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a b s t r a c t 

Robust optimization and stochastic optimization are the two main paradigms for dealing with the uncer- 

tainty inherent in almost all real-world optimization problems. The core principle of robust optimization 

is the introduction of parameterized families of constraints. Sometimes, these complicated semi-infinite 

constraints can be reduced to finitely many convex constraints, so that the resulting optimization prob- 

lem can be solved using standard procedures. Hence flexibility of robust optimization is limited by certain 

convexity requirements on various objects. However, a recent strain of literature has sought to expand ap- 

plicability of robust optimization by lifting variables to a properly chosen matrix space. Doing so allows 

to handle situations where convexity requirements are not met immediately, but rather intermediately. 

In the domain of (possibly nonconvex) quadratic optimization, the principles of copositive optimiza- 

tion act as a bridge leading to recovery of the desired convex structures. Copositive optimization has 

established itself as a powerful paradigm for tackling a wide range of quadratically constrained quadratic 

optimization problems, reformulating them into linear convex-conic optimization problems involving only 

linear constraints and objective, plus constraints forcing membership to some matrix cones, which can be 

thought of as generalizations of the positive-semidefinite matrix cone. These reformulations enable ap- 

plication of powerful optimization techniques, most notably convex duality, to problems which, in their 

original form, are highly nonconvex. 

In this text we want to offer readers an introduction and tutorial on these principles of copositive 

optimization, and to provide a review and outlook of the literature that applies these to optimization 

problems involving uncertainty. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Robust optimization is one of the two main paradigms, next to 

tochastic optimization , for dealing with the uncertainty inherent in 

lmost all real-world optimization problems. The core principle of 

obust optimization is the introduction of parameterized families 

f constraints, enforced for all realizations of the uncertainty 

arameters belonging to a so-called uncertainty set . Using tools 

rom convex optimization theory, these complicated semi-infinite 

onstraints can often be reformulated into finitely many convex 

onstraints, so that the resulting optimization problem can be 

olved using standard convex optimization procedures. Based on 

his simple idea, the framework of robust optimization allows for 
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 unified treatment of a vast array of approaches to optimization 

nder uncertainty, spawning countless generalizations such as 

djustable robust optimization (ARO) and distributionally robust 

ptimization (DRO) , yielding elaborate models, which in essence 

oil down to robust optimization problems. This lends further 

redence to the versatility of this framework. 

Unfortunately, the flexibility of robust optimization is limited 

y certain convexity requirements on various objects, such as the 

arameterized constraints as well as the uncertainty set. How- 

ver, a recent strain of literature has sought to expand appli- 

ability of robust optimization by lifting variables to a prop- 

rly chosen matrix space. Doing so allows to handle situations 

here convexity requirements are not met immediately, but rather 

ntermediately. 

As stated above, robust counterparts can often be reformulated 

nto a tractable, finite convex optimization problems. At the core of 

he machinery enabling these reformulations lies the observation 
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hat a robust constraint of the form 

f (x , u ) ≥ 0 for all u ∈ U is equivalent to inf 
u ∈U 

{ f (x , u ) } ≥ 0 . 

n case the infimum problem admits a dual (involving dual vari- 

bles λ, a dual feasible set D (which typically also involves x in 

ome tractable manner) and an appropriate dual objective function 

˜ f (x , λ) , say) attaining its optimal value with zero duality gap, the 

obust constraint can further be reformulated into 

up 

λ∈D 

{
˜ f (x , λ) 

}
≥ 0 , 

here finally the supremum operator can be dropped, since any 

onnegative feasible value certifies that the supremum is nonneg- 

tive as well, so that the robust constraint is fulfilled. 

The desired strong duality property is readily available in case 

he infimum problem is a convex optimization problem: here only 

ild additional regularity conditions, such as Slater’s condition, 

eed to be satisfied. Outside the domain of convex optimization, 

uch strong duality results are much more scarce. 

In the domain of (possibly nonconvex) quadratic optimization, 

he principles of copositive optimization act as a bridge leading to 

ecovery of the desired convex structures. Copositive optimization 

as established itself as a powerful paradigm for tackling a wide 

ange of quadratically constrained quadratic optimization problems 

QCQPs) . It aims at reformulating QCQPs into linear convex-conic 

ptimization problems involving only linear constraints and objec- 

ive, plus constraints forcing membership to so-called set-copositive 

atrix cones, which can be thought of as generalizations of the 

ositive-semidefinite matrix cone. These reformulations allow for 

he application of the powerful tools of convex optimization, most 

otably convex duality, to problems which, in their original form, 

re highly nonconvex. 

In this text we want to offer readers an introduction and tuto- 

ial on these principles of copositive optimization, and to provide 

 review and outlook of the literature that applies these to robust 

ptimization problems. We hope that the reader will acquire the 

ollowing benefits: 

• gaining an overview on existing copositive optimization ap- 

proaches to robust optimization as well as open questions in 

this field; 

• understanding basic principles of convexifying nonconvex 

QCQPs in the style of copositive optimization with a focus 

to practice-oriented applications; 

• being exposed to open problems and interesting research di- 

rections, which hopefully inspire the pursuit of new research 

in this area. 

Regarding the final point we will discuss open problems 

hroughout the text. However, for the readers’ convenience we will 

ttach a dedicated “section with open problems ” at the end of 

ach topic, where we will summarize interesting research direc- 

ions point by point. 

In the sequel, we will not delve into much much detail on 

obust optimization theory, since there are great tutorials avail- 

ble, providing excellent introductions to the field and its vari- 

us sub-genres, for example Bertsimas, Brown, & Caramanis (2011) ; 

orissen, Yanikoglu, & den Hertog (2015) ; Rahimian & Mehrotra 

2019) ; Wiesemann, Kuhn, & Sim (2014) ; Yanikoglu, Gorissen, & 

en Hertog (2019) . In the interest of a focused and concise pre- 

entation, we will also omit discussions on another strain of lit- 

rature dealing with convexifications of QCQPs by means of the 

o-called S-Lemma and its many variants. However, let us high- 

ight that this topic has strong ties with copositive optimization 

s well as robust optimization. Most notably, copositive optimiza- 

ion is sometimes referred to as an alternative to the S-Lemma 

n the context of robust optimization. While we will comment on 
x

2 
his circumstance sporadically throughout the text, our discussion 

n the topic will be limited. The interested reader may refer to 

en-Tal, Goryashko, Guslitzer, & Nemirovski (2004) ; Bomze & Gabl 

2021) ; Jeyakumar, Li, & Woolnough (2021) ; Pólik & Terlaky (2007) ; 

oolnough, Jeyakumar, & Li (2021) . 

The rest of this article is organized as follows: in Section 2 we 

ill give a detailed but by no means exhaustive account of copos- 

tive optimization theory and related topics, concluding with a 

uide through surrounding literature. After briefly introducing ba- 

ic concepts of robust optimization and some of its variants in 

ection 3 , we will discuss in greater detail the various ways coposi- 

ive optimization has been applied in robust optimization contexts. 

 core technique in this regard is the reformulation of semi-infinite 

onstraints with quadratic index, which we will discuss extensively 

n Section 4 . Some of the adjustable robust models discussed there 

an be tackled by an alternative approach which seeks to reformu- 

ate the entire problem rather than individual constraints and is 

iscussed in Section 5 . We then review robust versions and a two- 

tage stochastic version of the so-called Standard Quadratic Opti- 

ization Problem in Sections 6 and 7 , respectively. A copositive 

pproach to mixed-binary linear optimization under objective un- 

ertainty, that sits conceptually in-between stochastic optimization 

nd distributionally robust optimization, is presented in Section 8 . 

inally, we discuss a conic approach to two-stage distributionally 

obust optimization in Section 9 . 

.1. Notation 

Throughout the paper, matrices are denoted with sans-serif 

apital letters, e.g., E is the matrix of all ones, I is the identity ma-

rix and O the matrix of all zeros (the matrix order will depend on 

he context). Vectors will be given as boldface lower case letters, 

or instance the vector of all ones (a column of E ) is e , the vector

f zeros is o and the vector e i is the i th column of I . By T we de-

ote transpose. For a square matrix M , diag M extracts its diagonal 

s a column vector while Diag x produces a diagonal matrix with 

iagonal x . For any x = [ x i ] i ∈ R 

n we denote by x ◦ x = [ x 2 
i 
] i ∈ R 

n its

adamard square. We will also use the shorthand 

(x , X ) := 

[
1 x 

T 

x X 

]
. 

Sets will mostly be indicated using letters or acronyms in cap- 

tal calligraphic font. Most importantly: S n is the space of sym- 

etric n × n matrices, N 

n ⊂ S n those of them with no negative 

ntries and S n + those of them with no negative eigenvalues, i.e., 

ositive-semidefinite (psd) symmetric matrices of order n (some- 

imes the cone S n + is referred to as the psd-cone in short), SOC n = 

(x 0 , x 
T ) T ∈ R 

n : ‖ x ‖ ≤ x 0 
}

is the second-order cone. 

There are occasional exceptions, e.g., the n -dimensional Eu- 

lidean space R 

n , its nonnegative orthant R 

n + , or the index set 

 i : j] = { i, i + 1 , . . . , j − 1 , j } , where i < j are integer numbers. For 

 set A we denote cl (A ) , int (A ) , conv (A ) its closure, interior, and

onvex hull, respectively, and for a convex set A we denote by 

elint (A ) its relative interior, as well by ext(A ) the set of its ex-

remal points. For a cone K ∈ R 

n we denote the dual cone as 

 

∗ := 

{
x ∈ R 

n : y T x ≥ 0 for all y ∈ K 

}
. For any optimization prob- 

em (P ) , we denote by val (P ) its optimal value, regardless whether

t is attained or not. 

. Convexifying QCQPs via set-copositive optimization 

.1. Basic lifting strategies and their core ingredients 

A QCQP consists of minimizing a quadratic function subject to 

uadratic constraints, formally given by 

inf 
 ∈K 

{
x 

T Q 0 x + 2 q 

T 
0 x − ω 0 : x 

T Q i x + 2 q 

T 
i x ≤ ω i , i ∈ [1 : m ] 

}
(1) 
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here { Q i : i ∈ [0 : m ] } ⊂ S n , { q i : i ∈ [1 : m ] } ⊂ R 

n and ω i are real

umbers. K ⊆ R 

n is a cone which one could choose to be any cone

epresentable by (finitely many) linear or quadratic inequality con- 

traints without leaving the domain of QCQPs, for instance K ∈ 

R 

n , R 

n + , SOC n 
}

. Note that neither the objective nor the feasible set 

eed be convex, the latter may even be disconnected. Indeed, gen- 

ral QCQPs are NP-hard as they contain many NP-hard problems as 

pecial cases (see e.g. Pardalos & Vavasis, 1991 ). 

In our discussion we want to familiarize the reader with a spe- 

ific type of convexification of QCQPs, that is simple, yet ultimately 

ery powerful. To convince even readers who are unfamiliar with 

he subject of the simplicity of the approach, we will now discuss 

ome simple examples that nonetheless exhibit all the ingredients 

hat are necessary for understanding the machinery. 

xample 1. Consider the following optimization problem: 

in 

x ∈ R n 
{

x 

T Q x + 2 q 

T x : x ∈ { a , b } ⊂ R 

n 
}
. (2) 

learly, the problem is easily solved by just evaluating the ob- 

ective at both feasible points and then choosing the minimizer. 

till, we have a (possibly) nonconvex objective that is optimized 

ver a nonconvex feasible set, so that the problem belongs to a 

lass of actually difficult problems and it is in fact a nice take-off

oint for thinking about how to convexify more general problems 

n this class. Firstly, observe the following equivalence: x T Q x = 

r (x T Q x ) = Tr (Q xx T ) = Q • xx T , which holds since the trace of a

umber is the identity function and the trace-operator is invariant 

nder cyclic permutation of matrix products. Note that the Frobe- 

ius product is bilinear, so that we can achieve a linearization of 

he problem via the following modifications: 

min 

 ∈ R n , X ∈S n 
{
Q • X + 2 q 

T x : X = xx 

T , x ∈ { a , b } } (3) 

urther, we can eliminate the explicit relation between X and x by 

ushing it into the description of the feasible set in order to obtain 

min 

 ∈ R n , X ∈S n 
{
Q • X + 2 q 

T x : ( x , X ) ∈ 

{(
a , aa T 

)
, 
(
b , bb 

T 
)}}

. (4) 

 convexification is now easily obtained by replacing the feasible 

et with its convex hull, since the linear constraint will attain its 

ptimum at an extreme point of the so obtained convex feasible 

et. In our case, the latter is a line segment connecting the two 

oints in the feasible set of (4) , which also are the extreme points

f this line segment. Rather than expressing this convexification in 

he space of tuples of the form ( x , X ) , it is instructive to represent 

t entirely in the space S n +1 in the following manner: 

min 

 ∈ R n , X ∈S n 
{
Q • X + 2 q 

T x : Y(x , X ) ∈ conv 
{
Y(a , aa T ) , Y(b , bb 

T ) 
}}

. 

(5) 

ote that 

 

(
a , aa T 

)
= 

[
1 a T 

a aa T 

]
= 

[
1 

a 

][
1 

a 

]T 

o that in fact, the feasible set is the convex hull of symmetric 

yadic matrices (i.e., matrices of the form xx T ) where the last n 

omponents of the factors x are feasible solutions to the original 

ptimization problem. In addition, these dyadic matrices form the 

xtreme points of the feasible set and the linear function will at- 

ain its minimum at one of these points. Finally, at these dyadic 

xtreme points the linear objective will evaluate identically to the 

uadratic function at the respective feasible points, so that the 

onvexification enjoys zero gap. 

The hitherto exemplified construction of the feasible set of the 

onvex reformulation is critical for the understanding of the con- 

exification strategy we want to convey to the reader. What we 
3 
emonstrated in the above example for the case where the orig- 

nal feasible set contained just two points can be generalized to 

he case where the feasible set, say F , is arbitrary. In this case a 

eneral convexification can by achieved via a lifted set given by 

(F ) := clconv 

{ [
1 

x 

][
1 

x 

]T 

: x ∈ F 

} 

. 

haracterizing G(F ) for a given set F is challenging, and we will 

pend a considerable part of this text discussing known strategies, 

nd highlighting open questions in this regard. However, irrespec- 

ive of the characterization, optimizing a linear function over this 

et will always yield optimal points that are dyadic matrices whose 

actors contain x ∈ F . 

It is however noteworthy that not all optimal solutions to prob- 

ems of the type (5) and its generalization have this quality. But 

n general optimal solutions are always in the convex hull of the 

ptimal dyadic solutions. 

We also want to highlight the fact that all dyadic matrices are 

ositive-semidefinite. In fact, the psd-cone is the convex hull of all 

ymmetric dyadic matrices, which are also the generators of the 

xtreme rays of that cone. This foreshadows the fact that, in prac- 

ice, many characterizations of G(F ) are achieved via conic inter- 

ections involving suitable sub-cones of the psd-cone, namely the 

o-called set-completely positive cones whose extreme rays are gen- 

rated by the dyadic matrices the factors of which are elements of 

ertain sets. We will discuss these objects in more detail later in 

he text. 

At this point we want to further the intuition regarding our 

onvexification strategy by repeating a neat example originally 

iven in Burer (2015) , which we will discuss in extensively in order 

o highlight its connection to the rest of our exposition. 

xample 2. The next example is an extended take on an exam- 

le discussed in Burer (2015) . Consider the following optimization 

roblem: 

in 

x ∈ R 

{
Qx 2 + 2 qx : 1 ≥ x ≥ −1 

}
. (6) 

epending on the sign of the coefficient Q this can be a nonconvex 

uadratic optimization problem, which we will now conexify in the 

tyle discussed in this section. In some simple steps we can obtain 

min 

x ∈ R 

{
Qx 2 + 2 qx : 1 ≥ x ≥ −1 

}
 min 

(x,X ) ∈ R 2 
{

QX + 2 qx : X = x 2 , 1 ≥ x ≥ −1 

}
 min 

(x,X ) ∈ R 2 
{

QX + 2 qx : 1 ≥ X = x 2 
}

 min 

(x,X ) ∈ R 2 
{

QX + 2 qx : 1 ≥ X ≥ x 2 
}

here only the last equality merits justification. The feasible set of 

he final optimization problem is the convex hull of the parabola 

here X = x 2 that is truncated at height equal to one. Since all

xtreme points of this set correspond to points at the parabola, 

he relaxation is tight. 

We will now give some more insight on how this geometry re- 

ates to the discussion so far. Consider the fact that by Schur com- 

lementation we have 

 ≥ x 2 ⇔ 

[
1 x 
x X 

]
∈ S 2 + . 

e can again write the optimization problem in the lifted space of 

 × 2 symmetric matrices as to obtain 
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x 0 ,x,X ) ∈ R 3 

[
0 q 
q Q 

]
•
[

x 0 x 
x X 

]
[

1 0 

0 0 

]
•
[

x 0 x 
x X 

]
= 1 , [

0 0 

0 1 

]
•
[

x 0 x 
x X 

]
≤ 1 , [

x 0 x 
x X 

]
∈ S 2 + . 

ere we explicitly write down the de-homogenizing equation x 0 = 

 in order to make the geometry of the feasible set as transparent 

s possible. We see that the set of feasible matrices is again a sub- 

et of the psd-cone. More importantly, the extreme points of the 

easible set are all boundary points of the psd-cone, which, in case 

f 2 × 2 matrices, are all dyadic matrices (in higher dimensions the 

sd-cone has non-dyadic boundary points). Hence, the above opti- 

ization problem will attain its optimal value at a point where 

x 0 x 
x X 

]
= 

[
1 x 

x x 2 

]
= 

[
1 

x 

][
1 

x 

]T 

, with − 1 ≤ x ≤ 1 , 

r in other words, the set of feasible matrices of the relaxation is 

recisely G(F ) , where F is the original feasible set. 

In the previous example, consider the case where Q = −1 and 

 = 0 , so that the original quadratic problem is a nonconvex prob-

em with optimal value given by −1 , which is attained at x ∈
 

−1 , 1 } . The convex reformulation gives the same optimal value 

nd indeed the points (x, X ) ∈ { (−1 , 1) , (1 , 1) } are optimal solu- 

ions. But so are all the points (x, X ) = λ(−1 , 1) + (1 − λ)(1 , 1) ,

∈ [0 , 1] , or, expressed in the lifted space 

x 0 x 
x X 

]
= λ

[
1 

−1 

][
1 

−1 

]T 

+ (1 − λ) 

[
1 

1 

][
1 

1 

]T 

, λ ∈ [0 , 1] , 

hich illustrates that the optimal solutions of the relaxation are in 

he convex hull of its dyadic solutions. Since the latter correspond 

o optimal solutions of the original problem, the x component of 

he optimal solution to our relaxation are always in the convex 

ull of optimal solutions to the original problem. Hence, unless the 

riginal feasible set is already convex, the x components of a solu- 

ion to the reformulation are not necessarily feasible to the original 

roblem. 

One must however not confuse convex combinations in the 

riginal space of variables with convex hulls in the lifted space! It 

s vital to understand that G( conv (F )) is always a strictly larger set 

han G(F ) , unless F is a singleton. Said differently: convex combi- 

ations in the original space do not correspond to convex combi- 

ations in the lifted space. To illustrate this point, let us revisit the 

roblem in Example 1 for the special case n = 1 , a = −1 and b = 1 .

s we can see, the feasible set of the problem in Example 2 is just

he convex hull of these points. However, the feasible set of the 

atter problems convexification is not just the convex hull of the 

wo lifted extreme points, but the convex hull of an entire curve 

f points, each of which represents a lifting of a convex combina- 

ion of the points { 1 , −1 } . Merely considering the convex hull of 

he lifted extreme points of the interval yields G( { 1 , −1 } ) , i.e., the 

easible set of the convexification problem in Example 1 , which is a 

uch smaller lifted set. In fact, no dyadic matrix can be expressed 

s the convex combination of two dyadic matrices which are not 

ust re-scalings of that matrix, i.e., xx T = λy 1 y 
T 
1 

+ (1 − λ) y 2 y 
T 
2 

im-

lies y i y 
T 
i 

= μi xx T , μi ≥ 0 , i ∈ [1 : 2] , as we prove later (see the

roof of Proposition 11 in the appendix). 

With the preceding discussion in mind, the following theorem, 

hich is at the heart of all convexifications of QCQPs we will dis- 

uss in this text, should be easily accessible to the reader. 
4

heorem 1. Let F := 

{
x ∈ K : x T Q i x + 2 q 

T 
i 

x ≤ ω i , i ∈ [1 : m ] 
}

⊆ R 

n 

e a feasible set of a QCQP where K is a closed cone, and denote 

y 

(F ) = clconv 

{ [
1 

x 

][
1 

x 

]T 

: x ∈ F 

} 

, 

here clconv (A ) stands for the closure of the convex hull of a set A .

hen for any Q 0 ∈ S n and q 0 ∈ R 

n we have 

al(P) := inf 
x ∈F 

(
x 

T Q 0 x + 2 q 

T 
0 x − ω 0 

)
= inf 

Y(x , X ) ∈G(F ) 

(
Q 0 • X + 2 q 

T 
0 x − ω 0 

)
=: val(R) . 

roof. See, e.g. Burer & Anstreicher (2013) ; Eichfelder & Povh 

2013) . For the readers’ convenience we repeat the argument here. 

e refer to the QCQP as (P) and to the reformulation as (R). 

et x be feasible for (P), then 

(
x , xx T 

)
is feasible for (R) with 

dentical objective function value given by Q 0 • xx T + q 

T 
0 x − ω 0 = 

 

T Q 0 x + 2 q 

T 
0 

x − ω 0 . Thus val(R) ≤ val(P) . For the converse, let

 

x , X ) be ε-optimal for (R), i.e., Q 0 • X + 2 q 

T 
0 

x − ω 0 ≤ val(R) + ε . 
We need an arbitrarily small ε > 0 in case that is val(R) not at-

ained.) Then by definition of G(F ) as the closure we have like- 

ise d 

(
( x , X ) , 

∑ k 
i =1 λi 

(
x i , x i x 

T 
i 

))
< δ with x i ∈ F , 

∑ k 
i =1 λi = 1 and 

i ≥ 0 , i ∈ [1 : k ] , and δ > 0 so small that, by continuity, 

 Q 0 • X + 2 q 

T 
0 x −

k ∑ 

i =1 

λi 

[
x 

T 
i Q 0 x i + 2 q 

T 
0 x i 

]| < ε . 

o, on one hand, x T 
i 
Q 0 x i + 2 q 

T 
0 

x i − ω 0 ≥ val(P) for all i ∈ [1 : k ] and

n the other hand, 

al(R) + ε ≥ Q 0 • X + 2 q 

T 
0 x − ω 0 

= Q 0 • X + 2 q 

T 
0 x − ω 0 −

k ∑ 

i =1 

λi 

[
x 

T 
i Q 0 x i + 2 q 

T 
0 x i − ω 0 

]
+ 

k ∑ 

i =1 

λi 

[
x 

T 
i Q 0 x i + 2 q 

T 
0 x i − ω 0 

]
≥ −ε + 

k ∑ 

i =1 

λi 

[
x 

T 
i Q 0 x i + 2 q 

T 
0 x i − ω 0 

]
≥ −ε + 

k ∑ 

i =1 

λi val(P) = val(P) − ε , 

hich shows val(R) + 2 ε ≥ val(P) . As ε was arbitrarily small, we 

rrive at val(R) ≥ val(P) . �

Despite the simplicity of the theorem we want to take a mo- 

ent and reconsider the core ingredients that enable its valid- 

ty. The first one is a linearization by lifting to matrix variables: 

rom a quadratic form x T Q x = Tr (x T Q x ) = Tr (Q xx T ) = Q • xx T we

ass on to a linear form Q • X , in substituting X i j for x i x j . The

econd ingredient is the set G(F ) . Merely requiring that (x , X ) ∈
(x , xx T ) : x ∈ F 

}
would obviously render the linearization to be 

xact. But linear optimization is invariant to taking the convex hull 

f the feasible set, a fact often exploited in, for example, mixed in- 

eger linear optimization, where one seeks to find the convex hull 

f integer points. 

The characterization of G(F ) is the major challenge when em- 

loying the reformulation strategy depicted in Theorem 1 and a 

eneral workable description of G(F ) is not known. There are, 

owever, characterizations for specific instances of F . 

References to important examples of such reformulations in lit- 

rature will be given in the sequel and will be summarized in 

ection 2.4 . 
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s Shor  
.1.1. Lower bounds by Shor relaxation: exactness and strengthening 

esults 

A natural starting point for the construction of G(F ) is based 

pon the so-called Shor relaxation introduced in Shor (1987) . A 

entral role here is played by the set-completely positive matrix cone 

efined as 

PP ( K ) := conv 
{

xx 

T : x ∈ K 

}
, 

or a cone K ⊆ R 

n . The matrix cone CPP ( K ) is a closed cone 

henever K is closed, and with nonempty interior whenever K has 

onempty interior (see e.g., Mittal & Hanasusanto, 2021 , Lemma 4 

r Tuncel & Wolkowicz, 2012 , Theorem 5.1). It is the convex hull 

f extreme rays spanned by dyadic matrices. These are precisely 

he positive-semidefinite matrices of rank equal to 1, except for 

he zero matrix O = oo 

T , which has rank equal to zero. In gen-

ral, CPP ( K ) is an intractable cone in that membership of a given 

atrix is hard to decide ( Dickinson & Gijben, 2014 ). Thus, when 

orking with this object, one is bound to use either approxima- 

ions or clever tools to check membership. Since these tools are 

ssential when working with CPP ( K ) , we will devote an entire 

ection to this matter (see Section 2.3.1 ). In the present section, 

e will merely focus on its relation to the Shor relaxation, which 

an be best explained by looking at a homogeneous QCQP: 

min 

x ∈K 

{
x 

T Q 0 x : x 

T Q i x ≤ ω i , i ∈ [1 : m ] 
}
, 

 min 

X 

{
Q 0 • X : Q i • X ≤ ω i , i ∈ [1 : m ] , X ∈ 

{
xx 

T : x ∈ K 

}}
, 

min 

X 
{ Q 0 • X : Q i • X ≤ ω i , i ∈ [1 : m ] , X ∈ CPP (K) } , 

here we added an intermediate step for the sake of transparency. 

n case additional linear terms q 

T 
i 

x , i ∈ [0 : m ] , are present, one can

lways recover the homogeneous case by enriching x by an addi- 

ional coordinate x 0 ∈ R + , so that 
(
x 0 , x 

T 
)T ∈ R + × K, and adding 

ne de-homogenizing constraint x 2 
0 

= 1 . Note that it is indeed im- 

ortant to have x 0 ≥ 0 in order to secure the implication x 2 0 = 1 ⇒
 0 = 1 . The Shor relaxation then is given by adding a row and col-

mn to the data and to the matrix variables: 

min 

X , x 
{ ̂  Q 0 • Y(x , X ) : ̂  Q i • Y(x , X ) 

≤ 0 , i ∈ [1 : m ] , Y(x , X ) ∈ CPP (R + × K) } , 
ith 

(x , X ) := 

[
1 x 

T 

x X 

]
, ̂ Q i := 

[
−ω i q 

T 
i 

q i Q i 

]
, 

o that 

 

 i • Y(x , X ) = Q i • X + 2 q 

T 
i x − ω i , all i ∈ [0 : m ] . 

hile G(F ) is the convex hull of intersections of the halfspaces in- 

uced by Q i • X + 2 q 

T 
i 

x ≤ ω i and 

{
(x , xx T ) : x ∈ K 

}
, the feasible set

f the Shor relaxation F Shor is the intersection of said half spaces 

ith conv 
{
(x , xx T ) : x ∈ K 

}
, hence the latter must be the bigger 

et in general. Another way to see that in general F Shor ⊇ G(F ) is 

he simple fact that not all matrices in CPP (K) are of the form 

x T . Only the extreme matrices of CPP (K) have this property. The 

ollowing examples illustrate one case where G(F ) and F Shor coin- 

ide and another one where they differ. 

xample 3. Consider the following quadratic program and its Shor 

elaxation 

inf x ∈ R 2 q 11 x 
2 
1 + 2 q 12 x 1 x 2 + q 22 x 

2 
2 

s . t . : 2 x 2 1 + x 2 2 ≤ 12 , 

x 2 1 + 2 x 2 2 ≤ 12 

4 x 2 1 + x 2 2 ≥ 4 

x 2 + 4 x 2 ≥ 4 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

and 
1 2 

5

 

 

 

 

 

 

 

inf X ∈S 2 + 
q 11 X 11 + 2 q 12 X 12 + q 22 X 22 

s . t . : 2 X 11 + X 22 ≤ 12 , 

X 11 + 2 X 22 ≤ 12 

4 X 11 + X 22 ≥ 4 

X 11 + 4 X 22 ≥ 4 . 

he feasible sets of these problems are depicted in Fig. 1 . Since all

atrices at the boundary of S 2 + are dyadic matrices, we see that 

he extreme points of the lifted feasible set are also dyadic. There- 

ore the relaxation has optimal solutions of the form xx T and x 

s feasible for the original QCQP, hence the relaxation is exact. Of 

ourse, there are more potentially optimal solutions to the Shor re- 

axation (depending on the objective function), but these are con- 

ex combinations of dyadic optimal solutions. An example can be 

een in Fig. 1 as the line connecting the two lower vertices in the 

ifted feasible set. 

Algorithm 1: Solving copositive optimization problems. 

Result : v ∗
1 set k = 1 ; 

2 construct outer approximation C k ⊇ COP (K) ; 

3 repeat 

4 generate a feasible point for v (C k ) to obtain (S k , y k ) ; 

5 check S k ∈ COP (K) ; 

6 if S k / ∈ COP (K) then 

7 obtain certificate x k ∈ K 

8 else 

9 x k = o 

10 set C k +1 = C k ∩ 

{
( S , y ) : x T k 

S x k ≥ 0 
}

∩ C ′ 
k 

(using 

additional cuts via C ′ 
k 
, see below) 

11 until some stopping criterion is met; 

xample 4. Consider the following QCQP and its Shor relaxation: 

min x ∈ R 2 q 11 x 
2 
1 + 2 q 12 x 1 x 2 + q 22 x 

2 
2 

s . t . : 3 x 2 1 + 3 x 2 2 + 2 x 1 x 2 ≤ 6 

3 x 2 1 + 3 x 2 2 − 2 x 1 x 2 ≤ 6 

2 x 2 1 + x 2 2 ≤ 3 

⎫ ⎪ ⎬ ⎪ ⎭ 

and 

⎧ ⎪ ⎨ ⎪ ⎩ 

min X ∈S 2 + 
q 11 X 11 + 2 q 12 X 12 + q 22 X 22 

s . t . : 3 X 11 + 3 X 22 + 2 X 12 ≤ 6 

3 X 11 + 3 X 22 − 2 X 12 ≤ 6 

2 X 11 + X 22 ≤ 3 . 

This example gives an instance where the Shor relaxation fails 

o be tight. We can see this by examining the extreme points of 

ts feasible set. Ignoring the psd-constraint for a moment, intersec- 

ions of three halfspaces can yield an extreme points only where 

he three associated hyperplanes meet. A simple calculation shows 

hat it is the point X 11 = X 22 = 1 , X 12 = 0 , hence X = I , the identity

atrix. Clearly, this matrix is the interior of the psd-cone, so that 

t is a feasible solution for the Shor relaxation and indeed one of 

ts extreme points. However, it is not a dyadic matrix as I always 

as full rank. We therefore can get an optimal solution for the Shor 

elaxation that has no corresponding solution in the original QCQP. 

ore formally, we cannot find (x 1 , x 2 ) ∈ R 

2 where x 2 
1 

= x 2 
2 

= 1 and

 1 x 2 = 0 . 

Indeed, if we set the objective function coefficients q 11 = 

8 , q 22 = −7 and q 12 = 0 , the optimal value of the Shor relaxation

s −15 attained at X = I , while the original QCQP attains its optimal

alue of −14 at (x 1 , x 2 ) = (0 , 
√ 

2 ) . 

Nonetheless, there are choices for the objective function coef- 

cients where the two problems give identical optimal values. To 

ee this, let us identify the rest of the extreme points of F . Note
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Fig. 1. (a) The feasible set F of the QCQP in Example 3 . (b) The feasible set F Shor of its Shor relaxation. As a consequence of Theorem 2 below, F Shor coincides with G(F ) ; 

we show a projection of G(F ) , given by the map (x , X ) �→ (X 11 , 
√ 

2 X 12 , X 22 ) 
T from R 2 × S 2 to R 3 , illustrating the intersection of four half-spaces and the psd-cone. 
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hat the matrices in 

 := 

{[
3 1 

1 3 

]
, 

[
3 −1 

−1 3 

]
, 

[
2 0 

0 1 

]}
re all positive-definite, so that the set F M 

:= 

{
X ∈ S n + : M • X = α

}
s nonempty, compact, conic intersections whenever M ∈ M and 

≥ 0 . The three linear inequalities are precisely of the form 

 • X ≤ α where M is one of the matrices in M . 

Now let us examine those extreme points of the F Shor where 

one of these linear inequalities are binding. Hence, we ask for 

he extreme points of the psd-cone and the only one there is the 

ero matrix O = oo 

T . If only one linear constraint is active, the ex-

reme points are those extreme points of F M 

, with M ∈ M , which

ulfill the other two inequalities in F Shor strictly. But F M 

is a com- 

act conic intersection, so that its extreme points are points in the 

ntersection of the hyperplane with extreme rays of S 2 + , i.e. rays 

panned by dyadic matrices. Therefore they are themselves dyadic 

atrices. Finally, let us examine the extreme points that fulfill ex- 

ctly two of the linear inequalities. The points that fulfill two of 

he inequalities must form either a line, a half line or a line seg- 

ent that is a subset of F M 

for M ∈ M , but these are compact

ets, so that they form a line segment, given by the intersection 

f S 2 + and a line. The extreme points of these sets are therefore 

he two points where the respective lines intersect the boundary 

f S 2 + , which is entirely comprised of dyadic matrices. (Note that 

his is the case for the psd-cone S 2 + only, for S n + with n > 2 there

re boundary points that are not dyadic. However, we will later see 

n Theorem 2 that the Shor relaxation is exact whenever only two 

nequality constraints are present, so that the argument would in 

act stay valid if n > 2 .) 

In total, we see that all extreme points of F Shor are dyadic ex- 

ept for the one we have identified as the identity matrix I . Thus, if

e choose the objective function coefficients such that the optimal 

olution of the Shor relaxation is attained at a point other than I ,

hen the relaxation will be tight. As an example for the latter case, 

et us consider q 11 = q 22 = −1 and q 21 = 0 . In this case, the optimal

alue of the QCQP is given by −2 attained at (x 1 , x 2 ) = (0 , 
√ 

2 ) . The

hor relaxation attains the same optimal value of −2 at X = I , but

learly this is not the only optimal point since the dyadic matrix 

ormed from the optimal solution of the QCQP gives a feasible so- 

ution with the same optimal value, that is: 

 = 

[
0 √ 

2 

][
0 √ 

2 

]T 

= 

[
0 0 

0 2 

]
, 
P

6 
hich is feasible and yields the optimal value of −2 . Thus, there is 

n optimal dyadic solution to the Shor relaxation, which is enough 

o eliminate the relaxation gap. 

Let us summarize our observations. The dyadic matrices are at 

he boundary of S n + and for n = 2 , this boundary is entirely com-

rised of dyadic matrices so that it is actually ext CPP (R 

2 ) . How- 

ver, since we consider the convex hull of the latter, i.e., S 2 + , we

roduced an extreme point in the interior of S 2 + , which thus is of 

ank greater than one. For certain choices of the objective function 

oefficients, there will therefore be a gap between the two opti- 

ization problems. On the bright side, we also see that even if we 

re far from describing G(F ) , the Shor relaxation can be exact for 

ome choices of the objective function coefficients. 

The above discussion makes it apparent that the Shor relaxation 

s not necessarily tight, since its feasible set F Shor can have extreme 

oints that are not dyadic matrices. Under additional assumptions, 

ne can close the gap at least for the homogeneous case. To this 

nd, we introduce the following geometric condition. 

ondition 1. For a collection of matrices Q i ∈ S n and real numbers 

 i , i ∈ [1 : m ] we say that Condition 1 holds if for any X ∈ S n + with

 i • X ≤ ω i for all i ∈ [1 : m ] , 

 k • X < ω k for all k ∈ [1 : m ] \ { i, j} whenever 

 i • X = ω i and Q j • X = ω j for i � = j . 

The condition requires that for any feasible X ∈ S n at 

ost two constraints can be binding at the same time. If 

 Shor := 

{
X ∈ S n + : Q i • X ≤ ω i , i ∈ [1 : m ] 

}
is bounded (as as- 

umed in Theorem 2 ), one can check Condition 1 by solv- 

ng (m 

3 − 3 m 

2 + 2 m ) / 6 semidefinite optimization problems 

f the form sup X ∈F Shor 

{
Q k • X − ω k : Q i • X = ω i , Q j • X = ω j 

}
. 

or Condition 1 to hold, all the optimal values must be strictly 

maller than 0. Note that K = R 

n here. 

heorem 2. Suppose that Condition 1 holds for the matrices Q i ∈ S n 
nd real numbers ω i ∈ R , i ∈ [1 : m ] . Further, suppose that the set

 Shor := 

{
X ∈ S n + : Q i • X ≤ ω i , i ∈ [1 : m ] 

}
is bounded. Then 

inf 
x ∈ R n 

{
x 

T Q 0 x : x 

T Q i x ≤ ω i , i ∈ [1 : m ] 
}

= inf 
X ∈S n + 

{ Q 0 • X : Q i • X ≤ ω i , i ∈ [1 : m ] } . 

roof. See Bomze & Gabl (2021) . �
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While Theorem 1 and the results above clarify the role of 

(F ) for optimization problems, explicit characterizations of the 

et G(F ) have been given in terms of F Shor and additional cuts. 

he respective results are summarized in the following theorem: 

heorem 3. Consider the following feasible sets of QCQPs: 

• F 1 := { x ∈ R 

n : ‖ x ‖ ≤ 1 , A x ≤ b } , with A ∈ R 

m ×n , where the m 

hyperplanes described by A x = b do not intersect inside the 

unit ball. 

• F 2 := 

{
x ∈ R 

2 : A x ≤ b 

}
with A ∈ R 

3 ×2 , b ∈ R 

3 such that F 2 

is a nondegenerate planar triangle. 

• F 3 := 

{
x ∈ R 

2 : A x ≤ b 

}
with A ∈ R 

4 ×2 , b ∈ R 

4 such that F 3 

is a nondegenerate planar quadrangle. 

Let a i be the i th row of A . Then 

• G(F 1 ) = 

{
Y(x , X ) ∈ S n +1 

+ : trace (X ) ≤ 1 , 
‖ b i x − X a i ‖ ≤ b i − a

b i a 
T 
j 
x + b j a 

T 
i 

x − a T 
i 

• G(F 2 ) = 

{ 
Y(x , X ) ∈ S 3 + : b i a T j 

x + b j a 
T 
i 

x − a T 
i 
X a j ≤ b i b j , (i, j) 

• G(F 3 ) = 

{ 
Y(x , X ) ∈ S 3 + : b i a T j 

x + b j a 
T 
i 

x − a T 
i 
X a j ≤ b i b j , (i, j) 

roof. The characterizations are due to Anstreicher & Burer (2010) ; 

urer & Anstreicher (2013) respectively, the characterizations of 

(F 1 ) with no, or just a single linear inequality, go back to Sturm

 Zhang (2003) ; Yakubovich (1971) . �

So far we only considered examples where K = R 

n , so that the

hor relaxation took the form of a positive-semidefinite optimiza- 

ion problem. For other choices of K, one leaves this familiar terri- 

ory and is confronted with optimizing over CPP (K) , a potentially 

uch harder task. However, conceptually much of the intuition we 

arnered so far stays intact: unless the Shor relaxation produces 

xtreme points that are not dyadic matrices, the relaxation gap 

anishes. Such higher-rank extreme points may either arise from 

he interaction of the linear constraints with each other inside the 

nterior of the respective matrix cone, or from the interaction of 

hese constraints with the boundary of the said cone. The follow- 

ng example demonstrates an instance of the latter. 

xample 5. Now consider another pair of QCQP and its Shor relax- 

tion: 

min x ∈ R 2 + q 11 x 
2 
1 + 2 q 12 x 1 x 2 + q 22 x 

2 
2 

s . t . : 3 x 2 1 + x 2 2 = 6 

x 2 1 + 3 x 2 2 = 6 

} 

and 

{ 

min X ∈ CPP (R 2 + ) q 11 X 11 + 2 q 12 X 12 + q 22 X 22 

s . t . : 3 X 11 + X 22 = 6 

X 11 + 3 X 22 = 6 . 

he system of quadratic equations has exactly one non-negative 

olution which is x := 

[√ 

3 
2 , 

√ 

3 
2 

]T 

. In fact the point xx T is an ex-

reme point of the feasible set of the Shor relaxation. But unfor- 

unately there is another one. Consider the fact that CPP 

(
R 

2 + 
)

= 

 

2 + ∩ N 2 = 

{
X ∈ S n + : X 12 ≥ 0 

}
. The matrix that fulfills the equality 

onstraints and X 12 = 0 , i.e. 

√ 

3 
2 I , is also an extreme point, and the

easible set is in fact the convex hull of those two extreme points. 

Again, it is the convexification that gives rise to this spurious, 

xtreme point. Indeed, had we only used ext 
(
CPP (R 

2 + ) 
)
, the ad- 

itional extreme point would not have appeared since the iden- 

ity matrix I is not dyadic, and therefore does not span a ray in

xt 
(
CPP (R 

2 + ) 
)
. But by shifting to the convex hull of the latter 

one, i.e. CPP (R 

2 + ) , we gave rise to an extreme point in the fea-

ible set of the relaxation of rank 2, and therefore has no match in

he feasible set of the original quadratic problem. Note, that com- 

ared to the previous example, this time it is not the constellation 
7 
i ∈ [1 : m ] , 

b i b j , (i, j) ∈ [1 : m ] 2 

}
, 

 3] 2 
} 

 4] 2 
} 

. 

f the linearized inequalities, but the geometry of the convex hull 

f ext 
(
CPP (R 

2 + ) 
)
, namely CPP 

(
R 

2 + 
)

= S 2 + ∩ N 2 that generated the 

roblem. 

The above example demonstrates that the complex geometry of 

PP (K) may present a formidable challenge if one seeks to close 

he relaxation gap. In the following section we introduce a pow- 

rful machinery that meets this challenge by exploiting this very 

eometry in an elegant way. 

.1.2. Burer’s convex reformulation of a large class of QCQPs 

One of the most celebrated examples of an application of 

heorem 1 is Burer’s completely positive reformulation of a quite 

arge class of QCQPs: 

heorem 4. Let K ⊆ R 

n be a closed, convex cone and let L :=
 

x ∈ K : A x = b } be nonempty so that L ∞ 

= { x ∈ K : A x = o } is its 

ecession cone. Further let Q i ∈ S n , q i ∈ R 

n , i ∈ [1 : l] , and define B :=
j : Q i e j � = o or q 

T 
i 

e j � = 0 for some i ∈ [1 : l] 
}

. Assume that 

(a) x T Q i x + 2 q 

T 
i 

x ≥ ω i for all x ∈ L and i ∈ [1 : l] , and 

(b) d ∈ L ∞ 

⇒ d j = 0 for all j ∈ B. 

Then, any feasible QCQP of the form 

in 

x ∈K 

{
x 

T Q 0 x + 2 q 

T 
0 x : A x = b , x 

T Q i x + q 

T 
i x = ω i , i ∈ [1 : l] 

}
s equivalent to 

min 

x , X 
Q • X + q 

T x 

s . t . : A x = b , 

iag 
(
AXA 

T 
)

= b ◦ b , 

Q i • X + q 

T 
i x = ω i , i ∈ [1 : l] , [

1 x 

T 

x X 

]
∈ CPP (R + × K) . 

roof. See Burer (2009) for the original proof for K = R 

n + , see

ichfelder & Povh (2013) for the proof under the assumption 

hat K is a norm-cone. Considering the results in Kim, Kojima, & 

oh (2020) , which we will discuss shortly, no such assumption is 

eeded for the theorem to hold. �

Together, assumptions a) and b) are colloquially referred to as 

he key assumption . Note, that it is met, for example, by the con- 

traint x i − x 2 
i 

= 0 (hence x i is a binary variable) if x ∈ L ⇒ x i ∈
0 , 1] , which can always be achieved by adding x i + s = 1 , s, x i ∈
 + to the description of the feasible set, where s acts as a slack 

ariable. In case x i , x j ∈ R + the complementarity constraint x i x j =
 also fulfills the key assumption if both variables are bounded 

ver L . 

The description of the linear portion of the completely positive 

eformulation can be modified without changing the feasible set. 

he following proposition summarizes the most important refor- 

ulations, all of which will appear later in our discussion. 

roposition 5. Suppose Y = Y(x , X ) ∈ S n +1 
+ and define M := [ b , −A ]

o be the matrix containing b ∈ R 

n and the columns of −A ∈ R 

m ×n 

oncatenated. Then the following are equivalent: 
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(i) A x = b and diag 
(
AXA 

T 
)

= b ◦ b ; 

(ii) MYM 

T = O ; 

(iii) MY = O . 

roof. See Burer (2012 , Proposition 3). �

The original proof of the theorem is quite algebraic and seems 

omewhat removed from the simple, geometric motivation of 

heorem 1 . Fortunately ( Kim et al., 2020 ) recently provided a 

eometrical perspective on the subject. The concepts they intro- 

uce are quite versatile and allow proofs for generalizations of 

heorem 4 as well as exactness proofs for relaxations of polyno- 

ial optimization problems. The theorems presented in the re- 

ainder of this section are simplified (and thus less powerful) ver- 

ions of results in Kim et al. (2020) for presentational reasons. 

lso, they will be strong enough to prove a weaker version of 

heorem 4 , under the additional assumption that L is bounded. 

We start out by investigating a more general question. Let V 

e a vector space of dimension n . For a (possibly nonconvex) cone 

 ⊆ V , and vectors Q , H 0 ∈ V and a convex set J ⊆ conv (K ) , we

ant to know which conditions establish the equality: 

min 

X ∈ V 
{ 〈 Q , X 〉 : X ∈ K ∩ J , 〈 H 0 , X 〉 = 1 } 
= min 

X ∈ V 
{ 〈 Q , X 〉 : X ∈ J , 〈 H 0 , X 〉 = 1 } . 

efining H := { X : 〈 H 0 , X 〉 = 1 } ⊆ V , we can equivalently ask for 

onditions for the equality 

onv (H ∩ K ∩ J ) = H ∩ J . 

he following theorem gives an answer based on convex geometry. 

heorem 6. For H , K , J as above, assume that H ∩ J � = ∅ is bounded

nd that J is a face of conv (K ) . Then conv (H ∩ K ∩ J ) = H ∩ J . 

roof. See Kim et al. (2020) . �

This theorem motivates the search for a condition that lets us 

dentify faces of convex cones, which are provided in the following 

heorem. 

heorem 7. Assume that J = { X ∈ conv (K ) : 〈 Q i , X 〉 = 0 , i ∈ [0 : m ] }
nd define 

 p := { X ∈ conv (K ) : 〈 Q i , X 〉 = 0 , i ∈ [0 : p] } , 
o that J m 

= J and J −1 = conv (K ) . If Q p ∈ J ∗
p−1 

for all p ∈ [0 : m ]

hen J is a face of conv (K ) . 

roof. See Kim et al. (2020) . �

Before we apply this machinery to convexify QCQPs, we will 

upply a small example for illustrating above theorems. The ex- 

mple itself is not immediately connected to QCQPs, but the geo- 

etric intuition it seeks to convey may further the understanding 

f the convexification strategy as a whole. 

xample 6. Consider the nonconvex cone 

 := 

{ 

λ

[ 
1 

0 

1 

] 
: λ ≥ 0 

} 

∪ 

{ 

λ

[ −1 

0 

1 

] 
: λ ≥ 0 

} 

∪ 

{ 

λ

[ 
0 

1 

0 

] 
: λ ≥ 0 

} 

⊂ R 

3 , 

hich is the union of three half-rays emanating from the origin in 

hree different directions, two of which form a “V” in the xz-plane 

nd the other one covers half of the y -axis. The intersection of K

ith the hyperplane 

 := 

{
x ∈ R 

3 : x 3 = 1 

}
, 

hich is a plane parallel to the xy -plane at height 1, are the points

n 

 ∩ H = 

{ [ 

1 

0 

1 

] 

, 

[ −1 

0 

1 

] } 

, 
8 
hich is a nonconvex set. We now want to find a convex set J ⊆
onv (K ) so that H ∩ J = conv (K ∩ H ) . We claim that desired set is

 := { x ∈ conv (K ) : x 2 = 0 } = 

{ 

λ1 

[ 

1 

0 

1 

] 

+ λ2 

[ −1 

0 

1 

] 

: λ1 , λ2 ≥ 0 

} 

.

(7) 

o see this, let us first check that conv (H ∩ K ∩ J ) = conv (H ∩ K ) ,

hich follows by merely showing that H ∩ K ∩ J = H ∩ K . Clearly

 ∩ K ∩ J ⊆ H ∩ K , but also 

 ∩ K = 

{ 

λ

[ 

1 

0 

1 

] 

: λ ≥ 0 

} 

∪ 

{ 

λ

[ −1 

0 

1 

] 

: λ ≥ 0 

} 

, 

hich contains H ∩ K , so that the desired equivalence is obvious. 

ow we can use Theorem 6 to establish conv (H ∩ K ∩ J ) = H ∩ J .

e see that H ∩ J is bounded since 
 

λ1 

[ 
1 

0 

1 

] 
+ λ2 

[ −1 

0 

1 

] ) 

3 

= λ1 + λ2 = 1 , λ1 , λ2 ≥ 0 ⇒ λi ∈ [0 , 1] , i = 1 , 2 , 

(8) 

o that all that is left to show is that J is a face of conv (K ) .

e have that x ∈ conv (K) implies that x 2 ≥ 0 so that J is such a

ace by Theorem 7 . Geometrically, it is the convex hull of the two 

legs” of K that point the z-direction. It is also an exposed face of 

onv (K ) , where the exposing hyperplane is described by x 2 = 0 . 

Let us convince ourselves that the conclusion of the procedure 

s actually true. It is immediate that 

onv (K ∩ H ) = 

{ 

λ

[ 

1 

0 

1 

] 

+ (1 − λ) 

[ −1 

0 

1 

] 

: λ ∈ [0 , 1] 

} 

, 

n the other hand, in this simple example, (8) already tells us that 

 ∩ J is the same set. 

We can use this simple setup to test the conditions of 

heorem 6 . First let us study a failure of boundedness of H ∩ J ,

hich we can construct by choosing J = conv (K ) . In this case J is

till a (trivial) face of conv (K ) but 

 ∩ J = conv (K ∩ H ) + 

{ 

λ

[ 

0 

1 

0 

] 

: λ ≥ 0 

} 

⊃ conv (H ∩ K ) , 

ence, we get a strictly bigger set than the desired convex hull. 

ow, let us consider a slightly enlarged version of the J defined in 

7) given by 

 := 

{ 

λ1 

[ 

1 

0 

1 

] 

+ λ2 

[ −1 

0 

1 

] 

+ λ3 

[ 

0 

1 

1 

] 

: λ1 , λ2 , λ3 ≥ 0 

} 

, 

or which we can easily check both J ⊆ conv (K ) and H ∩ K ∩ J =
 ∩ K . Also, boundedness of H ∩ J is immediate from an argument

nalogous to (8) . However, J is no longer a face of conv (K ) and in

act 

 ∩ J = 

{ 

λ1 

[ 
1 

0 

1 

] 
+ λ2 

[ −1 

0 

1 

] 
+ λ3 

[ 
0 

1 

1 

] 
: λ1 + λ2 + λ3 = 1 , λ1 , λ2 , λ3 ≥ 0 

} 

, 

o that, again, the conclusion of the theorem is not sustained. 

Finally we would like to point out that the present example is 

ot entirely unrelated to QCQPs. Consider again Example 1 with 

 = [1 , 1] T , b = [ −1 , 1] T . Then the feasible set of (3) can be de-

cribed as a conic intersection given by [
x 1 
x 2 

]
∈ R 

2 : x 2 = 1 , x ∈ K := 

{
λ

[
1 

1 

]
, λ ≥ 0 

}
∪ 

{
λ

[
−1 

1 

]
, λ ≥ 0 

}}
. 
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he Shor relaxation is then given by [
x 0 x 
x X 

]
∈ S 2 : x 0 = 1 , Y(x, X ) ∈ CPP ( K ) 

}
, (9) 

hich can certainly be made exact by replacing CPP ( K ) with 

xt ( CPP (K) ) . However, the preceeding discussion allows us to 

onclude that the Shor relaxation is tight anyways. We merely have 

o consider isomorphism π : S 2 → R 

3 given by ([
x 0 x 
x X 

])
�→ 

[ 

X 

x 
x 0 

] 

, (10) 

o see that π( ext ( CPP (K) ) ) is essentially K where the third leg, 

hich was spurious for the derivation of the convexification, got 

emoved. Also, the hyperplane spanned by x 0 = 1 corresponds to 
−1 ( H ) . Finally, removing the constraint x 0 = 1 from the set in 

9) leaves us with π−1 ( J ) , so that the set itself is the inverse im-

ge π−1 ( H ∩ J ) and therefore represents the exact convexification 

f the feasible set of our underlying QCQP. 

To see how this is relevant for convex reformulations of QCQPs, 

onsider the following simple reformulation: 

min 
x ∈ R n 

{
x T Q 0 x + 2 q T 0 x − ω 0 : A x = b , x ∈ K, x T Q i x + q T i x − ω i = 0 , i ∈ [1 : m ] 

}
= min 

Y∈S n 1 

{
Q̄ 0 • Y : H 0 • Y = 1 , ̂ Q i • Y = 0 , i ∈ [0 : m ] , Y ∈ 

{
yy T : y ∈ R + × K 

}}
here as in Proposition 5 , we have M = [ b , −A ] and 

¯
 0 := 

[
−ω 0 q 

T 
0 

q 0 Q 0 

]
, ̂ Q 0 := M 

T M 

 

 i := 

[
−ω i q 

T 
i 

q i Q i 

]
, i ∈ [1 : m ] , H 0 := 

[
1 o 

T 

o O 

]
. 

he final result has the desired form with K = 

yy T : y ∈ R + × K 

}
, H = 

{
Y ∈ S n +1 : H 0 • Y = 1 

}
. We actually 

ave 
{

yy T : y ∈ R + × K 

}
= ext ( CPP (R + × K) ) , as explained in the 

roof of Proposition 11 in the appendix. Hence, by Theorem 6 we 

an show the equivalence 

min 
Y 

{
Q̄ 0 • Y : H 0 • Y = 1 , ̂ Q i • Y = 0 , i ∈ [0 : m ] , Y ∈ ext ( CPP (R + × K) ) 

}
= min 

Y 

{
Q̄ 0 • Y : H 0 • Y = 1 , ̂ Q i • Y = 0 , i ∈ [0 : m ] , Y ∈ CPP (R + × K) 

}
, 

f we can show that 

 = 

{
Y ∈ CPP (R + × K) : ̂  Q i • Y = 0 , i ∈ [0 : m ] 

}
s a face of conv K = CPP ( R + × K ) and that J ∩ H � = ∅ is bounded.

lso, from conv (H ∩ K ∩ J ) = H ∩ J we see that G(F ) = J ∩ H

here F is the feasible set of the underlying QCQP. 

Thus, we can describe a recipe for the characterization of G(F ) 

y the following steps: 

Step 1: Given a feasible set F = 

{
Y : H 0 • Y = 1 , ̂  Q i • Y = 0 , 

i ∈ [0 : m ] , Y ∈ ext ( CPP (R + × K) ) } , set 

K = ext ( CPP (R + × K) ) , 

J = 

{
Y ∈ CPP (R + × K) : ̂  Q i • Y = 0 , i ∈ [0 : m ] 

}
and 

H = { Y ∈ S n : H 0 • Y = 1 } . 

Step 2: Show that J ∩ H is bounded. 

Step 3: Show that, perhaps after a reordering, we have for all 

p ∈ [0 : m ] ̂ Q p • Y ≥ 0 for all Y ∈ J p−1 ( i.e., ̂ Q p ∈ J 
∗
p−1 ) 

with J p := 

{
Y ∈ CPP (R + × K) : ̂  Q i • Y = 0 , i ∈ [0 : p] , 

}
, p ∈ 

[0 : m ] and J −1 = CPP (R + × K) , and apply Theorem 7 to

conclude that J is a face of conv K . 
9 
Step 4: Conclude that G(F ) = J ∩ H = 

{
Y : H 0 • Y = 1 , ̂  Q i •

Y = 0 , i ∈ [0 : m ] , Y ∈ CPP (R + × K) } , by Theorem 6 . 

As a reference and illustration we will prove a special case of 

heorem 4 , where the feasible set is bounded, using this recipe in 

he appendix. 

.1.3. Unions of feasible sets and subtractions of ellipsoids 

Given a workable description of G(F i ) , i ∈ [1 : k ] it is always

ossible to derive characterizations of G(∪ 

k 
i =1 

F i ) and it is also pos- 

ible to give a characterization of G(F 1 \ ∪ 

k 
i =2 

int F i ) in case F i , i ∈
2 : k ] are ellipsoids that fulfill certain regularity conditions. We 

ummarize the respective procedures in the following two theo- 

ems. 

heorem 8. Let F i , i ∈ [1 : k ] be feasible sets of QCQPs and such that

(F i ) = { X ∈ S n : H • X = 1 , A i (X ) = o , X ∈ C i } , i ∈ [1 : k ] , 

here for all i ∈ [1 : m ] , A i : S n → R 

m are appropriate linear operators

nd C i are appropriate convex matrix cones. Further, assume H • X > 0 

henever, for at least one i ∈ [1 : k ] , we have X ∈ C i and A i (X ) = o .

hen 

(∪ k i =1 F i ) = 

{ 

X = 

k ∑ 

i =1 

X i : H •
( 

k ∑ 

i =1 

X i 

) 

= 1 , A i (X i ) = o , X i ∈ C i , i ∈ [1 : k ] 
} 

.

roof. The statement can be derived by leveraging results from 

isjunctive programming ( Balas, 1979 ), but we give a short proof 

n the appendix. �

heorem 9. Let F 1 be a feasible set of a QCQP set and let 

 i = 

{
x ∈ R 

n : x T Q i x + 2 q 

T 
i 

x ≤ ω i 

}
be such that the inequalities 

 

T Q i x + 2 q 

T 
i 

x ≥ ω i , i ∈ [1 : m ] , induce non-intersecting holes into

 1 . Then G(F 1 \ ∪ 

k 
i =2 

int F i ) = 

{
( x , X ) ∈ G(F 1 ) : Q i • X + 2 q 

T 
i 

x ≥ ω i , 

i ∈ [1 : m ] } . 
roof. See Yang, Anstreicher, & Burer (2016) . �

These techniques have so far not been utilized for the sake of 

obust optimization, but they are simple and might be relevant for 

uture research, which we want to foster with this article. 

.1.4. Open problems 

The two-trustregion-subproblem (TTRS): The TTRS is the 

problem of minimizing a nonconvex quadratic function over 

a feasible set, say F , described by two convex quadratic con- 

straints. It is known to be solvable in polynomial time by 

an algorithm described in Bienstock (2016) , which is, un- 

fortunately, very impractical in the same way the ellipsoid 

method is impractical for solving linear problems. Recent 

work by Anstreicher (2022) provides more practical ways of 

solving it. However, despite substantial effort by the com- 

munity (see e.g. Bomze & Overton, 2015 ) no description of 

G(F ) is known. A discussion on the difficulties in this en- 

deavor can be found in Yang & Burer (2013) , partial results 

can be found in Bomze, Jeyakumar, & Li (2018) ; Jeyakumar 

et al. (2021) . A description of G(F ) would be highly appre- 

ciated by the community. 

The key assumption in Burer’s reformulation : The most lim- 

iting requirement in Theorem 4 is without a doubt the 

so-called key assumption. In light of the discussion in 

Section 2.1.2 , specifically regarding the results in Kim et al. 

(2020) , we already introduced some tools to relax part a ) of 

the key assumption. It is only necessary that there is an or- 

der in which one can add quadratic equations to L so that 

every new quadratic function is non-negative over the set L 

intersected with the already introduced quadratic equations. 
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1 note that K 1 ⊆ K 2 ⊆ cl (K 1 ∪ −K 1 ) and int K ∗2 � = ∅ already implies K 2 ⊆ cl K 1 , 
so that this criterion coincides with the criterion of 2. up to closure 
There are also recent results by Bomze & Peng (2022) on 

the relaxation of part b) . In Theorem 9 we discussed the in- 

troduction of holes via quadratic inequalities. However, the 

question when a quadratic constraint can be added to the 

description of the feasible set without losing tightness of the 

set-completely positive reformulation remains, in general, an 

open one. 

.2. Duality of linear optimization over CPP ( K ) 

One of the decisive advantages of convex reformulations of QC- 

Ps is that the resulting optimization problems enjoy the rich du- 

lity theory that convex optimization offers. General results on 

onvex optimization duality, such as strong duality under Slater’s 

ondition, can be immediately applied to optimization problems 

nvolving CPP ( K ) . For the readers’ convenience we formulate a 

eneral linear completely positive optimization problem and its 

ual here, to review the conditions for full strong conic duality in 

he sequel. 

So let 

inf 
X ∈S n 

Q 0 • X 

 . t . : Q i • X ≤ b i , i ∈ [1 : m ] , 

X ∈ CPP ( K ) , (11) 

hen its dual is given by 

sup 

λ∈ R m + 

−
m ∑ 

i =1 

b i λi 

 . t . : Q 0 + 

m ∑ 

i =1 

λi Q i ∈ COP ( K ) . (12) 

ere we use the definition 

OP ( K ) := CPP ( K ) 
∗ = { M ∈ S n : M • X ≥ 0 for all X ∈ CPP ( K ) } 

= 

{
M ∈ S n : x T M x ≥ 0 for all x ∈ K 

}
, 

here the second equality is valid since all the extreme rays of 

PP ( K ) are of the form xx T with x ∈ K. The cone COP ( K ) is 

alled the set-copositive matrix cone, and can be thought of as 

 generalization of the positive-semidefinite matrix cone. It is a 

entral object in our discussion and we provide a more thorough 

reatment of this subject in Section 2.3.1 . We now state a well 

nown theorem on strong duality between the two optimization 

roblems. 

heorem 10. For (11) and (12) we always have that val (11) ≥
al (12) . Further, 

• if (11) has a feasible point X ∈ relint CPP ( K ) then val (11) = 

val (12) and (12) attains its optimal value, 

• if (12) has a feasible point λ ∈ R 

m + such that Q 0 + 

∑ m 

i =1 λi Q i ∈
relint COP ( K ) , then val (11) = val (12) , and (11) attains its op- 

timal value. 

An immediate consequence of the above theorem is that, with- 

ut any assumptions, (12) offers a rigorous lower bound of any 

CQP (1) whose Shor-relaxation is transformed into (11) . This is 

f particular importance in situations where primal values are of- 

ered which are claimed to be nearly optimal. 

.3. Solving copositive optimization problems 

The conic reformulations discussed so far introduce many of the 

omforts of convex optimization, most notably convex duality the- 

ry, to an area that is, in general, highly nonconvex. However, they 

o not alleviate the core difficulty of these problems in most cases: 

et-copositive and set-completely positive optimization problems 
10 
re still NP-hard in general. But this does not mean that the con- 

exification approach has no merit for solving the problems. We 

ill now discuss two major routes by which the convexifications 

an be exploited in order to either solve the problem exactly or to 

ive very good bounds. 

.3.1. Characterizations and inner/outer approximations of CPP (K) 

nd COP (K) 

As stated before, in general, certifying membership in either 

PP (K) or COP (K) is intractable save for some particular in- 

tances of K. One justification for reformulating QCQPs into copos- 

tive optimization problems anyway is the fact that there are 

owerful approximations of these cones and in some cases even 

ractable characterizations. We will now discuss some of the more 

rominent and easily explained approximations and give some in- 

eresting references to more involved theory on the matter. Before 

e start this discussion, we want to provide some general and use- 

ul properties of the two cones: Most of them seem to be com- 

on knowledge within the community, so attributing historically 

orrect credits is difficult. However, we believe the concise com- 

ilation may be of some use here, and for completeness we will 

rovide a proof in the appendix. 

roposition 11. For any cones K, K 1 , K 2 ⊆ R 

n we have the following

elations: 

1. COP (K) = COP (−K) = COP (K ∪ −K) , which also holds if 

COP is replaced with CPP , 

2. If K 1 ⊆ K 2 , then CPP (K 1 ) ⊆ CPP (K 2 ) with equality if and 

only if K 2 ⊆ K 1 ∪ −K 1 , 

3. If K 1 ⊆ K 2 , then COP (K 1 ) ⊇ COP (K 2 ) ; if in addition we as-

sume int K 

∗
2 � = ∅ , we have COP (K 1 ) = COP (K 2 ) if and only if 1 

K 2 ⊆ cl K 1 . 

4. CPP (K) ⊆ S n + ⊆ COP (K) ; all three sets are equal if and only 

if K ∪ −K = R 

n , in particular 

5. COP (R + × R 

m ) = CPP (R + × R 

m ) = S m +1 
+ , more generally, 

6. CPP (K × R 

m ) = 

{[
M 11 M 

T 
21 

M 21 M 22 

]
∈ S m + n 

+ : M 11 ∈ CPP (K) 

}
if 

o ∈ K, 

7. COP (K 1 ∪ K 2 ) = COP (K 1 ) ∩ COP (K 2 ) , 

8. CPP (K 1 ∪ K 2 ) = CPP (K 1 ) + CPP (K 2 ) , 

9. CPP ( conv K) ⊇ CPP (K) with equality if K is convex, 

10. COP ( conv K) ⊆ COP (K) with equality if K is convex, 

11. int CPP (K) = 

{ ∑ k 
i =1 x i x 

T 
i 

: x i ∈ int K, span { x 1 , . . . , x k } = R 

n 
} 

if K is closed, convex and int K � = ∅ , 
12. COP (K) = cl COP (K) = COP ( cl K) while CPP ( cl K) = 

cl CPP (K) ; 

13. COP (K) = COP ( relint K) , if K is convex, 

14. int COP (K) = 

{
Q ∈ S n : x T Q x > 0 for all x ∈ K \ { o } }. 

roof. See appendix. �

For the case of K = R 

n + we have the following chain of inclu- 

ions 

PP (R 

n 
+ ) ⊆ S n + ∩ N ⊆ S n + + N ⊆ COP (R 

n 
+ ) (13) 

here N is the orthant of nonnegative matrices. The cone S n + ∩ N 

s often call the doubly nonnegative matrix cone DN N 

n , and S n + + N 

s often called the nonnegative-decomposable matrix cone N N D 

n . 

espite their conceptual simplicity, these cones often turn out to 

e quite powerful in practice. We will also discuss some impres- 

ive theoretical guarantees that involve these simple approxima- 

ions later in this and other sections (see Theorem 13 and the suc- 

eeding discussion, but also Section 5.2 ). 
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For polyhedral cones K := { x ∈ R 

n : A x ≤ o } , with A ∈ R 

m ×n , 

here are simple polyhedral approximations given by 

PI(K) := 

{
A 

T NA : N ∈ N 

m 

}
⊆ COP (K) 

O(K) := 

{
M ∈ S n : AMA 

T ∈ N 

m 

}
⊇ CPP (K) 

t is always possible to use Theorem 4 in order to character- 

ze CPP ( ̄K ) , where K̄ := 

{
(x , s ) ∈ R 

n × R 

m + : A x + s = 0 
}

in order 

o derive G( ̄K ) = CPP ( ̄K ) so that CPP (K) is the projection on

he north-west n × n entries. The cone CPP ( ̄K ) is thereby de- 

cribed via linear constraints and a conic constraint involving 

PP (R 

n × R 

m + ) . The latter constraint can then be reformulated via 

roposition 11 point 6. where any approximation for CPP (R 

m + ) can 

e inserted in order to obtain inner and outer approximations of 

PP (K) . For the second-order cone case K = SOC n , the celebrated 

-Lemma ( Yakubovich, 1971 ) allows for an exact characterization 

f both, the set-completely positive and the set-copositive matrix 

one in terms of psd-constraints, namely 

PP ( SOC n ) = 

{
M ∈ S n + : M • J ≤ 0 

}
, 

OP ( SOC n ) = 

{
M ∈ S n : M + λJ ∈ S n + , λ ≥ 0 

}
, 

here J is the identity matrix up to the first entry in the first 

ow, which is flipped to −1 . Due to Proposition 11 point 2. we

ave CPP ( SOC n ) = CPP (K) with K := 

{
x ∈ R 

n : x T J x ≤ 0 
}

, hence 

 cone described by a homogeneous quadratic inequality. For the 

ase where multiple such inequalities are present, only limited re- 

ults are available. For example, Bomze & Gabl (2021) proved the 

ollowing theorem: 

heorem 12. Let K := { x ∈ R 

n : x T Q i x ≤ 0 , i ∈ [1 : m ] } with Q i ∈ S n .
ssume that there is some x 0 with x T 

0 
Q i x 0 < 0 for all i ∈ [1 : m ] . Fur-

her, suppose that for all i ∈ [1 : m ] 

 ∈ S n + \ { O } and Q i • X = 0 ⇒ Q j • X < 0 for all j ∈ [1 : m ] \ { i } . 
(14) 

hen 

OP (K) = 

{ 

M : M + 

m ∑ 

i =1 

λi Q i ∈ S n + for some λ ∈ R 

m 

+ 

} 

, 

PP ( K ) = 

{
M ∈ S n + : M • Q i ≤ 0 , i ∈ [1 : m ] 

}
. 

The theorem does not cover the case where K is the inter- 

ection of (perhaps linearly transformed) second-order cones. A 

espective characterization of set-copositivity/set-completely posi- 

ivity would provide a long desired convex reformulation of the 

ulti-trustregion subproblem. So far, this remains an open prob- 

em, despite substantial effort by the community. Still, one may 

tudy ( Yang & Burer, 2013 ) to find inspirations for approximations 

or instances of K that involve two second-order cone constraints. 

In case K := { x ∈ SOC n : A x ≤ o } where the hyperplanes en- 

oded by the linear inequalities do not intersect within the second- 

rder cone, one may use a homogeneous version of Theorem 3 (re- 

arding F 1 ) in order do derive a tractable characterization of 

PP (K) and COP (K) . However, Xu & Hanasusanto (2018) found 

n elegant way to neatly summarize approximations and exactness 

esults for a slightly more general instance of K. 

heorem 13. Consider 

 := { x ∈ R 

n × R + : A x ≥ o , B x ∈ SOC r } 
here A ∈ R 

p×(n +1) and B ∈ R 

r×(n +1) and define 

I ( K ) : = 

⎧ ⎪ ⎨ ⎪ ⎩ 

M ∈ S n +1 : 

W ∈ S n +1 
+ , U ∈ N 

p , 

V ∈ S n +1 , T ∈ R 

p×r , λ ∈ R + 
M = W + λS + A 

T UA + V 

V = 

1 
2 

(
A 

T TB + B 

T T 

T A 

)
, Rows ( T ) ∈ S OC r 

⎫ ⎪ ⎬ ⎪ ⎭ 

, 

here S := B 

T e 1 e 
T 
1 B −∑ r 

i =2 B 

T e i e 
T 
i 
B . Then SI ( K ) ⊆ COP (K) . Fur-

her, equality holds under one of the following conditions: 
11 
• A = O , hence no linear inequalities are present. 

• If x ∈ R 

n +1 satisfies B x ∈ SOC r and a T 
i 

x = 0 for some i ∈ [1 : p] ,

then x ∈ K. 

Clearly the dual of SI(K) is an outer approximation of CPP (K) , 

ut we will not go through the effort of deriving it here. Instead, 

e want to comment on the philosophy behind its construction. 

ote that for any two convex cones K 1 and K 2 containing the ori- 

in we have 

 1 + K 2 = conv (K 1 ∪ K 2 ) . (15) 

ow, SI(K) is such a sum where the components consist of S n +1 
+ , 

n instance of PI(K) , a single ray { λS : λ ≥ 0 } and the fourth cone 

escribed in terms of V and T which differs from any of the previ- 

us inner approximations, but whose containment in COP (K) can 

e easily checked. Hence, whenever a new inner approximation 

s identified, one can combine it with all other inner approxima- 

ions to obtain a potentially much stronger inner approximation. 

e want to highlight that due to (15) , even adding a single ray 

ay increase the size of the inner approximation substantially. 

In addition, this inner approximation improves on another pop- 

lar construction discussed in Ben-Tal, El Ghaoui, & Nemirovski 

2009 , Theorem B.3.1) where the authors propose the so-called ap- 

roximate S-Lemma, which can be used to derive an alternative in- 

er approximation of COP (K) , with K as defined in Theorem 13 . 

owever, in Xu & Hanasusanto (2018 , Proposition 3) it is demon- 

trated that SI(K) gives a superset of the approximations based 

n the approximate S-Lemma. 

.3.2. Algorithmic approaches via copositivity detection 

Recently Badenbroek & de Klerk (2022) and Anstreicher & Gabl 

2022) proposed algorithmic approaches to solve a copositive opti- 

ization problem where the ground cone is either R 

n + or a polyhe- 

ral cone, but it seems plausible that similar approaches are fea- 

ible for other ground cones K ⊆ R 

n . We will give a high-level ab- 

traction of their approaches here. 

We consider a general set-copositive optimization problem 

iven by 

 

∗ = sup 

y , S 

{ 

b 

T y : C −
m ∑ 

i =1 

y i A i = S , S ∈ COP (K) 

} 

. 

he algorithms are based on relaxed problems: 

 (C) := sup 

y , S 

{ 

b 

T y : C −
m ∑ 

i =1 

y i A i = S , ( S , y ) ∈ C 

} 

. 

here C is a convex set such that its projection on the S - 

oordinate contains COP (K) and over which we can optimize effi- 

iently. If v (C) attains its optimum at a point (S , y ) such that S ∈
OP (K) then v (C) = v ∗, and we solved the problem. If S / ∈ COP (K)

hen there is a certificate x ∈ K such that x T S x < 0 . We assume

hat we have an oracle that is capable of testing set-copostivity 

nd produces a certificate in case of negative answer. The algo- 

ithm proceeds as follows: 

The two papers employ different variations of this algorithm. 

oth have in common that in each iteration, set-copositivity of the 

terate S k is tested and the approximations C k are updated via the 

ut generated by the certificate x k , in case the test result is nega-

ive. The algorithms differ in the generation of the feasible points 

 k and y k , in the method by which copositivity is checked and in 

 set of additional cuts C ′ 
k 
, which we did not discuss so far. 

In ( Badenbroek & de Klerk, 2022 ) the authors deal with the 

ase where K = R 

n + . The feasible points are generated by finding 

he analytic center of the feasible set of v (C k ) and at every iter-

tion where in case S ∈ COP (K) they implement an optimality 
k 
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ut C ′ 
k 

= 

{
( S , y ) : b 

T y ≥ b 

T y k 
}

. In addition, at each iteration one ei- 

her obtains a lower bound on the problem in case S k ∈ COP (K) or

n upper bound otherwise. The algorithm stops if the relative gap 

etween the best lower and the best upper bound shrinks below 

redetermined threshold. Also, the copositivity check is performed 

y solving the standard quadratic optimization problem parameter- 

zed by S k , given by min x ∈ R n + 
{

x T S k x : e 
T x = 1 

}
via a mixed-integ er 

rogramming approach outlined in Xia, Vera, & Zuluaga (2020) . 

In contrast, ( Anstreicher & Gabl, 2022 ) solve v (C k ) to opti-

ality at every iteration. As long as S k / ∈ COP (K) they generate 

 cut based on the certificate x k . In addition they employ var- 

ous second-order cone cuts (which would take the role C ′ 
k 

in 

ur present notation). The algorithm stops as soon as the copos- 

tivity test is positive. In addition the authors provide their own 

ixed integer optimization based approach to set-copositivity test- 

ng, which is able to deal with cases where K is a polyhedral cone 

escribed by intersection of the non-negative orthant and arbitrar- 

ly many hyperplanes. Their approach is of particular interest to 

his text since they apply their algorithm to copositive reformu- 

ations of robust optimization problems (of the kind discussed in 

ection 4 below), and show that it can be used in conjunction 

ith the approximation-based approaches discussed in the previ- 

us section, in order to test the quality of the latter approxima- 

ions. 

.4. Concise guide: convex reformulations, Shor lifting and 

opositivity 

In what follows we will provide the reader with a roadmap 

hrough the literature which may assist in understanding and 

urther developing the theory around convex reformulations and 

opositive optimization. This is by no means an exhaustive list, 

or does it imply any judgements on articles not mentioned here. 

ore complete accounts of the respective literature may be found 

n Bomze, Schachinger, & Uchida (2012) ; Dür & Rendl (2021) . 

Historically, the idea of copositive matrices, hence matrices in 

OP (R 

n + ) goes back to Motzkin (1818) , where the term and the 

oncept were introduced originally. The dual term of complete pos- 

tivity can be found in the early paper ( Hall & Newman, 1963 ).

owever, the standard reference, as far as linear algebra is con- 

erned, is the classic book ( Berman & Shaked-Monderer, 2003 ), 

hich mostly deals with CPP (R 

n + ) . Further developments on the 

nalysis of COP (R 

n + ) and CPP (R 

n + ) can be found in Dickinson 

2010, 2013) ; Dür & Still (2008) , which present interesting geomet- 

ical and topological insights on the two cones. For many of these 

esults it is still an open question, whether they can be general- 

zed to cases where the ground cones differ from the non-negative 

rthant. Some results for a general closed, convex ground cones 

an be found in Sturm & Zhang (2003) . More extensive surveys 

n copositive and completely positive matrices are ( Bomze, 2012; 

omze et al., 2012; Dür, 2010 ). 

The classical Shor relaxation where K = R 

n was introduced 

n Shor (1987) . Exactness proofs of this relaxation are regularly 

chieved via the results on the rank of extreme matrices of fea- 

ible sets of SDPs given in Pataki (1998) , see for example Bomze 

 Gabl (2021) ; Burer & Anstreicher (2013) . The first exactness re- 

ult for a convex reformulation where K = R 

n + is given in Bomze 

t al. (20 0 0) , where a convex reformulation for the standard 

uadratic optimization was derived. The core papers that introduce 

he methodology based on G(F ) are ( Anstreicher & Burer, 2010; 

urer, 2009; 2012; Burer & Anstreicher, 2013; Eichfelder & Povh, 

013; Yang et al., 2016 ). An earlier contribution is however given 

n Sturm & Zhang (2003) , who laid out many fundamental ideas 

f that machinery. Still, for the purposes of introduction we rather 

ecommend ( Burer, 2015 ), which will prepare the reader to deal 

ith the more involved texts cited here. For a very recent survey 
12 
ee Dür & Rendl (2021) . Finally, accounts of the strengths of convex 

elaxations of this style can be found in Anstreicher (2009, 2012) ; 

nstreicher & Burer (2005) ; Bomze (2015) , in which the reader 

ay find theoretical guarantees as well as numerical studies. 

Many more approximations have been proposed in literature, 

ften in the form of hierarchies approximate the cones COP (K) 

r CPP (K) to arbitrary good accuracy, at the cost of introducing 

n exponentially increasing number of additional constraints. The 

nterested reader may be referred to Bomze & de Klerk (2002) ; 

undfuss & Dür (20 08, 20 09) ; Dickinson & Povh (2013) ; de Klerk &

asechnik (20 02) ; Lasserre (20 01) ; Parrilo (20 0 0a,b) ; Peña, Vera, &

uluaga (2007) ; Sponsel, Bundfuss, & Dür (2012) ; Yıldırım (2012) . 

ue to significantly higher computational cost however, these ap- 

roximations have not featured prominently in the literature on 

ptimization under uncertainty yet, which is why we do not go 

nto detail here. 

. A brief account on robust optimization and some variants 

As mentioned above, we trust that most readers are familiar 

ith the core concepts of robust optimization. Therefore, the fol- 

owing exposition is just exhaustive enough to make the subse- 

uent discussion understandable. 

In theory there are many types of optimization problems that 

an be solved efficiently to any desired accuracy, provided the 

tructure of the problem, including the relevant data, is known. 

owever in practice the latter is often not the case and one is con- 

ronted with an uncertain optimization problem : 

inf 
 ∈ R n 

{ f 0 ( x , u ) : f i (x , u ) ≥ 0 , i ∈ [1 : m ] } where u ∈ U . (16) 

he parameters of the functions f i , i ∈ [0 : m ] are uncertain and

overned by the uncertainty parameter vector u that lives in an un- 

ertainty set U ⊆ R 

q . This set encompasses all realizations of u , for

hich the decision maker takes responsibility. Examples for de- 

igning appropriate uncertainty sets can be found in Ben-Tal et al. 

2009) ; Bertsimas & Brown (2009) ; Bertsimas, Gupta, & Kallus 

2018) ; Gorissen et al. (2015) . 

Under the robust optimization paradigm, one seeks to select a 

ecision with the best worst-case performance among all decisions 

hat are feasible for any realization of the uncertain data (see Ben- 

al et al., 2009; Gorissen et al., 2015 and references therein). The 

athematical model encompassing this philosophy, the so-called 

obust counterpart of an uncertain optimization problem, is given 

y 

inf 
 ∈ R n 

{
sup 

u ∈U 
{ f 0 ( x , u ) } : f i (x , u ) ≥ 0 , i ∈ [1 : m ] for all u ∈ U 

}
. 

(17) 

n the rest of the text we will be mainly concerned with cases 

here f i , i ∈ [0 : m ] are quadratic functions in u and affine or con-

ave quadratic in x . For many specifications of f i and U , the ro-

ust counterpart can be reformulated into a tractable optimization 

roblem, solvable via standard solutions strategies. The downside 

f this framework is that it is inherently conservative due to its 

essimistic perspective on the eventual outcome of the uncertain 

rocess. 

Many approaches have been proposed to remedy this short- 

oming of conservativeness. One such approach is called adjustable 

obust optimization (ARO) . The domain of this approach are sit- 

ations where parts of the decision can be delayed until un- 

ertainty is revealed. These adjustable decisions are modeled as 

unction-valued decision variables, hence one looks for the opti- 

al policy which, conditional on the outcome of the uncertain 

rocess, will yield a good feasible solution of the optimization 

roblem. Adjustable robust optimization was first introduced in 



I.M. Bomze and M. Gabl European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; December 20, 2022;16:44 ] 

B

(

x

t

a  

i

u  

t

t

(

c

i

i

a

i

i

b

p

t

t

d

x

T

d

w

P

N

w

d

o

f

r

c

m

3

s

w

p

t

i

t

p

t

r

t

K

s

t

a

D  

i∫
 

d

d

a

B

w{
w

4

t

H

w

4

f

w  

v

s

r

en-Tal et al. (2004) , for a detailed survey see Yanikoglu et al. 

2019) . The adjustable robust counterpart can be written as 

inf 
 ∈ R n 1 , y (u ) 

{
sup 
u ∈U 

{ f 0 ( x , y (u ) , u ) } : f i (x , y (u ) , u ) ≥ 0 for all u ∈ U , i ∈ [1 : m ] 

}
. 

(18) 

Compared to a robust optimization problem, the decision vec- 

or is split into two parts: the first-stage decision vector x ∈ R 

n 1 

nd the second-stage decision vector y (u ) : U → R 

n 2 , where y (u )

s allowed to adapt to the uncertainty and is thus a function of 

 . Since the space of all functions is intractable, so is (18) , and

hus it is much harder to solve in practice than (17) . However, 

here are many powerful approaches to (approximately) solve it 

see Yanikoglu et al., 2019 and references therein), for example 

ontracting the search space to the space of affine-linear functions, 

somorphic to the tractable Euclidean vector space. 

The final concept we will be interested in, as far as this text 

s concerned, is distributionally robust optimization (DRO) . It oper- 

tes under the assumption that the uncertainty parameter vector 

s a random vector ˜ u governed by a probability distribution that 

s not known entirely, but assumed to reside in a set of distri- 

utions called the ambiguity set . The aim is now to optimize ex- 

ected values of uncertain functions, under the assumption that 

he worst-case distribution will materialize for the chosen solu- 

ion. The mathematical model that captures this paradigm is the 

istributionally robust counterpart given by: 

inf 
 ∈ R n 1 

{
sup 
P∈P 

{ E P [ f 0 ( x , ̃  u ) ] } : E P [ f i (x , ̃  u ) ] ≥ 0 for all P ∈ P, i ∈ [1 : m ] 

}
. 

(19) 

he inner supremum is taken over all expected values of the (ran- 

om) objective function, w.r.t. all distributions P ∈ P . The same 

ay, we may rephrase the constraints as 

inf 
∈P 

E P [ f i (x , ̃  u ) ] ≥ 0 for all i ∈ [1 : m ] . 

ote that if all members of the ambiguity set P are distributions 

ith one-point support, we recover the robust counterpart. Hence, 

istributionally robust optimization is a generalization of robust 

ptimization. However, the practicability of this approach stems 

rom the fact that in many interesting cases the distributionally 

obust counterpart can be reduced to a robust counterpart, which 

an be tackled with all the instruments known from robust opti- 

ization. 

.1. Wasserstein ambiguity sets 

An important way of constructing an ambiguity set involves the 

o-called Wasserstein balls, which are sets of probability measures 

ith a Wasserstein distance to a certain reference distribution up- 

er bounded by a constant ε > 0 . The Wasserstein distance be- 

ween two probability measures is a metric that can loosely be 

nterpreted as the cost of transporting the mass of one distribu- 

ion to the other. It enjoys rich theoretical background, most im- 

ortantly, it gives a natural framework for data-driven optimiza- 

ion: if the empirical distribution of the uncertain data is used as 

eference distribution, ε can be chosen large enough to include the 

rue distribution of the data-generating process. In fact ( Esfahani & 

uhn, 2018; Zhao & Guan, 2018 ) give an explicit, closed-form de- 

cription for ε(β) which guarantees a (1 − β) -confidence that the 

rue distribution is contained in a Wasserstein ball of radius ε(β) 

round the empirical distribution. 

Formally we have the following 

efinition 1. For any r > 1 , let M 

r (U ) be the set of probabil-

ty distributions P supported on U that satisfy E P [ d(u , u 0 ) ] = 

 

d(u , u 0 ) P (d u ) < ∞ , where u 0 ∈ U is some reference point and
U 

13 
(u , u 0 ) is a continuous reference metric on U . The r-Wasserstein 

istance between two distributions P 1 , P 2 ∈ M 

r (U ) is defined as 

W 

r (P 1 , P 2 ) = inf { [ ∫ 
U 2 

d(u 1 , u 2 ) 
r Q(d u 1 , d u 2 ) 

] 1 
r 

: 
Q is any joint distribution of (u 1 , u 2 ) 

with marginals P 1 and P 2 

} 

. 

Based on this notion, the ambiguity sets are often modelled as 

 ball induced by W 

r , centered around an empirical distribution: 

 

r 
ε ( ̂  P I ) := 

{
P ∈ M 

r (U ) : W 

r (P, ˆ P I ) ≤ ε 
}
, (20) 

here ˆ P I is the empirical probability measure based upon a sample 

ˆ u 1 , . . . , ̂  u I 

}
, i.e., ˆ P I := 

1 
I 

∑ 

i ∈ [1: I] δ ˆ u i 
where δ ˆ u is the Dirac measure, 

hich centers all its probability mass at ˆ u ∈ R 

k . 

. Robust constraints with quadratic index 

In the case of quadratic optimization, such results are often ob- 

ained by invoking the so-called S-Lemma or some variants of it. 

owever, copositive optimization theory opens an alternative path, 

hich we will now review in great depth. 

.1. General strategy for finite reformulation 

Assume that we are confronted with a robust constraint of the 

orm: 

f (x , u ) = u 

T Q (x ) u + 2 q (x ) T u + ω(x ) ≥ 0 for all u ∈ U , (21) 

here Q (x ) , q (x ) , ω(x ) are appropriate matrix-, vector- and scalar-

alued functions of the decision vector x . For ease of notation we 

uppress the dependence on x . The reasoning to achieve a finite 

eformulation of (21) follows these steps: 

• We again observe that 

u T Q u + 2 q T u + ω ≥ 0 for all u ∈ U ⇐⇒ inf 
u ∈U 

[
u T Q u + 2 q T u + ω 

]
≥ 0 . 

(22) 

We will regularly refer to the optimization problem as the 

inner or implied QCQP . 

• Next we need a convex reformulation of the inner infimum- 

problem, e.g., based on the ideas outlined in Section 2 . For 

the sake of presentation we assume that 

inf 
u ∈U 

[
u T Q u + 2 q T u + ω 

]
= inf 

Y∈C 

{[
ω q T 

q Q 

]
• Y : G i • Y ≤ g i , i ∈ [1 : m ] 

}
, 

(23) 

using an appropriate, convex matrix cone C and appropriate 

matrices G i ∈ S n +1 , real numbers b i ∈ R , i ∈ [1 : m ] . 

• If for the convex reformulation we can establish full strong 

duality, i.e., zero duality gap and dual attainability, we fur- 

ther have 

inf 
Y∈C 

{[
ω q 

T 

q Q 

]
• Y : G i • Y ≤ g i , i ∈ [1 : m ] 

}
, 

= sup 

λ∈ R m + 

{ 

−g 

T λ : 

[
ω q 

T 

q Q 

]
+ 

m ∑ 

i =1 

λi G i ∈ C ∗
} 

. 

where g := [ g 1 , . . . , g m 

] 
T and λ := [ λ1 , . . . , λm 

] 
T 

. 

• Since dual attainability guarantees the existence of the dual 

maximizers, we can enforce the semi-infinite constraint in 

(22) by demanding that 

g T λ ≤ 0 and 

[
ω q 

T 

q Q 

]
+ 

m ∑ 

i =1 

λi G i ∈ C ∗ for some λ ∈ R 

m 

+ . 

(24) 
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Readers experienced with robust optimization may have no- 

iced that the most of this general strategy is part of the standard 

epertoire of techniques used in this field. Indeed, if f (x , u ) were

inear in u , the lifting and convexification step could be skipped 

nd the remaining steps would be the familiar way of reformu- 

ating semi-infinite constraints via linear convex duality theory. Of 

ourse the difficult part is the convexification step, which is one of 

he main reasons why the techniques introduced in Section 2 are 

o vital for robust optimization. Once the hurdle of providing a 

onvex reformulation of the inner QCQP is taken successfully, one 

ay once again tread on familiar territory. 

We also want to highlight that if C ∗ in (24) is replaced by an in-

er approximation C ∗
inner 

⊆ C ∗, then (24) and hence (21) is still im- 

lied, so that we obtain a conservative approximation of the latter 

onstraint. This is important since we will mostly work with cases 

f C that involve CPP (K) (so that C ∗ involves COP (K) ) in some 

apacity, and the latter cone is intractable, so that approximations 

re necessary, which is the major motivation behind the detailed 

iscussion in Sections 2.3.1 and 2.3.2 . 

At this point we also like to comment on a common mod- 

lling choice, to construct the uncertainty set as a conic intersec- 

ion U := 

{
u : (1 , u 

T ) T ∈ K ⊆ R 

q +1 
}

. This is in fact a generic way to 

onstruct convex sets, as discussed in Rockafellar (2015 , Section 8). 

he motivation behind this construction is a practical one: most 

tudies that apply the general strategy do so in conjunction with 

heorem 4 as workhorse which delivers the convexification step, 

nd this theorem talks about feasible sets that are modelled as 

onic intersections. Hence, constructing U in this manner makes 

he application of the theorem more straightforward. 

Finally, before reviewing literature where this general strategy 

as come to pass, we want to discuss the critical ingredients of 

he above strategy. We already discussed extensively how to close 

he relaxation gap in Section 2 . The duality gap is usually easy to

lose since U is a bounded set so that the conic reformulation will 

lso have a bounded feasible set, which is enough to guarantee a 

ual Slater point and thus a zero duality gap, albeit without dual 

ttainability. The boundedness of U is in fact a generic property of 

n adequate uncertainty set. If it were unbounded, then the fea- 

ible set could be empty in case there is no x such that the con-

traint function is unbounded in u over U . However, if there is a 

easible x then the infinitely many constraints that are associated 

ith u from the directions of recession of U are redundant. Hence, 

t does not make sense to consider unbounded uncertainty sets 

nd in fact, to the best of our knowledge, uncertainty sets are gen- 

rally assumed to be compact (see Ben-Tal et al., 2009; Gorissen 

t al., 2015; Yanikoglu et al., 2019 ). As a consequence, eliminating 

he duality gap is of little concern in most cases. 

Howeve, dual attainability is the more elusive quality. For the 

onic reformulations we discussed, a Slater point in the primal 

roblem, hence a feasible point in int CPP (K) , guarantees dual at- 

ainability. While a simple generalization of the results in Tuncel 

2001) shows that G(F ) has interior whenever F has interior, for 

eformulations based on Theorem 4 , the most important type of 

eformulations, it is well known that the feasible set never has in- 

erior. However, the requirement of dual attainability can be loos- 

ned quite a bit. As shown in Bomze & Gabl (2021) , one loses

erely boundary points of the feasible set described by (21) when 

pplying our general reformulation strategy without guaranteeing 

ual attainability. Hence, if the feasible set described by a col- 

ection of robust constraints is not connected merely by bound- 

ry points, e.g., if the sets described by the individual robust con- 

traints have a common point in their respective relative interiors, 

ne does not not need dual attainability. 
c

14 
.2. Various applications of the general strategy for robust 

ptimization 

We will now discuss different instances of robust optimization 

hat have appeared in the literature, where (21) takes a particu- 

ar form, and where a reformulation into (24) is possible, given 

hat the requirements of our general strategy are fulfilled. We will 

riefly describe the models, specify the values for (Q , q , ω) in the

espective reformulation and discuss some features of their appli- 

ations as stated in the original literature. 

.2.1. Linear ARO under uncertain recourse and affine decision rule 

The generic linear ARO problem is given by 

min 
x ∈X , y (u ) 

{
c T x : (A i u + a i ) x + (B i u + b i ) y (u ) + (u 

T D i u + d 

T 
i u + d i ) ≥ 0 

for all u ∈ U , i ∈ [1 : k ] } , (25) 

ence we have a linear optimization problem with uncertain co- 

fficients, which we model as affine functions and quadratic func- 

ions in u . More specifically, we model the coefficients of the first- 

tage decision x in the i -th constraint as affine functions involv- 

ng the matrices A i ∈ R 

n 1 ×q and vectors a i ∈ R 

n 1 , and the respective

oefficients of the second-stage decisions y (u ) as affine functions 

nvolving matrices B i ∈ R 

n 2 ×q and vectors b i := (b 1 , . . . , b n 2 ) ∈ R 

n 2 .

inally, the offsets independent of x , y are modeled as quadratic 

unctions involving matrices D i ∈ S q , vectors d i ∈ R 

q and numbers 

 i . 

If the matrices B i and D i , i ∈ [1 : k ] were zero, then the above

odel would coincide with the one studied in Ben-Tal et al. 

2004) , the seminal paper on ARO. In that case, if one applies an 

ffine decision rule by specifying y (u ) = Yu + y 0 , where the coeffi-

ients Y ∈ R 

n 2 ×m and y 0 ∈ R 

n 2 take the role of the decision vector,

hen linear, convex duality is readily applicable, modulo some reg- 

larity conditions on U , in order to obtain a finite reformulation 

f the robust constraints. The complication arises if one consid- 

rs uncertain recourse, i.e., when B i are not zero. Then, bilinear 

erms in u arise and duality of the implied, inner infimum is no 

onger guaranteed. However, the general strategy allows us to pro- 

eed anyway. Focusing on a single constraint of the above model, 

e are concerned with 

A u + a ) T x + (B u + b ) T (Yu + y 0 ) + u 

T D u + d T u + d ≥ 0 for all u ∈ U , 

(26) 

here an affine decision rule has already been put into place. We 

mit an index indicating which of the k constraints we are con- 

erned with, since they are all structurally identical. Also, letting 

 � = O does not hinder the application of our techniques, which 

ives some additional modelling power aside from uncertain re- 

ourse. Applying the general strategy in a straightforward manner 

llows us to achieve the following result. 

heorem 14. Assume that (26) has an exact conic reformulation of 

he form (23) enjoying full strong duality. Then problem (26) is equiv- 

lent to 

g T λ ≤ 0 , 
 

a T x + b T y 0 + d 1 
2 

(
A 

T x + Y 

T b + B 

T y 0 + d 
)T 

1 
2 

(
A 

T x + Y 

T b + B 

T y 0 + d 
)

D + 

1 
2 

(
B 

T Y + Y 

T B 

) ] 
+ 

m ∑ 

i =1 

λi G i ∈ C ∗ , 

λ ∈ R m + . 

roof. The theorem follows immediately from our general strat- 

gy. Note that in order to symmetrize the quadratic term we use 

 

T B 

T Yu = 

1 
2 u 

T 
(
B 

T Y + Y 

T B 

)
u . �

Already in Ben-Tal et al. (2004) , the authors provided finite con- 

ex reformulations of ARO under uncertain recourse and affine de- 

ision rule, in case the uncertainty set is an ellipsoid, where the 
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-Lemma provided the necessary convexification. Apart from this 

pecial case, the authors also provided a conservative approxima- 

ion based on an approximate S-Lemma. In contrast, our general 

trategy in conjunction with the results discussed in Section 2 al- 

ows for a wider range of uncertainty sets to be utilized. The 

rst paper to apply this machinery was ( Xu & Hanasusanto, 2018 ), 

here the convexification was achieved by means of Theorem 4 . 

f course the involvement of CPP ( K ) may again necessitate the 

se of approximations, but the authors provide such approxima- 

ions for interesting choices of U and prove that these perform at 

east as good as the approximations based on the approximate S- 

emma (see Xu & Hanasusanto, 2018 , Proposition 3). 

.2.2. Linear ARO under fixed recourse and quadratic decision rules 

We again consider (25) with the slight modification that B i , i ∈ 

1 : k ] are set to zero, hence, we have fixed recourse. In this case

he introduction of an affine decision rule does not lead to bilinear 

erms in u , and standard reformulation procedures can be applied. 

owever, we can do better than that. Utilizing our general strategy 

llows us to expand the search space for the second-stage decision 

rom the space of affine functions to the space of quadratic func- 

ions. Thus, we specify 

 (u ) = 

[ 

u 

T Y 1 u + y T 1 u + y 1 
. . . 

u 

T Y n 2 u + y T n 2 
u + y n 2 

] 

, 

o that the robust constraint can be written as 

 

T 

[ 

n 2 ∑ 

j=1 

b j Y j + D 

] 

u + 

[ 

n 2 ∑ 

j=1 

b j y j + A 

T x + d 

] T 

u + a T x 

+ 

n 2 ∑ 

j=1 

b j y j + d ≥ 0 for all u ∈ U . (27) 

ote, that under fixed recourse the coefficients of y (u ) reduce to 

he vector b ∈ R 

n 2 , and we again suppressed the row index. 

heorem 15. Assume that (27) has an exact conic reformulation of 

he form (23) enjoying full strong duality. Then (27) is equivalent to 

g T λ ≤ 0 , 
 

a T x + 

∑ n 2 
j=1 

b i y j + d 1 
2 

(∑ n 2 
j=1 

b i y j + A 

T x + d 
)T 

1 
2 

(∑ n 2 
j=1 

b i y j + A 

T x + d 
)

D + 

∑ n 2 
j=1 

b i Y j 

] 
+ 

m ∑ 

i =1 

λi G i ∈ C ∗ , 

λ ∈ R 

m 
+ . 

roof. The theorem follows immediately from our general 

trategy. �

Quadratic decision rules have been applied in various articles, 

sually under some restrictions regarding the uncertainty set or 

he structure of the quadratic forms in y (u ) . For example, in case

he uncertainty set is ellipsoidal, the S-Lemma allows for a fi- 

ite convex reformulation of (27) , and an exhaustive list of sim- 

lar approaches can be found in Yanikoglu et al. (2019 , Table 3). 

he approaches often restrict the form of the quadratic decision 

ule, for example to separable quadratic functions, where no bilin- 

ar terms are present. However, as first shown in Xu & Hanasu- 

anto (2018) and again presented here, the quadratic decision rule 

s much more generally applicable if one uses the general strategy 

n conjunction with Theorem 4 . 

.2.3. Convex quadratic robust optimization 

The model of interest here is 

min 
x ∈X 

{
c T x : −‖ A i (x ) u ‖ 2 + ( a i (x ) ) 

T 
u + a i (x ) + u 

T D i u + d 

T 
i u + d i ≥ 0 

for all u ∈ U , i ∈ [1 : k ] } , (28) 
d

15 
here A i (x ) : R 

n 1 → R 

k ×q and a i (x ) : R 

n 1 → R 

q are affine matrix

nd vector pencils, respectively, and a i (x ) : R 

n 1 → R is a real-

alued, affine function of x . This case was recently addressed 

y Mittal, Gökalp, & Hanasusanto (2019) , in a way similar to the 

pproach presented here. We will slightly generalize their result, 

gain focusing on an arbitrary constraint in (28) given by 

‖ A (x ) u ‖ 2 + ( a (x ) ) 
T 

u + a (x ) + u 

T D u + d 

T u + d ≥ 0 for all u ∈ U . 
(29) 

t is clear from the general strategy that we can reformulate (29) as 

b 

T λ ≤ 0 , 

d + a (x ) 1 
2 ( a (x ) + d ) 

T 

1 
2 ( a (x ) + d ) D − A (x ) T A (x ) 

]
+ 

m ∑ 

i =1 

λi G i ∈ C ∗ . (30) 

The entries of the south-east diagonal block of the constraints 

atrix in (30) are now quadratic functions. In case C ∗ = COP (K) 

or some closed, convex cone K ⊆ R 

q +1 (which is the case for all 

he conic reformulations of QCQPs discussed in this text), we can 

inearize the constraints by employing the following lemma, which 

s a straightforward generalization of Mittal et al. (2019 , Lemma 4). 

emma 16. Assume C ∗ = COP (K) for some cone K ⊆ R 

q +1 . Then a

ector x ∈ R 

n fulfills the conic constraint in (30) if and only if there

xists a matrix H ∈ S q such that 

d + a (x ) 1 
2 ( a (x ) + d ) 

T 

1 
2 ( a (x ) + d ) D − A (x ) T A (x ) 

]
+ 

m ∑ 

i =1 

λi G i ∈ COP (K) and 

[
H A (x ) T 

A (x ) I 

]
∈ S q + k + . 

Using this lemma we can derive the following theorem 

heorem 17. Assume that (29) has an exact conic reformulation of 

he form (23) , with C = CPP (K) for some appropriate cone K, enjoy- 

ng full strong duality. Then (29) is equivalent to 

g 

T λ ≤ 0 , λ ∈ R 

m 

+ , [
d + a (x ) 1 

2 ( a (x ) + d ) 
T 

1 
2 ( a (x ) + d ) D − A (x ) T A (x ) 

]
+ 

m ∑ 

i =1 

λi G i ∈ COP (K) 

and 

[
H A (x ) T 

A (x ) I 

]
∈ S q + k + . 

roof. The theorem follows immediately from our general 

trategy. �

The setting can be transferred to the ARO case in a straightfor- 

ard manner, using the tools discussed in this and the previous 

ection. The second-stage variables may enter linearly with fixed 

r uncertain recourse, in which case the all the strategies that we 

iscussed apply immediately. In case the second-stage enters in a 

onvex quadratic manner, analogous to the vector x in this sec- 

ion, one can apply an affine policy and use Lemma 16 in order 

o obtain a convex conic formulation. At this point, for the sake of 

revity we leave the details to the reader and skip the respective 

resentation. 

.2.4. Distributionally robust, and two-stage distributionally robust, 

ptimization 

Two recent papers exploit reformulations of distributionally ro- 

ust optimization problems into semi-infinite optimization prob- 

ems in order to arrive at representations of these problems where 

onstraints are amenable to the general strategy. We will briefly 

iscuss their approach in the following paragraphs. 
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The first paper in this regard ( Jiang, Ryu, & Xu, 2019 ), deals with

ppointment scheduling under data ambiguity, where the ambi- 

uity set is constructed using Wasserstein balls, the construction 

f which was discussed in Section 3.1 . The authors investigate the 

odel 

inf 
 ∈X 

{ 

sup 

P∈B r ε ( ̂ P I ) 

{ E P [ f ( x , ̃  u ) ] } 
} 

, (31) 

here X ⊆ R 

n is a feasible set, not affected by uncertainty, and f

s an objective function. In addition, the metric in the definition of 

he Wasserstein distance is chosen to be the p-norm with p = r so 

hat 

W 

r (P 1 , P 2 ) = inf { [ ∫ 
U 2 

‖ u 1 , u 2 ‖ r r Q(d u 1 , d u 2 ) 
] 1 

r 
: 

Q is any joint distribution of (u 1 , u 2 ) 

with marginals P 1 and P 2 

}

For this model the authors derive the following semi-infinite 

epresentation 

inf 
x ∈X ,ρ,θ

ε r ρ + 

1 

I 

I ∑ 

j=1 

θ j 

 . t . : f (x , u ) − ρ‖ u − ˆ u j ‖ 

r 
r ≤θ j for all u ∈ U , all j ∈ [1 : I] 

ρ ≥0 , θ ∈ R 

I . (32) 

n case r ∈ { 1 , 2 } the second term in the semi-infinite constraint is 

inear or quadratic in u respectively. If in addition 

f (x , u ) := sup 

w ∈W 

q (x , u , w ) , where q (u , w ) := 

[
u 

w 

]T 

Q (x ) 

[
u 

w 

]
, 

(33) 

nd hence, a pointwise maximum of quadratic functions involving 

ome matrix valued function Q : R 

n → S k + n and an index set W ⊆
 

k , we can reformulate the semi-infinite constraint in (33) as 

q (x , u , w ) − ‖ u − ˆ u j ‖ 

r 
r ≤ θ j for all (u 

T , w 

T ) T ∈ U × W , 

all j ∈ [1 : I] . 

ince we have produced semi-infinite constraints with quadratic 

ndex, we can apply the general strategy in order to obtain a con- 

ex reformulation. Note, that as long as the dependence of Q on 

 is linear or convex quadratic, we can use the strategy directly 

r consecutively invoke Lemma 16 in order to obtain a problem 

ith only linear terms in x . The authors apply this methodology to 

obust appointment scheduling, in which case f is a certain point- 

ise maximum of linear functions linear in u , so that q is bilinear

n (u 

T , w 

T ) T and W is and appropriate polyhedron. 

The second paper ( Fan & Hanasusanto, 2021 ) deals with risk- 

verse two-stage distributionally robust optimization under a the 

onditional value at risk (CVaR) as risk measure. The respective 

odel is given by 

inf 
 ∈X 

c T x + sup 

P∈P 
CVaR 

P 
δ ( Z(x , u ) ) , (34) 

here CVaR 

P 
δ (. ) is the conditional value at risk at level δ of a risky

osition whose distribution is P , u is the uncertain parameter, P
s a set of plausible distributions supported on a conic intersec- 

ion U := 

{
u : (1 , u 

T ) T ∈ K ⊆ R 

q +1 
}

, X ⊆ R 

n 2 is a feasible set not 

ffected by uncertainty, and Z(x , u ) is the recourse problem given 

y 

(x , u ) := inf 
y ∈ R n 2 

{
u 

T D 

T y : T l (x ) T u ≤ u 

T W 

T 
l y for all l ∈ [1 : L ] 

}
, 

ith appropriate matrices D , W l , l ∈ [1 : L ] and matrix valued func-

ions T (x ) , l ∈ [1 : L ] . Hence, we look for a first stage decision x so
l 

16 
hat the worst case CVaR of our second stage response to an un- 

ertain parameter is optimized. The authors show that (34) can be 

eformulated as 

inf 
 ∈X ,θ ,τ (u ) , y (u ) 

c T x + θ + 

1 

δ
sup 
P∈P 

E P ( τ (u ) ) 

s . t . : τ (u ) ≥ 0 , 

τ (u ) ≥ u T D 

T y (u ) − θ , 

T l (x ) T u ≤ u T W 

T 
l 

y (u ) for all l ∈ [1 : L ] , 

} 

for all u ∈ U . 

(35) 

his reformulation should make it tangible for the reader that the 

econd stage decision (τ (u ) , y (u )) can be subjected to linear and

uadratic policies, so that the semi-infinite constraints can be tack- 

ed via the general strategy. However, the supremum term in the 

bjective still needs to be taken care of first, which would require 

etailing the intricate construction of the ambiguity set used in 

an & Hanasusanto (2021) and some extensive massaging of that 

erm depicted therein. But this lies beyond the scope of this text, 

nd we refer the reader to the original source for these details. 

onetheless, the general strategy is a core ingredient of the au- 

hors’ derivations, the results of which are eventually applied to 

etwork inventory allocation and the multi-item newsvendor prob- 

em. We do, however, like to mention the fact, that said construc- 

ion of the ambiguity sets necessitates the introduction of addi- 

ional semi-infinite constraints, which are duplications of the ones 

resent in (35) corresponding to certain subsets of the support U . 

he authors tackle the computational challenge of the potentially 

arge number of matrix blocks that arise from the general strategy 

ia a Bender’s decomposition approach, which allows for a paral- 

elization of the solution of the copositive sub-problems 

.3. Viable uncertainty sets 

So far we have demonstrated how convex reformulations ex- 

and the modeling capabilities with respect to the functional form 

f the robust constraints. However, the theorems that enable these 

eformulations put some requirements on the feasible sets of the 

nner QCQP and therefore on the uncertainty sets, while at the 

ame time they are allowing new modeling choices there as well. 

e will now provide an overview over the uncertainty sets that 

an be managed with the machinery outlined above, and discuss 

heir benefits and limitations. 

.3.1. Primitive uncertainty sets 

A number of uncertainty sets are regularly cited as being stan- 

ard or classic, among them ellipsoidal and polyhedral uncertainty 

ets. We will briefly discuss how they are handled in context of 

ur general strategy. 

Ellipsoidal uncertainty sets are easily tackled by the general 

trategy via Theorem 3 (regarding F 1 with no linear constraints), 

hich in essence boils down to a roundabout way of using the 

-Lemma since the respective characterization of G(F ) is based 

n that result. However, the S-Lemma can be employed directly 

o the infimum problem in (22) in order to obtain a dual supre- 

um problem and thus a finite reformulation. While our frame- 

ork does not offer anything new in this respect, it is neither re- 

trictive as well. 

Polyhedral uncertainty sets can be tackled using Theorem 4 . 

owever, there is some ambiguity to which we like to draw 

ome attention. One way to generally represent polyhedra is 

 1 := 

{
x ∈ R 

n + : A x = b 

}
in which case Theorem 4 readily pro- 

ides a description of G(P 1 ) involving CPP (R 

n + ) . However, another 

eneric description is given by P 2 := { x ∈ R 

n : A x ≤ b } in which 

ase Theorem 4 can be applied after introducing slack variables 

 ∈ R 

m , where m the number of inequality constraints in the de- 

cription of P 2 . The resulting characterization of G(P 2 ) would in- 

olve CPP (R 

n × R 

m + ) which by Proposition 11 point 6. can be ex- 
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X

ressed using only S n + m 

+ and CPP (R 

m ) . Exploiting this ambigu- 

ty, one might choose the description that yields the smaller com- 

letely positive constraint, which may reduce complexity. 

In ( Xu & Hanasusanto, 2018 ) the authors study combinations 

f these of ellipsoidal and polyhedral uncertainty sets, where the 

acets of the polyhedron do not meet inside the ellipsoid. In that 

ase Theorem 13 provides an exact representation of the conic con- 

traints present in G(U ) . 

.3.2. Mixed-integer uncertainty sets 

In ( Mittal et al., 2019 ) the authors use Theorem 4 in order to

ntroduce uncertainty sets with mixed-integer components, namely 

 := 

{
u ∈ R 

k 
+ : A u = b , u l ∈ Z for all l ∈ L 

}
(36) 

here L ⊆ [1 : k ] . One can assume without loss of generality that

 := [1 : L ] for some L ≤ k . Under the additional assumption that

is bounded we can always express any integer component of a 

ember of U by binary expansion as u l = 

∑ Q 
i =1 

2 i −1 v il = q 

T v l for

ome integer Q . Hence the set 

 

′ : = 

{
( u , V, S ) ∈ R 

k 
+ × { 0 , 1 } Q×L × R 

Q×L 
+ : A u = b , u l 

= q 

T v l , v l + s l = e , l ∈ [1 : L ] 
}

as U as its projection on the u -coordinates. Note that next to the 

ariables in V we also had to introduce additional constraints and 

lack variables. This is done in order to meet the requirements 

f Theorem 4 . Hence, any robust constraint with quadratic index 

n an uncertainty set U can be cast as a robust constraints over 

 

′ , which can then be reformulated using the general strategy in 

onjunction with Theorem 4 . The resulting copositive constraint 

ill involve COP (R 

k +2 QL 
+ ) , however, the authors of Mittal et al. 

2019) prove that even the simplest inner approximation based on 

 N D 

k +2 QL outperforms the classical approach based on the ap- 

roximate S-Lemma introduced in ( Ben-Tal et al., 2004 ). 

Note that the convex formulation based on Theorem 4 scales 

uadratically in the dimension of the original quadratic problem. 

ence, the introduction of the additional variables may come at a 

otentially high cost of optimizing over a large set-copositive con- 

traint. Providing reformulation strategies that do not require the 

xcessive lifting when changing from U to U ′ is therefore a desir- 

ble achievement to be pursued in future research. 

.3.3. Adapting the uncertainty set to piecewise affine/quadratic 

ecision rules 

In ( Xu & Hanasusanto, 2018 ) the authors skillfully exploited 

he modeling capabilities offered by Theorem 4 in order to enable 

iecewise linear and quadratic decision rules. Given that the uncer- 

ainty set is defined as a compact, convex, conic intersection given 

y: 

 := 

{
u : (1 , u 

T ) T ∈ K ⊆ R 

q +1 
}
, 

ne can lift the uncertainty set to obtain 

 

′ := 

{
( u , w ) ⊆ U × R 

L : w l = max 
{

0 , g 

T 
l u − h l 

}
, l ∈ [1 : L ] 

}
. 

ere g l is interpreted as the folding direction of the lth piece of 

he piecewise policy and h l is its breakpoint. Clearly, a general ad- 

ustable robust constraint in (25) is equivalent to 

(A u + a ) T x + (B u + b ) T y ′ (u , w ) + u 

T D u + d 

T u + d ≥ 0 

for all (u , w ) ∈ U 

′ , (37) 

ince y (u ) := y ′ 
(
u , max 

{
0 , g T 1 u − h 1 

}
, . . . , max 

{
0 , g T L u − h L 

})
is a 

unction that maps U into R 

n 2 , and vice versa any function of u 

an be generated from functions of (u , w ) , with w defined as in U ′ .
owever, if we restrict y ′ to be affine or quadratic in its arguments, 

hen y (u ) is a piecewise affine/quadratic function in u . Hence, we
17
an easily introduce piecewise policies by merely updating the un- 

ertainty set accordingly, albeit at the price of a having to work 

ith a nonconvex uncertainty set. A simple argument shows that 

e have 

 

′ = 

{ 

( u , w ) ⊆ U × R 

L : 
o ≤ w ≤ w̄ , 

w l ≥ g 

T 
l 

u − h l , l ∈ [1 : L ] 

w l (w l − g l + h l ) = 0 , l ∈ [1 : L ] 
, 

} 

= 

{
(u , w ) : (1 , u , w ) ∈ K 

′ , w l (w l − g l + h l ) = 0 , l ∈ [1 : L ] 
}
, 

here 

 

′ := 

{
( u 0 , u , w ) ∈ K × R 

L 
+ : 

w ≤ u 0 ̄w , 

w l ≥ g 

T 
l 

u − h l , l ∈ [1 : L ] 

}
. 

ote that U ′ is a bounded set and for all (u 0 , u , w ) ∈ K 

′ we

ave w l (w l − g T 
l 

u + h l ) ≥ 0 , l ∈ [1 : L ] , so that the key condition in

heorem 4 is satisfied for any quadratic optimization problem over 

 

′ . Hence, after replacing y ′ by an affine or an quadratic policy (in

ase of fixed recourse) in (u , w ) we can use the general strategy

n conjunction with Theorem 4 to obtain a finite reformulation of 

38) under a piecewise affine/quadratic policy. The final result in- 

olves the cone COP (K 

′ ) for which the authors of Xu & Hanasu- 

anto (2018) find tractable outer, hence conservative, approxima- 

ions based on SI(K 

′ ) from Theorem 13 . 

.4. Application: disjoint convex-convex quadratic optimization 

Following the core idea of Zhen, Marandi, de Moor, den Hertog, 

 Vandenberghe (2022) , the authors of Bomze & Gabl (2021) pro- 

osed a convex lower bound of special type of QCQP based on a 

eformulation as an ARO problem that can be approximated, us- 

ng the general strategy and the results presented in the preced- 

ng sections. The following theorem presents the QCQP and its ad- 

ustable robust reformulation: 

heorem 18. Let Q x ∈ S n 1 , Q xy ∈ R 

n 1 ×n 2 , F ∈ R 

k ×n 2 and G ∈ R 

r×n 2 .

urther, assume X ⊆ R 

n 1 is a compact set and Y := { y ∈ R 

n 2 + : F y =
 } ⊆ R 

n 2 has a Slater point and let Z(x ) := { (z , w ) : F T z + G 

T w ≤
 

T 
xy x } . Then 

inf 
 ∈X , y ∈Y 

x 

T Q x x + x 

T Q xy y + ‖ G y ‖ 

2 (38) 

= sup 

τ
{ τ : ∀ x ∈ X ∃ (z (x ) , w (x )) ∈ Z(x ) with x 

T Q x x + d 

T z (x )

− 1 
4 
‖ w (x ) ‖ 

2 ≥ τ } , (39) 

here the decision variables z : R 

n 1 → R 

k and w : R 

n 1 → R 

r are

unctions. 

In the ARO problem the variables z (x ) and w (x ) take the role of

he second-stage variables, the decision vector x takes the role of 

he uncertainty parameter vector and its former feasible set X be- 

omes the uncertainty set. If the adjustable variables are restricted 

o a quadratic and affine policy respectively, i.e., (z (x )) j = x T Z j x +
 

T z j + z j , j ∈ [1 : k ] , w (x ) = Wx + w , then all the semi-infinite con-

traints become quadratic in x and are thus amenable to a refor- 

ulation based on the general strategy. Since the application of 

he policies contracts the feasible set of the supremum problem, 

e generate a lower bound. 

The authors test the resulting lower bound against lower 

ounds based on relaxation of the completely positive refor- 

ulation from Theorem 4 on random instances with X := 

 

x ∈ K : B x = c } given by a compact conic intersection. The results 

re mixed, but it is noted that in case the number of constraints in 

is much bigger than the number of linear equality constraints in 

 , the ARO lower bound has computational advantages. Currently, 
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4

der novel sets of assumptions. 
 direct real-world application of this model is not in sight, but we 

re confident that future research will reveal relevant areas where 

e can profit from the strength of the ARO lower bound, and also 

ays to exploit the special structure of the lower bound. The inter- 

sted reader may inspect these structural details in Bomze & Gabl 

2021) . 

.5. Outlook on new research direction: robust convex optimization 

Recently ( Bertsimas, den Hertog, Pauphilet, & Zhen, 2022 ) intro- 

uced a reformulation of a general robust convex constraint into a 

obust bilinear constraint. The argument rests on the characteriza- 

ion of a closed, convex function as the bi-dual conjugate, hence 

he conjugate function of its conjugate function (see Rockafellar, 

015 , Section 12). For the readers’ convenience we repeat their 

erivation here. So consider a robust constraint 

 ( A (x ) u + b (x ) ) ≤ 0 , u ∈ U , (40) 

or a convex function h : R 

m → [ −∞ , ∞ ] and appropriate affine 

unctions A : R 

n → R 

m ×q and b : R 

n → R 

m . Checking whether the

onstraints hold for an x ∈ R 

n is hard since it is equivalent to find-

ng the supremum of a convex function. We now use the fact that 

ny closed, convex function can be characterized as the bi-dual 

onvex conjugate, hence 

 (x ) = h 

∗∗ = sup 

w ∈ dom h ∗

{
x 

T w − h 

∗(w ) 
}

here h ∗(y ) := sup w ∈ dom h 

{
y T w − h (w ) 

}
is the convex conjugate 

f h (see Rockafellar, 2015 for a detailed explanation). We can now 

eformulate the implied supremum problem in (40) into a bilinear 

roblem: 

up 

u ∈U 
{ h ( A (x ) u + b (x ) ) } = sup 

u ∈U 
sup 

w ∈ dom h ∗

{
u 

T A (x ) T w + b (x ) T w − h ∗(w ) 
}

= sup 

(w ,w 0 , u ) ∈U ′ 
A (x ) • uw 

T + b (w ) T w − w 0 

ith U ′ := { (w , w 0 , u ) : u ∈ U , w ∈ dom h ∗, h ∗(w ) ≤ w 0 } . The au- 

hors of Bertsimas et al. (2022) proceed to further reformulate us- 

ng an exact lifting, i.e., 

sup 

(w ,w 0 , u , V) 

{
A (x ) • V + b (x ) T w − w 0 : V = uw 

T , u ∈ U , 

w ∈ dom h 

∗, h 

∗(w ) ≤ w 0 } 
nd define � to be the (nonconvex) feasible set of the latter supre- 

um problem. By providing convex supersets �̄ ⊇ � they achieve 

afe approximations of the original robust constraint that take the 

orm 

 (x ) • V + b (x ) T w − w 0 ≤ 0 for all (w , w 0 , u , V) ∈ �̄

nd can be reformulated using standard techniques based on con- 

ex duality. 

However, here we want to demonstrate another application of 

ur approach, focusing on the bilinear reformulation. It is clear 

hat this formulation is amenable to the general strategy if we can 

nd characterizations of G(U ′ ) . A lot of interesting questions are 

orth investigation with regard to such an approach. 

The obvious problem is finding G(U ′ ) , which may be an 

nattainable goal for most instances of h (·) , but for some instances 

s, perhaps, just a matter of cleverly exploiting known results. In 

omplicated cases, one may resort to simpler approximations of 

 

′ 
inner 

⊆ U ′ ⊆ U ′ outer in order to obtain manageable approximations 

(U ′ 
inner 

) ⊆ G(U ′ ) ⊆ G(U ′ outer ) . Ideally, one can look for performance 

uarantees of such approximations. Since the copositive approach 

an manage discontinuous quadratic optimization problems, it is 

lso reasonable to ask if the above approach can be extended to 

iscontinuous compositions of convex functions under a coposi- 

ive optimization paradigm. Also, in the light of Lemmas 16 and 
18 
heorem 17 the copositive approach can be expected to be able 

anage cases where the argument of h (·) is a convex quadratic 

unction. 

Further, it would be interesting to study the relationship be- 

ween said approximations and the approach from Bertsimas et al. 

2022) mentioned above. Specifically, their approach might inspire 

pproximations of G(U ′ ) that can be used in other contexts. We 

ould be interested to cooperate towards this goal, as it has sig- 

ificant overlap with our research agenda. 

.6. Open problems 

Robust convex optimization: The entirety of the discussion of 

Section 4.5 is preliminary and hopefully inspires some read- 

ers to take up the questions we outlined there. 

Quality of the quadratic policy: Conditions under which 

affine decision rules are optimal are well understood (see 

Bertsimas & Goyal, 2012; Bertsimas, Iancu, & Parrilo, 2010; 

Iancu, Sharma, & Sviridenko, 2013 ). Further, it was shown 

in Bemporad, Borrelli, & Morari (2003) ; Ben-Tal, El Housni, 

& Goyal (2020) that the optimal set of an adjustable robust 

optimization problems contains piece-wise affine policies in 

many interesting cases. Clearly, it follows that the same re- 

sults hold for the quadratic and piecewise quadratic deci- 

sion rules, since they contain affine policies as a special case. 

However, it would be interesting to give conditions under 

which the quadratic policy performs provably better than 

the affine ones, or, on top of that, if there are cases where 

a quadratic policy is provably optimal among all (also non- 

quadratic) policies while all affine ones are provably subop- 

timal. 

Breakpoints and folding directions of the piecewise 

quadratic policy: In Section 4.3.3 we presented results 

that allow for the implementation of a piecewise decision 

rule. This is a significant technique since the set of op- 

timal decision rules of an adjustable robust optimization 

problem is known to contain piecewise linear decision 

rules. However, in order to implement the technique in 

the aforementioned section, one needs to fix the number 

of pieces as well as the folding directions and breakpoints 

beforehand. We currently do not know whether there is a 

preferable way of making that choice, or whether there is a 

way to update a such a choice once the solution under that 

choice is known. 

Probabilistic guarantees under structured uncertainty sets: 

The discussion in the previous sections shows that coposi- 

tive optimization techniques allow for the application of un- 

certainty sets that are not applicable under the standard 

convex duality-based paradigm. In Sections 4.3.2, 4.3.3 this 

modeling capabilities were used in order to implement dis- 

crete uncertainty sets as well as uncertainty sets that allow 

for the application of piecewise decision rules. The motiva- 

tion for the lattter is clear, the former is motivated by the 

fact that in many applications, the outcome of the uncertain 

process is most naturally described by a discrete set of al- 

ternatives. However, in literature we often find that specific 

uncertainty sets are motivated by the desire to give certain 

probabilistic guarantees that the robust solution does not vi- 

olate an uncertain constraint, perhaps under some broad as- 

sumption on the distribution of the uncertain process. So far, 

we do not know an approach where the additional modeling 

power granted by the copositive approach was used in or- 

der to tighten such guarantees or give such guarantees un- 
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. ARO with uncertain right-hand side: an alternative 

opositive approach 

In ( Xu & Burer, 2018 ) the authors proposed a copositive re- 

ormulation of a certain class of linear ARO problems based 

n Theorem 4 obtained by means very different from the general 

trategy we outlined above, and consequently results in a distinc- 

ive type of copositive reformulation. The derivation is simple and 

legant, and we will give a condensed account of their methodol- 

gy in the sequel, extending their model by introducing additional 

ncertainty, also on the left-hand side and in the objective. 

.1. Copositive reformulation à la Xu and Burer 

The class of ARO models we consider here is given by 

min 
x ∈X , y (u ) 

{ 
max 
u ∈U 

c T x + d (u ) T y (u ) : a (x , u ) + B y (u ) ≥ f (u ) for all u ∈ U 
} 

 min 
x ∈X 

c T x + max 
u ∈U 

min 
y 

{
d (u ) T y : a (x , u ) + B y ≥ f (u ) 

}
(41) 

here the latter reformulation is proved by using standard argu- 

ents from optimization theory. Also, d (u ) = d 0 + D u , f (u ) = f 0 +
 u for appropriate matrices and vectors, a (x , u ) := a 0 (x ) + A (x ) u

or appropriate vector-valued, affine mappings, and X ⊆ R 

n is a 

easible set of the first-stage decision not affected by uncertainty. 

gain, the uncertainty set is modeled as compact, conic intersec- 

ion: 

 := 

{
u : (1 , u 

T ) T ∈ K 

}
, 

or some closed, convex cone K ⊆ R 

q +1 The reformulation strategy 

e are about to lay out rests on the following assumptions: 

ssumption 1. For problem (41) the following statements hold: 

(a) it is feasible with finite optimal value; 

(b) it possesses relatively complete recourse, i.e., for all x ∈ X 

and u ∈ U the innermost LP (in the min-max-min reformu- 

lation) is feasible. 

The innermost minimization problem can be dualized to obtain 

min 

y 

{
d (u ) T y (u ) : B y ≥ f (u ) − a (x , u ) 

}
 max 
w ∈ R m + 

{
w 

T [ ] f (u ) − a (x , u ) ] : B 

T w = d (u ) 
}

. 

e can now plug in the dual and the definitions of the functions 

epresenting the uncertain data, to obtain a bilinear optimization 

roblem that can be reformulated into a set-completely positive 

ptimization problem: 

max 
( u , w ) ∈U×R m + 

{
w 

T [ F + A (x ) ] u + [ f 0 − a 0 (x ) ] 
T 

w : B 

T w − D u = d 0 

}
max 

( u 0 , u , w ) ∈K×R m + 

{
w 

T [ F + A (x ) ] u + u 0 [ f 0 − a 0 (x ) ] 
T 

w : D u 

+ d 0 u 0 − B 

T w = o , u 0 = 1 

}
 max 
z ∈K×R m + 

{
z T Q (x ) z : z 0 = 1 , E z = o 

}
 max 

Z , z 

{
Q (x ) • Z : ( Z ) 00 = 1 , ZE 

T = O , Z ∈ CPP 

(
K × R 

m 

+ 
)}

ith 

 (x ) : = 

⎡ ⎢ ⎣ 

0 o 

T 1 
2 [ f 0 − a 0 (x ) ] 

T 

o O 

1 
2 [ F + A (x ) ] 

T 

1 
2 [ f 0 − a 0 (x ) ] 1 

2 [ F + A (x ) ] O 

⎤ ⎥ ⎦ 

, E : 

= 

[
d 0 , D , −B 

T 
]
, z := 

[ 

u 0 

u 

w 

] 

. 
19 
nder Assumption 1 a), the quadratic problem is feasible, since 

ny x ∈ X that would render it infeasible would be optimal 

or (41) with minus infinity as optimal value. Thus, the convex re- 

axation is exact by Theorem 4 . Further, under the Assumption 1 b) 

he dual of the innermost LP is feasible with finite value regard- 

ess of u , hence attaining its optimal value on an extreme point 

f its feasible set. The latter set is polyhedral so that its ex- 

reme points can be contained in a ball of sufficient size, rendering 

 

T w ≤ r w 

redundant for the bilinear problem given that r w 

> 0 is

arge enough. Also, since U is bounded, the constraint u 

T u ≤ r u is 

edundant for large enough r u > 0 . It follows that we can always

ntroduce the constraint z T z ≤ r with sufficiently large r ≥ 0 to the 

ilinear optimization problem without changing the optimal value, 

ence Z • I ≤ r is redundant for the conic optimization problem. Af- 

er doing so, the dual of the conic problem is given by 

min 

λ, ,ρ
λ + rρ

 . t . : Q (x ) + λe 1 e 
T 
1 + 

1 

2 

(
E + E 

T T 
)

+ ρI ∈ COP 

(
R 

m 

+ × K 

)
nd since for the identity matrix I we have I ∈ int COP (K) for any

one K, the latter problem has a Slater point so that the duality 

ap is zero. Thus, the original optimization problem can be equiv- 

lently reformulated as 

min 

x ,λ, ,ρ
c T x + λ + rρ

 . t . : Q (x ) + λe 1 e 
T 
1 + 

1 

2 

(
E + E 

T T 
)
+ ρI ∈ COP 

(
R 

m 

+ × K 

)
, x ∈ X . 

(42) 

he reformulation is exact but the cone COP (R 

m + × K) is in- 

ractable even if COP (K) is tractable. Hence one has to resort 

gain to inner, hence conservative, approximations. 

.2. Improving the affine policy 

This raises the question whether any benefit can be incurred by 

his strategy when compared to other conservative approximations 

uch as the ones based on affine decision rules. The authors of Xu 

 Burer (2018) find an elegant answer to this question, at least for 

he case where d (u ) is constant. We summarize their findings in 

he following theorem: 

heorem 19. For (41) assume that d (u ) is a constant. Further denote 

y v Aff the optimal value of (41) under an affine policy and with v IA 
he optimal value of (42) after replacing COP 

(
R 

m + × K 

)
with 

A 

(
K × R 

m 
+ 
)

:= 

{
S = 

[
S 11 S T 21 

S 21 S 22 

]
: 
S 11 = e 1 g 

T + ge T 1 , g ∈ K, 

Rows ( S 21 ) ∈ K 

∗, S 22 ≥ 0 

}
. 

hen we have v IA ≤ v Aff . Further, denoting by v IB the optimal value 

f (42) where COP 

(
R 

m + × K 

)
is replaced with any cone IB 

(
K × R 

m + 
)

or which 

OP 

(
R 

m 

+ × K 

)
⊇ IB 

(
R 

m 

+ × K 

)
⊇ IA 

(
R 

m 

+ × K 

)
(43) 

olds, we have val ( 42 ) ≤ v IB ≤ v Aff , where the first inequality holds 

ven if d (u ) is not constant. 

The authors of Xu & Burer (2018) propose the following candi- 

ate for IB 

(
R 

m + × K 

)
with the desired property, namely 

B 

(
R 

m 

+ × K 

)
:= 

{
S + M + R : 

S ∈ IA 

(
R 

m 

+ × K 

)
, M ∈ S m + q 

+ , 

R 11 ∈ C, R 21 = O , R 22 = O 

}
(44) 

here C ⊆ COP ( K ) , can be replaced by inner approximations such 

s the ones discussed in Section 2.3.1 . The authors also show in 

umerical experiments, that the optimal value v IB obtained by us- 

ng the above cone can be strictly smaller than v . 
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.3. Open problems 

Improving the affine policy under nonconstant d (u ) : In the 

original article ( Xu & Burer, 2018 ), both d (u ) as well as A (u )

were assumed constant. While establishing the above theo- 

rem for the case where the latter function is not constant 

is simply a matter of carrying along some additional terms 

through the discussion presented in Xu & Burer (2018) , the 

same is not true for non-constant d (u ) . The reason for this

lies in the proof strategy that achieves v IA ≤ v Aff . It is based 

on first deriving the finite reformulation of (41) under an 

affine policy, and then showing that one can turn any fea- 

sible solution of that reformulation into a feasible solution 

of (42) , under the required specifications. The finite refor- 

mulation under the affine policy is thereby achieved using 

standard linear convex duality, which does not apply if d (u ) 

is not constant. 

It is however possible to give a finite reformulation based 

on the general strategy as discussed in Section 4.2.1 . It re- 

mains to clarify how the resulting reformulation can be pro- 

jected into the feasible set of (42) . Answering this question, 

one may be able to find a modification of IA 

(
R 

m + × K 

)
that 

allows for similar performance guarantees. 

Characterizing implied policies: As noted in Xu & Burer (2018) , 

(42) is powerful enough to represent the original ARO prob- 

lem, and by the discussion in Section 5.2 we see that the 

affine policy can be mapped into the solution space of the 

reformulation. However, there is no similar analysis regard- 

ing other types of policies. 

Improving the quadratic policy: On a related note, it is not 

clear whether the conic constraint in (42) can be replaced 

by an inner approximation that performs at least as good as 

the quadratic policy. Such a result seems tangible since we 

know from the discussion in Section 4.2.1 that (41) under 

a quadratic policy does have a conic reformulation, where 

each row of the constraints is reformulated individually, re- 

sulting in a collection of conic constraints. However, there 

seems to be no straightforward way in which the feasible 

set of such a reformulation can be projected into the feasi- 

ble set of (42) . 

The case of uncertain recourse: The reformulation presented 

in the above section assumes that the matrix B is not af- 

fected by uncertainty. If this were the case, we would have 

to deal with quadratic constraints, which would jeopardize 

the application of Theorem 4 at the penultimate step of the 

reformulation strategy. Specifically, instead of the linear con- 

straints D u + d 0 u 0 − B 

T w = o we would have to deal with

the constraint D u + d 0 u 0 − (B (u )) T w = o which is bilinear

in case B (u ) is linear in u . Theorem 4 does not place any

restrictions on linear constraints, but quadratic ones have to 

respect the key condition, in order for the relaxation to be 

exact. Hence, the case of uncertain recourse could be tackled 

if the problem data is such that the key condition is either 

satisfied or can be relaxed, e.g., as in Bomze & Peng (2022) . 

However, we do not know whether either of these strategies 

are feasible for interesting instances of (41) with uncertain 

recourse. 

. Robust standard quadratic optimization 

Standard quadratic optimization deals with minimizing an in- 

efinite quadratic form over the standard simplex (also known as 

he probability simplex) �n := 

{
x ∈ R 

n + : e T x = 1 
}

, i.e., 

in 

 ∈ R n + 

{
x 

T Q x : e T x = 1 

}
= min 

x ∈ �n 
x 

T Q x (45) 

d

20 
espite its simplicity, this Standard Quadratic Problem (StQP) fea- 

ures prominently in diverse application areas such as game the- 

ry, graph theory, machine learning and copositivity detection. It 

as the first problem for which an exact copositive reformulation 

as presented in Bomze et al. (20 0 0) : 

in 

 ∈ �n 
x 

T Q x = min 

X ∈ CPP (R n + ) 
{ Q • X : E • X = 1 } , 

r in other words it holds that G(�n ) = { X ∈ CPP (R 

n + ) : E • X

 1 } . While the original proof is straightforward, this by now 

lassical result can also easily be derived via the method- 

logy discussed in Section 2.1.2 . Specifically, one can apply 

heorem 6 where the J is chosen to be all of CPP (R 

n + ) and H is

he hyperplane associated with E • X = 1 ; the details are left to the

eader. 

In ( Bomze, Kahr, & Leitner, 2021b ) the authors investigate ro- 

ust counterparts of this problem, which are generically given by 

in 

 ∈ �n 
max 
U ∈U 

x 

T ( Q + U ) x . 

ince the constraints are a structural aspect of the problem 

e.g., probabilities are are always positive and sum up to one), 

nly the objective function is affected by uncertainty. An imme- 

iate question is whether the completely positive relaxation given 

y 

min 

 ∈G(�n ) 
max 
U ∈U 

( Q + U ) • X , 

s again tight. While the answer is negative in general, the authors 

rove that the relaxation gap is exactly the min-max gap. 

heorem 20. Consider the robust Standard Quadratic Problem with 

ncertainty set U . 

(a) For general U we have 

min 

x ∈ �n 
max 
U ∈U 

x 

T ( Q + U ) x ≤ min 

X ∈G(�n ) 
max 
U ∈U 

( Q + U ) • X . 

(b) Suppose U is closed and convex. Then 

min 

X ∈G(�n ) 
max 
U ∈U 

( Q + U ) • X = max 
U ∈U 

min 

x ∈ �n 
x 

T ( Q + U ) x , 

so that the completely positive relaxation gap is exactly the gap in 

he min-max inequality. 

roof. See Bomze et al. (2021b , Theorem 1). �

However, there are instances in which the inner maximization 

roblem can be evaluated independently of x . In these cases the 

obust counterpart reduces to a deterministic standard quadratic 

roblem so that the exactness of the relaxation stays intact. The 

rst set of instances for which this is the case are those where the 

ncertainty set is constructed via suitable cones. 

heorem 21. Let C ⊆ COP (R 

n ) be a sub-cone of the cone of copos- 

tive matrices and L , B ∈ S n be given matrices. Assume that U =
 

U : U − L ∈ C, B − U ∈ C } . Then the completely positive relaxation is 

n exact reformulation and the robust counterpart reduces to a stan- 

ard quadratic problem with data Q + L . 

roof. See Bomze et al. (2021b , Corollary 1). �

Choices for C that fulfill the assumption of the above theorem 

re 

 ∈ { CPP (K 1 ) , N 

n , DN N 

n , N N D 

n , COP (K 2 ) } , (46) 

here K 1 ⊆ R 

n and R 

n + ⊆ K 2 . Besides this, there is another inter- 

sting case of a different kind for which a similar result can be 

erived, namely the case of ellipsoidal uncertainty. 
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heorem 22. Let C ∈ R 

n ×n be a nonsingular matrix and 

efine, for some scalar ρ > 0 , the uncertainty set U := 

U ∈ S n : ‖ C 

T UC ‖ F ≤ ρ
}

. Then 

min 

 ∈G(�n ) 
max 
U ∈U 

( Q + U ) • X = min 

X ∈G(�n ) 

(
Q − ρ

(
CC 

T 
)−1 
)

• X , (47) 

.e., the robust counterpart reduces to a single standard quadratic op- 

imization problem. 

.1. Open problems 

Robust properties of StQP solutions: Many problems in graph 

theory such as the stable-set problem and the maximum- 

clique problem have a reformulation as an StQP, and one can 

infer the solution to these problems from the optimal solu- 

tion of the respective StQP. It is however, unclear if these 

properties also hold for the robustified StQP. Conversely it is 

not known whether robust versions of the stable-set prob- 

lem or the maximum-clique problem can be modelled as a 

robust StQP or, perhaps, a generalization of the latter model. 

Convexified robust StQP: While the above discussion presents 

cases where the robust StQP reduces to an instance of 

StQP which can be tackled via standard convexification ap- 

proaches, a general convexification approach applicable out- 

side of these special cases is not known. The complication 

arises from the fact that the pointwise maximum of linear 

function is itself not linear but convex, and convex functions 

may attain their optimum at points which are not extreme. 

Hence, G(�n ) fails to deliver the effectiveness we enjoy in 

the deterministic case. 

. Two-stage stochastic optimization for StQPs 

In ( Bomze, Gabl, Maggioni, & Pflug, 2021a ) the authors consid- 

red a two-stage stochastic version of the StQP. 

Stochastic optimization deals with optimizing expected out- 

omes of uncertain optimization problems, i.e., 

in 

x ∈X 
{ E ˜ u ( f (x , ̃  u ) ) } . (48) 

here the expected value is taken with respect to the random vec- 

or ˜ u , which is defined by a known probability space (�, A , P ) with

upport �, probability distribution P and σ -field A . Analogously to 

he adjustable robust setting, in two stage stochastic optimization 

ne seeks a decision on the first-stage variables and on a second- 

tage decision rule that adapts to the realization of the random 

vent. Thus, we are considering 

in 

x ∈X 

{
f 1 (x ) + E ˜ u 

[
min 

y ∈Y(x , ̃ u ) 
f 2 (x , y , ̃  u ) 

]}
. (49) 

ere we make a choice on the first-stage variables x and second- 

tage policies y so that we optimize the sum of a deterministic 

rst-stage outcome and the expected value of the optimal second- 

tage choice. Note, that the innermost minimization problem de- 

ends on the random vector ˜ u so that the decision vector y is im- 

licitly a function of ˜ u . Hence, the setting is indeed analogous to 

he adjustable robust setting. However, for our purposes it will not 

e necessary to model y explicitly as a function as it is done in

RO. Also, in our case the constraints linking y to x are not uncer-

ain but deterministic: y ∈ Y(x ) . 

Here we are dealing with the special case of the (typically non- 

onvex) StQP of the form 

in 

 ∈ �n 
z T ˜ Q z , 

here uncertainty is considered only in the objective function. 

uppose a (possibly) small n × n principal submatrix A of ˜ Q is 
1 1 

21 
nown (more or less) exactly whereas the rest of the problem data 

re subject to uncertainty with known probability distribution: 

˜ 
 = 

[
A 

˜ B 

T 

˜ B 

˜ C 

]
. (50) 

ere ˜ u = [ ̃  B , ̃  C ] are the uncertain data. Such a situation may for ex-

mple arise in portfolio optimization, when the relevant statistics 

n younger securities can be assessed less accurately due to lack 

f historical data. 

Decomposing z ∈ R 

n via z T = [ x T , y T ] with (x , y ) ∈ R 

n 1 + × R 

n 2 + 
nd n 1 + n 2 = n we arrive at the following problem reformulation 

f the (random) objective function as 

 (z , ̃  u ) = z T ˜ Q z = x 

T A x + 2 x 

T ˜ B 

T y + y T ˜ C y . 

Taking the expectation with respect to the probability distribu- 

ion of ξ , we obtain the so-called recourse function 

(x ) := E ˜ u 

{
min 

y ∈ R n 2 + 

[
2 x 

T ˜ B 

T y + y T ˜ C y : e T y = 1 − e T x 

]}
nd the two-stage stochastic StQP can be formulated as follows: 

min 

 ∈ T n 1 

{
s (x ) := x 

T A x + r(x ) 
}
, 

ith T n 1 = conv 
{

o , e i : i ∈ [1 : n 1 ] 
}

= conv ( �n 1 ∪ { o } ) . 
In most cases, a two-stage stochastic problem cannot be solved 

irectly, since merely evaluating the expected value can be in- 

ractable. Thus, in practice one resorts to approximating the true 

ncertainty measure by a finite discretization. This gives rise to the 

o-called scenario problem, which in our case is given by: 

min 

 , y 1 , ... , y S 
x 

T A x + 

S ∑ 

s =1 

p s (2 x 

T ˜ B 

T 
s y s + y T s 

˜ C s y s ) 

e T x + e T y s = 1 , s ∈ [1 : S] , 

y s ≥ o , s ∈ [1 : S] , 

x ≥ o . (51) 

s we can see, the discretization is achieved by condensing the 

rue probability measures to a set of S scenarios with associated 

robabilities p s s ∈ [1 : S] . There are many schemes on how to ob-

ain these discretizations, and it would be beyond the scope of 

his text to dicuss them here; the interested reader may consult 

he references given in Bomze et al. (2021a , Section 2). Other tech- 

iques are preoccupied with reducing the size of an existing dis- 

retization, in order to obtain a more manageable problem size. 

or example Bomze et al. (2021a) employed a dissection tech- 

ique to the discretized probability measure. In essence, scenar- 

os are grouped together into m groups. Then the smaller sce- 

ario problems, that only involve scenarios from one group at time, 

re solved using probabilities conditional on the respective group. 

he so obtained solutions are averaged, with weights given by 

he probability of the respective group, in order to obtain a lower 

ound on the scenario problem. By varying the size of the groups 

ne can trade-off accuracy against the benefit of having to solve 

maller problems. 

Since (51) describes a class of non-convex QCQPs, which con- 

ains the StQP as a special case, it is NP-hard. However, it clearly 

s amenable to a convex reformulation based on Theorem 4 . Such 

 reformulation would involve the cone CPP (R 

n 1 + Sn 2 +1 
+ ) , hence a 

ifting in a space that scales quadratically with S. This is prob- 

ematic as the quality of the approximations yielded by the sce- 

ario problem depends on the number of scenarios considered. As 

 consequence, the classical convex reformulation becomes imprac- 

ical for those very cases where the scenario problem is relevant, 

amely when S is large. The authors of Bomze et al. (2021a) there- 

ore propose an alternative, albeit weaker, relaxation that scales 

inearly with S: 
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heorem 23. Consider the problem 

min 

 , y 1 , ... , y S 
x 

T A x + a T x + 

S ∑ 

s =1 

x 

T B s y s + y T s C y s + c T s y s 

s . t . : e T x + e T y s = 1 , s ∈ [1 : S] , 

x , y 1 , . . . , y S ≥ o . (52) 

he following conic optimization problem gives a lower bound, and if 

 s = αs e , B s = b s e 
T , αs ∈ R , b s ∈ R 

n 1 , i ∈ [1 : S] the bound is actu-

lly tight: 

min 

 , Y s , Z s . y s 
A • X + a T x + 

S ∑ 

s =1 

B s • Z s + C s • Y s + c T s y s 

s . t . : e T x + e T y s = 1 , s ∈ [1 : S] , 

E • X + 2 E • Z s + E • Y s = 1 , s ∈ [1 : S] , [ 

1 x 

T y T s 

x X Z 

T 
s 

y s Z s Y s 

] 

∈ CP P (R 

n 1 + n 2 +1 
+ ) , s ∈ [1 : S] . 

(53) 

Compared to the classical reformulation which involves 

PP (R 

n 1 + Sn 2 +1 
+ ) , the above relaxation merely exhibits S conic con- 

traints involving CPP (R 

n 1 + n 2 +1 
+ ) , hence growing linearly with S. 

his advantage comes at the cost of losing the exactness, so that 

utside of the special cases mentioned in the theorem, the conic 

roblem only provides a lower bound. However, numerical exper- 

ments conducted in Bomze et al. (2021a) , comparing the bounds 

btained by solving the DN N -relaxation of both the classical re- 

ormulation and (53) , suggest that the gap between the two tends 

o be very small. In fact the gap is so small that the authors hinted

t the possibility that it is merely a numerical artefact. The reduc- 

ion of computational effort on the other hand is substantially in 

avor of the lower-dimensional bound. 

We also would like to stress that the proof of Theorem 23 relies 

eavily on the theory laid out in Section 2 . By replacing the CPP 

onstraint with a more complicated conic constraint in a follow-up 

aper ( Gabl, 2022 ), it is even possible to close the relaxation gap

etween (52) and (53) entirely. Among the two proofs of this re- 

ult, one follows the strategy described in Section 2.1.2 . The conic 

onstraint used in Gabl (2022) is a structured generalization of 

PP -type cones and can be approximated via similar means. 

Another interesting feature of the methodology proposed in 

omze et al. (2021a) was their combination of upper bounds ob- 

ained by relaxations, first-order methods and global optimization 

olvers. As it turns out, (53) preserves the original space of vari- 

bles and thus yields not only a lower but also an upper bound. 

his feasible solution can be used as starting point for local algo- 

ithms such as the pairwise Frank–Wolfe algorithm, or for global 

olvers such as Gurobi . The quality of these refined upper bounds 

an then be assessed relative to the lower bound obtained by the 

elaxation. As numerical experiments suggest, optimality gaps can 

e reduced substantially and with reasonable computational effort, 

nd moreover the combination of procedures yields better results 

han each method would produce on their own. 

.1. Open problems 

Efficacy of the sparse model: As stated before, the bounds pro- 

duced by applying the DN N -relaxation to (53) are almost 

identical to the ones obtained from the DN N -relaxation of 

the classical model based on Theorem 4 . Based on the ex- 

periments in Bomze et al. (2021a) , we cannot rule out the 

possibility that the sparse relaxation is in fact tight. How- 

ever, despite some effort in Gabl (2022) , no such result was 
22 
found so far, nor were the authors able to produce a coun- 

terexample. 

. Mixed-binary linear optimization problems under objective 

ncertainty 

In ( Natarajan, Teo, & Zheng, 2011 ) the authors considered the 

ollowing optimization problem 

( ̃ c ) := max 
x ∈ R n + 

{
˜ c T x : A x = b , x j ∈ { 0 , 1 } , j ∈ B 

}
here ˜ c are uncertain objective function coefficients whose true 

robability distribution P is assumed to have support in R 

n + and 

part from that is ambiguous up to its first two moments, the 

ean μ := E ( ̃ c ) and covariance matrix � := E ( ̃ c ̃ c T ) . The authors

im to give an upper bound on E P [ Z( ̃ c )] by considering 

sup 

 

 ∼( μ, �) + 
E [ Z( ̃ c ) ] ≥ E P [ Z( ̃ c ) ] 

here ( μ, �) + is the set of all distributions with nonnegative sup- 

ort, mean μ and covariance matrix �. While the approach seems 

elated to the two-stage distributionally robust paradigm, since the 

ecision variables are allowed to adjust to the outcome of the un- 

ertainty the same way it would in a recourse problem, it is dif- 

erent in that we do not consider the worst-case distribution, but 

ather the best-case distribution. However, the worst-case inter- 

retation remains valid if the underlying optimization problem al- 

eady is a worst-case estimation, such as for the longest path prob- 

em. Another way to interpret this model is to see it as the second 

tage of a two-stage distributionally robust optimization problem 

here Z( ̃ c ) is the dual of recourse problem problem with uncer- 

ain right-hand sides (which is a valid interpretation if B = ∅ ). In-

eed both interpretations have featured in literature following up 

 Natarajan et al., 2011 ), which we will briefly discuss at the end of

his section. 

The authors approach this bound by providing a copositive re- 

ormulation of 

sup 

 

 ∼( μ, �) + 
E 

[
max 
x ∈ R n + 

{
˜ c T x : A x = b , x j ∈ { 0 , 1 } for all j ∈ B 

}]
(54) 

hich necessitates the following set of assumptions: 

ssumption 2. The following statements on Z( ̃ c ) hold : 

1. The set ( μ, �) + is nonempty. 

2. x ∈ R 

n + : A x = b implies x j ≤ 1 , j ∈ B. 

3. The feasible region of the inner maximization problem is 

nonempty and bounded. 

Note that the first assumption holds exactly if 

1 μT 

μ �

]
∈ CPP (R 

n +1 
+ ) , 

hich is, of course, an NP-hard task unless n + 1 ≤ 4 . The other

wo assumptions are checked easily, the second one can even 

e enforced generically by introducing additional constraints and 

lack variables (see our discussion succeeding Theorem 4 ). 

The reformulation rests on a particular mixed-moment lifting. 

ore precisely, let x (c ) denote the optimal solution (or in case of 

on-uniqueness, a measurable selection from the set of optimal so- 

utions) to Z(c ) where c is a realization of ˜ c . Then x ( ̃ c ) is a random

ector, and we define the random vector 

 ( ̃ c ) := 

[ 

1 

˜ c 
x ( ̃ c ) 

] 

∈ R 

2 n +1 
+ 
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1 μT p 

T 

μ � Y 

T 

p Y X 

] 

:= E 

[
y ( ̃ c ) y ( ̃ c ) T 

]

= 

⎡ ⎢ ⎣ 

1 E 

[
˜ c T 
]

E 

[
x ( ̃ c ) T 

]
E [ ̃ c ] E 

[
˜ c ̃ c T 
]

E 

[
˜ c x ( ̃ c ) T 

]
E [ x ( ̃ c ) ] E 

[
x ( ̃ c ) ̃ c T 

]
E 

[
x ( ̃ c ) x ( ̃ c ) T 

]
⎤ ⎥ ⎦ 

ince y ( ̃ c ) ∈ R 

2 n +1 
+ almost surely, and since CPP (R 

d + ) is closed, by

efinition of an integral as limit of finite positively weighted sums, 

bove matrix is clearly completely positive. Also, by construction 

he constraints 

 p = b i , diag 
(
AXA 

T 
)

= b ◦ b , X j j = p j , j ∈ B, 

re clearly valid for the so constructed variables, and the objective 

an be restated as 

 [ Z( ̃ c )] = E 

[
˜ c T x ( ̃ c ) 

]
= I • Y, 

here the max-operator was dropped since x (c ) is an optimal so- 

ution to Z(c ) . Based on this lifting, the authors were able to prove

he following theorem. 

heorem 24. Under Assumption 2 , Problem (54) is equivalent to 

max 
p , X , Y 

I • Y 

A p = b i , 

diag 
(
AXA 

T 
)

= b ◦ b , 

X j j = p j , j ∈ B, 
 

1 μT p 

T 

μ � Y 

T 

p Y X 

] 

∈ CPP (R 

2 n +1 
+ ) , 

n the sense that their optimal value is the same, and that for an opti-

al solution (p 

∗, Y 

∗, X 

∗) there exists a sequence of non-negative ran-

om objective coefficient vectors ˜ c ∗ε and feasible solutions x ∗( ̃ c ∗ε ) con- 

erging in moments to this optimal solution, i.e., 

im 

↘ 0 
E 

⎛ ⎝ 

[ 

1 

˜ c ε 
x ( ̃ c ε ) 

] [ 

1 

˜ c ε 
x ( ̃ c ε ) 

] T 
⎞ ⎠ = 

[ 

1 μT (p 

∗) T 

μ � (Y 

∗) T 

p 

∗ Y 

∗ X 

∗

] 

. 

An interesting feature of this reformulation is that for binary 

ariables x j , j ∈ B, the optimal solutions p ∗
j 

have an interpretation 

s success probabilities (for x j ( ̃ c ) = 1 ): 

p ∗j = E 

[
x j ( ̃ c ) 

]
= 1 ∗ P (x j ( ̃ c ) = 1) + 0 ∗ P (x j ( ̃ c ) = 0) = P (x j ( ̃ c ) = 1) 

nder the limiting distribution of ˜ c . 

The authors further extend their approach to different cases 

here ( μ, �) are not exactly known but also to instances where 

he support of the objective function coefficients is all of R 

n , in 

hich case the conic constraint merely needs to enforce mem- 

ership in CPP (R + × R 

n × R 

n + ) . The later case is further inves- 

igated in the follow-up paper ( Natarajan & Teo, 2017 ), where 

he authors apply Proposition 11 .6., in order to derive models 

ith reduced computational complexity and some applications. In 

 Padmanabhan, Natarajan, & Murthy, 2021 ) it is shown that in the 

bove model one can exploit the structure of uncertainty in � in 

rder to obtain reformulations with conic constraints of smaller 

imension. For the sake of conciseness we will not present these 

odels here. Beyond that, the approach has sparked some promis- 

ng developments that involve interesting generalizations and ap- 

lications of the approach described in this section. In ( Kong, Lee, 

eo, & Zheng, 2013 ) the authors investigated scheduling of arrivals 

o a stochastic service delivery system for which they modeled 
23
he second-stage problem in a fashion similar to (54) , where ad- 

itionally the uncertain objective ˜ c also depends on a first-stage 

ecision. Their approach is also interesting since they derive a 

odel similar to that in Theorem 24 with a different angle, based 

n moment decompositions. In ( Kong, Li, Liu, Teo, & Yan, 2015 ) 

he authors investigated appointment scheduling under schedule- 

ependent patient no-show behaviour, where a similar model was 

mployed that also incorporates uncertainty in the right-hand side 

 . The discussion on the design of structures in operations in Yan, 

ao, & Teo (2018) is an example where Z( ̃ c ) is interpreted as the 

ual of a linear problem with uncertain right-hand sides. In ad- 

ition, they avoid the computational cost of introducing slack vari- 

bles, which would increase the copositive matrix block, by replac- 

ng the respective constraints by a single bilinear constraint. Thus, 

heir exposition also expands the applicability of the model in this 

egard. 

.1. Open problems 

Geometrical analysis of Theorem 24 : In the original paper 

( Natarajan et al., 2011 ), the authors prove their main result 

with a methodology that has a striking resemblance with 

the proof strategy that was first used in Burer (2009) to 

prove Theorem 4 (for the special case K = R 

n + ), where the 

added complication comes from the fact that the analysis 

has to proceed in the space of probability measures. In our 

discussion in Section 2.1.2 we presented an alternative strat- 

egy to the classical approach to Theorem 4 that rests on 

the geometrical analysis provided in Kim et al. (2020) . How- 

ever, it is not clear that a similar geometrical proof can be 

achieved for Theorem 24 , since for Theorem 6 we assumed 

the vector space to be of finite dimension. It would be inter- 

esting to investigate whether a geometric approach similar 

to Kim et al. (2020) can be extended to the case of infinite- 

dimensional vector spaces in order to prove results such as 

Theorem 24 . 

General data uncertainty and problem structure: An immedi- 

ate question is whether the approach can be generalized to 

cases where not only the objective function coefficients, but 

also other parts of the problem data are uncertain. Also, in 

analogy to Theorem 4 , it would be interesting to study gen- 

eralizations of (54) where x ∈ K for choices of K other than 

the positive orthant, and where binarity constraints are gen- 

eralized to other types of quadratic constraints. 

. Two-stage distributionally robust optimization: conic 

ormulation 

In ( Hanasusanto & Kuhn, 2018 ) the authors applied a distribu- 

ionally robust framework to two-stage robust optimization. Anal- 

gously to the adjustable robust framework, the second-stage vari- 

bles are allowed to adapt to the uncertainty, and the goal is 

o optimize expected performance under distributional ambiguity. 

he authors introduce copositive reformulations and relaxations 

or this model, and show that the resulting approximations out- 

erform state-of-the-art approaches. 

In the following exposition, ambiguity sets are modelled as a 

asserstein balls, centered around an empirical distribution: 

 

r 
ε ( ̂  P I ) := 

{
P ∈ M 

r (U ) : W 

r (P, ˆ P I ) ≤ ε 
}
, (55) 

here, from now on, U := 

{
u ∈ R 

k + : S u ≤ t 
}

is a nonempty, poly- 

edral support, with S ∈ R 

j×k and t ∈ R 

j , and 

ˆ P I is the empirical

robability measure based as defined in Section 3.1 . 
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k =1 

φ

s

λ ˆ u i −
W̄ ψ 

w

w

d

 

e

c

(

w

i

l  

p  

c

.1. Problem formulation 

The model under consideration is 

in 

x ∈X 

[
c T x + R (x ) 

]
, (56) 

here X ⊆ R 

n 1 is a feasible set not stricken with uncertainty, and 

 (x ) is the distributionally robust analog to the recourse function 

iven by 
 (x ) := sup 

P∈P 
E P [ Z(x , u ) ] , (57) 

here u ∈ U ⊆ R 

q is a random vector, and P is an ambiguity set of

he possible distributions of u . The recourse problem is given by 

Z(x , u ) := inf 
y ∈ R n 2 

{
( Q u + q ) 

T y : T (x ) u + h (x ) ≤ Wy 
}

Z d (x , u ) := sup 

p ∈ R m + 

{
[ T (x ) u + h (x ) ] 

T 
p : Q u + q = W 

T p 

}
here T (x ) and h (x ) are appropriate matrix- and vector-valued 

unctions and Z d (x , u ) denotes the dual of Z(x , u ) . The following

wo assumptions on the recourse problem have critical influence 

n the behaviour copositive bounds we are about to derive: 

ssumption 3. Regarding the recourse problem we consider the 

ollowing qualities: 

(a) Complete recourse: There exists y + ∈ R 

n 2 so that W y + > o . 

(b) Suffiently expensive recourse: For any u ∈ U the dual problem 

Z d is bounded. 

Complete recourse ensures that Z(x , u ) is always finite while 

ufficiently expensive recourse ensures Z(x , u ) is always feasible. 

f the recourse problem exhibits either of these qualities then 

(x , u ) = Z d (x , u ) . Assumption 3 b) will be maintained throughout

he discussion, while different results will be presented no matter 

hether Assumption 3 a) is satisfied or not. 

.2. Conic reformulation 

The following theorem is at the heart of the derivation of the 

opositive bounds: 

heorem 25. If P = B 

r 
ε ( ̂  P I ) the worst-case expectation (57) coincides 

ith the optimal value of the generalized moment problem 

 (x ) = sup 
P i ∈M 

r (U ) 

{ 

1 
I 

I ∑ 

i =1 

∫ 
U 

Z(x , u ) P i (d u ) : 
1 
I 

I ∑ 

i =1 

∫ 
U 

[ d(u , ̂  u i )] r P i (d u ) ≤ ε r 

} 

. 

(58) 

urthermore, for ε > 0 this problem admits the strong dual robust op- 

imization problem 

 (x ) = inf 
λ∈ R + 

[ 

ε r λ + 

1 
I 

I ∑ 

i =1 

sup 

u ∈U 
Z(x , u ) − λ d(u , ̂  u ) r 

] 

. (59) 

The first formulation can be related to a completely positive op- 

imization problem, the second one to a copositive optimization 

roblem. These conic problems can be shown to be duals of each 

ther. Assumption 3 a) can then be used in order to close the du-

lity gap, so that one achieves a conic reformulation of R (x ) that

njoys strong duality. The conic optimization problems in question 

re: 

R̄ (x ) := inf 
λ∈ R + ,s i ∈ R , ψ i , φi ∈ R n 2 + j 

{ 

ε 2 + 

1 
I 

I ∑ 

i =1 

[ 

s i + q̄ 

T ψ i − λ‖ ̂

 u i ‖ 

2 + 

 . t . : 

⎡ ⎣ 

λI + Q̄ 

T Diag ( φi ) ̄Q − 1 
2 ̄
T (x ) T − Q̄ 

T Diag ( φi ) ̄W 

T −
− 1 

2 ̄
T (x ) − W̄ Diag ( φi ) ̄Q W̄ Diag ( φi ) ̄W 

T 1 
2 

[[
−λ ˆ u i − 1 

2 
Q̄ 

T ψ i 

]T 1 
2 

[
W̄ ψ i − h̄ (x ) 

]T 
24 
i ( ̄q ) k 

] } 

1 
2 
Q̄ 

T ψ i 

i − h̄ (x ) 
]

s i 

⎤ ⎦ ∈ COP (R 

k + m + j+1 
+ ) , 

i ∈ [1 : I] , 

here 

Q̄ := 

[
Q 

S 

]
, q̄ := 

[
q 

−t 

]
, T̄ (x ) := 

[
T (x ) 

O 

]
, 

h̄ (x ) := 

[
h (x ) 

o 

]
, W̄ := 

[
W O 

O I 

]
, 

hile 

R (x ) := sup 

1 
I 

I ∑ 

i =1 

[
Tr ( ̄T (x ) Y i ) + h̄ (x ) T γ i 

]
s . t . : Q̄ μi + q̄ = W̄ 

T γ i , i ∈ [1 : I] , 

iag 

( [
Q̄ 

−W̄ 

][
�i Y i 

Y 

T 
i 

�i 

][
Q̄ 

−W̄ 

]T 
) 

= q̄ ◦ q̄ , i ∈ [1 : I] , 

1 
I 

I ∑ 

i =1 

[
Tr (�i ) − 2 ̂

 u 

T 
i μi + 

ˆ u 

T 
i ˆ u i 

]
≤ ε 2 , [ 

�i Y i μi 

Y 

T 
i 

�i γ i 

μT 
i 

γT 
i 

1 

] 

∈ CPP 

(
R 

k + m + j ) , i ∈ [1 : I] . 

In a nutshell, the argument proceeds as follows: 

• Show that R (x ) ≤ R̄ (x ) by replacing Z(x , u ) by Z d (x , u ) so

that the inner supremum problems become quadratic op- 

timization problems that, after squaring their linear con- 

straints, are upper bounded by their completely positive re- 

laxations. Combining the suprema we obtain a conic prob- 

lem that is itself upper bounded by its dual that is in fact 

given by R̄ (x ) . 

• Show that R (x ) ≥ R (x ) by an argument resembling the proof 

of Theorem 4 , with the added difficulty that the decomposi- 

tion of feasible solutions of R (x ) have to be translated into 

approriately constructed, discrete probability measures. 

• The gaps can then be closed by showing that strong duality 

holds between the two conic optimization problems. While 

weak duality is immediate from the standard derivation of 

conic duals, closing the gap involves a generalization of the 

sufficiency part of the Shur-complementation criterion for 

positive definiteness to copositive matrices. For the so ob- 

tained relaxation, a Slater point can be constructed under 

Assumption 3 a), which by sufficiency yields a Slater point 

for R̄ (x ) . 

Hence, a conic reformulation of the recourse problem that 

njoys strong duality is obtainable given that the problem has 

omplete recourse. Replacing R (x ) by R̄ (x ) in the description of 

56) yields a finite, conic reformulation that can be approximated 

ith standard techniques. 

In case the latter assumption fails, the authors prove approx- 

mation results that use a slight modification of the conic prob- 

ems. Define R̄ δ(x ) the same way as R̄ (x ) with W̄ Diag ( φi ) W̄ 

T re-

laced by W̄ Diag ( φi ) W̄ 

T + δI , i ∈ [1 : I] , with δ > 0 a constant, and

onsider 
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in 

x ∈X 

[
c T x + R̄ δ(x ) 

]
. (60) 

gain we have a finite, conic optimization problem for which the 

ollowing theorem can be proved. 

heorem 26. The following statements hold: 

1. If δ = 0 and (56) has complete recourse, then it is equivalent 

to (60) . 

2. If δ = 0 and (56) fails to have complete recourse, then it is up- 

per bounded by (60) . 

3. If δ > 0 , then (56) is lower bounded by (60) . 

4. If X is compact, then the optimal value of (60) converges to 

that of (56) as δ ↘ 0 . Moreover, every cluster point x ∗ of a se-

quence 
{

x ∗
δ

}
δ↘ 0 

of minimizers to (60) is a minimizer to (56) . 

.3. Open problems 

Multi-stage distributionally robust optimization: Results in 

two-stage robust optimization are often not that easy to 

generalize to the multi-stage setting. It would be an inter- 

esting challenge to investigate whether the approach above 

is useful for tackling the multi-stage distributionally robust 

optimization problem under Wasserstein ambiguity. 

The case of uncertain recourse: Similar to the discussion in 

Section 5.3 , the case of uncertain recourse is an open prob- 

lem for the approach. The reason is basically the same: 

quadratic terms in the constraints of the recourse problem 

limit the application of copositive techniques. Hence, more 

research is needed in this regard. 

Unified analysis of the two-stage setting: There is a strong re- 

lation between some of the approaches we have discussed 

so far. In fact the authors of both ( Hanasusanto & Kuhn, 

2018; Xu & Burer, 2018 ) point out that the exactness of 

(43) from Section 5 is equivalent to Theorem 26 . In addi- 

tion, the recourse function R (x ) bears striking resemblance 

to (55) discussed in Section 8 , once the infimum prob- 

lem Z(x , u ) is replaced replaced by the supremum prob- 

lem Z d (x , u ) , and both models are eventually reformulated 

into a copositve optimization problem. However, all three 

approaches use very different methods to derive their re- 

sults and even more, results similar to those in Natarajan 

et al. (2011) are derived in Kong et al. (2013) with a dif- 

ferent proof strategy. It is therefore plausible that there is 

a unifying lens under which all these approaches can be un- 

derstood, perhaps based on the geometrical analysis hinted 

at in Section 8.1 , but so far such an approach is absent from

the literature. 

0. Conclusions 

Copositive optimization tools for quadratic optimization are an 

ctive area of research that yields a plethora of possible applica- 

ions in optimization under risk and uncertainty. Research in re- 

ent history has shown that the interplay between these two fields 

parks powerful approaches that are competitive especially when 

t comes to modelling and improving bounds on difficult prob- 

ems. Still many open questions and potential new research areas 

emain, some of which we pointed out in our discussion. At this 

oint we also like to point out a major area where, hopefully, im- 

rovements can be made in the future and that is the question 

f how to make copositive optimization more practical. The major 

rawback of the this technology remains the substantial computa- 

ional burden that come along with solving even simple approxi- 

ations. We believe there are many untapped sources for improve- 

ent on that front. We hope that this text is able to encourage 
25 
eaders to engage in these challenging questions and to expand on 

hese ideas in future research. 

ppendix A. Longer proofs 

roof of Theorem 4. We will prove only a weaker version 

f the theorem, where we assume L to be bounded. As in 

roposition 5 we denote by M = [ b , −A ] and define 

 := ext ( CPP (R + × K) ) , 

J := 

{
Y ∈ CPP (R + × K) : ̂  Q i • Y = 0 , i ∈ [0 : m ] 

}
, 

nd let ̂ Q i be defined as in Section 2.1.2 . We can rewrite the QCQP 

s 

min 

Y 

{
Q̄ 0 • Y : H 0 • Y = 1 , ̂ Q i • Y = 0 , i ∈ [0 : m ] , 

Y ∈ ext ( CPP (R + × K) ) } 
 min 

Y 

{〈 ̄Q 0 , Y〉 : Y ∈ K ∩ J , 〈 H 0 , Y〉 = 1 

}
hile the convex reformulation can be rewritten as 

min 

Y 

{
Q̄ 0 • Y : H 0 • Y = 1 , ̂ Q i • Y = 0 , i ∈ [0 : m ] , 

Y ∈ CPP (R + × K) } 
 min 

Y 

{〈 ̄Q 0 , Y〉 : Y ∈ J , 〈 H 0 , Y〉 = 1 

}
f we want to use Theorem 6 to show that the two problems are

quivalent we need to show that H ∩ K � = ∅ is bounded and that J

s a face of conv (K ) . To show that boundedness consider that 

 ∩ J := 

{
Y ∈ CPP (R + × K) : ̂  Q i • Y = 0 , i ∈ [0 : m ] , H 0 • Y = 1 

}
⊆
{
Y ∈ CPP (R + × K) : ̂  Q 0 • Y = 0 , H 0 • Y = 1 

}
=: J 0 . 

e will prove that J 0 is bounded. The recession cone of J 1 is given

y 

 

+ 
J 0 = 

{
Y ∈ CPP (R + × K) : ̂  Q 0 • Y = 0 , H 0 • Y = 0 

}
. 

o assume O � = Y ∈ 0 + J 0 . We have 

 ∈ CPP (R + × K) ⇒ Y = 

k ∑ 

i =1 

y i y 
T 
i with y i ∈ R + × K 

 

 0 • Y = 

k ∑ 

i =1 

y T i M 

T M y i = 0 ⇒ M y i = o 

 0 • Y = 

k ∑ 

i =1 

(y i ) 
2 
n +1 = 0 ⇒ (y i ) n +1 = 0 

o y i = 

[
x i o 

]
for some x i ∈ K with A x i = o , but then L :=

 

x ∈ K : A x = b } is not bounded contrary to our assumption. Hence 

 

+ J 1 contains only the origin so that J 1 is bounded. 

Let’s unpack 

 = 

{
Y ∈ CPP (R + × K) : ̂  Q i • Y = 0 , i ∈ [0 : m ] 

}
= 

{
Y ∈ CPP (R + × K) : M 

T M • Y = 0 , ̂  Q i • Y = 0 , i ∈ [1 : m ] 
}
, 

nd define J −1 = conv (K ) = CPP (R + × K) and 

 p := 

{
Y ∈ CPP (R + × K) : M 

T M • Y = 0 , ̂  Q i • Y = 0 , i ∈ [1 : p] 
}
. 

irst, note that M 

T M ∈ S n +1 
+ so M 

T M • xx T ≥ 0 for all x ∈ K, which

mplies that M 

T M • X ≥ 0 for all X ∈ conv (K ) so that M 

T M ∈
onv (K ) ∗. As a side product we get that conv (H ∩ K ∩ J 1 ) = H ∩ J 1 

y Theorem 6 since J 1 is a face of K by Theorem 7 . Thus we have

onv (H ∩ K ∩ J 1 ) = conv 
{

yy T : y ∈ R + × K : y T M 

T M y = 0 , y 2 n +1 = 1 
}

= conv 
{
Y ∈ ext ( CPP (R + × K) ) : ̂  Q 0 • Y = 0 , Y n +1 = 1 

}
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= 

{
Y ∈ CPP (R + × K) : ̂  Q 0 • Y = 0 , Y n +1 = 1 

}
= H ∩ J 1 

ow by the key assumption for any i ∈ [1 : m ] we have 

 

 i • yy T ≥ 0 for all y ∈ R + × K : M y = o , y n +1 = 1 , 

o that 

 

 i • Y ≥ 0 for all Y ∈ conv 
{

yy T : y ∈ R + × K : M y = o , y n +1 = 1 
}

= conv 
{

yy T : y ∈ R + × K : y T M 

T M y = 0 , y 2 n +1 = 1 
}

= conv 
{
Y ∈ ext ( CPP (R + × K) ) : ̂  Q 0 • Y = 0 , Y n +1 = 1 

}
= conv (H ∩ K ∩ J 1 ) = H ∩ J 1 

hus ̂ Q i ∈ J ∗
1 

for any i ∈ [1 : m ] . But J p ⊆ J 1 for any p ∈ [2 : m ] which

mplies J ∗
1 

⊆ J ∗p for any p ∈ [2 : m ] . Consequently, ̂ Q i ∈ J ∗p for any

 ∈ [1 : m ] , p ∈ [2 : m ] . We have argued that ̂ Q 0 := M 

T M ∈ conv (K ) ∗

nd that ̂ Q p ∈ J ∗p−1 . So J is a face of conv (K ) . �

roof of Theorem 8. An elementary argument shows that 

(∪ 

k 
i =1 

F i ) = conv ∪ 

k 
i =1 

G(F i ) . Clearly, for a convex combination 

 = 

∑ k 
i =1 λi X i with X i ∈ G(F i ) , i ∈ [1 : k ] we have ˆ X i := λi X i ∈ C i ,

ith A ( ̂  X i ) = o so that H • ( 
∑ k 

i =1 
ˆ X i ) = 

∑ k 
i =1 λi H • X i = 

∑ k 
i =1 λi =

 . Conversely, for an X := 

∑ k 
i =1 X i with X i ∈ C i , with A ( ̂  X i ) = o

nd H • X = 1 , we can write X = 

∑ k 
i =1 (H • X i ) 

X i 
H •X i since H • X i > 0

y assumption and we have 
X i 

H •X i ∈ C i , A ( 
X i 

H •X i ) = o and 

∑ k 
i =1 (H •

 i ) = H • X = 1 as desired. �

roof of Proposition 11. We start observing extremality of dyadic 

atrices: suppose xx T = A + B with { A , B } ⊂ S n + . Then 

x 

T u ) 2 = u 

T A u + u 

T B u for all u ∈ R 

n 

hich implies x ⊥ ⊆ ker A ∩ ker B . If x = o , this already yields A =
 = O . If x � = o , spectral decomposition of A and B yields by above

 = αxx T and B = βxx T for some { α, β} ⊂ R + with α + β = 1 ,

hich shows extremality of xx T in S n + and also in all CPP (K) for 

ny cone K. Next we observe uniqueness up to reflection for vec- 

ors building dyadic matrices: 

x 

T = yy T �⇒ x ∈ {−y , y } . (61) 

ndeed, considering 

 x ‖ 

4 = x 

T (xx 

T ) x = x 

T (yy T ) x = (x 

T y ) 2 = y T (xx 

T ) y = ‖ y ‖ 

4 

e have the equality case of the Cauchy–Schwarz inequality which 

ields either y = o or else x = αy with α4 = 1 , so in any case x =
y or x = y . 

Now let us consider each point individually: 

1. COP (K) = COP (−K) = COP (K ∪ −K) , which also holds if 

COP is replaced with CPP . 

We can simply appeal to y T X y = (−y ) T X (−y ) and yy T =
(−y )(−y ) T . 

2. If K 1 ⊆ K 2 , then CPP (K 1 ) ⊆ CPP (K 2 ) with equality if and 

only if K 2 ⊆ K 1 ∪ −K 1 . 

The inclusions are obvious, as is sufficiency for the equali- 

ties, using 1. Now assume x ∈ K 2 and identity of the CPP 

cones. Then, by extremality of dyadic matrices xx T = yy T for 

some y ∈ K 1 , so x = ±y ∈ K 1 ∪ −K 1 by (61) . 

3. If K 1 ⊆ K 2 , then COP (K 1 ) ⊇ COP (K 2 ) ; if in addition we as-

sume int K 

∗
2 � = ∅ , we have COP (K 1 ) = COP (K 2 ) if and only

if 2 K 2 ⊆ cl K 1 . 

Again, the inclusion statements of the COP cones is obvious. 

Assume now they are identical and suppose, arguing by con- 

tradiction, the existence of an x ∈ K 2 \ cl K 1 . Then x � = o and
2 note that K 1 ⊆ K 2 ⊆ cl (K 1 ∪ −K 1 ) and int K ∗2 � = ∅ already implies K 2 ⊆ cl K 1 , 
o that this criterion coincides with the criterion of 2. up to closure 

26 
moreover, there is a c ∈ int K 

∗
2 \ { o } such that c T x > 0 . Since

c ∈ int K 

∗
2 

⊆ int K 

∗
1 
, the set 

B := { z ∈ cl K 1 : c 
T z = c T x } 

is a compact base of cl K 1 and ρ := dist (x , cl K 1 ) > 0 . It fol-

lows that the quadratic form 

y T Q y = q (y ) := ‖ y − c T y 

c T x 

x ‖ 

2 − ρ2 

(
c T y 

c T x 

)2 

satisfies q (x ) = −ρ2 < 0 while on the other hand, we have

for any y ∈ cl K 1 \ { o } that ȳ := 

c T y 

c T x 
y ∈ B , so 

q (y ) = 

(
c T y 

c T x 

)2 

q ( ̄y ) ≥ 0 , 

since q ( ̄y ) = ‖ ̄y − x ‖ 2 − ρ2 ≥ 0 by definition of ρ . In partic-

ular Q ∈ COP (K 1 ) = COP (K 2 ) which is absurd in view of 

the relations x ∈ K 2 and q (x ) < 0 . Hence K 2 ⊆ cl K 1 . This in-

clusion implies, conversely, the already observed COP inclu- 

sions (for the leftmost identity see 12. below) 

COP (K 1 ) = COP ( cl K 1 ) ⊆ COP (K 2 ) ⊆ COP (K 1 ) . 

Note that for the CPP cones, we have a different im- 

plication: if K 1 ⊆ K 2 ⊆ cl (K 1 ∪ −K 1 ) then not necessarily 

CPP (K 1 ) = CPP (K 2 ) but cl CPP (K 1 ) = CPP (K 2 ) , cf., again,

12. below. For the footnote 0 in this point, note that, by 

virtue of K 1 ⊆ K 2 , all z ∈ K 2 \ cl K 1 ⊆ K 2 ∩ (− cl K 1 ) ⊆ K 2 ∩
(− cl K 2 ) satisfy c T z = 0 for any c ∈ int [ K 2 ] 

∗, implying z =
o ∈ cl K 1 , which is absurd. Thus the assumptions yield K 2 ⊆
cl K 1 . 

4. CPP (K) ⊆ S n + ⊆ COP (K) ; all three sets are equal if and only 

if K ∪ −K = R 

n . 

We obviously have CPP (R 

n ) = S n + = COP (R 

n ) . Now special- 

ize K 1 = K ∪ −K and K 2 = R 

n in 2. and 3., to arrive at the

claim, using 1. 

5. COP (R + × R 

m ) = CPP (R + × R 

m ) = S m +1 
+ . 

The statement follows from 4. since K = R + × R 

m satisfies 

K ∪ −K = R 

m +1 . 

6. CPP (K × R 

m ) = 

{(
M 11 M 

T 
21 

M 21 M 22 

)
∈ S m + n 

+ : M 11 ∈ CPP (K) 

}
if 

o ∈ K. 

The statement was proved first in Dickinson (2013) and then 

independently in Natarajan & Teo (2017) , both for the case 

that K is closed. We present an alternative proof that merely 

requires o ∈ K. Sufficiency is clear, since any set-completely 

positive matrix cone is a subset of the positive semidefi- 

nite matrix cone and the north-west block of any matrix in 

CPP (K × R 

m ) is in CPP (K) . So consider an element M of 

the right-hand set. Since it is a psd matrix we have a de- 

composition 

M = 

[
M 11 M 

T 
21 

M 21 M 22 

]
= 

[
X 

Y 

][
X 

Y 

]T 

with X ∈ R 

n ×r , Y ∈ R 

m ×r , 

so that M 11 = XX 

T . But we also have M 11 ∈ CPP ( K ) , so that

in fact M 11 = ZZ 

T for some n × s matrix Z with z i ∈ K for all

i ∈ [1 : s ] . If s � = r we can always append columns of zeroes

to the smaller matrix without changing the relation XX 

T = 

ZZ 

T , so that w.l.o.g. we can assume s = r. From Groetzner & 

Dür (2020 , Lem. 2.6) we then have that XX 

T = ZZ 

T is the

case exactly if Z = XQ for some Q ∈ R 

r×r with QQ 

T = I . Set

Ȳ = YQ . Then the decomposition [
Z 

Ȳ 

][
Z 

Ȳ 

]T 

= 

[
XQ 

YQ 

][
XQ 

YQ 

]T 

= 

[
XQQ 

T X 

T XQQ 

T Y 

T 

YQQ 

T X 

T YQQ 

T Y 

T 

]



I.M. Bomze and M. Gabl European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; December 20, 2022;16:44 ] 

 

 

R

A

A

A

A

A

A

B

B
B

B

B

B

B

B

B

B  

B

B

B  

B

B

B

B  

B

B

B

B  

B

B

B  

B

B

B

B

B

B

= 

[
X 

Y 

][
X 

Y 

]T 

= M (62) 

has Ȳ ∈ R 

m ×r and all columns of Z in K, since by assumption 

also o ∈ K (which holds automatically if K is closed), so that 

it certifies the membership of M in CPP ( K × R 

m ) . 

7. COP (K 1 ∪ K 2 ) = COP (K 1 ) ∩ COP (K 2 ) . 

Here we use the fact that 

x T M x ≥ 0 for all x ∈ K 1 ∪ K 2 ⇐⇒ 

⇐⇒ x T M x ≥ 0 for all x ∈ K 1 and x T M x ≥ 0 for all x ∈ K 2 

8. CPP (K 1 ∪ K 2 ) = CPP (K 1 ) + CPP (K 2 ) . 

For x i ∈ K 1 ∪ K 2 , i ∈ [1 : k ] , we can divide the vectors into two

groups y j ∈ K 1 , z r ∈ K 2 so that 
∑ 

i x i x 
T 
i 

= 

∑ 

j y j y 
T 
j 

+ 

∑ 

r z r z 
T 
r . 

9. CPP ( conv K) ⊇ CPP (K) with equality if K is convex. 

Follows by 2., since conv K contains K. 

10. COP ( conv K) ⊆ COP (K) with equality if K is convex. 

Again the set inclusion is obvious by 3. 

11. CPP (K) = 

{ ∑ k 
i =1 x i x 

T 
i 

: x i ∈ int K, span { x 1 , . . . , x k } = R 

n 
} 

if 

K is closed, convex and int K � = ∅ . 
The proof for K = R 

n + presented in Dickinson (2010) can be 

extended to any closed convex cone K with nonempty inte- 

rior. 

12. COP (K) = cl COP (K) = COP ( cl K) while CPP ( cl K) = 

cl CPP (K) . 

The first two equalities follow from the continuity of 

quadratic functions. The last one is obtained as follows: 

it is clear from continuity that CPP ( cl K) ⊆ cl [ CPP (K)] . To 

establish the reverse inclusion, consider a sequence with 

λ(ν) ∈ �k and x (ν) 
i 

∈ K, all i ∈ [1 : k ] : 

X 

(ν) = 

k ∑ 

i =1 

λ(ν) 
i 

x 

(ν) 
i 

[ x 

(ν) 
i 

] T → A ∈ S n as ν → ∞ . 

Because 

‖ 

√ 

λ(ν) 
i 

x 

(ν) 
i 

‖ 

2 ≤
k ∑ 

j=1 

λ(ν) 
j 

‖ x 

(ν) 
j 

‖ 

2 = Tr (X 

(ν) ) → Tr (A ) 

remains bounded for all i ∈ [1 : k ] , we may select a subse-

quence along which 

√ 

λ(ν) 
i 

x (ν) 
i 

→ y i ∈ cl K as ν → ∞ , for all 

i ∈ [1 : k ] . Again by continuity, we infer 

A = 

k ∑ 

i =1 

1 
k 

[ 
√ 

k y i ][ 
√ 

k y i ] 
T ∈ CPP ( cl K) , 

which shows cl [ CPP (K)] ⊆ CPP ( cl K) . 

13. COP (K) = COP ( relint K) , if K is convex. 

follows from 12. and the fact that for all convex sets K, we 

have cl K = cl ( relint K) . 

14. int COP (K) = 

{
Q ∈ S n : x T Q x > 0 for all x ∈ K \ { o } }. 

The statement follows from 

int COP (K) = { Q : Q • X > 0 for all X ∈ CPP (K) \ { O } } 
= { Q : Q • X > 0 for all X ∈ CPP (K) \ { O } } 
= { Q : Q • X > 0 for all X ∈ ext ( CPP (K) ) \ { O } } 
= 

{
Q : x T Q x > 0 for all x ∈ K \ { 0 } }. �
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