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Abstract: The article presents a theoretical study of the regimes of high-pressure torsion (HPT) for
which slippage of the deforming material on the interfaces with anvils is possible. The approach
taken is a generalisation of the currently accepted view of the HPT process. It enables a rational
explanation of its salient features and the effects observed experimentally. These include a lag in
the rotation angle of the specimen behind that of the anvils, an outflow of the material from the
deformation zone, enhancement in gripping the specimen with anvils with increasing axial pressure,
etc. A generalised condition for gripping the specimen with anvils, providing a basis for an analytical
investigation of the HPT deformation at a qualitative level, is established. The results of the analytical
modelling are supported by finite-element calculations. It is shown that for friction stress below
the shear stress of the specimen material (i.e., for the friction factor m < 1), plastic deformation is
furnished by non-shear flows, which expands the range of possible process regimes. The potential of
these flow modes is impressive, which is reflected in the second meaning of the word “gripping” in
the title of the article. Non-shear flows manifest themselves in the spreading of the material over the
anvil surfaces whose cessation signifies the end of deformation and the beginning of slippage of the
specimen as a whole. The model shows that for m < 1 such a finale is inevitable at any axial pressure.
It predicts, however, that the highest achievable strain is increased when the axial pressure is raised
in the course of the HPT process. Unlimited deformation of the specimen is only possible for m = 1,
when slippage of the deforming material relative to the anvils is suppressed.

Keywords: high-pressure torsion; slippage; plastic deformation; stress; strain

1. Introduction

Despite its seeming simplicity, high-pressure torsion (HPT) is remarkably efficient. It
was proposed in the 1930s by the Nobel Prize winner P. Bridgman as a way to induce phase
transformations and chemical reactions under high pressure [1,2]. Since the 1990s, HPT has
been used as the most popular method for obtaining ultrafine-grained metals and alloys
via severe plastic deformation [3–5]. Over the last 10 years the method has been applied
for fabrication of new materials with different compositions whose constituents react with
each other during co-deformation under high pressure [6–11].

The realization of HPT involves seizure of the specimen by anvils, which, through the
contact surfaces, impart to it a torque. Ensuring reliable seizure is key to any application
of this process. At present, the knowledge of how seizure occurs and what influences it is
rather incomplete, however. What is known can be summarised as follows.
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If seizure is insufficient, slippage of the specimen relative to the anvils occurs. This
reduces the achievable plastic strain, which in extreme cases can vanish altogether [12–14].
Experiments show a clear tendency to increased slippage with increasing hardness of
the specimen material. For hard materials such as iron or steel, slippage intensifies with
increasing angular velocity of the revolving anvils [12]. To enhance seizure, one applies
high axial pressure and uses anvils treated by sanding.

Starting from the seminal publications by P. Bridgman [1,15], it is commonly agreed
that seizure of a specimen by anvils is a result of friction stress τf r on the contact surfaces
reaching the magnitude of the shear stress k of the deforming material:

τf r = k, (1)

Equation (1) means that any relative displacements of two contacting bodies at the
interface are blocked while external friction is transformed to plastic shear of the softer of
the two materials [15–17]. Accordingly, in mathematical modelling of HPT, the boundary
conditions at the surfaces in contact with each other are set either in the form of Equation (1)
or through the sticking condition [18–21].

The seizure, or gripping, criterion, expressed by Equation (1), raises some questions
about contact friction. The friction stress at high normal pressure is determined by the
following equation:

τf r = mk, (2)

Here, 0 < m ≤ 1 is the friction factor, which is equal to unity only for an ideally clean
juvenile surface of a specimen. In the presence of surface films, such as contaminated
layers or oxides, the inequality m < 1 holds [16,17]. How, then, can HPT be realised if,
as a rule, the surfaces of specimens are covered with such films? The gripping condition,
Equation (1), is valid if HPT is viewed as a process of plastic shear on a plane parallel
to the anvil work surface [1,15]. However, in reality this is not always the case, as was
mentioned by P. Bridgman, who wrote, “The actual distribution of stress and strain in the
disk is evidently very complicated, and must differ greatly from the mean values. . . ” [1].
Recent studies confirm this remark [18–22] and question the necessity of Equation (1) to be
satisfied. In particular, it was shown by computations using the commercial rigid/plastic
finite element code DEFORM that gripping of a specimen is also possible for m < 1 [22]. In
that case, a decrease in the friction factor reduces the maximum effective strain attainable
by HPT for a given pressing force on the anvils.

In this article we propose an extended interpretation of the HPT process, in which
non-shear flows of the specimen material are allowed. This makes it possible to obtain
a generalised gripping condition, Equation (1), being a special case thereof. We use this
generalised condition to provide a rational explanation for several HPT effects associated
with specimen gripping. The reader is reminded again that we use the term “gripping” as
being synonymous with “seizure”, which is commonly used in the literature on friction.

2. Generalised Gripping Conditions

We demonstrate below that the gripping condition expressed by Equation (1) is valid
only if non-shear flows are blocked. If they are admitted, plastic deformation of the
specimen under HPT is also enabled for τf r < k. To that end, we consider the von Mises
plasticity criterion, which reads [23]:

(σzz − σrr)
2 + (σzz − σθθ)

2 + (σθθ − σrr)
2 + 6

(
σ2

zr + σ2
zθ + σ2

θr

)
= 6k2 (3)

Here, σij denotes the components of the stress tensor in cylindrical coordinates with
the z-axis directed opposite to the force direction in Figure 1.
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Figure 1. Schematics explaining the directions of the shear stresses on the contact surfaces between 
the specimen and the anvils: (a) upper surface normal to the anvil rotation axis, (b,c) cross-sections 
of the specimen perpendicular to the 𝜃- and 𝑟-axes, respectively. The rotation of the upper anvil is 
indicated by the curved arrow. The notation in the figure is as follows: 𝑣  and 𝑣  are the 
components of the velocity vector at point C; 𝑛 and 𝑛  are the vectors normal to the upper and 
lower surfaces of the specimen, respectively. All other symbols are defined in the text. 

We set 𝜎 = 𝜎 —an assumption common for the case of axial symmetry [23,24]. In 
addition, we assume that shear occurs mainly in the direction normal to the z-axis, i.e., 
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equation 𝜎 = 0 . Using these assumptions in Equation (3), we obtain the following 
plasticity condition: (𝜎 − 𝜎 ) + 3𝜏 = 3𝑘 , (4) 
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Equation (6) that ≡ 0, which is only possible if 𝜎 ≡ 𝜎  holds. In this case, the 
plasticity condition, Equation (3), takes the following form: 

Figure 1. Schematics explaining the directions of the shear stresses on the contact surfaces between
the specimen and the anvils: (a) upper surface normal to the anvil rotation axis, (b,c) cross-sections
of the specimen perpendicular to the θ- and r-axes, respectively. The rotation of the upper anvil is
indicated by the curved arrow. The notation in the figure is as follows: vr and vθ are the components
of the velocity vector at point C; n and n′ are the vectors normal to the upper and lower surfaces of
the specimen, respectively. All other symbols are defined in the text.

We set σrr = σθθ—an assumption common for the case of axial symmetry [23,24].
In addition, we assume that shear occurs mainly in the direction normal to the z-axis,
i.e., that the inequalities

∣∣ .
γθr
∣∣ � ∣∣ .

γzr
∣∣ and

∣∣ .
γθr
∣∣ � ∣∣ .

γzθ

∣∣ hold. It then follows from the
Associated Flow Law [23] that |σθr| � |σzr| and |σθr| � |σzθ |, which allows us to use
the equation σθr = 0. Using these assumptions in Equation (3), we obtain the following
plasticity condition:

(σzz − σrr)
2 + 3τ2 = 3k2, (4)

where
τ =

√
σ2

zr + σ2
zθ , (5)

is the shear stress in the plane normal to the z-axis.
According to the Associated Flow Law, the strain rates for this case obey the following

relations:
.
γ = λ

∂ f
∂τ

,
.
ezz = λ

∂ f
∂σzz

,
.
err = λ

∂ f
∂σrr

, (6)

with
.
γ =

√
.
γ

2
zr +

.
γ

2
zθ , (7)

and
f = (σzz − σrr)

2 + 3τ2 − 3k2,

Here, λ is a parameter [23] that does not enter the subsequent analysis.
In fully constrained HPT [3], when the specimen is placed in a cavity within an anvil

whose walls block the outflow of the material, one has
.
err ≡ 0. It then follows from

Equation (6) that ∂ f
∂σrr
≡ 0, which is only possible if σzz ≡ σrr holds. In this case, the

plasticity condition, Equation (3), takes the following form:

τ = k, (8)

Further conditions satisfied for fully constrained HPT read as follows:
.
γzr = 0 and

σzr = 0 [20]. Combining Equations (5), (7), and (8), one than obtains
.
γ =

∣∣ .
γzθ

∣∣ and τ = |σzθ |.
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At the contact surfaces the equality σzθ = τf r is fulfilled. Assuming the uniformity of σzθ

throughout the specimen thickness, we find from Equation (8) that τf r = k holds. That is to
say, Equation (1) is a necessary condition for plastic deformation of the specimen under
full-constraint HPT when non-shear flow is blocked by the walls of the anvil cavity. The
corresponding sufficient conditions were obtained in [20].

We now turn to the question of how non-shear flows affect the gripping of a specimen.
First, we need to formally define the notion of gripping. We shall consider the specimen to
be gripped by anvils if the torque and the pressure applied to it cause plastic deformation.
This definition is broader than the currently accepted one, which implies sticking the
specimen to the anvils. Indeed, our definition does not rule out the possibility of slippage.
The latter must take place if the material is pressed out of the working zone of the anvils.
We show below that this extended interpretation of gripping helps obtain the full picture,
which includes both shear and non-shear flows, thus answering the questions posed in
the introduction.

To obtain a gripping criterion based on the new definition and generalising Equation (1),
we consider the magnitude of τ. Figure 1 displays a schematic illustrating the direction
of shear stresses on the flat specimen surfaces. In a general case, it is assumed that the
specimen is twisted and compressed by the anvils. As a result of axial compression, the
specimen material is pressed out in radial directions. Any point on the specimen surface,
except the ones located on the rotation axis, has non-zero components of the velocity along
the r- and θ-axes.

The components of the vector of shear stress on the specimen surface are nothing
else but the components of the friction stress developing between the specimen and the
anvils. Friction is passive in radial directions since the anvil hinders radial outflow of the
material. The stress σzr thus acts against vr. In the tangential direction, friction is active,
as the specimen is twisted by the anvils. Hence, σzθ acts in the direction of vθ . As follows
from Figure 1, σzθ has the same orientation with respect to the normal vector, i.e., it has
the same sign on the upper and the lower specimen surfaces, whereas σzr has the opposite
signs on the two surfaces.

The abovementioned leads to the conclusion that, in a first approximation, the fol-
lowing relations hold for the specimen bulk: σzθ =

(
τf r

)
θ

and σzr = (2z/h)
(

τf r

)
r
,

where
(

τf r

)
θ

and
(

τf r

)
r

are, respectively, the tangential and the radial components
of the friction stress; h denotes the specimen thickness. Substitution of these relations in
Equation (5) yields

τ =

√[
(2z/h)

(
τf r

)
r

]2
+
[(

τf r

)
θ

]2
(9)

This function has a minimum in the mid-section of the specimen, at z = 0, and
reaches the maximum value, τmax = τf r, at the specimen surfaces at z = ±h/2. This
means that the magnitude of the friction stress limits the possible values of τ. With the
account of Equation (2), we record this conclusion in the inequality ≤ mk, which is to be
fulfilled in conjunction with the plasticity condition, Equation (4). Hence, the criterion,
which by necessity must be satisfied by the stresses within the specimen during its plastic
deformation imparted to it by the anvils, reads:{

(σzz − σrr)
2 + 3τ2 = 3k2

τ ≤ mk
(10)

Criterion (10) represents the gripping criterion corresponding to the above generalised
notion.

In the absence of non-shear flows when σzz = σrr holds, Criterion (10) is reduced to:{
τ = k

τ ≤ mk
(11)
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From this, the equality m = 1 follows. Hence, for the special case of shear flow, the
generalised gripping criterion recovers the known criterion given by Equation (1).

The result thus obtained can be elucidated graphically. For this purpose, we transform
plasticity condition of Equation (4) to the following form:

(σzz − σ)2 +

(√
3

2
τ

)2

=

(√
3

2
k

)2

where σ = σzz+σrr
2 .

It follows from the previous condition that in coordinates
(

σzz,
√

3
2 τ

)
Equation (4)

is the equation of a circle, with a radius of
√

3
2 k and the centre at the point (σ, 0). The

corresponding graph is shown in Figure 2.

Materials 2023, 15, x FOR PEER REVIEW 5 of 16 
 

 

𝜏 = 𝑘𝜏 ≤ 𝑚𝑘 (11) 

From this, the equality 𝑚 = 1 follows. Hence, for the special case of shear flow, the 
generalised gripping criterion recovers the known criterion given by Equation (1). 

The result thus obtained can be elucidated graphically. For this purpose, we trans-
form plasticity condition of Equation (4) to the following form: 

(𝜎 − 𝜎) + √32 𝜏 = √32 𝑘  

where 𝜎 = . 

It follows from the previous condition that in coordinates 𝜎 , √ 𝜏  Equation (4) is 

the equation of a circle, with a radius of √ 𝑘 and the centre at the point (𝜎, 0). The corre-
sponding graph is shown in Figure 2. 

 
Figure 2. Graphical representation of the gripping condition for an HPT specimen. 

The plasticity condition, Equation (4), is represented by the circle in Figure 2. At its 
apex (point A), the relation 𝜏 = 𝑚𝑘 holds. According to Criterion (10), the stress state of 
a plastically deforming specimen is mapped to the points on the arch BD, which we refer 
to as the “gripping arch.” Based on the Associated Flow Law, Equation (6), for any point 
C on the circle, the length of the segments a and b are related to the deformation rates 𝛾 
and 𝑒  through the following equations: 𝑎 = |𝛾|

4√3𝜆 (12) 

𝑏 = |𝑒 |
4𝜆 (13) 

As seen from Figure 2, the shear stress is non-zero on the entire arch AD, apart from 
its apex A, where 𝑏 = 0 holds. It follows from Equation (13) that only at point A, i.e., for 𝜏 = 𝑘, is the deformation of the specimen not accompanied by non-shear flows (𝑒 = 0). 
Accordingly, gripping of the specimen for 𝑚 < 1 must necessarily involve non-shear 
flows (𝑒 ≠ 0, 𝑒 ≠ 0), expressed through extrusion of the material out of the working 
zone of the anvils. 

  

Figure 2. Graphical representation of the gripping condition for an HPT specimen.

The plasticity condition, Equation (4), is represented by the circle in Figure 2. At its
apex (point A), the relation τ = mk holds. According to Criterion (10), the stress state of a
plastically deforming specimen is mapped to the points on the arch BD, which we refer to
as the “gripping arch.” Based on the Associated Flow Law, Equation (6), for any point C on
the circle, the length of the segments a and b are related to the deformation rates

.
γ and

.
ezz

through the following equations:
a =

.
|γ|/4

√
3λ (12)

b =
∣∣ .
ezz
∣∣/4λ (13)

As seen from Figure 2, the shear stress is non-zero on the entire arch AD, apart from
its apex A, where b = 0 holds. It follows from Equation (13) that only at point A, i.e., for
τ = k, is the deformation of the specimen not accompanied by non-shear flows (

.
ezz = 0).

Accordingly, gripping of the specimen for m < 1 must necessarily involve non-shear flows
(

.
ezz 6= 0,

.
err 6= 0), expressed through extrusion of the material out of the working zone of

the anvils.

3. Plastic Flow of an HPT Specimen under Generalised Gripping Condition

Commonly, non-shear flows are presented as a passive factor, contrary to shear flow,
which is considered active. This viewpoint is also common in assessments of the role of the
force elements of HPT rigs, which include two independent drivetrains: one producing the
axial force P and the other the torque M. The conventional view is that the axial force is
used to induce high pressure and ensure seizure of the specimen by the anvils while the
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plastic deformation is effected by the torque. However, in reality both drivetrains produce
the work of deformation when non-shear flows occur. We take an alternative standpoint
and posit that for efficient control of material flows under HPT both force factors are to
be considered on equal terms. Below, this idea is outlined by considering generalised
variables, which characterise the state of the system [24,25].

The expression for the power of the external forces,
.

W, is written as follows:

.
W = MΩ + PU (14)

Here Ω and U denote the relative angular rotation velocity and the relative transla-
tional displacement speed of the anvils, respectively.

In light of Equation (14), the quantities M and P can be regarded as generalised forces
and Ω and U as generalised velocities related to M and P through the following equations:

Ω = Λ
∂F
∂M

(15)

U = Λ
∂F
∂P

(16)

Here F = F(M, P) is the plastic potential, which defines the generalised plasticity
condition: The specimen deforms plastically if F(M, P) = 0 holds, whereas it is in the
elastic state under the condition that F(M, P) < 0 [24,25].

Let us derive an expression for the plastic potential for the HPT deformation. Accord-
ing to [23], the mean pressure p0 required for the plastic compression of a thin round disk
is given by the following formula:

p0 =
kR
3h

(17)

where 2R and 2h are, respectively, the diameter and the thickness of the disk.
This expression was obtained for sufficiently thin specimens when (h/R)� 1 holds

and assuming that there is no obstruction to its outflow at the disk edges (unconstrained
HPT). This condition can be generalised by considering flow inhibition under quasi-
constrained HPT. The hindrance to the outflow can be represented by some radial pressure
q applied at the disk perimeter. It is caused by extrusion of the specimen material into a
ring-shaped gap between the anvils from the cavity housing the specimen [3].

To determine how this radial pressure will alter Equation (17), we conduct a thought
exercise in which a hydrostatic pressure q is applied to the disk in addition to the axial
pressure. Neither the plasticity condition nor the limiting friction will be affected by that.
This means that the new stress state will satisfy the plasticity conditions [23], and the
required radial pressure q at the disk perimeter will be imposed. The mean the axial stress,
previously provided by Equation (17), will be raised by the same amount:

p0 =
kR
3h

+ q (18)

The expression for the corresponding axial force P0 = πR2 p0, which is necessary for
compression of the disk in the absence of a torque, then reads:

P0 =
kπR3

3h
+ Q (19)

with Q = πR2q.
Let us now consider the opposite extreme: plastic torsion of a round disk “welded”

to the anvils (the case of limiting friction regardless of the applied pressure). The torque
required for that is given [24] by

M0 =
2
3

kπR3 (20)
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Under Conditions (19) and (20) non-shear flows and the shear flow are realised in their
pure forms. If the inequalities P < kπR3

3h + Q and M < 2
3 kπR3 hold, plastic deformation

is induced by two drivetrains and the material flow has two components. In this case,
the axial force and the torque must be related through a generalised plasticity condition,
like the components of the stress tensor expressed in terms of the plasticity condition of
Equation (3).

We assume that the generalised plasticity condition is a quadratic function of M and
P [24,25] satisfying Equations (19) and (20) and write this condition as

[2h(P−Q)]2 + M2 = K2 (21)

where K = 2
3 kπR3.

Equation (21) describes an ellipse with the half-axes K/2h and K in the coordinate
system (P,M) shifted upwards along the P-axis by an amount Q. In Figure 3, the arch AD
mapping the generalised plasticity locus is shown.
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According to the above definition of the plastic potential (cf. Equations (15) and
(16), as well as the text immediately below them), the expression for F that follows from
Equation (21) reads

F = [2h(P−Q)]2 + M2 − K2 (22)

Substitution of Equation (22) into Equations (15) and (16) yields the following expres-
sions for the generalised velocities:

Ω = 2M (23)

U = 8Λh2(P−Q) (24)

According to Equations (15) and (16), the generalised velocity vector (U, Ω) is normal
to the plasticity locus at any point on it, cf. Figure 3.

All regimes on the arch AD can be realised only for the limiting friction between the
specimen and the anvils, i.e., for m = 1. For m < 1, when the contact zone is contaminated
by impurities or oxides, the greatest possible torque has the magnitude of MB, where

MB =
2
3

mkπR3 = mK (25)

If, as determined by Equation (21), the plastic deformation requires a higher value
of the torque, slippage of the specimen relative to the anvils will occur, as friction cannot
deliver the necessary torque level. This indicates that plastic deformation only happens on
a part of the arch, between D and B (see Figure 3). We refer to this part of the arch as the
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HPT feasibility region. In a certain sense, it corresponds to the “gripping arch” presented
in Figure 2.

It can now be demonstrated that with the progress of straining, the HPT regime with
a constant axial force is shifted towards the boundary of the HPT feasibility region B. Let a
point C represent the plastic deformation condition at a certain moment. Since at this point
U is non-zero, the thickness h of the specimen will decrease with the growing anvil rotation
angle, as U is the relative translational displacement speed of the anvils. As a result, the
half-axis of the plasticity ellipse K/2h will increase. In addition, due to the narrowing of
the gap between the anvils upon their translational motion, the radial pressure q will go
up. Consequently, Q will grow to a certain value Q′, leading to a shift of the plasticity
ellipse to the right. The generalised plasticity locus corresponding to h′ < h is shown as
a dotted line in Figure 3. (For simplicity, K = const is used.) For a constant axial force
(indicated as Pc = const in Figure 3), an increase in the anvil rotation angle will lead to
an increase in the ordinate of point C, which moves closer to the boundary of the HPT
feasibility region. As seen from Figure 3, the magnitude of U will then drop, which signifies
a decrease in the intensity of the material outflow from the working zone of the anvils.
Once the representative point on the plasticity arch has reached the boundary of the HPT
feasibility region, plastic deformation will cease and the entire specimen will be slipping
relative to the anvils.

Let us outline the path to obtaining quantitative results for HPT deformation by using
the generalised plasticity-locus approach.

Since Ω and U denote the relative angular rotation velocity and the relative transla-
tional displacement speed of the anvils, one has Ω = dϕ/dt and U = −2dh/dt, where
t is the process time and ϕ is the relative anvil rotation angle. Using these relations and
combining Equations (23) and (24), we arrive at the following differential equation for h:

dh
dϕ

= −2h2(P−Q)

M
(26)

Now assume that Q = CP, where 0≤ C ≤ 1. For the limit cases of non-constrained
and fully constrained HPT, the equalities C = 0 and C = 1 hold, respectively. Intermediate
values of C correspond to quasi-constrained HPT with various degrees of hindrance to the
plastic flow of the metal. By substituting the value of M found from the plasticity condition
of Equation (21) into Equation (26) and employing the above expression for Q, we obtain

dh
dϕ

= − 2(1− C)Ph2√
K2 − 4(1− C)2P2h2

(27)

Expressing the axial force in terms of the average pressure
(

P = πR2 p
)

and introduc-
ing non-dimensional variables h = h/R, M = M/K, p = p/σs (where σs =

√
3k is the flow

stress of the deforming material), we arrive at the following differential equation:

dh
dϕ

= − 3
√

3(1− C)ph
2√

1− 27(1− C)2 p2h
2

(28)

In non-dimensional variables, the highest attainable torque given by Equation (25)
assumes the form

MB =

√
1− 27(1− C)2 p2h

2 ≤ m (29)

Equation (28), taken together with the limiting condition of Equation (29), enables
the calculation of h(ϕ) for a prescribed loading schedule p(ϕ) and the initial condition
h(0) = h0.
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Let us now obtain a relation for assessing the equivalent, or effective, von Mises strain
ee f f , which accounts for non-shear flow. According to [23], we have

ee f f =
∫ t

0

.
ee f f dt (30)

with

.
ee f f =

√
2

3

√( .
ezz −

.
err
)2

+
( .
ezz −

.
eθθ

)2
+
( .
err −

.
eθθ

)2
+

3
2

( .
γ

2
zr +

.
γ

2
zθ +

.
γ

2
rθ

)
(31)

Considering the assumptions introduced in Section 1, Equation (31) reduces to

.
ee f f =

.
γ√

3

√
1 + 3

( .
ezz

.
γ

)2

(32)

where
.
γ is given by Equation (7). The quantities entering this relation are taken as

.
γ =

|vθ(r)|
h

(33)

.
ezz

.
γ

=
1
h

dh
dϕ

(34)

Substitution in Equation (32) yields

.
ee f f (r) =

1√
3

√
1 + 3

(
1
h

dh
dϕ

)2 |vθ(r)|
h

(35)

where r is the distance from the rotation axis.
As the work produced by the torque is positive, friction is active in the direction of θ,

and |vθ(r)| < rΩ holds. Therefore, it follows for an upper estimate of
.
ee f f that

.
ee f f (r) =

1√
3

√
1 + 3

(
1
h

dh
dϕ

)2 r
h

dϕ

dt
(36)

Substituting this relation in Equation (30) and using non-dimensional variables,
we obtain the sought estimate of the effective von Mises strain, which accounts for
non-shear flows:

ee f f (r) =
r√
3

∫ ϕ

0

√√√√1 + 3

(
1
h

dh
dϕ

)2
dϕ

h
(37)

where r = r/R and h(ϕ) are determined by Equation (28) combined with the condition of
Equation (29).

The above mathematical model of HPT based on the generalised gripping condition
predicts several effects, illustrated in Figure 4. The following numerical values of the
quantities involved were used in the calculations of h = 0.5 mm, R = 5 mm, σs = 400 MPa,
and non-constrained HPT conditions (C = 0).
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Figure 4. The dependence of the specimen thickness, torque, and effective strain on the number of
anvil revolutions according to the model presented (a) at a fixed axial pressure of 5 GPa; (b) at a fixed
friction factor of m = 0.95; (c) the effect of the loading schedule.

According to our model, deformation under non-constrained (C = 0) and quasi-
constrained (0 < C < 1) HPT is accompanied by a reduction in the specimen thickness and
its concomitant spreading over the anvil surfaces. If the friction is below the limit (m < 1),
then after a certain amount of anvil rotation slippage of the specimen as a whole sets in
and no deformation occurs. The higher the friction factor (Figure 4a) and the axial pressure
(Figure 4b), the greater the strain accumulated up to that moment. The magnitude of the
effective strain is also influenced by the schedule according to which the axial pressure is
applied. The blue line corresponds to the applied axial pressure of 7 GPa, with a subsequent
anvil rotation; the red line refers to incremental increase in the pressure from 3 GPa to
7 GPa in 2 GPa steps (each step terminating with the onset of slippage of the specimen).
For the same final pressure, the maximum attainable effective strain is increased if the final
pressure is not fixed from the start of loading but rather is increased to its highest level in a
staggered way as the anvil rotation is increased (Figure 4c).

4. Numerical Analysis of Gripping

In the foregoing sections gripping of the specimen was investigated qualitatively using,
where possible, an analytical approach. Below we present the results of a quantitative
numerical study of the HPT process in different regimes.
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4.1. Computation Methodology

Computations were carried out using the commercially available finite-element pack-
age QForm-3D [26]. A geometrical sketch of the system is shown in Figure 5.

Materials 2023, 15, x FOR PEER REVIEW 11 of 16 
 

 

4. Numerical Analysis of Gripping 
In the foregoing sections gripping of the specimen was investigated qualitatively us-

ing, where possible, an analytical approach. Below we present the results of a quantitative 
numerical study of the HPT process in different regimes. 

4.1. Computation Methodology 
Computations were carried out using the commercially available finite-element 

package QForm-3D [26]. A geometrical sketch of the system is shown in Figure 5. 

 
Figure 5. Geometrical model used in computations of the HPT process. 

It is assumed that the lower anvil is fixed, whereas the upper one is rotated at a con-
stant angular velocity 𝛺 = 2 rpm. A force aligned with the rotation axis is applied at the 
upper anvil. The specimen is disk-shaped and has an initial thickness of 1 mm and a di-
ameter of 10 mm. The specimen’s material parameters are those of pure copper. The fric-
tion stress at the anvil–specimen interfaces is given by Equation (2). It is further assumed 
that a sufficiently high hydrostatic pressure (three- to four-fold that of the flow stress of 
the material) is applied to the system. Despite having no effect on the equations of the 
plasticity theory, this pressure brings the friction stress to the level when Equation (2) is 
valid. This makes it possible to study the behaviour of the system on the arch AD of the 
Mohr circle by varying the friction factor 𝑚 without bothering with its location on the 
abscissa, which is defined by the magnitude of the hydrostatic stress. Thus, the force ∆𝑃 
is determined by the (positive) difference between |𝜎 | and the hydrostatic pressure, ra-
ther than the magnitude of |𝜎 |. 

Two sets of numerical calculations were carried out. In the first one, the initial stage 
of gripping was modelled. In the second, its development under a constant force ∆𝑃 was 
modelled. 

In the first set of numerical experiments, the force by which the anvils were pressed 
together was increased linearly until gripping and the onset of plastic deformation set in. 
Gripping, in the generalised sense, was determined by monitoring the decrease in the 
specimen thickness and the increase, from a zero level, at the geometrical centre of the 
specimen taken as a reference point. The magnitude of m and the corresponding value of ∆𝑃 at the moment of gripping were then plotted on the ordinate axis and the abscissa of 
a diagram (cf. Figure 6 below). 

Figure 5. Geometrical model used in computations of the HPT process.

It is assumed that the lower anvil is fixed, whereas the upper one is rotated at a
constant angular velocity Ω = 2 rpm. A force aligned with the rotation axis is applied
at the upper anvil. The specimen is disk-shaped and has an initial thickness of 1 mm
and a diameter of 10 mm. The specimen’s material parameters are those of pure copper.
The friction stress at the anvil–specimen interfaces is given by Equation (2). It is further
assumed that a sufficiently high hydrostatic pressure (three- to four-fold that of the flow
stress of the material) is applied to the system. Despite having no effect on the equations of
the plasticity theory, this pressure brings the friction stress to the level when Equation (2)
is valid. This makes it possible to study the behaviour of the system on the arch AD of
the Mohr circle by varying the friction factor m without bothering with its location on the
abscissa, which is defined by the magnitude of the hydrostatic stress. Thus, the force ∆P is
determined by the (positive) difference between |σzz| and the hydrostatic pressure, rather
than the magnitude of |σzz|.

Two sets of numerical calculations were carried out. In the first one, the initial stage
of gripping was modelled. In the second, its development under a constant force ∆P
was modelled.

In the first set of numerical experiments, the force by which the anvils were pressed
together was increased linearly until gripping and the onset of plastic deformation set
in. Gripping, in the generalised sense, was determined by monitoring the decrease in the
specimen thickness and the increase, from a zero level, at the geometrical centre of the
specimen taken as a reference point. The magnitude of m and the corresponding value of
∆P at the moment of gripping were then plotted on the ordinate axis and the abscissa of a
diagram (cf. Figure 6 below).

In the second set of numerical experiments the friction factor m was specified. The
specimen was loaded by applying a certain force ∆P, followed by a rotation of the upper
anvil. The quantities controlled in these computational experiments were ∆P (which
dropped when the anvil rotation begun and then increased, reaching a prescribed level),
torque, specimen thickness, the deformation rate, and the effective (equivalent) von Mises
strain at the abovementioned reference point.
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Figure 6. Dependence of the axial force ∆P at the onset of gripping on the friction factor m.

4.2. Results of Numerical Experiments

Numerical experiments of the first set revealed that for m < 1, gripping of the spec-
imen was associated with a decrease in its thickness and an increase in the diameter. A
prerequisite for that is that the axial pressure exceeds the hydrostatic pressure. As men-
tioned in the foregoing section, this condition was captured in the magnitude of ∆P. For
the case when m = 1 held, plastic deformation occurred at ∆P = 0, without any non-shear
flows. The results of the first set of the numerical experiments are displayed in Figure 6. In
essence, the curve in Figure 6 corresponds to the arch AD in Figure 3.

Representative results of the second set of numerical experiments are shown in Figure 7.
They confirm the conclusion made in the previous section: For m < 1 and a fixed ∆P, the
deformation of the specimen terminated when its slippage as a whole relative to the
anvils began.
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Figure 7. The results of the second set of numerical experiments for m = 0.9. The axial force was
increased up to ∆P = 15 kN and was fixed thereafter. Slippage of the entire specimen (without
deformation) set in after approximately two full rotations.

5. Discussion

We can now demonstrate that several facts known in the mechanics of HPT can be
explained in terms of specimen gripping in a generalised sense, according to Equation (10),
as opposed to Equation (1).

First of all, Equation (10) resolves the question posed in the introduction: How can
HPT be realised when the specimen surface is covered with oxides or impurity-containing
film preventing the friction force from attaining its limit value k? The answer is that in that
case the insufficient magnitude of τ in Equation (4) is compensated for by the difference
of the stress components (σzz − σrr) associated with non-shear flows. The latter manifest
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themselves in the well-known effect of the spreading of the specimen material across the
anvils and its extrusion into the gap between the anvils, away from the working zone.

A similar question relates to the HPT processing of stacks of layered materials [6,9]
in the case when the constituent materials have different shear strength (e.g., alternating
layers of hard and soft materials). According to Equation (1), plastic deformation of a hard
layer is only possible if the friction stress at its boundaries can attain the level of the shear
stress for the hard material kh. However, the shear stress at the boundaries of the soft layer
cannot exceed its shear strength ks. These requirements contradict each other, as these
layers have a common boundary and must experience the same shear stress despite the
inequality ks < kh. The contradiction is resolved by virtue of non-shear flows. In the case
of layered materials, not only do non-shear flows result in spreading of the specimen, but
they also lead to intrusion of the softer material into the harder layer [27].

Practical issues of estimating the effective (equivalent) strain realistically accumulated
during HPT are caused by the specimen slippage, which can be regarded as a result of
insufficient gripping in the sense of Equation (1). However, according to this condition,
gripping cannot be “insufficiently good”: It either occurs, i.e., Equation (1) is fulfilled and
no slippage takes place, or it is not fulfilled, and slippage does take place but no gripping
takes place. Unlike Equation (1), Equation (10) opens up the possibility of slippage of the
deforming material on the anvil surface. As discussed in Section 2, slippage reduces the
accumulated effective (equivalent) strain. This is precisely what is found in the experiment
in [28]. The magnitude of the highest attainable effective strain can be evaluated using
Equation (37).

We saw in Section 1 that, for a fixed pressure, with increasing anvil rotation angle the
HPT process approaches its feasibility limit (point B in Figure 5). At this boundary, the
specimen starts slipping relative to the anvils, which blocks the growth of its equivalent
strain. One may obtain the wrong impression that deformation of the specimen goes on,
with no outflow of the material from the working zone of the anvils taking place. The
numerical simulation results presented in Section 2 (see Figure 4 and the accompanying
text) show that such a situation can be revealed when a higher pressure is used, which leads
to renewed gripping enabling continued deformation of the specimen. In other words,
increased axial pressure should raise the attainable equivalent strain of the specimen. This
conclusion is in accordance with the results of real and numerical experiments [22,28].

As mentioned in the introduction, the tendency to slip becomes more pronounced with
the growing hardness of the specimen material. This can be rationalised by considering the
diagram in Figure 3 in non-dimensional coordinates (P/K, M/K). Then, the abscissa of
point C , representing the deformation regime, is given by Pc/K. All other conditions being
the same, with increasing K this point moves to the left, closer to the boundary B of the
HPT feasibility region, where plastic deformation of the specimen ceases. The closer to this
boundary the system is, the higher is the probability of disruption of the gripping in the
generalised sense, as the resource of the friction force becomes more and more limited.

It is to be expected that at point B the so called “stick–slip” effect may occur, which
is common for frictional motion in systems where the shear stress for static friction τst
(stick) and sliding friction τsl (slip) are different [29–32]. The former acts in the absence
of macroscopic displacement of the contacting bodies, whereas the latter is at play when
relative sliding sets in. A transition to relative sliding occurs when the stress τ at the
contact surface attains the value of maxτst, the highest possible level of the static friction.
It is known from theories of friction that maxτstecxceeds τsl . For a system with mass and
elasticity, this leads to the occurrence of oscillatory motion at the beginning of the gliding
stage. The oscillations lead to cessation of gliding within a timeframe smaller than the
half-period. After a certain amount of time of sticking, a new sliding episode follows, and
these alternating events go on and on [29–32]. It is quite possible that at point B the slippage
of the specimen on the anvils occurs according to this “stick–slip” scenario, rather than in a
continuous way, since when deformation stops the flow of the material with respect to the
anvils ceases instantaneously. This assumption is supported by the occurrence of audible



Materials 2023, 16, 823 14 of 16

creaking in the final stages of HPT deformation of hard materials—a common feature of
“stick–slip”.

6. Conclusions

We have shown that viewing HPT just as a process of mere simple shear limits
researchers in their understanding of the observed phenomena. A broader viewpoint
on the mechanics of HPT, which admits the possibility of non-shear flows, enables a
generalisation of the gripping condition. This facilitates a better control of these flows and
makes it possible to achieve improved properties of HPT-processed materials.

The generalised Equation (10) provides a rational explanation to several observed
effects. The currently accepted gripping criterion given by Equation (1) is a special case of
Equation (10).

The following results obtained in this work should be highlighted because of their
significance.

• In the (normal stress, shear stress) and (axial force, torque) coordinates, the generalised
gripping condition of Equation (10) is represented by a “gripping arch,” distinct
from a single point as a representation of the old gripping condition in the form of
Equation (1). The upper boundary of the “gripping arch” is determined by the friction
on the contact surface between the specimen and the anvils.

• The fulfilment of Equation (1), i.e., of the equality m = 1, is the only possibility of
plastic deformation of the HPT specimen by shear only. For m < 1, shear under HPT
is necessarily accompanied by non-shear flows. Unlike the former case, for m smaller
than unity the deforming material always slips relative to the anvil surfaces.

• Furthermore, for m < 1 gripping of the specimen in a generalised sense occurs when
pressure exceeds a certain threshold, whose magnitude is greater the smaller m is.

• For m < 1 the intensity of non-shear flows at a fixed axial decreases with the grow-
ing anvil rotation angle. At a certain moment plastic deformation of the specimen
terminates and is followed by the slippage of the specimen as a whole relative to
the anvils.

• The attainable level of the equivalent strain accumulated in the specimen gripped
according to Equation (10) increases with an increase in the axial pressure. It is
noteworthy that this equivalent strain always stays below the one calculated in terms
of the conventional gripping criterion of Equation (1).

The plasticity locus for HPT proposed in this study opens the possibility to control the
plastic flows involved and tune the formation of the microstructure and the properties of
the processed material.

The article does not give final answers to all questions relating to gripping and non-
shear flows. We are of the opinion, however, that the results presented provide a faithful
description of several salient effects observed in the experiment. We trust that the gener-
alised approach taken in this work offers some guidance to researchers and engineers for
developing the HPT technology and defining new experiments.
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