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The distribution of ultra-high-energy cosmic-ray arrival directions appears to be nearly isotropic
except for a dipole moment of order 6× (𝐸/10 EeV) per cent. Nonetheless, at the highest energies,
as the number of possible candidate sources within the propagation horizon and the magnetic
deflections both shrink, smaller-scale anisotropies might be expected to emerge. On the other
hand, the flux suppression reduces the statistics available for searching for such anisotropies. In
this work, we consider two different lists of candidate sources: a sample of nearby starburst
galaxies and the 2MRS catalog tracing stellar mass within 250 Mpc.
We combine surface-detector data collected at the Pierre Auger Observatory until 2020 and the
Telescope Array until 2019, and use them to test models in which UHECRs comprise an isotropic
background and a foreground originating from the candidate sources and randomly deflected by
magnetic fields. The free parameters of these models are the energy threshold, the signal fraction,
and the search angular scale. We find a correlation between the arrival directions of 11.8%+5.0%

−3.1% of
cosmic rays detected with 𝐸 ≥ 38 EeV by Auger or with 𝐸 & 49 EeV by TA and the position of
nearby starburst galaxies on a 15.5◦+5.3◦

−3.2◦ angular scale, with a 4.2𝜎 post-trial significance, as well
as a weaker correlation with the overall galaxy distribution.
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1. Introduction

Ultra-high-energy cosmic rays (UHECRs) are particles from outer space with energies greater
than 1 EeV = 1018 EeV ≈ 0.16 J. They are electrically charged (protons and other atomic nuclei), so
they are deflected by intergalactic and Galactic magnetic fields (typically by a few tens of degrees),
meaning that, unlike with photons and other neutral messengers, the position of their sources cannot
be directly reconstructed from their arrival directions.

Nowadays, arrays of particle detectors such as the Pierre Auger Observatory (Auger) [1] and
the Telescope Array (TA) [2] cover areas of hundreds of square kilometers and detect thousands of
events every year; nevertheless, over 60 years after the discovery of UHECRs, their origin remains
unknown. Still, certain possibilities can be ruled out. The lack of anisotropies aligned with the
Galactic plane excludes a sizable contribution of protons from within our Galaxy [3, 4], and mass
estimates exclude a composition dominated by heavier nuclei [5, 6], hence most such particles must
originate from outside our Galaxy. The lack of neutral particles such as neutrinos and gamma rays at
these energies [7–10] excludes “top-down” mechanisms, e.g. the decay of super-heavy dark matter
particles or topological defects, as a dominant origin (except possibly at 𝐸 & 100 EeV). Therefore,
UHECRs are widely believed to be ordinary matter accelerated to extreme energies by extragalactic
astrophysical phenomena. Various possibilities that have been hypothesized [11, 12] include active
galactic nuclei (AGNs), starburst galaxies (SBGs), gamma-ray bursts (GRBs) and tidal disruption
events (TDEs).

A possible avenue to search for imprints of the distribution of UHECR sources in spite of
magnetic deflections is to harness the huge statistics gathered by last-generation detector arrays to
search for large-scale (dipolar and quadrupolar) anisotropies, which are the ones the least affected
by a given amount of magnetic deflections. Another way is to focus on the highest-energy part
of the UHECR spectrum, where magnetic deflections are expected to be smaller and the number
of potential sources decreases, at the cost of the reduced statistics. A large-scale anisotropy has
been reported in Auger data [13] whose statistical significance has now reached 6.6𝜎 [14], but the
lack of full-sky coverage impedes its interpretation in terms of dipole and quadrupole moments
unless higher-order multipoles are assumed to vanish. Conversely, no medium- or small-scale
anisotropy has been conclusively established so far, but a few indications have been reported (see
the introduction of Ref. [15] for a review). In order to follow up on these indications using
full-sky data, a working group has been established with members from both the Auger and TA
collaborations. Our most recent results of searches for large-scale anisotropies are presented in
Ref. [16], and those of searches for medium-scale anisotropies at the highest energies are presented
here.

2. The datasets

In this work, we use the same data as in Ref. [16], namely those detected by the Pierre
Auger Observatory from 2004 Jan 01 to 2020 Dec 31 and those detected by the Telescope Array
from 2008 May 11 to 2019 May 10, but restricted to the highest-energy bin (above 32 EeV for
Auger, above 40.8 EeV for TA), and using looser selection criteria for Auger events [17] resulting
in 7% more events. The dataset comprises 2 625 Auger events and 315 TA events.
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Figure 1: The directional exposure of the datasets we used. The yellow area in the left panel is the fiducial
declination band used for the cross-calibration of energies [16].

Figure 2: The flux distribution from our dataset above two selected energy thresholds, in equatorial coordi-
nates

The geometrical exposure is 95 700 km2 yr sr for Auger vertical events (zenith angles 𝜃 < 60◦)
and 26 300 km2 yr sr for Auger inclined events (60◦ ≤ 𝜃 < 80◦). Taking into account the energy res-
olution effects, the effective exposure is 96 600 km2 yr sr for Auger vertical events, 26 600 km2 yr sr
for Auger inclined events, and 13 700 km2 yr sr for TA events. This represents a 33% increase from
the last Auger–TA joint searches for medium-scale anisotropies [15]. The declination dependence
of the directional exposure is computed in the approximation of 100% detector efficiency [18] and
shown in Figure 1.

Following Ref. [16], we apply the conversion

𝐸TA ↦→ 𝐸Auger = 8.57 (𝐸TA/10 EeV)0.937 EeV (1)

to TA event energies in order to correct them for the mismatch in the energy scales of the two
experiments, which has been estimated by comparing their data in a common declination band in
the intersection of their fields of view. The distribution of arrival directions of the events above two
selected energy thresholds, averaged over 20◦-radius top-hat windows, is shown in Figure 2.

3. The analysis

In this work, we present the result of a likelihood ratio test between flux models including a
contribution from nearby galaxies and and the isotropic null hypothesis, similar to Refs. [17, 19, 20].
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We define the test statistic

TS(𝜓, 𝑓 , 𝐸min) = 2 ln
𝐿 (𝜓, 𝑓 , 𝐸min)
𝐿 (𝜓, 0, 𝐸min)

, 𝐿(𝜓, 𝑓 , 𝐸min) =
∏

𝐸𝑖≥𝐸min

Φ(n̂𝑖;𝜓, 𝑓 )𝜔(n̂𝑖)∫
4𝜋 Φ(n̂;𝜓, 𝑓 )𝜔(n̂) dΩ

, (2)

where 𝜔(n̂) is the combined directional exposure of the dataset, and the flux model is

Φ(n̂;𝜓, 𝑓 ) = 𝑓Φsignal(n̂;𝜓) + (1 − 𝑓 )Φbackground, (3)

where the contribution of each source is a von Mises–Fisher distribution:

Φsignal(n̂;𝜓) = 1∑
𝑗 𝑤𝑠

∑︁
𝑗

𝑤𝑠

𝜓−2

4𝜋 sinh𝜓−2 exp
(
𝜓−2n̂𝑠 · n̂

)
; Φbackground =

1
4𝜋
, (4)

where 𝐸𝑖 and n̂𝑖 are the energy and arrival direction of the 𝑖-th event; 𝑤𝑠 and n̂𝑠 are the weight and
position of the 𝑠-th source candidate as defined in subsection 3.1; and 𝜓 is the root-mean-square
deflection per transverse dimension (i.e. the total r.m.s. deflection is

√
2 × 𝜓).1 The von Mises–

Fisher distribution is the analog of a Gaussian on a 2-sphere, centered on the position of each source.
In reality, magnetic deflections include both regular and turbulent parts, but the directions of the
former are not sufficiently well known to be used in a log-likelihood ratio test. In a future work, we
plan to investigate using simulations how much realistic amounts of regular magnetic deflections
can affect the result of an analysis which does not explicitly model them.

Since the null hypothesis (isotropy) is a special case of the model (obtained for 𝑓 = 0) and for
a fixed 𝐸min the TS is a smooth function of 𝜓 and 𝑓 , according to Wilks’ theorem [22] max𝜓, 𝑓 TS
is 𝜒2-distributed with two degrees of freedom.

The analysis is repeated using energy thresholds of 32 EeV, 33 EeV, . . . , 80 EeV on the Auger
scale, corresponding to 40.8 EeV, 42.2 EeV, . . . , 108.6 EeV on the TA scale.

3.1 The galaxy catalogs

In this work, we use two different lists of candidate sources. The first is a list of 44 113
galaxies of all types at distances 1 Mpc ≤ 𝐷 < 250 Mpc, based on the 2MASS catalog with
distances from HyperLEDA, with weights assumed proportional to the near-infrared flux in the
𝐾-band (2.2 𝜇m). The second is a list of 44 starburst galaxies at distances 1 Mpc ≤ 𝐷 < 130 Mpc,
taken from Ref. [23] except that we removed the SMC and LMC (which are dwarf irregular galaxies,
not starburst galaxies, as evidenced by their infrared-to-radio flux ratio much lower than all other
objects of the list), and added the Circinus galaxy with data from the Parkes telescope (𝛼 = 213.29◦,
𝛿 = −65.34◦, 𝐷 = 4.21, 𝑆1.4 GHz = 1.50 Jy); these galaxies were assigned weights proportional to
their radio flux at 1.4 GHz. More details about these selections are found in Ref. [17].

In this work, we neglect the energy losses undergone by cosmic rays, hence the distant objects
are assigned a larger weight than if energy losses were taken into account. Given the distance
distributions of the objects we are considering, the effect of energy losses on the results can be
presumed to be relatively small in the case of galaxies of all types and negligible in the case of
starburst galaxies, though the precise rates depend on the mass composition of UHECRs. Also,
like in previous studies [17, 19, 20], we do not attempt to correct for the fact that the catalogs are

1The equivalent top-hat radius is Ψ = 1.59𝜓 [21].
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Figure 3: The test statistic TS as a function of the energy threshold 𝐸min (top) and of the angular scale 𝜓 and
signal fraction 𝑓 (bottom). In the top panel, for each 𝐸min the corresponding best 𝜓 and 𝑓 are used, whereas
in each of the bottom panels the same 𝐸min is used for all 𝜓 and 𝑓 . In the top panel, the significances on
the right-hand side take into account the maximization over 𝜓 and 𝑓 but not over 𝐸min. The white areas at
small 𝜓 in the bottom panels correspond to models with TS < 0, i.e. fitting the data worse than the isotropic
null hypothesis.

limited in flux rather than in intrinsic luminosity, meaning that distant objects can be excluded even
if otherwise-identical objects would be included if closer to us. An estimate of the size of the effects
of this limitation on the results is left for future works.

4. Results

Using the list of starburst galaxies, we find a maximum test statistic of TS = 27.2 with an
energy threshold of 𝐸min = 38 EeV on the Auger scale (49 EeV on the TA scale), an angular
scale 𝜓 = 15.5◦+5.3◦

−3.2◦ ,2 and a signal fraction 𝑓 = 11.8%+5.0%
−3.1%. Using the list of all types of galaxies

galaxies, we find a maximum TS = 16.2 with 𝐸min = 41 EeV on the Auger scale (53 EeV on the TA
scale), 𝜓 = 24◦+13◦

−8◦ ,3 and 𝑓 = 38%+28%
−14%. The TS as a function of the parameters for the two catalogs

is shown in Figure 3. The best-fit flux models are shown in Figure 4. Using both catalogs, there

2Equivalent top-hat radius: Ψ = 24.6◦+8.4◦
−5.1◦ .

3Equivalent top-hat radius: Ψ = 38◦+21◦
−13◦ .
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Figure 4: The best-fit flux models for the two catalogs we used
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Figure 5: Same as in Figure 3 bottom, but with a higher energy threshold

also is a local maximum at 𝐸min = 59 EeV on the Auger scale (78 EeV on the TA scale); the TS as
a function of 𝜓 and 𝑓 at this threshold is shown in Figure 5.

According to Wilks’ theorem [22], when accounting for the scan over 𝜓 and 𝑓 (but not 𝐸min)
these test statistics correspond to local statistical significances of 4.7𝜎 and 3.4𝜎 respectively.
Wilks’ theorem is not applicable to 𝐸min because the likelihood is not a smooth function of it, so
we computed the post-trial significances accounting for all three free parameters using simulations
in each of which the number and energies of events are the same as in the real data, but the
arrival directions are randomly generated according to the combined directional exposure of the
two arrays. The resulting distribution of test statistics is shown in Figure 6. We find that for
the starburst galaxy model TS = 27.2 corresponds to a 4.2𝜎 post-trial significance, and for the
all-galaxy model TS = 16.2 corresponds to a 2.9𝜎 post-trial significance.

4.1 Effect of the uncertainty in the energy cross calibration

As explained in Ref. [16], the statistical uncertainty in the cross calibration of energies can be
treated as a ±6.4% uncertainty on the ratio between “effective” exposures, but we find that such an
uncertainty has a negligible effect on the current study: if we increase the TA exposure by ±6.4%,
the maximum TS changes by ∓0.4 and ±0.1, for the starburst galaxy model and the all-galaxy
model respectively, with changes in 𝜓 and 𝑓 of less than 1◦ and 1% respectively. The reason for
this is that neither hemisphere dominates the anisotropic component of either model, so the fit to
the data cannot be substantially improved or worsened just by rescaling the flux in one or the other
hemisphere.
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5. Conclusion

Our combined dataset hints at an association between the arrival directions of around 12% of
cosmic rays detected with 𝐸 ≥ 38 EeV by Auger or with 𝐸 & 49 EeV by TA and the position of
nearby starburst galaxies on an angular scale of around 16◦, with a stronger significance than the
Auger-only data [17] but still short of the discovery level, as well as a weaker association with the
overall galaxy distribution. The astrophysical interpretation of this association is complicated by
our incomplete knowledge about intergalactic and Galactic magnetic fields and the UHECR mass
composition. Therefore we leave the possible interpretations of these results for future studies.

In the coming years, the upgraded arrays AugerPrime [24] and TA×4 [25] will gather more
exposure, allowing us to probe flux models with more statistical sensitivity. It will be interesting
to see if the new data will be able to confirm or dispute this finding. Furthermore, improved mass
estimation from new analysis techniques (such as ones involving machine learning [26, 27]) and
from the new detectors of Auger [24] will allow us to select high-rigidity event samples, which are
expected to undergo smaller magnetic deflections.
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