
E M B E D D I N G B A S E D L I N K P R E D I C T I O N F O R
K N O W L E D G E G R A P H C O M P L E T I O N

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

von der KIT-Fakultät für Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION
von

M.Sc. RUSSA BISWAS

Tag der mündlichen Prüfung: November 24, 2022

Referent: Prof. Dr. Harald Sack
Korreferent: Prof. Dr. Paul Groth

This thesis is dedicated to my parents
Kalpana and Pradyot Biswas

A B S T R A C T

Knowledge Graphs (KGs) are the most widely used representation of structured information about a
particular domain consisting of billions of facts in the form of entities (nodes) and relations (edges)
between them. Besides, the KGs also encapsulate the semantic type information of the entities. The last
two decades have witnessed a constant growth of KGs in various domains such as government, scholarly
data, biomedical domains, etc. KGs have been used in Machine Learning based applications such as
entity linking, question answering, recommender systems, etc. Open KGs are mostly heuristically created,
automatically generated from heterogeneous resources such as text, images, etc., or are human-curated.
However, these KGs are often incomplete, i.e., there are missing links between the entities and missing
links between the entities and their corresponding entity types. This thesis focuses on addressing these
two challenges of link prediction for Knowledge Graph Completion (KGC): (i) General Link Prediction
in KGs that include head and tail prediction, triple classification, and (ii) Entity Type Prediction.

Most of the graph mining algorithms are proven to be of high complexity, deterring their usage in
KG-based applications. In recent years, KG embeddings have been trained to represent the entities and
relations in the KG in a low-dimensional vector space preserving the graph structure. In most published
works such as the translational models, convolutional models, semantic matching, etc., the triple infor-
mation is used to generate the latent representation of the entities and relations.

In this dissertation, it is argued that contextual information about the entities obtained from the ran-
dom walks, and textual entity descriptions, are the keys to improving the latent representation of the
entities for KGC. The experimental results show that the knowledge obtained from the context of the
entities supports the hypothesis. Several methods have been proposed for KGC and their effectiveness
is shown empirically in this thesis. Firstly, a novel multi-hop attentive KG embedding model MADLINK
is proposed for Link Prediction. It considers the contextual information of the entities by using random
walks as well as textual entity descriptions of the entities. Secondly, a novel architecture exploiting the
information contained in a pre-trained contextual Neural Language Model (NLM) is proposed for Triple
Classification. Thirdly, the limitations of the current state-of-the-art (SoTA) entity type prediction models
have been analysed and a novel entity typing model CAT2Type is proposed that exploits the Wikipedia
Categories which is one of the most under-treated features of the KGs. This model can also be used to
predict missing types of unseen entities i.e., the newly added entities in the KG. Finally, another novel
architecture GRAND is proposed to predict the missing entity types in KGs using multi-label, multi-class,
and hierarchical classification by leveraging different strategic graph walks in the KGs. The extensive ex-
periments and ablation studies show that all the proposed models outperform the current SoTA models
and set new baselines for KGC.

The proposed models establish that the NLMs and the contextual information of the entities in the
KGs together with the different neural network architectures benefit KGC. The promising results and
observations open up interesting scopes for future research involving exploiting the proposed models
in domain-specific KGs such as scholarly data, biomedical data, etc. Furthermore, the link prediction
model can be exploited as a base model for the entity alignment task as it considers the neighbourhood
information of the entities.

v

Z U S A M M E N FA S S U N G

Wissensgraphen (Knowledge Graphs, KGs) sind die am weitesten verbreitete Darstellung strukturierter
Informationen über einen bestimmten Bereich, der aus Milliarden von Fakten in Form von Entitäten (Kno-
ten) und Beziehungen (Kanten) zwischen ihnen besteht. Daneben beinhalten die KGs auch semantische
Informationen der Entitäten. In den letzten zwei Jahrzehnten hat die Zahl der KGs in verschiedenen Be-
reichen wie Verwaltungsdaten, wissenschaftlichen Daten oder biomedizinischen Daten ständig zugenom-
men. KGs werden in auf maschinellem Lernen basierenden Anwendungen wie Entity Linking, Question
Answering Systemen oder in Empfehlungssystemen verwendet. Offene KGs werden meistens heuristisch
erstellt, automatisch aus heterogenen Ressourcen wie Text, Bildern usw. generiert oder von Menschen-
hand kuratiert. Diese KGs sind jedoch oft unvollständig, d.h. es fehlen Verknüpfungen zwischen den
Entitäten sowie Verknüpfungen zwischen den Entitäten und ihren zugehörigen Typeninformationen. In
der vorliegenden Arbeit liegt der Fokus darauf, diese beiden Herausforderungen bei der Vervollstän-
digung von Wissensgraphen (Knowledge Graph Completion, KGC) zu bewältigen: (i)Link-Vorhersage
(Link Prediction) in KGs, die die Vorhersage von Head und Tail und die Tripel-Klassifikation einschließt
sowie die (ii) Vorhersage des Entitätstyps.

In den letzten Jahren wurden Knowledge Graph Embeddings trainiert, um die Entitäten und ihre
Beziehungen untereinander in einem niedrig-dimensionalen Vektorraum darzustellen, der die Graphen-
struktur bewahrt. Im Großteil der veröffentlichten Arbeiten, deren Fokus z. B. auf Übersetzungsmodellen,
Faltungsmodellen oder semantischem Matching liegt, wird die RDF-Tripel-Information verwendet, um
daraus eine latente Repräsentation der Entitäten und Relationen zu erzeugen.

In dieser Dissertation wird argumentiert, dass kontextuelle Informationen über die Entitäten eines
KGs, die aus Random Walks und textuellen Entitätsbeschreibungen gewonnen werden, der Schlüssel zur
Verbesserung der latenten Repräsentation für die Vervollständigung von Wissensgraphen (KGC) sind.
Die experimentellen Ergebnisse belegen, dass das aus dem Entitätskontext gewonnene Wissen diese Hy-
pothese stützt. Mehrere Methoden zur Knowledge Graph Completion werden vorgeschlagen und ihre
Wirksamkeit wird empirisch nachgewiesen. Als erstes wird ein neuartiges Multi-Hop Attentive KG Em-
bedding Modell, MADLINK, für die Link-Vorhersage vorgeschlagen. Es berücksichtigt kontextuelle En-
titätsinformationen aus Random Walks und textuellen Entitätsbeschreibungen. In einem zweiten Schritt
wird für die Tripel-Klassifikation eine neuartige Architektur vorgeschlagen, die die in einem vortrainier-
ten neuronalen Sprachmodell (Neural Language Model, NLM) enthaltenen Informationen ausnutzt. Ab-
schließend werden die Grenzen der aktuellen State-of-the-Art-Modelle (SoTA) zur Vorhersage von Enti-
tätstypen analysiert und ein neuartiges Modell zur Typisierung von Entitäten, CAT2Type, vorgeschlagen,
das die Wikipedia-Kategorien ausnutzt, die bislang nur wenig Beachtung fanden. Das vorgeschlagene
Modell kann auch dazu verwendet werden, fehlende Typinformation von bislang unbekannten Entitäten
vorherzusagen. Dies ist insbesondere relevant für neu in den KG hinzugefügte Entitäten. Schließlich wird
eine weitere neuartige Architektur, GRAND, vorgeschlagen, um fehlende Typeninformation in KGs un-
ter Verwendung von Multilabel-, Multiklassen- und hierarchischer Klassifikation vorherzusagen. Dabei
werden verschiedene strategische Graphwalks in den KGs genutzt. Die umfangreichen Experimente und
Ablationsstudien zeigen, dass alle vorgeschlagenen Modelle die aktuellen SoTA-Modelle übertreffen und
neue Baselines für KGC setzen.

Die vorgeschlagenen Ansätze belegen, dass der Einsatz von NLMs in Verbindung mit kontextueller
Information über die Entitäten im KG zusammen mit den verschiedenen neuronalen Netzwerkarchitektu-
ren von entscheidendem Vorteil für die KGC ist. Die vielversprechenden Ergebnisse und Beobachtungen
eröffnen interessante Möglichkeiten für die zukünftige Forschung, die die Nutzung der vorgeschlage-
nen Modelle in domänenspezifischen KGs vorsieht. Darüber hinaus kann das Link-Vorhersagemodell
als Basismodell für das Alignment von Entitäten (Entity Alignment) genutzt werden, da es die Nachbar-
schaftsinformationen der Entitäten berücksichtigt.

vi

P U B L I C AT I O N S

The thesis is based on the following publications

[1] Russa Biswas. “Embedding based Link Prediction for Knowledge Graph Com-
pletion.” In: CIKM ’20: The 29th ACM International Conference on Information and
Knowledge Management, ACM, 2020, pp. 3221–3224.

[2] Russa Biswas, Mehwish Alam, and Harald Sack. “MADLINK: Attentive Mul-
tihop and Entity Descriptions for Link Prediction in Knowledge Graphs.” In:
Semantic Web (2022).

[3] Russa Biswas, Yiyi Chen, Heiko Paulheim, Harald Sack, and Mehwish Alam.
“It’s All in the Name: Entity Typing Using Multilingual Language Models.” In:
The Semantic Web: ESWC 2022 Satellite Events Proceedings. Vol. 13384. Lecture
Notes in Computer Science. Springer, 2022, pp. 36–41.

[4] Russa Biswas, Jan Portisch, Heiko Paulheim, Harald Sack, and Mehwish Alam.
“Entity Type Prediction Leveraging Graph Walks and Entity Descriptions.” In:
Accepted at ISWC. 2022.

[5] Russa Biswas, Radina Sofronova, Mehwish Alam, Nicolas Heist, Heiko Paul-
heim, and Harald Sack. “Do Judge an Entity by Its Name! Entity Typing Using
Language Models.” In: The Semantic Web: ESWC 2021 Satellite Events Proceedings.
Vol. 12739. Lecture Notes in Computer Science. Springer, 2021, pp. 65–70.

[6] Russa Biswas, Radina Sofronova, Mehwish Alam, and Harald Sack. “Contex-
tual Language Models for Knowledge Graph Completion.” In: Machine Learning
with Symbolic Methods and Knowledge Graphs co-located with ECML PKDD. CEUR
Workshop Proceedings. 2021.

[7] Russa Biswas, Radina Sofronova, Harald Sack, and Mehwish Alam. “Cat2type:
Wikipedia Category Embeddings for Entity Typing in Knowledge Graphs.” In:
Proceedings of the 11th on Knowledge Capture Conference. 2021, pp. 81–88.

The author has further contributed to the following publications

[1] Mehwish Alam, Russa Biswas, Yiyi Chen, Danilo Dessì, Genet Asefa Gesese,
Fabian Hoppe, and Harald Sack. “HierClasSArt: Knowledge-Aware Hierarchi-
cal Classification of Scholarly Articles.” In: Companion of The Web Conference
2021. ACM / IW3C2, 2021, pp. 436–440.

vii

[2] Russa Biswas, Maria Koutraki, and Harald Sack. “Exploiting Equivalence to
Infer Type Subsumption in Linked Graphs.” In: The Semantic Web: ESWC 2018
Satellite Events. Vol. 11155. Lecture Notes in Computer Science. Springer, 2018,
pp. 72–76.

[3] Russa Biswas, Maria Koutraki, and Harald Sack. “Predicting Wikipedia Infobox
Type Information using Word Embeddings on Categories.” In: Proceedings of the
EKAW 2018 Posters and Demonstrations Session co-located with 21st International
Conference on Knowledge Engineering and Knowledge Management. 2018.

[4] Russa Biswas, Radina Sofronova, Mehwish Alam, and Harald Sack. “Entity
Type Prediction in Knowledge Graphs using Embeddings.” In: Proceedings of the
Workshop on Deep Learning for Knowledge Graphs (DL4KG2020) co-located with the
17th Extended Semantic Web Conference. Vol. 2635. CEUR Workshop Proceedings.
2020.

[5] Russa Biswas, Rima Türker, Farshad Bakhshandegan Moghaddam, Maria Koutraki,
and Harald Sack. “Wikipedia Infobox Type Prediction Using Embeddings.”
In: Proceedings of the First Workshop on Deep Learning for Knowledge Graphs and
Semantic Technologies (DL4KGS) co-located with the 15th Extended Semantic Web
Conerence. 2018.

[6] Genet Asefa Gesese, Russa Biswas, Mehwish Alam, and Harald Sack. “A survey
on knowledge graph embeddings with literals: Which model links better literal-
ly?” In: Semantic Web 12.4 (2021), pp. 617–647.

[7] Genet Asefa Gesese, Russa Biswas, and Harald Sack. “A Comprehensive Sur-
vey of Knowledge Graph Embeddings with Literals: Techniques and Appli-
cations.” In: Proceedings of the Workshop on Deep Learning for Knowledge Graphs
(DL4KG2019) Co-located with the 16th Extended Semantic Web Conference. Vol. 2377.
CEUR Workshop Proceedings, pp. 31–40.

[8] Sven Müller, Michael Brunzel, Daniela Kaun, Russa Biswas, Maria Koutraki,
Tabea Tietz, and Harald Sack. “HistorEx: Exploring Historical Text Corpora
Using Word and Document Embeddings.” In: The Semantic Web: ESWC 2019
Satellite Events - ESWC 2019 Satellite Events, Portorož, Slovenia, June 2-6, 2019,
Revised Selected Papers. Vol. 11762. Lecture Notes in Computer Science. Springer,
2019, pp. 136–140.

[9] Radina Sofronova, Russa Biswas, Mehwish Alam, and Harald Sack. “Entity
Typing Based on RDF2Vec Using Supervised and Unsupervised Methods.” In:
The Semantic Web: ESWC 2020 Satellite Events. Vol. 12124. Lecture Notes in Com-
puter Science. Springer, 2020, pp. 203–207.

viii

A C K N O W L E D G M E N T S

First and foremost, I’d like to thank Prof. Dr Harald Sack for giving me this opportu-
nity to pursue my PhD under his supervision. Over the years, his persistent support,
encouragement, guidance and the inspiring discussions we have had, have assisted
me in exploring the research challenges in the right direction. I am thankful to Prof.
Dr Paul Groth for reviewing my thesis as the second reviewer and providing me with
valuable insights to improve the work. Many thanks also go to Dr Mehwish Alam
who has been the guiding force. I found a mentor in her, who pointed me in the
proper way while also boosting my confidence by recognizing my research efforts.
I also consider myself fortunate to be able to collaborate a few times with Prof. Dr
Heiko Paulheim during the course of my PhD. My research has always benefited
greatly from the thought-provoking conversations we have had. Many thanks also to
Dr Maria Koutraki, whose advice and assistance was invaluable throughout the first
year of my PhD.

A heartfelt thanks to all my colleagues for making the past 5 years an unforgettable
experience. It was a pleasure and I learned a lot from working with you! A special men-
tion goes to Vivien, Genet, Yiyi, and Radina for being so supportive. Every discussion
we have had has given me a different perspective to look at things, both profession-
ally and personally. I am eternally thankful to my friends Ankush, Savina, Saptarshi,
Debjit, Supratim and Saheli for making Germany a home away from home. I would
not have made it through all these years without you. Thank you for being my biggest
cheerleaders always.

Last but not the least, my constants, my parents - Kalpana and Pradyot Biswas,
my cousin Abhiigyaan, and my family. Thank you for your unconditional love, and
unwavering support, for bearing with me when I am far away for so many years, and
for having my back always.

ix

C O N T E N T S

i motivation 1

1 introduction 3

1.1 Motivation . 3

1.2 Research Objectives . 7

1.3 Thesis Outline and Contributions . 8

ii background and literature review 11

2 foundations 13

2.1 Graphs . 13

2.2 Knowledge Graphs . 14

2.3 Neural Networks . 17

2.3.1 Feed-Forward Networks . 19

2.3.2 Convolutional Neural Network . 20

2.3.3 Long Short Term Memory . 21

2.3.4 Gated Recurrent Unit . 21

2.4 Language Models . 22

2.4.1 Non-contextual Embeddings . 23

2.4.2 Contextual Embeddings . 25

2.5 Network Embeddings . 28

2.6 Knowledge Graph Embeddings . 29

2.7 Evaluation Metrics . 30

3 link prediction - literature review 35

3.1 Introduction . 35

3.2 Translation-based Models . 35

3.3 Semantic Matching Models . 36

3.4 Neural Network Based Models . 37

3.5 Path Based Models . 38

3.6 Literal Based Models . 39

3.7 Discussion and Outlook . 41

4 entity type prediction - literature review 43

4.1 Introduction . 43

4.2 Heuristic Based Entity Typing Models . 44

4.3 Classical Machine Learning based Model 46

4.4 Neural Network-based Models . 46

4.4.1 Models using Neural Language Models 46

4.4.2 Models using Graph Structures . 48

xi

xii contents

4.5 Discussion and Outlook . 50

iii link prediction in knowledge graphs 53

5 attentive multihop and entity descriptions for link prediction 55

5.1 Introduction . 55

5.2 Problem Formulation . 57

5.3 MADLINK Model . 58

5.3.1 Path Selection . 58

5.3.2 Textual Representation . 59

5.3.3 Encoder - Decoder Framework . 60

5.3.4 Overall Training . 64

5.4 Experiments . 65

5.4.1 Datasets . 65

5.4.2 Experimental Setup . 66

5.4.3 Hyper-parameter Optimization . 66

5.4.4 Link Prediction . 66

5.5 Link Prediction - Results . 69

5.5.1 Comparison with textual entity description-based baseline models 69

5.5.2 Comparison with structure-based baseline models 71

5.5.3 Ablation Studies . 75

5.6 Triple Classification . 76

5.7 Conclusion and Outlook . 79

6 gpt-2 for knowledge graph completion 81

6.1 Introduction . 81

6.2 Problem Formulation . 82

6.3 Language Models for Knowledge Graph Completion 82

6.4 Experiments . 84

6.4.1 Datasets . 84

6.4.2 Experimental Setup . 85

6.5 Results . 85

6.6 Conclusion and Outlook . 86

iv entity type prediction in knowledge graphs 89

7 wikipedia category embeddings for entity typing in knowl-
edge graphs 91

7.1 Introduction . 91

7.2 Problem Formulation . 93

7.3 Entity Type Prediction: CAT2Type Framework 93

7.3.1 Textual Information in Wikipedia Category Labels 94

7.3.2 Structural Features of Wikipedia Categories 97

7.3.3 Entity Type Prediction . 98

7.4 Experiments . 99

7.4.1 Datasets . 99

7.4.2 Experimental Setup . 100

7.5 Results . 101

7.5.1 Results on DBpedia splits . 101

7.5.2 Results on FIGER . 103

7.5.3 Results on Unseen Data . 103

7.6 Conclusion and Outlook . 105

8 entity type prediction leveraging graph walks and entity de-
scriptions 107

8.1 Introduction . 107

8.2 Problem Formulation . 109

8.3 Entity Type Prediction: GRAND framework 109

8.3.1 Entity Embeddings from Strategic Graph Walks 110

8.3.2 Entity Description Representation 113

8.3.3 Entity Type Prediction . 114

8.4 Experiments . 116

8.4.1 Datasets . 116

8.4.2 Experimental Setup . 116

8.5 Results . 117

8.5.1 Impact of RDF2vec on Different Classification Settings 118

8.5.2 Analysis of Vector Component Weight. 119

8.6 Conclusion and Outlook . 123

9 entity type prediction leveraging entity names 125

9.1 Introduction . 125

9.2 Problem Formulation . 126

9.3 Entity Type Prediction: Names-Only Framework 127

9.4 Experiments and Results on Entity Names in English 129

9.4.1 Experimental Setup . 129

9.4.2 Datasets . 129

9.4.3 Results . 129

9.5 Experiments and Results on Multilingual Entity Names 130

9.5.1 Datasets . 131

9.5.2 Results . 131

9.6 Conclusion and Outlook . 132

v conclusion and outlook 133

10 conclusion and outlook 135

10.1 Conclusions . 135

10.2 Open Issues and Outlook . 137

xiii

bibliography 139

L I S T O F F I G U R E S

Figure 1.1 Example of a KG consisting of real-world entities 4

Figure 1.2 Overview of the Thesis Structure 9

Figure 2.1 Different Graph Variants . 14

Figure 2.2 Example of KG extracted from DBpedia 15

Figure 2.3 Illustration of different activation functions 18

Figure 2.4 An Artificial Neural Network with an input, two hidden and
an output layers . 19

Figure 2.5 Illustration of the Word2vec model 23

Figure 2.6 Illustration of the BERT model 26

Figure 2.7 Generalized framework of a KGE model 30

Figure 5.1 An excerpt of KG from DBpedia 56

Figure 5.2 Encoder - Decoder Framework for paths 61

Figure 5.3 Attention for a path in predicting the ‘dbo:musicComposer’ for
the movie Inception . 61

Figure 5.4 Attention weights for an excerpt from FB15k 62

Figure 5.5 Overall Architecture of the MADLINK model 64

Figure 6.1 GPT-2 Architecture for Triple Clasification 83

Figure 7.1 Excerpt from DBpedia . 92

Figure 7.2 Overall Architecture of the CAT2Type model 94

Figure 8.1 Excerpt from DBpedia . 108

Figure 8.2 Architecture of the GRAND framework 110

L I S T O F TA B L E S

Table 3.1 Link Prediction Models and their categories 36

Table 4.1 Entity Type Prediction Models and their categories 44

Table 5.1 Statistics of the benchmark datasets 65

Table 5.2 Hyper-parameter Search Space for MADLINK 67

Table 5.3 Optimized hyper-parameters used in the training of MADLINK 67

Table 5.4 Comparison of MADLINK results with the textual entity description-
based baseline models on the 5 benchmark datasets 70

Table 5.5 Comparison of MADLINK results with the structure-based base-
line models on FB15k-237 and WN18RR datasets. 72

xiv

Table 5.6 Comparison of MADLINK results with the structure-based base-
line models on FB15k, WN18, and YAGO3-10 datasets. 73

Table 5.7 Comparison of MADLINK with LiteralE on FB15k-237, FB15k,
and YAGO3-10 . 75

Table 5.8 Impact of Textual Entity Descriptions in MADLINK (without
path information) . 77

Table 5.9 Impact of Structural Information in MADLINK (without textual
entity description) . 77

Table 5.10 Impact of Attention Mechanism in MADLINK 78

Table 5.11 Triple Classification (Accuracy in %) 78

Table 6.1 Dataset Statistics . 84

Table 6.2 Results of Language Models on Triple Classification (accuracy
in %) . 85

Table 6.3 Results with the pre-trained GPT2 model for Triple Classifica-
tion with different parameter settings 86

Table 7.1 Statistics of the datasets . 100

Table 7.2 Results on DBpedia splits and FIGER 102

Table 7.3 Results on DBpedia splits on 7 classes 102

Table 7.4 Results on Movie Dataset (Accuracy in %) 104

Table 7.5 Results on Unseen DBpedia entities (Accuracy in %) 104

Table 8.1 Statistics of the datasets . 116

Table 8.2 Results of GRAND on benchmark datasets. The best result of
each mode is printed in bold, the runner-up is underlined. . . . 117

Table 8.3 Evaluation of Single Classifier Results on the Coarse-Grained
Dataset. The best result of each mode is printed in bold, the
runner-up is underlined. The overall best configuration for each
dataset is bold and underlined. 120

Table 8.4 Evaluation of Single Classifier Results on the Fine-Grained Dataset.
The best result of each mode is printed in bold, the runner-up
is underlined. The overall best configuration for each dataset is
bold and underlined. 121

Table 8.5 Results of the GRAND-LPL classification model at each level . 122

Table 8.6 Relative network weights of each vector component group for
DB-1 split. 122

Table 9.1 Results on the DBpedia630k dataset (in accuracy %) 130

Table 9.2 Dataset Statistics . 131

Table 9.3 Entity Typing Results on DE, FR, ES, and NL DBpedia Chapters 131

xv

xvi acronyms

A C R O N Y M S

kg Knowledge Graph

kgc Knowledge Graph Completion

kge Knowledge Graph Embeddings

nlp Natural Language Processing

sota State-of-the-art

ml Machine Learning

relu Rectified Linear Unit

fnn Feed-forward Neural Networks

mlp Multi-Layer Perceptron

fcnn Fully Connected Neural Network

cnn Convolutional Neural Networks

gru Gated Recurrent Unit

lstm Long Short Term Memory

lm Language Model

nlm Neural Language Model

slm Statistical Language Model

cbow Continuous Bag of Words

oov Out-of-Vocabulary

bert Bidirectional Encoder Representations from Transformers

sbert Sentence BERT

gpt-2 Generative Pre-trained Transformer

mrr Mean Reciprocal Rank

fb Freebase

acronyms xvii

wn WordNet

db DBpedia

pf-itf Predicate Frequency Inverse Triple Frequency

Part I

M O T I VAT I O N

1
I N T R O D U C T I O N

The term "Knowledge Graph" (KG) was first coined in literature in 1972 [120]; it was
later reintroduced by Google in 2012 with the launch of Google Knowledge Graph.
Since then it has emerged as one of the primary forces accelerating the progress in
the field of Artificial Intelligence. YAGO [129], Freebase [17], Wikidata [140], DBpe-
dia [4], etc. are some of the most eminent general purpose open KGs which form
the backbone of various Machine Learning based applications such as named entity
linking [53], question-answering [18], relation extraction [146], etc. Additionally, KGs
are extensively used in a number of industrial sectors, such as e-commerce [70, 101],
media [111], and life sciences [21], to name a few.

KGs are large networks consisting of huge amounts of facts organised as entities,
represented as nodes and relations given by directed labelled edges connecting the
nodes. The facts in a KG are presented in the form of a triple < eh, r, et >, where
eh and et are the head and tail entities respectively and r is the relation between
them. Figure 1.1 illustrates a KG, that encodes real-world information. For instance,
the entities Stephan_Hawking, Oxford, etc. are represented as nodes and their relations
are represented as directed edges, e.g., place_of_birth. <Stephan_Hawking, place_of_birth,
Oxford> is a valid triple contained in the KG. Apart from the entities and the relations,
the KGs also comprise a special kind of relation that denotes the semantic types of
the entities. Semantic types of entities also referred to as classes, are used in KGs to
group similar entities together. In Figure 1.1, the semantic type is given by the relation
type (edges are marked in blue), hence the triple <Stephan_Hawking, type, Scientist>
represents that Stephan_Hawking is an instance of class Scientist. The semantic types
of the entities are represented in form of a hierarchy in a KG and are denoted by the
subClassOf relation. For e.g., Figure 1.1 depicts that Person is a parent class of Scientist.

1.1 motivation

The cross-domain open KG such as DBpedia, Freebase, and Wikidata are either ex-
tracted automatically or semi-automatically from structured data, generated using
heuristics, or are human-curated. Despite the huge amount of information encoded in
the KGs, it is often observed that they are far from complete. For instance, in Freebase,
71% of 3 million person entities are without their place of birth information, 75% do
not have a nationality [145], whereas in DBpedia 2016-10 version, 43% of person enti-
ties have their place of birth missing, 46% of the books lack their corresponding author
information, director information is not available for 27% of the films, etc. Therefore,

3

4 introduction

Figure 1.1: Example of a KG consisting of real-world entities

there are many missing facts, and relationships between entities that have not been
fully uncovered resulting in incomplete KGs. Furthermore, DBpedia version-2016-10

consists of 48 subclasses of dbo:Person and only 36.6% of the total number of entities
belonging to dbo:Person is assigned to its subclasses. Also, 307,164 entities in the same
DBpedia version are assigned to owl:Thing, which is the most generalised class (root
node) in the type hierarchy.

As a result, for particular KG-based applications such as question-answering sys-
tems, incomplete KGs might not offer the right response to a correctly interpreted
question. Given the KG in Figure 1.1, it would not be possible to answer the question,
"Where is Cambridge located?", even though both the entity Cambridge and the relation
located_in are included in the KG. Therefore, there arises a necessity to predict the
missing tail entity of the triple <Cambridge, located_in, ?> or to identify if <Cambridge,
located_in, United_Kingdom> is a correct triple for the KG. Additionally, it would be
impossible to provide a response to the question, "Is Oxford a city?". Here also, the
entity Oxford and the class City are there in the KG, but the information that Oxford is
an instance of the class City is missing. Knowledge Graph Completion (KGC) aims to
tackle the aforementioned challenges by addressing the issues of incompleteness and
sparsity, hence improving the structure of the KG.

link prediction for knowledge graph completion Due to the fact that
the majority of KGs are created manually, automatically or semi-automatically, many
implicit entities and relations have not been recognized, causing incompleteness a
prominent challenge in almost all the KGs. As mentioned earlier, KGs store informa-
tion in form of triples, hence the KGC problem can be looked upon as a problem of
estimating missing parts of the triples. Therefore, KGC is achieved by link prediction
that aims to estimate the probability of the existence of links between entities based

1.1 motivation 5

on the current observed information in the KG [163]. Link prediction can be further
categorized into three different types of prediction problems depending on the nature
of the missing links. The different types are as follows:

• Head and Tail Prediction: The head <?, r, et > or tail entity in a triple < eh, r, ? >
is predicted by defining a scoring function. For e.g., in reference to the KG shown
in Figure 1.1, the prediction of the missing entity in the triple (Cambridge, lo-
cated_in, ?) is denoted as the tail prediction as the head entity and relation in-
formation are provided. On the other hand, (?, located_in, United_Kingdom) is
considered as the head prediction since the relation and tail entity are given.
This is referred to as General Link Prediction in [54].

• Triple Classification: A binary classifier is trained to identify whether a given
triple is false (0) or true (1). With reference to the triple in the illustration Fig-
ure 1.1 as an example, triple classification helps in identifying if (Cambridge, lo-
cated_in, United_Kingdom) is a true triple for the KG. As it deals with common
links in a KG, it can be also considered as General Link Prediction.

• Entity Type Prediction: It deals with predicting the special kind of links i.e., the
semantic types of the entities in the KGs. The problem is transformed into a
classification problem in order to predict the semantic type of each entity in the
KG and is given by < e, type, ? >, where e is the entity.

By incorporating diverse features provided by the KGs, this dissertation addresses
each of the aforementioned types of link prediction problems for KGC. To date, sev-
eral KGC or link prediction models based on rule reasoning or statistical features have
been proposed [122, 123]. As mentioned in [22], single-step reasoning methodologies
based on rules rely on a large number of precise and accurate rules as well as statisti-
cal features. However, obtaining efficient and widely-applied rules and constraints is
challenging, which results in a low rate of recall. The benefit of the rule-based reason-
ing KGC approach is that rules are either automatically created according to semantics
or explicitly extracted, giving them high interpretability. The accuracy is high if com-
plete and precise rules are achieved. As pointed out in literature [22], there are certain
drawbacks in this approach as well: (i) this strategy heavily relies on rules that are
created either manually or automatically and it is very challenging to find full cover-
age. As a result, it is impossible to actually accomplish the desired reasoning accuracy
and completeness effect. (ii) Secondly, the rule-based reasoning KGC approach is com-
putationally expensive, especially with the growing size of KGs and the traditional
methods are unable to satisfy the demands of the application at hand. As a result, KG
embeddings-based models started to evolve for KGC via link prediction [22].

In order to address the aforementioned challenges, KG embedding is proposed that
transforms the entities and relations in a KG to a low-dimensional vector space while

6 introduction

preserving its underlying semantics. The entities which are similar to each other ap-
pear closer in the vector space. The last decade has witnessed extensive growth in the
research of link prediction for KGC using embeddings.

Based on the techniques employed, which are comprehensively discussed in Chap-
ter 3, KG embedding models are then classified into various categories. Most of the KG
embedding models use triple information such as the translational model TransE [19]
being the oldest one. It models relationships by interpreting them as translations op-
erating on the low-dimensional embeddings of the entities. However, TransE is capa-
ble of dealing with only one-to-one relations, which is then overcome by the subse-
quent models TransH [141], TransR [76], etc which consider one-to-many, many-to-
one, and many-to-many relations. Other models that use triples as features are the
neural network-based models e.g., ConvE [34] etc., semantic matching models such as
RESCAL [91] and its extensions, DistMult [157], etc. However, these models treat each
triple separately and independently, hence the graph structure in the KGs is ignored
in the modelling. To tackle this, a new set of path-based models namely GAKE [40],
PTransE [75], and PConvKB [59] etc. are introduced to surpass this issue. These models
only consider the relational paths between the head and tail entities of a triple in order
to take into account the graph structure for embedding. The context of each entity in
the KG, which is included in the neighbouring nodes, as well as its relationships with
other entities, are not carefully considered. Furthermore, some other models such as
DKRL [150], and Jointly (ALSTM) [153] exploit the textual entity descriptions together
with the triples to generate the KG embeddings. Different static language models
(SLMs) are used to generate the text embeddings and the triples are encoded using
TransE in DKRL, whereas Jointly (ALSTM) extends DKRL using a gated mechanism
and attentive LSTM to encode the text. Due to the usage of SLMs, the representation
of the words remains unchanged irrespective of its context, hence the contextual in-
formation contained in the textual descriptions remains unexplored. KG-BERT [158] is
another text-based embedding model which uses BERT [35] in which triples are con-
sidered as input sentences to the BERT model for triple classification. However, this
model does not take into consideration the entities’ structural information.

Similarly, for entity type prediction, different KG embedding models such as APE [60],
HMGCN [61] are proposed in literature which considers the graph structure, anchored
text, and Wikipedia categories in the form of adjacency matrices followed by a neural
network to jointly learn the representation to a unified space. Next, this entity repre-
sentation is used to predict their corresponding types in a KG. MuLR [155], and FIG-
MENT [154] are trained on large annotated corpora using SLMs to generate the entity
embedding to predict the missing types. A comprehensive discussion of the existing
models is given in Chapter 4. However, none of these models considers the contextual
information of the entities captured in the graph walks of the entities. Also, similar to
Link Prediction models, the contextual text descriptions are ignored. Furthermore, the
information contained in the Wikipedia categories remains largely uncharted.

1.2 research objectives 7

1.2 research objectives

This dissertation focuses on building models that exploit the contextual information of
the entities in the KG together with the textual entity descriptions to address the three
aforementioned link prediction tasks: (i) Head and Tail Prediction, (ii) Triple Classifi-
cation, and (iii) Entity Type Prediction. In order to develop methods that address KGC,
the thesis holds the following hypotheses:

• Contextual information of the entities is crucial for better representation of the entities
in a KG. The role of contextual information is thoroughly investigated in the Link
Prediction approach.

• Textual entity descriptions add additional and pertinent details about the entities in KG
embeddings. The impact of including textual entity descriptions for head and tail
prediction as well as for entity type prediction is carefully examined.

• Neural Language Models (NLMs) play an essential role in identifying true triples in
a KG. A NLM-based triple classification approach is studied to understand the
impact of NLMs in KGC.

• Wikipedia Categories are beneficial features in predicting the missing entity types. Both
implicit and explicit features of under-used features in a KG i.e., Wikipedia Cat-
egories are exploited extensively for entity typing.

• Strategic graph walks encapsulate relevant information for entity type inferencing. Dif-
ferent strategic graph walk methods are employed to learn a better representa-
tion of entities to predict the missing entity types.

• Entity types can be inferred merely from their names. Different NLMs are leveraged
to predict the missing semantic types from entity names.

This thesis focuses on addressing these two challenges of link prediction for KGC:
(i) Link Prediction in KGs that include head and tail prediction, triple classification,
and (ii) Entity Type Prediction.

• Challenge 1 (C1): Link Prediction in KGs: Recent research has focused on the
relational paths in KGs [40, 75] to encapsulate the structural information of the
KGs, while other models incorporate the textual entity descriptions [150, 153]
into the latent representation of the entities. However, the impact of the struc-
tural contextual information in KGC is an unexplored problem. Additionally,
the impact of contextual entity description embeddings in link prediction also
remains uncharted. These give rise to the following research questions:

– C1-RQ1: Does the contextual information of entities and relations in a KG
help in the task of link prediction?

8 introduction

– C1-RQ2: What is the impact of incorporating textual entity descriptions in
a KG for the task of link prediction?

Contextual NLMs have a significant influence on applications based on Natural
Language Processing (NLP). However, KG-BERT [152] proposes that NLMs can
also be used to predict the missing links in a KG. This provides the inspiration
for the research question:

– C1-RQ3: Can we identify correct triples leveraging contextual NLM?

• Challenge 2 (C2): Entity Type Prediction: Recent research exploits different fea-
tures from the KGs such as annotated anchored text, relations between the enti-
ties, Wikipedia categories [60, 61, 154], etc. to predict the missing types. However,
none of these features is investigated thoroughly, including the utilization of the
entire entity descriptions, the interconnections between the Wikipedia categories,
random walks on the graphs, entity names, etc. All these open research gaps lead
to the following research questions:

– C2-RQ1: Do Wikipedia category labels and the connections between the
categories have any impact on entity typing?

– C2-RQ2: What is the impact of textual entity descriptions in predicting the
corresponding missing types?

– C2-RQ3: Are strategic graph walks beneficial for entity typing?

– C2-RQ4: Can the types of entities be predicted merely from the entity
names?

1.3 thesis outline and contributions

The rest of the thesis comprises foundational concepts, the state-of-the-art (SoTA)
works concerning general link prediction as well as entity type prediction, followed
by the proposed contributions and conclusion. Chapter 2 describes the several funda-
mental concepts and techniques required to understand the proposed methodologies.
A comprehensive literature review is provided in Chapter 3 and Chapter 4 for general
link prediction and entity typing respectively, along with a discussion on the shortcom-
ings of the existing models. The above-mentioned challenges and their corresponding
research questions are investigated and studied in different chapters of this thesis and
an overview of that is provided in Figure 1.2. To this end, the contributions of this
dissertation are as follows:

• Link Prediction in KGs:

– In Chapter 5, the research question C1-RQ1 is addressed in the proposed
MADLINK model, by generating random walks (paths) from the head and

1.3 thesis outline and contributions 9

Figure 1.2: Overview of the Thesis Structure

tail entities in a KG. The random walk captures the contextual information
of the entities. The selection of the paths also takes into account the signif-
icance of an entity with respect to a relation. For a certain relation, its con-
textual information is captured by considering all the triples containing that
relation. Furthermore, a novel attentive encoder-decoder architecture is pro-
posed to generate the embeddings containing the path information. Next,
to address C1-RQ2, contextual NLM is leveraged to generate the embed-
ding of the textual description. Finally, the link prediction task, in particular,
head and tail prediction is achieved by learning a scoring function on the
obtained representations of the structural information and the textual entity
descriptions. Additionally, triple classification is also performed to identify
correct triples. The model is evaluated on 5 benchmark datasets FB15k [19],
FB15k-237 [34, 137], WN18 [19], WN18-RR [34, 137], and YAGO3-10 [34].

– Chapter 6 answers the research question C1-RQ3, where GPT-2 [110] is used
to encode the entities and relations into a low-dimensional vector space.
The triples and the entity descriptions are separately provided as input sen-
tences to the GPT-2 model followed by a classification layer on the last layer
to identify correct triples. The proposed approach is evaluated on WN11,
and FB13 datasets.

• Entity Type Prediction:

– In Chapter 7, the different features of the Wikipedia Categories are ex-
plored to address the research question C2-RQ1. A novel category embed-

10 introduction

ding model CAT2Type is proposed, which leverages pre-trained NLMs for
learning the representations of entities for entity typing in KGs, and its
performance with different NLMs is analyzed. The results provide strong
evidence that entity representations based on pre-trained language models
exhibit strong generalization and are thus not limited to only NLP tasks.
Additionally, a novel category-category network has been constructed to
leverage the underlying structure of the categories w.r.t. the shared entities
between them. The results strengthen the fact that the category-category
network is beneficial to predict types of unseen entities from a different KG.
The model has been evaluated on 2 benchmark datasets namely, DBpedia
splits from DBpedia630k [162], and FIGER [154].

– Chapter 8 addresses the two research questions C2-RQ2 and C2-RQ3. A
novel combined embedding model GRAND which leverages different graph
walk strategies based RDF2vec models and a contextual NLM for textual
entity descriptions is proposed to predict the missing entity types. Addi-
tionally, it also provides a generalized classification framework consisting
of three different modules namely multi-class, multi-label, and hierarchical
classification to predict the missing entity types at different levels of granu-
larity. The proposed model is evaluated on the two aforementioned datasets
DBpedia splits from DBpedia630k, and FIGER.

– The Chapter 9 focuses on predicting the missing entity types from their
corresponding entity names, addressing the research question C2-RQ4. Dif-
ferent NLMs are exploited to gather information about the semantic types
from only the entity names in English, as well as, in multiple languages
such as German, French, Dutch, and Spanish. Furthermore, we study the ef-
fectiveness of this method for long-tailed entities as well as unseen entities
in KGs.

Lastly, Chapter 10 summarizes the findings and limitations of this dissertation fol-
lowed by potential future work.

Part II

B A C K G R O U N D A N D L I T E R AT U R E R E V I E W

2
F O U N D AT I O N S

This chapter includes a brief introduction to several background topics and notations
that will be extensively used throughout this thesis. In what follows, an introduction
to graphs is provided in Section 2.1, KGs in Section 2.2, Deep Neural Networks (DNN)
in 2.3, Neural Language Models (NLMs) in Section 2.4, Network Embeddings (NE)
in Section 2.5, Knowledge Graph Embeddings (KGE) in Section 2.6, and lastly the
different evaluation metrics used in this thesis in Section 2.7.

2.1 graphs

Graph theory was originally proposed by Leonhard Euler [39] in 1735 as a solution
to the Seven Bridges of Königsberg Problem. In the last two decades, with the commence-
ment of large-scale social network platforms, interconnected web-enabled devices, etc.
a substantial increase in the research of graph-structured data is witnessed. Graphs
are a mathematical representation of a network that is built upon to analyze, under-
stand, and learn from real-world complex systems. A graph is a collection of objects,
represented by nodes or vertices, along with a set of interactions between pairs of these
objects which are depicted by edges. For example, to illustrate a social network as a
graph, the nodes are the users and an edge exists between two nodes if the two users
are friends. The same graph formalization can be used to encode interactions between
drugs and proteins, between atoms in a molecule, etc.

Definition 1 (Graph)

A graph G, is an ordered pair and is given by G = (V,E), where V is the set of nodes and E is
the set of edges between the nodes.

• An edge from node u ∈ V to node v ∈ V is denoted by (u, v) ∈ E.

• If (u, v) ∈ E is an edge in G, then u is called adjacent to v.

• If E1 and E2 are two edges of G, then E1 and E2 are called adjacent if E1

⋂
E2 ̸= ϕ, i.e.,

the two edges are incident to the same vertex in G.

Definition 2 (Graph Variants)

• A Undirected Simple Graph is an ordered pair defined as G = (V,E) consisting
of at most one undirected edge between each pair of nodes in without any self-
loops given by (u, v) ∈ E ↔ (v,u) ∈ E.

13

14 foundations

Figure 2.1: Different Graph Variants

• A Directed Graph G is an ordered pair G = (V,E), where V is the set of nodes
and E =

{
(u, v)|(u, v) ∈ V2

}
. The edges of a directed graph are also called arcs.

• An Undirected Multigraph G is an ordered triple G = (V,E,R), where V and E are
the set of nodes and edges respectively, and R is an indicator function such that
R : E −→ {(u, v)|u, v ∈ V}, assigning to each edge an unordered pair of endpoint
nodes.

• A Directed MultiGraph G is an ordered pair G = (V,E), where V is the set of
nodes and E is the set of directed edges. It consists of multiple arcs i.e., arcs with
the same source and target nodes, as well as self-loops.

Therefore, types of graphs vary depending upon connectivity between the nodes and
the nature of the edges and the illustrations of aforementioned graphs are provided in
Figure 2.1.

2.2 knowledge graphs

Semantic networks [124] built in the 1960s are the foundation of current Knowledge
Graphs (KGs). The first mention of the term "Knowledge Graph" was found in literature
in 1972 [120], which was then reincarnated by Google in 2012 during the announce-
ment of "Google Knowledge Graph" [125]. As defined in [92], a KG (i) mainly describes
real-world entities and their interrelations, organized in a graph, (ii) defines possible
classes and relations of entities in a schema, (iii) allows for potentially interrelating
arbitrary entities with each other and (iv) covers various topical domains. The KGs
can be broadly categorized into open KGs, and enterprise KGs [54]. Open KGs are pub-
licly available and can be accessed online. Some of the most prominent and widely
used open KGs are DBpedia [4], Freebase [16], YAGO [131], Wikidata [140], etc. These
KGs are either extracted from Wikipedia or are community created. Additionally, open
KGs have been created in specific domains, such as media [111], life sciences [21], etc.
On the other hand, enterprise KGs such as Google [125], eBay [101], Amazon [70],
Uber [49], etc., are confidential to the respective companies and are used for commer-
cial purposes.

2.2 knowledge graphs 15

Figure 2.2: Example of KG extracted from DBpedia

Definition 3 (Knowledge Graph)

A KG G is a directed labelled graph consisting of a set of triples T, given by, T ⊆ E× R×
(E ∪L ∪ C), where E is the set of resources referred to as entities, R is the set of relations (or
properties) of the entities, L is the set of literals, and C is the set of semantic types or classes of
the entities. An entity represents a real-world object or an abstract concept and is identified by
a URI. A literal can be text, a date, a number, images, etc.

Definition 4 (Triple)

A triple < eh, r, et >∈ T in a KG G, is an ordered set, where eh ∈ E is the subject, r ∈ R is
the relation, and et ∈ E ∪L ∪ C is the object. The subject is referred to as the head entity and
the object when et ∈ E is referred to as the tail entity. The triples with literals as objects, i.e.,
et ∈ L are known as attributive triples. Lastly, the triples with et ∈ C represent the semantic
types of the entities.

Relations (or Properties): Depending on the nature of the objects in a triple, the rela-
tions are classified into two main categories:

• Object Relation (or Property), in which an entity is linked to another entity.
For instance, in the triple <dbr: Albert_Einstein, dbo:birthPlace, dbr:Ulm>, both
the subject dbr: Albert_Einstein1 and the object dbr:Ulm are entities, the relation
dbo:birthPlace2 is an Object Relation (or Property).

1 prefix dbr: <http://dbpedia.org/resource/> 2 prefix dbo: <http://dbpedia.org/ontology/>

<http://dbpedia.org/resource/>
<http://dbpedia.org/ontology/>

16 foundations

• Data Type Relation (or Property), in which the entity is linked to a literal. For
instance, in the triple <dbr: Albert_Einstein, dbo:birthDate, "1879-03-14">, where
"1879-03-14" is a date and thereby, the relation dbo:birthDate is a Data Type Rela-
tion (or Property).

Additionally, as mentioned earlier, an entity is also linked to a class or a semantic
type of entity using a special kind of relation or property. For example, in DBpe-
dia, rdf:type and in Freebase isA relation, represent the relation that is used to state
that an entity is an instance of a class in the respective KGs. A triple of the form:
< ei, rdf:type,Ck >, states that Ck ∈ C is a class and ei ∈ E is an entity in G and is an
instance of Ck. The semantic types or the classes in a KG are organised in a hierarchi-
cal tree structure. An entity can belong to more than one class in a KG. In this thesis,
the words properties and relations are used interchangeably.
Literals The literals in a KG encode that additional information of the entities which
in general are not represented by the entities and their relations. The different types of
literals present in a KG are:

• Text literals: Different information is stored in a KG in form of free natural lan-
guage texts such as labels, entity descriptions, comments, titles, etc.

• Numeric literals: Date, population, size, and other data stored as integers, floats,
and so on also provide important information about an entity in a KG.

• Image literals: Images also encode useful information about the entities. For in-
stance, the gender of a person or the shape of an object can be determined by
analysing the respective images of the entities.

• Other Types of literals: External URIs containing an image, text, audio, videos, etc.
linked to the entities also contain beneficial information.

Figure 2.2 illustrates an example of a KG extracted from DBpedia [4] consisting of en-
tities, relations, semantic types of the entities, and literals. Here, dbr: Stephan_Hawking,
dbr: Oxford, dbr: University_of_Cambridge, dbr: Cambridge are the entities. The entity dbr:
Stephan_Hawking is of type dbo: Scientist, which is a subclass of dbo: Person depicting the
class hierarchy. The relations dbo: birthPlace, dbo: almaMater, dbo: city are object relations
as they link two entities. The example also consists of triples with text and numeric
literals. The relations in the attributive triples such as dbo: thesisTitle, dbo: abstract, dbo:
populationTotal, etc. are the data type relations.

The datasets used in the proposed approaches of this thesis are extracted from the
open KGs namely DBpedia, Freebase, YAGO, and WordNet. Details regarding these
KGs are provided below.

dbpedia DBpedia [4] is the first publicly available KG published in 2007. It is gener-
ated by an automated framework that extracts information from the Wikipedia infoboxes.

2.3 neural networks 17

It also includes the categorization information, thumbnail images, links to external
Web pages from Wikipedia articles, and geo-coordinates. The English version of the
DBpedia describes 4.58 million things, out of which 4.22 million are classified in a
consistent ontology, which includes 1,445,000 persons, 735,000 places, 123,000 music
albums, 87,000 films and 19,000 video games, 241,000 organizations (including 58,000

companies and 49,000 educational institutions), 251,000 species and 6,000 diseases,
etc.3

freebase Freebase [17] was a large collaborative KG consisting of more than 4000

semantic types of entities, more than 125 million triples, and more than 7000 proper-
ties. It was made publicly available in 2007 and the data contained in Freebase was
harvested from various sources including user-submitted wiki contributions as well as
its community members. It was developed by Metaweb, an American software com-
pany. Later, Metaweb was acquired by Google but the Freebase API was discontinued
in 2016.

wordnet WordNet [86] is a lexical database of semantic relations between words
in more than 200 languages. WordNet was first created in English only in the Cogni-
tive Science Laboratory of Princeton University and had its first release in the 1980s.
Words from the same lexical category that are synonymous are grouped together and
are called synsets. The synsets contain short definitions and usage examples. WordNet
links words into semantic relations including synonyms, hyponyms, and meronyms.
The database contains 155,327 words organized in 175,979 synsets for a total of 207,016

word-sense pairs. It includes nouns, verbs, adjectives and adverbs but ignores preposi-
tions, determiners and other function words.

yago YAGO [129] is an open-source KG developed in 2007 at the Max Planck In-
stitute for Computer Science in Saarland. As of 2019, YAGO3 has knowledge of more
than 10 million entities and contains more than 120 million facts about these entities.
The information in YAGO is extracted automatically from the categories, redirects, and
infoboxes from Wikipedia, WordNet (e.g., synsets, hyponymy), and GeoNames. As de-
scribed in [129, 131], the accuracy of YAGO was manually evaluated to be above 95%
on a sample of facts. Furthermore, YAGO is linked to the DBpedia ontology and to the
SUMO ontology.

2.3 neural networks

Artificial Neural Networks (ANNs) comprise interconnected processing units called
Artificial Neurons, the functionality of which is inspired by the biological neurons of
the mammalian nervous system. McCulloch and Pitts [81] designed the first computa-
3 http://wikidata.dbpedia.org/about

http://wikidata.dbpedia.org/about

18 foundations

Figure 2.3: Illustration of different activation functions

tional model of neural networks in 1943. Later in 1958, Rosenblatt [115] proposed the
perceptron model which is a neural network for pattern recognition. Neural networks
offer an adaptive approach by learning patterns from the data to solve various prob-
lems. Activation function g(•) is used in the learning process of the neural network.
It decides whether a neuron should be activated or not by calculating the weighted
sum and further adding bias to it. There are different forms of activation functions for
neural networks which are discussed below and the corresponding illustrations are
shown in Figure 2.3.

threshold function A threshold function generates the output 1, if the input
exceeds a certain value n, otherwise it returns 0. The most commonly used threshold
function is the Heaviside step function where n = 0 and is given by:

g(x) =

1, if x < 0

1 if x ⩾ 0
(2.1)

sigmoid function Sigmoid Function is a non-linear function that generates an
S-shaped curve and maps its inputs into the interval of values of]0, 1[. It is effective
for the backpropagation algorithm [144] as it has a non-zero gradient and is defined
as:

g(x) =
1

1+ e−x
(2.2)

hyperbolic tangent function Similar to the sigmoid function, a Hyperbolic
Tangent Function (tanh) generates an S-shaped curve and it maps its inputs to values
] − 1, 1[. It is formulated as:

g(x) = tanh(x) (2.3)

2.3 neural networks 19

Figure 2.4: An Artificial Neural Network with an input, two hidden and an output layers

rectified linear units Rectified Linear Unit (ReLU) uses a specialized ramp
function for the activation, given by :

g(x) = max(0, x) (2.4)

The computational complexity of ReLU is less than other activation functions such as
sigmoid and tanh, hence widely used in complex neural networks with huge numbers
of neurons. Over the years researchers developed different types of artificial neural net-
works [46]. However, in the following sections, the other neural network models are
used in this dissertation such as Feed-Forward Networks, Convolutional Neural Net-
works (CNN), Long Short Term Memory (LSTM), and Gated Recurrent Unit (GRU).

2.3.1 Feed-Forward Networks

A Single Layer perceptron (SLP) is a feed-forward network based on a threshold trans-
fer function. In a feed-forward neural network, the information only flows in one
direction, from input to output. Each input is multiplied by a weight followed by a
summation of the results together with a bias and passed on to an activation function.
Formally, each unit is defined as,

f(1)(x) = g(

N∑
n=1

w
(1)
n xn + b

(1)
0), (2.5)

where g(•) is the activation function and superscript of f and w1, ...,wN represent
a single-layer function and their internal weights respectively, and b

(1)
0 is the bias.

However, SLPs are unable to distinguish non-linearly separable data. Therefore, Multi-

20 foundations

Layer Perceptron (MLP) is proposed which is also a feed-forward network consisting
of multiple layers. These layers are fully connected to each other, i.e., every single neu-
ron is linked to the neurons in the next layer. These neurons are generally arranged
into three different layers: (i) Input layer, (ii) Hidden layer, and (iii) Output layer. The
layers between the input and output layers are called hidden layers which process the
information from the input layer, between the hidden layers and transmit it to the out-
put layer. One such basic Feed-Forward Network is depicted in Figure 2.4 consisting
of an input layer, two hidden layers, and one output layer. The input to the network is
denoted by x1, x2, ..., xn, where n is the total number of inputs and the output is given
by y1,y2, ...,yC, where C is the total number of classes.

2.3.2 Convolutional Neural Network

Neocognitron [41] is the first proposed Convolutional Neural Network (CNN) archi-
tecture used for the recognition of handwritten Japanese characters. Later, the train-
ing of CNN using the backpropagation algorithm by proposed in 1989 [72]. Since its
commencement, CNN has gained immense popularity in image analysis as well as
in various Natural Language Processing (NLP) based applications [74]. However, this
section focuses on the basic working principle of CNN.

A CNN comprises multiple stages each of which takes a volume of feature maps
as input and generates a new feature map. Each stage of CNN consists of three lay-
ers: (i) convolutional layer, (ii) A ReLU layer, and (iii) a pooling layer. Finally, the
fully-connected layer maps the last layer onto a class of probability distribution in
the output layer. The convolutional layer connects perceptrons locally preserving the
information about the surrounding perceptrons and processing them depending on
their corresponding weights. It detects local conjunctions of features from the previ-
ous layer and maps it to a feature map. Following the convolution layer in each stage,
the data is processed using rectification and pooling subsamples from each layer. The
most commonly used pooling techniques are MAX-pool and AVG-pool.

Each convolutional layer hasm1 filters and the number of filters applied in one stage
is equivalent to the depth of the volume of the output feature maps. The filters help
in detecting features on the input. The output Y(l)i of layer l consists of m(l)

1 feature
maps of size m(l)

2 ×m(l)
3 . The ith feature map Y(l)i is computed as

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
i,j ⋆ Y

(l−1)
j , (2.6)

where B(l)
i is the bias matrix, K(l)

i,j is the filter connecting the jth feature map in layer
(l− 1) with ith feature map in the layer. CNNs perform better for data with grid-like

2.3 neural networks 21

topology as spatial relations between separate features are considered in the convolu-
tional and pooling layers.

2.3.3 Long Short Term Memory

One of the first Recurrent Neural Networks (RNN), also known as the Hopfield Net-
work, was proposed by J.J. Hopfield [55]. The major drawbacks of RNNs are that
the range of contextual information is limited and the back-propagation through time
does not perform well resulting in either vanishing or exploding the outputs of the
network, which is popularly known as Vanishing Gradient Problem or Exploding Gradi-
ent Problem. To overcome this shortcoming, Long Short Term Memory (LSTM) network
was introduced by Hochreiter & Schmidhuber in 1997 [52].

Each LSTM block consists of a forget gate, an input gate and an output gate. Applies
a multi-layer long short-term memory (LSTM) RNN to an input sequence. For each
element in the input sequence, each layer computes the following function:

it = σ(Wiixt + bii +Waiat−1 + bai),

ft = σ(Wifxt + bif +Wafat−1 + baf),

gt = tanh(Wigxt + big +Wagat−1 + bag),

ot = σ(Wioxt + bio +Waoat−1 + bao),

ct = ft ⊙ ct−1 + it ⊙ gt,

at = ot ⊙ tanh(ct),

(2.7)

where it, ft,gt,ot are the input, forget, cell, and output gates respectively, xt is the
input at time t, at−1 is the hidden state of the layer at time t− 1 or the initial hidden
state at time 0, at and ct are the hidden state and the cell state at time t respectively.
σ is sigmoid function and ⊙ is the Hadamard Product. A Bidirectional LSTM (Bi-
LSTM) models consist of two LSTMs to process input from both forward and backward
direction. It improves the contextual information of input and is used in sequence
processing.

2.3.4 Gated Recurrent Unit

Gated Recurrent Units (GRU) proposed by Kyunghyun Cho [23] in 2014 are similar
to LSTM, which uses a gated mechanism to adaptively reset or update its memory
content. It uses a reset gate and an update gate which are very similar to the forget
gate and input gate of LSTM. However, it has lesser parameters than LSTM as it does
not have the output gate. GRUs does not store the state of the cell and hence the
whole memory is exposed at each time step. The LSTMs select the piece of information
to be carried forward, whereas the GRU decides how much information needs to

22 foundations

be forgotten between two successive recurrent units. For each element in the input
sequence, each layer computes the following function:

rt = σ(Wirxt + bir +Warat−1 + bar),

zt = σ(Wizxt + biz +Wazat−1 + baz),

nt = tanh(Winxt + bin + rt ⊙ (Wanat−1 + ban)),

at = (1− zt)⊙nt + zt ⊙ ht−1,

(2.8)

where rt, zt,nt are the reset, update, and new gates respectively, xt and at are the
input and hidden state respectively at time t, at−1 is the hidden state of the layer at
time t− 1 or the initial hidden state at time 0, σ is the sigmoid function, and ⊙ is the
Hadamard Product. Experimental results show that LSTM and GRU outperform the
traditional tanh-unit [25]. Similar to Bi-LSTM, Bi-GRUs also process the input from the
forward and backward directions.

2.4 language models

A Language Model (LM) learns the probability of word occurrences based on a text
corpus which is used for various machine learning-based NLP applications such as
Machine Translation [68], Speech Recognition [159], etc. It is the task of assigning a
probability to each sequence of words or a probability for the likelihood of a given
word based on a sequence of words [45]. Statistical Language Models (SLMs) are n-gram
based approaches that assign probabilities to a sequence s of n words, and is given by

P(s) = P(w1w2...wn) = P(w1)P(w2|w1)...P(wn|w1w2...w(n−1)), (2.9)

where wi denotes i−th word in the sequence s. The probability of a word sequence is
the product of the conditional probability of the next word given the previous words or
the context [62]. The SLMs fail to assign probabilities to the n-grams that do not appear
in the training corpus which is tackled using the smoothing techniques. However, the
curse of dimensionality refrains the SLMs models to be trained on huge corpora.

Neural Language Models (NLMs), on the other hand, are neural network-based LMs
that learn the distributed representation of words into a continuous low-dimensional
vector space. The semantically similar words appear closer to each other in the embed-
ding space. The contextual information is captured on all the different levels in the text
corpus, such as sentences, sub-word, and characters, as well as the entire corpus. The
NLMs marked a significant breakthrough for better performance for NLP-related prob-
lems. As explained in [108], the NLMs can be broadly classified into two categories:
(i)Non-contextual Embeddings, and (ii) Contextual Embeddings. The detailed descrip-
tions of different Non-contextual and Contextual Embeddings used in this thesis are
provided in the sections below.

2.4 language models 23

Figure 2.5: Illustration of the Word2vec model

2.4.1 Non-contextual Embeddings

The Non-contextual Embeddings map words or sub-words into distributed embed-
dings to implicitly represent the syntactic or semantic features of the language. For-
mally, a word w in a vocabulary W is mapped to a vector w ∈ RD, where D is the
dimension of the embedding. These embeddings are trained on large-scale corpora
and are static in nature. The following section comprises of detailed explanation of the
different Non-contextual Embeddings used in this dissertation.

word2vec Word2vec [85] is one of the pioneer models that uses a shallow neural
network with two hidden layers for distributed representation of words into a low
dimensional vector space. A sliding window of predefined length is moved across the
text and in each step, the training is done with the words inside the window. The
embeddings of the words sharing common contexts in the text appear closer to each
other in the vector space. To encapsulate the semantic and syntactic information of
the words, the word embeddings are generated using (i) Continuous Bag of Words
(CBOW) and (ii) Skip-gram approach as depicted in Figure 2.5.

In CBOW approach, the model predicts the current word from a window of sur-
rounding context words. However, the order of the context words in the text does
not have any influence on the prediction process. On the other hand, the Skip-gram
model uses the current word to predict the surrounding window of context words.
More weight is applied to the nearby context words compared to the distant context
words. Skip-gram is efficient with less training data and non-frequent words are well
presented, whereas CBOW performs better with repeated words. The Word2vec model
is trained with hierarchical softmax and negative sampling. The hierarchical softmax

24 foundations

model is based on the Huffman tree which is a binary tree. It returns all the words
depending on their counts and is normalized at each step from the root node to the tar-
get node. The negative sampling method minimizes the log-likelihood of the sampled
negative instances. The hierarchical softmax works better for infrequent words and
negative sampling is efficient with low dimensional vectors and for repeated words.

glove The Word2vec model captures the semantics of the words but the connec-
tivity of the words is ignored in the model. To overcome this, Global Vectors for
Word Representation (GloVe) [94] is an unsupervised learning algorithm proposed.
The model is trained on aggregated global word-word co-occurrence statistics from a
corpus resulting in word embeddings. An element xij in the co-occurrence matrix X

denotes the co-occurrence of the words wi and wj in an appropriate context window.
It extends the Word2vec models by predicting the current word from its neighbouring
context words. It is a two-step model involving the generation of the co-occurrence
matrix in the first step, followed by a factorization method to generate the word em-
beddings.

fasttext The main limitation of both Word2vec and GloVe is that these models
are unable to generate embeddings for Out-of-Vocabulary (OOV) words. FastText [15]
overcomes this drawback by breaking a word into n-grams or sub-words which are
then provided as input to the neural network. It learns the semantics of the words and
the relationships between the characters in the words on the sub-word level. Therefore,
it is capable of generating better representations of the rare words in the corpus along
with the OOV words. The model is proposed by Facebook’s AI Research lab and has
been trained on Wikipedia for 294 languages using the default parameters from the
Word2vec skip-gram model [63]. However, the original paper [15] mentions the usage
of the CBOW approach of Word2vec.

wikipedia2vec Wikipedia2vec [156] jointly maps words and entities into the same
continuous vector space such that similar words and entities are closer to each other
in the vector space. The model learns the embeddings of the words and entities from
Wikipedia using three sub-models, namely (i) Wikipedia Link Graph Model, (ii) Word-
based skip-gram model, and (iii) Anchor Context model. All these sub-models use the
skip-gram architecture from Word2vec. The Wikipedia Link Graph is an undirected
entity-entity graph in which each node is an entity in Wikipedia and there exists an
edge between two nodes if the page of one entity has a link to the other entity. The en-
tity embeddings are learned by predicting the neighbouring entities in the Wikipedia
Link Graph. The Word-based skip-gram model learns the word embeddings by pre-
dicting the neighbouring words of a given word. The anchor context is built by ob-
taining referent entities and their neighbouring words from the links contained on the
Wikipedia page. The model learns by predicting the context words given to each entity.

2.4 language models 25

2.4.2 Contextual Embeddings

The Non-contextual Embeddings are static in nature and have the same embeddings
of the words irrespective of the given context. Hence, it fails to encode the polysemous
words. Contextual Embeddings are proposed to distinguish the semantics of the words
in different contexts. Given a text w1,w2, ...,wn, where each token wi ∈ W is a word
or sub-word, the contextual embeddings of the token wi is ht and is formulated as,

[h1, h2, ..., hn] = fencode(w1, w2, ..., wn), (2.10)

where f(•) is the encoder. The following sections focus on detailed descriptions of the
Contextual Embedding models namely BERT, S-BERT, and GPT-2, that are used in the
models discussed in the chapters later.

bidirectional encoder representations from transformers (bert) It
is a transformer-based unsupervised model proposed by Google [35]. BERT has emerged
from earlier pre-training contextual embedding models such as semi-supervised se-
quence learning [30], generative pre-training, ELMo [97] and ULMFit [56]. Unlike the
static context-free embedding models such as Word2vec, GloVe, etc., BERT takes into
account the context for each occurrence of a given word. For example, the embedding
of the word anchored is the same for the static context-free embedding models for both
of its occurrences in the following sentences:

She anchored the television documentary series last year.
The boat is anchored in the lee of the island.

BERT generates different contextual embeddings according to the sentences. The archi-
tecture builds upon the original transformer model proposed by Vaswani et al. [139]
and it comprises a variable number of encoder layers and self-attention heads. The
original BERT trained on the English language has two variants: (i) BERT-base model
which has 12 encoders, 12 bidirectional self-attention heads, and 768 hidden units,
and 110M parameters and (ii) BERT-large model containing 24 encoders, 16 bidirec-
tional self-attention heads, 1024 hidden units, and 340M parameters. The input to the
encoder in the BERT model is a sequence of tokens, which are first converted into vec-
tors and then processed in the neural network. Each layer then applies self-attention,
and passes its results through a feed-forward network, and then to the next encoder.
The input embeddings are the sum of the token embeddings, segmentation embeddings
and position embeddings. For token embeddings, a [CLS] token is added to the input word
tokens at the beginning of the first sentence and a [SEP] token is inserted at the end
of each sentence. In the case of segment embeddings, a marker indicating the sentences
is added to each token which allows the encoder to identify different sentences. A
positional embedding is added to each token to indicate its position in the sentence. The
transformer then stacks a layer that maps sequence to sequence and the output has
the same sequence of vectors corresponding to the input. BERT is pre-trained together

26 foundations

Figure 2.6: Illustration of the BERT model

on two tasks: (i) Masked Language Modelling (MLM), (ii) Next Sentence Prediction
(NSP). In the MLM task 15% of the tokens are masked and the model is trained to
predict the masked words from the context. During training, the prediction is done
only on the masked tokens, while the non-masked ones are ignored. For NSP, given
a sentence, the model is trained to predict if a chosen next sentence is random or not,
with the assumption that the random sentence will be disconnected from the first sen-
tence. During training, two sentences are provided as input to the BERT model and
the output of the classification token [CLS] is transformed using a classification layer
and the IsNext-Label is assigned using the softmax function. The BERT model can be
easily fine-tuned and has been applied across a wide variety of tasks under general
language understanding like natural language inference, sentiment analysis, question
answering, paraphrase detection, linguistic acceptability, etc. Figure 2.6 illustrates the
BERT-base model with 12 encoder layers, and the input to the model is a sequence of
n words given by w1,w2, ...,wn together with the special tokens [CLS] and [SEP]. Fur-
thermore, Chapter 7 of this dissertation shows that this contextual embedding model
BERT plays a significant role in predicting missing semantic types of the entities in a
KG.

sentence-bert (sbert) The most common way of generating a sentence embed-
ding in the BERT model is by averaging all the word-level embeddings or by using the
output of the first token i.e., the [CLS] token. However, experimental results in [112]
show that these sentence embeddings often perform worse than the sentence embed-
dings obtained from the GloVe embeddings for several downstream tasks for various

2.4 language models 27

tasks such as textual similarity, Wikipedia Sections Distinction, etc. SBERT [112] model
tackles all the above-mentioned problems.

SBERT fine-tunes the BERT model using the siamese and triplet networks to update
the weights such that the resulting sentence embeddings are semantically meaning-
ful and semantically similar sentences appear closer to each other in the embedding
space. It is fine-tuned with a 3-way softmax classifier objective function for one epoch.
The two input sentences (say u and v) to the SBERT model are passed through the
BERT model followed by a pooling layer namely, CLS-token, MEAN-strategy, and
MAX-strategy are appended on top of it. This pooling layer enables the generation
of a fixed-size representation for the input sentences. It is then concatenated with
the element-wise difference and multiplied with a trainable weight, W, and is opti-
mized using cross-entropy loss. In order to encode the semantics, the twin network is
fine-tuned on Semantic Textual Similarity data. The SBERT model is first trained on
Wikipedia via BERT and then fine-tuned on Natural Language Inference (NLI) data.
NLI is a collection of 1,000,000 sentence pairs created by combining The Stanford Nat-
ural Language Inference (SNLI)4 and Multi-Genre NLI (MG.NLI) datasets. Later in
Chapter 5 and Chapter 8 it is observed that SBERT embeddings generated for the
textual entity descriptions help in KG completion.

generative pre-trained transformer 2 (gpt-2) GPT-2 [110] is a transformer-
based language model which is trained with the objective of predicting the next word
given all the previous words within some text. The model is trained with 1.5 billion
parameters and a dataset of size 40 GB which consists of 8 million web pages. GPT-2
is a direct scale-up of GPT [109] with a ten-fold increase in the parameters and the
size of the training data. It is a decoder-only transformer model comprising 12 layers
of decoders using 12 masked attention heads with 64-dimensional states for each at-
tention head. Unlike BERT, in GPT-2 the future tokens of masked, and hence, in the
calculation of self-attention the tokens to the right of the current token are blocked. For
instance, to make predictions for the ith token wi in the sequence w1,w2, ...,wn, only
input tokens from 1 to i w1,w2, ...,wi are considered while the tokens wi+1, ...,wn are
ignored in the mask mechanism for self attention. The word vectors used in the first
layer of GPT-2 are generated using Byte Pair Encoding (BPE). BPE is a data compres-
sion technique in which the most common pair of consecutive bytes of data is replaced
with a byte that does not occur within that data. The Adam optimization algorithm is
used in GPT-2 and the learning rate is increased linearly from 0 to 2.5× 10−4 over the
first 2000 iterations using the cosine annealing5. GPT-2 is a self-supervised model i.e.,
it is pre-trained on raw texts with an automated process to generate inputs and labels
from those texts. GPT-2 has been used in a wide range of tasks such as text genera-
tion, question answering, text summarization, translation, etc. Furthermore, GPT-2 is
4 https://nlp.stanford.edu/projects/snli/ 5 Cosine Annealing is a type of learning rate schedule
that has the effect of starting with a large learning rate that is relatively rapidly decreased to a minimum
value before being increased rapidly again.

https://nlp.stanford.edu/projects/snli/

28 foundations

capable of generating full sentences as well as comprehensible and semantically mean-
ingful paragraphs by continuing to predict tokens or words in the sequence [110]. It
is to be noted that GPT-2 has a task-agnostic architecture and has not been trained
specifically for any of the aforementioned downstream tasks. Despite this, fine-tuned
GPT-2 outperforms task-oriented RNN, CNN, and LSTM-based models on different
tasks [109]. In this dissertation, the general-purpose task-agnostic feature of GPT-2 is
leveraged for KG completion, a detailed description of which is provided in Chapter 6.

2.5 network embeddings

Network embedding aims to learn the latent representations of the nodes of a graph
into a continuous low-dimensional vector space. In network embeddings, the intrinsic
information of the network (or the graph) is to be preserved, noise and redundant
information are to be removed and the embeddings of the similar nodes should be
closer to each other in the vector space. A network embedding model roughly includes
the following steps:

• decide on the dimension of the embedding vector,

• randomly initialize embeddings for each node, and

• learning the embeddings by repeatedly incrementally improving the embed-
dings preserving the similarity in the network by solving an optimization prob-
lem.

The learned node embeddings can effectively support in downstream tasks such as
predicting unseen links, identifying important nodes, and inferring node labels. One of
the advantages of node embedding is that feature engineering by domain experts is not
required for downstream tasks. Further details on the different network embedding
models can be found in [3, 28]. Chapter 7 of this dissertation shows how Node2vec [47]
model can be leveraged to predict the missing entity types for Knowledge Graph
Completion. Therefore, a detailed explanation of the model is provided below.

node2vec Node2vec [47] learns the latent representation of the nodes in a graph
by preserving neighbourhood information. Biased random walks based on an efficient
network-aware search strategy are generated from target nodes. In the network, the
selection of the next hop in the first-order random walk is done based on the transition
probability calculated by normalizing the edge weights and is given by,

P(u|v) =
wuv∑

u ′∈Nv
w(u ′v)

=
wuv

d(v)
, (2.11)

where u, v ∈ V are the nodes, Nv are the neighbouring nodes of v, d(v) is the degree of
node v, and w(u, v) is the weight of the edge between the nodes u and v. The second

2.6 knowledge graph embeddings 29

order transition applies a bias factor α to reweigh the edge weights depending on the
previous state and the transition probability is given by,

P(u|v, t) =
αpq(t,u)w(u, v)∑

u ′∈Nvαpq
(t,u ′)w(u ′, v)

, (2.12)

where t,u, v ∈ V , and Nv are the neighbouring nodes of v. The random walk has
already traversed the edge (t, v) and the transition probability is calculated for the
next node from starting from v. The bias factor α is given by,

αpq(t,u) =


1
p dtu = 0

1 dtu = 1

1
q dtu = 2

, (2.13)

where dtu determines the shortest distance between the nodes t and u, parameter p
controls the likelihood of immediately revisiting a node in the walk, and q allows the
search to differentiate between inward and outward nodes. These random walks are
treated as sentences in the skip-gram model to generate the node embeddings in the
node2vec model. The main idea is to maximize the probability of predicting the correct
context node given the centre node.

The second order transition in the random walks that stores the interconnections
between the neighbours of every node [47]. Furthermore, the neighbourhoods Nv con-
sidered in the random walks are not only restricted to immediate neighbours but also
extended to vastly different structures within the network depending on the sampling
strategy.

2.6 knowledge graph embeddings

The main goal of Knowledge Graph Embedding (KGE) models is to generate a latent
representation of the entities and relations in a KG to a continuous low-dimensional
vector space that can be used for different knowledge acquisition tasks and down-
stream applications. The dimension d of the entity and the relation vectors is fixed
and often low ranging between 50 ⩽ d ⩽ 1000 [54]. The entity embeddings (or vectors)
and relation embeddings (or vectors) are usually denoted by e and r respectively. As
discussed in [58], a typical KGE model is characterized by the following steps:

• Representation Space, the low-dimensional space in which the relations and enti-
ties are represented. Entities are represented as vectors or modelled as multivari-
ate Gaussian distributions. Relations, on the other hand, can be represented as
vectors, matrices, tensors, multivariate Gaussian distributions, or even mixtures
of Gaussians.

30 foundations

Figure 2.7: Generalized framework of a KGE model

• Scoring Function given by fr(eh, et) is defined on each triple < eh, r, et > to
measure its plausibility. The triples observed (or true triples) in the KG tend to
have a higher score and lower scores are assigned to false/negative/corrupted
triples.

• Encoding Models for representing and learning relational interactions between
the entities. The model learns the representations of the entities and relations
by solving an optimization problem that maximizes the total plausibility of ob-
served triples. Negative or corrupted triples are generated in this step and the
method used to generate negative samples has an impact on learning the embed-
dings [69].

• Auxiliary Information: Any additional information available in the KG, such as
literals, that can be leveraged to enrich the embeddings of the entities and the
relations. In such a scenario, an ad-hoc scoring function is defined for the addi-
tional information and is integrated into the general scoring function.

All the aforementioned steps are depicted in Figure 2.7. An extensive study of the
existing KGE models is provided in Chapter 3. Furthermore, Chapter 5 discusses the
shortcomings in the baseline models and proposes a new KGE model for link predic-
tion in KGs.

2.7 evaluation metrics

As mentioned earlier in Chapter 1, the problem of KGC can be further subdivided into
sub-problems, namely (i) link prediction in KGs, and (ii) entity type prediction. Fur-
thermore, the task of link prediction in KGs includes two subtasks which are head/tail
prediction and triple classification. The entity type prediction problem, on the other
hand, is converted to a classification problem with semantic types of the entities as

2.7 evaluation metrics 31

classes in the classifier. Therefore, different evaluation metrics are used for the differ-
ent subtasks of the KGC problem. This section comprises detailed explanations of the
evaluation metrics used in different models presented in this thesis.

The most commonly used evaluation metrics for the Link Prediction task that in-
cludes the head or tail entity prediction of the triples are Mean Reciprocal Rank (MRR),
and Hits@k. For triple classification, accuracy is used as an evaluation metric for the
classifier. The evaluation metrics Accuracy, Macro-F1, and Micro-F1 are used for entity
type prediction.

mean reciprocal rank Mean Reciprocal Rank (MRR) is the average of the re-
ciprocal ranks of the correct entities. It scores the predicted triples based on whether
they are true or not. If the first predicted triple is true, its score is 1, and the second
true score is 1

2 , and so on. When the nth triple is established, it is scored 1
n , and the

final MRR value is given by,

MRR =
1

|Q|

∑
q∈Q

1

q
, (2.14)

where q is the prediction/recommendation item, and Q represents all the predic-
tion/recommendation items given by the model. The larger the MRR value, the better
the model effect. MRR is a commonly used index to measure the effect of search algo-
rithms [22].

hits@k Hits@k is the proportion of the correct entities in top-k predictions, mathe-
matically given by,

Hits@k =
|{q ∈ Q : q < k}|

|Q|
(2.15)

where q represents the prediction/recommendation item, and Q represents all the
prediction/recommendation items given by the model. The value of Hits@k is between
0 and 1. The larger the value, the better the algorithm works. Hits@K reflects the
accuracy of an embedding model to predict the relation between two given triples
correctly. Hits@k is an indispensable evaluation metric for link prediction tasks in
KGC and k = 1, 3, and 10 are usually chosen [22].

accuracy Accuracy is the proportion of correct predictions among the total num-
ber of cases examined in a classification problem. Mathematically it is given by,

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(2.16)

32 foundations

where TP, TN, FP, and FN are true positives, true negatives, false positives, and false
negatives respectively. In multi-class classification problems such as in entity type pre-
diction in KGs, accuracy is expressed in percentage and is calculated as,

Accuracy =
correct classifications

all classifications
(2.17)

In a multiclass classification problem, a prediction is considered correct when the class
with the highest score matches the class in the label.

f1 -score , macro-f1 and micro-f1 F1-score is defined as the harmonic mean
of the precision and recall:

F1 − score = 2 ⋆
Precision ⋆ Recall
Precision + Recall

(2.18)

where Precision is the fraction of retrieved items that are relevant to the query. In
classification problems, Precision = 1 refers that all samples that are classified as the
positive class are truly positive. Recall is the fraction of the relevant documents that are
successfully retrieved. In classification, Recall = 1 means all the truly positive samples
were predicted as the positive class. F1-score is a measure used to assess the quality
of binary classification problems as well as problems with multiple binary labels or
multiple classes. The best F1-score is 1 while the worst value is 0.

The Macro F1-score (Ma-F1) is defined as the mean of class-wise F1-scores and is
formally given by,

Ma− F1 =
1

C

C∑
i=0

F1 − scorei (2.19)

where i is the class index and C the number of classes. In Ma-F1, the F1 score is
calculated for each class followed by their unweighted mean. It considers all the classes
equally and thereby the class imbalance is not taken into account. It performs better
in the popular classes (or frequent classes) whereas drops poorly in the rare classes.

Micro F1-score (Mi-F1) is the harmonic mean of the precision and recall and is
mathematically defined as,

Mi− F1 = 2 ⋆
Mi-Precision ⋆ Mi-Recall
Mi-Precision + Mi-Recall

(2.20)

It measures the F1-score of the aggregated contributions of all classes by globally
counting the total true positives, false negatives and false positives. The value of Mi-
F1 ranges between 0 and 1 with 1 being the best score and 0 being the worst. The
micro-averaging allows more emphasis on the most frequent classes. The classes with
lesser data do not have a significant influence on the overall F1 score if the model

2.7 evaluation metrics 33

performs well for the popular classes. This metric is widely used to assess the quality
of multi-label binary classification.

3
L I N K P R E D I C T I O N - L I T E R AT U R E R E V I E W

One of the important sub-problems of KGC is link prediction. In the past decade, there
has been a significant rise in interest in the research on generating knowledge graph
embeddings to predict the missing links in KGs. Based on the techniques used, this
chapter gives a categorization of the most recent, state-of-the-art (SoTA) link prediction
models, followed by comprehensive details of the models.

3.1 introduction

Link Prediction is a fundamental task of KGC that aims to estimate the likelihood of
the existence of links between entities based on the current observed structure of the
KG. The typical graph topology, however, makes KGs difficult to manipulate for differ-
ent tasks due to the huge amount of information available. The primary disadvantages
of conventional KGs are computationally expensive, and data sparsity. As a result, the
need to learn a KG’s latent representation in a low-dimensional space arises. Knowl-
edge graph embeddings can utilize self-supervision to develop a low-dimensional nu-
merical model of a KG that (usually) translates input edges to an output plausibility
score indicating the likelihood of the edge is true. KG embedding-based link predic-
tion models focus on different features from the KGs. Inspired by [43], a categorization
of the existing KG embeddings based on the embedding techniques is provided in Ta-
ble 3.1.

Using the KG definition from the previous chapter (see Section 2.2 of Chapter 2), a
KG G consists of a set of triples T, given by, T ⊆ E×R× (E∪L∪ C), where E, R, L, C
are the set of entities, relations, literals, and semantic types or classes respectively. A
triple < eh, r, et >∈ T in a KG G, is an ordered set, where eh ∈ E is the head entity,
r ∈ R is the relation, and et ∈ E∪L∪ C is the tail entity.

As this dissertation focuses of leveraging the contextual information of the entities
in a KG, the SoTA KG embedding models exploiting those features are discussed
extensively along with an overview of the other models are provided.

3.2 translation-based models

In TransE, given a triple < eh, r, et > in a KG G, the relation r is considered as a
translation operation between the head (eh) and tail (et) entities on a low dimensional
space defined by eh + r ≈ et, where eh, r, et are the embeddings of the head, relation
and the tail entity respectively. TransH [141] extends TransE by projecting the entity

35

36 link prediction - literature review

Table 3.1: Link Prediction Models and their categories

Categories Models

Translational Models TransE [19] and its variants, RotatE [132], etc.

Semantic Matching Models
RESCAL [91] and its extensions,
DistMult [157], HoIE [90],
SME [20], etc.

Path based Models
GAKE [40], PTransE [75],
PConvKB [59], etc.

Logical Rule based Models KALE [48], LS-KBC [143]

Neural Network Based Models
NTN [126], HypER [5], ConvE [34],
ConvKB [29], R-GCN [118], etc.

Literal Based Models
Text-based

DKRL [150], Jointly(ALSTM) [153],
SSP [148], KG-BERT [158],BLP [32]

Numeric-based
KBLRN [42], LiteralE [71],
TransEA [147], MT-KGNN [134]

Multi-modal MKBE [99], IKRL [149], etc.

vectors to relation-specific hyperplanes. TransR [76] models entities and relations into
distinct semantic spaces and projects entities from the entity space to the relation
spaces. The scoring function of RotatE models the relation as a rotation in a complex
plane to preserve the symmetric/anti-symmetric, inverse, and composition relations
in a KG. For a triple < eh, r, et >, the relation among them can be represented as
et = eh ◦ r, where |r| = 1, i.e., restricting it to the unit circle and ◦ represents element-
wise product.

3.3 semantic matching models

Semantic Matching Model (SME) is based on semantic matching using neural network
architectures. Given a triple < eh, r, et > in a KG G, it projects entities and relations
to their vector embeddings in the input layer. The relation vector r is then combined
with the head entity vector eh and tail entity vector et to get gu(eh, r), and gv(et, r)
respectively in the hidden layer. The final score is given by matching gu and gv via
their dot product. In DistMult, each entity is mapped to a d−dimensional dense vector
and each relation is mapped to a diagonal matrix, and the score of a triple is computed
with the help of matrix multiplication between the entity vectors and the relation
matrix. RESCAL models the triple < eh, r, et > into a three-way tensor, X. In X, two
modes hold the concatenated entities (eh, et), and the third mode holds relation r.

3.4 neural network based models 37

The model explains triples via pairwise interaction of latent features. The score of the
triple is calculated using the weighted sum of all the pairwise interactions between
the latent features of the entities (eh, et). ComplEx extends DistMult by introducing
complex-valued embeddings so as to better model asymmetric relations. It allows joint
learning of head and tail entities by using the Hermitian dot product. In this model, the
entity and relation embeddings lie in a complex space. Holographic Embedding (HolE)
intend to overcome the curse of dimensionality of tensor product used in RESCAL by
using circular correlation. Furthermore, this circular correlation is not commutative
allowing HolE to model asymmetric relations.

3.4 neural network based models

NTN represents an entity using the average of the word embeddings in the entity
name. ConvE uses 2D convolutional layers to learn the embeddings of the entities
and relations in which the head entity and the relation embeddings are reshaped and
concatenated which serves as an input to the convolutional layer. The resulting feature
map tensor is then vectorized and projected into a k-dimensional space and matched
with the tail embeddings using the logistic sigmoid function minimizing the cross-
entropy loss. In ConvKB, each triple < eh, r, et > is represented as a 3-column matrix
which is then fed to a convolution layer. Multiple filters are operated on the matrix in
the convolutional layer to generate different feature maps. Next, these feature maps
are concatenated into a single feature vector representing the input triple. The feature
vector is multiplied with a weight vector via a dot product to return a score which is
used to predict whether the triple is valid or not. HypER model uses a hyper network
approach to generate convolutional filter weights for each relation. It is a method by
which one network generates weights for another network enabling weight-sharing
across layers. A hyper network projects a relation embedding via a fully connected
layer, the result of which is reshaped to give a set of convolutional filter weight vectors
for each relation. Relational Graph Convolutional Network (R-GCN) extends Graph
Convolutional Network (GCN) [67] to handle different relationships between entities
in a KG. GCN is a semi-supervised learning approach to graph-structured data. It
takes a feature matrix containing the feature description of each node as an input as
well as an adjacency matrix. A CNN model is trained on the input and the model
learns hidden layer representations that encode both local network structure and node
attributes growing linearly with the number of graph edges. In R-GCN, different edge
types use different weights and only edges of the same relation type r are associated
with the same projection weight. For each node, an R-GCN layer operates in two steps.
First, it computes the outgoing message using node representation and weight matrix
associated with the edge type. Then the incoming messages are aggregated to generate
new node representations. A 2-D matrix is used to define the initial node features and a
3-D tensor describes the node’s hidden features. This tensor is able to encode different

38 link prediction - literature review

relations by stacking r batches of matrices, where each of these batches encodes a
single typed relation.

3.5 path based models

ptranse The model extends TransE by introducing relation paths as features. Given
a triple, < eh, r, et >, it considers the path defined as p = r1 −→ r2... −→ rl between the
head and tail entity. It considers the three types of composition operations i.e.,

addition: p = r1 + r2 + ... + rl
multiplication: p = r1 ◦ r2 ◦ ... ◦ rl

RNN: pi = f(W[pi−1; ri])

(3.1)

Here, pi is the accumulated path vector at the ith relation, W is a composition matrix
shared by all relations, f is the non-linear function, and [pi−1; ri] denotes their concate-
nation. PTransE defines the loss for each positive triple w.r.t the paths as follows:

Lpath =
1

Z

∑
pinP(⌉⟨,⌉⊔)

R(p|eh, et).l(p, r) (3.2)

in which P(eh, et) is the set of all paths connecting eh and et, R(p|eh, et) indicates
the reliability of a path p given the two entities, Z is the normalisation factor, and
l(p, r) is the loss specified on the path-relation pair. The loss function of TransE on
aggregated Lpath is computed over all the positive triples to learn the representations
of the entities and relations.

pconvkb The model [59] extends the ConvKB model by exploiting the path infor-
mation of the KGs. Additionally, it uses an attention mechanism to measure the local
importance in relation paths. Similar to the PTransE model, it also generates paths
between the head and the tail entity. Similar to ConvKB, for each triple < eh, r, et >
the score function of our model PConvKB is defined as follows:

f(eh, r, et) = σ(ψ([eh,
N∑
i=1

ΦGi
×ΦLi

× pi + r, et]×Ω)).w (3.3)

in which σ is the non-linear sigmoid function, ψ is the average pooling, ΦGi
and ΦLi

denote the global and local importance respectively of the ith path, pi is the embed-
ding of the ith path, eh, r, et are the embeddings of the head, relation and tail entity
respectively, and Ωandw are shared parameters. The path embedding is obtained by
pi =

∑
r.

3.6 literal based models 39

gake GAKE [40] is a graph-aware embedding model that takes into account three
types of graph structure namely neighbour context, path context, and edge context.
The neighbour context is the same as the triple information present in the KGs. Path
context includes several hops from the entities. Lastly, the edge context is defined by all
the incoming and outgoing links to and from an entity. It uses an attention mechanism
to identify important entities in the context neighbourhood that have more represen-
tative power and hence impact the embeddings. The graph contexts are combined by
jointly maximizing the objective functions:

O = λNON + λPOP + λEOE (3.4)

where λN, λPandλE represent the weightage from neighbour context, path context and
edge context respectively. The stochastic gradient descent (SGD) algorithm is used to
estimate model parameters by optimizing Equation 3.5. The derivatives are calculated
using the back-propagation algorithm. Hierarchical Softmax is used to speed up the
training process and hence to reduce the time complexity of normalization.

3.6 literal based models

Another set of algorithms improves KG embeddings by taking into account different
kinds of literals such as numeric, text or image literals. Models such as TransEA [147]
and KBLRN [42] incorporate numeric literals into their embedding spaces, whereas
MKBE is a multi-modal KG embedding model which includes the numeric, text and
image literals present in KGs into their embedding spaces. A detailed analysis of the
literal-based KG embedding models is provided in [43]. Text-based models are exten-
sively described below because this thesis focuses on analyzing the effects of textual
entity descriptions on link prediction for KGC.

dkrl DKRL [150] extends TransE [19] by incorporating the textual entity descrip-
tions in the model. Two types of vector representations, namely structure-based es and
description-based ed, are learned simultaneously into the same vector space for each
entity e. Given a triple <eh, r, et>, the energy function is defined as,

E = ||hs + r− ts||+ ||hd + r− td||+ ||hs + r− td||+ ||hd + r− ts||, (3.5)

in which hs and ts are the structured-based representations hd and td are the description-
based representations of the corresponding head and tail entities respectively. TransE
is used to learn the structure-based representation, while the textual entity descrip-
tions are encoded using a continuous bag-of-words (CBOW) approach as well as a
CNN-based approach. The short text is generated from the entity description based
on keywords and their corresponding pre-trained word embeddings are summed up
to generate the entity embedding in the CBOW approach. The CNN model comprises

40 link prediction - literature review

five layers with each convolutional layer followed by a pooling layer, with tanh or
ReLU as the activation function. CNN preserves the sequence of words, and hence
performs better than CBOW. During the training of the model, a margin-based score
function is considered an objective function and minimized using Stochastic Gradient
Descent (SGD).

jointly (alstm) Jointly (ALSTM) [153] is another entity description-based em-
bedding model which extends the DKRL model with a gate strategy and uses atten-
tive LSTM to encode the textual entity descriptions. The appropriate balance between
structure-based and description-based representations is accomplished by incorporat-
ing the gated mechanism. Unlike DKRL, Jointly (ALSTM) uses bag-of-words, LSTM,
and Attentive LSTM to generate description-based representations. For the structure-
based representations, existing embedding models such as TransE are used. The joint
representation is a linear interpolation between these two types of representations and
is mathematically given by,

e = ge ⊙ es + (1− ge)⊙ ed, (3.6)

where ⊙ is an element-wise multiplication and ge is the gate mechanism which is
a real-valued vector. Jointly (ALSTM) follows the scoring function of TransE and is
defined as follows:

f(eh, r, et;dh,dt) = ||(gh ⊙ hs + (1− gh)⊙ hd) + r− (gt ⊙ ht + (1− gt)⊙ td)||
2
2

(3.7)

where hs, hd, andgh are the structured-based, description-based and gate respectively
for the head entity and ts, td, andgt are the structured-based, description-based and
gate respectively for the tail entity.

kg-bert KG-BERT [158] is a contextual neural language model-based approach
which fine tunes the BERT model [35] on the KGs. Each triple < eh, r, et > is con-
sidered as a sentence and is provided as an input sentence of the BERT model for
fine-tuning. For the entities, KG-BERT has been trained with either the entity names
or their textual entity descriptions and for relations, the relation names are used. The
first token of every input sequence is always [CLS], whereas the separator token [SEP]

separates the head entity, relation and tail entity. The elements separated by the [SEP]

token have different segment embeddings. The tokens in the head and tail entity name
or the sentences in their corresponding descriptions share the same segment embed-
ding eA whereas the for relation the segment embedding is different and is denoted
by eB. Different tokens in the same position i ∈ {1, 2, 3, ..., 512} have the same posi-
tion embedding. The token representations are fed into the BERT model architecture.
The aggregate sequence representation for determining triple scores is the last hidden

3.7 discussion and outlook 41

state corresponding to [CLS]. Classification layer weights are the only new parameters
added during triple classification fine-tuning and is given by W ∈ R2×A, where A is
the hidden state size of the pre-trained BERT. The sigmoid function is used for the
triple classification on the last hidden state.

blp framework BLP [32] proposes the use of a pre-trained language model for
learning representations of entities via a link prediction objective. It introduces a holis-
tic evaluation framework for entity representations, that comprises link prediction, en-
tity classification, and information retrieval. It uses BERT-based entity representations
from textual entity descriptions for link prediction. For relations, the initial vectors are
randomly assigned which are then optimised using SGD. The framework uses differ-
ent base KG embedding models namely TransE, DistMult, ComplEx, SimplE to predict
the missing links. For an entity, ei ∈ E, the problem of optimizing the embeddings of
the entities and the relations in the graph is done by minimising the loss function
given by, ∑

(ei,rj,ek)∈T

max(0, 1− s(ei, rj, ek) + s(e ′i, rj, e
′
k)), (3.8)

where e ′i, e
′
j are the embeddings of the unobserved negative triples. One advantage

of this model is that, since it uses pre-trained embeddings of the textual entity de-
scriptions, the model is not computationally expensive. Also, entity embeddings can
be obtained for long-tailed entities in a KG with only textual descriptions available.
Furthermore, it is designed to predict missing links in unseen data.

3.7 discussion and outlook

It is evident from the number of research papers discussed in this chapter that KG em-
beddings for link prediction have gained enormous popularity in recent years. How-
ever, certain interesting observations in the text-based and path-based models have
been identified and are addressed below:

• Path Based Models: (i) Both PTransE and PConvKB model focuses on the relational
paths between the head and tail entity in the triple, hence discarding the other
neighbourhood information of the entities. Also, there is a possibility to have no
paths between the head and tail entity of a triple (except for one hop which is the
triple itself). Moreover, the paths can be longer containing irrelevant information
for the head and tail entities as the contextual information about the entities
decreases with increasing hops. (ii) As discussed in [73], GAKE is categorized
as a homogeneous model as it generates three different graphs based on the
different relations. The different kinds of relationships or node types in a KG are
also not considered.

42 link prediction - literature review

• Text Based Models: In DKRL, CBOW and CNN approaches are used to produce
the embeddings from the entity descriptions. In CBOW approach static word
embeddings are used, hence embedding of the word remains the same irrespec-
tive of its surrounding context. CNN works better than CBOW as it preserves
the sequence of words. However, it is a unidirectional model, therefore encoding
tokens only in one direction. Furthermore, CNNs do not learn long-range struc-
ture within a sequence like an LSTM. Jointly (ALSTM) extends DKRL by using
an attention-based Bi-LSTM model to encode the text. KG-BERT on the other
hand treats the triples as sentences and provides them as input to the BERT
model.

It follows that investigating the structural contextual information of the entities for
the task of link prediction in KGC remains uncharted territory. Additionally although,
the contextual NLMs are explored by the KG-BERT model and the BLP framework,
their full potential in combination with structural contextual data has yet to be realised.

4
E N T I T Y T Y P E P R E D I C T I O N - L I T E R AT U R E R E V I E W

This chapter offers a categorization of current, cutting-edge state-of-the-art (SoTA) en-
tity typing models based on the methodologies employed, followed by a comprehen-
sive explanation of each model and its shortcomings.

4.1 introduction

Information on entity types, which groups together entities with similar attributes (or
properties), is one of the fundamental elements of KGs. The types of entities in a KG
are usually organised as a hierarchical structure commonly known as class hierarchy or
type hierarchy. As mentioned earlier (see Chapter 1), most KGs are incomplete and lack
the type information of the entities. In a KG, type linkages have a special significance
and it can take advantage of specialised techniques that take into consideration the
unique semantics of these relationships. Therefore, the entity type prediction can be
converted to a classification problem [82] with semantic types of the entities as classes.
The classification model can be trained to identify the semantic types (or classes) based
on other features of the entities in the KG. Entity Typing can be further subdivided
into (i) coarse-grained, and (ii)fine-grained, depending on the level of hierarchy consid-
ered in the classification model. In the coarse-grained model, the entity types with a
large degree of dissimilarity such as Person, Location, Organisation are considered as
classes in the classification model. The traditional entity typing models concentrate
on a restricted number of coarse-grained types. However, the fine-grained entity typ-
ing models assign more specific types of an entity i.e., aims to distinguish subclasses
within entry-level classes. The coarse-grained classes are the parent classes of the fine-
grained classes in the hierarchy tree. For instance, given a hierarchy tree such that,
Physicist ⊂ Scientist ⊂ Person, for coarse-grained classification the entity Albert Einstein
will be assigned to the class Person and as Physicist in fine-grained classification.

Recent years have witnessed intense research on entity type prediction for KGC by
leveraging different features of the entities in a KG. Depending on the techniques used,
the entity typing models can be broadly classified into (i) Heuristic Models, (ii) Classi-
cal Machine Learning based models and (iii) Neural Network based models. The Non-
Neural Network-based models can be further divided into heuristic models, and classi-
cal Machine Learning (ML) based models, whereas the Neural Network-based models
are subdivided into Neural Language Modelling based models, graph structure-based
models, and knowledge graph embedding-based models. A brief overview of the afore-
mentioned categories and the corresponding models are provided in Table 4.1. The

43

44 entity type prediction - literature review

Table 4.1: Entity Type Prediction Models and their categories

Heuristic Models
Classical ML
based models

Neural Network Based Models
Neural Language

Model based
Graph structure

based models

SDType [93], CUTE [151] CUTE [151], SLCN [82]
MuLR [155],

FIGMENT [154]
APE [60], HMGCN [61], ConnectE [164]

following sections of this chapter include detailed descriptions of each of the SoTA
entity typing models mentioned in Table 4.1.

Following the KG definition provided in Section 2.2 of Chapter 2, the same notations
are used in this chapter as well. A KG G consists of a set of triples T, given by, T ⊆
E × R × (E ∪ L ∪ C), where E, R, L, C are the set of entities, relations, literals, and
semantic types or classes respectively. In this dissertation, the terms entity types and
the classes in a KG are used interchangeably.

4.2 heuristic based entity typing models

sdtype SDType [93] uses links between the entities as indicators for their corre-
sponding types. The model uses each incoming and outgoing link to and from an
entity as a feature to identify the type. For each link, the statistical distribution of
types in the subject and object position of the relation for predicting the type of entity
is used. Given an entity e with a certain relation r, the conditional property to deter-
mine how likely a type c is expressed as P(c(e)|(∃r.⊤)(e)), where r is an incoming or
an outgoing relation. It forms the building block of SDType and the confidence of an
entity e having a type c is computed as:

conf(c(e)) =
1

N

∑
all relations r of e

P(c(e)|(∃r.⊤)(e)) (4.1)

where N is the number of relations that connects an entity to another one and c ∈ C

is a type and C is the set of all types or classes. The problem with the faulty links is
addressed as the average probabilities of each type do not contribute much to the over-
all probability. In the case of a heavily skewed KG containing many general purpose
relations such as owl:sameAs or rdfs:label, there is a huge possibility of overrating the
more frequent types. Therefore, a certain weight wr is assigned to each relation r that
determines its capability to predict the type and is given by

wr =
∑

all types in C

(P(c) − P(c|∃r.⊤))2 (4.2)

4.3 classical machine learning based model 45

Therefore, Equation 4.2 can be redefined using the weight value as,

conf(c(e)) = v.
1

N

∑
all relations r of e

wr.P(c(e)|(∃r.⊤)(e)) (4.3)

where v is the normalised factor given by v = 1∑
all relations r of e wr

. The SDType model
works on the basis of common relations between the entities. Therefore, the model
often fails to distinguish between types with a large number of common properties,
such as dbo: BasketballPlayer and dbo: VolleyballPlayer in DBpedia.

cross-lingual type inference (cute) CUTE [151] proposes a framework to
type Chinese entities with DBpedia types. It is a two-step process in which the cross-
lingual entity linking between Chinese and English entities to construct the training
data. Then a classification model is proposed to assign the types of Chinese enti-
ties. Wikipedia Categories, entity attributes (or properties) of the entities and entity
attribute-value pairs are used as features for entity typing. Firstly, it follows the same
technique as described in YAGO [129] for determining the rdfs: subclassOf relations.
Then the probabilistic subClassOf relations are calculated using PARIS [128]. The prob-
ability is proportional to the number of entities of category M that belong to type c
and is given by,

P(M ⊆ c) = #(M∩ c)
#M

(4.4)

where #M is the number of entities belonging to category M and #(M ∩ c) is the
number of entities of category M that belong to class c. Finally, the maximum of the
probabilities obtained from YAGO and PARIS method is chosen as the final probability.
In the second step, an entity e is assigned to a type c using a Noisy-or model [127]
and is given by,

Pr(e ∈ c) = 1−
∏

m∈M(e)

(1− Pr(m ⊆ c)) (4.5)

where M(e) is the categories that entity e belongs to. If the probability of Pr(e ∈ c) is
greater than or equal to a threshold θ (0 ⩽ θ ⩽ 1), we assign the type c to entity e.
A top-down hierarchical classification approach is used to assign the types of entities.
Several binary classification models such as Logistic Regression, Random Forest, and
SVM are deployed on each node in the hierarchy to find the best-fitting fine-grained
type of an entity.

46 entity type prediction - literature review

4.3 classical machine learning based model

scalable local classifier per node (slcn) SLCN [82] is a modification of
the local classifier per node approach used for the task of entity typing. The framework
includes a multi-label classifier together with feature selection, instance sampling, and
class balancing for each local classifier. SLCN is based on the local classifier per node
(LCN) with a top-down prediction approach and siblings’ negative examples selection
policy. A binary classifier is trained on each type in the hierarchy. For all the types to
which the instance is predicted to belong to, the local classifiers of its sub-type predict
if the instance belongs to any of its children, and so forth. Whenever the instance is
predicted not to belong to a given type, then it is assumed that it does not belong to
any of its subtypes either. Feature selection is conducted by computing information
gain and top-k relevant features are considered. For the popular classes i.e., the classes
with the higher number of entities, the local classifier is trained using a smaller sample
size reducing the training time. During sampling, the potential class imbalance is ad-
dressed individually for each class. The model uses different local classifiers namely
Naive Bayes, J48, Adaboost, and SVM. As mentioned by the authors, one limitation
of SLCN is that it assumes independence between sibling nodes, thereby does not
support disjoint classes.

4.4 neural network-based models

Following major breakthroughs in deep learning, the use of neural network-based
models for entity typing in KGC has significantly increased in recent years. These
models are described at great length in this section.

4.4.1 Models using Neural Language Models

multi-level representations (mulr) MuLR [155] learns multi-level represen-
tations of entities via character, word, and entity embeddings followed by the hierar-
chical multi-label classification. It uses a large corpus in which mentions of the entity
e are linked. A set of training examples are used to learn the probability P(c|e) such
that entity e has type c. These probabilities are used to assign new types to the entities
in the KG as well as to determine types of unknown entities. P(c|e) is modelled as a
multi-label classification by training a multilayer perceptron (MLP) with one hidden
layer. The output layer has size |C|, i.e., the size equal to the number of types in the KG
and it outputs the probability for type c ∈ C. Mathematically, the probability of type c
is given by,

[P(c1|e)...P(ck|e)] = σ(Woutf(Wine)) (4.6)

4.4 neural network-based models 47

where Win ∈ Ra×d is the weight matrix from e ∈ Rd to the hidden layer with size
a, f is the rectifier function, Wout ∈ R|C|×a is the weight matrix from hidden layer to
the output layer of size |C|, and σ is the sigmoid function. A binary cross-entropy loss
function is used. The contexts of the entity e as well as its name are used to represent
its feature vector on the three levels of entity, word and character. Entities with similar
meanings tend to have similar contexts. Thus, the d− dimensional embedding of entity
e is learned from a corpus in which all the mentions of e are replaced with a unique
identifier. The authors refer to this as Entity Level Representation (ELR). An order-
aware embedding model Structured SKIP (SSKIP), which is an extended version of
the Skip-gram model is used to learn ELR. The Word Level Representation (WLR) is
computed by taking the average of the embeddings of the words that the entity name
such that

e =
1

n

n∑
i=1

wi, (4.7)

where wi is the embedding of the ith word of an entity name of length n. Embedding
models that consider words as atomic units in the corpus, e.g., SKIP and SSKIP, are
word-level. Furthermore, it also exploits the word embedding model FastText [14]. For
Character Level Representation (CLR), four models namely Feed-forward network,
CNN, LSTM, and BiLSTM are trained on the corpus.

figment FIGMENT [154] is a text embedding-based entity typing model which is
trained on a large annotated corpus in which mentions of the entities are linked to
one another. It constitutes of three scoring models namely, Global Model (GM), Context
Model (CM), and Joint Model (JM). GM returns a score S(e, c) for an entity-type pair
(e, c), where e ∈ E and c ∈ C are the entity and the class respectively. The scoring
function S(e, c), is learned using an MLP with one hidden layer and an output layer
that contains, for each type c ∈ C, a logistic regression classifier that predicts the
probability of c:

S(e, c) = Gc(tanh(Winpute)), (4.8)

where Winput ∈ Ra×d is the weight matrix from e ∈ Rd to the hidden layer with size
a, G is the logistic regression for type c that is applied on the hidden layer.

GM scores are based on the aggregated contextual information of the entity based
on the entire entity-annotated corpus. CM on the other hand, first the individual occur-
rences of an entity in different contexts are scored separately followed by an aggrega-
tion of these scores from each context. Each score based on each context is computed
using the MLP as described in Equation 4.8. This score for individual context in the

48 entity type prediction - literature review

corpus gives an assessment of how likely it is that an entity e occurring in a certain
context has type c. The overall scoring function for the context model is given by,

SCM(e, c) = g(Ue,c) (4.9)

where Ue,c = {St1 ,St2 ,,Stn}, is the set of scores of the type c based on the n contexts
{t1, t2, ..., tn} of e in the corpus. The function g is a summary function of the distribution
of scores, e.g., the mean, median or maximum. The joint model adds the scores of the
individual models and is formally defined as

SJM(e, c) = SGM(e, c) + SCM(e, c) (4.10)

4.4.2 Models using Graph Structures

attributed and predictive entity embedding (ape) APE [60] generates a
partially-labelled attributed entity network, including link structure, entity attributes,
and type information. Given a KG, Eu denotes the set of entities without type infor-
mation, whereas El is the set of entities with type information. The authors define an
entity network G = (E,L), where E = El ∪ Eu is the entity set, |E| = N, |El| = Nl,
and L =

{
(ei, ej)|ei, ej ∈ E, i ̸= j

}
is the link relation set. This entity network is de-

fined in form of a matrix G = (A,X,Y), where A is the adjacency matrix A ∈ RN×N

is equivalent to the link set L and Y refers to the entity type vector. If there is link
between entities ei and ej, aij = 1, otherwise 0. Each row in A is the entity link vector
Ai. X ∈ RN×M is the attribute matrix where M is the number of attributes. It collects
attributes of all entities and each row in X is the attribute vector of Xi. For an entity,
ei ∈ E, the link vector Ai, and attribute vector Xi are trained jointly for prediction. An
MLP is used to integrate structural and attribute information. The entity type predic-
tion function P(c|e) denoting the probability that entity e belongs to type c, uses El as
training data. The predictive type probability is defined through a softmax function in
the last layer of the neural network. Formally, the probability that an entity ei belongs
to class Cj is defined as,

P(Cj|ei) =
exp(Cj.ei)∑k
j=1 exp(Cj.ei)

, (4.11)

where k is the total number of classes. The entity attributes used by APE are words
from the entity descriptions, properties, and Wikipedia categories, in the form of an
adjacency matrix.

hierarchical multi graph convolutional networks (hmgcn) As the
name suggests, HMGCN [61] leverages the Graph Convolutional Network (GCN) to
predict the missing types of the entities in a KG. The model uses the anchor texts

4.4 neural network-based models 49

in textual entity descriptions, Wikipedia Categories, and properties in the KGs. In-
spired by the APE model, three undirected entity graphs and their corresponding
adjacency matrices are generated to capture the different kinds of semantic correla-
tions between the entities, i.e., entity co-occurrence based Aco, category-based graph
Acat, and property-based graph Aprop. Aco is derived from textual anchor texts to
encode the topical relevance between entities. An element Aco[i, j] in the adjacency
matrix Aco is set to 1, if an entity ei occurs in the textual description of another entity
ej and vice-versa. Acat is constructed through similarity computation based on cate-
gory information, based on the assumption that entities with similar categories tend
to have the same type. Jaccard similarity coefficient is calculated for each element in
the matrix Acat and is given by,

Acat[i, j] =
|Cat(ei)∩ |Cat(ej)|

|Cat(ei)∪ |Cat(ej)|
, (4.12)

where Cat(e) is the category set of the entity e. Similarly, to determine the correla-
tion between the entities via the properties, Jaccard similarity is also used to generate
Aprop. These three matrices are then provided into three GCN models. These models
use shared parameters in order to leverage the three semantic perspectives. A hierar-
chical regularization is used to incorporate the subClassOf relations between types.

connecte ConnectE [164] is an entity typing approach which includes two embedding-
based models, one utilizes the local typing knowledge from existing entity type asser-
tions and the other uses the global triple knowledge from KGs. For the first model
Mapping Entities to Types (E2T), a scoring function is designed to measure the similar-
ity between an entity and its type. Inspired by TransSparse [57] model, the entities
and entity types are first projected into two different spaces namely entity space and
entity type space with an operation matrix M. Next, a similarity measure is computed
between this projection and an entity type embedding. The scoring function of E2T
given (e, c) is:

S = ||M.e − c||2l2, (4.13)

where e, and c are the entity and the type respectively, M ∈ Rd×k is the transfer matrix
mapping the entities to their corresponding types, d is the dimension of the entity em-
bedding space and k is the dimension of the entity type space. The score is expected
to be lower for true entity types and higher for incorrect types. Furthermore, it uses
the relational knowledge from the triples in the second model, TRT. Based on the fact
that the entities cluster effectively according to their types, one of the fundamental
assumptions made in this paper is for a true triple <h, r, t>, the corresponding entity
types should initially adhere to this connection. Therefore, a new entity type triple is
proposed by replacing both head entity and tail entity with their corresponding types

50 entity type prediction - literature review

i.e., <head type, relation, tail type>. The translational scoring function of TransE [19] is
used for the embedding of the types and relations in the latent space. The final Con-
nectE model is trained by combining the ERT and TRT models. The negative samples
are generated by randomly switching type from the entity type pairs in validation
and the testing set is generated with the equal number of positive and negative sam-
ples. ConnectE exploits entity types to predict the missing types in a KG. Therefore,
this model is a supervised approach in which the types of entities have an influence
on their corresponding latent representations, as it uses the entity types in both the
embedding models.

4.5 discussion and outlook

The literature review conducted in this chapter explicitly states that the research on
entity type prediction has gained a boost in recent years. The following are some
shortcomings of the existing models that have been identified:

• Heuristic based Models: In the CUTE model, (i) any misclassification in one of
the parent nodes will be carried on to all the consecutive classifiers down the
hierarchy tree. (ii) The model is computationally expensive for KGs with a large
number of classes as a binary classifier is trained on each node of the hierarchy.

• Models with Graph Structures: (i) Both APE and HMGCN models only take into
account the instances of an entity in a particular text, thereby the information in
the free text of the textual entity descriptions is disregarded. (ii) Based on the
co-occurrence of properties between two entities, undirected entity graphs are
created in both models, followed by a property matrix. This might result in huge
sparse matrices in the case of a skewed KG with billions of entities. (iii) The
significance of incoming or outgoing edges relative to entities is not considered.

• Models using NLMs: (i) Both MuLR and FIGMENT models rely on large anno-
tated text corpus containing entity mentions. (ii) Despite the fact that both mod-
els make use of context information, the representations of the entities they create
are static in nature since they use non-contextual word embeddings. (iii) These
models overlook the enormous amount of information about the entities and
their relationships that are accessible in the KGs as well as the textual informa-
tion such as entity descriptions, etc.

It is to be mentioned that each of the aforementioned models predicts the missing
entity types using triples, anchored text, entity labels, Wikipedia Categories, and entity
types from the KGs. However, their capabilities are not fully utilized. There is a huge
research gap in adequately using the textual data included in the KGs. Also, contextual
information related to the entities has been excluded. Additionally, little research has

4.5 discussion and outlook 51

been done on the underutilized KG features like Wikipedia Categories. In order to fill
in the gaps in the literature, this dissertation takes into account the shortcomings of
the baseline models in use and suggests several entity type prediction models.

Part III

L I N K P R E D I C T I O N I N K N O W L E D G E G R A P H S

5
AT T E N T I V E M U LT I H O P A N D E N T I T Y D E S C R I P T I O N S F O R L I N K
P R E D I C T I O N

Link prediction is a fundamental task of KGC that aims to estimate the likelihood of
the existence of edges (links) based on the current observed structure of a KG [163]. To
date many algorithms for generating KG embeddings have been proposed for the task
of link prediction and a comprehensive study of the SoTA models and their shortcom-
ings are discussed earlier in Chapter 4. Most of the existing models learn the vectors
of the entities and relations from the triple information i.e., only consider one-hop in-
formation, whereas very few of them explicitly take into account the relational paths
between the head and tail entity of a triple. Additionally, only a handful of them in-
corporates the textual entity descriptions that are contained in the KGs. It is identified
that the structural contextual information of the KGs and contextual NLMs for textual
entity descriptions has still not been thoroughly exploited in the General Link Predic-
tion task for KGC in the existing literature. Therefore, this chapter bridges the research
gap by proposing a novel KG embedding model [7] for general Link Prediction.

The rest of the chapter is organised as follows. To begin with, a motivation of the
work is provided in the Introduction Section 5.1, followed by the problem formula-
tion in Section 5.2. Section 5.3 accommodates the outline of the proposed approach
followed by experiments in Section 5.4 and continued by link prediction results in Sec-
tion 5.5 and that of triple classification in Section 5.6. Finally, Section 5.7 concludes the
chapter with a brief discussion on future directions.

5.1 introduction

Knowledge Graphs (KGs) have recently gained attention for representing structured
knowledge about a particular domain. However, as discussed in Chapter 1 one of the
major challenges is that KGs are sparse and often incomplete as the links between the
entities are missing. Therefore, predicting the missing links is a vital task of KGC.

The textual description of the entities in the KGs contains rich semantic informa-
tion and the graph structure provides the contextual information of the entity from
the neighbouring nodes. The graph given in Figure 5.1 contains information about
some entities from DBpedia [4] and the relations between them. The textual entity
description is given by the property dbo:abstract. In this graph, dbr:Leonardo_DiCaprio
and dbr:Kate_Winslet acted in the movie dbr: Titanic is given by the property dbo:starring.
However, the dbo:starring information is missing for the movie dbr:Inception. But this in-
formation about dbo:starring is available in the textual entity description of the movie

55

56 attentive multihop and entity descriptions for link prediction

Figure 5.1: An excerpt of KG from DBpedia

dbr:Inception given by the relation dbo:abstract which states ‘The film stars Leonardo Di-
Caprio as a professional thief.’ Therefore, the information present in the textual entity
description might play a vital role in predicting the missing links.

On the other hand, the movies dbr:Inception and dbr:The_Whole_Truth, as shown in
Figure 5.1, are written by dbr:Christopher_Nolan and dbr:Philip_Mackie respectively, as
given by the relation dbo:writer. Also, both these writers have attended the same univer-
sity dbr:University _College_London. Therefore, dbr: Inception and dbr:The_Whole_Truth
are similar in terms of being written by writers who went to the same university. This
information from the graph is obtained by 2-hops starting from both source entities
dbr:Inception and dbr:The_Whole_Truth and is given by
dbr:Inception dbo:writer−−−−−−→ dbr:Christopher_Nolan dbo:almaMater−−−−−−−−→ dbr:University_College_London,
and,
dbr:The_Whole_Truth dbo:writer−−−−−−→ dbr:Philip_Mackie dbo:almaMater−−−−−−−−→ dbr:University_College_London
Considering the similarity in the given contextual information, the two movies
dbr:The_Whole_Truth and dbr:Inception should be closer to each other in the vector space.
Therefore, graph walks are beneficial for modelling the latent representation of the
entities and the relations. However, incorporating the contextual information of an
entity from the graph is non-trivial as not all relations are equally important to an
entity.

Primarily, link prediction is the task of predicting the head or tail entities in a triple
in a KG. However, triple classification, i.e., the task of finding if a given triple is valid

5.2 problem formulation 57

or not in a KG is also considered link prediction as it determines the validity of links
between two entities. This work proposes a novel method, MADLINK, which improves
the task of link prediction by combining the graph walks and textual entity descrip-
tions to better capture the semantics of entities and relations. The model also incorpo-
rates contextual information about the relations in the triples. MADLINK adapts the
seq2seq [133] encoder-decoder architecture with an attention layer to obtain a cumu-
lative representation of the paths extracted for each entity from the KG. On the other
hand, SBERT [112] has been used to extract the latent representations of the entity
descriptions provided as natural language text. DistMult [157] is used as a base model
to calculate the score of a triple for head or tail prediction.

The effectiveness of the model is evaluated with the benchmark datasets FB15K [19],
FB15K-237 [137], WN18 [19], WN18-RR [34], and YAGO3-10 [34] against different SoTA
models with and without entity descriptions. The results show that MADLINK out-
performs most of the existing models and achieves comparable results with the rest.
The main contributions of this chapter are:

• A path selection approach is introduced by exploiting the importance of a rela-
tion w.r.t. an entity in the KG.

• The textual entity descriptions are combined with the contextual information of
the entities extracted from the paths for a better representation of entities and
relations in KGs.

• An end-to-end attention-based encoder-decoder framework is proposed to gen-
erate a better representation of the paths of entities, relations as well as entity
descriptions for the link prediction task.

5.2 problem formulation

Following the definition of KG 3 provided in Chapter 2, a KG G consists of a set
of triples T, given by, T ⊆ E × R × (E ∪ L ∪ C), where E, R, L, and C are the set
of entities, relations between the entities, literals, and semantic types of the entities
respectively. < eh, r, et >∈ T, represents a triple belonging to the set of triples T in the
KG, where (eh, et) ∈ E are the head and tail entities, and r ∈ R represents relation
between them. In this work, we focus on predicting the missing links between entities.
Furthermore, most of the KGs comprise textual descriptions for each entity providing
semantic information about it. MADLINK aims to learn the latent representation of
the entities and relations to a lower dimensional embedding space, Rd, where d is
the dimension of the embedding space for the task of link prediction. This section
discusses the research questions to address the challenges.

• RQ1: Does the contextual information of entities and relations in a KG help in the task
of link prediction?

58 attentive multihop and entity descriptions for link prediction

• RQ2: What is the impact of incorporating textual entity descriptions in a KG for the task
of link prediction?

5.3 madlink model

This section comprises a detailed step-wise description of the proposed model and
the training approach. The model consists of two parts: (i) structural and (ii) textual
representation. Path selection forms the primary step of the structural representation
whereas textual representation is the encoding of the textual entity descriptions.

5.3.1 Path Selection

A directed path in a directed labelled graph is a sequence of edges connecting a se-
quence of distinct vertices. Given a KG G, a path is given by

{
e1

r1−→ e2
r2−→ ... rm−−→ en

}
,

where (ei, rj), i ∈ {1, 2, ...,n} and j ∈ {1, 2, ...,m} are the entities and relations, respec-
tively. Starting from a certain entity, the paths capture the contextual information
of an entity in a KG. However, a huge amount of information is stored in the KG
and not all triples are equally important for an entity. Some of the triples explain
the characteristics of an entity better than others. For example, in Figure 5.1, for the
entity dbr:Christopher_Nolan the relation dbo:almaMater provides more specific infor-
mation as compared to dbr:birthPlace as most of the persons in DBpedia certainly
have a birthplace. Also as explained in Section 5.1, the path containing the relation
dbo:almaMater provides more contextual information for the entities dbr:Inception and
dbr:The_Whole_Truth. Therefore, it is essential to know the general importance of the
relations for each entity. Eventually, the paths containing these relations would pro-
vide more valuable information compared to the paths without these relations. To
tackle this challenge, Predicate Frequency Inverse Triple Frequency (PF-ITF) is used to
identify the important relations for each entity [100].

predicate frequency - inverse triple frequency (pf-itf) In order to ex-
tract the contextual information related to an entity, paths consisting of l−hops are
generated for each node. The properties are selected at each hop of the path using
PF-ITF. Also, the cycles present in the KGs are straightened and considered as flat
path. Given a KG G, the predicate frequency of outgoing edges is given by pfeo(r,G),
the inverse triple frequency is given by itf(r,G) and PF-ITF pf− itfe(r,G) is computed
based on Equation 5.1.

5.3 madlink model 59

pfeo(r,G) =
|εo(e)|π(r)

|εo(e)|
,

itf(r,G) = log
|ε|

|ε|π(r)
,

pf− itfe(r,G) = pfe × itf,

(5.1)

where π(r) is the set of relations, |εo(e)|π(r) represents the number of outgoing edges
from the entity e w.r.t. to the relation r, |εo(e)| is the total number of outgoing edges
for the entity e, |ε| is the total number of triples, and |ε|π(r) is the total number of
triples containing the relation r. In this work, the paths are generated starting from a
certain entity, so PF-ITF is calculated using the outgoing edges, i.e., Eq. 5.1.

Next, the relations per entity are ranked based on the PF-ITF score. The PF-ITF
value increases proportionally with the number of outgoing edges of an entity w.r.t. a
relation and is offset by the total number of triples containing the relation which helps
to adjust the relations which appear more frequently in general. The highest PF-ITF
score of a relation w.r.t. an entity indicates that the triples containing this relation have
more information content compared to the rest. Based on the ranks, top-n relations
are selected for each entity. Thereafter, paths are generated for the entities in the KG
and crawled iteratively until l− hops. For computational simplicity, top-m important
properties are considered for each entity based on the PF-ITF score.

5.3.2 Textual Representation

The textual descriptions of an entity provide semantic information. These descriptions
are of variable length and are often short, i.e., less than or equal to 3 words. The
textual entity descriptions are encoded into a vector representation. Also, an enor-
mous amount of text data is available outside the KGs which can be leveraged for
a better representation of the entities. The static pre-trained language models such
as Word2Vec [83], GloVe [94], etc., as well as the contextual embedding model such as
BERT [36], have been used in the literature [150, 152, 153] to generate latent representa-
tions of Natural Language text. BERT applies transformers which is an attention-based
mechanism to learn contextual relations between the words and/or sub-words in a text.
The transformer encoder reads the entire sequence of words at once which allows the
model to learn the context of a word based on its surroundings.

Sentence-BERT (SBERT) [112] is a modification of BERT which provides more se-
mantically meaningful sentence embeddings using Siamese and triplet networks. The
details of the SBERT architecture are provided under Section 2.4.2 in Chapter 2.

Also, [112] shows that the sentence embeddings generated by SBERT outperform
BERT for the SentEval toolkit, which is popularly used to evaluate the quality of sen-
tence embeddings. In this work, the sentence embeddings from the pre-trained SBERT
model which are fine-tuned with SNLI and STS datasets, are extracted. It follows the

60 attentive multihop and entity descriptions for link prediction

same approach as followed in [112] for SentEval. Therefore, two sentences are not
required as input to obtain the sentence embeddings. In this work, the input to the
SBERT model is only the entity descriptions. The similar entities in the KG should
have similar textual entity descriptions and hence the embedding obtained for the
entity descriptions should exhibit similar characteristics. SBERT is designed to mini-
mize the distance between two semantically similar sentences in the embedding space.
Therefore, SBERT is leveraged in this work, to obtain similar encoding of the entity
descriptions for similar entities. Also, the authors of [112] fine-tune Roberta with the
same approach as SBERT and the result shows that the performance of SRoberta and
SBERT are almost similar for different tasks and they outperform their respective base
models. Furthermore, SBERT outperforms SRoberta in some of the tasks [112]. Also,
the model used in this work is the SBERT-SNLI-STS-base model which outperforms
the SRoberta-SNLI-STS-base model as shown in [112].

The sentence embeddings obtained from the SBERT model lose the domain-specific
knowledge as it is trained and fine-tuned with two different datasets. Therefore, these
sentence embeddings generated by SBERT perform better for a wide variety of tasks. In
this work, to encode the textual description of the entities in a KG, the default pooling
method of the SBERT model, i.e., the MEAN pooling has been used and the entire
entity description is considered as one sentence. The fine-tuning of the original BERT
model with the textual entity descriptions from both datasets have not been performed
because the original BERT model is trained with Wikipedia and these textual entity
descriptions are the abstracts of the Wikipedia articles. Therefore, further fine-tuning
would have resulted in overfitting. Since SBERT is already fine-tuned with SNLI data,
we opted for this model.

5.3.3 Encoder - Decoder Framework

In this work, a sequence-to-sequence (seq2seq) learning-based encoder-decoder model
[133] is adapted to learn the representation of the path vectors in the KGs, the de-
scription vectors as well as the relation vectors. Figure 5.2 depicts the encoder-decoder
architecture to generate the path embeddings.

encoder The encoder aims at encoding the entire input sequence into a fixed-
length vector called a context vector. A path pi ∈ P, where pi is a path which is a se-
quence of entities and the relations between them and is given by,

{
e1

r1−→ e2
r2−→ ... rm−−→ en

}
is considered as a sentence and the entities ei and relations rj are the words. The input
to the encoder is the randomly initialized vectors of entities and relations that appear
in the paths. These embeddings are passed through a Bi-directional GRU [24] which
encapsulates the information for all input elements and compresses them into a con-

5.3 madlink model 61

Figure 5.2: Encoder - Decoder Framework for paths

Figure 5.3: Attention for a path in predicting the ‘dbo:musicComposer’ for the movie Inception

text vector along with the representation of the final hidden states A = a1a2...an where
at is given by,

at = GRU(a(t−1), embed(xt)), (5.2)

62 attentive multihop and entity descriptions for link prediction

Figure 5.4: Attention weights for an excerpt from FB15k

where embed(xt) is the embedding of entities and relations. In a multi-gated GRU,
for each element in the input sequence, the following equations are calculated for each
layer.

rt = σ(Wirxt + bir +Wara(t−1) + bar), (5.3)

zt = σ(Wiaxt + bia +Whaa(t−1) + bha), (5.4)

nt = tanh (Winxt + bin + rt ∗ (Wana(t−1) + ban)), (5.5)

at = (1− zt) ∗nt + zt ∗ a(t−1), (5.6)

where Wir,War,Win, and Wan are the weight matrices, xt is the input at time t,
rt, zt,nt are the reset, update and new gates, respectively, and σ, ∗ are the sigmoid
and Hadamard product, respectively. The context vector and the final hidden state
of the encoder model is then passed through an attention layer to learn the weights.
Similarly, for relation encoding, instead of the paths the triples containing the relation
are considered.

self-attention An attention mechanism allows a neural network to focus on a
subset of its inputs or features and is given by,

attn = fffi(x),

g = attn ⊙ z,
(5.7)

where x ∈ Rd is an input vector, z ∈ Rk is a feature vector, attn ∈ [0, 1]k is an at-
tention vector, and fϕ(x) is an attention network with parameters ϕ1. As explained in

[40], given an input path sequence
{
e1

r1−→ e2
r2−→ ... rm−−→ en

}
, not all the relations are

1 http://akosiorek.github.io/ml/2017/10/14/visual-attention.html

http://akosiorek.github.io/ml/2017/10/14/visual-attention.html

5.3 madlink model 63

equally important to model a specific fact. Some of them might be important for a cer-
tain entity but not for others and vice-versa. PF-ITF helps in identifying the important
relations with respect to an entity in the KG. Now, the attention mechanism allows for
identifying the important relations and other entities in the paths w.r.t. a certain entity
eh or et. Therefore, it is used to generate contextual path encoding. For example, in
Figure 5.3, to predict the tail entity of the triple <dbr:Inception, dbo:musicComposer, t>,
the nodes marked in green would have greater attention than the ones marked in yel-
low. Therefore, the paths starting from the node dbr:Inception which contain the nodes
marked in green are impactful in predicting the dbo: musicComposer for Inception. Also,
for relation encoding, not all triples are equally important for a certain relation. Simi-
larly, for textual encoding not all the words and phrases in the entity descriptions are
equally important to represent a certain entity. Hence, an attention mechanism is also
used here to generate the contextual description encoding depending on the different
words in the text.

As the attention mechanism, the scaled dot product self attention [138] is used be-
cause it is much faster and is more space-efficient. Queries and keys of dimension dk,
and values of dimension dv are given as input. Then the dot product of the query is
computed with all keys. Each of them is then divided by

√
dk. A softmax function

gives the weights on the values as an output. Practically, the attention function is com-
puted on a set of queries simultaneously, packed together into a matrix Q. The keys
and values are also packed together into matrices K and V . In this work, the final hid-
den layer of the encoder is taken as the query as well as the key while the value is the
output, i.e., the context vector. The scaled dot product self-attention is given as

Attention(Q,K,V) = softmax(
QKT

√
dk

)V . (5.8)

In terms of the MADLINK model, for a given word or relation x the above equation
can be rewritten as,

α(x) = softmax(
ata

T
t√

dim(ht)
)X, (5.9)

where at is the hidden layer, dim(at) is the dimension of the hidden layer, and X

is the context vector. The attention weights of an excerpt from FB15k are illustrated
in Figure 5.4. The nodes in yellow have the maximum attention which is required to
predict the entity /m/04353.

decoder The attention layer forms a bridge between the path embeddings and the
input path sequences. The decoder network is initialized with the attention weights
and the context vector which is then fed to a layer of GRU to obtain the final Path

64 attentive multihop and entity descriptions for link prediction

Figure 5.5: Overall Architecture of the MADLINK model

Vector for each entity. Therefore, this Path Vector gives a representation of the entity.
Figure 5.2 illustrates the encoder-decoder architecture used in this work.

The main advantage of using this seq2seq-based encoder-decoder in the MADLINK
architecture is that it can generate output sequences after seeing the entire input.
The attention mechanism allows focusing on specific parts of the input automatically
to help generate a useful encoding, even for longer input. Therefore, the proposed
MADLINK model looks into all the input paths for a certain entity, focuses on the
specific parts of the input, and then generates an encoding for the entity.

5.3.4 Overall Training

Given a triple < eh, r, et >, the encoding of the head and tail entities are gener-
ated by the respective path vectors as discussed in Section 5.3.3. Similarly, for a re-
lation r, all the triples in the KG containing that relation are considered to gener-
ate the relation encoding. The textual representation of the entities is obtained from
the embeddings of the entity descriptions. The overall architecture of the MADLINK
model is depicted in Figure 5.5. Therefore, the parameters of the model are as follows:
θ = {Dh, Dt, Ph, Pt, R, GRU1, GRU2}, where Dh, Dt are the description embedding of
the head and tail entities, respectively obtained from SBERT model, Ph, Pt are the path
embeddings of the head and tail entities, respectively, R is the relation embeddings,
GRU1 and GRU2 represent the parameters from the Bi-directional GRU and the de-
coder GRU, respectively. Finally, the path (Ph, Pt), relation (R) and the description em-
beddings (Dh, Dt) are passed through one fully connected layer with the same weights.
The dimension of the SBERT embeddings of textual entity descriptions is 1024 which
is reduced to a dimension of 100 or 150 based on the size of the input embedding
vector to the DistMult model for different datasets.

5.4 experiments 65

Table 5.1: Statistics of the benchmark datasets

Datasets FB15K FB15K-237 WN18 WN18RR YAGO3-10

#Entities 14,951 14,541 40,943 40,943 123,182

#Relations 1,345 237 18 11 37

#Entities with
Description 14,515 14,541 40,943 40,943 107,326

#Triples Train set 483,142 272,115 141,441 86,834 1,079,040

#Triples Test Set 59,071 20,466 5,000 3,134 5,000

#Triples Validation Set 50,000 17,535 5,000 3,034 5,000

In this work, DistMult is used as the final scoring function of the model. The model
uses a simplification of bilinear interaction between the entities and the relations. Dist-
Mult model uses the trilinear dot product as a scoring function

fDistMult =< rp, eh, et >, (5.10)

where eh, et, rp are the embeddings of the head, tail, and relation, respectively. In
MADLINK, the Dh and Ph are concatenated and initialized as the head embedding to
the scoring function. A similar operation is done with the tail entity as well.

5.4 experiments

This section discusses the benchmark datasets and the experiments conducted for
showing the feasibility of MADLINK and its empirical evaluation on two KGC tasks,
namely, link prediction, i.e., head or tail prediction and triple classification.

5.4.1 Datasets

The statistics of the datasets FB15K, FB15K-237, WN18, WN18RR, and YAGO3-10 used
for the purpose of the evaluation are provided in Table 9.2. FB15K is a dataset extracted
from large-scale cross-domain KG, Freebase [16]. As mentioned in [34, 137], FB15K
has 80.9% test leakage, i.e., a large number of test triples are obtained by inverting the
triples of the test set. For example, <Republic, /government/form_of_government/countries,
Paraguay> is a triple from the training set of FB15K and its inverse <Paraguay, /lo-
cation/country/form_of_government, Republic> is a triple in the test set, where Republic
and Paraguay are the entities in Freebase and /government/form_of_government/countries
is the relation between them. The triple from the test set is the inverse of the triple
from the training set. As mentioned by the authors, this might lead to the models for
learning relations and their corresponding inverse relations for the link prediction task

66 attentive multihop and entity descriptions for link prediction

instead of modelling the actual KG. Therefore, the FB15K-237 dataset has been intro-
duced by [137], which is a subset of FB15K without the inverse relations. Similarly,
WN18 is extracted from WordNet [87] which contains word concepts and lexical rela-
tions between the concepts. WN18RR is a subset of WN18 without inverse relations.

YAGO3-10 [34] is extracted from the large-scale cross-domain KG, YAGO [129]. It
consists of those entities having at least 10 relations in YAGO. The authors state that
the majority of triples in YAGO are the properties of people such as citizenship or
gender. The poor performance of the inverse model ConvE [34] on YAGO3-10 implies
that it is free from test leakage [116]. Therefore, it is observed, that most of the recent
KG embedding models designed for the task of link prediction are evaluated on the
FB15k-237 and WN18RR instead of FB15k and WN18. However, the proposed model
MADLINK has been evaluated on all the aforementioned 5 benchmark datasets. Be-
sides, the MADLINK model uses textual entity descriptions along with the structural
information of entities.

5.4.2 Experimental Setup

In the path selection process, the following parameters are used: the number of hops 4,
and the number of paths per entity 1000. The hyper-parameters used in the MADLINK
model are as follows: the dimension of SBERT vectors 1024, a learning rate of the
encoder-decoder framework 0.001, batch size 100, loss margin 1, dropout 0.5. In the
pre-processing step of the textual entity description, only punctuation removal is done.
The experiments with MADLINK have been performed on an Ubuntu 16.04.5 LTS sys-
tem with 503GiB RAM. The training with DistMult, SBERT, and the encoder-decoder
framework is performed with TITAN X (Pascal) GPU.

5.4.3 Hyper-parameter Optimization

The hyper-parameter optimization is performed using grid search as provided in [26]
and the hyper-parameters are selected with the best performance on the validation
dataset. For all the benchmark datasets, the search space provided in Table 5.2 and the
hyperparameters used are provided in Table 5.3. Adam optimizer is used for the base
model.

5.4.4 Link Prediction

Formally, link Prediction is a sub-task of KGC which aims at predicting the missing
head (eh) or tail entity (et) given (eh, r) or (r, et) respectively [20]. Given a KG G =

(E,R), where E and R are the set of entities and relations, link prediction can be defined
by a mapping function that assigns a score to every possible triple (ei, r, ej) ∈ E×R×E.

5.4 experiments 67

Table 5.2: Hyper-parameter Search Space for MADLINK

Hyper-parameters Range

Batches {32, 64, 100}
Epochs {500, 1000}
Embedding Size {50, 100, 150, 200}
Eta (η) {1, 5, 10}
Loss Multiclass NLL
Regularizer Type {L1, L2, L3}
Regularizer (λr) {1e - 3, 1e - 4}
Optimizer param (lr) {0.1, 0.01, 0.001}
Optimizer param (λo) {1e - 5, 1e - 4, 1e - 3, 1e -2}

Table 5.3: Optimized hyper-parameters used in the training of MADLINK
Parameters FB15K FB15K-237 WN18 WN18RR YAGO3-10

Batches 64 64 64 64 100

Embedding Size 150 150 150 150 150

Epochs 1000 1000 1000 1000 1000

Learning Rate (lr) 0.001 0.001 0.001 0.001 0.001

Regularizer L3 L3 L3 L3 L3

Regularizer (λr) 1e - 4 1e - 4 1e - 5 1e - 5 1e - 4

Optimizer param (lr) 0.001 0.001 0.01 0.01 0.001

Optimizer param (λo) 1e - 3 1e - 3 1e - 3 1e - 3 1e - 3

Loss Multiclass NLL Multiclass NLL Multiclass NLL Multiclass NLL Multiclass NLL

A high score of a triple indicates it to be true [43]. However, instead of considering the
best score triple, a set of candidates is considered based on the ranking of the scores.

evaluation metrics Following the model in [19] the evaluation metrics used are
as follows: (1) Mean Reciprocal Rank (MRR) is the average of the reciprocal ranks of
the correct entities, and (2) Hits@k is the proportion of the correct entities in top-k
predictions. Further details on the evaluation metrics are provided in Section 2.7 of
Chapter 2. To evaluate most of the embedding models, negative sampling is used to
generate corrupted triples by removing either the head or the tail entity. In doing so,
some of the generated corrupted triples might actually occur in the KG and should be
considered a valid triple. Therefore, all the triples which are true and are present in
the training, test, and validation set are removed from the corrupted triples set and are
termed as the ‘filtered’ setting in the evaluation. Also, the triples containing unseen
entities are removed from the test and the validation sets.

68 attentive multihop and entity descriptions for link prediction

baselines The effectiveness of the proposed model, MADLINK, is illustrated by
comparing it with the following baseline models. These baselines are selected based on
the diversity of the nature of the embedding models such as translation-based, neural
network-based, textual entity description-based, rotational-based, etc.

• TransE [19] is a translation-based embedding model.

• DistMult [157] is bilinear diagonal model.

• ConvE [34] is a CNN-based embedding model.

• ConvKB [88] is also a CNN-based embedding model in which each triple is
represented by a 3-column matrix which is then fed to a convolution layer to
generate different feature maps. These feature maps are then concatenated into
a single feature vector representing the input triple.

• DKRL [150] and Jointly (ALSTM) [153] are textual entity description-based em-
bedding models. The former uses a CNN approach, whereas the latter uses an
LSTM.

• RotatE [132] is a model which defines each relation as a rotation from the source
to the target entity in the complex vector space. The authors propose a self ad-
versarial negative sampling technique for the model.

• HypER [5] uses a hyper network to generate 1D relation specific vectors convo-
lutional filter weights for each relation which is then used by another network to
enable weight sharing across layers.

• R-GCN [118] is a relation aware Graph Convolutional Network, in which the en-
coder learns the latent representation of the entities and the decoder is a tensor
factorization model exploiting these representations for the task of link predic-
tion.

• QuatE [160]. In Quaternion embeddings, hyper complex-valued embeddings
with three imaginary components, are utilized to represent entities. Relations
are modelled as rotations in the quaternion space.

• MDE [117] (Multiple Distance Embedding model) is a framework to collabo-
ratively combine variant latent distance-based terms by using a limit-based loss
and by learning independent embedding vectors. It uses a neural network model
that allows the mapping of nonlinear relations between the embedding vectors
and the expected output of the score function.

• TuckER [6] model is based on Tucker decomposition of the third-order binary
tensor of triples. Tucker decomposition factorizes a tensor into a core tensor
multiplied by a matrix along with each mode.

5.5 link prediction - results 69

• KG-BERT [158] and Multi-task BERT [66] are the two models which exploit the
working principle of the contextual language model BERT to predict missing
links in a KG.

• BLP-TransE is one of the models proposed in Inductive Entity Representations
from Text via link prediction [32], in which entity representations are generated
from their textual entity descriptions using BERT and different KG embedding
models such as TransE, DistMult, etc., are used on top of it for the task of link
prediction.

• LiteralE [71] is a literal embedding model which uses DistMult, ConvE, and
ComplEx as the base model. The main model is based on numeric literal which
is easily extendable with text and image literal.

• SSP [148], the Semantic Space The projection (SSP) model jointly learns from the
symbolic triples and textual descriptions which uses TransE as the base model.
It follows the principle that triple embedding is considered always the main
procedure and textual descriptions must interact with triples in order to learn
better representation. Therefore, triple embedding is projected onto a semantic
subspace such as a hyperplane to allow strong correlation by adopting quadratic
constraint.

5.5 link prediction - results

The proposed model MADLINK is compared against the aforementioned baseline
models on the 5 benchmark datasets FB15k, FB15K-237, WN18, WN18RR, and YAGO3-
10 as depicted in Tables 5.4, 5.5, and 5.6. In these tables, MADLINK1 represents the
results of the experiments in which the entities without textual entity descriptions are
removed, whereas MADLINK2 represents the results of the experiments containing
all the entities in the datasets. In Tables 5.5, and 5.6, the results marked in bold are the
best results and the underlined ones are the second best. ′− ′ is provided in all the 3

tables, if the corresponding results are not available in the respective papers.

5.5.1 Comparison with textual entity description-based baseline models

It is to be noted that, out of the above-mentioned baselines, DKRL, Jointly(ALSTM),
KG-BERT, Multitask-BERT, and BLP-TransE use textual entity descriptions as to their
features for link prediction. Therefore, these models form the primary baseline for
our proposed model MADLINK as shown in Table 5.4. For the FB15K-237 dataset,
MADLINK1 outperforms the SOTA models for all the metrics with an improvement
of 8% for MRR and Hits@1, 8.2% for Hits@3, and 7.1% for Hits@10 better than the
best baseline model Multitask-BERT. Both DKRL and Jointly(ALSTM) models have the

70 attentive multihop and entity descriptions for link prediction

Table 5.4: Comparison of MADLINK results with the textual entity description-based baseline
models on the 5 benchmark datasets

FB15K-237

Models MRR Hits@1 Hits@3 Hits@10

DKRL 0.19 0.11 0.167 0.215

Jointly(ALSTM) 0.21 0.19 0.21 0.258

KG-BERT 0.237 0.144 0.26 0.427

Multitask-BERT 0.267 0.172 0.298 0.458

BLP-TransE 0.195 0.113 0.213 0.363

MADLINK1 0.347 0.252 0.38 0.529
MADLINK2

0.341 0.249 0.377 0.52

WN18RR

Models MRR Hits@1 Hits@3 Hits@10

DKRL 0.112 0.05 0.146 0.288

Jointly(ALSTM) 0.21 0.112 0.156 0.31

KG-BERT 0.219 0.095 0.243 0.497

Multitask-BERT 0.331 0.203 0.383 0.597
BLP-TransE 0.285 0.135 0.361 0.580

MADLINK1 0.477 0.438 0.479 0.549

MADLINK2
0.471 0.43 0.469 0.535

FB15K

Models MRR Hits@1 Hits@3 Hits@10

DKRL 0.311 0.192 0.359 0.548

Jointly(ALSTM) 0.345 0.21 0.412 0.65

SSP - - - 0.771

MADLINK1 0.712 0.722 0.788 0.81
MADLINK2

0.69 0.714 0.78 0.798

WN18

Models MRR Hits@1 Hits@3 Hits@10

DKRL 0.51 0.31 0.542 0.61

Jointly(ALSTM) 0.588 0.388 0.596 0.77

SSP - - - 0.932

MADLINK1 0.95 0.898 0.911 0.96
MADLINK2

0.944 0.88 0.9 0.9

YAGO3-10

Models MRR Hits@1 Hits@3 Hits@10

DKRL 0.19 0.119 0.234 0.321

Jointly(ALSTM) 0.22 0.296 0.331 0.41

MADLINK1 0.538 0.457 0.580 0.68
MADLINK2

0.528 0.447 0.573 0.67

5.5 link prediction - results 71

same experimental setup as the MADLINK2 variant, in which the models are trained
on datasets that contain entities without text descriptions. MADLINK2 variant outper-
forms DKRL with an increase of 15.1% on MRR, 13.1% on Hits@1, 21% on Hits@3,
and 30.5% on Hits@10. Also, the proposed model outperforms the Jointly(ALSTM)
model by a 13.1% increase on MRR, 5.9%, 16.7%, and 26.2% on Hits@1, Hits@3, and
Hits@10 respectively. For WN18RR, MADLINK outperforms the baseline models with
considerable improvement with all the metrics except for Hits@10. Multi-task BERT
model performs best for the WN18RR dataset for Hits@10, whereas for other met-
rics MADLINK outperforms the same model with an improvement of 14.6% on MRR,
23.5% on Hits@1, and 9.6% on Hits@3. Furthermore, both the variants of MADLINK
considerably outperform all the baseline models DKRL, Jointly(ALSTM), KG-BERT,
and BLP-TransE.

The models KG-BERT, Multitask-BERT, and BLP-TransE have not been evaluated on
FB15k, and WN18 due to test leakage problems in the original papers [158]. Therefore,
MADLINK is compared against the DKRL and Jointly(ALSTM) models. It is noted
that both the MADLINK variants significantly outperform both the text-based baseline
models for all the metrics. Similarly, for the YAGO3-10 dataset, both the MADLINK
variants show major improvement from both baselines.

It is to be noted that all the aforementioned text-based KG embedding models, such
as DKRL, and Jointly (ALSTM), exploit the structural information of the KG in form
of triples explicitly together with the textual entity descriptions. However, KG-BERT
and Multitask-BERT use the triple information implicitly as the triples are considered
as input sentences to the BERT model. On the other hand, in BLP-TransE, the textual
entity and relation representations are provided as input to the TransE model in form
of triple inputs. Therefore, the results infer that the textual entity descriptions together
with the structural information captured via the paths in the MADLINK model capture
better semantics of the KG for the task of link prediction.

5.5.2 Comparison with structure-based baseline models

The proposed model MADLINK is compared with the baseline KG embedding models
such as TransE, DistMult, ConvE, ConvKB, RotatE, HypER, R-GCN, QuatE, MDE, and
TuckER, which consider the triple information to generate the latent representation of
the entities for the task of link prediction in KGs. The results are shown in Table 5.5
on FB15k-237 and WN18RR and Table 5.6 on FB15k, WN18, and YAGO3-10 datasets.

MADLINK achieves the second-best results after TuckER for FB15k-237 on MRR,
Hits@1, and Hits@3 metrics, whereas for Hits@10, TuckER performs slightly better
with an improvement of 1.5% over MADLINK. On the other hand, for WN18RR,
MADLINK achieves the second-best result for MRR, Hits@1, and Hits@3 after TuckER.
The latter performs marginally better than MADLINK with an improvement of 0.7%
on MRR, 0.5% on Hits@1, and 0.3% on Hits@3. However, MADLINK performs better

72 attentive multihop and entity descriptions for link prediction

Table 5.5: Comparison of MADLINK results with the structure-based baseline models on
FB15k-237 and WN18RR datasets.

FB15K-237

Models MRR Hits@1 Hits@3 Hits@10

TransE 0.31 0.22 0.35 0.5
DistMult 0.247 0.161 0.27 0.426

ConvE 0.26 0.19 0.28 0.38

ConvKB 0.23 0.15 0.25 0.40

RotatE 0.298 0.205 0.328 0.480

HypER 0.341 0.252 0.376 0.520

R-GCN 0.228 0.128 0.25 0.419

QuatE 0.311 0.221 0.342 0.495

MDE 0.344 - - 0.531

TuckER 0.358 0.266 0.394 0.544
MADLINK1

0.347 0.252 0.38 0.529

MADLINK2
0.341 0.249 0.377 0.52

WN18RR

Models MRR Hits@1 Hits@3 Hits@10

TransE 0.22 0.03 0.37 0.54

DistMult 0.438 0.424 0.442 0.478

ConvE 0.45 0.42 0.47 0.520

ConvKB 0.39 0.33 0.42 0.48

RotatE 0.476 - - 0.571
HypER 0.465 0.436 0.477 0.465

R-GCN 0.39 0.338 0.431 0.49

QuatE 0.481 0.436 0.5 0.564

MDE 0.458 - - 0.56

TuckER 0.47 0.443 0.482 0.526

MADLINK1
0.477 0.438 0.479 0.549

MADLINK2
0.471 0.43 0.469 0.535

5.5 link prediction - results 73

Table 5.6: Comparison of MADLINK results with the structure-based baseline models on
FB15k, WN18, and YAGO3-10 datasets.

FB15K

Models MRR Hits@1 Hits@3 Hits@10

TransE 0.63 0.5 0.73 0.85

DistMult 0.432 0.302 0.498 0.68

ConvE 0.5 0.42 0.52 0.66

ConvKB 0.65 0.55 0.71 0.82

RotatE 0.797 - - 0.884

HypER 0.790 0.734 0.829 0.885

R-GCN 0.69 0.6 0.72 0.8
QuatE 0.77 0.7 0.821 0.878

MDE 0.652 - - 0.857

TuckER 0.795 0.741 0.833 0.892

MADLINK1
0.712 0.722 0.788 0.81

MADLINK2
0.69 0.714 0.78 0.798

WN18

Models MRR Hits@1 Hits@3 Hits@10

TransE 0.66 0.44 0.88 0.95

DistMult 0.755 0.615 0.891 0.94

ConvE 0.93 0.91 0.94 0.95

RotatE 0.949 - - 0.959

HypER 0.951 0.947 0.955 0.958

R-GCN 0.71 0.61 0.88 0.932

QuatE 0.949 0.941 0.954 0.96

MDE 0.871 - - 0.956

TuckER 0.953 0.949 0.955 0.958

MADLINK1
0.95 0.898 0.911 0.96

MADLINK2
0.944 0.88 0.9 0.9

YAGO3-10

Models MRR Hits@1 Hits@3 Hits@10

TransE 0.51 0.41 0.57 0.67

DistMult 0.354 0.262 0.4 0.537

ConvE 0.4 0.33 0.42 0.53

ConvKB 0.3 0.21 0.34 0.5
HypER 0.533 0.455 0.58 0.678

R-GCN 0.12 0.06 0.113 0.211

TuckER 0.427 0.331 0.476 0.609
MADLINK1 0.538 0.457 0.58 0.68
MADLINK2

0.528 0.447 0.573 0.67

74 attentive multihop and entity descriptions for link prediction

than TuckER for Hits@10 by 2.3%. RotatE performs the best for Hits@10 amongst the
mentioned baseline models and its performance is 2.2% better than MADLINK.

TuckER model outperforms all the baseline models as well as MADLINK for FB15k.
However, for the YAGO3-10 dataset, MADLINK outperforms the TuckER model with
an improvement of 11.1% on MRR, 12.6% on Hits@1, 10.4% on Hits@3, and 7.1%
on Hits@10. Additionally, MADLINK outperforms all the other baseline models and
achieves SOTA results for the YAGO3-10 dataset over all the metrics. For WN18,
TuckER performs better than all the baseline models and MADLINK for all the metrics
except for Hits@10.

Additionally, MADLINK outperforms its base model DistMult for all the metrics
in all the datasets. For FB15K-237, there is an improvement of 10% in MRR, 9.1%,
11%, and 10.3% in Hits@1, Hit@3, and Hits@10 respectively. Similarly, for FB15K, a
considerable increase of 28% in MRR, 42% in Hits@1, 29% in Hits@3, and 13% in
Hits@10 have been achieved. On the other hand, for WN18, MADLINK shows a rise
of 19.5% in MRR, 28.3% in Hits@1, and 2% for both Hits@3 and Hits@10. Also, for
WN18RR similar increment of the results has been achieved with an increment of 3.9%
in MRR, 1.4% in Hits@1, 3.7% in Hits@3, and 4.5% in Hits@10. Identical improvement
has also been obtained for the YAGO3-10 dataset with an improvement of an average
of 17.55% overall the evaluation metrics with an increase of 18.4% in MRR, 19.5% in
Hits@1, 18%, and 14.3% in Hits@3, and Hits@10 respectively.

Also, from the results of Hits@k, for all the datasets it can be inferred that MADLINK
correctly ranks many true triples in top-k as it achieves SOTA results for FB15K-237,
WN18RR, WN18, and YAGO3-10 whereas comparable results for FB15K. Furthermore,
MADLINK works better for the datasets without the reverse relations such as FB15K-
237 and WN18RR as compared to FB15K and WN18 because in this work directed
paths are considered and not undirected edges. However, in this work, the evalua-
tion metric Mean Rank (MR) has not been used because it is sensitive to outliers as
mentioned in other related work [89].

MADLINK has also been compared with LiteralE [71], which uses numerical literal
to predict the missing links. The results shown in Table 5.7 illustrate that MADLINK
performs better than LiteralE. Additionally for FB15k-237, MADLINK performs better
than the LiteralE variant with both numeric and text data. It is to be mentioned that,
the results of the DistMult variant of LiteralE are considered in Table 5.7 for a fair
comparison with MADLINK as both of them use DistMult. The main advantage of
MADLINK over the structure-based baseline models is that link prediction can be
performed for unpopular entities in a KG, i.e., the entities without any relations or with
less number of relations associated with them. This is because MADLINK considers
the textual entity descriptions of the entities apart from the structural information.
Similarly, since it considers the structural information of the entities in the forms of
paths, therefore, missing links can be predicted for entities having triple information
but without textual entity descriptions.

5.5 link prediction - results 75

Table 5.7: Comparison of MADLINK with LiteralE on FB15k-237, FB15k, and YAGO3-10

FB15K-237

Models MRR Hits@1 Hits@3 Hits@10

LiteralE
(Numeric+Text)

0.32 0.234 - 0.488

LiteralE
(Numeric)

0.317 0.232 0.348 0.483

MADLINK 0.347 0.252 0.38 0.529

FB15k

Models MRR Hits@1 Hits@3 Hits@10

LiteralE
(Numeric)

0.676 0.589 0.733 0.825

MADLINK 0.712 0.722 0.788 0.81

YAGO3-10

Models MRR Hits@1 Hits@3 Hits@10

LiteralE
(Numeric)

0.479 0.4 0.525 0.627

MADLINK 0.538 0.457 0.580 0.68

Therefore, it can be concluded that the path information of the entities when coupled
with the textual entity descriptions in KGs provide better results in link prediction
which is further analysed in Section 5.5.3.

5.5.3 Ablation Studies

This section discusses the analysis of different features considered in the MADLINK
model for the task of link prediction.

impact of only textual entity description. The impact of only the textual
entity description without the structural information for the task of link prediction has
been evaluated along with the triples. The latent representation of the textual entity
descriptions is obtained using SBERT vectors. The results as depicted in Table 5.8
show that it outperforms the base model DistMult for all the datasets. It is observed
that the improvement for WN18 and WN18RR is very small compared to the other
datasets. This is due to the fact that both the datasets contain 5780 entities for which
the length of the textual entity description is less than or equal to five providing much

76 attentive multihop and entity descriptions for link prediction

less information. However, Table 5.4 shows textual entity descriptions together with
path information exhibit considerable improvement in link prediction.

impact of only structural information. The results depicted in Table 5.9
illustrate the impact of using only the structural information of the KGs in form of
paths. The number of paths increases exponentially with the number of hops, for e.g.,
in FB15k, the average neighbour for each node is 30, therefore, the total number of
possible paths of 4 hops would be 810,000. PF-ITF is used to filter out the uncommon
relations which in turn reduces the number of paths. As mentioned earlier, 1000 paths
with 4 hops are selected for each entity because the relevant contextual information
w.r.t. the starting node decreases with more hops. Also, when the walk reaches a
dead end, i.e., a node without any outgoing edges, the walk ends in that dead-end
node, even if the maximum hops are not reached. However, there could be more than
1000 paths starting from a certain node in which the first 3 hops consist of the same
entities and relations. But this does not provide any meaningful insight into the source
code. Therefore, amongst the paths, we restrict the paths with the same sequence to
a maximum of 30. For example, any path starting with this e1

r1−→ e2
r2−→ e3

r2−→ e4
can occur a maximum of 30 times amongst the 1000 paths generated from node e1. If
the number of paths is less than 1000 for any entity, then all paths for that entity are
considered.

The results in Table 5.9 show that the MADLINK model with only the structural
information outperforms the base model DistMult for all the metrics across all 5

benchmark datasets. Additionally, MADLINK with only structural information works
slightly better than MADLINK with only textual entity descriptions for WN18 and
WN18RR datasets. Therefore, it can be inferred that the neighbourhood information is
well captured for these two datasets in the paths.

influence of attention in the network To analyse the impact of the at-
tention mechanism in encoding the path vectors, experiments have been conducted
without the attention layer as depicted in Table 5.10. The result depicts that there is
an improvement in all the evaluation metrics for all the datasets if MADLINK is used
with the attention mechanism. Therefore, with an improvement of an average of 5%
over Hits@10 for FB15K, WN18, and YAGO3-10 as well as 3.1% for FB15K-237 and
1.4% for WN18RR, it can be seen that the attention mechanism helps in identifying the
important entities and relations in a path for the task of link prediction.

5.6 triple classification

Triple Classification is the task of determining if a given triple is correct or not. It is a
binary classification task, where a given triple (eh, r, et) is to be classified into either 0
(false) or 1 (true) as proposed by [126]. Since all the triples in the training set are true,

5.6 triple classification 77

Table 5.8: Impact of Textual Entity Descriptions in MADLINK (without path information)

Datasets Models MRR Hits@1 Hits@3 Hits@10

FB15K
DistMult 0.432 0.302 0.498 0.68

MADLINK 0.481 0.348 0.512 0.692

FB15K-237

DistMult 0.2471 0.161 0.271 0.426

MADLINK 0.249 0.179 0.279 0.431

WN18

DistMult 0.755 0.615 0.891 0.94

MADLINK 0.758 0.618 0.895 0.943

WN18RR
DistMult 0.438 0.424 0.442 0.478

MADLINK 0.439 0.425 0.448 0.48

YAGO3-10

DistMult 0.354 0.262 0.4 0.537

MADLINK 0.361 0.267 0.411 0.54

Table 5.9: Impact of Structural Information in MADLINK (without textual entity description)

Datasets Models MRR Hits@1 Hits@3 Hits@10

FB15K
DistMult 0.432 0.302 0.498 0.68

MADLINK 0.477 0.328 0.498 0.682

FB15K-237

DistMult 0.2471 0.161 0.271 0.426

MADLINK 0.249 0.169 0.273 0.426

WN18

DistMult 0.755 0.615 0.891 0.94

MADLINK 0.758 0.63 0.898 0.947

WN18RR
DistMult 0.438 0.424 0.442 0.478

MADLINK 0.44 0.426 0.45 0.482

YAGO3-10

DistMult 0.354 0.262 0.4 0.537

MADLINK 0.365 0.262 0.42 0.542

negative triples are generated for this task, by replacing the head and the tail entities.
Also, using this negative sampling method, some of the triples would be generated
which would be true. Therefore, all the generated negative triples which are present
in the training, test, and validation set are removed. As mentioned by the authors,
a threshold ρr is set for triple classification maximizing the classification accuracy
on the validation set. A triple is considered as positive if the conditional probability,
P(et|eh, r) ⩾ ρr [126] holds.

However, for MADLINK a Convolutional Neural Network (CNN) binary classifier
has been used on top of the embeddings of entities and relations obtained from the
model. The classifier is trained with positive triples from the training set and negative

78 attentive multihop and entity descriptions for link prediction

Table 5.10: Impact of Attention Mechanism in MADLINK

Datasets Models MRR Hits@1 Hits@3 Hits@10

FB15K
MADLINK
(w/o Attn.) 0.48 0.388 0.502 0.701

MADLINK
(with Attn.) 0.51 0.412 0.591 0.758

FB15K-237

MADLINK
(w/o Attn.) 0.331 0.211 0.35 0.498

MADLINK
(with Attn.) 0.347 0.252 0.38 0.529

WN18

MADLINK
(w/o Attn.) 0.92 0.822 0.85 0.91

MADLINK
(with Attn.) 0.95 0.898 0.911 0.96

WN18RR
MADLINK
(w/o Attn.) 0.412 0.401 0.411 0.509

MADLINK
(with Attn.) 0.477 0.438 0.479 0.549

YAGO3-10

MADLINK
(w/o Attn.) 0.411 0.331 0.524 0.623

MADLINK
(with Attn.) 0.461 0.372 0.580 0.68

Table 5.11: Triple Classification (Accuracy in %)

Models FB15K FB15K-237 WN18 WN18RR

TransE 82.9 75.6 87.6 74

DistMult - 73.9 - 80.4

ConvE 87.3 78.2 95.4 78.3
ConvKB 87.9 80.1 96.4 79.1

Jointly(ALSTM) 91.5 - 97.8 -

PConvKB 89.5 82.1 97.6 80.3

MADLINK 92.1 82.8 98 81.2

triples obtained from the negative sampling model. The test set is also complemented
with negative examples for proper evaluation. Triple Classification for all 4 datasets
has also been compared against all the above-mentioned SOTA models along with
PConvKB [59]. PConvKB is an embedding model that incorporates relation paths lo-
cally and globally which are then passed through a convolutional neural model. The
results are depicted in Table 5.11. The proposed model achieves the SOTA results with

5.7 conclusion and outlook 79

an improvement of 0.2% to 0.8% over the SOTA models for all the benchmark datasets.
Furthermore, the accuracy of triple classification for the YAGO3-10 dataset is 80.1%
but it has not been provided in Table 5.11 because of the lack of results from the SOTA
models.

5.7 conclusion and outlook

In this work, a novel approach has been proposed for combining the contextual struc-
tural information of an entity from the KGs as well as textual entity descriptions in the
embedding space to address the problem of KG completion using link prediction and
triple classification. Moreover, an attention-based encoder-decoder approach is intro-
duced to measure the importance of paths. Experimental results show that MADLINK
achieves the SOTA results for the textual entity description-based embedding models
for the link prediction task on all 5 benchmark datasets. Furthermore, MADLINK out-
performs most of the baseline models whereas it achieves comparable results with the
rest. The two major research questions are formulated and presented in Section 5.2.
The answers to these questions are given as follows:

• RQ1: Does the contextual information of entities and relations in a KG help in the task
of link prediction?

– The contextual information of the entities and the relations in a KG are cap-
tured by generating paths using random walks. Also, the attention mech-
anism on the encoder-decoder model helps in identifying the important
entities within a path. Handling the path information separately (as shown
in Table 5.9) in the MADLINK model yields better results than the base
model DistMult which uses only the triple information.

• RQ2: What is the impact of incorporating textual entity descriptions in a KG for the task
of link prediction?

– The latent representations of the textual entity descriptions are generated
using the SBERT model. The impact of the textual entity descriptions in
the link prediction task is dependent on the length of textual information
available for the corresponding entities. It can be observed from the results
of MADLINK as depicted in Table 5.8 that link prediction works better for
FB15k and FB15k-237 compared to WN18 and WN18RR. This is because
Freebase entities have detailed and longer text descriptions than WordNet
entities. Also, only the textual description-based variant of MADLINK out-
performs the base model DistMult for all 5 benchmark datasets. Therefore,
the textual entity descriptions play an important role in the task of link
prediction in KGs.

80 attentive multihop and entity descriptions for link prediction

The obtained results suggest that the impact of the textual entity description and the
contextual structural information is different for different KGs. However, the combina-
tion of contextual structural information together with the textual entity descriptions
in the MADLINK model outperforms all the text-based KG embedding models.

In future work the following research directions will be considered to further im-
prove the model:

• Explore the translational embedding models such as TransR to learn the initial
embeddings of the entities and relations.

• Explore the different scoring functions such as ConvE, translational models, etc.
for the base model to analyze the embeddings for the link prediction task.

• Use different multi-hop strategies to generate the context information.

• Multiple text literals available for the entities in the KGs as labels, summaries,
comments, etc. can also be incorporated into the model. Also for relations, rela-
tion name labels can be considered as the textual description.

• Include explicit external text information such as from Wikipedia into the model.

This chapter consists of a brief analysis of the impact of the text embeddings gen-
erated from contextual NLMs for link prediction. However, the effect of NLMs in
Natural Language Processing (NLP) based applications is undeniable. KG-BERT [152]
paved the way for fine-tuning the contextual NLMs BERT on KGs, which opens up a
new research paradigm in link prediction for KGC. This raises the intriguing research
question of whether other large-scale contextual NLMs’ performance has a compara-
ble influence on predicting the correct triple in a KG. The next chapter of this thesis
focuses on addressing the C1-RQ3 (refer to Section 1.2 of Chapter 1).

6
G P T- 2 F O R K N O W L E D G E G R A P H C O M P L E T I O N

Neural Language Models (NLMs) have become the backbone of Natural Language
Processing (NLP) based applications. Its influence on KGC has been studied in the
literature by exploiting the models to generate embeddings for the textual entity de-
scriptions. Static Neural Language models such as Word2vec have been used as a base
model for a few node embedding [47] and KG embedding models [113]. However, the
usage of contextual NLMs to embed the entities and relations in a KG remains unex-
plored. One of the pioneers in this area of research is KG-BERT [152], which uses BERT
as the base model for KG embedding. Inspired by KG-BERT, this chapter proposes a
novel KG embedding model that uses GPT-2 [11] as the base model to predict true
triples in a KG.

The remaining sections are outlined as follows: Section 6.1 provides the motivation
of this work followed by problem formulation in Section 6.2. Section 6.3 describes
the approach, subsequently, experiments are described in Section 6.4. The results are
discussed in Section 6.5 and finally the conclusion and future work in Section 6.6.

6.1 introduction

Recent years have witnessed extensive research on KGC with a focus on representation
learning. Most of these models use structural information i.e., the triple information
such as TransE [19], ConvE [33] whereas a few others include textual entity descrip-
tions such as TEKE [142], DKRL [150], etc. However, the models considering the tex-
tual information leverage only static word embedding approaches, such as word2vec,
GloVe etc. to generate the latent representation of the textual entity descriptions. Con-
sequently, the semantic information encoded in the contextual entity embeddings is
not exploited for KGC. A detailed discussion of the literature review is provided in
Chapter 3.

On the other hand, pre-trained contextualized Neural Language Models (NLMs)
such as BERT [35], and GPT-2 [110], have gained huge momentum in applications of
NLP. These models are trained on huge amounts of free text resulting in the encoding
of the semantic information leading to a better linguistic representation of the words.
GPT-2 is one of the distinguished models which has achieved state-of-the-art results
for various language understanding-based tasks. It operates on a transformer decoder
architecture with attention masks to predict the next word of a sequence.

However, a combination of contextualized NLMs for the task of KGC is an open
research problem. KG-BERT [158] is one of the pioneers in this research in which the

81

82 gpt-2 for knowledge graph completion

BERT model is fine-tuned on KG data and has been used for link prediction and triple
classification as sub-tasks of KGC. The results presented in [158] depict that the infor-
mation contained in pre-trained NLM plays an important role in predicting the miss-
ing links in a KG. Inspired by KG-BERT, a novel GPT-2 based KGC model is explored
in this work for the triple classification sub-task. The triples in a KG are considered
sentences and the triple classification is considered a sequence classification problem.
Furthermore, an analysis of the contextualised NLMs for KGC is also provided.

6.2 problem formulation

Referring to the KG definition 3 provided in Chapter 2, a KG G consists of a set of
triples T, given by, T ⊆ E×R× (E∪L∪ C), where E, R, L, and C are the set of entities,
relations between the entities, literals, and semantic types of the entities respectively.
< eh, r, et >∈ T, represents a triple belonging to the set of triples T in the KG, where
(eh, et) ∈ E are the head and tail entities, and r ∈ R represents relation between
them. The proposed model aims to learn the latent representation of the entities and
relations to a lower dimensional embedding space, Rd, where d is the dimension of
the embedding space for the task of triple classification. This section discusses the
research question to address the challenges in reference to C2-RQ1 from Section 1.2 of
Chapter 1.

• C1-RQ3: Can we identify correct triples leveraging contextual NLM?

6.3 language models for knowledge graph completion

This section comprises an analysis of NLMs on KGs followed by a detailed descrip-
tion of the GPT-2 based KGC task. The basic idea of the approach lies in the fact
that the contextual NLMs trained on huge corpora also capture relational information
present in the training data [98]. Consequently, NLM models can be exploited further
to predict the missing links in a KG. However, the impact of the pre-trained contextual
NLMs for KGC is still open research.

bert for knowledge graph completion One of the pioneers in this domain
is the KG-BERT [158] model in which the pre-trained BERT model is fine-tuned on
KGs for KGC. Each triple < h, r, t > is considered a sentence and is provided as an
input sentence of the BERT model for fine-tuning. For the entities, KG-BERT has been
trained with either the entity names or their textual entity descriptions. The first token
of every input sequence is always [CLS], whereas the separator token [SEP] separates
the head entity, relation and tail entity. Therefore, each input sequence for the BERT
model is given by

6.3 language models for knowledge graph completion 83

Figure 6.1: GPT-2 Architecture for Triple Clasification

([CLS] head entity/description [SEP] relation [SEP] tail entity/description [SEP]). A
sigmoid scoring function is introduced on the top of the final layer for the triple clas-
sification.

gpt-2 for knowledge graph completion Inspired by KG-BERT, GPT-2 [110]
is exploited in this work for KGC. GPT-2 is a large transformer-based language model
trained on 8 million web pages with 1.5 billion parameters. The model predicts the
next word based on all the previous words in the text corpus. An attention mecha-
nism is used to selectively focus on the segments of the input text. The architecture
comprises a 12-layer decoder-only transformer, using 12 masked self-attention heads,
with 64 dimensional states each. The Adam optimization is used and the learning rate
was increased linearly from zero to a maximum of 2.5× 10−4. The model was able
to outperform the previous NLMs on language tasks like question answering, read-
ing comprehension, summarization, translation, etc. However, the basic difference be-
tween BERT and GPT-2 is that BERT uses transformer encoder blocks whereas GPT-2
uses transformer decoder blocks.

Similar to KG-BERT, GPT-2 is also fine-tuned with KG triples where each triple
is considered as an input sequence. In this model, two variants have been used to
model the input sequence for the fine-tuning task. Given a triple Albert Einstein, bornIn,
Germany, the input sequence is modelled as

Albert Einstein bornIn Germany [EOS],

84 gpt-2 for knowledge graph completion

Table 6.1: Dataset Statistics

Dataset #Ent. #Rel. #Train #Val. #Test

WN11 38,696 11 112,581 2,609 10,544

FB13 75,043 13 316,232 5,908 23,733

[BOS] Albert Einstein [EOS] bornIn [EOS] Germany [EOS],
where [BOS] and [EOS] are the beginning of sequence and end of the sequence

respectively. Both entity names and descriptions are considered for the head and tail
entities. The input sequences are fed into the GPT-2 model architecture which is a
transformer decoder based on the original implementation [110]. It consists of stacked
decoder blocks of the transformer architecture and the context vector is initialised with
zero for the first word embedding. The masked self-attention is used to extract infor-
mation from the prior words in the sentence as well as the context word. The word
vectors in the first layer of GPT-2 follow byte pair encoding i.e., tokens are parts of
words. Furthermore, it compresses the tokenized words list into a set of vocabulary
items by considering the most common word components. The GPT-2 sequence clas-
sification module is leveraged to determine the plausibility of the triples. Since GPT-2
outputs one token at a time, the classifier is built on the last token. A 2-dimensional
vector ∈ [0, 1] sigmoid scoring function is introduced for triple classification. The ar-
chitecture of GPT-2 for triple classification is illustrated in Figure 6.1

6.4 experiments

This section comprises an analysis of the initial results obtained on deploying the GPT-
2 model on the triple classification task for KGC. The model has been evaluated on
two benchmark datasets WN11 and FB13.

6.4.1 Datasets

The two benchmark datasets WN11 and FB13 are subsets of WordNet and Freebase
KGs respectively and are introduced in [126]. WordNet [86] is a large lexical KG of
English comprising nouns, verbs, adjectives and adverbs. They are grouped into sets of
cognitive synonyms known as synsets. Each synset expresses a distinct concept. They
are interlinked by means of conceptual-semantic and lexical relations. Freebase [17] is
a large collaborative KG consisting of structured data captured from various sources
including individual, user-submitted wiki contributions. The statistics of the KGs used
to fine-tune with GPT-2 followed by the triple classification are provided in Table 6.1.

6.5 results 85

Table 6.2: Results of Language Models on Triple Classification (accuracy in %)

Model Types Models WN11 FB13

KG embeddings
with Textual

TEKE 86.1 84.2

Contextual
LMs

KG-BERT (labels) 93.5 79.2

KG-BERT (description) - 90.4

Ours with GPT2 (labels) 83 73

Ours with GPT2 (description) 85 89

6.4.2 Experimental Setup

The pre-trained GPT-2 base model with 12 decoder layers, 768 hidden layers, 12 atten-
tion heads and 117M parameters is used for fine-tuning. The set of hyperparameters
chosen are as follows: batch sizes = {256, 128, 32, 8, 1}, epochs = {5, 3}, and learning rate
= {2e− 5, 5e− 5}. The experiments with GPT-2 have been performed on an Ubuntu
16.04.5 LTS system with 503GB RAM and Tesla V100S GPU.

6.5 results

The results depicted in Table 6.2 represent some initial results on the triple classifica-
tion task using the pre-trained GPT-2 model on KGs. Since all the triples in the training
set are true, a negative sampling method is used to generate synthetic negative triples
for the training of the classifier. The negative triples are generated for this task, by
replacing the head and the tail entities with arbitrary entities based on a locally closed
world assumption. In this work, filtered settings are used, i.e., if by chance true triples
are generated using negative sampling methods, then they are removed. Therefore, the
set of triples in the train, test, and validation sets are disjoint.

TEKE [142] and KG-BERT are considered as baseline models as they consider NLMs
to model the KGs for KGC. TEKE exploits structural information of the KGs using an
embedding layer, a BiLSTM layer followed by mutual attention layer. The results of
the baselines are taken from the KG-BERT [158] except for KG-BERT (labels) variant
for FB13. The experiment for this variant is performed with the same settings as men-
tioned in [158]. It is observed from the results that with GPT-2, the model achieves
comparable results with the previous models. Also, the results are better for GPT-2
with descriptions variant, this is because the textual entity descriptions have more con-
textual information resulting in the generation of better representation of triples. The
same behaviour has been observed for KG-BERT. Since the NLMs are trained on large
corpora, the model parameters contain a huge amount of linguistic knowledge which

86 gpt-2 for knowledge graph completion

Table 6.3: Results with the pre-trained GPT2 model for Triple Classification with different pa-
rameter settings

Dataset Feature Model details Precision Recall F1-score

WN11 Labels batch=128, epoch=10, lr=2e-5 0.76 0.76 0.76

batch=32, epoch=3, lr=5e-5 0.74 0.74 0.74

batch=1, epoch=3, lr=5e -5 0.83 0.83 0.83

Description batch=8, epoch=5, lr=2e - 5 0.79 0.79 0.79

batch=1, epoch=3, lr=5e -5 0.85 0.85 0.85

FB13 Labels batch=32, epoch=10, lr=2e -5 0.69 0.64 0.61

batch=256, epoch=5, lr=2e -5 0.68 0.68 0.68

Description batch=1, epoch=3, lr=5e-5 0.90 0.89 0.89

helps in overcoming the data sparsity problem in KGs. Furthermore, the main advan-
tage of contextual NLM-based KGC methods is that they do not consider the structural
information of the entities in a KG. Hence it is independent of any underlying struc-
ture in a KG. Furthermore, these models are also applicable to the less popular entities
in KGs with a lesser number of triples compared to the others. The task of triple clas-
sification in KGC with GPT-2 is similar to the sequence classification task in text and
the self-attention mask helps in identifying the important words in the sequences. The
variants with labels i.e., the entity names for both KG-BERT and the proposed GPT-2
based model work better for WN11 as compared to FB13. This is because WordNet is a
linguistic KG and the NLMs are able to capture more information on the entity names
as compared to FB13.

Table 6.3 depicts the precision, recall, and F1 score of the model with different hyper-
parameter settings. It is observed that the best results are obtained with batch=1,
epoch=3, and lr=5e-5. The changing of epochs does not have much variation in the
model whereas batch size has. The lower the batch size, the better the performance of
the model.

6.6 conclusion and outlook

This work presents an analysis of the effect of exploiting NLMs for KGC. A novel
GPT-2 based KGC model has also been proposed. The initial results from the triple
classification sub-task show that the semantic information stored in the NLMs can
provide vital information for the KGC task. The research question mentioned in Sec-
tion 6.2 is addressed in this chapter and is given by,

• C1-RQ3: Can we identify correct triples leveraging contextual NLM?

6.6 conclusion and outlook 87

– Even though GPT-2 does not outperform KG-BERT, the results obtained pro-
vide interesting insights about the model. GPT-2 is a unidirectional decoder
model, unlike BERT, hence during training and fine-tuning it only scans for
tokens in one direction. However, it is observed that GPT-2 performs well
for longer text compared to shorter ones as seen in the triple classification
results that were obtained. The suggested GPT-2 variation outperforms the
variant using just triples by using textual entity descriptions as input. In
BERT and GPT-2, context-specificity presents very differently. It is observed
in the literature that in BERT, two words in the same sentence are more
dissimilar to each other in the upper layers but are still similar compared to
two randomly sampled words. For GPT-2, the words in the same sentence
are as dissimilar as randomly chosen words [38]. Therefore, this has an im-
pact on the training of the triples. Furthermore, since it has been trained
across millions of websites, there is a potential that it will produce incorrect
information [121]

In future, further hyper-parameter tuning to improve model performance and addi-
tional experiments on link prediction sub-tasks will be conducted. Also, other contex-
tual existing NLMs are to be explored and analyze the difference in the performances
of the models.

Part IV

E N T I T Y T Y P E P R E D I C T I O N I N K N O W L E D G E G R A P H S

7
W I K I P E D I A C AT E G O RY E M B E D D I N G S F O R E N T I T Y T Y P I N G I N
K N O W L E D G E G R A P H S

Entity Typing is the task of assigning or inferring the semantic type of an entity in
a KG and is an important step of KG construction and completion. Previously, many
entity typing approaches in KGs have been proposed which use different features
of a KG such as the annotated, anchor text mentions, relations between the entities,
Wikipedia categories, etc. Chapter 4 offers a thorough overview of the SoTA entity
typing models along with the research gaps. It is observed in the literature that there
is still little research done on the distinctive features of Wikipedia categories. This
chapter exploits the Wikipedia categories from different aspects and proposes a novel
category embedding framework CAT2Type [12] which in return can be leveraged for
entity typing.

The remaining chapter is structured as follows: Section 7.1 provides a motivation
behind exploiting Wikipedia categories as features. The problem is formulated in
Section 7.2. Next, Section 7.3 describes the proposed methodology, followed by ex-
periments and results in Section 7.4 and Section 7.5 respectively. Finally, Section 7.6
provides the conclusion and an outlook of future work.

7.1 introduction

Wikipedia categories provide a taxonomic organization of the knowledge underlying
DBpedia, YAGO, etc. Due to their rich taxonomic structure as well as the textual in-
formation in their labels, Wikipedia categories have been successfully used in tasks
such as entity disambiguation [27], Named Entity Recognition in low-resource lan-
guage [31], etc. Categories are used in Wikipedia to link articles under a common topic.
Figure 7.1 shows an excerpt extracted from DBpedia including entities, their types, and
Wikipedia Categories. In this example, dbc:Musicians_from_ New_Jersey1 has type as
well as the place of birth of the entities contained in that category, i.e., dbr:Alan_Silvestri.
On the other hand, the entity dbr:Robert_Zemeckis has the rdf:type dbo:Person which is
a coarse-grained type. The fine-grained type of the entity film_director is present in its
Wikipedia Category dbc:Science_fiction_film_directors.

Various studies have been proposed that use the semantics underlying the Wikipedia
categories for completing RDF data sources such as DBpedia. Existing approaches use
graph-based algorithms [2] for deriving “is a" taxonomy from Wikipedia categories or
rule-based algorithms [50, 102, 103] or association rule based approaches [1]. As men-

1 prefix dbc: <http://dbpedia.org/resource/Category>

91

<http://dbpedia.org/resource/Category>

92 wikipedia category embeddings for entity typing in knowledge graphs

Figure 7.1: Excerpt from DBpedia

tioned earlier in Chapter 1, 307,164 entities in the same DBpedia version are assigned
to owl:Thing, which is the most generalised class in the type hierarchy. It is observed
that 89.2% of 307,164 untyped entities in DBpedia have at least one Wikipedia Cate-
gory associated with it. On the other hand, only 2797 entities out of the untyped enti-
ties have properties associated with them. Hence, Wikipedia categories provide more
information about the long-tailed entities than the properties in DBpedia. Therefore,
in contrast to existing approaches, the proposed model CAT2Type exploits different
characteristic features of the Wikipedia categories, namely (i) the textual content in
the Wikipedia category labels by leveraging different Neural Language Model (NLMs)
and (ii) the structural information exploiting the connectivity of the Wikipedia cate-
gories based on shared entities between them using network embedding model. There
are 1,475,015 categories out of which 1,299,665 categories under the Main topic classifi-
cations are considered for entities similar to [50]. The evaluation shows that the usage
of Wikipedia categories to predict the missing types of entities is not only restricted to
DBpedia but can be used for other open KGs as well.

NLMs such as Word2vec [85], BERT [36], etc. have gained huge momentum in differ-
ent NLP-based applications. These pre-trained NLMs generate generalized represen-
tations of textual information without being trained on task-specific corpus and these
representations can be used in various downstream tasks while retaining the perfor-
mance [36, 108]. Therefore, this motivates us in exploiting the NLMs on the Wikipedia
category labels for predicting types in the KGs. Furthermore, the reusability of the
models also reduces the computational complexity of the proposed CAT2Type model.
Moreover, this study includes the construction of the Wikipedia Category network in
a novel way for capturing contextual information about the categories. Vector repre-
sentations from these categories are then generated using a random walk-based node
embedding algorithm. Finally, classification is performed using a fully connected neu-
ral network for entity-type prediction on top of the feature vectors generated from
the aforementioned representations. Several experiments were performed to show the
feasibility of the proposed approach on two benchmark datasets DBpedia630k and
FIGER [154]. CAT2Type outperforms the state-of-the-art (SoTA) model HMGCN with

7.2 problem formulation 93

an average improvement of 19.3% and 16.7% on Ma − F1 and Mi − F1 respectively
on DBpedia630k dataset and 5.4% for Mi− F1 on FIGER. Further experiments show
that the proposed model also performs considerably well for unseen data. The main
contributions of the chapter are:

• A framework which leverages pre-trained NLMs for learning the representations
of entities for entity typing in KGs, and studying its performance with different
NLMs. The results provide strong evidence that entity representations based
on pre-trained language models exhibit strong generalization and are thus not
limited to only NLP tasks.

• A novel category-category network has been constructed to leverage the underly-
ing structure of the categories w.r.t. the shared entities between them. The results
strengthen the fact that the category-category network is beneficial to predict
types of unseen entities from a different KG.

• A generalized classification framework for both multi-label and multi-class classi-
fication is introduced, which can be easily deployed on any entity representations
for entity type prediction for any KGs.

7.2 problem formulation

Using the KG definition from Chapter 2 as a reference, a KG G consists of a set of
triples T, given by, T ⊆ E×R× (E∪L∪ C), where E, R, L, and C are the set of entities,
relations between the entities, literals, and semantic types or classes of the entities
respectively. < eh, r, et >∈ T, represents a triple belonging to the set of triples T in the
KG, where (eh, et) ∈ E are the head and tail entities, and r ∈ R represents relation
between them. rdf:type is an instance of rdf:Property that is used to state that a
resource is an instance of a class. A triple of the form: < ei, rdf:type,Ck >, states that
Ck ∈ C, is an instance of rdfs:Class and ei ∈ E is an entity in G and is an instance of
Ck. The proposed model intends to predict the missing types of the entities in a KG
addressing the research question mentioned in Section 1.2 of Chapter 1 and is given
by,

• C1-RQ1: Do Wikipedia category labels and the connections between the categories have
any impact on entity typing?

7.3 entity type prediction : cat2type framework

This section discusses the overall architecture of CAT2Type in detail which exploits
the textual information in the Wikipedia Category labels as well as the structural infor-
mation of Wikipedia categories as illustrated by components A⃝ and B⃝ respectively in
Figure 7.2.

94 wikipedia category embeddings for entity typing in knowledge graphs

Figure 7.2: Overall Architecture of the CAT2Type model

7.3.1 Textual Information in Wikipedia Category Labels

Wikipedia category labels are comprised of rich semantic information about the char-
acteristic features of the entities which have been used for KG completion tasks [50, 79].
In contrast to the previous work (cf. Chapter 4), in CAT2Type the textual information
available in the Wikipedia category labels are leveraged to predict the entity type in-
formation. CAT2Type focuses on uncovering the rich semantic information encoded in
the Wikipedia category labels (see Section 7.1 for the running example) using different
NLM.

NLMs are neural network-based models that learn the distributed representation
of words into a continuous low-dimensional vector space. The semantically similar
words appear closer to each other in the embedding space. A detailed description of
the NLMs is provided in Section 2.4 of Chapter 2.

word2vec & glove Both the models aim at learning the distributed representa-
tion of words in a large corpus to a low dimensional vector space. On the other hand,
Glove exploits the global word-word co-occurrence statistics in the corpus with the un-
derlying intuition that the ratios of word-word co-occurrence probabilities encode the
meaning of the words. In CAT2Type, the Wikipedia category representations of the en-
tities are generated from the Word2Vec model pre-trained on the Google News dataset.

7.3 entity type prediction : cat2type framework 95

Given a category C of the ith entity Cei
(w1,w2, ...,wn) represent the sequence of n

words in the category name, the category representation is given by

CW2V
ei

=
1

n

n∑
j=1

Wj, (7.1)

where Wj is the word embedding of the jth word in the category name extracted from
the pre-trained Word2Vec model. For Glove, the Wikipedia category representations of
the entities are generated from the GloVe model pre-trained on Wikipedia 2014 version
and Gigaword 5

2. Given a category Cei
= (w1,w2, ...,wn), where ei is the ith entity

and w1,w2, ..,wn are the n words in the category name, the category representation
is given by

CGloVe
ei

=
1

n

n∑
j=1

Wj, (7.2)

where Wj is the word embedding of the jth word in the category name extracted from
the pre-trained GloVe model.

wikipedia2vec It is a skip-gram based LM in which the entities and words from
Wikipedia are jointly learned and optimized using three sub-models namely, the Wikipedia
link graph model, the Word-based skip-gram model, and the Anchor context model.
In CAT2Type, Wikipedia2Vec model pre-trained on English Wikipedia 2018 version3 is
used. Given a category Cei

= (w1,w2, ...,wn), where ei is the ith entity andw1,w2, ..,wn

are the n words in the Category name, the category representation is given by

CWiki2Vec
ei

=
1

n

n∑
j=1

Wj, (7.3)

where Wj is the word embedding of the jth word in the category name extracted from
the pre-trained Wikipedia2Vec model.

bert It is a multi-layer bidirectional Transformer encoder for word representations
which takes a sequence of words as input and generates their vector representations.
The word representations generated by BERT are sensitive to their respective context
in which they appear in the natural language text. The pre-trained BERT model op-
timized on a huge amount of text allows the model to learn transferable and task-
agnostic properties of language [38].

In this work, the entire category name has been used as an input which allows the
BERT model to capture the semantics in the category labels based on the sequence
2 http://nlp.stanford.edu/data/glove.6B.zip 3 https://wikipedia2vec.github.io/wikipedia2vec

http://nlp.stanford.edu/data/glove.6B.zip
https://wikipedia2vec.github.io/wikipedia2vec

96 wikipedia category embeddings for entity typing in knowledge graphs

of words contained in those labels. Given a category Cei
= (w1,w2, ...,wn), where

ei is the ith entity and w1,w2, ..,wn are the n words in the category name, spe-
cial tokens [CLS] and [SEP] are added by the BERT encoder at the beginning and
at the end of the category name respectively. [CLS] is a special classification token
that marks the beginning of the input sequence and SEP is used to mark the end of
the sequence. In BERT, the decision is that the hidden state of the first token is taken
to represent the whole sentence. The input sequence to the BERT model is given by,
([CLS],w1,w2, ...,wn, [SEP]). The output of the model is a sequence of contextualized
embeddings of the tokens in the input sequence together with the added special tokens
and is given by, g(Ĉei

) = (h[CLS],h1,h2, ...,hn,h[SEP]), where hi is the hidden repre-
sentation of the ith token of the input sequence. For instance, the input sequence to
the BERT model for the category dbc: Science_fiction_film_directors is [CLS] Science fiction
film directors [SEP]. The internal representations of words in BERT are a function of the
entire input sentence and hence are called contextualized word representations [38].
Therefore, unlike the static word embedding models, the words in the category dbc:
Science_fiction_film_directors are represented w.r.t to its context in BERT. CAT2Type ex-
ploits the feature-based approach of the BERT model in which fixed features are ex-
tracted from the BERT model, similar to [36, 80]. In this work, the MEAN pooling
is considered as the representation of the input sequence which is the average of the
k hidden layers. It is observed to have outperformed the other pooling methods over
the hidden layers for several tasks [80]. Therefore, the final category representation
generated from the category labels is given by,

C
(BERT)
ei

=
1

k

k∑
j=1

(hj[CLS],h
j
1, ...hjn,hj[SEP]), (7.4)

where (hj[CLS],h
j
1, ...hjn,hj[SEP]) is the representation of the jth hidden state. CAT2Type

considers the average of the last 4 hidden layers.
Other pre-trained transformer-based contextual text embedding models [78] as well

as static embedding models, can easily be used to generate the representation of the
categories. The main advantages of using the pre-trained language models for entity
typing are:

• they are computationally inexpensive as the model is pre-computed on huge
training data. However, if required the training of the NLMs can be done once
and reused for entity typing and other downstream tasks.

• Task-specific classification architecture can be easily deployed on top of this rep-
resentation.

• The types of entities can be predicted for the entities only with the Wikipedia
Category information available for long-tailed or less popular entities in a KG,
i.e., the entities with less or no properties in a KG.

7.3 entity type prediction : cat2type framework 97

• Category Representations can be generated for the new Wikipedia categories
without any training of the model.

7.3.2 Structural Features of Wikipedia Categories

Besides the Category Name, the connection between the Wikipedia categories w.r.t an
entity in a KG provides meaningful semantic information for the task of entity typ-
ing. This section provides a description of the proposed category-category network
followed by embedding models which learn the representations of categories by pre-
serving the neighbourhood information of the nodes.

category - category network construction To capture the semantic relat-
edness between the categories, a latent representation of the categories is learned. For
this reason, an undirected homogeneous category-category network is constructed in
this work, as shown in component B in Figure 7.2. Since Wikipedia categories club
together similar entities, therefore, categories sharing the same entities are similar
to each other. The category-category network is constructed to exploit this connec-
tion between the categories based on common entities between them. It is given by
Gcat = (V ,R), where V is the set of nodes and R is the set of edges. The nodes in the
network are the Wikipedia categories and there exists an edge Rk between two nodes
Vi and Vj, if these two categories share common entities. The categories which do
not share any common entities with other categories are not considered in the graph.
The weights of the edges between different nodes are crucial due to their significant
impact on the embedding model. Therefore, the number of common entities between
two categories is the weight of the edge between them.

The advantages of constructing the category-category network instead of using the
available category taxonomy are as follows:

• It captures the connection between two categories with a large number of shared
entities between them but belonging to different branches in the taxonomy. How-
ever, if only taxonomy is considered, there exists no connection between these
two categories. Therefore, random walk-based network embedding algorithms
such as node2vec fail to capture the similarity between these two categories when
trained on the category taxonomy tree, projecting these two categories far apart
in their vector space.

• The semantic relatedness between the categories with shared entities is exploited.
It helps in capturing the diversity of connectivity patterns observed in the category-
category network.

• The problems with numeric values with NLMs [135] can be avoided with the
category-category network as the Wikipedia Category labels might contain nu-
merical values.

98 wikipedia category embeddings for entity typing in knowledge graphs

node2vec The node2vec framework optimizes a neighbourhood preservation ob-
jective to learn low-dimensional representations for nodes in a network. The method
adapts to different definitions of network neighbourhoods by simulating biased ran-
dom walks. A detailed description of the model is provided in Section 2.5 of Chap-
ter 2. For the category-category network Gcat, firstly the second-order biased random
walks are generated given by {Cat1 → Cat2... → Catn}. These random walks are then
treated as "sentences" for the skip-gram model to generate the embeddings of the cate-
gories. Furthermore, the neighbourhoods considered in the random walks are not only
restricted to immediate neighbours but also extended to vastly different structures
within the network depending on the sampling strategy. Therefore, the connectivity
between the categories in the category-category network is exploited to its fullest in
learning the latent representation of the categories.

7.3.3 Entity Type Prediction

In this work, entity typing is considered a classification problem that takes the entity
representation as an input to the classifier and predicts the corresponding type of
entity.

entity representation Previously explained approach generates the category
representations from the category labels and nodes in the category-category network.
The entity representation from the category labels feature is the average of the category
representations generated by the respective language models LMs corresponding to
that entity. Formally, it is given by,

EModelLM
i =

1

m

m∑
j=1

CLM
j , (7.5)

where EModelLM
i is the entity representation of the ith entity generated by ModelLM

and CLM
j represents the Category embedding of the jth category generated by the LMs

in Equations 9.1, 7.2, 7.3 and, 7.4, and m is the total number of categories associated
with the entity.

Similarly, the average of all category representations generated by the node embed-
ding models is taken as the latent representation of the entities consisting of multiple
categories and is given by,

EModelNE

i =
1

m

m∑
j=1

CNE
j . (7.6)

Here, EModelNE

i is the entity representation of the ith entity generated from the node
embedding model Node2Vec, CNE

j represents the Category embedding of the jth cat-

7.4 experiments 99

egory of the corresponding entity, and the total number of categories associated with
the entity ism. For each entity, separate entity representations are generated from each
of the embedding models used in this work.

classifiers In CAT2Type, both multi-class and multi-label classifications are used.
For multi-class classification, a Fully Connected Neural Network (FCNN) consisting
of two dense layers with ReLU as an activation function is deployed on the top of the
entity representation. A softmax classifier with a cross-entropy loss function is used in
the last layer to calculate the probability of the entities belonging to different classes.
Formally it is given by,

f(s)i =
esi∑CT

j esj
, (7.7)

CEloss = −

CT∑
i

tilog(f(s)i), (7.8)

where sj are the scores inferred for each class in CT given in Equation 8.6. ti and si in
Equation 7.8 are the ground truth and the score for each class in C, respectively.

On the other hand, for multi-label classification, a similar FCNN with RELU as an
activation function is used for the two dense layers. In multi-label classification, an
element can belong to more than one class. Hence, an entity belonging to one class
has no impact on the decision of its belonging to another class. Therefore, a sigmoid
function with binary cross-entropy loss is used in the last layer which sets up a binary
classification problem for each class in CT . Therefore, the binary cross-entropy loss is,

CEloss = −tilog(f(si)) − (1− ti)log(1− f(si)), (7.9)

where si and ti are the score and ground truth for ith class in CT .

7.4 experiments

This section gives details about the benchmark datasets, experimental setup, and anal-
ysis of the results obtained.

7.4.1 Datasets

The two benchmark datasets, i.e., FIGER [154] and DBpedia630k [162] are used to eval-
uate the proposed model. FIGER dataset consists of 201,933 entities with 102 classes
from Freebase and DBpedia630k which was originally constructed for text classifica-
tion consisting of 630,000 entities and 14 non-overlapping classes. Both FIGER and

100 wikipedia category embeddings for entity typing in knowledge graphs

Table 7.1: Statistics of the datasets

Parameters DB-1 DB-2 DB-3 FIGER

#Entities 210,000 210,000 210,000 201,933

#Categories 232,112 231,979 231,580 322,654

#Entities train 105,000 105,000 105,000 101,266

#Entities test 63,000 63,000 63,000 60,447

#Entities validation 42,000 42,000 42,000 40,220

#Classes 14 14 14 102

DBpedia630k datasets have been expanded in [61]. However, the extended datasets
are not available publicly. Therefore, in this chapter, these datasets are rebuilt by fol-
lowing the description provided in [61]. Furthermore, it is expanded with Wikipedia
categories. One of the contributions of this work is to rebuild and extend both datasets
and make them publicly available for reusability purposes. In FIGER, out of 201,933

entities 199,111 have a corresponding DBpedia entity via the owl:sameAs relation. The
entities of DBpedia630k are split equally into three parts DB-1, DB-2, and DB-3, each
containing 210,000 entities as in [61]. Furthermore, each split is divided into a training
set with 50%, a test set with 30%, and a validation set with 20% of the total entities in
each split. It is to be noted that there are no shared entities between the train, test, and
validation sets for all the DBpedia split as well as for the FIGER dataset. The statistics
of the extended versions of both datasets are provided in Table 7.1 and are available
in Zenodo 4 for further research purposes.

7.4.2 Experimental Setup

Following the explanation of the language models described in Section 7.3.1, the di-
mensions of the word vectors generated from the pre-trained Word2Vec and GloVe
models are 300. The Wikipedia2vec model used in CAT2Type is pre-trained on Wikipedia
2018 version with window size 10, epochs 10, negative sampling 15, and dimension
300 is used. BERT base figuration bert-base-uncased5 which comprises of 12-layers, 768

hidden layers, 12 attention heads, and 110M parameters is used. Since the average
of the hidden layers in BERT is considered as the output of the model in CAT2Type,
therefore the dimension of the output vector is also 768. The node2vec model is trained
on the category-category network with window size 10, length of the biased walk 10,
number of walks per node 100, and 100 epochs. The dimension of the output entity
vectors is 300. The FCNN classifier used in CAT2Type has batch size {32, 64} and 100

4 https://zenodo.org/record/7688590 5 https://huggingface.co/models

https://zenodo.org/record/7688590
https://huggingface.co/models

7.5 results 101

epochs. The experiments with CAT2Type are performed on an Ubuntu 16.04.5 LTS
system with 503GiB RAM with TITAN X (Pascal) GPU.

7.5 results

To evaluate the performance of CAT2Type, similar to the baseline models [60, 154],
Micro-averaged F1(Mi− F1) and Macro-averaged F1(Ma− F1) metrics are used, details
of which are provided in Section 2.7 of Chapter 2. Different variants of CAT2Type have
been evaluated which serve as an ablation study.

7.5.1 Results on DBpedia splits

impact of nlms The CAT2Type-BERT variant of the proposed model outperforms
all the baseline models with an average improvement of 19.3% and 16.7% on Ma− F1
and Mi− F1 respectively for all the DBpedia splits as illustrated in Table 7.2. The con-
textual embedding model BERT encodes the semantics of the words differently based
on different contexts. Therefore, the input to the model i.e., the entire Wikipedia cat-
egory name, as discussed in Section 7.3.1 allowed the encoder to better capture the
underlying semantics needed to learn more informative category representations. For
DB1, the variations of CAT2Type with the other pre-trained NLMs, namely Word2Vec,
GloVe, and Wikipedia outperform all the baseline models for the DB1 split and achieve
comparable results with the baseline models for the other two splits. The intuitive rea-
soning behind this difference in the performance of the non-contextual NLMs and
BERT are: (i) the embeddings generated from non-contextual NLMs are static. The
vector representation of the work is always the same regardless of its context. There-
fore, these NLMs fail to model polysemous words, i.e., words with multiple meanings.
(ii) These static NLMs suffer from out-of vocabulary problem [108]. The NLM-based
CAT2Type variations are similar to MuLR and FIGMENT which consider word em-
beddings and entity embeddings as features. However, unlike FIGMENT, no anno-
tated corpus is required in CAT2Type. Furthermore, CAT2Type does not require any
additional information about the entities in the KG apart from the Wikipedia category
labels.

impact of node embeddings CAT2Type-node2vec in Table 7.2, which is the varia-
tion with the Node2Vec model trained on the category-category network considerably
outperforms all the baseline models. It shows an average improvement of 16% on
Ma− F1 and 13% on Mi− F1 for all the splits as depicted in Table 7.2. Furthermore,
node2vec achieves the second-best result after BERT variants amongst the CAT2Type
variants. It can be inferred that in Node2Vec the biased random walks efficiently ex-
plore diverse neighbourhoods of a given node.

102 wikipedia category embeddings for entity typing in knowledge graphs

Table 7.2: Results on DBpedia splits and FIGER

Models
DB1 DB2 DB3 FIGER

Ma− F1 Mi− F1 Ma− F1 Mi− F1 Ma− F1 Mi− F1 Ma− F1 Mi− F1

CUTE [151] 0.679 0.702 0.681 0.713 0.685 0.717 0.743 0.782

MuLR [155] 0.748 0.771 0.757 0.784 0.752 0.775 0.776 0.812

FIGMENT [154] 0.740 0.766 0.738 0.765 0.745 0.769 0.785 0.819

APE [60] 0.758 0.784 0.761 0.785 0.760 0.782 0.722 0.756

HMGCN [61] 0.785 0.812 0.794 0.820 0.791 0.817 0.789 0.827

CAT2Type-node2vec 0.950 0.948 0.948 0.946 0.948 0.946 0.683 0.84

CAT2Type-word2vec 0.876 0.876 0.723 0.738 0.723 0.742 0.502 0.726

CAT2Type-GloVE 0.883 0.884 0.728 0.742 0.731 0.746 0.501 0.726

CAT2Type-Wikipedia2Vec 0.897 0.897 0.733 0.749 0.739 0.754 0.522 0.737

CAT2Type-BERT 0.983 0.984 0.983 0.983 0.985 0.985 0.764 0.881

Table 7.3: Results on DBpedia splits on 7 classes

Models
DB1 DB2 DB3

Ma− F1 Mi− F1 Ma− F1 Mi− F1 Ma− F1 Mi− F1

CAT2Type-node2vec 0.972 0.973 0.971 0.972 0.969 0.971

CAT2Type-word2vec 0.917 0.931 0.797 0.812 0.797 0.813

CAT2Type-GloVE 0.938 0.942 0.803 0.816 0.801 0.814

CAT2Type-Wikipedia2Vec 0.955 0.953 0.813 0.822 0.812 0.822

CAT2Type-BERT 0.98 0.99 0.98 0.99 0.989 0.99

impact on coarse-grained dbpedia types To analyze the impact of the model
on coarse-grained entity types in a KG, the types in the DBpedia630k dataset are sub-
stituted with 7 coarse-grained types from the DBpedia hierarchy. The types are dbo:
Organisation, dbo: Person, dbo: MeanOfTransportation, dbo: Place, dbo: Animal, dbo: Plant,
and dbo: Work. Here also the BERT variant yielded the best result and node2vec is
the second best as depicted in Table 7.3. However, it is interesting to observe that the
static NLMs show considerable improvement in their performances. This is due to
the fact, the Wikipedia Category labels often have meaning in a broader sense such
as dbc:Swiss_Jews, which makes it difficult for the static embeddings to obtain fine-
grained types of the entities. The performance of the node2vec model strengthens
the fact that the underlying structural information in the Gcat network provides rich
semantic information for better entity representations.

Also to analyze the results on fine-grained types, the classes of the DBpedia630k
dataset are substituted with the subclasses resulting in 37 classes from the DBpedia
hierarchy. The accuracy of the FCNN classifier on 37 classes, BERT yields the best
results with 73.33%, 71.99%, and 91.59% whereas Node2Vec performs the second best
with 69.06%, 67.06%, and 87.34% for DB1, DB2, and DB3 respectively.

7.5 results 103

7.5.2 Results on FIGER

impact of nlms The FIGER dataset comprises entities belonging to more than
one class, hence multi-label classification is used. The CAT2Type-BERT variant out-
performs the SoTA model HMGCN with an improvement of 5.4% for Mi − F1 and
achieves comparable results with HMGCN for Ma− F1 as shown in Table 7.2. Also,
the performance of other variants with the NLMs for FIGER is low as compared to
CAT2Type-BERT. It is observed that the misclassification of most of the entities occurs
for the Freebase class Person and its subclasses. Most of the entities of class Person in
FIGER are assigned to generic Wikipedia categories, such as dbr:Debbie_Millman is as-
signed to the only category dbc:Living_people which does not provide any information
about the fine-grained type of the entity. Also, it contains 15 subclasses of the class Per-
son along with the class Person itself as fine-grained types of the corresponding entities.
Therefore, with such generic categories, the entities are assigned to the coarse-grained
type Person and are considered as misclassification. However, similar to the DBpedia
splits, the contextual embedding model works better on FIGER as well. Therefore, it
can be inferred that each of the feature vectors has a significant impact on the type
prediction of the entities. However, the class distribution in FIGER is unbalanced with
the largest class City containing 18,686 entities and the smallest class engine_device con-
taining 14 entities and only 5 classes out of 102 classes in FIGER containing more than
11,000 entities and 70 classes have less than 1000 entities. This contributes to the com-
paratively lesser accuracy in the results with the FIGER dataset for all the CAT2Type
variants compared to the DBpedia splits.

impact of node embeddings However, it is observed that the node2vec ap-
proach with the category-category network works better than the static NLM ap-
proaches because node2vec captures the underlying semantics of the categories shared
between the entities in the dataset as shown in Table 7.2. Also, the CAT2Type-node2vec
approach for FIGER outperforms all the baseline models for the Mi− F1 metric and
performs second best.

7.5.3 Results on Unseen Data

impact of node embeddings This work focuses on the reusability of pre-trained
models as it uses several pre-trained NLMs for predicting the types of entities in a KG.
However, the node2vec model has been trained on the category-category network. The
reusability of the pre-trained node embeddings and the robustness of the classification
model is analyzed on the Movie dataset (mdgenre) [13]. This dataset is a subset of Wiki-
data in the movie domain, consisting of the movies that are recorded as ever having
won or been nominated for an award. The movies are the entities in the KG and their
corresponding types are given by genres. The Wikipedia categories of the movies are

104 wikipedia category embeddings for entity typing in knowledge graphs

Table 7.4: Results on Movie Dataset (Accuracy in %)

Models mdgenre

RGCN 63

MRGCN 62

CAT2Type-node2vec 66.47

Table 7.5: Results on Unseen DBpedia entities (Accuracy in %)

Models Unseen DBpedia entities

CAT2Type-Word2Vec 98.64

CAT2Type-GloVe 98.26

CAT2Type-Wikipedia2Vec 98.76

extracted via Wikidata entities. The dataset comprises 5996 entities (805 dev, 2347 test
and 2844 train) and 12 classes. The pre-trained node2vec model trained on DBpedia
is used to predict the types of movies. The results depicted in Table 7.4 show that the
CAT2Type-pre-trained model outperforms the baseline models [13].

The main advantages of learning the category representations using a category-
category network are as follows:

• For unseen entities, entity representations can be generated from their corre-
sponding category embeddings to predict their types without training the whole
model.

• KGs consist of many more number of entities than the Wikipedia categories.
Therefore, the computational complexity of traversing a complete graph with
n(n−1)

2 edges where n is the number of nodes is very high.

Therefore, the category-category network avoids computational complexity as well as
implicitly encodes the entity information via the weights on its edges.

impact of nlms For further analysis, 307,164 unseen entities with rdf:type in-
formation as owl:Thing is extracted from DBpedia 2016-10 version, out of which
222,385 entities have rdf:type information in the current DBpedia version 6. Amongst
these 222,835 entities, 118,608 entities have a type belonging to the classes of DB-
pedia630k. The end-to-end CAT2Type model trained on DB1 with the static NLMs
namely Word2Vec, GloVe, and Wikipedia2Vec are tested on 118,608 entities and the
predicted types are compared against the types of the entities extracted from the cur-
rent DBpedia version. The results depicted in Table 7.5 show that CAT2Type is robust

6 https://downloads.dbpedia.org/repo/dbpedia/mappings/instance-types/2021.06.01/

https://downloads.dbpedia.org/repo/dbpedia/mappings/instance-types/2021.06.01/

7.6 conclusion and outlook 105

and the type information of the entities can be inferred only from the Category labels
of the entities. A major portion of the unseen entities from DBpedia comprises entities
from the class dbo: Album, whereas the other entities belonging to the classes dbo: Artist,
dbo: Film, dbo: Athelete, dbo: Company, and dbo: Building. Further analysis shows that the
test set without the entities from the class dbo: Album, also yields an average accuracy
of 87%. Therefore, a pre-trained classifier of the CAT2Type model can be efficiently
used to predict types of new unseen entities in a KG.

7.6 conclusion and outlook

This chapter presents a novel entity typing approach that considers the semantics of
the Wikipedia categories to predict the missing types of entities. Two different types
of Wikipedia category embeddings are generated for the purpose: (i) Text-based em-
bedding from the Wikipedia category labels, and (ii) Structure-based embedding from
the category-category network. A novel category-category network embedding is pro-
posed by exploiting the connections between the categories with respect to the shared
entities. Additionally, the NLMs are also leveraged to generate text-based embeddings.
Experimental results show that CAT2Type achieves the SoTA results for entity typing
on both benchmarks. Furthermore, the model acquires high accuracy in predicting the
missing types of unseen data. As already mentioned in Section 7.1 of this chapter, the
majority of the entities which are typed as owl:Thing in DBpedia 2016-10 version do
not have properties associated with them. Therefore, it is not possible for the exist-
ing baseline models that use entity relations as their features, to predict the types of
these entities. However, CAT2Type is capable of predicting the missing types of these
entities with an accuracy of 98% as shown in Table 7.5. Furthermore, the model also
can predict the missing types of entities from any other open KGs in the Linked Open
Data (LOD) cloud, which has a connection to Wikipedia articles or Wikipedia cate-
gories. This chapter intends to address the research question presented in Section 7.2
and is given by

• C1-RQ1: Do Wikipedia category labels and the connections between the categories have
any impact on entity typing?

– The experimental results presented in Table 7.2 show that CAT2Type-BERT
and CAT2Type-node2vec variant considerably outperform all the baseline
models for all the DBpedia splits, and with Mi-F1 measure for FIGER. Since
CAT2Type does not consider the relations of entities as features, therefore,
in contrast to the other embedding-based entity typing models, the pro-
posed pre-trained node embedding model trained on the category network
can be leveraged to predict missing types of entities without re-training.
No information about the new entity other than the Wikipedia categories is
required by this prediction model.

106 wikipedia category embeddings for entity typing in knowledge graphs

Therefore, the underlying semantics of the Wikipedia categories, which have re-
ceived little attention in the literature up until now, have been extensively investigated
in this work for predicting the missing types of entities.

The analysis of NLMs on Wikipedia category labels is one of the primary focuses
of this chapter. The KGs do, however, also include free text descriptions of the entities.
Investigating how textual entity descriptions impact the ability to predict the corre-
sponding entity types would be interesting. The neighbourhood information of the
entities in a KG is also a crucial aspect that characterizes particular traits of the enti-
ties. In order to predict the missing types of entities, it is beneficial to combine the two
aforementioned attributes since it aids in understanding the nature of the entities. The
subsequent chapter of this thesis, therefore, concentrates on addressing the C2-RQ2
and C2-RQ3(refer to Section 1.2 of Chapter 1).

8
E N T I T Y T Y P E P R E D I C T I O N L E V E R A G I N G G R A P H WA L K S A N D
E N T I T Y D E S C R I P T I O N S

The previous chapter proposes an entity typing model which considers the Wikipedia
categories of the entities which proved to be beneficial for long-tailed entities for which
not enough information is available in the KGs. However, in general, a KG contains
a huge amount of relation information that defines the characteristic features of the
entities. The neighbourhood information of the entities also contributes to their char-
acteristics. Literature review on the existing entity type prediction models presented
in Chapter 4 depicts that exploiting the structural contextual entities of the KGs re-
mains unexplored for the task and so are the textual entity descriptions. This chapter
proposes a novel entity typing framework [9] leveraging these two aforementioned
features.

The remaining portion of the chapter is organized as follows: Section 8.1 gives the
motivation behind the proposed approach and highlights the main contribution. Next,
Section 8.2 provides a formal definition of the problem addressed in this chapter. Sec-
tion 8.3 describes the proposed methodology, followed by experiments and results in
Section 8.4 and Section 8.5 respectively. Finally, Section 8.6 provides the conclusion
and an outlook of future work.

8.1 introduction

Entity type information in a KG is one of its atomic building blocks and having this
information missing in a KG drastically reduces its usage. It forms the focal point
of various Natural Language Processing (NLP) based applications such as question-
answering [136], etc. In order to answer questions like "Is Inception a film or a novel?",
the entity type information is necessary. Following these lines, this chapter focuses on
the problem of entity typing which is the task of assigning or inferring the semantic
type of an entity in a KG. Figure 8.1 shows an excerpt from DBpedia where the class
dbo:MusicalArtist1 is a subclass of dbo:Artist which is a subclass of dbo:Person. dbo:Artist
and dbo:MusicalArtist, respectively, are the fine-grained entity types for dbr:Hans_Zimmer2

and dbo:Artist is the missing type information. dbo:Person is the coarse-grained type.
Recent years have witnessed a few studies on entity typing approaches that are dis-

cussed thoroughly in Chapter 4. These models predict entity types using different KG
features such as the anchor text mentions in the textual entity descriptions, relations
between the entities, entity names, and Wikipedia categories. They learn the repre-

1 prefix dbo: http://dbpedia.org/ontology/ 2 prefix dbr: http://dbpedia.org/resource/

107

http://dbpedia.org/ontology/
http://dbpedia.org/resource/

108 entity type prediction leveraging graph walks and entity descriptions

Figure 8.1: Excerpt from DBpedia

sentation of the entities from their KG structure by using translational models [76],
GCN-based models [61], neighbourhood-based attention models [165] followed by the
correlation between the entities and its types. These models exploit the neighbourhood
information only by the entities directly connected, i.e., the triple information of the
entities. However, the large amount of contextual information of the entities captured
in the graph walks remains unexplored. The work presented in this chapter empha-
sizes modelling the KG by taking advantage of the semantics of graph walks to predict
the entity types with the help of different kinds of walk generation strategies, such as
classic random walks, entity walks, and property walks. The paths generated by these
graph walk strategies are used within the RDF2vec model [114] to generate different
entity representations.

Additionally, the textual entity descriptions in the KGs contain rich semantic in-
formation which is beneficial in predicting the missing entity types. For instance, as
depicted in Figure 8.1, the textual entity descriptions of the entities clearly mention
that dbr: Christopher_Nolan is a director, dbr: Hans_Zimmer is a music composer, and dbr:
Inception is a film. Some of the existing baseline models such as MuLR [155] use non-
contextual Neural Language Models (NLMs), whereas the other uses GCN model [61]
on the words extracted from the entity descriptions. Therefore, to capture the contex-
tual information of the textual entity description contextual NLM is used to generate
the representation of the entities.

This chapter presents a framework named GRAND (Graph Walks for RDF2vec and
Entity Descriptions), which exploits different variants of the RDF2vec model based on
different graph walk strategies together with textual entity descriptions to predict the
missing entity types in a KG. In this work, the entity typing problem is modelled as
a classification problem. A flat and a hierarchical classification model are deployed on
top of the feature vectors generated from the aforementioned entity representations to

8.2 problem formulation 109

predict the missing entity types. The empirical results based on the extensive experi-
ments on two benchmark datasets FIGER [154] and DBpedia630k [162] show that the
proposed approach is robust and outperforms the state-of-the-art (SoTA) models. The
main contributions of this work are:

• A framework which leverages different graph walk strategies based RDF2vec
models and a contextual NLM for textual entity descriptions is proposed to pre-
dict the missing entity types.

• A generalized classification framework consisting of three different modules
namely multi-class, multi-label, and hierarchical classification is introduced to
predict the missing entity types on different levels of granularity. It can be easily
deployed for predicting entity types on entity representations from any KGs.

• Extensive experiments are conducted on the benchmark datasets to study the
impact of several combinations of entity representations generated from the
RDF2Vec variants and the NLM. An analysis of the weights in the classifica-
tion has been conducted for analyzing which entity representations are suitable
in which entity typing situations. Furthermore, the impact of dimensionality re-
duction of the entity representations on the local and global level using Principle
Component Analysis (PCA) is studied.

8.2 problem formulation

According to the KG definition from Chapter 2, a KG G consists of a set of triples
T, given by, T ⊆ E × R × (E ∪ L ∪ C), where E, R, L, and C are the set of entities,
relations between the entities, literals, and semantic types of the entities respectively.
< eh, r, et >∈ T, represents a triple belonging to the set of triples T in the KG, where
(eh, et) ∈ E are the head and tail entities, and r ∈ R represents relation between them.
rdf:type is an instance of rdf:Property that is used to state that a resource is an
instance of a class. A triple of the form: < ei, rdf:type,Ck >, states that Ck ∈ C, is
an instance of rdfs:Class and ei ∈ E is an entity in G and is an instance of Ck. The
proposed model intends to predict the missing types of the entities in a KG addressing
the research question mentioned in Section 1.2 of Chapter 1 and is given by,

• C2-RQ2: What is the impact of textual entity descriptions in predicting the correspond-
ing missing types?

• C2-RQ3: Are strategic graph walks beneficial for entity typing?

8.3 entity type prediction : grand framework

An overview of the GRAND framework is illustrated in Figure 8.2. Component A
represents the RDF2vec variants that use the different strategies for generating graph

110 entity type prediction leveraging graph walks and entity descriptions

Figure 8.2: Architecture of the GRAND framework

walks, i.e., classic walks, node walks, and property walks. These walks are then given
as input to the language models separately and finally, variants of entity representa-
tions are generated. Component B generates the representations of the entities from

the textual entity description by using SBERT. Finally, component C shows combi-
nations of the variants of entity representations used for flat as well as hierarchical
classification. In the rest of this section, each of these aforementioned components of
the framework is explained in more detail.

8.3.1 Entity Embeddings from Strategic Graph Walks

RDF2vec [114] is one of the first approaches to adopt statistical language modelling
techniques to KGs. Similar approaches, such as node2vec [47] and DeepWalk [95], are
proposed for unlabeled graphs while KGs are labelled by nature, i.e., they contain
different types of relations. The key idea of RDF2vec is a two-step approach: first,
random walks over the graph are executed, thereby collecting sequences of entities
and relations. To employ language modelling techniques, these sequences are then
considered as sentences where each entity and relation in the sequence are treated as
words. In RDF2vec, those sentences are then processed by word2vec [84, 85], where
both variants of word2vec, i.e., a continuous bag of words (CBOW) and skip-gram
(SG), are possible.

One limitation of the word2vec algorithm is that it is not aware of the word order.
For instance, for a window size of 4, the sentences “John ate a pizza” and “pizza ate a
John” are equivalent. This is also the case with RDF2vec: For instance, the statements
<Severus> <loves> <Lily> and <Lily> <loves> <Severus>, are considered equiva-

8.3 entity type prediction : grand framework 111

lent even though <loves> is not a symmetric property. To overcome this limitation,
an order-aware version of RDF2vec has been proposed [106] which has shown im-
proved performance on multiple machine learning datasets. This order-aware variant
of RDF2vec uses a structured word2vec model [77] which incorporates the positional in-
formation of the words in a sentence. The main advantage of the order-aware RDF2vec
model over the classical RDF2vec model is that it respects the positional information
of the entities and relations in the random walks, thereby learning embeddings which
are better in terms of type separation.

Another type of RDF2vec extension is to explore different strategies for performing
graph walks. These strategies have been explored using an either variant of random
walks (e.g., community hops [65], walklets [96], or hierarchical walks [119]), or by com-
bining different random walk strategies, as the ontowalk2vec approach, which combines
RDF2vec and node2vec walks [44]. In this chapter, the aforementioned order-aware, as
well as different RDF2vec graph walk strategies [107], are leveraged to predict the
missing types of entities.

graph walk generation strategies RDF2vec combines the notion of simi-
larity and relatedness. This can be easily observed when printing the most related
concepts for “Berlin” on DBpedia via KGvec2go [104], i.e., many people who are re-
lated to the city are identified as politicians. However, those are not really similar – they
do not share properties with Berlin (which is a city rather than a living being). This
leads to further exploration of RDF2vec for entity typing.

In this chapter, six different RDF2vec configurations are presented and evaluated –
stand-alone as well as combinations. For the task of entity typing, three different walk
generation strategies are applied: (1) classic walks, (2) entity walks, and (3) predicate
walks. Each strategy is explained below in more detail.

classic walks . The originally presented RDF2vec variant generates multiple ran-
dom walks for each node in the graph. A random walk of length n (where n is an even
number) is of the form

w = (w−n
2

,w−n
2 +1, ...,w0, ...,wn

2 −1,wn
2
) (8.1)

where wi ∈ V if i is even, and wi ∈ R if i is odd. For better readability, we stylize
wi ∈ V as ei and wi ∈ R as pi:

w = (e−n
2

,p−n
2 +1, ..., e0, ...,pn

2 −1, en
2
) (8.2)

entity walks (e-rdf2vec). An entity walk contains only entities without any
other properties. Such an approach is also known as e-RDF2vec. It has the form:

we = (e−n
2

, e−n
2 +2, ..., e0, ..., en

2 −2, en
2
) (8.3)

112 entity type prediction leveraging graph walks and entity descriptions

For an entity walk, all elements are entities, i.e., wni
∈ V.

predicate walks (p-rdf2vec). A predicate walk contains only one entity to-
gether with object properties. Such an approach is also known as p-RDF2vec. It has the
form:

wp = (p−n
2 +1,p−n

2 +3, ..., e0, ...,pn
2 −3,pn

2 −1) (8.4)

The different walk strategies are visualized in component A in Figure 8.1.

generating entity embeddings using rdf2vec variants . An embedding
model is trained for each set of walks using word2vec [84, 85] and position-aware
word2vec [77] (suffix oa in the following) which yields six sets of embeddings: (1) Clas-
sic RDF2vec, (2) e-RDF2vec, (3) p-RDF2vec, (4) Classic RDF2vecoa, (5) e-RDF2vecoa,
and (6) p-RDF2vecoa. The proposed model, GRAND, is evaluated by using the con-
figurations presented in 8.3.1 on their own as well as in a fused way. Concerning the
fusion of vectors, three modes are employed: (1) Vector concatenation, (2) Local PCA
(LPCA), and (3) Global PCA (GPCA). PCA is a technique for reducing the dimen-
sionality of the vectors with minimal loss in encoded information. It is used for the
identification of a smaller number of uncorrelated variables known as principal com-
ponents. The difference between (2) and (3) is that in the case of the LPCA, a principal
component analysis is only performed for the subset of vectors that appear in the
datasets (see Section 8.4) whereas, for the GPCA, one all vectors generated from the
KG using RDF2vec variants are considered. Each of these configurations can be used
as a vector within GRAND (see component C in Figure 8.2).

The main advantages of using different RDF2vec variants are:

• With a growing length of walks and training window, they can take advantage of
large entity context ranges by effectively treating every entity as being connected
to all the others in the graph – this is in contrast to the baseline models which
are based on local aggregation, i.e. they learn the representation of each entity
based on its adjacent entities in the KG [61, 165].

• The graph walk strategies are effective, robust, and equitable, i.e., all relations
and nodes are given equal importance in generating the embeddings.

• The walk strategies put emphasis on certain semantic aspects – namely relatedness
and similarity [107].

• RDF2vec is a very scalable embedding algorithm which can be easily used for
large graphs such as DBpedia.

• Experimental results show that RDF2vec performs better than other KG embed-
ding models for the class separation task as explained in [166]. The separability

8.3 entity type prediction : grand framework 113

task aims at measuring if embeddings from different classes can be linearly sepa-
rable and in [166] the evaluation is done on 10,000 pairs of classes from DBpedia.

• Any classification algorithm can be deployed on top of entity embeddings to
predict the missing types. Furthermore, the models are precomputed and can,
therefore, also be used for further downstream tasks.

• The PCA variants help in reducing the correlated features from different embed-
ding configurations as well as in reducing the chance of overfitting.

8.3.2 Entity Description Representation

The textual descriptions of an entity provide rich semantic information. Sentence-BERT
(SBERT) [112] fine-tunes the BERT [36] model using the siamese and triplet networks
to update the weights such that the resulting sentence embeddings are semantically
meaningful and semantically similar sentences are closely positioned in the embed-
ding space. For one epoch, a 3-way softmax classifier objective function is used for the
fine-tuning of the BERT model. In the training phase of SBERT, two input sentences are
passed through the BERT model followed by a pooling layer namely, MEAN-strategy,
and MAX-strategy. A fixed-size representation for the input sentences are generated
by this pooling layer. Next, they are concatenated with the element-wise difference and
multiplied with a trainable weight. The cross-entropy loss is used for optimization. In
order to encode the semantics, the twin network is fine-tuned on Semantic Textual
Similarity data. SBERT model follows a two-step process in which it is first trained on
Wikipedia via BERT and then fine-tuned on Natural Language Inference (NLI) data.
NLI is a collection of 1,000,000 sentence pairs created by combining The Stanford Nat-
ural Language Inference (SNLI)3 and Multi-Genre NLI (MG.NLI) datasets.

In this work, the same approach is followed to extract the embedding of the textual
entity descriptions as mentioned in the evaluation of the quality of sentence embed-
dings in [112]. Given be a textual entity description Dei

denoted by a sequence of
words {W1,W2, ...,Wn}, where Wj is the jth word in the entity description, and ei is
the corresponding entity. The entity description Dei

is considered as a single sequence
of words which is provided as an input to the SBERT model to get the embedding of
the textual entity description EDi . The pre-trained SBERT model used in GRAND is
the SBERT-SNLI-STS-base model which is fine-tuned on SNLI and STS datasets which
outperforms the baseline models as shown in[112]. The MEAN pooling strategy is
used in the pooling layer.

The main advantages of using the pre-trained SBERT model are:

• Since the pre-trained SBERT model is fine-tuned with two different datasets,
the entity description embeddings obtained lose domain-specific knowledge and
bias, and learn task-agnostic properties of the language.

3 https://nlp.stanford.edu/projects/snli/

https://nlp.stanford.edu/projects/snli/

114 entity type prediction leveraging graph walks and entity descriptions

• Unlike static word embedding models, such as word2vec, the contextual em-
bedding model SBERT encodes the semantics of the words differently based on
different contexts. Therefore, the entity description embeddings capture the con-
textual information for the task of entity typing unlike the baseline models [61,
155].

• They are computationally inexpensive as the model is pre-trained on a huge
amount of text and can be easily fine-tuned based on the information available.

• A representation of the entities can be obtained from the textual entity descrip-
tion for long-tailed entities in the KG, i.e., entities with no or few properties.

• A task-specific classification model can be deployed on top of the entity descrip-
tion embeddings for entity typing tasks as illustrated in the proposed GRAND
framework.

8.3.3 Entity Type Prediction

The proposed framework GRAND consists of three different classification modules: (1)
Multi-class, (2) Multi-label, and (3) Hierarchical, which are discussed in details in this
section.

8.3.3.1 Entity Representation.

The aforementioned approaches generate entity embeddings from various RDF2vec
variants and from the contextual embedding model SBERT, which are provided as
input to the classification modules. The input entity vectors are generated by con-
catenating the different vectors generated by the embedding models as depicted in
component C in Figure 8.2. Formally, they are given by:

Ei = EVi
RDF2vecclassic

⊕ EVi
p−RDF2vec ⊕ EVi

e−RDF2vec ⊕ EDi

= EVi
RDF2vecclassic

⊕ EVi
p−RDF2vec

= EVi
RDF2vecclassic

⊕ EVi
e−RDF2vec

= EVi
p−RDF2vec ⊕ EVi

e−RDF2vec

= EVi
p−RDF2vec ⊕ EVi

e−RDF2vec

(8.5)

8.3.3.2 Classifiers.

multi-class classification A Fully Connected Neural Network (FCNN) con-
sisting of two dense layers with ReLU as an activation function is deployed on the top
of the entity representation. A softmax classifier with a cross-entropy loss function is

8.3 entity type prediction : grand framework 115

used in the last layer to calculate the probability of the entities belonging to different
classes. Formally it is given by,

f(s)i =
esi∑CT

j esj
, and CEloss = −

CT∑
i

tilog(f(s)i), (8.6)

where sj are the scores inferred for each class in CT given in Equation 8.6. ti and si
are the ground truth and the score for each class in C, respectively.

multi-label classification Here, an entity can belong to more than one class
or type. Therefore, a certain entity ei belonging to one class ci has no impact on the
decision of it belonging to another class cj, where ci, cj ∈ CT . A FCNN with RELU
as an activation function is used for the two dense layers. A sigmoid function with
binary cross-entropy loss is used in the last layer which sets up a binary classification
problem for each class in CT and is given by,

CEloss = −tilog(f(si)) − (1− ti)log(1− f(si)), (8.7)

where si and ti are the score and ground truth for ith class in CT .

hierarchical classification Hierarchical Classification can be broadly cate-
gorized into local and global classification. The local information in local classifier can
be utilized in different ways leading to different types of local classifiers such as Local
classifier Per Node (LPN), a Local classifier Per Parent Node (LPPN) and a Local clas-
sifier Per Level (LPL) [64]. The proposed framework GRAND uses LPL which consists
of training a flat classifier for each level of the class hierarchy. A multi-class classifier
is trained at each level of the class hierarchy and is used to discriminate among the
classes at that level. The two main advantages of the LPL model are:

• It is computationally efficient compared to LPN for large KGs consisting of a
large number of classes as the LPN model would have an equal number of clas-
sifiers. The number of classifiers in LPL is restricted to the number of levels in
the class hierarchy.

• Since a single classifier is trained at each level, it reduces the horizontal class
prediction inconsistencies.

In GRAND, a two-layered FCNN with ReLU activation function and cross-entropy loss
has been deployed at each level of the class hierarchy. However, one of the drawbacks
of LPL is that an entity can be classified as class 1 at one level and then it can be again
classified as class 2.1 on the second level. Here, class, 2.1 is not a subclass of 1 and the
entity should be classified as a subclass of 1. In order to tackle such inconsistencies,

116 entity type prediction leveraging graph walks and entity descriptions

Parameters DB-1 DB-2 DB-3 FIGER

#Entities 210,000 210,000 210,000 201,933

#Entities train 105,000 105,000 105,000 101,266

#Entities test 63,000 63,000 63,000 60,447

#Entities validation 42,000 42,000 42,000 40,220

#Classes 48 48 48 102

Table 8.1: Statistics of the datasets

in this work, the entity which is misclassified as 2.1 in level 2 will be typed as 1 as its
entity type as it was correctly identified in level 1.

8.4 experiments

This section provides details on the benchmark datasets, experimental setup, analysis
of the results obtained, and the ablation study.

8.4.1 Datasets

GRAND is evaluated on the same datasets as CAT2Type, namely, the three DBpedia
splits DB-1, DB-2, and DB-3 generated from DBpedia630k [162] and FIGER [154]. The
statistics are provided in Table 8.1 and further details on the datasets are given in
Section 7.4.1 of Chapter 7 .

8.4.2 Experimental Setup

The experiments are conducted on six sets of embeddings: (1) Classic RDF2vec, (2) e-
RDF2vec, (3) p-RDF2vec, (4) Classic RDF2vecoa, (5) e-RDF2vecoa, and (6) p-RDF2vecoa.
The walks are generated with a depth of 8 and 500 walks per entity. Classic and OA
embeddings are trained using SG with 200 dimensions and 5 epochs. For training,
the order-aware variants (4-6), and walks from the corresponding non-order-aware
variants (1-3) are reused. The training was performed using the jRDF2vec frame-
work4 [105]. The RDF2vec embeddings are calculated on a Debian 11 machine with
768GiB of RAM and 32 cores à 2.60GHz (Intel Xeon). All the classifiers are used with
batch size 64, 100 epochs, and adam optimizer. The SBERT model and classification
models are performed on an Ubuntu 16.04.5 LTS system with 503GiB RAM with TI-
TAN X (Pascal) GPU.

4 https://github.com/dwslab/jRDF2Vec

https://github.com/dwslab/jRDF2Vec

8.5 results 117

Table 8.2: Results of GRAND on benchmark datasets. The best result of each mode is printed
in bold, the runner-up is underlined.

Model DB-1 DB2 DB3 FIGER

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Baselines

CUTE [151] 0.679 0.702 0.681 0.713 0.685 0.717 0.743 0.782

MuLR [155] 0.748 0.771 0.757 0.784 0.752 0.775 0.776 0.812

FIGMENT [154] 0.740 0.766 0.738 0.765 0.745 0.769 0.785 0.819

APE [60] 0.758 0.784 0.761 0.785 0.760 0.782 0.722 0.756

HMGCN-no hier [61] 0.785 0.812 0.794 0.820 0.791 0.817 0.789 0.827

CAT2Type-BERT [BiswasSSA21] 0.983 0.984 0.983 0.983 0.985 0.985 0.764 0.881

GRAND

Coarse-grained

classic-RDF2vecoa ⊕
s-RDF2vecoa ⊕
p-RDF2vecoa ⊕ SBERT

0.991 0.991 0.990 0.990 0.989 0.989 0.801 0.893

SBERT - only 0.972 0.972 0.97 0.97 0.97 0.97 0.648 0.844

Baselines

Fine-grained

CAT2Type-BERT [BiswasSSA21] 0.402 0.732 0.369 0.721 0.847 0.915 0.703 0.835

CAT2Type-node2vec [BiswasSSA21] 0.391 0.694 0.365 0.677 0.807 0.878 0.701 0.833

GRAND

Fine-grained

classic-RDF2vecoa ⊕
s-RDF2vecoa ⊕
p-RDF2vecoa ⊕ SBERT

0.745 0.870 0.723 0.851 0.880 0.931 0.706 0.881

Baseline

Hierarchical
HMGCN-hier [61] 0.794 0.816 0.796 0.824 0.798 0.819 0.798 0.836

GRAND

Hierarchical

classic-RDF2vecoa ⊕
s-RDF2vecoa ⊕
p-RDF2vecoa

0.731 0.882 0.729 0.881 0.726 0.877 0.701 0.880

classic-RDF2vecoa ⊕
s-RDF2vecoa ⊕
p-RDF2vecoa ⊕ SBERT

0.731 0.875 0.718 0.869 0.935 0.946 0.712 0.883

8.5 results

In order to evaluate the proposed approach against the baseline models, Micro-averaged
F1 (Mi-F1) and Macro-averaged F1 (Ma-F1) metrics are used along with the accuracy.
Different variants of RDF2vec have been evaluated which serve as an ablation study.
The baselines used for the experiments are: CUTE [151], MuLR [155], FIGMENT [154],
APE [60], HMGCN [61], and CAT2Type [BiswasSSA21]. The results of the proposed
framework on two benchmark datasets and their comparison with the baseline models
are depicted in Table 8.2.

The results of GRAND as depicted in Table 8.2 can be obtained as follows:

• Coarse-grained setting: For DBpedia splits, the original dataset consisting of 14

non-overlapping classes is used. For FIGER, the number of coarse-grained classes
is 30 and they are non-overlapping as well. Since none of the entities belongs to
more than one class, multi-class classification settings have been used here.

118 entity type prediction leveraging graph walks and entity descriptions

• Fine-grained setting: The original DBpedia630k dataset is expanded with the DB-
pedia hierarchy to 37 fine-grained classes and these are non-overlapping classes.
Therefore, a multi-class classification model is used here as well. On the other
hand, the FIGER dataset consists of overlapping fine-grained classes, i.e., one en-
tity can belong to multiple classes. Therefore, a multi-label classification is used
for the fine-grained FIGER dataset.

• For Hierarchical Classification, a classifier on each level of the hierarchy is de-
ployed. For DBpedia splits, it is a multi-class classification model and for FIGER
it is a multi-label classification model at each level of the hierarchy.

The results show that GRAND outperforms the SoTA model CAT2Type with an im-
provement of 0.8% on Ma-F1 and 0.7% on Mi-F1 for DB-1, 0.7% and 0.4% on both
the metrics for DB-2 and DB-3 respectively for the coarse-grained classes. The original
dataset with 14 classes which do not contain the hierarchy is used for this coarse-
grained non-hierarchical variant. Furthermore, for hierarchical classification, the pro-
posed model significantly outperforms the SoTA HMGCN-hier model with an incre-
ment of 6.6% for DB-1, 5.7% for DB-2, and 12.7% for DB-3 on the Mi-F1 measure. For
FIGER, the coarse-grained approach is a multi-class classification whereas the fine-
grained approach is a multi-label classification. GRAND achieves the best results for
FIGER on the coarse-grained approach which outperforms the baseline models. More-
over, with the multi-label fine-grained settings, it achieves comparable results with the
non-hierarchical baseline model CAT2Type and significantly outperforms the other
non-hierarchical model HMGCN. One advantage of GRAND over CAT2Type is that
it can be applied to any KGs and is not restricted to KGs containing information on
Wikipedia Categories.

Table 8.3 and Table 8.4 show the experimental results of the proposed approach
for the coarse-grained and fine-grained classes respectively with different variants of
RDF2vec and their combinations. The experiments using the Single strategy show that
all order-aware RDF2vec embeddings significantly outperform their classic counter-
parts. Therefore, the fusion strategies only focus on position-aware embeddings in
order to reduce combinatorial complexity.

8.5.1 Impact of RDF2vec on Different Classification Settings

coarse-grained entity typing Table 8.3 shows the results of the experiment
for coarse-grained entity typing. On the DB1 Split of the dataset, the best results for
GRAND are obtained where the models are combined, i.e., classic-RDF2vecoa ⊕ p-
RDF2vecoa ⊕ e-RDF2vecoa (concat) outperforms HMGCN for Ma-F1 by 0.1744 and
for Mi-F1 by 0.148 and achieves comparable results with CAT2Type. However, e-
RDF2vec configurations perform the weakest on their own but introduce additional
value when combined with other approaches as depicted in the concat model. The best-

8.5 results 119

performing configuration includes entity embeddings. Given the data, it appears that
the PCA discards too much valuable information for DBpedia splits but not for FIGER.
Overall, it can be observed that the performance differences between p-RDF2vec and
classic-RDF2vec are minor. Nonetheless, the embeddings encode different information
which is visible when combining the embeddings. Therefore, it can be concluded that
the contextual information of the entities in form of a path captures the characteris-
tic features of the entities. A similar observation has been made for both DB2, DB3

split and FIGER. A detailed analysis of the impact of different vector components is
provided in Section 8.5.2.

fine-grained entity typing GRAND is compared with the two best variants
of CAT2Type namely BERT and node2vec as shown in Table 8.2 and results show that
the proposed model significantly outperforms the CAT2Type model for all DBpedia
splits and FIGER. In general, it is observed for uneven class distribution the evaluation
metricMa-F1 achieves lower values compared toMi-F1. However, theMa-F1 results of
GRAND for DB1 and DB2 splits are much better than that of CAT2Type. It strengthens
the fact that the representation of entities obtained using strategic graph walks and
contextual embedding of entity descriptions contain more information about entities
compared to the embeddings used in CAT2Type.

hierarchical classification. Table 8.5 shows the results of the hierarchical
classification of the GRAND framework on different levels of the class hierarchy. The
performance is computed for only classic-RDF2vecoa ⊕ p-RDF2vecoa ⊕ e-RDF2vecoa
since it is the highest performing model based on experiments discussed in previous
sections. The results show higher performances on level 1 since the number of classes
are lesser i.e., 5, as compared to other levels. GRAND outperforms the baseline model
HMGCN-withHier for Mi-F1 metric as depicted in Table 8.2.

textual entity descriptions To analyze the impact of entity descriptions, a
multi-class classification has been performed on the entity embeddings generated from
the SBERT model. As shown in Table 8.2, GRAND with only SBERT performs better
than all the baseline models except CAT2Type. Therefore, it can be concluded that
contextual embeddings using SBERT provide the necessary relevant information as
compared to the triple-based baseline models.

8.5.2 Analysis of Vector Component Weight.

As discussed above, in the experiments it can be seen that the concatenation of embed-
dings achieves the best result. Therefore, it is further evaluated (1) which components
are the most and the least important for the predictions and (2) whether there is a dif-
ference in the weights given the coarse-grained and the fine-grained prediction tasks.

120 entity type prediction leveraging graph walks and entity descriptions

D
ataset

M
ode

M
odel

D
B

-1
D

B
-2

D
B

-3
FIG

ER

A
C

C
M

a-F
1

M
i-F

1
A

C
C

M
a-F

1
M

i-F
1

A
C

C
M

a-F
1

M
i-F

1
A

C
C

M
a-F

1
M

i-F
1

C
oarse-

G
rained

Single

classic-R
D

F
2vec

0.
9

1
6

3
0.

9
1

5
0

0.
9

1
6

3
0.

9
0

6
2

0.
9

0
4

3
0.

9
0

6
2

0.
9

1
2

3
0.

9
1

0
9

0.
9

1
2

3
0.

9
3

1
0.431

0.
7

7
8

classic-R
D

F
2vec

o
a

0.9448
0.9439

0.9448
0.9346

0.9330
0.9346

0.9457
0.9449

0.9457
0.933

0.
4

1
9

0.781

e-R
D

F
2vec

0.
7

3
5

2
0.

7
3

1
8

0.
7

3
5

2
0.

7
2

5
0

0.
7

3
0

8
0.

7
2

5
0

0.
7

3
5

7
0.

7
3

0
4

0.
7

3
5

7
0.

9
2

7
0.

4
2

1
0.

7
7

1

e-R
D

F
2vec

o
a

0.
7

6
6

5
0.

7
6

5
1

0.
7

6
6

5
0.

7
6

2
5

0.
7

4
5

3
0.

7
6

2
5

0.
7

6
9

4
0.

7
6

5
0

0.
7

6
9

4
0.

9
2

7
0.

4
2

2
0.

7
7

1

p-R
D

F
2vec

0.
8

9
4

9
0.

8
9

4
6

0.
8

9
4

9
0.

8
9

9
9

0.
8

9
1

4
0.

8
9

9
9

0.
8

8
8

2
0.

8
8

7
0.

8
8

8
2

0.
9

2
2

0.
4

2
6

0.
7

7
8

p-R
D

F
2vec

o
a

0.
9

4
1

2
0.

9
4

0
4

0.
9

4
1

2
0.

9
3

3
2

0.
9

3
0

3
0.

9
3

3
2

0.
9

4
3

0
0.

9
4

2
1

0.
9

4
3

0
0.

9
2

8
0.

4
2

2
0.

7
7

9

C
oncat

e-R
D

F
2vec

o
a

⊕
p-R

D
F

2vec
o
a

0.
9

5
1

8
0.

9
5

1
2

0.
9

5
1

8
0.

9
4

8
2

0.
9

4
1

2
0.

9
4

8
2

0.
9

5
0

2
0.

9
4

9
5

0.
9

5
0

2
0.

9
1

2
0.

4
1

4
0.

7
7

e-R
D

F
2vec

o
a

⊕
classic-R

D
F

2vec
o
a

0.
9

4
5

0
0.

9
4

4
4

0.
9

4
5

0
0.

9
4

5
0

0.
9

1
4

4
0.

9
4

5
0

0.
9

4
5

2
0.

9
4

8
2

0.
9

4
5

2
0.

9
0

8
0.

4
1

8
0.

7
7

2

classic-R
D

F
2vec

o
a

⊕
p-R

D
F

2vec
o
a

0.
9

5
6

4
0.

9
5

5
5

0.
9

5
6

3
0.

9
5

6
0
0.9546

0.
9

5
6

0
0.9582

0.
9

5
1

3
0.9592

0.
9

2
0.429

0.774

classic-R
D

F
2vec

o
a

⊕
p-R

D
F

2vec
o
a

⊕
e-R

D
F

2vec
o
a

0.9600
0.9594

0.9600
0.9667

0.
9

5
4

4
0.9667

0.
9

5
7

2
0.9564

0.
9

5
7

4
0.924

0.
4

2
4

0.
7

7
2

LocalPC
A

e-R
D

F
2vec

o
a

⊕
p-R

D
F

2vec
o
a

0.
8

8
5

5
0.

8
8

4
5

0.
8

8
5

5
0.

8
7

5
7

0.
8

7
7

0
0.

8
7

5
7

0.
8

9
1

8
0.

8
9

0
5

0.
8

9
1

8
0.

9
2

1
0.

4
2

2
0.

7
6

9

e-R
D

F
2vec

o
a

⊕
classic-R

D
F

2vec
o
a

0.
9

3
2

3
0.

9
3

1
4

0.
9

3
2

4
0.

9
3

1
4

0.
9

1
2

2
0.

9
3

1
4

0.
9

0
1

5
0.

9
0

0
0

0.
9

0
1

5
0.

9
1

9
0.

4
1

9
0.

7
7

0

classic-R
D

F
2vec

o
a

⊕
p-R

D
F

2vec
o
a

0.9471
0.9466

0.9472
0.

9
4

4
2
0.9300

0.
9

4
4

2
0.

9
3

7
8

0.
9

2
1

7
0.

9
3

7
8

0.
9

2
0.

4
2

1
0.

7
2

4

classic-R
D

F
2vec

o
a

⊕
p-R

D
F

2vec
o
a

⊕
e-R

D
F

2vec
o
a

0.
9

4
0

5
0.

9
3

9
5

0.
9

4
0

5
0.9551

0.
9

1
9

5
0.9551

0.9413
0.9402

0.9413
0.925

0.428
0.778

G
lobalPC

A

e-R
D

F
2vec

o
a

⊕
p-R

D
F

2vec
o
a

0.
9

3
2

5
0.

9
3

1
6

0.
9

3
2

5
0.

9
4

1
2

0.
9

3
3

0
0.

9
4

1
2

0.
9

3
2

1
0.

9
3

1
0

0.
9

3
2

1
0.

9
2

3
0.428

0.
7

7
8

e-R
D

F
2vec

o
a

⊕
classic-R

D
F

2vec
o
a

0.
9

4
1

3
0.

9
4

0
5

0.
9

4
1

4
0.

9
3

2
2

0.
9

3
1

1
0.

9
3

2
2

0.
9

4
1

6
0.

9
4

0
5

0.
9

4
1

6
0.

9
2

5
0.

4
2

8
0.

7
7

6

classic-R
D

F
2vec

o
a

⊕
p-R

D
F

2vec
o
a

0.9499
0.9490

0.9499
0.

9
3

5
6

0.
9

2
1

2
0.

9
3

5
6
0.9490

0.9482
0.9490

0.
9

2
7

0.
4

2
7

0.
7

6
7

classic-R
D

F
2vec

o
a

⊕
p-R

D
F

2vec
o
a

⊕
e-R

D
F

2vec
o
a

0.
9

4
7

6
0.

9
4

6
8

0.
9

4
7

6
0.9568

0.9412
0.9568

0.
9

4
8

9
0.

9
4

8
1

0.
9

4
8

9
0.929

0.433
0.779

Table
8.

3:Evaluation
of

Single
C

lassifier
R

esults
on

the
C

oarse-G
rained

D
ataset.The

best
result

of
each

m
ode

is
printed

in
bold,the

runner-up
is

underlined.The
overallbest

configuration
for

each
dataset

is
bold

and
underlined.

8.5 results 121

D
at

as
et

M
od

e
M

od
el

D
B

-1
D

B
-2

D
B

-3
FI

G
ER

A
C

C
M

a-
F
1

M
i-
F
1

A
C

C
M

a-
F
1

M
i-
F
1

A
C

C
M

a-
F
1
M
i
−
F
1

A
C

C
M

a-
F
1

M
i-
F
1

Fi
ne

-

G
ra

in
ed

Si
ng

le

cl
as

si
c-

R
D

F2
ve

c
0
.6

7
1

6
0

.3
7

4
0
.6

7
2

0
.6

6
3

5
0
.3

6
3

0
.6

6
3

0
.8

4
0

2
0

.7
3

6
0
.8

4
0

0.
99

1
0
.4

6
7

0
.7

7
4

cl
as

si
c-

R
D

F2
ve

c o
a

0
.7

0
4

0.
38

6
0
.7

0
4

0
.7

0
1

0
.3

5
6

0
.7

0
1

0.
87

1
0.
77

4
0.
87

1
0
.9

8
7
0.
46

9
0.
77

8

e-
R

D
F2

ve
c

0
.5

6
4

0
.2

9
7

0
.5

6
4

3
0
.5

2
3

1
0
.3

1
6

4
0
.5

2
3

1
0
.6

7
0

9
0

.5
6

3
2

0
.6

7
0

9
0
.9

4
6

0
.4

4
5

0
.7

2
1

e-
R

D
F2

ve
c o

a
0
.5

8
3

1
0

.3
0

6
4

0
.5

8
3

1
0
.5

5
4

2
0
.3

1
7

4
0
.5

4
4

2
0
.6

9
2

6
0

.5
7

4
7

0
.6

9
2

6
0
.9

5
1

0
.4

5
2

0
.7

2
2

p-
R

D
F2

ve
c

0
.6

5
0

0
0

.3
5

4
9

0
.6

4
9

9
0
.6

5
0

4
0
.3

4
4

9
0
.6

5
0

4
0
.7

8
4

8
0

.6
5

1
3

0
.7

8
4

8
0
.9

4
9

0
.4

6
7

0
.7

7

p-
R

D
F2

ve
c o

a
0.
70

6
0

.3
8

4
0.
70

6
0.
70

2
0.
38

1
0.
70

22
0
.8

4
7

0
.7

3
2

0
.8

4
7

1
0
.9

5
1

0
.4

5
9

0
.7

7
2

C
on

ca
t

e-
R

D
F2

ve
c o

a

⊕
p-

R
D

F2
ve

c o
a

0
.6

9
9

0
.3

7
8

0
.6

9
9

6
0
.6

9
8

0
.3

8
8

0
.6

9
8

0
.8

7
7

0
.7

8
4

0
.8

7
7

0
.9

4
9

0
.4

5
4

0
.7

7
4

e-
R

D
F2

ve
c o

a

⊕
cl

as
si

c-
R

D
F2

ve
c o

a

0
.6

9
8

0
.3

7
4

0
.6

9
7

8
0
.7

0
1

0
.3

8
4

0
.7

0
1

1
0
.8

8
1

0
.7

8
1

1
0
.8

8
1

0
.9

6
0
.5

1
2

0
.7

8
1

cl
as

si
c-

R
D

F2
ve

c o
a

⊕
p-

R
D

F2
ve

c o
a

0.
70

7
0

.3
8

6
0.
70

7
0
.7

1
9

0.
39

6
0
.7

1
9

0
.8

8
7

0
.7

8
1

0
.8

8
1

0
.9

5
5
0.
51

9
0

.7
7

8

cl
as

si
c-

R
D

F2
ve

c o
a

⊕
p-

R
D

F2
ve

c o
a

⊕
e-

R
D

F2
ve

c o
a

0
.7

0
3

0.
39

3
0
.7

2
0

0.
72

04
0
.3

9
1

2
0.
72

0
0.
89

0
0.
80

1
0.
89

08
0.
96

1
0.
51

9
0.
78

3

Lo
ca

lP
C

A

e-
R

D
F2

ve
c o

a

⊕
p-

R
D

F2
ve

c o
a

0
.6

5
3

0
.3

5
8

0
.6

5
3

8
0
.6

4
8

0
.3

8
5

0
.6

4
8

0
.8

0
6

0
.6

9
5

0
.8

0
6

0
0
.9

4
8

0
.4

5
7

0
.7

7
8

e-
R

D
F2

ve
c o

a

⊕
cl

as
si

c-
R

D
F2

ve
c o

a

0
.6

8
6

5
0

.3
6

8
3

0
.6

8
6

5
0
.6

9
5

2
0
.3

6
8

2
0
.6

9
5

2
0
.8

7
4

6
0

.7
7

7
0

0
.8

7
4

6
0
.9

5
1

0
.5

0
1

0
.7

7
9

cl
as

si
c-

R
D

F2
ve

c o
a

⊕
p-

R
D

F2
ve

c o
a

0.
70

06
0.
39

02
0.
70

06
0
.7

1
1

6
0.
39

07
0
.7

1
1

6
0.
87

74
0.
78

01
0.
87

74
0
.9

5
0

0
.5

0
4

0
.7

7
1

cl
as

si
c-

R
D

F2
ve

c o
a

⊕
p-

R
D

F2
ve

c o
a

⊕
e-

R
D

F2
ve

c o
a

0
.6

9
3

6
0

.3
8

3
9

0
.6

9
3

6
0.
71

22
0
.3

4
3

8
0.
71

23
0
.8

6
4

0
.7

6
4

0
.8

6
4

0.
95

8
0
.5

1
4

0
.7

8
1

G
lo

ba
lP

C
A

e-
R

D
F2

ve
c o

a

⊕
p-

R
D

F2
ve

c o
a

0
.6

8
4

5
0

.3
7

1
6

0
.6

8
4

4
0
.6

6
1

2
5

0
.3

1
8

9
0
.6

6
1

2
0
.8

5
5

0
.7

5
2

5
0
.8

5
4

7
0
.9

4
2

0
.4

4
9

0
.7

7
2

e-
R

D
F2

ve
c o

a

⊕
cl

as
si

c-
R

D
F2

ve
c o

a

0
.6

9
0

8
0.
38

79
0
.6

9
0

8
0
.6

7
1

4
3

0
.3

1
1

9
0
.6

7
1

4
3

0
.8

6
7

7
0

.7
6

8
6

0
.8

6
7

7
0
.9

4
5

0
.4

4
9

0
.7

6
9

cl
as

si
c-

R
D

F2
ve

c o
a

⊕
p-

R
D

F2
ve

c o
a

0
.6

9
8

1
0

.3
7

7
8

0
.6

9
8

1
0
.6

8
8

1
0
.3

2
4

1
0
.6

8
8

1
0.
87

54
0

.7
7

7
1
0.
87

54
0
.9

5
6

0
.4

5
7

0
.7

7
1

cl
as

si
c-

R
D

F2
ve

c o
a

⊕
p-

R
D

F2
ve

c o
a

⊕
e-

R
D

F2
ve

c o
a

0.
70

05
0

.3
7

6
8
0.
70

04
0.
70

14
0.
32

28
0.
70

14
0
.8

7
0

9
0.
77

80
0
.8

7
0

9
0.
96

1
0.
49

8
0.
78

4

Ta
bl

e
8
.4

:E
va

lu
at

io
n

of
Si

ng
le

C
la

ss
ifi

er
R

es
ul

ts
on

th
e

Fi
ne

-G
ra

in
ed

D
at

as
et

.
Th

e
be

st
re

su
lt

of
ea

ch
m

od
e

is
pr

in
te

d
in

bo
ld

,
th

e
ru

nn
er

-u
p

is
un

de
rl

in
ed

.T
he

ov
er

al
lb

es
t

co
nfi

gu
ra

ti
on

fo
r

ea
ch

da
ta

se
t

is
bo

ld
an

d
un

de
rl

in
ed

.

122 entity type prediction leveraging graph walks and entity descriptions

Level #classes DB1 DB2 DB3

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1
1 5 0.961 0.962 0.960 0.960 0.959 0.959
2 11 0.744 0.925 0.747 0.929 0.744 0.924

3 12 0.857 0.934 0.851 0.926 0.859 0.935

4 17 0.361 0.705 0.358 0.702 0.359 0.674

Table 8.5: Results of the GRAND-LPL classification model at each level

Dataset Epoch SBERT Classic RDF2vecoa p-RDF2vecoa e-RDF2vecoa

Coarse-Grained

1 - 35.5% 44.4% 20.0%

10 - 32.9% 49.9% 17.1%

1 58.04% 14.6% 16.28% 11.08%

10 47.9% 18.5% 22.8% 10.8%

Fine-Grained

1 - 35.4% 42.1% 22.5%

10 - 33.6% 46.4% 20.0%

1 56.7% 15.36% 16.84% 11.1%

10 51.19% 16.83% 19.5% 12.48%

Table 8.6: Relative network weights of each vector component group for DB-1 split.

experimental setup. In order to analyze the weights each vector component re-
ceives in the neural network, an FCNN with one layer was trained on the combination
of all ordered aware RDF2vec (depicted in 1st 2 rows in coarse-grained and 1st 2 rows
in fine-grained in Table 8.6) and also with SBERT. It is important to note that the over-
all goal of this setup is to analyze how much weight each of the four-vector groups
receives. Therefore, the sum of absolute weights in the network given to each vector is
calculated for the first and the tenth epoch.

results . The relative weights can be found in Table 8.6. It is observed that the
highest overall impact is independent of the dataset, achieved using the p-RDF2vec
embeddings. This is followed by the classic RDF2vec embeddings. The least impact
is achieved by the e-RDF2vec embeddings. Interestingly, a weight shift occurs when
switching from coarse-grained entity typing to fine-grained entity typing, i.e., it is vis-
ible that the classic and the entity embeddings are more important for fine-grained
predictions. The results suggest that p-RDF2vec is helpful for coarse-grained type pre-
diction – an intuitive finding is given that p-RDF2vec encodes structural similarity.
However, the more fine-grained the task gets the more important the actual neighbour
vertices.

8.6 conclusion and outlook 123

8.6 conclusion and outlook

This chapter proposes a novel entity type prediction framework, named GRAND
based on different variants of RDF2vec and textual entity descriptions. These vari-
ants are constructed with different walk-generation strategies and a new order-aware
variant of word2vec. GRAND is evaluated on DBpedia630k and FIGER datasets. The
achieved results show that GRAND considerably outperforms all the baseline models.
GRAND outperforms the CAT2Type model for fine-grained classification in all DBpe-
dia splits as well as in FIGER as depicted in Table 8.2. This strengthens the fact that
the contextual structural information provides more information about the entities as
compared to the Wikipedia categories. Since the hierarchical classification is done at
each level in the type hierarchy, therefore it overcomes the problem of the top-down
hierarchical classification of the baseline model CUTE [151]. Section 8.2 formulates
and presents the two main research questions. The following are the answers to these
queries:

• C2-RQ2: What is the impact of textual entity descriptions in predicting the correspond-
ing missing types?

– The experimental results with only the embeddings obtained using the
SBERT model show that GRAND outperforms all the baseline models ex-
cept for CAT2Type. Also, the weight analysis in Table 8.6 shows that the text
embeddings have higher weightage than the RDF2vec variants in the clas-
sification process. Therefore, the entity descriptions are rich in information
content which helps in identifying the missing types of entities. Further-
more, the pre-trained SBERT lose domain-specific knowledge and bias and
learns task-agnostic language-specific features. They are computationally
inexpensive and can be easily fine-tuned.

• C2-RQ3: Are strategic graph walks beneficial for entity typing?

– Evaluation results depicted in Tables 8.3 and 8.4 are from only RDF2vec
models which consider the strategic graph walks and they outperform all
the baseline models. It is also noted that order-aware RDF2vec performs bet-
ter than classical RDF2vec for entity typing. This concludes that including
the positional information of the entities and relations generates a better
representation of the entities.

One major advantage of this model is that entity representations can be obtained for en-
tities with only textual entity descriptions and no properties and vice-versa. The model
can also integrate other text literals that are accessible for the entities in the KGs as
labels, summaries, comments, etc. Also, given the weight analysis, further experimen-
tation on more fine-granular type systems – such as in YAGO [130] or CaLiGraph [51]
is to be conducted.

9
E N T I T Y T Y P E P R E D I C T I O N L E V E R A G I N G E N T I T Y N A M E S

Entity Typing is a vital task in Knowledge Graph (KG) completion and construction.
In the previous chapters, different methods have been proposed that uses different
features from the KGs namely Wikipedia categories, random graph walks, and tex-
tual entity descriptions. The evaluation shows that the models outperform the existing
baseline methods. However, this chapter focuses on predicting the missing types of
entities without any information from the KGs and considers merely the names of
the entities. In order to predict the missing entity types, this chapter proposes a frame-
work [10] that makes use of contextual and non-contextual NLMs. The framework also
enables multilinguality [8] and is not limited to entity names in English exclusively.

The rest of the chapter is structured as follows: Section 9.1 motivates the research
challenge tackled in this chapter, followed by Section 9.2. The approach is discussed in
Section 9.3 and then details of experiments and results on the entity typing on English
dataset are provided in Section 9.4 and that of multilingual datasets is discussed in
Section 9.5. Section 9.6 provides the conclusion and the outlook.

9.1 introduction

One of the fundamental building blocks of KG is entity types. Recent years have wit-
nessed research in the automated prediction of entity types in KGs as already dis-
cussed in detail in Chapter 4. The existing baseline models exploit the triples in the
KGs whereas others consider the textual entity descriptions as well. While those ap-
proaches work well if there is a lot of information about an entity, it is still a challenge
to type entities for which there is only scarce information. There are many non-popular
entities or new entities that are added to the KG, i.e., entities with fewer or no triples
associated with them. Therefore, this chapter focuses on predicting the entity types
solely from their label names, e.g., Is it possible to predict that the entity dbr:Berlin is a
place only from its name?.

Furthermore, to be able to predict the types of entities just by their names, one
has to understand multiple languages. Therefore, this originates the necessity of an
automated multilingual entity-type prediction framework for different chapters in DB-
pedia. For example, Is it possible to predict the types of the entities dbr: Lachse, dbr: Saumon,
dbr: Salmo, and dbr: Zalm from their names? These are the names of Salmon fish in German,
French, Spanish, and Dutch respectively. Therefore, this paper focuses on predicting
the types of entities just by their names for different language chapters of DBpedia,

125

126 entity type prediction leveraging entity names

namely German (DE), French (FR), Spanish (ES), and Dutch (NL). The main challenges
of this work are as follows:

• To predict the types of the entities for which significantly less or no triples are
available in the KGs, and

• to predict the types of the entities in different languages.

This lack of available information is compensated by exploiting the NLMs. They
are trained on a huge amount of monolingual as well as multi-lingual textual data,
and they provide implicit contextual information about the entities in their corre-
sponding language-agnostic vector representations. To do so, the continuous space-
based Neural Language Models (NLM) such as Word2Vec, GloVe, Wikipedia2Vec,
and BERT as well as a character embedding model is exploited for the entity names
in English whereas the Multilingual Neural Language Models (Multilingual-NLMs),
namely Wikipedia2Vec, and m-BERT are used for the multilingual entity typing.

In this work, the task of entity typing is considered a classification problem in which
a neural network-based classifier is applied on top of the NLMs. Furthermore, an
analysis of the performance of the different NLMs for this task is provided. The main
contributions are:

• A multi-class classification framework is proposed to predict the missing entity
types in English DBpedia as well as the multilingual DBpedia chapters exploiting
the NLMs.

• A benchmark dataset for multilingual entity typing consisting of entities from
German (DE), French (FR), Spanish (ES), and Dutch (NL) DBpedia chapters are
published for re-usability purposes for future research.

• The results show that the entity typing model trained on the entities from English
DBpedia also performs well for predicting the types of unseen entities from the
CaLiGraph dataset [51].

9.2 problem formulation

Following KG definition from Chapter 2, a KG G consists of a set of triples T, given by,
T ⊆ E×R× (E∪L∪ C), where E, R, L, and C are the set of entities, relations between
the entities, literals, and semantic types of the entities respectively. < eh, r, et >∈ T,
represents a triple belonging to the set of triples T in the KG, where (eh, et) ∈ E are
the head and tail entities, and r ∈ R represents relation between them. rdf:type is
an instance of rdf:Property that is used to state that a resource is an instance of a
class. A triple of the form: < ei, rdf:type,Ck >, states that Ck ∈ C, is an instance of
rdfs:Class and ei ∈ E is an entity in G and is an instance of Ck. The proposed model
intends to predict the missing types of the entities in a KG addressing the research
question mentioned in Section 1.2 of Chapter 1 and is given by,

9.3 entity type prediction : names-only framework 127

• C2-RQ4: Can the types of entities be predicted just from the entity names?

9.3 entity type prediction : names-only framework

This section discusses the NLMs and the classifiers used for the task of entity typing
only from the names of the entities.

As mentioned earlier, to predict the missing types of entities in English DBpedia, the
framework uses the non-contextual word embedding models Word2vec, GloVe, BERT,
Wikipedia2vec, and Character embedding. On the other hand, for multilingual entity
typing Multi-lingual BERT (m-BERT) [37] and Wikipedia2vec are used. The details
of these models except for the character embedding and m-BERT are provided in
Section 2.4. Chapter 2.

character embedding Character embedding [161] represents the latent repre-
sentations of characters trained over a corpus using CNN which helps in determining
the vector representations of out-of-vocabulary words. A character embedding model
includes the following steps: all the unique characters of a language are converted to
a one-hot encoding, followed by 1-D CNN layers to learn the sequence.

m-bert Bidirectional Encoder Representations from Transformers [37] is a contex-
tual embedding approach in which pretraining on bidirectional representations from
the unlabeled text by using the left and the right context in all the layers is performed.
Multilingual-BERT (m-BERT) supports 104 languages trained on text from Wikipedia
content with a shared vocabulary across all languages. However, the size of Wikipedia
varies greatly for different languages. The low-resource languages are underrepre-
sented in the neural network model compared to the popular languages. The train-
ing on the low-resource languages of Wikipedia for a large number of epochs results
in the overfitting of the model. To combat the content imbalance of Wikipedia, less
popular languages are over-sampled, whereas popular languages are under-sampled.
An exponential smoothing weighting of the data during the pre-training data creation
is used. For tokenization, a 110k shared WordPiece vocabulary is used. The word
counts are weighted following the same method for the pre-training data creation.
Therefore, the low-resource languages are up-weighted by some factors. Given an en-
tity name Ei = (w1,w2, ...,wn), the input sequence to the m-BERT model is given
by ([CLS],w1,w2, ...,wn, [SEP]), where Ei is the ith entity and w1,w2, ..,wn are the n
words in the entity name. [CLS] and [SEP] are special tokens that mark the beginning
and the end of the input sequence.

embeddings of the entity names . In this work, pre-trained Word2Vec model
on Google News dataset1, GloVe model pre-trained on Wikipedia 2014 version and Gi-

1 https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

128 entity type prediction leveraging entity names

gaword 5
2, Wikipedia2Vec model pre-trained on Wikipedia 2018 version on as well as

for each of the languages, i.e., DE, FR, ES, and NL 3, and pre-trained English character
embeddings derived from GloVe 840B/300D dataset4, is used with a vector dimension
of 300. The average of all word vectors in the entity names is taken as the vector rep-
resentation of the entities. For BERT, the average of the last four hidden layers of the
model is taken as a representation of the names of entities and the dimension used is
768.

For multilingual entity typing, the m-BERT base model has been used, in which
each position outputs a vector of dimension equal to that of its hidden layer and its
corresponding dimension is 768 for the base model. Each entity name is considered as
a sentence for the input to m-BERT. The average of the last four hidden layers is taken
to represent the entities. For Wikipedia2vec, the average of all word vectors in each
entity name is taken as the vector representation of the entity. The entity representation
generated by the static non-contextual NLMs for both English and multilingual entity
typing is formally given by,

Emodeli
ei

=
1

n

n∑
j=1

Wj, (9.1)

where Emodeli
ei

, is the entity representation, n is the number of words in the entity
name, and W is the corresponding vector of the word W in the entity name. Further-
more, more multilingual entity typing concatenation of Wikipedia2vec and m-BERT
vectors are being used to obtain the entity representation.

classification In this work, entity typing is considered a classification task with
the types of entities as classes. Two classifiers have been built on top of the NLMs
for the typing the entities from English DBpedia: (i) Fully Connected Neural Network
(FCNN), and (ii) Convolutional Neural Network (CNN). A three-layered FCNN model
consisting of two dense layers with ReLU as an activation function has been used on
the top of the vectors generated from the NLMs. The softmax function is used in
the last layer to calculate the probability of the entities belonging to different classes.
The CNN model consists of two 1-D convolutional layers followed by a global max-
pooling layer. ReLu is used as an activation function in the convolutional layers and
the output of the pooling layer is then passed through a fully connected final layer,
in which the softmax function predicts the classes of the entities. Whereas for the
multi-lingual entity typing only FCNN with the same configuration mentioned above
is being deployed.

2 http://nlp.stanford.edu/data/glove.6B.zip 3 https://wikipedia2vec.github.io/wikipedia2vec/
4 https://github.com/minimaxir/char-embeddings/blob/master/output/

http://nlp.stanford.edu/data/glove.6B.zip
https://wikipedia2vec.github.io/wikipedia2vec/
https://github.com/minimaxir/char-embeddings/blob/master/output/

9.4 experiments and results on entity names in english 129

9.4 experiments and results on entity names in english

This section consists of a detailed description of the datasets used for evaluating the
English-based entity typing model, followed by an analysis of the results obtained.

9.4.1 Experimental Setup

The same experimental setup has been used by both models. The classifiers used have
batch size {32, 64} and 100 epochs. The experiments are performed on an Ubuntu
16.04.5 LTS system with 503GiB RAM with TITAN X (Pascal) GPU.

9.4.2 Datasets

The experiments are conducted on the benchmark dataset DBpedia630k [162] extracted
from DBpedia consisting of 14 non-overlapping classes5 with 560,000 train and 70,000

test entities. However, predicting fine-grained type information of an entity only from
its name is a non-trivial task. For e.g. identifying dbr:Kate_Winslet as an Athlete or
Artist from only the entity name is challenging. Therefore, seven coarse-grained classes
of the entities in this dataset are considered: dbo:Organisation, dbo:Person, dbo:Place,
dbo:MeanOfTransportation, dbo:Animal, dbo:Plant, and dbo:Work. Also, 4.656% of the total
entities in the train set and 4.614% entities in the test set have their type information
mentioned in their RDF(S) labels. For example, dbr:Cybersoft_(video_game_company) has
the label Cybersoft (video game company) stating that it is a Company. Therefore, the ex-
periments are conducted both with and without the type information in the names
for the DBpedia630k dataset. To evaluate the approaches independently of DBpedia,
we use an additional test set composed of entities from CaLiGraph [51]. The latter
is a Wikipedia-based KG containing entities extracted from tables and enumerations
in Wikipedia articles. It consists of 70,000 entities that are unknown to DBpedia and
evenly distributed among 7 classes.

9.4.3 Results

The results in Table 9.1 depict that for all the NLMs, FCNN works better compared
to the CNN model. This is because the CNN model does not work well in finding
patterns in the label names of the entities. Also, BERT performs the worst in predicting
the type of entities from their label names. Further error analysis shows that only
4.2% of the total person entities in the test set with Types in Labels variation of the
dataset have been correctly identified as dbo:Person for BERT. Since the names of
persons can be ambiguous and BERT is a contextual embedding model, the vector
representations of the entities generated only from their label names do not provide
5 https://zenodo.org/record/7688590

https://zenodo.org/record/7688590

130 entity type prediction leveraging entity names

Table 9.1: Results on the DBpedia630k dataset (in accuracy %)

Embedding Types in Labels no Types in Labels CaLiGraph Test Set
Models FCNN CNN FCNN CNN FCNN CNN

word2vec 80.11 46.71 72.08 44.39 48.93 25.91

GloVe 83.34 54.06 82.62 53.41 61.88 31.3
wikipedia2vec 91.14 60.47 90.68 57.36 75.21 36.97

BERT 67.37 62.27 64.63 60.4 53.42 35.55

character embedding 73.43 58.13 72.66 58.3 54.91 45.73

a proper latent representation of the entity. However, FCNN achieves an accuracy
of 84.74% on the same dataset without the class dbo:Person for BERT. On the other
hand, Wikipedia2Vec works best amongst all the NLMs for FCNN with an accuracy of
91.14% and 90.68% on the Types in Labels and no Types in Labels variants of the dataset
respectively. Also, on the removal of the class dbo:Person from the dataset, it achieves
an accuracy of 91.01% on Types in Labels variant. Therefore, the decrease of 0.13% in the
accuracy infers that entities of the class dbo:Person are well represented in the entity
vectors obtained from the pre-trained Wikipedia2Vec model.

However, after removing the type information from the name labels, a slight drop
in the accuracy for each model has been observed for both classifiers. Wikipedia2Vec
and the character embedding model experience the smallest drop in accuracy of 0.46%
and 0.77% with the FCNN classifier. This is because DBpedia entities are extracted
from Wikipedia articles, therefore the vectors of the entities are well represented by
the Wikipedia2Vec model. Also for character embedding, the removal of the type in-
formation from their labels has a low impact because the vector representation of the
entity names depends on the corresponding character vectors and not word vectors.
Furthermore, an unseen test set from CaLiGraph has been evaluated on the classifica-
tion model trained on the no Types in Labels variation of the dataset. On the CaLiGraph
test set, the FCNN model achieves the best results with the Wikipedia2Vec model with
an accuracy of 75.21%. The entities in the CaLiGraph test set are not contained in DB-
pedia, hence the representations of these entities are not learned during the training
of the Wikipedia2Vec model. This depicts the robustness of the proposed model and
the entity vectors generated by taking the average of the word vectors present in the
names of the entities to provide a better latent representation.

9.5 experiments and results on multilingual entity names

The datasets used to evaluate the multilingual entity type model are thoroughly de-
scribed in this section, which is followed by an analysis of the findings.

9.5 experiments and results on multilingual entity names 131

Table 9.2: Dataset Statistics

DBpedia
chapters

Train Test Valid Total Entities
#coarse-grained

class
#fine-grained

class

German 38500 23100 15400 77000 38 77

French 57999 34799 23199 115997 51 116

Spanish 42000 25200 16800 84000 45 84

Dutch 44000 26400 17600 88000 42 88

Table 9.3: Entity Typing Results on DE, FR, ES, and NL DBpedia Chapters
DBpedia
chapters

#classes
m-BERT Wikipedia2vec m-BERT + Wikipedia2vec

Accuracy Ma-F1 Mi-F1 Accuracy Ma-F1 Mi-F1 Accuracy Ma-F1 Mi-F1

German
38 0.818 0.760 0.818 0.870 0.817 0.870 0.918 0.884 0.918
77 0.674 0.676 0.674 0.763 0.762 0.763 0.831 0.829 0.831

French
51 0.794 0.689 0.794 0.833 0.718 0.833 0.867 0.780 0.867
116 0.544 0.542 0.544 0.611 0.612 0.611 0.678 0.680 0.678

Spanish
45 0.782 0.694 0.782 0.843 0.764 0.843 0.894 0.846 0.894
84 0.629 0.627 0.629 0.681 0.682 0.681 0.788 0.788 0.788

Dutch
42 0.885 0.825 0.885 0.812 0.735 0.812 0.908 0.859 0.908
88 0.664 0.665 0.664 0.753 0.757 0.753 0.825 0.825 0.825

9.5.1 Datasets

The work focuses on predicting the types of entities in different DBpedia chapters,
namely, DE, FR, ES, and NL. The entities are extracted from the language versions of
DBpedia-version 2016-10

6. The most popular classes from each DBpedia chapter are
chosen with 1000 entities per class. The coarse-grained classes are the parent classes of
the fine-grained classes in the hierarchy tree. In this dataset, no entity belongs to two
different classes in different hierarchy branches. Further details about the dataset are
provided in Table 9.2 and are made available via Github7.

9.5.2 Results

It is observed from the results as depicted in Table 9.3 that the static NLM Wikipedia2Vec
trained on different languages of Wikipedia performs better than the m-BERT model
for all the DBpedia chapters. BERT is a contextual embedding model that generates
better latent representations where the context is available in the input sequence. The
entity names are considered input sentences to the m-BERT model that do not provide

6 http://downloads.dbpedia.org/wiki-archive/downloads-2016-10.html
7 https://github.com/russabiswas/MultilingualET_with_EntityNames

http://downloads.dbpedia.org/wiki-archive/downloads-2016-10.html
https://github.com/russabiswas/MultilingualET_with_EntityNames

132 entity type prediction leveraging entity names

any contextual information. On the other hand, the Wikipedia2Vec models trained on
different Wikipedia languages perform better as they provide the fixed dense repre-
sentation of the words or entities in the pre-trained models. It is noticeable that the
concatenated vectors from m-BERT and Wikipedia2vec yield the best result as both
features are combined. Furthermore, Table 9.3 shows that the model performs better
for coarse-grained classes compared to the fine-grained because it is often not possible
to identify if a certain entity is of the type Scientist or an Actor from its name. However,
it is possible to identify if the entity is of type Person.

9.6 conclusion and outlook

In this chapter, different NLMs for entity typing in a KG have been analyzed. The
achieved results imply that NLMs can be exploited to relevant information to predict
the types of entities in a KG only from their names. Furthermore, multilingual NLMs
for entity typing in a KG using entity names are also analysed. This leads to answering
the research question mentioned in Section 9.2,

• C2-RQ4: Can the types of entities be predicted just from the entity names?

– The results of the entity typing obtained for both English and other lan-
guages claim that the NLMs serve as a good resource to predict the missing
types of entities in a KG, especially the unpopular ones. However, the static
NLMs perform better for both the monolingual and multilingual settings
compared to BERT or m-BERT. This is because the entity names do not have
enough context for the contextual NLM. Nevertheless, the main advantage
of this framework is that it can predict the missing types of entities without
any information from the KGs.

In the future, fine-grained type prediction using textual entity descriptions from
the KG using the multilingual NLMs is to be explored. Also, a combination of entity
names together with the Wikipedia categories for multilingual entity typing is to be
investigated for long-tailed entities.

Part V

C O N C L U S I O N A N D O U T L O O K

10
C O N C L U S I O N A N D O U T L O O K

This dissertation investigates the methods exploiting different features from the KGs
for KGC. It focuses on two main challenges of KGC: Link Prediction in KGs that include
head and tail prediction, triple classification, and Entity Type Prediction. The literature
review presented in Chapters 3 and 4 shows that the embeddings of entities and rela-
tions into a low-dimensional vector space have proven to be beneficial for KGC. How-
ever, the different features in a KG are still not being used to their best extent. In this
thesis, several embedding-based models leveraging these features are proposed to pre-
dict the missing links in the KG. The contributions made in this thesis are summarized
in this chapter and the prospective areas for future research.

10.1 conclusions

The importance of structural contextual information and textual entity descriptions for
link prediction is studied in this dissertation.

Chapter 5 answers the research question C1-RQ1 and C1-RQ2 from Section 1.2 of
Chapter 1 by presenting a novel KG embedding model MADLINK. The model exploits
the structural contextual information of the entities by generating random walks to-
gether with the textual entity descriptions to generate latent representations of the en-
tities and relations. In a KG, all the relations associated with an entity are not equally
important. Therefore, a path selection technique is proposed to consider only the paths
that contain the relations important to a certain entity. This assures that the structural
contextual information generated using random walks provides relevant information
about the entity. A novel encoder-decoder model is proposed to encapsulate the path
information. Also, the contextual NLM is exploited to generate entity embeddings
from the textual entity descriptions. The results show that the combination of these
two features in the KG considerably improves the performance in link prediction com-
pared to the existing baseline models. Furthermore, it is observed that the attention
mechanism applied to the encoder-decoder model significantly uplifts the prediction
results. One of the key benefits of the model is that it uses both the structural and
textual information independently, enabling the generation of a latent representation
of an entity for link prediction if either of the features is observed in the KG. It is to be
mentioned that the proposed model is computationally expensive, however, the main
focus is less on the runtime and more on the effectiveness of the model which is easily
demonstrated from the results obtained.

135

136 conclusion and outlook

This dissertation also studied if KGC can be achieved by fine-tuning the NLMs on
KGs. In Chapter 6, a triple classification model is proposed in which GPT-2 is fine-
tuned on triples from KG. The triples and entity descriptions from KGs are provided
as inputs to the GPT-2 model and a binary classifier is trained on the last layer to
identify if a given triple is true or not. Despite having more parameters than the BERT
model, GPT-2 model does not outperform the KG-BERT model. In BERT and GPT-2,
context-specificity presents very differently. It is observed in the literature that in BERT,
two words in the same sentence are more dissimilar to each other in the upper layers
but are still similar compared to two randomly sampled words. For GPT-2, the words
in the same sentence are as dissimilar as randomly chosen words [38]. Therefore, this
has an impact on the training of the triples. Also unlike BERT, it is a unidirectional
decoder model, therefore it looks over for the tokens only in one direction during
training as well as fine-tuning. However, it is also been observed in the results for
triple classification that GPT-2 performs better for longer text compared to shorter
ones. The proposed GPT-2 variant with textual entity descriptions as input performs
better than the variant which uses only triples.

The second part of this dissertation examines the significance of Wikipedia cate-
gories, textual entity descriptions, and entity names for entity type prediction.

Chapter 7 explores the uncharted territory of Wikipedia categories and intends to
find the answers to C2-RQ1 from Section 1.2 of Chapter 1. By taking advantage of
the links between the Wikipedia categories with regard to the shared entities, a novel
category-category network embedding is presented. The NLMs are additionally used
to generate text-based embeddings from the Wikipedia category labels. A framework
for both multi-class and multi-label classification is proposed to predict the missing en-
tity types. According to the experimental findings, the proposed model achieves SoTA
results for entity typing on both benchmark datasets. Additionally, the model develops
higher accuracy in predicting the types of missing data from unseen data. The major
advantage of using the category-category network is that the number of categories
is much lesser than the number of entities, thereby the computational complexity of
graph traversing is less expensive. Furthermore, the pre-trained network embedding
model can be leveraged to predict the missing types of new entities in a KG.

Chapter 8 studies the impact of the structural information and the textual entity de-
scriptions to predict the missing entity types addressing the research questions men-
tioned in C2-RQ2 and C2-RQ3 from Section 1.2 of Chapter 1. Different strategic graph
walks are proposed in this chapter to capture the contextual information of the enti-
ties in a KG. These graph walks are then used in a novel order-aware RDF2vec model
to generate the entity embeddings that are used for predicting the missing types of
entities. The main advantage of using different variants of the RDF2vec model over
other embedding models is that the classical RDF2vec model performs better in class
separation tasks compared to the other KG embedding models. The contextual NLMs
are also exploited in this chapter for generating text embeddings. The classification

10.2 open issues and outlook 137

framework proposed in the previous Chapter 7, is extended with a new hierarchical
classification model which predicts the types of entities at different levels of the hier-
archy. The results show that the textual entity descriptions have a bigger impact on
the classification than the structural information. However, the combination of both
features outperforms the SoTA entity typing models both on coarse-grained as well as
fine-grained classes.

Therefore, it can be inferred from the results that, to predict the missing types of
entities which have no or less amount of property information in the KG, CAT2Type
performs well over GRAND. The performance of CAT2Type is incredibly good for
coarse-grained entity types. However, results show that for fine-grained entity typing
GRAND performs better than CAT2Type. This is because the relation information of
the entities captured in the random walks helps is encapsulated by the embedding
model into the entity representation.

Finally, Chapter 9 focuses on predicting the missing types of the entities merely
from their names finding solutions to the research question C2-RQ4 from Section 1.2
of Chapter 1. The information contained in both the contextual and non-contextual
NLMs is exploited to its full length to predict the missing types. The two main advan-
tages of this model are (i) it does not require any extra information about the entity
except for its name, and (ii) no training of the features is required. This model is evalu-
ated for entities in different languages namely English, German, French, and Spanish.
Furthermore, the evaluation shows that the trained classifier can be successfully used
to predict missing types of entities from a different KG.

10.2 open issues and outlook

It is anticipated that this dissertation will encourage different opportunities to pursue
open challenges that have not been addressed so far. This section discusses the open
issues of this thesis and possible directions for future work.

This thesis focuses on predicting the missing links within a KG. However, link pre-
diction can also be performed across different KGs to predict the missing links between
the two same entities across KGs which is also known as Entity Alignment. This can
be achieved in two ways: (i) learning the embedding of the entities and the relations
of the source and the target KGs separately followed by learning a supervised model
to align the entities and the relations, (ii) joint learning of the embeddings of the two
KGs into the unified space. The two proposed KG embedding models in this thesis
MADLINK, and GRAND can be used as a base model to embed the KGs.

The methods proposed in this dissertation focus on structural contextual informa-
tion, textual entity descriptions, Wikipedia categories, and entity names. However, a
vast amount of unstructured information in the form of Wikipedia lists, tables, etc. still
remains unexplored in the literature. One of the future research directions would be

138 conclusion and outlook

incorporating information from these sources into the embedding models to predict
the different kinds of missing links in a KG.

Another limitation of the thesis is that the proposed models are evaluated on bench-
mark datasets which are derived from open general-purpose KGs. Furthermore, open
KG such as Wikidata has not been explored. In future, it would be interesting to anal-
yse the performance of the proposed link prediction and entity type prediction mod-
els on domain-specific KGs such as Scholarly data, biomedical data etc. Furthermore,
Chapter 9 throws some light on multilingual entity typing. The proposed entity typ-
ing models such as CAT2Type, and GRAND can be leveraged to predict the missing
types of entities in different languages. The KG embeddings generated by exploiting
different KG features can also be used for different NLP-based applications in future
work. Furthermore, the proposed entity embeddings for entity typing methods can be
used for predicting types of entities in automated KG creation.

In conclusion, it is anticipated that the contributions from this thesis will lead to
rapid advancement in the techniques used for KG-based representation and its appli-
cations in different domains.

B I B L I O G R A P H Y

[1] Mehwish Alam, Aleksey Buzmakov, Víctor Codocedo, and Amedeo Napoli.
“Mining Definitions from RDF Annotations Using Formal Concept Analysis.”
In: Twenty-Fourth International Joint Conference on Artificial Intelligence 2015.

[2] Mohamed Ben Aouicha, Mohamed Ali Hadj Taieb, and Malek Ezzeddine. “Deriva-
tion of "is a" taxonomy from Wikipedia Category Graph.” In: Eng. Appl. Artif.
Intell. (2016).

[3] Nino Arsov and Georgina Mirceva. “Network embedding: An overview.” In:
arXiv preprint arXiv:1911.11726 (2019).

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary Ives. “Dbpedia: A nucleus for a web of open data.” In: The
semantic web. 2007.

[5] Ivana Balažević, Carl Allen, and Timothy M Hospedales. “Hypernetwork knowl-
edge graph embeddings.” In: Proceedings of the International Conference on Artifi-
cial Neural Networks. 2019.

[6] Ivana Balažević, Carl Allen, and Timothy Hospedales. “TuckER: Tensor Factor-
ization for Knowledge Graph Completion.” In: Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing. 2019.

[7] Russa Biswas, Mehwish Alam, and Harald Sack. “MADLINK: Attentive Mul-
tihop and Entity Descriptions for Link Prediction in Knowledge Graphs.” In:
Semantic Web (2022).

[8] Russa Biswas, Yiyi Chen, Heiko Paulheim, Harald Sack, and Mehwish Alam.
“It’s All in the Name: Entity Typing Using Multilingual Language Models.” In:
The Semantic Web: ESWC 2022 Satellite Events Proceedings. Vol. 13384. Lecture
Notes in Computer Science. Springer, 2022, pp. 36–41.

[9] Russa Biswas, Jan Portisch, Heiko Paulheim, Harald Sack, and Mehwish Alam.
“Entity Type Prediction Leveraging Graph Walks and Entity Descriptions.” In:
Accepted at ISWC. 2022.

[10] Russa Biswas, Radina Sofronova, Mehwish Alam, Nicolas Heist, Heiko Paul-
heim, and Harald Sack. “Do Judge an Entity by Its Name! Entity Typing Using
Language Models.” In: The Semantic Web: ESWC 2021 Satellite Events Proceedings.
Vol. 12739. Lecture Notes in Computer Science. Springer, 2021, pp. 65–70.

139

140 bibliography

[11] Russa Biswas, Radina Sofronova, Mehwish Alam, and Harald Sack. “Contex-
tual Language Models for Knowledge Graph Completion.” In: Machine Learning
with Symbolic Methods and Knowledge Graphs co-located with ECML PKDD. CEUR
Workshop Proceedings. 2021.

[12] Russa Biswas, Radina Sofronova, Harald Sack, and Mehwish Alam. “Cat2type:
Wikipedia Category Embeddings for Entity Typing in Knowledge Graphs.” In:
Proceedings of the 11th on Knowledge Capture Conference. 2021, pp. 81–88.

[13] Peter Bloem, Xander Wilcke, Lucas van Berkel, and Victor de Boer. “kgbench:
A Collection of Knowledge Graph Datasets for Evaluating Relational and Mul-
timodal Machine Learning.” In: European Semantic Web Conference. 2021.

[14] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. “Enrich-
ing Word Vectors with Subword Information.” In: arXiv preprint arXiv:1607.04606
(2016).

[15] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. “Enrich-
ing word vectors with subword information.” In: Transactions of the association
for computational linguistics 5 (2017), pp. 135–146.

[16] Kurt D. Bollacker, Robert P. Cook, and Patrick Tufts. “Freebase: A Shared
Database of Structured General Human Knowledge.” In: Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence. 2007.

[17] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
“Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge.” In: Proceedings of the ACM SIGMOD international conference on Man-
agement of data. 2008.

[18] Antoine Bordes, Sumit Chopra, and Jason Weston. “Question Answering with
Subgraph Embeddings.” In: Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing. 2014.

[19] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. “Translating embeddings for modeling multi-relational data.”
In: Proceedings of the Advances in neural information processing systems (2013).

[20] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. “Learning
structured embeddings of knowledge bases.” In: Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence. 2011.

[21] Alison Callahan, Jose Cruz-Toledo, Peter Ansell, and Michel Dumontier. “Bio2RDF
release 2: improved coverage, interoperability and provenance of life science
linked data.” In: Extended semantic web conference. Springer. 2013, pp. 200–212.

[22] Zhe Chen, Yuehan Wang, Bin Zhao, Jing Cheng, Xin Zhao, and Zongtao Duan.
“Knowledge graph completion: A review.” In: Ieee Access 8 (2020), pp. 192435–
192456.

bibliography 141

[23] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. “On the Properties of Neural Machine Translation: Encoder–Decoder Ap-
proaches.” In: Syntax, Semantics and Structure in Statistical Translation (2014),
p. 103.

[24] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. “Learning Phrase Rep-
resentations using RNN Encoder–Decoder for Statistical Machine Translation.”
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing. 2014.

[25] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. “Em-
pirical evaluation of gated recurrent neural networks on sequence modeling.”
In: NIPS 2014 Workshop on Deep Learning, December 2014. 2014.

[26] Luca Costabello, Sumit Pai, Chan Le Van, Rory McGrath, Nick McCarthy, and
Pedro Tabacof. AmpliGraph: a Library for Representation Learning on Knowledge
Graphs. 2019.

[27] Silviu Cucerzan. “Large-Scale Named Entity Disambiguation Based on Wikipedia
Data.” In: Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning. 2007.

[28] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. “A survey on network embed-
ding.” In: IEEE transactions on knowledge and data engineering 31.5 (2018), pp. 833–
852.

[29] Tu Dinh Nguyen Dai Quoc Nguyen, Dat Quoc Nguyen, and Dinh Phung. “A
Novel Embedding Model for Knowledge Base Completion Based on Convo-
lutional Neural Network.” In: Proceedings of the Annual Conference of the North
American Chapter of the Association for Computational Linguistics. 2018.

[30] Andrew M Dai and Quoc V Le. “Semi-supervised sequence learning.” In: Ad-
vances in neural information processing systems 28 (2015).

[31] Arjun Das, Debasis Ganguly, and Utpal Garain. “Named Entity Recognition
with Word Embeddings and Wikipedia Categories for a Low-Resource Lan-
guage.” In: ACM Trans. Asian Low Resour. Lang. Inf. Process. (2017).

[32] Daniel Daza, Michael Cochez, and Paul Groth. “Inductive Entity Representa-
tions from Text via Link Prediction.” In: Proceedings of the Web Conference 2021.
2021.

[33] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel.
“Convolutional 2d knowledge graph embeddings.” In: Thirty-second AAAI con-
ference on artificial intelligence. 2018.

142 bibliography

[34] Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel.
“Convolutional 2D Knowledge Graph Embeddings.” In: Proceedings of the 32th
AAAI Conference on Artificial Intelligence. 2018.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.”
In: North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 2019.

[36] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.”
In: Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies. 2019.

[37] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.”
In: NAACL-HLT). 2019.

[38] Kawin Ethayarajh. “How contextual are contextualized word representations?
comparing the geometry of BERT, ELMo, and GPT-2 embeddings.” In: arXiv
preprint arXiv:1909.00512 (2019).

[39] Leonhard Euler. “Solutio problematis ad geometriam situs pertinentis.” In: Com-
mentarii academiae scientiarum Petropolitanae (1741), pp. 128–140.

[40] Jun Feng, Minlie Huang, Yang Yang, and Xiaoyan Zhu. “GAKE: Graph Aware
Knowledge Embedding.” In: Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers. 2016.

[41] Kunihiko Fukushima. “Neocognitron: A hierarchical neural network capable of
visual pattern recognition.” In: Neural networks 1.2 (1988), pp. 119–130.

[42] Alberto García-Durán and Mathias Niepert. “Kblrn: End-to-end learning of
knowledge base representations with latent, relational, and numerical features.”
In: arXiv preprint arXiv:1709.04676 (2017).

[43] Genet Asefa Gesese, Russa Biswas, Mehwish Alam, and Harald Sack. “A survey
on knowledge graph embeddings with literals: Which model links better literal-
ly?” In: Semantic Web 12.4 (2021), pp. 617–647.

[44] Blerina Gkotse. “Ontology-based Generation of Personalised Data Management
Systems: an Application to Experimental Particle Physics.” PhD thesis. Univer-
sité Paris sciences et lettres, 2020.

[45] Yoav Goldberg. “Neural network methods for natural language processing.” In:
Synthesis lectures on human language technologies 10.1 (2017), pp. 1–309.

[46] Daniel Graupe. Principles of artificial neural networks. Vol. 7. World Scientific,
2013.

bibliography 143

[47] Aditya Grover and Jure Leskovec. “node2vec: Scalable feature learning for net-
works.” In: 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining. 2016.

[48] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. “Jointly embed-
ding knowledge graphs and logical rules.” In: Proceedings of the 2016 conference
on empirical methods in natural language processing. 2016, pp. 192–202.

[49] Ferras Hamad, Issac Liu, and Xian Xing Zhang. Food Discovery with Uber Eats:
Building a Query Understanding Engine. Uber Engineering Blog. https : / / eng .

uber.com/uber-eats-query-understanding/.. Accessed: 2022-07-03. 2018.

[50] Nicolas Heist and Heiko Paulheim. “Uncovering the Semantics of Wikipedia
Categories.” In: 18th International Semantic Web Conference. 2019.

[51] Nicolas Heist and Heiko Paulheim. “Entity Extraction from Wikipedia List
Pages.” In: The Semantic Web - 17th International Conference, ESWC 2020, Herak-
lion, Crete, Greece, May 31-June 4, 2020, Proceedings. Lecture Notes in Computer
Science. Springer, 2020, pp. 327–342.

[52] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In: Neu-
ral computation 9.8 (1997), pp. 1735–1780.

[53] J. Hoffart, M. A. Yosef, and I. Bordino et al. “Robust Disambiguation of Named
Entities in Text.” In: Proceedings of the 2011 Conf. on Empirical Methods in Natural
Language Processing. 2011.

[54] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de
Melo, Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, et al. “Knowledge graphs.” In: Synthesis Lectures
on Data, Semantics, and Knowledge 12.2 (2021), pp. 1–257.

[55] John J Hopfield. “Neurons with graded response have collective computational
properties like those of two-state neurons.” In: Proceedings of the national academy
of sciences 81.10 (1984), pp. 3088–3092.

[56] Jeremy Howard and Sebastian Ruder. “Universal Language Model Fine-tuning
for Text Classification.” In: Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20,
2018, Volume 1: Long Papers, pp. 328–339.

[57] Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. “Knowledge graph comple-
tion with adaptive sparse transfer matrix.” In: Proceedings of the Thirtieth AAAI
conference on artificial intelligence. 2016.

[58] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. “A
survey on knowledge graphs: Representation, acquisition, and applications.” In:
IEEE Transactions on Neural Networks and Learning Systems 33.2 (2021), pp. 494–
514.

https://eng.uber.com/uber-eats-query-understanding/.
https://eng.uber.com/uber-eats-query-understanding/.

144 bibliography

[59] Ningning Jia, Xiang Cheng, and Sen Su. “Improving Knowledge Graph Em-
bedding Using Locally and Globally Attentive Relation Paths.” In: European
Conference on Information Retrieval. 2020.

[60] Hailong Jin, Lei Hou, Juanzi Li, and Tiansi Dong. “Attributed and Predictive
Entity Embedding for Fine-Grained Entity Typing in Knowledge Bases.” In:
27th International Conference on Computational Linguistics. 2018.

[61] Hailong Jin, Lei Hou, Juanzi Li, and Tiansi Dong. “Fine-Grained Entity Typing
via Hierarchical Multi Graph Convolutional Networks.” In: Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing. 2019.

[62] Kun Jing and Jungang Xu. “A survey on neural network language models.” In:
arXiv preprint arXiv:1906.03591 (2019).

[63] Armand Joulin, Édouard Grave, Piotr Bojanowski, and Tomáš Mikolov. “Bag
of Tricks for Efficient Text Classification.” In: Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers. 2017, pp. 427–431.

[64] Carlos Nascimento Silla Jr. and Alex Alves Freitas. “A survey of hierarchical
classification across different application domains.” In: Data Min. Knowl. Discov.
22.1-2 (2011), pp. 31–72. doi: 10.1007/s10618-010-0175-9. url: https://doi.
org/10.1007/s10618-010-0175-9.

[65] Mohammad Mehdi Keikha, Maseud Rahgozar, and Masoud Asadpour. “Com-
munity aware random walk for network embedding.” In: Knowledge-Based Sys-
tems 148 (2018), pp. 47–54.

[66] Bosung Kim, Taesuk Hong, Youngjoong Ko, and Jungyun Seo. “Multi-task
learning for knowledge graph completion with pre-trained language models.”
In: Proceedings of the 28th International Conference on Computational Linguistics.
2020.

[67] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph
Convolutional Networks.” In: 5th International Conference on Learning Representa-
tions, ICLR 2017. 2017.

[68] Philipp Koehn. Statistical machine translation. Cambridge University Press, 2009.

[69] Bhushan Kotnis and Vivi Nastase. “Analysis of the impact of negative sampling
on link prediction in knowledge graphs.” In: arXiv preprint arXiv:1708.06816
(2017).

[70] Arun Krishnan. Making search easier: How Amazon’s Product Graph is helping cus-
tomers find products more easily. Amazon Blog. https://blog.aboutamazon.com/
innovation/making-search-easier. Accessed: 2022-07-03. 2018.

https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1007/s10618-010-0175-9
https://blog.aboutamazon.com/innovation/making-search-easier
https://blog.aboutamazon.com/innovation/making-search-easier

bibliography 145

[71] Agustinus Kristiadi, Mohammad Asif Khan, Denis Lukovnikov, Jens Lehmann,
and Asja Fischer. “Incorporating literals into knowledge graph embeddings.”
In: Proceedings of the International Semantic Web Conference. 2019.

[72] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. “Backpropagation applied
to handwritten zip code recognition.” In: Neural computation 1.4 (1989), pp. 541–
551.

[73] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee
Koh. “Attention models in graphs: A survey.” In: ACM Transactions on Knowl-
edge Discovery from Data (TKDD) 13.6 (2019), pp. 1–25.

[74] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. “A survey of
convolutional neural networks: analysis, applications, and prospects.” In: IEEE
transactions on neural networks and learning systems (2021).

[75] Yankai Lin, Zhiyuan Liu, Huan-Bo Luan, Maosong Sun, Siwei Rao, and Song
Liu. “Modeling Relation Paths for Representation Learning of Knowledge Bases.”
In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. 2015.

[76] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. “Learning en-
tity and relation embeddings for knowledge graph completion.” In: Proceedings
of the 29th AAAI conference on artificial intelligence. 2015.

[77] Wang Ling, Chris Dyer, Alan W. Black, and Isabel Trancoso. “Two/Too Simple
Adaptations of Word2Vec for Syntax Problems.” In: NAACL HLT 2015. ACL,
2015, pp. 1299–1304.

[78] Qi Liu, Matt J. Kusner, and Phil Blunsom. “A Survey on Contextual Embed-
dings.” In: CoRR (2020).

[79] Qiaoling Liu, Kaifeng Xu, Lei Zhang, Haofen Wang, Yong Yu, and Yue Pan.
“Catriple: Extracting triples from wikipedia categories.” In: Asian Semantic Web
Conference. 2008.

[80] Xiaofei Ma, Zhiguo Wang, Patrick Ng, Ramesh Nallapati, and Bing Xiang. “Uni-
versal text representation from bert: An empirical study.” In: arXiv preprint
arXiv:1910.07973 (2019).

[81] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent
in nervous activity.” In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–
133.

[82] A. Melo, H. Paulheim, and J. Völker. “Type Prediction in RDF Knowledge Bases
Using Hierarchical Multilabel Classification.” In: WIMS. 2016.

[83] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Estima-
tion of Word Representations in Vector Space.” In: CoRR (2013).

146 bibliography

[84] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient estima-
tion of word representations in vector space.” In: arXiv preprint arXiv:1301.3781
(2013).

[85] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
“Distributed Representations of Words and Phrases and their Compositional-
ity.” In: NIPS. 2013.

[86] George A Miller. “WordNet: a lexical database for English.” In: Communications
of the ACM 38.11 (1995), pp. 39–41.

[87] George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

[88] Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Phung, et al. “A Novel Embedding
Model for Knowledge Base Completion Based on Convolutional Neural Net-
work.” In: Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, 2018.

[89] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. “Holographic Em-
beddings of Knowledge Graphs.” In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. 2016.

[90] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. “Holographic em-
beddings of knowledge graphs.” In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence. 2016.

[91] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. “A three-way model
for collective learning on multi-relational data.” In: Proceedings of the Interna-
tional Conference on Machine Learning. 2011.

[92] Heiko Paulheim. “Knowledge graph refinement: A survey of approaches and
evaluation methods.” In: Semantic web 8.3 (2017), pp. 489–508.

[93] Heiko Paulheim and Christian Bizer. “Type inference on noisy RDF data.” In:
International semantic web conference. Springer. 2013, pp. 510–525.

[94] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove: Global
vectors for word representation.” In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP). 2014.

[95] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning
of social representations.” In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2014, pp. 701–710.

[96] Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. “Don’t Walk,
Skip! Online learning of multi-scale network embeddings.” In: Proceedings of the
2017 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining 2017. 2017, pp. 258–265.

bibliography 147

[97] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. “Deep Contextualized Word Repre-
sentations.” In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers). 2018, pp. 2227–2237.

[98] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander Miller. “Language Models as Knowledge Bases?”
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 2019, pp. 2463–2473.

[99] Pouya Pezeshkpour, Liyan Chen, and Sameer Singh. “Embedding Multimodal
Relational Data for Knowledge Base Completion.” In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. 2018.

[100] Giuseppe Pirrò. “Explaining and Suggesting Relatedness in Knowledge Graphs.”
In: Proceedings of the 14th International Semantic Web Conference.

[101] R.J. Pittman, Srivastava. Amit, Sanjika Hewavitharana, Ajinkya Kale, and Saab
Mansour. Cracking the Code on Conversational Commerce. eBay Blog. https://www.
ebayinc.com/stories/news/cracking-the-code-on-conversationalcommerce/.
Accessed: 2022-07-03. 2017.

[102] Simone Paolo Ponzetto and Michael Strube. “Taxonomy induction based on a
collaboratively built knowledge repository.” In: Artificial Intelligence (2011).

[103] Simone Paolo Ponzetto, Michael Strube, et al. “Deriving a large scale taxonomy
from Wikipedia.” In: AAAI. 2007.

[104] Jan Portisch, Michael Hladik, and Heiko Paulheim. “KGvec2go - Knowledge
Graph Embeddings as a Service.” In: Proceedings of The 12th Language Resources
and Evaluation Conference, LREC 2020, Marseille, France, May 11-16, 2020. Euro-
pean Language Resources Association, 2020, pp. 5641–5647.

[105] Jan Portisch, Michael Hladik, and Heiko Paulheim. “RDF2Vec Light - A Lightweight
Approachfor Knowledge Graph Embeddings.” In: Proceedings of the ISWC 2020
Demos and Industry Tracks: From Novel Ideas to Industrial Practice co-located with
19th International Semantic Web Conference (ISWC 2020), Globally online, November
1-6, 2020 (UTC). Vol. 2721. CEUR Workshop Proceedings. CEUR-WS.org, 2020,
pp. 79–84.

[106] Jan Portisch and Heiko Paulheim. “Putting RDF2vec in Order.” In: Proceedings
of the ISWC 2021 Posters, Demos and Industry Tracks: From Novel Ideas to Indus-
trial Practice co-located with 20th International Semantic Web Conference (ISWC
2021), Virtual Conference, October 24-28, 2021. Ed. by Oshani Seneviratne, Catia
Pesquita, Juan Sequeda, and Lorena Etcheverry. Vol. 2980. CEUR Workshop Pro-

https://www.ebayinc.com/stories/news/cracking-the-code-on-conversationalcommerce/
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversationalcommerce/

148 bibliography

ceedings. CEUR-WS.org, 2021. url: http://ceur-ws.org/Vol-2980/paper352.
pdf.

[107] Jan Portisch and Heiko Paulheim. “Walk this Way! Entity Walks and Property
Walks for RDF2vec.” In: CoRR abs/2204.02777 (2022).

[108] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing
Huang. “Pre-trained models for natural language processing: A survey.” In:
Science China Technological Sciences (2020).

[109] Alec Radford and Karthik Narasimhan. “Improving Language Understanding
by Generative Pre-Training.” In: 2018.

[110] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. “Language models are unsupervised multitask learners.” In: OpenAI blog
1.8 (2019), p. 9.

[111] Yves Raimond, Tristan Ferne, Michael Smethurst, and Gareth Adams. “The BBC
world service archive prototype.” In: Journal of web semantics 27 (2014), pp. 2–9.

[112] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings us-
ing Siamese BERT-Networks.” In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP. 2019.

[113] Petar Ristoski and Heiko Paulheim. “Rdf2vec: Rdf graph embeddings for data
mining.” In: Proceedings of the International Semantic Web Conference. Springer.
2016.

[114] Petar Ristoski, Jessica Rosati, Tommaso Di Noia, Renato De Leone, and Heiko
Paulheim. “RDF2Vec: RDF graph embeddings and their applications.” In: Se-
mantic Web 10.4 (2019), pp. 721–752. doi: 10.3233/SW- 180317. url: https:
//doi.org/10.3233/SW-180317.

[115] Frank Rosenblatt. “The perceptron: a probabilistic model for information stor-
age and organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[116] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and
Paolo Merialdo. “Knowledge graph embedding for link prediction: A compar-
ative analysis.” In: ACM Transactions on Knowledge Discovery from Data (TKDD)
(2021).

[117] Afshin Sadeghi, Damien Graux, Hamed Shariat Yazdi, and Jens Lehmann. “MDE:
Multiple Distance Embeddings for Link Prediction in Knowledge Graphs.” In:
Proceedings of the European Conference on Artificial Intelligence. 2020.

[118] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. “Modeling relational data with graph convolutional
networks.” In: Proceedings of the European semantic web conference. 2018.

http://ceur-ws.org/Vol-2980/paper352.pdf
http://ceur-ws.org/Vol-2980/paper352.pdf
https://doi.org/10.3233/SW-180317
https://doi.org/10.3233/SW-180317
https://doi.org/10.3233/SW-180317

bibliography 149

[119] Jörg Schlötterer, Martin Wehking, Fatemeh Salehi Rizi, and Michael Granitzer.
“Investigating Extensions to Random Walk Based Graph Embedding.” In: 2019
IEEE International Conference on Cognitive Computing (ICCC). IEEE. 2019, pp. 81–
89.

[120] Edward W Schneider. “Course Modularization Applied: The Interface System
and Its Implications For Sequence Control and Data Analysis.” In: (1973).

[121] S Selva Birunda and R Kanniga Devi. “A review on word embedding tech-
niques for text classification.” In: Innovative Data Communication Technologies and
Application (2021), pp. 267–281.

[122] Baoxu Shi and Tim Weninger. “Open-world knowledge graph completion.” In:
Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[123] WANG Shuo, DU Zhijuan, and MENG Xiaofeng. “Research progress of large-
scale knowledge graph completion technology.” In: Scientia Sinica Informationis
50.4 (2020), pp. 551–575.

[124] Robert F Simmons. Synthetic language behavior. System Development Corpora-
tion, 1963.

[125] Amit Singhal. Introducing the Knowledge Graph: things, not strings. Google Blog.
https://www.blog.google/products/search/introducing-knowledge-graph-

things-not/. Accessed: 2022-07-03. 2012.

[126] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. “Rea-
soning with neural tensor networks for knowledge base completion.” In: Pro-
ceedings of the Advances in neural information processing systems. 2013.

[127] Sampath Srinivas. “A generalization of the noisy-or model.” In: Uncertainty in
artificial intelligence. Elsevier. 1993, pp. 208–215.

[128] Fabian M Suchanek, Serge Abiteboul, and Pierre Senellart. “PARIS: Probabilis-
tic Alignment of Relations, Instances, and Schema.” In: Proceedings of the VLDB
Endowment 5.3 (2011).

[129] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. “Yago: a core of
semantic knowledge.” In: Proceedings of the 16th international conference on World
Wide Web. 2007.

[130] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. “Yago: a core of
semantic knowledge.” In: Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007. Ed. by Carey L.
Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy.
ACM, 2007, pp. 697–706. doi: 10.1145/1242572.1242667. url: https://doi.
org/10.1145/1242572.1242667.

https://www.blog.google/ products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/ products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667

150 bibliography

[131] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. “Yago: A large
ontology from wikipedia and wordnet.” In: Journal of Web Semantics 6.3 (2008),
pp. 203–217.

[132] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. “RotatE: Knowledge
Graph Embedding by Relational Rotation in Complex Space.” In: Proceedings of
the 7th International Conference on Learning Representations. 2019.

[133] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learn-
ing with neural networks.” In: Proceedings of the Advances in neural information
processing systems. 2014.

[134] Yi Tay, Luu Anh Tuan, Minh C Phan, and Siu Cheung Hui. “Multi-task neural
network for non-discrete attribute prediction in knowledge graphs.” In: Pro-
ceedings of the 2017 ACM on Conference on Information and Knowledge Management.
2017.

[135] Avijit Thawani, Jay Pujara, Pedro A Szekely, and Filip Ilievski. “Representing
Numbers in NLP: a Survey and a Vision.” In: arXiv preprint arXiv:2103.13136
(2021).

[136] Peihao Tong, Qifan Zhang, and Junjie Yao. “Leveraging domain context for
question answering over knowledge graph.” In: Data Science and Engineering
(2019).

[137] Kristina Toutanova and Danqi Chen. “Observed versus latent features for knowl-
edge base and text inference.” In: Proceedings of the 3rd Workshop on Continuous
Vector Space Models and their Compositionality. 2015.

[138] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is All you
Need.” In: Proceedings of the Advances in Neural Information Processing Systems.
2017.

[139] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you
need.” In: Advances in neural information processing systems 30 (2017).

[140] Denny Vrandečić and Markus Krötzsch. “Wikidata: a free collaborative knowl-
edgebase.” In: Communications of the ACM (2014).

[141] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. “Knowledge graph
embedding by translating on hyperplanes.” In: Proceedings of the 28th AAAI
Conference on Artificial Intelligence. 2014.

[142] Zhigang Wang, Juanzi Li, Zhiyuan Liu, and Jie Tang. “Text-enhanced repre-
sentation learning for knowledge graph.” In: Proceedings of International Joint
Conference on Artificial Intelligent (IJCAI). 2016, pp. 4–17.

bibliography 151

[143] Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya Sun, and Guanhua Tian.
“Large-scale knowledge base completion: Inferring via grounding network sam-
pling over selected instances.” In: Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. 2015, pp. 1331–1340.

[144] Paul Werbos. “Beyond regression:" new tools for prediction and analysis in the
behavioral sciences.” In: Ph. D. dissertation, Harvard University (1974).

[145] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta,
and Dekang Lin. “Knowledge base completion via search-based question an-
swering.” In: Proceedings of the 23rd international conference on World wide web.
2014, pp. 515–526.

[146] Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas Usunier. “Con-
necting Language and Knowledge Bases with Embedding Models for Relation
Extraction.” In: Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing. 2013.

[147] Yanrong Wu and Zhichun Wang. “Knowledge Graph Embedding with Nu-
meric Attributes of Entities.” In: Proceedings of the Rep4NLP@ACL. 2018.

[148] Han Xiao, Minlie Huang, Lian Meng, and Xiaoyan Zhu. “SSP: semantic space
projection for knowledge graph embedding with text descriptions.” In: Proceed-
ings of the Thirty-First AAAI conference on artificial intelligence. 2017.

[149] Ruobing Xie, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. “Image-embodied
knowledge representation learning.” In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence. 2017.

[150] Ruobing Xie, Zhiyuan Liu, Maosong Sun, et al. “Representation Learning of
Knowledge Graphs with Hierarchical Types.” In: Proceedings of the International
Joint Conference on Artificial Intelligence. 2016.

[151] Bo Xu, Yi Zhang, Jiaqing Liang, Yanghua Xiao, Seung-won Hwang, and Wei
Wang. “Cross-Lingual Type Inference.” In: Database Systems for Advanced Appli-
cations - 21st International Conference, DASFAA. 2016.

[152] Hu Xu, Bing Liu, Lei Shu, and S Yu Philip. “BERT Post-Training for Review
Reading Comprehension and Aspect-based Sentiment Analysis.” In: Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). 2019, pp. 2324–2335.

[153] Jiacheng Xu, Xipeng Qiu, Kan Chen, and Xuanjing Huang. “Knowledge graph
representation with jointly structural and textual encoding.” In: Proceedings of
the 26th International Joint Conference on Artificial Intelligence. 2017.

[154] Yadollah Yaghoobzadeh, Heike Adel, and Hinrich Schütze. “Corpus-Level Fine-
Grained Entity Typing.” In: J. Artif. Intell. Res. (2018).

152 bibliography

[155] Yadollah Yaghoobzadeh and Hinrich Schütze. “Multi-level Representations for
Fine-Grained Typing of Knowledge Base Entities.” In: 15th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics. 2017.

[156] Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu
Takefuji, and Yuji Matsumoto. “Wikipedia2vec: An efficient toolkit for learn-
ing and visualizing the embeddings of words and entities from wikipedia.” In:
arXiv preprint arXiv:1812.06280 (2018).

[157] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. “Embed-
ding Entities and Relations for Learning and Inference in Knowledge Bases.”
In: Proceedings of the 3rd International Conference on Learning Representations. 2015.

[158] Liang Yao, Chengsheng Mao, and Yuan Luo. “KG-BERT: BERT for knowledge
graph completion.” In: arXiv preprint arXiv:1909.03193 (2019).

[159] Dong Yu and Li Deng. Automatic Speech Recognition. Springer, 2016.

[160] SHUAI ZHANG, Yi Tay, Lina Yao, and Qi Liu. “Quaternion Knowledge Graph
Embeddings.” In: 2019.

[161] Xiang Zhang and Yann LeCun. “Text understanding from scratch.” In: arXiv
preprint arXiv:1502.01710 (2015).

[162] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. “Character-level Convolu-
tional Networks for Text Classification.” In: Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural Information Processing Systems.
2015.

[163] Peixiang Zhao, Charu Aggarwal, and Gewen He. “Link prediction in graph
streams.” In: Proceedings of the IEEE 32nd International Conference on Data Engi-
neering. 2016.

[164] Yu Zhao, Anxiang Zhang, Ruobing Xie, Kang Liu, and Xiaojie Wang. “Connect-
ing Embeddings for Knowledge Graph Entity Typing.” In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. 2020, pp. 6419–
6428.

[165] Jianhuan Zhuo, Qiannan Zhu, Yinliang Yue, Yuhong Zhao, and Weisi Han.
“A Neighborhood-Attention Fine-grained Entity Typing for Knowledge Graph
Completion.” In: Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining. 2022, pp. 1525–1533.

[166] Amal Zouaq and Felix Martel. “What is the schema of your knowledge graph?
leveraging knowledge graph embeddings and clustering for expressive taxon-
omy learning.” In: Proceedings of the international workshop on semantic big data.
2020, pp. 1–6.

D E C L A R AT I O N

I declare that I have developed and written the enclosed thesis completely by myself,
and have not used sources or means without declaration in the text.

Karlsruhe, February 27, 2023

M.Sc. RUSSA BISWAS

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Motivation
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Thesis Outline and Contributions

	Background and Literature Review
	2 Foundations
	2.1 Graphs
	2.2 Knowledge Graphs
	2.3 Neural Networks
	2.3.1 Feed-Forward Networks
	2.3.2 Convolutional Neural Network
	2.3.3 Long Short Term Memory
	2.3.4 Gated Recurrent Unit

	2.4 Language Models
	2.4.1 Non-contextual Embeddings
	2.4.2 Contextual Embeddings

	2.5 Network Embeddings
	2.6 Knowledge Graph Embeddings
	2.7 Evaluation Metrics

	3 Link Prediction - Literature Review
	3.1 Introduction
	3.2 Translation-based Models
	3.3 Semantic Matching Models
	3.4 Neural Network Based Models
	3.5 Path Based Models
	3.6 Literal Based Models
	3.7 Discussion and Outlook

	4 Entity Type Prediction - Literature Review
	4.1 Introduction
	4.2 Heuristic Based Entity Typing Models
	4.3 Classical Machine Learning based Model
	4.4 Neural Network-based Models
	4.4.1 Models using Neural Language Models
	4.4.2 Models using Graph Structures

	4.5 Discussion and Outlook

	Link Prediction in Knowledge Graphs
	5 Attentive Multihop and Entity Descriptions for Link Prediction
	5.1 Introduction
	5.2 Problem Formulation
	5.3 MADLINK Model
	5.3.1 Path Selection
	5.3.2 Textual Representation
	5.3.3 Encoder - Decoder Framework
	5.3.4 Overall Training

	5.4 Experiments
	5.4.1 Datasets
	5.4.2 Experimental Setup
	5.4.3 Hyper-parameter Optimization
	5.4.4 Link Prediction

	5.5 Link Prediction - Results
	5.5.1 Comparison with textual entity description-based baseline models
	5.5.2 Comparison with structure-based baseline models
	5.5.3 Ablation Studies

	5.6 Triple Classification
	5.7 Conclusion and Outlook

	6 GPT-2 for Knowledge Graph Completion
	6.1 Introduction
	6.2 Problem Formulation
	6.3 Language Models for Knowledge Graph Completion
	6.4 Experiments
	6.4.1 Datasets
	6.4.2 Experimental Setup

	6.5 Results
	6.6 Conclusion and Outlook

	Entity Type Prediction in Knowledge Graphs
	7 Wikipedia Category Embeddings for Entity Typing in Knowledge Graphs
	7.1 Introduction
	7.2 Problem Formulation
	7.3 Entity Type Prediction: CAT2Type Framework
	7.3.1 Textual Information in Wikipedia Category Labels
	7.3.2 Structural Features of Wikipedia Categories
	7.3.3 Entity Type Prediction

	7.4 Experiments
	7.4.1 Datasets
	7.4.2 Experimental Setup

	7.5 Results
	7.5.1 Results on DBpedia splits
	7.5.2 Results on FIGER
	7.5.3 Results on Unseen Data

	7.6 Conclusion and Outlook

	8 Entity Type Prediction Leveraging Graph Walks and Entity Descriptions
	8.1 Introduction
	8.2 Problem Formulation
	8.3 Entity Type Prediction: GRAND framework
	8.3.1 Entity Embeddings from Strategic Graph Walks
	8.3.2 Entity Description Representation
	8.3.3 Entity Type Prediction

	8.4 Experiments
	8.4.1 Datasets
	8.4.2 Experimental Setup

	8.5 Results
	8.5.1 Impact of RDF2vec on Different Classification Settings
	8.5.2 Analysis of Vector Component Weight.

	8.6 Conclusion and Outlook

	9 Entity Type Prediction Leveraging Entity Names
	9.1 Introduction
	9.2 Problem Formulation
	9.3 Entity Type Prediction: Names-Only Framework
	9.4 Experiments and Results on Entity Names in English
	9.4.1 Experimental Setup
	9.4.2 Datasets
	9.4.3 Results

	9.5 Experiments and Results on Multilingual Entity Names
	9.5.1 Datasets
	9.5.2 Results

	9.6 Conclusion and Outlook

	Conclusion and Outlook
	10 Conclusion and Outlook
	10.1 Conclusions
	10.2 Open Issues and Outlook

	Bibliography
	Declaration

