} given by a compact conic intersection. The results
are mixed, but it is noted that in case the number of constraints in
Y is much bigger than the number of linear equality constraints in
X, the ARO lower bound has computational advantages. Currently,
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a direct real-world application of this model is not in sight, but we
are confident that future research will reveal relevant areas where
we can profit from the strength of the ARO lower bound, and also
ways to exploit the special structure of the lower bound. The inter-
ested reader may inspect these structural details in Bomze & Gabl
(2021).

4.5. Outlook on new research direction: robust convex optimization

Recently (Bertsimas, den Hertog, Pauphilet, & Zhen, 2022) intro-
duced a reformulation of a general robust convex constraint into a
robust bilinear constraint. The argument rests on the characteriza-
tion of a closed, convex function as the bi-dual conjugate, hence
the conjugate function of its conjugate function (see Rockafellar,
2015, Section 12). For the readers’ convenience we repeat their
derivation here. So consider a robust constraint

h(A(X)u+b(x)) <0, (40)

for a convex function h:R™ — [—oo, o0] and appropriate affine
functions A : R" — R™<4 and b : R" — R™. Checking whether the
constraints hold for an x € R" is hard since it is equivalent to find-
ing the supremum of a convex function. We now use the fact that
any closed, convex function can be characterized as the bi-dual
convex conjugate, hence

h(x) =h* = sup {x'w—h"(w)}

wedomh*

ueu,

where h*(y) := SUPwedomn {yTw— h(w)} is the convex conjugate
of h (see Rockafellar, 2015 for a detailed explanation). We can now
reformulate the implied supremum problem in (40) into a bilinear
problem:

sup {h(A(X)u+b(x))} =sup sup {uTAX)"W+bXx)"w—h*(w)}
ueld

ueld wedomh*
= sup AX)euw' +bw)Tw-—w,
(W,wp,u)eld’
with U’ :={(w,wy,u) : u e, w e domh*, h*(w) <wy}. The au-
thors of Bertsimas et al. (2022) proceed to further reformulate us-
ing an exact lifting, i.e.,
sup {A) eV +bX)'W—wp:V=uw', uel,

(w,wp,u,V)

w € domh*, h*(w) < wg}

and define © to be the (nonconvex) feasible set of the latter supre-
mum problem. By providing convex supersets ® 2 ® they achieve
safe approximations of the original robust constraint that take the
form

AX)eV+bX)TW—wy <0 for all (w,wg,u,V)e®

and can be reformulated using standard techniques based on con-
vex duality.

However, here we want to demonstrate another application of
our approach, focusing on the bilinear reformulation. It is clear
that this formulation is amenable to the general strategy if we can
find characterizations of G(U/’). A lot of interesting questions are
worth investigation with regard to such an approach.

The obvious problem is finding G@’), which may be an
unattainable goal for most instances of h(-), but for some instances
is, perhaps, just a matter of cleverly exploiting known results. In
complicated cases, one may resort to simpler approximations of

Upor SU' S Uy, in order to obtain manageable approximations
GU o) S GU) € GUpyer)- 1deally, one can look for performance

guarantees of such approximations. Since the copositive approach
can manage discontinuous quadratic optimization problems, it is
also reasonable to ask if the above approach can be extended to
discontinuous compositions of convex functions under a coposi-
tive optimization paradigm. Also, in the light of Lemmas 16 and
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Theorem 17 the copositive approach can be expected to be able
manage cases where the argument of h(.) is a convex quadratic
function.

Further, it would be interesting to study the relationship be-
tween said approximations and the approach from Bertsimas et al.
(2022) mentioned above. Specifically, their approach might inspire
approximations of G(U/’) that can be used in other contexts. We
would be interested to cooperate towards this goal, as it has sig-
nificant overlap with our research agenda.

4.6. Open problems

Robust convex optimization: The entirety of the discussion of
Section 4.5 is preliminary and hopefully inspires some read-
ers to take up the questions we outlined there.

Quality of the quadratic policy: Conditions under which
affine decision rules are optimal are well understood (see
Bertsimas & Goyal, 2012; Bertsimas, lancu, & Parrilo, 2010;
lancu, Sharma, & Sviridenko, 2013). Further, it was shown
in Bemporad, Borrelli, & Morari (2003); Ben-Tal, El Housni,
& Goyal (2020) that the optimal set of an adjustable robust
optimization problems contains piece-wise affine policies in
many interesting cases. Clearly, it follows that the same re-
sults hold for the quadratic and piecewise quadratic deci-
sion rules, since they contain affine policies as a special case.
However, it would be interesting to give conditions under
which the quadratic policy performs provably better than
the affine ones, or, on top of that, if there are cases where
a quadratic policy is provably optimal among all (also non-
quadratic) policies while all affine ones are provably subop-
timal.

Breakpoints and folding directions of the piecewise
quadratic policy: In Section 4.3.3 we presented results
that allow for the implementation of a piecewise decision
rule. This is a significant technique since the set of op-
timal decision rules of an adjustable robust optimization
problem is known to contain piecewise linear decision
rules. However, in order to implement the technique in
the aforementioned section, one needs to fix the number
of pieces as well as the folding directions and breakpoints
beforehand. We currently do not know whether there is a
preferable way of making that choice, or whether there is a
way to update a such a choice once the solution under that
choice is known.

Probabilistic guarantees under structured uncertainty sets:
The discussion in the previous sections shows that coposi-
tive optimization techniques allow for the application of un-
certainty sets that are not applicable under the standard
convex duality-based paradigm. In Sections 4.3.2, 4.3.3 this
modeling capabilities were used in order to implement dis-
crete uncertainty sets as well as uncertainty sets that allow
for the application of piecewise decision rules. The motiva-
tion for the lattter is clear, the former is motivated by the
fact that in many applications, the outcome of the uncertain
process is most naturally described by a discrete set of al-
ternatives. However, in literature we often find that specific
uncertainty sets are motivated by the desire to give certain
probabilistic guarantees that the robust solution does not vi-
olate an uncertain constraint, perhaps under some broad as-
sumption on the distribution of the uncertain process. So far,
we do not know an approach where the additional modeling
power granted by the copositive approach was used in or-
der to tighten such guarantees or give such guarantees un-
der novel sets of assumptions.
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5. ARO with uncertain right-hand side: an alternative
copositive approach

In (Xu & Burer, 2018) the authors proposed a copositive re-
formulation of a certain class of linear ARO problems based
on Theorem 4 obtained by means very different from the general
strategy we outlined above, and consequently results in a distinc-
tive type of copositive reformulation. The derivation is simple and
elegant, and we will give a condensed account of their methodol-
ogy in the sequel, extending their model by introducing additional
uncertainty, also on the left-hand side and in the objective.

5.1. Copositive reformulation a la Xu and Burer

The class of ARO models we consider here is given by

min {machx+ d(u)"y(u) : a(x,u) +By(u) > f(u) for allu e u}
xeX.\y(u) | ueld

=min X+ max myin {dTy:a(x u) +By > f(u)} (41)

where the latter reformulation is proved by using standard argu-
ments from optimization theory. Also, d(u) = dg + Du, f(u) = fy +
Fu for appropriate matrices and vectors, a(x,u) := ap(x) + A(X)u
for appropriate vector-valued, affine mappings, and X CR" is a
feasible set of the first-stage decision not affected by uncertainty.
Again, the uncertainty set is modeled as compact, conic intersec-
tion:

U:={u:(1,u") ek},
for some closed, convex cone K € R9t! The reformulation strategy

we are about to lay out rests on the following assumptions:

Assumption 1. For problem (41) the following statements hold:

(a) it is feasible with finite optimal value;

(b) it possesses relatively complete recourse, i.e., for all x e X
and u € ¢ the innermost LP (in the min-max-min reformu-
lation) is feasible.

The innermost minimization problem can be dualized to obtain

myin {dTy() : By > f(u) —a(x,u)}
=max {W'lf(w) —a(x,w)]: B'w =d(u)}.

We can now plug in the dual and the definitions of the functions
representing the uncertain data, to obtain a bilinear optimization
problem that can be reformulated into a set-completely positive
optimization problem:

max {WT[F+AX)]u+[fo — a(x)]'W : BTW — Du = do}
(u,wW)eld xR
max  {WT[F + A(X)]u + uo[fo — ao(x)]'W : Du

(Ug,u,W)eX xR
+d0U0 -B'w= 0, lUg = 1}

{zla®z:20=1, Ez=0}

max
ZeK xR

:n}ix{Q(x)oZ:(Z)OO:I, ZET =0, ZeCcPP(K x RT)}

with
0 o’ 1fo —acx)]"
Q) : = o o} IF+Am)]" |, E:
slfo—a0®)]  F[F+AM)] o
Ug
=[do.D.-B"]. z:= | u
w
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Under Assumption 1a), the quadratic problem is feasible, since
any X e X that would render it infeasible would be optimal
for (41) with minus infinity as optimal value. Thus, the convex re-
laxation is exact by Theorem 4. Further, under the Assumption 1b)
the dual of the innermost LP is feasible with finite value regard-
less of u, hence attaining its optimal value on an extreme point
of its feasible set. The latter set is polyhedral so that its ex-
treme points can be contained in a ball of sufficient size, rendering
w'w < r, redundant for the bilinear problem given that r,, > 0 is
large enough. Also, since ¢/ is bounded, the constraint u'u < ry is
redundant for large enough r, > 0. It follows that we can always
introduce the constraint z'z < r with sufficiently large r > 0 to the
bilinear optimization problem without changing the optimal value,
hence Z o | < 1 is redundant for the conic optimization problem. Af-
ter doing so, the dual of the conic problem is given by

in A
Arp[\lg +1p
st Q(X) + Aeje] + %(AE +E'AT) + pl € COP(RT x K)

and since for the identity matrix | we have | € intCOP(K) for any
cone K, the latter problem has a Slater point so that the duality
gap is zero. Thus, the original optimization problem can be equiv-
alently reformulated as

min ¢'X+ A +1p
XA A p

s.t. 1 Q(X) +)»e1e1T+%(AE+ETAT)+,oI € COP(RT x k), Xe X.
(42)

The reformulation is exact but the cone COP(RT x K) is in-
tractable even if COP(K) is tractable. Hence one has to resort
again to inner, hence conservative, approximations.

5.2. Improving the affine policy

This raises the question whether any benefit can be incurred by
this strategy when compared to other conservative approximations
such as the ones based on affine decision rules. The authors of Xu
& Burer (2018) find an elegant answer to this question, at least for
the case where d(u) is constant. We summarize their findings in
the following theorem:

Theorem 19. For (41) assume that d(u) is a constant. Further denote
by vag the optimal value of (41) under an affine policy and with vis
the optimal value of (42) after replacing COP(RT x K) with

my) ._ _|Sn S;l
TA(K x RT) := {s = [52] o

Then we have v < Vpg. Further, denoting by vig the optimal value
of (42) where COP(R™ x K) is replaced with any cone ZB(K x R™)
for which

COP(RT x K) 2 IB(RT x K) 2 ZA(RT x K)

Su=egl+gef, gek,
: ROWS(521) € K*, Sy > (A

(43)

holds, we have val(42) < vig < vag, Where the first inequality holds
even if d(u) is not constant.

The authors of Xu & Burer (2018) propose the following candi-
date for ZB(R™ x k) with the desired property, namely

SeTA(RT x k), M e ST,

IB(RT x K) :=1S+M+R:
(+X ) { M Ri1 €C, Ry1 =0, Rpp=0

} (44)
where C € COP(K), can be replaced by inner approximations such
as the ones discussed in Section 2.3.1. The authors also show in
numerical experiments, that the optimal value vjg obtained by us-
ing the above cone can be strictly smaller than vag.
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5.3. Open problems

Improving the affine policy under nonconstant d(u): In the

original article (Xu & Burer, 2018), both d(u) as well as A(u)
were assumed constant. While establishing the above theo-
rem for the case where the latter function is not constant
is simply a matter of carrying along some additional terms
through the discussion presented in Xu & Burer (2018), the
same is not true for non-constant d(u). The reason for this
lies in the proof strategy that achieves vy < vag. It is based
on first deriving the finite reformulation of (41) under an
affine policy, and then showing that one can turn any fea-
sible solution of that reformulation into a feasible solution
of (42), under the required specifications. The finite refor-
mulation under the affine policy is thereby achieved using
standard linear convex duality, which does not apply if d(u)
is not constant.
It is however possible to give a finite reformulation based
on the general strategy as discussed in Section 4.2.1. It re-
mains to clarify how the resulting reformulation can be pro-
jected into the feasible set of (42). Answering this question,
one may be able to find a modification of ZA(RT x K) that
allows for similar performance guarantees.

Characterizing implied policies: As noted in Xu & Burer (2018),
(42) is powerful enough to represent the original ARO prob-
lem, and by the discussion in Section 5.2 we see that the
affine policy can be mapped into the solution space of the
reformulation. However, there is no similar analysis regard-
ing other types of policies.

Improving the quadratic policy: On a related note, it is not
clear whether the conic constraint in (42) can be replaced
by an inner approximation that performs at least as good as
the quadratic policy. Such a result seems tangible since we
know from the discussion in Section 4.2.1 that (41) under
a quadratic policy does have a conic reformulation, where
each row of the constraints is reformulated individually, re-
sulting in a collection of conic constraints. However, there
seems to be no straightforward way in which the feasible
set of such a reformulation can be projected into the feasi-
ble set of (42).

The case of uncertain recourse: The reformulation presented
in the above section assumes that the matrix B is not af-
fected by uncertainty. If this were the case, we would have
to deal with quadratic constraints, which would jeopardize
the application of Theorem 4 at the penultimate step of the
reformulation strategy. Specifically, instead of the linear con-
straints Du + dyug — BTw =0 we would have to deal with
the constraint Du + dgug — (B(u))"w = 0 which is bilinear
in case B(u) is linear in u. Theorem 4 does not place any
restrictions on linear constraints, but quadratic ones have to
respect the key condition, in order for the relaxation to be
exact. Hence, the case of uncertain recourse could be tackled
if the problem data is such that the key condition is either
satisfied or can be relaxed, e.g., as in Bomze & Peng (2022).
However, we do not know whether either of these strategies
are feasible for interesting instances of (41) with uncertain
recourse.

6. Robust standard quadratic optimization

Standard quadratic optimization deals with minimizing an in-
definite quadratic form over the standard simplex (also known as
the probability simplex) A" := {x eR! :eTx= 1}, ie.,

= minx' Qx
XeAn

min
XeR"

{xTQx reTx = l} (45)
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Despite its simplicity, this Standard Quadratic Problem (StQP) fea-
tures prominently in diverse application areas such as game the-
ory, graph theory, machine learning and copositivity detection. It
was the first problem for which an exact copositive reformulation
was presented in Bomze et al. (2000):

min {QeX:EeX=1},
XeCPP(RT)

minXx'Qx =
XeAn
or in other words it holds that G(A") ={XeCPP(R]):EeX
=1}. While the original proof is straightforward, this by now
classical result can also easily be derived via the method-
ology discussed in Section 2.1.2. Specifically, one can apply
Theorem 6 where the J is chosen to be all of CPP(R") and H is
the hyperplane associated with E e X = 1; the details are left to the
reader.

In (Bomze, Kahr, & Leitner, 2021b) the authors investigate ro-
bust counterparts of this problem, which are generically given by

minmaxx' (Q 4 U)X.
xeAr Ueld

Since the constraints are a structural aspect of the problem
(e.g., probabilities are are always positive and sum up to one),
only the objective function is affected by uncertainty. An imme-
diate question is whether the completely positive relaxation given
by

min max (Q+U) e X,
XeG(Am) Uel
is again tight. While the answer is negative in general, the authors
prove that the relaxation gap is exactly the min-max gap.

Theorem 20. Consider the robust Standard Quadratic Problem with
uncertainty set U.

(a) For general U we have

minmaxx"(Q + U)X < min max (Q+U) eX.
XeAm Ueld XeG(Am) Ueld

(b) Suppose U is closed and convex. Then

min max

(Q+U) e X = maxminx" (Q + U)x,
XeG(Am) Uel Ueld xeAn

so that the completely positive relaxation gap is exactly the gap in
the min-max inequality.

Proof. See Bomze et al. (2021b, Theorem 1). O

However, there are instances in which the inner maximization
problem can be evaluated independently of x. In these cases the
robust counterpart reduces to a deterministic standard quadratic
problem so that the exactness of the relaxation stays intact. The
first set of instances for which this is the case are those where the
uncertainty set is constructed via suitable cones.

Theorem 21. Let C C COP(R") be a sub-cone of the cone of copos-
itive matrices and L,B e S™ be given matrices. Assume that U =
{U:U—-LeC, B—UeC}. Then the completely positive relaxation is
an exact reformulation and the robust counterpart reduces to a stan-
dard quadratic problem with data Q + L.

Proof. See Bomze et al. (2021b, Corollary 1). O

Choices for C that fulfill the assumption of the above theorem
are

C e {CPP(K1), N", DNN™, NND", COP(K,)}, (46)

where £y CR" and R’} € K,. Besides this, there is another inter-
esting case of a different kind for which a similar result can be
derived, namely the case of ellipsoidal uncertainty.
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Theorem 22. [et CeR™" be a
define, for some scalar p >0,
{Uesm:|ICTUC|lF < p}. Then

matrix and
set U :=

nonsingular
the uncertainty

. -1
(0o

i.e., the robust counterpart reduces to a single standard quadratic op-
timization problem.

min max(Q+U)eX =

XeG(Am) UeU (47)

6.1. Open problems

Robust properties of StQP solutions: Many problems in graph
theory such as the stable-set problem and the maximum-
clique problem have a reformulation as an StQP, and one can
infer the solution to these problems from the optimal solu-
tion of the respective StQP. It is however, unclear if these
properties also hold for the robustified StQP. Conversely it is
not known whether robust versions of the stable-set prob-
lem or the maximum-clique problem can be modelled as a
robust StQP or, perhaps, a generalization of the latter model.

Convexified robust StQP: While the above discussion presents
cases where the robust StQP reduces to an instance of
StQP which can be tackled via standard convexification ap-
proaches, a general convexification approach applicable out-
side of these special cases is not known. The complication
arises from the fact that the pointwise maximum of linear
function is itself not linear but convex, and convex functions
may attain their optimum at points which are not extreme.
Hence, G(A™) fails to deliver the effectiveness we enjoy in
the deterministic case.

7. Two-stage stochastic optimization for StQPs

In (Bomze, Gabl, Maggioni, & Pflug, 2021a) the authors consid-
ered a two-stage stochastic version of the StQP.

Stochastic optimization deals with optimizing expected out-
comes of uncertain optimization problems, i.e.,

min {E(f(x &))}.

where the expected value is taken with respect to the random vec-
tor @, which is defined by a known probability space (E, A, P) with
support &, probability distribution P and o -field .A. Analogously to
the adjustable robust setting, in two stage stochastic optimization
one seeks a decision on the first-stage variables and on a second-
stage decision rule that adapts to the realization of the random
event. Thus, we are considering

(48)

min {ﬁ x) + Eﬁ|: min_ fo(x,y, ﬁ):| } . (49)
XeX yey(x,i)
Here we make a choice on the first-stage variables x and second-
stage policies y so that we optimize the sum of a deterministic
first-stage outcome and the expected value of the optimal second-
stage choice. Note, that the innermost minimization problem de-
pends on the random vector i so that the decision vector y is im-
plicitly a function of @. Hence, the setting is indeed analogous to
the adjustable robust setting. However, for our purposes it will not
be necessary to model y explicitly as a function as it is done in
ARO. Also, in our case the constraints linking y to x are not uncer-
tain but deterministic: y € Y(X).

Here we are dealing with the special case of the (typically non-
convex) StQP of the form
minz'Qz,
zZe A
where uncertainty is considered only in the objective function.
Suppose a (possibly) small ny x n; principal submatrix A of Q is
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known (more or less) exactly whereas the rest of the problem data
are subject to uncertainty with known probability distribution:

(50)

Here i1 = [B, C] are the uncertain data. Such a situation may for ex-
ample arise in portfolio optimization, when the relevant statistics
on younger securities can be assessed less accurately due to lack
of historical data.

Decomposing z € R" via z" = [x",y"] with (X,y) € R} x R?
and n; + ny =n we arrive at the following problem reformulation
of the (random) objective function as

q(z,i1) =2"Qz =x"AX + 2x"BTy + y'Cy.

Taking the expectation with respect to the probability distribu-
tion of &, we obtain the so-called recourse function

r(x) ;= Eﬁ{ min [2x"BTy +y'Cy:eTy=1- eTx]}
yeR22

and the two-stage stochastic StQP can be formulated as follows:

min {s(x) := x"Ax+r(x)},

xeT™
with T™ = conv {0, e’ : i e [1:ny]} = conv (A™ U {o}).

In most cases, a two-stage stochastic problem cannot be solved
directly, since merely evaluating the expected value can be in-
tractable. Thus, in practice one resorts to approximating the true
uncertainty measure by a finite discretization. This gives rise to the
so-called scenario problem, which in our case is given by:

s

; T TRT TE

min XTAX+ 3 ps(2XTBIYs+ys C:ys)

s=1

e'x+e'y,=1, sell:S],
ys>0, se[l:5],
X>o0. (51)

As we can see, the discretization is achieved by condensing the
true probability measures to a set of S scenarios with associated
probabilities ps s € [1:S]. There are many schemes on how to ob-
tain these discretizations, and it would be beyond the scope of
this text to dicuss them here; the interested reader may consult
the references given in Bomze et al. (20214, Section 2). Other tech-
niques are preoccupied with reducing the size of an existing dis-
cretization, in order to obtain a more manageable problem size.
For example Bomze et al. (2021a) employed a dissection tech-
nique to the discretized probability measure. In essence, scenar-
ios are grouped together into m groups. Then the smaller sce-
nario problems, that only involve scenarios from one group at time,
are solved using probabilities conditional on the respective group.
The so obtained solutions are averaged, with weights given by
the probability of the respective group, in order to obtain a lower
bound on the scenario problem. By varying the size of the groups
one can trade-off accuracy against the benefit of having to solve
smaller problems.

Since (51) describes a class of non-convex QCQPs, which con-
tains the StQP as a special case, it is NP-hard. However, it clearly
is amenable to a convex reformulation based on Theorem 4. Such
a reformulation would involve the cone CPP(R"™"2*") hence a
lifting in a space that scales quadratically with S. This is prob-
lematic as the quality of the approximations yielded by the sce-
nario problem depends on the number of scenarios considered. As
a consequence, the classical convex reformulation becomes imprac-
tical for those very cases where the scenario problem is relevant,
namely when S is large. The authors of Bomze et al. (2021a) there-
fore propose an alternative, albeit weaker, relaxation that scales
linearly with S:
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Theorem 23. Consider the problem
s
XTAX+a'X+ > X" BsYs + Y4 C¥s + €] Vs
s=1
st:e'x+ely, =1,
X,y1,...,¥s > 0. (52)
The following conic optimization problem gives a lower bound, and if
cs =ase, Bs=bse", a5 cR, bs e R", ic[1:S] the bound is actu-
ally tight:

min
XYi1..Ys

se1:5],

S

min AoX+aTx+ZBSon+CsoY5+c$Tys

X.Ys.Z5 Vs p—
s.t.: e'x+elys=1, sell:5],
EeX+2EeZi+EeYs=1, se[l1:5],
1 X' y/
x X zl|e cPP@®M™) sel1:S].
yS ZS YS
(53)

Compared to the classical reformulation which involves
CPP(RY! +5m2+1) " the above relaxation merely exhibits S conic con-
straints involving CPP(RTMZH), hence growing linearly with S.
This advantage comes at the cost of losing the exactness, so that
outside of the special cases mentioned in the theorem, the conic
problem only provides a lower bound. However, numerical exper-
iments conducted in Bomze et al. (2021a), comparing the bounds
obtained by solving the DN N -relaxation of both the classical re-
formulation and (53), suggest that the gap between the two tends
to be very small. In fact the gap is so small that the authors hinted
at the possibility that it is merely a numerical artefact. The reduc-
tion of computational effort on the other hand is substantially in
favor of the lower-dimensional bound.

We also would like to stress that the proof of Theorem 23 relies
heavily on the theory laid out in Section 2. By replacing the CPP
constraint with a more complicated conic constraint in a follow-up
paper (Gabl, 2022), it is even possible to close the relaxation gap
between (52) and (53) entirely. Among the two proofs of this re-
sult, one follows the strategy described in Section 2.1.2. The conic
constraint used in Gabl (2022) is a structured generalization of
CPP-type cones and can be approximated via similar means.

Another interesting feature of the methodology proposed in
Bomze et al. (2021a) was their combination of upper bounds ob-
tained by relaxations, first-order methods and global optimization
solvers. As it turns out, (53) preserves the original space of vari-
ables and thus yields not only a lower but also an upper bound.
This feasible solution can be used as starting point for local algo-
rithms such as the pairwise Frank-Wolfe algorithm, or for global
solvers such as Gurobi. The quality of these refined upper bounds
can then be assessed relative to the lower bound obtained by the
relaxation. As numerical experiments suggest, optimality gaps can
be reduced substantially and with reasonable computational effort,
and moreover the combination of procedures yields better results
than each method would produce on their own.

7.1. Open problems

Efficacy of the sparse model: As stated before, the bounds pro-
duced by applying the DN N-relaxation to (53) are almost
identical to the ones obtained from the DA N -relaxation of
the classical model based on Theorem 4. Based on the ex-
periments in Bomze et al. (2021a), we cannot rule out the
possibility that the sparse relaxation is in fact tight. How-
ever, despite some effort in Gabl (2022), no such result was
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found so far, nor were the authors able to produce a coun-
terexample.

8. Mixed-binary linear optimization problems under objective
uncertainty

In (Natarajan, Teo, & Zheng, 2011) the authors considered the
following optimization problem

Z(€) := max
XeRM

{€x:Ax=Db, x;€{0,1}, je B}

where € are uncertain objective function coefficients whose true
probability distribution P is assumed to have support in R and
apart from that is ambiguous up to its first two moments, the
mean j :=E(€) and covariance matrix X := E(€€"). The authors
aim to give an upper bound on Ep[Z(€)] by considering

sup E[Z(€)] = Ep[Z(€)]
E~(u.X)*+

where (u, £)* is the set of all distributions with nonnegative sup-
port, mean g and covariance matrix X. While the approach seems
related to the two-stage distributionally robust paradigm, since the
decision variables are allowed to adjust to the outcome of the un-
certainty the same way it would in a recourse problem, it is dif-
ferent in that we do not consider the worst-case distribution, but
rather the best-case distribution. However, the worst-case inter-
pretation remains valid if the underlying optimization problem al-
ready is a worst-case estimation, such as for the longest path prob-
lem. Another way to interpret this model is to see it as the second
stage of a two-stage distributionally robust optimization problem
where Z(€) is the dual of recourse problem problem with uncer-
tain right-hand sides (which is a valid interpretation if B = @). In-
deed both interpretations have featured in literature following up
(Natarajan et al., 2011), which we will briefly discuss at the end of
this section.

The authors approach this bound by providing a copositive re-
formulation of

sup E[max

a {€x:Ax=Db, x;€{0,1} forall je B}] (54)
E~(p. )+ XeR

which necessitates the following set of assumptions:
Assumption 2. The following statements on Z(€) hold :

1. The set (u, X)* is nonempty.

2. xeR} :Ax=Db implies x; <1, jeB.

3. The feasible region of the inner maximization problem is
nonempty and bounded.

Note that the first assumption holds exactly if

1 u'

[T
which is, of course, an NP-hard task unless n+ 1 < 4. The other
two assumptions are checked easily, the second one can even
be enforced generically by introducing additional constraints and
slack variables (see our discussion succeeding Theorem 4).

The reformulation rests on a particular mixed-moment lifting.
More precisely, let x(c) denote the optimal solution (or in case of
non-uniqueness, a measurable selection from the set of optimal so-
lutions) to Z(c) where c is a realization of €. Then x(¢€) is a random
vector, and we define the random vector

1

y€):=| ¢
x(€)

} € CPP(R™),

2n+1
e Ry
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so that
1 [LT pT
poE YT =Ey©y©']
p Y X
1 E[eT E[x®)T]
=| E[¢] E[&T] E[ex(©)T]
E[x@©)] E[x@©T] E[x@x(@©7]

Since y(€) € R2"™1 almost surely, and since CPP(RY) is closed, by
definition of an integral as limit of finite positively weighted sums,
above matrix is clearly completely positive. Also, by construction
the constraints

Ap:bi, diag(AXAT) =bob, ij :pj, jEB,

are clearly valid for the so constructed variables, and the objective
can be restated as

E[Z(@©)] =E[E"x(@®)] =1V,

where the max-operator was dropped since x(c) is an optimal so-
lution to Z(c). Based on this lifting, the authors were able to prove
the following theorem.

Theorem 24. Under Assumption 2, Problem (54) is equivalent to

max leY
p.XY
Ap = b;,
diag (AXAT) =bob,
Xjj=pj, J€B,
1 [.LT pT
B Z YT |ecPP@®RM™),
p Y X

in the sense that their optimal value is the same, and that for an opti-
mal solution (p*, Y*, X*) there exists a sequence of non-negative ran-
dom objective coefficient vectors €; and feasible solutions x*(€}) con-
verging in moments to this optimal solution, i.e.,

T

1 1 1wt (@)
lirr(} E [ [ =l X (Y97
o x(€:) | [ x(C:) pr Y X*

An interesting feature of this reformulation is that for binary
variables x;, j € B, the optimal solutions p}f have an interpretation
as success probabilities (for x;(€) = 1):

Pi=E[x;(©)]=1 % P(x;(€) = 1)+0 x P(x;(€) = 0)=P(x;(€) = 1)

under the limiting distribution of €.

The authors further extend their approach to different cases
where (u, ) are not exactly known but also to instances where
the support of the objective function coefficients is all of R", in
which case the conic constraint merely needs to enforce mem-
bership in CPP(Ry x R" x R}). The later case is further inves-
tigated in the follow-up paper (Natarajan & Teo, 2017), where
the authors apply Proposition 11.6., in order to derive models
with reduced computational complexity and some applications. In
(Padmanabhan, Natarajan, & Murthy, 2021) it is shown that in the
above model one can exploit the structure of uncertainty in ¥ in
order to obtain reformulations with conic constraints of smaller
dimension. For the sake of conciseness we will not present these
models here. Beyond that, the approach has sparked some promis-
ing developments that involve interesting generalizations and ap-
plications of the approach described in this section. In (Kong, Lee,
Teo, & Zheng, 2013) the authors investigated scheduling of arrivals
to a stochastic service delivery system for which they modeled
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the second-stage problem in a fashion similar to (54), where ad-
ditionally the uncertain objective € also depends on a first-stage
decision. Their approach is also interesting since they derive a
model similar to that in Theorem 24 with a different angle, based
on moment decompositions. In (Kong, Li, Liu, Teo, & Yan, 2015)
the authors investigated appointment scheduling under schedule-
dependent patient no-show behaviour, where a similar model was
employed that also incorporates uncertainty in the right-hand side
b. The discussion on the design of structures in operations in Yan,
Gao, & Teo (2018) is an example where Z(€) is interpreted as the
dual of a linear problem with uncertain right-hand sides. In ad-
dition, they avoid the computational cost of introducing slack vari-
ables, which would increase the copositive matrix block, by replac-
ing the respective constraints by a single bilinear constraint. Thus,
their exposition also expands the applicability of the model in this
regard.

8.1. Open problems

Geometrical analysis of Theorem 24: In the original paper
(Natarajan et al., 2011), the authors prove their main result
with a methodology that has a striking resemblance with
the proof strategy that was first used in Burer (2009) to
prove Theorem 4 (for the special case K =R ), where the
added complication comes from the fact that the analysis
has to proceed in the space of probability measures. In our
discussion in Section 2.1.2 we presented an alternative strat-
egy to the classical approach to Theorem 4 that rests on
the geometrical analysis provided in Kim et al. (2020). How-
ever, it is not clear that a similar geometrical proof can be
achieved for Theorem 24, since for Theorem 6 we assumed
the vector space to be of finite dimension. It would be inter-
esting to investigate whether a geometric approach similar
to Kim et al. (2020) can be extended to the case of infinite-
dimensional vector spaces in order to prove results such as
Theorem 24.

General data uncertainty and problem structure: An immedi-
ate question is whether the approach can be generalized to
cases where not only the objective function coefficients, but
also other parts of the problem data are uncertain. Also, in
analogy to Theorem 4, it would be interesting to study gen-
eralizations of (54) where x € K for choices of K other than
the positive orthant, and where binarity constraints are gen-
eralized to other types of quadratic constraints.

9. Two-stage distributionally robust optimization: conic
formulation

In (Hanasusanto & Kuhn, 2018) the authors applied a distribu-
tionally robust framework to two-stage robust optimization. Anal-
ogously to the adjustable robust framework, the second-stage vari-
ables are allowed to adapt to the uncertainty, and the goal is
to optimize expected performance under distributional ambiguity.
The authors introduce copositive reformulations and relaxations
for this model, and show that the resulting approximations out-
perform state-of-the-art approaches.

In the following exposition, ambiguity sets are modelled as a
Wasserstein balls, centered around an empirical distribution:

By(B) :={Pe M W) :W'(P.P) <&}, (55)

where, from now on, %/ := {u e Rk : Su <t} is a nonempty, poly-

hedral support, with S € Rk and t e R/, and B is the empirical
probability measure based as defined in Section 3.1.
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9.1. Problem formulation

The model under consideration is
min [¢"x+R(X)], (56)
XeX

where X € R™M is a feasible set not stricken with uncertainty, and

R(x) is the distributionally robust analog to the recourse function

given by

R(%) = SupEp[Z(x, w)]. (57)
PeP

where u € &/ € RY is a random vector, and P is an ambiguity set of
the possible distributions of u. The recourse problem is given by

Z(X,u) := yielﬂgZ {(Qu+q)Ty: T®)u+h(x) < wy}

> Zg(x.w) = sup {[T)u+hx)]'p: Qu+q=wTp}

peR7T
where T(x) and h(x) are appropriate matrix- and vector-valued
functions and Z;(x,u) denotes the dual of Z(x,u). The following
two assumptions on the recourse problem have critical influence
on the behaviour copositive bounds we are about to derive:

Assumption 3. Regarding the recourse problem we consider the
following qualities:

(a) Complete recourse: There exists y© € R™ so that Wy* > o.
(b) Suffiently expensive recourse: For any u € U/ the dual problem
Z, is bounded.

Complete recourse ensures that Z(x,u) is always finite while
sufficiently expensive recourse ensures Z(x,u) is always feasible.
If the recourse problem exhibits either of these qualities then
Z(x,u) = Z4(x,u). Assumption 3b) will be maintained throughout
the discussion, while different results will be presented no matter
whether Assumption 3a) is satisfied or not.

9.2. Conic reformulation
The following theorem is at the heart of the derivation of the
copositive bounds:

Theorem 25. If P = B}, (B) the worst-case expectation (57) coincides
with the optimal value of the generalized moment problem

! I
1 i .1 a)l"'pP. < gl
{ 1 ;/Z;Z(X, wP(du) : ] ;/M[d(““l)] P(du) < ¢ }
(58)

Furthermore, for & > 0 this problem admits the strong dual robust op-
timization problem

R(x) = sup
PieMT ()

ueld

1
R(X) = /\ier]}%f |:8rk + 1Y supZ(x,u) - Ad(u, ﬁ)’:| . (59)

i=1

The first formulation can be related to a completely positive op-
timization problem, the second one to a copositive optimization
problem. These conic problems can be shown to be duals of each
other. Assumption 3a) can then be used in order to close the du-
ality gap, so that one achieves a conic reformulation of R(x) that
enjoys strong duality. The conic optimization problems in question
are:

AeRy sieR, P, p;eRM™2 T
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Sl mep)
h(x) := |:h£)x)]’ W= |:Vc\)/

while

i=1

I
He [TF(Q:') - 26 p; + ﬁiTAi] <e?,

QY ,

Y[ Ty | eCcPP(RM™), ie[1:].
poyio1

In a nutshell, the argument proceeds as follows:

- Show that R(x) < R(x) by replacing Z(x,u) by Z;(x,u) so
that the inner supremum problems become quadratic op-
timization problems that, after squaring their linear con-
straints, are upper bounded by their completely positive re-
laxations. Combining the suprema we obtain a conic prob-
lem that is itself upper bounded by its dual that is in fact

given by R(x).

Show that R(x) > R(x) by an argument resembling the proof

of Theorem 4, with the added difficulty that the decomposi-

tion of feasible solutions of R(x) have to be translated into
approriately constructed, discrete probability measures.

» The gaps can then be closed by showing that strong duality
holds between the two conic optimization problems. While
weak duality is immediate from the standard derivation of
conic duals, closing the gap involves a generalization of the
sufficiency part of the Shur-complementation criterion for
positive definiteness to copositive matrices. For the so ob-
tained relaxation, a Slater point can be constructed under
Assumption 3a), which by sufficiency yields a Slater point
for R(X).

Hence, a conic reformulation of the recourse problem that
enjoys strong duality is obtainable given that the problem has
complete recourse. Replacing R(x) by R(x) in the description of
(56) yields a finite, conic reformulation that can be approximated
with standard techniques.

In case the latter assumption fails, the authors prove approx-
imation results that use a slight modification of the conic prob-
lems. Define Rs(x) the same way as R(x) with W Diag(¢;)WT re-
placed by W Diag(¢p;)WT + 81, i e [1:I], with § > 0 a constant, and
consider

i
R(x) := inf {82+}Z |:Si+qT¢i_)"”ﬁi”2+ Z‘bi(fnki”

i=1
M+ QT Diag($)Q

s.t.:| —3T(x) — WDiag(¢,)Q
[-2a - 1Q7y]"

—1T(x)T — Q" Diag(¢p;))W"
W Diag(¢p, )W’
%[V_V'/’i - ﬁ(x)]T

—; - QY ,
3[We —hX)] | e cop@kmitty,

Si
ie[1:1],
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. T —
min [¢"x+Rs(x)]. (60)
Again we have a finite, conic optimization problem for which the
following theorem can be proved.

Theorem 26. The following statements hold:

1. If § = 0 and (56) has complete recourse, then it is equivalent
to (60).

2. If 8 =0 and (56) fails to have complete recourse, then it is up-
per bounded by (60).

3. If § > 0, then (56) is lower bounded by (60).

4. If X is compact, then the optimal value of (60) converges to
that of (56) as 6 \, 0. Moreover, every cluster point X* of a se-

quence {X§}5\0 of minimizers to (60) is a minimizer to (56).

9.3. Open problems

Multi-stage distributionally robust optimization: Results in
two-stage robust optimization are often not that easy to
generalize to the multi-stage setting. It would be an inter-
esting challenge to investigate whether the approach above
is useful for tackling the multi-stage distributionally robust
optimization problem under Wasserstein ambiguity.

The case of uncertain recourse: Similar to the discussion in
Section 5.3, the case of uncertain recourse is an open prob-
lem for the approach. The reason is basically the same:
quadratic terms in the constraints of the recourse problem
limit the application of copositive techniques. Hence, more
research is needed in this regard.

Unified analysis of the two-stage setting: There is a strong re-
lation between some of the approaches we have discussed
so far. In fact the authors of both (Hanasusanto & Kuhn,
2018; Xu & Burer, 2018) point out that the exactness of
(43) from Section 5 is equivalent to Theorem 26. In addi-
tion, the recourse function R(x) bears striking resemblance
to (55) discussed in Section 8, once the infimum prob-
lem Z(x,u) is replaced replaced by the supremum prob-
lem Z;(x,u), and both models are eventually reformulated
into a copositve optimization problem. However, all three
approaches use very different methods to derive their re-
sults and even more, results similar to those in Natarajan
et al. (2011) are derived in Kong et al. (2013) with a dif-
ferent proof strategy. It is therefore plausible that there is
a unifying lens under which all these approaches can be un-
derstood, perhaps based on the geometrical analysis hinted
at in Section 8.1, but so far such an approach is absent from
the literature.

10. Conclusions

Copositive optimization tools for quadratic optimization are an
active area of research that yields a plethora of possible applica-
tions in optimization under risk and uncertainty. Research in re-
cent history has shown that the interplay between these two fields
sparks powerful approaches that are competitive especially when
it comes to modelling and improving bounds on difficult prob-
lems. Still many open questions and potential new research areas
remain, some of which we pointed out in our discussion. At this
point we also like to point out a major area where, hopefully, im-
provements can be made in the future and that is the question
of how to make copositive optimization more practical. The major
drawback of the this technology remains the substantial computa-
tional burden that come along with solving even simple approxi-
mations. We believe there are many untapped sources for improve-
ment on that front. We hope that this text is able to encourage
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readers to engage in these challenging questions and to expand on
these ideas in future research.

Appendix A. Longer proofs

Proof of Theorem 4. We will prove only a weaker version
of the theorem, where we assume £ to be bounded. As in
Proposition 5 we denote by M = [b, —A] and define

K := ext(CPP(R; x K)),
J:={Y eCPP(R; xK):QieY =0, ic[0:m]},
and let 6,» be defined as in Section 2.1.2. We can rewrite the QCQP
as
rrgn{QOoY ‘HoeY=1, QeY=0, ic[0:m],
Y € ext(CPP(Ry x K))}
=inI1{<Qo,Y> :YeKnl], (Ho,Y) = 1}
while the convex reformulation can be rewritten as
ngn{QO.Y ‘HoeY =1, QeY=0, ic[0:m],
Y e CPP(R; x K)}
=m\}n{(Q0,Y) 1Y el (HoY)= 1}
If we want to use Theorem 6 to show that the two problems are

equivalent we need to show that HNK # ¢ is bounded and that J
is a face of conv(K). To show that boundedness consider that

HNJ:={YeCPP(R, xK):QeY=0, ie[0:m], HoeY =1}
c{Y eCPP(R, xK): QoeY =0, HoeY=1}=:TJo.

We will prove that Jj is bounded. The recession cone of J; is given

by

07Jo={Y €CPP(R, xK): QpeY =0, HyeY =0}.

So assume O # Y e 07 Jy. We have

k
Y eCPP(Ry xK) =Y =) yy withy;eR, xK
i=1
k
QoeY =) yMMy
i=1

0= My, =0

k
HoeY =) (¥)a, =0= (¥i)ny1 =0
i1

So yj=[ x;0 | for some x; € K with Ax;=o0, but then £ :=
{x € £ : AXx = b} is not bounded contrary to our assumption. Hence
0*J; contains only the origin so that J; is bounded.

Let’s unpack

J={Y eCPP(R, xK):QieY =0, ie[0:m]}

={Y € CPP(R; xK) :M™MeY =0.Q;eY =0, ic[1:m]},
and define J_; = conv(K) = CPP(R, x K) and
Jp:={Y eCPP(R,; xK):M™MeY=0,QeY=0, ic[l:p]}.

First, note that MTM e "1 so MTM e xx > 0 for all X € K, which
implies that MTMeX >0 for all X e conv(K) so that MTM e
conv(K)*. As a side product we get that conv(HNKNJ;) =HNJ;
by Theorem 6 since J; is a face of K by Theorem 7. Thus we have

conv(HNKNJ;) = conv{yy' :ye Ry xK:y'M'My=0, y5,, =1}
= conv{Y € ext(CPP(Ry x K)) : Qoo Y =0, Ypu1 =1}
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={YeCPPR, xK): QoeY =0, Yp =1}
=HnNJ
Now by the key assumption for any i € [1:m] we have
Qieyy' >0 forallyeR, xK:My=0, Ypi1 =1,
so that
QijeY >0 forall Y econv{yy' :yeR. xK:My=0, yp,q =1}
=conv{yy" :yeR, xK:y"M'My=0, y3,, =1}
= conv{Y € ext(CPP(R+ x K)) : QoeY =0, Yni1 = ]}
=conv(HNKNJ;) =HNJ,

Thus Q; e I3 for any i € [1:m]. But J, < J; for any pe [2:m] which
implies Ji c J}, for any p e [2:m]. Consequently, Q; € J} for any
ie[1:m], pe[2:m]. We have argued that Qg := MTM e conv(K)*
and that Qp € T5_4. S0 I is a face of conv(K). O

Proof of Theorem 8. An elementary argument shows that
g(uflef,-) = conv uﬁ‘zlg(ﬁ). Clearly, for a convex combination
X =YK AX; with X; e G(F), ie[1:k] we have X; :=A;X; G,
with & (X;) =0 so that He (XX, X)) =YK AHeX; =YK A =
1. Conversely, for an X :=Y¥,X; with X; € ¢;, with & (X;) =0
and HeX =1, we can write X =YX | (H oXi)Hf—;'(i since He X; > 0
by assumption and we have H%, € (j, Aczi(Hf—;'(l_) =0 and ZL(H .
X;) =HeX =1 as desired. O

Proof of Proposition 11. We start observing extremality of dyadic
matrices: suppose Xx' = A + B with {A, B} ¢ S}. Then

xX"u)’=u"Au+u"Bu for all u e R"

which implies x' c ker A nkerB. If x = o, this already yields A =
B = O. If X # 0, spectral decomposition of A and B yields by above
A=oaxx" and B = gxx" for some {&,B}cR; with a +8=1,
which shows extremality of xx" in S and also in all CPP(K) for
any cone K. Next we observe uniqueness up to reflection for vec-
tors building dyadic matrices:

xx"=yy' = xe{-yy}. (61)
Indeed, considering
[x]*=x"(xx")x =x"(yy")x = (x"y)> =y" (xx")y = [ly[|*

we have the equality case of the Cauchy-Schwarz inequality which
yields either y = o or else x = oy with «* =1, so in any case x =
—-yorx=y.

Now let us consider each point individually:

1. COP(K) =COP(-K) =COP(KU-K), which also holds if
COP is replaced with CPP.

We can simply appeal to y'Xy = (—y)"X(-y) and yy' =
==y

2. If K1 € Ky, then CPP(Ky) C CPP(K,) with equality if and

only if Ky € K1 U-K;.
The inclusions are obvious, as is sufficiency for the equali-
ties, using 1. Now assume X € K, and identity of the CPP
cones. Then, by extremality of dyadic matrices xxT =yy' for
some y € K, SO X =4y € K1 U—K; by (61).

3. If K1 € Ky, then COP(K1) 2 COP(K,); if in addition we as-
sume int K3 # ¢, we have COP(K1) = COP(K,) if and only
if? Ky € cl K.

Again, the inclusion statements of the COP cones is obvious.
Assume now they are identical and suppose, arguing by con-
tradiction, the existence of an x € K, \ c1K;. Then X # 0 and

2 note that Ky € K € cl (K;U—K;) and int K; # ¢ already implies K; < cl Ky,
so that this criterion coincides with the criterion of 2. up to closure
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moreover, there is a ¢ € intk3 \ {0} such that ¢"x > 0. Since
€ € intk; C intKj, the set

B:={zecdK;:c"z=c"x}

is a compact base of clK; and p := dist(x, clKy) > 0. It fol-
lows that the quadratic form

Tay =) = Iy~ x2S
Viey=aw) =y - 7 P

satisfies q(x) = —p2 < 0 while on the other hand, we have
for any y e clKq \ {0} that y := g—iy € B, so

c'y 2
q(y)=< )q(y)zo,

cTx

since q(y) = ||y — x||2 — p% > 0 by definition of p. In partic-
ular Q e COP(K1) = COP(Ky) which is absurd in view of
the relations x € K, and q(x) < 0. Hence K, < clX;. This in-
clusion implies, conversely, the already observed COP inclu-
sions (for the leftmost identity see 12. below)

COP(K1) = COP(clK1) S COP(Ky) S COP(Ky).

Note that for the CPP cones, we have a different im-
plication: if Ky € Ky € cl(KqU—-K7) then not necessarily
CPP(K1) = CPP(Ky) but clCPP(Ky) = CPP(Ky), cf., again,
12. below. For the footnote © in this point, note that, by
virtue of K1 C Ky, all ze Ky \ Ky C KN (—cKy) Ckn
(—clky) satisfy ¢Tz=0 for any c e int[K;]*, implying z =
0 € cl Ky, which is absurd. Thus the assumptions yield K, €
C”C].

. CPP(K) € 8} < COP(K); all three sets are equal if and only

ifCU—K=R"

We obviously have CPP(R") = ST = COP(R"). Now special-
ize K1 =KU-K and K, =R" in 2. and 3., to arrive at the
claim, using 1.

. COP(R+ x R™) = CPP(R; x R™) = ST+1,

The statement follows from 4. since KX =R, x R™ satisfies
KU —K =R™1,

T
m; m;» € ST My € CPP(IC)} if
ock.
The statement was proved first in Dickinson (2013) and then
independently in Natarajan & Teo (2017), both for the case
that K is closed. We present an alternative proof that merely
requires o € K. Sufficiency is clear, since any set-completely
positive matrix cone is a subset of the positive semidefi-
nite matrix cone and the north-west block of any matrix in
CPP(K x R™) is in CPP(K). So consider an element M of
the right-hand set. Since it is a psd matrix we have a de-
composition

My MI x1Mx]" . . »
air 8] [R] wanx s, v s
so that My; = XXT. But we also have My; € CPP(K), so that
in fact Mqy; = ZZT for some n x s matrix Z with z; € K for all
ie[l:s]. If s#r we can always append columns of zeroes
to the smaller matrix without changing the relation XXT =
ZZ7, so that w.l.o.g. we can assume s = r. From Groetzner &
Diir (2020, Lem. 2.6) we then have that XXT = zZT is the
case exactly if Z = XQ for some Q € R™" with QQT =I. Set
Y = YQ. Then the decomposition

20 - Tl - e

XQQTYT
YQQTYT
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has Y € R™" and all columns of Z in K, since by assumption
also 0 € K (which holds automatically if K is closed), so that
it certifies the membership of M in CPP(K x R™).

7. COP (K1 UKy) = COP(K1) NCOP(Ky).
Here we use the fact that

(62)

X'Mx>0 forallxek UK, <

— X'Mx>0 forallxek; and x"Mx>0

8. CPP(K1 UKy) = CPP(Kq) + CPP(Ky).
For Xx; € K1 UKy, i€ [1:k], we can divide the vectors into two
groups y; € Ky, zr € K so that 3, xx] =Y°; yjy]T +3, 27
9. CPP(convk) 2 CPP(K) with equality if £ is convex.
Follows by 2., since conv K contains K.
COP(convk) € COP(K) with equality if K is convex.
Again the set inclusion is obvious by 3.
CPP(K) = {ZL] XX 1 X; € intk, span{x;..... X} = ]R”} if
K is closed, convex and intk # @.
The proof for £ =R presented in Dickinson (2010) can be
extended to any closed convex cone K with nonempty inte-
rior.
COP(K) = clCOP(K) = COP(clK)
ccPP(K).
The first two equalities follow from the continuity of
quadratic functions. The last one is obtained as follows:
it is clear from continuity that CPP(clK) C cl[CPP(K)]. To
establish the reverse inclusion, consider a sequence with
A" e Ak and x™) e K, all i e [1:k]:

for all X € Ky

10.

11.

12. while CPP(clK) =

k
X0 =32 MxV[xM]T > AeS" as v oo.
i1

Because

/2% < ixﬁw %11 = Tr(x™)) — Tr(A)

j=1
remains bounded for all i e[1:k], we may select a subse-
quence along which \/)@xi(”) —y;eclk as v — oo, for all
i € [1:k]. Again by continuity, we infer

k
A=Y L [Vkyil[Vkyi|T € CPP(cIK),
i=1
which shows cl[CPP(K)] € CPP(clK).
COP(K) = COP(relintk), if K is convex.
follows from 12. and the fact that for all convex sets K, we
have cl K = cl(relintk).
intCOP(K) = {Qe S":x'Qx >0 forallxe K\ {o}}.
The statement follows from

13.

14.

INtCOP(K) ={Q: Qe X > 0 for all X € CPP(K) \ {O}}
={Q:QeX >0 forall X e CPP(K) \ {O}}
={Q:QeX >0 for all X e ext(CPP(K))\ {O}}
={Q :x'Qx >0 forallxe K\ {0}}. O
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